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An assessment of environmental
conditions in bedrooms of
contemporary low energy houses
in Scotland

TR Sharpe, CDA Porteous, J Foster and D Shearer

Abstract
This paper describes the monitored environmental conditions in the bedrooms of 26 low energy houses
in Scotland, include both naturally ventilation and houses with mechanical ventilation with heat recov-
ery systems (MVHR). The context of the paper is the performance gap that is emerging between design
predictions and actual performance of housing, and this paper focuses on the environmental perform-
ance of bedrooms. Bedrooms are of particular interest as they are the spaces in which occupants have
the greatest exposure to the indoor environment, and in which conditions are relatively constant. The
study indicates that ventilation is generally poor in these spaces and that both temperature and humid-
ity frequently exceed accepted parameters for comfort and health. Increased window opening is a
mitigating factor, but effects are limited by overall ventilation strategies.

Keywords
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Introduction

The increasing body of evidence on the causes and pos-
sible effects of climate change1 has led some govern-
ments to establish targets for carbon reduction. In the
UK this includes the Climate Change Act2 and in
Scotland (the location for this research) more ambitious
timescales have been set with a requirement to achieve a
42% reduction by 2020.3

Buildings make a significant contribution to energy
use and consequent carbon emissions, particularly
housing, which accounts for over 27% of CO2 emis-
sions in the UK.4 The primary mechanism for achieving
the aforementioned targets has been increasingly strin-
gent requirements for buildings’ energy perform-
ance, partly as a result of European legislation,
enforced through building regulations.5,6 The main
focus of primary legislation is on energy and carbon
reduction and this in turn has led to the adoption of
new designs, materials and technologies for buildings
that seek to reduce energy consumption and carbon
emissions.

Compliance with these regulations in housing occurs
primarily at design stages through tools such as the
Standard Assessment Procedure (SAP).7 However,
these tools do not provide evidence to either the regu-
lator or client of what level of performance has actually
been achieved in reality and there are no requirements
for proof that new build homes have achieved their
planned energy performance in use.8 It is becoming
apparent that there can be significant performance
gaps between design intentions at compliance stages
and the actual performance of buildings and this is
now increasingly well evidenced.9–11 As well as
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performance gaps in energy use, there is also a growing
concern about other areas of environmental perform-
ance, particularly indoor air quality (IAQ).12,13

Previous research has made associations between
increasing air-tightness and health issues in non-
domestic buildings14,15 and concerns have been raised
about the effects this will have in domestic environ-
ments.16 Relationships with several health effects such
as allergies have been evidenced in several studies.17–19

Problems with IAQ have been identified in new
homes20 and a recent study has identified research
that shows associations between low ventilation rates
and health effects including asthma, allergy, airway
obstruction and sick building syndrome symptoms.21

As well as being a cause for concern in its own
right,22 poor IAQ problems can undermine energy stra-
tegies, for example overheating being controlled by lib-
eral window opening, leading to increased energy
consumption. Not only is there a lack of integration
between requirements for ventilation and energy use
in regulation, but tools such as SAP energy do not
take into account requirements for IAQ23 and methods
for assessing IAQ are not well defined.24

A key challenge is that different sections of legisla-
tion have particular targets and this can lead to com-
peting agendas and a lack of holistic thinking at design
stages. An example of this is the debate about building
air-tightness. As fabric performance improves, the
importance of ventilation losses increases.
Increasingly stringent regulations – underpinned by
one of the few post completion testing requirements,
an air-tightness test – is leading to increasing levels of
air-tightness. Unfortunately regulatory requirements
for ventilation have been slow to address changes
required by energy targets. For example, requirements
for background ventilation strategies have not followed
suit, relying primarily on trickle vents, which have been
shown to be inadequate.25,26 So whilst on the one hand
evidence on air quality leads to the need for higher air
changes rates, the focus on energy losses requires its
reduction.

Under Scottish regulations a mechanical ventilation
system is required when the air-tightness of houses is
below 5m3/hm2. The measure being widely adopted is
the use of mechanical ventilation with heat recovery
(MVHR),27 primarily as these systems contribute to
meeting energy targets at design stages.28 There is evi-
dence that mechanical ventilation can result in better
ventilation rates,29 with some indication of improved
health effects.30 However, there is a developing body
of knowledge that, with more widespread implementa-
tion, some systems are frequently poorly specified,
installed and used31,32 leading to poor ventilation
rates and increased energy use, and such problems
require re-commissioning.33 A lack of adequate

maintenance also presents a risk to their effective per-
formance34 and incidences of health complaints.35 In
some circumstances occupants may disable systems.
Common reasons include poor user understanding of
the purpose and control of such systems, concerns
about their energy consumption36,37 and noise.38 Such
occurrences, along with technical risks of failure such as
loss of power, would lead to significant deterioration in
ventilation rates.39

At the same time as ventilation rates are being
reduced, there are also increasing concerns about
indoor pollutants. At the outset of the 20th century
there were approximately 50 materials used to con-
struct buildings, but by the end of the century this
number has been estimated to be 55,000, with half of
them being synthetic.40 Compounds found in indoor air
are implicated in IAQ toxicity and may have off-gassed
from the building materials, furnishings and fittings,
internal processes, cleaning products and even air fresh-
eners. The most common gases found in the indoor
environment are carbon dioxide/monoxide, nitrogen
and sulphur dioxide, volatile organic compounds,
radon, formaldehyde and ozone. Suspended particulate
matter includes asbestos fibres, fibrous particulates,
bacteria and fungi, tobacco smoke, house dust mite
(HDM) allergens, pollen and dust.41,42 Changes in life-
style, such as indoor clothes drying, are in part driven
by changes in design, and high levels of indoor humid-
ity can have a major impact in terms of bacteria, fungi
and HDM proliferation.43 As well as the pollutants
themselves, there are unknown effects due to inter-
actions between compounds and their environments,44

a case in point being the effects of higher temperature
and humidity increasing emissions of volatile organic
compounds such as formaldehyde.45

