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Abstract

Background: Anopheles funestus is a major vector of malaria in sub-Saharan Africa. However, because it is difficult
to colonize, research on this mosquito species has lagged behind other vectors, particularly the understanding of its
susceptibility and interactions with the Plasmodium parasite. The present study reports one of the first experimental
infections of progeny from wild-caught An. funestus with the P. falciparum parasite providing a realistic avenue for the
characterisation of immune responses associated with this infection.

Methods: Wild-fed resting An. funestus females were collected using electric aspirators and kept in cages for four days
until they were fully gravid and ready to oviposit. The resulting eggs were reared to adults F1 mosquitoes under
insectary conditions. Three to five day-old An. funestus F1 females were fed with infected blood taken from gametocyte
carriers using an artificial glass-parafilm feeding system. Feeding rate was recorded and fed mosquitoes were dissected
at day 7 to count oocysts in midguts. Parallel experiments were performed with the known Plasmodium-susceptible
An. coluzzii Ngousso laboratory strain, to monitor our blood handling procedures and infectivity of gametocytes.

Results: The results revealed that An. funestus displays high and similar level of susceptibility to Plasmodium infection
compared to An. coluzzii, and suggest that our methodology produces robust feeding and infection rates in wild
An. funestus progeny. The prevalence of infection in An. funestus mosquitoes was 38.52 % (range 6.25–100 %) and
the median oocyst number was 12.5 (range 1–139). In parallel, the prevalence in An. coluzzii was 39.92 % (range
6.85–97.5 %), while the median oocyst number was 32.1 (range 1–351).

Conclusions: Overall, our observations are in line with the fact that both species are readily infected with P.
falciparum, the most common and dangerous malaria parasite in sub-Saharan Africa, and since An. funestus is
widespread throughout Africa, malaria vector control research and implementation needs to seriously address
this vector species too. Additionally, the present work indicates that it is feasible to generate large number of
wild F1 infected An. funestus mosquitoes using membrane feeding assays, which can be used for
comprehensive study of interactions with the Plasmodium parasite.
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Background
Despite recent progress in reducing malaria burden, it re-
mains one of the most debilitating diseases in the tropical
world with 198 million cases reported in 2013, leading to
more than 500,000 deaths [1]. In sub-Saharan Africa,
where about 90 % of all malaria deaths occur, mosquitoes
from Anopheles gambiae complex and Anopheles funestus
group are the most efficient vectors [2–5], while P. falcip-
arum is the most common and dangerous parasite re-
sponsible for most cases of severe malaria [1].
Current efforts to control or to eliminate malaria rely

heavily on vector control interventions such as large-
scale distribution of long-lasting insecticide-treated
nets (LLINs) and in some places through indoor re-
sidual house spraying (IRS) [6–8]. In parallel, research
on new and innovative malaria control tools that could
enhance the efficacy or complement existing ap-
proaches is needed. One of the approaches being pur-
sued is the genetic replacement of vector populations
with non-vectors in order to disrupt parasite transmis-
sion [9–11]. However, this requires first of all a good
understanding of the complex and specific interactions
between the Plasmodium parasites and its Anopheles
vectors, notably the associated immune response.
Obtaining sufficient Plasmodium experimentally infected

mosquitoes is the first and one of the most challenging
steps of research on Anopheles-Plasmodium interactions. In
An. gambiae which is easier to colonize and adapts well to
feed on the artificial parafilm membrane, successful experi-
mental infections are commonly performed using either
the rodent P. berghei or cultured or recently field collected
human P. falciparum parasites. This has allowed the identi-
fication of important mosquito factors that may prove to be
favourable targets for novel interventions towards blocking
malaria transmission [12–14].
If such progress has been achieved in An. gambiae,

little advance has been observed for the other major
malaria vector An. funestus. It is known that An. funes-
tus exhibits important differences to An. gambiae in
term of its biology, genetics and ecology as shown by
the difficulty of rearing and feeding this species in la-
boratory conditions [3]. Such difficulty has largely slo-
wed the pace of research on this species, particularly its
interactions with the Plasmodium parasite.
By collecting indoor resting gravid females and force

them to lay eggs, it is now possible to generate large F1
colonies of An. funestus for controlled experimentation
[15, 16]. This method already allowed study of insecti-
cide resistance mechanisms throughout Africa [17–21].
Conversely, only two studies have investigated An.
funestus susceptibility to the rodent parasite P. berghei
[22, 23], and none have been performed with the nat-
ural human parasite P. falciparum. Despite similarities
between these two Plasmodium species, important

differences in interactions with mosquito vectors have
been reported [14, 24]. This observation point out the
necessity of following up discoveries in laboratory
model systems with studies on natural parasite-
mosquito interactions, particularly in the perspective of
investigating molecular bases of An. funestus immune
response to Plasmodium infection.
This paper reports the first experiments in which first

generation of wild-caught An. funestus mosquitoes are
infected with natural P. falciparum gametocytes using
an artificial blood feeding system.