A particular challenge is that as increasingly strin-
gent energy requirements have been written into legis-
lation, the low energy measures which, until a few years
ago were confined to small numbers of exemplar
houses, are now becoming mainstream in new housing.
This raises a number of important questions: Are these
measures leading to the reduction in energy use
required to meet the targets? Are they resulting in any
unintended negative consequences, for example
reduced IAQ? The context for these questions is that
at present there is very little mandatory testing of build-
ings in use and consequent information about their
energy use and environmental performance. Building
performance evaluation (BPE) has been identified as a
key strategy in this regard.46 BPE has previously been
defined as ‘the act of evaluating buildings in a systemic
and rigorous manner after they have been built and
occupied for some time’.47 Early BPE methods include
the gathering of both quantitative data through moni-
toring and qualitative data through surveys,48 but more
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recently the methodology for this has been developed
through studies such as the Post-occupancy Review Of
Buildings and their Engineering studies.49 In housing,
several methods and parameters have been developed
to capture data.50 BPE is the one process that can gen-
erate the intelligence needed to learn lessons from
buildings in order to make the required changes to
improve future design. With rapidly changing stand-
ards, leading to innovations in materials, technologies
and construction, it seems reasonable to say that all
new buildings are some form of experiment. If we do
not evaluate the results of these experiments, how can
we ever learn from them?

To address these questions the UK Technology
Strategy Board (TSB) has funded an �8m 4-year pro-
gramme of support for BPE studies that aims to under-
take studies and develop capacity for BPE for both
domestic and non-domestic buildings across the UK.
Studies include phase 1 projects, which undertake
post-construction testing and early occupancy, and
phase 2 studies, which additionally undertake monitor-
ing of energy and environmental conditions for a 24-
month period. The programme includes 32 domestic
phase 2 projects across the UK. There are seven domes-
tic phase 2 studies in Scotland and this paper presents
data from six multi-dwelling sites (the seventh
being a single privately owned house) being evaluated
by the Mackintosh Environmental Architecture
Research Unit (MEARU), and includes 26 houses
in total.

A comprehensive set of criteria for BPE has been set
out by the TSB for projects funded by the BPE pro-
gramme.51 These include a series of physical tests
including air permeability testing at the both the start
and the end of the project, U-value testing and thermo-
graphic surveys. Information is gathered on the con-
struction, design intention and occupant experiences
through a design and construction audit; drawings
and SAP calculation review; qualitative semi-structured
interviews and walkthroughs with occupants and, sep-
arately, the design team; photographic survey and an
occupant survey using a domestic version of the
Building Use Survey.

There is also a review of systems design and imple-
mentation, including installation and commissioning
checks of all services and systems. Energy and environ-
mental monitoring includes metered gas, electricity,
water and, if appropriate, heat into (and out of) dwell-
ing; sub-metering according to use, e.g. space heating,
water heating, cooker, lights and appliances.
Monitoring of internal environmental conditions
includes temperature humidity and CO2, external tem-
perature and relative humidity (RH) on site and exter-
nal climate conditions. Monitoring is undertaken at
5-min intervals over a 24-month period.

For the projects being evaluated by the MEARU
that are the subjects of this paper, some additional
data are being collected. The TSB requirement only
specifies CO2 in one room, but this is being monitored
in three rooms, including at least one, but in some
cases, two bedrooms. Additionally, contact sensors
have been placed on the principal opening to these
rooms, which detect opening incidences (but not
degree). The occupant surveys and interviews have
been extended to gather specific data on patterns of
occupancy and behaviour, with occupant diaries being
used to gather detailed information.

In these studies CO2 is being used as an indicator of
ventilation rates and IAQ. Levels of CO2 correlate well
with human occupancy and human-generated pollu-
tants, but may be unconnected from pollutants not
related to occupancy, such as off-gassing from building
materials, carpets and furniture. Nevertheless, in the
context of concern over ventilation rates they provide
a useful indicator of relative levels of ventilation, and
their use in this study allows a comparative analysis
across a number of projects. There is a general accept-
ance that CO2 keeps ‘bad company’ and that levels
above 1000 ppm are indicative of poor ventilation
rate. The provenance of this is well evidenced,52 and
corresponds to a ventilation rate of 8 l/s per person.53

This figure is also relevant in comparison with the find-
ings of a review of the literature looking at the associ-
ations between ventilation rates and CO2 levels with
health outcomes which concluded ‘Almost all studies
found that ventilation rates below 10Ls�1 per person
in all building types were associated with statistically
significant worsening in one or more health or per-
ceived air quality outcomes’.54 Associations between
health and CO2 levels have been found in office build-
ings55 and a study by Batterman and Peng56 identified
associations between CO2 levels and TVOCs. A recent
paper by Wargoki identified associations between CO2

levels and health and concluded ‘The ventilation rates
above 0.4 h�1 or CO2 below 900 ppm in homes seem to
be the minimum level protect against health risks based
on the studies reported in the scientific literature’.57

This study is examining the overall energy and envir-
onmental performance of the buildings, but the particu-
lar focus of this paper is the performance of bedrooms.
These are the spaces in which occupants spend the most
uninterrupted time, typically 7–8 h, and children may
also use bedrooms for socialising and schoolwork in
which case they could spend almost all their home
time in the bedroom. Furthermore, bedrooms over-
night present steady-state conditions with occupants
asleep, with little or no adaptive behaviour – ventilation
regimes established at the time of going to bed remain
in force overnight. Curtains and blinds tend to occlude
background ventilation strategies such as trickle vents,

Sharpe et al. 3
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and doors are more likely to be kept closed.
Accordingly, environmental conditions in bedroom
spaces are of interest, both in terms of occupant expos-
ure to ventilation effects, but as steady-state conditions,
which can be used to identify effects of ventilation.

Project information

Construction

There are six sites included in this study. These are in a
diverse number of geographical locations across
Scotland: Inverness in the north of Scotland,
Lockerbie in the south, Livingston in the east,
Dunoon in the Barrhead and Glasgow.

Inverness (Latitude 57.4; Longitude –
4.2). This rural site has 52 properties in total and
was constructed as a Housing Expo, which opened in
2010, showcasing designs of contemporary low energy
architecture. Evaluation is being undertaken on n¼ 8
houses (2� 4 different house types). Occupants include
social rented and owner-occupiers.

Lockerbie (Latitude 55.2, Longitude –
3.3). This is also a rural development of 8� 2 storey
houses built to Passivhaus standards, of which n¼ 4 are
included in this study. These are privately rented, but
subsidised for affordable rents.

Livingstone (Latitude 55.9, Longitude –
3.5). This is a development of eight 2 storey terraced
houses of which n¼ 2, an end and a mid-terraced, are
being monitored. These are social rented for tenants
with special needs.

Barrhead (Latitude 55.1, Longitude –
4.4). This is a development of 16 amenity cottages,
houses and flats for older people. There are n¼ 3
houses being monitored, 1 cottage flat, 1 two-storey
mid-terrace house and one upper floor flat.

Queens Cross (Latitude 55.8, Longitude
4.2). The development is on two neighbouring inner
city sites, providing 117 flats and houses. The flats
include 34 supported one and two-bedroom flats for
the elderly in one block and 54 one and two-bed main-
stream flats block; of which n¼ 3 sheltered flats and
n¼ 3 conventional flats are being monitored.

Dunoon (Latitude 55.9, Longitude –
4.9). The development consists of 14 semi-detached
affordable sector houses. One is a fully accredited
Passivhaus Standard dwelling and the adjacent 13
dwellings meet the code level 4 low-energy standard,

but not the Passivhaus standard. The Passivhaus dwell-
ing m3/hm2 (n¼ 1) and n¼ 2 low-energy houses are
being monitored. The houses have shared equity
between the housing association and part owner
occupiers.

A summary of the construction types is provided
in Table 1.

The predominant form of construction is timber
frame (84%). This is broadly representative of the con-
struction industry in Scotland in which 75% of new-
build construction is timber, up from 50% in 2009.58

Four of the houses (15%) use a vapour permeable
timber construction; however, in two of these the bed-
rooms are in roof spaces and thus the enclosing struc-
ture is traditional timber frame. Only four of the
dwellings (15%) use masonry construction, primarily
for reasons of fire separation, being flats.

The most common form of heating in the dwellings
is some form of wet central heating, used in 17 houses
(65%). Of these, in eight houses (30% of the total) this
is from some form of communal boiler (six are gas and
two are biomass). The remaining nine (35%) use gas
central heating. All the wet systems use traditional pro-
grammers, thermostats and thermostatic radiator
valves (TRVs) on radiators.

In the remaining houses two dwellings use electric
storage heaters, supplemented by log stoves. In four
of the Passivhaus dwellings (15%), heating provision
is provided by a post-heater supplied from the hot
water cylinder and one Passivhaus project uses an air
source heat pump.

All the houses have openable windows, and all have
trickle vents, with the exception of the Passivhaus pro-
jects. In all but two of the bedrooms there is a single
window, the others (9BB1 and 11BB1) have two win-
dows on adjacent walls.

Air-tightness

All the dwellings have had the first of two air perme-
ability tests undertaken and the results of these are pre-
sented in Table 1. Air permeability figures are within
design expectations, but results range from 0.955m3/
m2 h (in P15) to 10.39m3/hm2 (in S17). This latter
figure is the only one that fails to meet the Building
Standard recommendation, in force at the time of con-
struction (2010 Scottish Building Standards), of 10m3/
hm2. All but five meet the current requirement of 7m3/
m2 h and the average is 4.59m3/hm2. The Passivhaus
projects (P15, CC, OC, BC and HC) are the best per-
formers and average at 2.45m3/hm2 but it is noted that
the levels are all above the Passivhaus requirement of
0.6m3/hm2. They remain within the recommended
figure of 3–5m3/hm2 for MVHR systems.59 Outwith
these projects there is no obvious pattern associated

4 Indoor and Built Environment 0(0)
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with construction, for example flats in Glasgow having
figures at opposite ends of the spectrum.

Nevertheless high levels of air-tightness are present
across the sample, which suggests that standards in gen-
eral are improving. Of significance however is the fact
that, excluding the Passivhaus projects, 12 out of 21
dwellings (57%) have ‘overshot’ the building standards
requirement (for mechanical ventilation) of 5m3/hm2,
but do not have the required mechanical ventilation
provision. This is a cause for concern on two levels:
firstly, that these high levels of air-tightness exist with-
out the necessary planned ventilation strategy; and sec-
ondly, it reveals a lack of compliance and verification of
regulatory standards.

A further observation is that in the air permeability
tests common causes of air leakage could be identified,
including external doors, but also service penetrations
in bathrooms from water and waste pipes. A reasonable
assumption leading from this is that, given the test
figure applied to the whole house, some areas may
experience much lower rates of air permeability. Since
bedrooms may (especially with closed doors) be con-
sidered as discrete spaces and rates of air permeability
in these spaces may be much lower than the whole
house value.

Monitoring method

A very large dataset is being generated by these projects
and some simplification is required for reporting. This
paper uses data collected between February and

September 2013. Data are collected from Wireless
Sensor Technology (WIST) sensors which monitor tem-
perature (0�C to +51�C� 0.5�C over full range 0.2�C),
RH (0–100% rh� 1.5 rh over full range) and CO2 (0–
5000 ppm� 50 ppm over full range 10 ppm). These are
connected wirelessly to a Wist Gateway and this data,
along with sub-metered energy data is streamed remo-
tely over Global System for Mobile communications
(GSM) mobile phone networks. Some additional data
are collected using Gemini Tinytag Ultra 2 temperature
(25–85�C) and RH (0–95% RH) sensors.

For the purposes of this analysis, data from three
sample months in winter (February), spring (April)
and summer (August) are used.