Methods
Mosquito collections
Anopheles funestus mosquitoes were collected in Mebelong
(6°46′N, 11°70′E), a village situated in humid savannah
region, about 350 km North of Yaoundé, the capital city
of Cameroon. This site is characterised by a high dens-
ity of mosquitoes resting indoors.
Resting mosquitoes were collected using electric aspira-

tors (Rule In-Line Blowers, Model 240). In the field, An.
funestus mosquitoes were sorted from other Anopheles
species based on morphological criteria [25, 26] and kept
in paper cups for four days or more until they were fully
gravid and ready to lay eggs. Once brought back in the in-
sectary, females were allowed to oviposit individually using
a forced egg-laying method [15]. After oviposition, all the
carcasses were preserved in individual tubes containing
desiccant for molecular identification [27, 28] and for
enzyme-linked immunosorbent assay (ELISA), to assess
Plasmodium infection rate. All other Anopheles species
collected as well as An. funestus specimens that died be-
fore reaching the insectary were also preserved for ELISA,
to identify blood meal source and assess Plasmodium in-
fection rate according to [29, 30] and [31], respectively.
Positive samples to ELISA were determined by reading
the optical densities at 405 nm using an ELISA plate
reader (BioTek ELx800, Swindon, UK).
We used the An. coluzzii Ngousso laboratory strain as

a control sample to monitor for the effectiveness of
blood handling procedure and infectivity of gametocytes
during infection experiments. The Ngousso strain, rou-
tinely maintained at OCEAC, has been extensively used
in experimental infection studies and is known to be
well adapted to feed through artificial parafilm mem-
brane and is highly susceptible to Plasmodium infection
[32]. Anopheles funestus and An. coluzzii females were
fed with blood from same gametocyte carriers to directly
compare prevalence of infection.

Identification of gametocyte carriers
Parasitological surveys to detect gametocyte carriers
were conducted during a high transmission period from
March to June 2015. Children aged between 5 and 11
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were recruited at local schools of the locality of Okola
(4°01′N, 11°22′E), a rural area situated about 25 km
from Yaoundé. Blood samples from each child enrolled
in the study were screened by direct microscopic (100×)
visualization of Plasmodium parasites on thick blood
smears stained with 10 % Giemsa. Trophozoite density
was determined using semi quantitative count (thick
film) method following a semi-quantitative scale [33].
Gametocyte density was estimated by microscopy read
against 500 leucocytes, assuming a standard white blood
cell concentration of 8,000/μl [34].

Experimental infections
Gametocyte carriers were selected based on parasite
density in blood after their haemoglobin content was
first measured using Haemocue (HaemoCue® AB,
Angelholm, Sweden). Children with abnormally low
haemoglobin rate were treated for anaemia and their
blood was not used. For selected children, a volume of 3–
4 ml of blood was taken by venepuncture into heparinized
tubes. The blood was immediately centrifuged at 37°C and
the serum was replaced by the same volume of European
AB serum (Sigma-Aldrich, Taufkirchen, Germany), pre-
warmed at the same temperature. The reconstituted blood
was offered to mosquitoes immediately.
Groups of 80 to 100, 3–5-day-old F1 female mosqui-

toes were counted into paper cups covered with mos-
quito netting and starved 12h before experiments. 450 μl
aliquots of reconstituted blood were placed in each glass
feeder with a parafilm membrane maintained at 37°C
using a circulating heating water bath (Fisher Scientific
INC, Isotemp 4500H5P, Pittsburgh USA). Mosquitoes
were allowed to feed for 45min, after which unfed and
partially fed mosquitoes were removed. Mosquitoes were
maintained in separate cups in the insectary at 26 ± 2°C
and 70 to 80 % relative humidity, with a constant sup-
ply of 10 % sucrose and daily mortality was recorded.
Part of fed mosquitoes were preserved in RNAlater for
future transcriptomic analysis. The remaining ones
were dissected at day 7 post-infection in a drop of
0.4 % mercurochrome and stained midguts were exam-
ined for detection and quantification of oocysts under
light microscopy (40×) [35].

Data analysis
Parameters recorded included number of mosquitoes
fed per batch, mortality to day 7, number of mosquitoes
infected at oocyst stage and number of oocysts per
midgut. For each experiment, the median oocyst num-
ber was determined and mean oocyst number per mid-
gut was calculated by dividing the total number of
oocysts counted by the number of mosquitoes found
infected after dissection.

Fisher’s exact test was used to compare prevalence
of infection between species. The median oocyst num-
bers were compared using the nonparametric Mann–
Whitney test. Correlation between the prevalence of
infection, the median number of oocyst and the game-
tocytemia was analysed using Spearman’s correlation.
All statistical analyses were performed using Graph
Pad prism V.5 and P-values of 0.05 or less were con-
sidered as significant.