Results

This paper focuses specifically on the environmental
conditions of the bedroom spaces; accordingly, the
data presented are for the period between 11 pm to 7
am overnight, to reflect the conditions experienced by
occupants.

Ventilation

Figure 1 shows the mean CO2 levels in the bedrooms
overnight for the three sample months, ranked by the
winter mean CO2 level. The immediate picture being
presented is that CO2 levels in bedrooms are consist-
ently >1000 in 20 bedrooms (57%) in February, but
when excluding the houses with MVHR, the figure

Figure 1. Seasonal mean CO2 levels in each case study bedrooms (considering data between 11 pm and 7 am) CO2 ppm.
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rises to 62%. In general the houses with MVHR per-
form better but there are exceptions, for example HC1,
OC1 and OC2, where there is a higher occupancy load.
The number of bedrooms where CO2 levels
are> 1000 ppm is similar in the spring, but in the
summer the figure reduces to 12 (34%).

To provide a more accurate picture of general per-
formance, the percentage of time that the rooms remain

above the 1000 ppm threshold (CO2 exposure, here
called CO2E) has been calculated, as has the recorded
window opening activity values for the three seasons are
shown in Figures 2 to 4. It should be noted that the
window data apply to the principal window in a yes/no
condition only, and other window opening may occur.

All but three of the bedrooms have some periods
above 1000 ppm, and 71% of bedrooms have CO2 E

Figure 3. April: Overnight CO2 E (grey bars¼% of time CO2 levels are> 1000 ppm) and % window opening (black
dots¼% time windows are open).

Figure 2. February: Overnight CO2 E (grey bars¼% of time CO2 levels are> 1000 ppm) and % window opening (black
dots¼% time windows are open).
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>25% (2 h). This decreases to 34% in the summer. It is
clear that window opening is more prevalent in the
summer, but the effect on overall CO2 levels is mixed
across the sample. A positive effect can be observed by
comparing 27MP1 with 29MP1 – in the latter CO2 E
changes from 73% to 2% as window opening increases
from 6% to 98% in the summer. In other dwellings, for
example SF171, there is a clear difference – the small
rise in window opening between winter and spring (4–
7%) has little effect on CO2 E which remains constant
at about 57%, but when window opening rises to 75%
in the summer the CO2 E drops to 9%. In other cases
the data appear anomalous, such as 11BB where the
summer conditions appear worse, despite greater
window opening, however in this case this may be
due to changes in occupancy due to shift work.

The performance of the houses with MVHR systems
is generally better – average winter CO2 is 858 ppm for
the MVHR houses, compared with 1292 ppm for the
naturally ventilated houses. There are some exceptions,
for example OC2 that has CO2 E over 50% (4 h a night)
in winter. In these houses there appears to be a rela-
tionship between poorer CO2 levels and family size. It is
also apparent that in some of the MVHR houses, for
example HC1, windows are being opened during the
heating season. Such instances may have implications
for energy consumption, but the likely causes for this
may be overheating, which is discussed in the next
section.

There are a number of factors that will determine
ventilation performance. These include room volume,

number of occupants, ventilation provision, use and
occlusion, door opening, other house openings and
external weather conditions. Detailed information is
not yet gathered on trickle vents and the overall pattern
of trickle vent opening or closing is not clear. However,
it seems reasonable to conclude that the trickle ventila-
tion provision as required by the building regulations is
not providing sufficient ventilation for two reasons –
either the vents do not contribute to the ventilation or
they are closed. The fact that the vents can be closed
undermines this as a fail-safe strategy in a reasonably
airtight building, and especially in one that may be
more airtight than intended. Even when they are
open, observations during the walkthroughs indicated
they would be largely occluded in the dwellings by cur-
tains and blinds in the bedrooms at night. In many
cases they cannot be easily accessed physically due to
their height, especially in dwellings occupied by older or
disabled people (n¼ 8) and in the majority of cases
occupants do not change them.

Houses with larger families tend towards poorer
results. For example, 3BS and 4BS have six occupants
and both 4BG and 5BG have families including teenage
children, in which bedroom occupancy is more inten-
sive. Some anomalies due to patterns of occupancy are
noted. For example, changes in shift working patterns
of the two occupants in 11BB mean that in some sea-
sons there is one occupant and in others there are
two. In MF011 a grandchild frequently sleeps in the
same room as the two occupants leading to high CO2

levels.

Figure 4. August: Overnight CO2 E (grey bars¼% of time CO2 levels are> 1000 ppm) and % window opening (black

dots¼% time windows are open).
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The measured CO2 levels have been used to estimate
actual ventilation rates. This calculation (equation (1))
is based on the constant injection tracer gas technique
described by Persily.60 Thus

Qo ¼
106 � Gp

Cin:eq � Cout

� � ð1Þ

where

Qo outdoor airflow rate into the space, l/s;
Gp carbon dioxide generation rate per person in

the space, l/s;
Cin,eq equilibrium carbon dioxide concentration in

the space, ppm; and
Cout outdoor carbon dioxide concentration,

ppm.

Carbon dioxide generation rate is a function of the
occupant activity (metabolic rate) and occupant size.
CO2 production rate is described in Table 1 in BS
5925:1991,61 thus the following formula was derived

CO2Pp ¼ 0:00004M ð2Þ

where

CO2 Pp CO2 production rate per person, l/s; and
M Metabolic Rate, W.

The following assumptions were made for the calcu-
lation of ventilation rate:

Infiltration was excluded from the calculation.

41W/m2 metabolic rate (occupant activity of sleep-
ing) (Chartered Institution of Building Services
Engineers (CIBS) Guide A).62

Occupant size 1.8m2 (CIBSE Guide A).
No other carbon dioxide generation sources are in

the spaces other than occupants.
Outdoor carbon dioxide concentrations remain

constant at 380 ppm.
Ventilation rate is expressed in litres/second per

person (l/s/p), taking account the occupancy of each
room. Calculated values can be compared with the
accepted rates of 8 l/s/p and this also takes into account
the levels of occupancy. These values for the respective
seasons are shown in Figure 5. It should be recognised
that these calculations make certain assumptions and
simplifications; however, it provides a useful measure
for comparison. These values can be compared with the
accepted rates of 8 l/s/p referenced previously and this
takes into account the levels of occupancy. Figure 5
shows that in winter, 31 bedrooms (88%) do not have
sufficient ventilation. Of the four bedrooms that do
meet this standard, two are houses with MVHR sys-
tems. Whilst houses with MVHR systems fare better,
having an average rate of 6.61 l/s/p compared with
4.53 l/s/p for naturally ventilated bedrooms, they are
not immune – for example in OC2, the ventilation
rate is 4.62 l/s/p. Of the two naturally ventilated
houses, one has access to cross ventilation.

The picture improves marginally in the spring with
seven bedrooms having average rates above 8 l/s/p. As
with the CO2 levels, the overall effect of window

Figure 5. Calculated seasonal ventilation rates for the case study bedrooms (l/s/p).
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opening is not as evident as expected, with average
values for all rooms rising from 4.58 l/s/p in spring to
5.77 l/s/p in summer. However, some bedrooms do
demonstrate a clear ventilation benefit associated with
window opening, for example 29MP1 where the rate
increases from the winter figure of 3.74 l/s/p (with 0%
window opening) to 7.36 l/s/p (with 98% window open-
ing) in the summer.

In the MVHR houses, the effectiveness of this system
remains important throughout the period. For exam-
ple, in CC1 the ventilation rate deteriorates in the
summer, despite more frequent window opening. In
this case this is due to the system being turned off in
the summer (being conceived as a heating system).
Conversely only BC1, BC2 and CC1 have rates >8 l/
s/p in winter, and these have winter window opening
rates of 54%, 14% and 84%, respectively. Of relevance
here are the measured flow rates for these systems.
Tested air delivery rates to bedrooms vary from
12.58 l/s (BC1) to 6.61 l/s (HC1) with an average of
9.76 l/s, which would be insufficient for bedrooms
with double occupancy.

Hygrothermal conditions

Mean seasonal environmental conditions, in the bed-
rooms and externally, are summarised in Table 2.

To examine the overall environmental conditions in
bedrooms overnight, average temperature and RH is
plotted for sample months in Figure 6 (winter),
Figure 7 (spring) and Figure 8 (summer) in the period
11 pm – 7 am. However, absolute moisture is also an
important consideration, particularly in relation to
problems of dust mite population. Four curves are
therefore plotted for vapour pressure (VP). Literature
has identified a number of threshold levels of signifi-
cance in control of dust mite populations. These are
Plats-Mills and De Weck which cite a figure of

1.13 kPa63,64 (significant at lower temperature ranges
between 15–18�C, expected in bedrooms); the ‘critical
equilibrium humidity’ (CEH)65–67 for Dermatopha-
goides farinae (DF) a common dust mite species in
USA; the CEH for Dermatophagoides pteronyssinus
(DP),68 common in UK and ‘population equilibrium
humidity’ (PEH).69 The graphs also indicate the
CIBSE recommended comfort levels for temperature
and humidity in the respective seasons in the shaded
area,70 an important consideration with regard to indir-
ect effects of RH on health.71 The plots show the aver-
age overnight conditions for the various houses. Only
those dwelling referred to in the text are labelled for
clarity.

Looking at temperature to begin with, it is apparent
that the bedrooms are very warm even during the heat-
ing seasons. In the winter 25 bedrooms (71%) have
average temperatures> 21�C, and 13 bedrooms (37%)
have average temperatures> 23�C. In the spring, over
36% have averages> 23�C. In the summer, all but two
bedrooms (94%) have overnight average temperatures
>21�C and 68% are >23�C. There are 10 bedrooms
(28%), which exceed 25�C overnight. It is apparent
that there is a seasonal shift occurring due to changes
in ambient weather conditions, but in general these
temperatures exceed the recommended comfort levels.

These temperatures are impacting on internal RH
levels, which in general are low; with nearly half
(48%) having average RH levels< 40% in the winter.
Only one dwelling had values> 60%. In the spring-
> 77% have RH levels below 40%. Only five bedrooms
(14%) have average values in the intended comfort
band in winter or spring.

In the summer a noticeable shift can be observed with
both moisture levels and temperature increasing. There
are nine dwellings (25%) that now have environmental
conditions within accepted parameters (accounting for
an increased temperature range), and the increased

Table 2. Seasonal temperatures and relative humidity (24-h conditions).

Int temperature (�C) Ext temperature (�C)

Bedrooms M Min Mean M Max M Min Mean M Max

Winter 18.34 21.99 25.29 3.5 6.8 0.2

Spring 18.88 22.17 25.38 6.5 10.3 2.7

Summer 21.11 24.34 27.07 15.2 19.1 11.3

Internal RH External Rh

Bedrooms M Min Mean M Max M Min Mean M Max

Winter 33.47 46.72 58.13 82.0 94.0 67.0

Spring 28.99 37.00 46.15 74.0 55.0 91.0

Summer 34.77 42.88 50.75 81.0 64.0 95.0
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Figure 6. February – average bedroom temperature and RH condition overnight.

Figure 7. April – average bedroom temperature and RH condition overnight.
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Figure 9. February – 4BG2 Daily (overnight) plots of mean temperature and relative humidity (RH).

Figure 8. August – average bedroom temperature and RH condition overnight.
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Figure 10. April – 4BG2 Daily (overnight) mean temperature and RH.

Figure 11. August – 4BG2 Daily (overnight) mean temperature and RH.
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Figure 12. February – MF031 Daily (overnight) mean temperature and RH.

Figure 13. April – MF031 Daily (overnight) mean temperature and RH.
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frequency of window opening is clearly affecting inter-
nal conditions. However, the temperatures remain high,
above ambient external conditions at night.

Few of the buildings have thermal mass, which may
help to control temperature. The beneficial effects of this
can be observed when comparing 29MP (blockwork)
and 27MP (timber frame), both of which have similar
occupancy. In August, 29MP has an average tempera-
ture of 22.04�C with a standard deviation of 0.67�C
whereas 27MP1 has an average of 23.76�C with a stand-
ard deviation of 1.04�C. However, the majority of the
dwellings (which are typical of contemporary construc-
tion in Scotland) are thermally lightweight.

VP

In assessing the internal conditions it is important to
consider the absolute moisture content. Occupants and
domestic activities such as washing and clothes drying
will still generate moisture and these data indicate the
relative levels of moisture across the seasons. In relation
to IAQ, VP is an important marker in identifying the
prevalence of conditions that can encourage dust mite
populations. Whilst some studies in the UK have not
found the 1.13 kPa threshold significant for controlling
HDM,72 it is nevertheless a useful indicator of absolute
humidity and useful in identifying moisture loads which
could contribute to rising RH, for example passive
indoor drying (PID).

In the winter, 14 bedrooms (40%) have VP levels
above 1.13 kPa, albeit not at temperatures that would
cause concern, and seven bedrooms (20%) exceed the
CEH threshold. It is interesting to note that these are
all on one site in Dunoon, which is located directly on
the coast and may therefore be strong effect of external
climatic conditions. In the spring only a small number
(11%) exceed 1.13 kPa and none exceed the CEH, but
this situation is reversed in the summer with 94%
having average VP levels over the 1.13 kPa threshold,
although none exceed the CEH limits. This would
appear to be an effect of greater window opening in
summer, with moisture from ambient conditions enter-
ing the rooms, but peaks being mitigated by improved
ventilation. As temperatures reduce in Autumn, RH
levels will rise above CEH threshold levels for dust mite
populations. It is predicted that this will occur in the
autumn. Previous work examining houses in Scotland73

has identified a seasonal adaptive lag, wherein heating
and ventilation regimes set for one season remain in
force as ambient condition change. So winter regimes
persist into spring, and summer regimes persist into
autumn. In the latter situation summer levels of venti-
lation, in combination with reducing temperatures and
lack of heating could lead to high RH levels.

Whilst these results indicate that VP levels do not
regularly exceed threshold levels for dust mite popula-
tions, looking in more detail at the daily (overnight)
mean values for the sample months for specific houses

Figure 14. August – MF031 Daily (overnight) mean temperature and RH.
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Figure 16. April – 29MP1 Daily (overnight) mean temperature and RH.

Figure 15. February – 29MP1 Daily (overnight) mean temperature and RH.
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illustrates variations in internal conditions that may
give rise to problems. It illustrates that, even though
mean values are reasonable, there are incidences
where VP rises over the threshold levels. For example,
examining 4BG2 in winter (Figure 9) shows a cluster of
days that exceed not only the CEH DF and CEH DP
curves, but also the PEH levels.

In the spring and summer (Figures 10 and 11), the
temperatures remain high, but VP levels are reduced.
This house contains a large family, including a new
born baby and undertakes large amounts of indoor
clothes drying, particularly on a generous upper land-
ing (the design intent of which was a workspace) and
the inference is that frequency of this may be reduced
through spring into summer as the house does have
access to external drying. This house also has a direct
gain sun space with little thermal mass, which is open to
the landing space which may also be contributing to the
temperatures here. Also window opening is increased in
the spring and is constant in the summer. Greater num-
bers of occupants will increase moisture, CO2 and inci-
dental temperature gains, and although this may not
directly affect the room being studied, high moisture
and CO2 in other parts of the dwelling will reduce the
decay rates through diffusion into the remainder of the
house. The concern here is that attempts to reduce tem-
perature to reduce energy consumption could have a
consequent effect on moisture levels and consequent
HDM proliferation.

A similar situation is also seen in MF031, which also
contains a family. Whilst monthly average values are
within accepted parameters, daily means exceed CEH
DF and CEH DP levels in both winter and spring
(Figures 12 and 13). In the summer (Figure 14), with
more liberal window opening, the conditions are more
acceptable.

A further comparison may be made with 29MP1
(Figures 15, 16 and 17) which has a much more con-
sistent cluster of conditions over the season. In this flat,
which contains an older couple, the dwelling is not
heated as intensively, conditions are much closer to
the accepted levels and vary less. Again, with more lib-
eral window ventilation in the summer, conditions
become closer to ambient.

Some context for the variation in VP levels can be
seen when comparing CO2 levels. For example, when
comparing the diurnal CO2 levels for both 29MP and
37MP, shown in Figure 18, it is evident that 37MP1 is
being ventilated less and this trend can be seen by com-
paring the CO2 levels of both dwellings over the spring
and summer seasons (Figures 19 and 20). These graphs
also illustrate the diurnal pattern of CO2 typical of bed-
rooms in which there is a rapid rise in CO2 levels over-
night. This trend is evident in all properties.

In the winter, MP291 is closer to an optimum tem-
perature and humidity, and remains below the CEH
curves, whereas MP371 is hotter and drier. What is
interesting about MP37B1 is that although the CO2

Figure 17. August – 29MP1 Daily (overnight) mean temperature and RH.
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levels indicate that the ventilation is poor, the moisture
levels never become excessive. This is an indication that
the vapour permeable construction may be having a
beneficial effect under these conditions.

Discussion

The starting premise of the paper is that increasing air-
tightness is leading to reduced ventilation rates. It is
evident from these data from dwellings with low air-
tightness that in general ventilation rates in bedrooms
overnight, when occupied, are poor. This is a consistent
and widespread observation across a range of construc-
tion types, in varying climatic conditions and locations
across Scotland. Conditions are influenced by the inten-
sity of occupation and the principal mitigating factor is
window opening, but when detached from heating this
is an uncontrolled strategy. Given that the default
background ventilation is trickle vents (excepting the
MVHR houses), it seems reasonable to conclude that
this is not a sufficiently robust strategy.

However, poor ventilation rates are seen in bed-
rooms with more frequent window opening – which
compromises the air-tightness – and previous research
has identified similar conditions in dwellings that are
not particularly airtight.74 The focus then shifts
towards the nature of the ventilation strategies.

Whilst the effects of window opening were apparent,
they were not as marked as might be anticipated. For

example in 29MP1 with windows open 98% of the time
overnight only provides 7.36 l/s/p. The limitations of
the window sensors should also be noted, and there
are simplifications in the calculation of ventilation
rates.

Nevertheless, there are several reasons for why the
opening effects may be diminished: (i) as discussed
under air-tightness, background permeability of bed-
room spaces is likely to be lower; (ii) bedroom spaces
are more likely (especially in family houses) to have the
doors closed for reasons of privacy and noise, thus
reducing opportunities for cross ventilation; (iii) the
windows (and therefore trickle vents or openings) are
commonly occluded by curtains and/or blinds at night
reducing air flow into or out of the room; (iv) openings
in the remainder of the house will be closed at night,
which, in conjunction with the preceding factors leads
to reduced opportunities for cross-ventilation; (v) the
design and placement of the windows does not facilitate
air movement – the window is commonly in the centre
of the wall, and ‘tilt and turn’ windows (the most
common opening type) do not facilitate high and low
level openings in the wall. Only two rooms have more
than one opening, which would enable cross ventilation
in the space.

In these circumstances opportunities for effective
ventilation are limited. Paths for air movement are
restricted, especially when relying on a stack effect.
The movement of air into or out of a room would be

Figure 18. February – Comparison of CO2 levels 29MP vs. 37MP.
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affected by external weather conditions and can affect
the acceptability of the measure, for example, moving
curtains and blinds giving rise to noise and the percep-
tion of draughts. Bedroom volume is also an important
consideration – these are small spaces and furniture
such as large wardrobes and beds further reduce the
net volume. The bedroom volume/person (excluding
temporary occupancy such as MF011) varies from
35.7m3/person (OC1, double height spaces) to
11.65m3/person (6BS1). Whilst conditions in a small
volume will deteriorate more quickly, a greater air
change rate is achieved for an equivalent opening
regime compared with a larger volume.

There are limited opportunities for control of these
strategies and this is exacerbated by the nature of bed-
room occupancy. In general, a ventilation condition
(i.e. window or trickle vents open or closed) is set at
the time the occupants go to bed, when conditions may
be reasonable, and this will remain in force overnight.
Deteriorating conditions will not result in adaptive
comfort behaviour overnight, as occupants are asleep,
except in extreme circumstances. There are also a
number of situations where night-time opening win-
dows are not acceptable. Common responses for keep-
ing windows closed were noise and security, and others
included concern over insects and hay fever. Overall
diurnal window opening behaviours tend towards the
habitual rather than the adaptive – some occupants

tended to keep windows open overnight as a lifetime
habit. There is a slow adaptive response seasonally – as
temperatures increase the window opening becomes
more frequent, but conditions have to overshoot
desired maxima to trigger behaviour in bedrooms, as
the effects on occupants are less immediate.

In general, ventilation rates in the houses with
MVHR were better. Peak conditions were not as
extreme but there is some important context to this.
There was some evidence that (in part due to the limi-
tations of window ventilation raised above) these
houses may still rely on the MVHR system in the
summer. This may not be sufficient, in that air delivery
rates may not meet the needs of the rooms, particularly
where there is multiple occupancy and this can lead to
under ventilation in other seasons. In OC1 for example
estimated ventilation rates, with single occupancy were
4.58 l/s/p – the measured MVHR supply rate for this
room was 6.98 l/s. The disabling of the system will
reduce ventilation rates with consequent effects on
CO2 levels74 and there are several instances noted
where this has occurred, the most common explanation
being that this is conceived of as a heating system.

It is evident that the majority of bedrooms have rela-
tively poor hygrothermal performance characterised by
high temperatures and low RH, which in some cases
masks fairly high VP levels. Ventilation regimes, both
in terms of providing sufficient rates for occupants, but

Figure 19. April – Comparison of CO2 levels 29MP vs. 37MP.
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also helping to control moisture and other pollutants in
these rooms, are compromised. From an examination
of the dwellings there are a number of important con-
tributory factors.

Firstly, the dwellings are well insulated and have
high air-tightness, but there is little or no insulation
between internal spaces. In these circumstances heat
will tend to be dissipated throughout the dwelling.
Furthermore, thermal buoyancy will transfer this heat
to upper rooms more readily. In winter the average
temperature of 1st floor bedrooms was 2�C higher
than bedrooms in single storey properties.

Secondly, there is a tendency for heating systems to
be oversized and poorly controlled, for example com-
bination boilers tend to be sized according to hot water
demand and heating systems rely on basic program-
mers and TRVs and the shortcomings of domestic con-
trol systems are well evidenced.76,77 In terms of passive
control these dwellings have very limited capacity for
control of temperature through thermal mass. The
increase in temperature between winter and spring –
average internal temperatures were 21.98�C in winter
and 22.24�C in the spring – are indicative of a lack of
responsiveness in heating systems and regimes, whereby
the heating is set up for winter and settings persist as
the weather improves.

Thirdly, in well-insulated dwellings the effects of
incidental gains are substantial, and in some seasons

provide all of the space heating needs, particularly in
the Passivhaus projects. Whilst this is in many ways
beneficial, such gains are also largely uncontrolled,
and where they are excessive they can contribute to
overheating. A specific example of this is identified in
the B/C/O/HC houses, which was due to the hot water
system, where there is a large hot water cylinder adja-
cent to the bedrooms fed by a solar thermal system and
log stove. The hot water pipework is uninsulated and a
circulating pump keeps hot water in the supply pipes.
Furthermore, an incorrect setting was sending hot
water to the MVHR post heater. The heat gain from
this is thought to be leading to the very high tempera-
tures and resulting very low RH in these dwellings. This
has now been corrected and the effects will be observed
in ongoing monitoring.

RH levels were very low across the sample, but mois-
ture content approached HDM threshold levels in some
instances. PID has been identified as an important
factor in moisture loads in domestic environments78

and PID is widespread in the heating seasons, particu-
larly in those dwellings with children. There is little or
no dedicated ventilated internal drying space. There are
spaces containing hot water cylinders and other asso-
ciated plant that (due to heat loss) do get warm, but
these not generally accessible for clothes drying, and in
any case are not otherwise vented. With regard to PID,
feedback from occupants was that the speed at which

Figure 20. August – Comparison of CO2 levels 29MP1 vs. 37MP1.

20 Indoor and Built Environment 0(0)

 by guest on May 1, 2014ibe.sagepub.comDownloaded from 

http://ibe.sagepub.com/


XML Template (2014) [28.4.2014–10:35am] [1–24]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/IBEJ/Vol00000/140031/APPFile/SG-IBEJ140031.3d (IBE) [INVALID Stage]

clothes dry in the houses is seen as a positive factor,
further encouraging its use. There is some evidence
emerging that vapour permeable construction is
having a beneficial effect in reducing RH.

As well as effects on health, there is a risk that per-
sistent levels of high temperatures and low RH may
lead to other unintended negative consequences. This
could include drying and shrinkage of the timber frame
systems, which could in turn affect air-tightness. This
will be reviewed further after the repeat air-tightness
testing in 12 months’ time.

The disparity between the design intentions in terms
of temperature and RH and actual conditions is further
evidence of the performance gap, in both energy and
environmental terms. Early indications are that
although these buildings are energy efficient, they are
exceeding their energy targets by factors of 2–4.79 This
will be reviewed when a full year of energy consump-
tion data are available.

In energy terms temperatures could be reduced, and
this would impact on RH levels. For many of the
spaces, particularly the MVHR dwellings, this may be
beneficial in terms of reducing dryness.

However, a contention here is that better ventilation
in bedrooms at night may not have a significant energy
penalty. High levels of ventilation are only problematic
if heating is active within the dwelling. Overnight, with
a heating system turned off, relatively little primary
energy would be lost. Modelling of this scenario has
indicated that the additional energy penalty may be
as little as 2%.80 The problem would arise if the win-
dows were then left open during the day.

Current legislative requirements for vent free open-
ing area (average of 11,000mm2 is provided per room),
as recommended in clause 3.14.2 of the Domestic
Technical Handbook, Building Standards (Scotland)
Regulations81 are a blunt tool in respect of varying
levels of volume and occupancy. The requirements in
a family house will be very different to those of a single
person or couple. Design and regulatory standards
for ventilation of these spaces need to be reassessed
and more robust systems of ventilation, capable of
meeting varying needs, need to be introduced.
Reduction of moisture production at source, for exam-
ple provision of ventilated drying spaces is critical and
may be assisted by more use of vapour permeable
construction.

The observation is that the systems in place to
control environment are not considered holistically.
These are predicated in a series of discrete require-
ments set by building standards at design stages, but
these are not tested in practice. Whilst there are iden-
tifiable benefits of the active systems, there are also
substantial risk factors due to specification, installa-
tion, failure, use and maintenance, any one of which

can lead to poorer performance and/or increased
energy use.

Conclusions

There is clear evidence of poor levels of ventilation in
the bedrooms. In such rooms there are limited oppor-
tunities for adaptive behaviour. The provision of trickle
vents is not a sufficiently robust measure to ensure sat-
isfactory ventilation rates for varying degrees of
occupancy.

Consistently high temperatures were observed in the
majority of the dwellings. This level of demand is con-
tributing to a gap between design prediction and actual
consumption in terms of both energy use and environ-
mental quality. It would seem that the notion of a bed-
room as a cooler space, used infrequently, is outdated
and that lower bedroom temperatures may not be (a)
easily achieved or (b) acceptable. Calculation and regu-
lation needs to allow for this when predicting energy
use to close performance gaps.

Opening windows at night appears to be a mitigating
factor and may not necessarily make a significant con-
tribution to energy losses. However, its effectiveness is
limited and is relatively inefficient and it cannot be
relied on in all circumstances due to external factors
such as noise and security. Ventilation strategies need
to provide mechanisms for sufficient air exchange –
single openings do not enable airflow in and out with-
out leading to draughts.

Contemporary construction techniques such as
timber frame construction contain little or no thermal
mass and consequently rely on control of the heating
system and ventilation to prevent overheating. This
suggests a need for much closer control of heat delivery
through appropriate system sizing and more responsive
controls that rely less on frequent occupant interaction.
Furthermore, greater care is needed to reduce uncon-
trolled incidental gains from appliances and hot water
systems.

In the context of the drive for low carbon housing,
there is an urgent need for more considered, robust and
effective design of ventilation strategies, which rely on
fundamental principles. These include: better placed
openings which allow for cross ventilation, and high
and low level openings that facilitate air flow; consid-
eration of cross flows through the house, taking into
account internal doors; ergonomic design that enables
occupant to physically interact with the systems; provi-
sion of ventilation strategies that account for possible
confounding factors such as noise and security; integra-
tion of the design of ventilation strategies with the heat-
ing system; possible use of automated systems such as
CO2 sensing passive vents; and better feedback to
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occupants about environmental performance, for
example visible thermostats and CO2 sensors.

Mechanical systems will have a part to play in
planned ventilation strategies, but development is
needed in the sector to ensure that systems are well
conceived, designed, installed, operated and main-
tained. There may be a role for partial MVHR systems
that allow for effective heat recovery and good ventila-
tion delivery to certain spaces (which may rely less on
adaptive comfort) whilst allowing other spaces to be
naturally ventilated.

Finally, in either strategy (i.e. natural or mechanical
ventilation) better information and guidance is required
for occupants. This is predicated on a premise that a
given strategy is in fact usable by the occupants, and
that the intention and required performance is known
and must be communicated to users. A common mis-
conception for performance gaps due to occupancy
effects is that this is due to ‘misuse’. The reality is
that most occupants are doing the best they can with
limited knowledge of uncoordinated and inefficient
systems.
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