Results
Mosquito population and rearing
During eight days, a total of 1,918 mosquitoes belong-
ing to three genera were collected in Mebelong. Anoph-
eles mosquitoes were by far the most abundant
representing 99.48 % of mosquitoes, while Culex and
Mansonia accounted for less than 1 %. Three Anopheles
species were identified in the locality: An. funestus (s.l.)
the main vector species (n = 1,831; 95.96 %), An. gam-
biae (s.l.) (n = 74; 3.88 %) and An. pharoensis (n = 3;
0.16 %). According to the molecular identification of a
subsample of 890 mosquitoes, An. funestus (s.s.)
(99.43 %) and An. leesoni (0.57 %) were the two mem-
bers of the An. funestus group present in the locality.
Anopheles funestus (s.s.) (hereafter An. funestus) sur-

vival rate was high with 73.73 % (n = 1,350) of mosqui-
toes reaching the insectary alive (after a 350 km journey
in cooling box) and used for egg production. Similarly,
high oviposition (80.81 %) and egg hatch (85.43 %) rates
were recorded, indicating that large majority of mosqui-
toes were already inseminated at the time they were
collected.
Preliminary ELISA analysis revealed that An. funestus

actively transmits malaria in Mebelong, with anthropo-
philic and infection rates of 100 % (n = 100) and 3.7 %
(n = 656), respectively.

Parasitological survey
In total 1,091 children aged between five and 11 years
were examined and the prevalence of detected asexual
malaria was 40 % in the survey population. Among the
infected children, the result of blood smears ranged
from 1+ to 4+, with the majority of them failing in the
1+ (53.35 %) and 2+ (35.10 %) groups [34] (Table 1).
According to this prevalence rate, our survey area could be
classified as mesoendemic for malaria, although few chil-
dren above ten years were included in the study [36, 37].
The prevalence of gametocyte carriers identified by blood
smear in the total survey population examined was ap-
proximately 10 %.

Plasmodium falciparum infection in An. funestus
Fourteen infection experiments were carried out using
blood from different gametocyte carriers. In total, 9,728
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An. funestus females were given access to infected blood
through an artificial parafilm membrane and 2,518 suc-
cessfully fed, corresponding to a global feeding rate of
26 % (Table 2). However, feeding rate significantly varied
across experiments ranging from 18 to 47 %. Monitoring
of the mortality to day 7 for nine batches of infected

mosquitoes revealed a mortality rate between 0 and
69.23 % (mean 38.05 %).
Plasmodium falciparum gametocytes were infective

for mosquitoes in 11 (78.57 %) of 14 experiments with
prevalence of infection ranging from 3.7 to 100 % (mean
25.70 %). A total of 1,165 oocysts were counted in all

Table 1 Summary of parasitological surveys. Data in parentheses represent prevalences. Gametocyte carriers were detected among
children aged between 5 and 11 after screening of their blood samples by direct microscopic visualisation of Plasmodium parasites
on thick blood smears stained with 10 % Giemsa. Plasmodium trophozoite density was determined using semi quantitative count
(thick film) method

School Number TPF+ TPF++ TPF+++ TPF++++ Total tropozote Gametocyte

examined carriers carriers

Nkolyada 74 22 15 1 0 38 (51.35) 4 (5.41)

Elig-Onana 102 30 23 13 0 66 (64.71) 9 (8.82)

Okola G2 111 25 11 5 0 41 (36.94) 7 (6.31)

Zamengoé 210 58 22 11 1 92 (43.81) 24 (11.43)

Nkolngock 110 25 22 2 0 49 (44.54) 12 (10.91)

Ndangueng 105 18 9 5 3 35 (33.33) 8 (7.62)

Mvoua 140 28 27 4 1 60 (42.86) 23 (16.43)

Levalombédé 239 25 23 3 1 52 (21.76) 18 (7.53)

Total 1,091 231 152 44 6 433 (39.69) 101 (9.26)

TPF levels: +, 1–10 trophozoites/100 microscopic thick film fields; ++, 1–10 trophozoites/10 microscopic thick film fields; +++, 1–10 trophozoites/single
microscopic thick film field; ++++, > 10 trophozoites/single microscopic thick film field
Abbreviation: TPF trophozoite of P. falciparum

Table 2 Summary of experimental infection parameters in An. funestus. Mosquitoes aged between 3 to 5 days were given infected
blood through artificial parafilm membrane and midgut were dissected at day 7 post-infection for oocyst detection under light
microscopy. Feeding rate was calculated by dividing the number of mosquitoes alive in cups after blood feeding by the number
successfully fed. Prevalence of infection was calculated by dividing the number of mosquitoes infected at oocyst stage by the
total number of mosquito dissected

Experiment Gametocyte
density

Feeding rate
(%)

Dissected Infected Prevalence of infection
(%)

Total oocyst
count

Oocyst range
(Min-Max)

Median oocyst
load

N°1 – 24.52 32 11 34.37 45 1–15 2.5

N°2 – 19.10 36 22 61.11 162 1–18 7

N°3 – 28.89 21 0 0 0 – –

N°4 – 25.25 32 2 6.25 4 1–3 1

N°5 – 23.78 39 6 15.38 9 1–4 1

N°6 – 46.53 24 3 12.50 4 1–2 1

N°7 – 26.03 84 0 0 0 – –

N°8 – 33.80 30 0 0 0 – –

N°9 96 31.38 59 42 71.19 241 1–16 8

N°10 32 19.19 43 14 32.56 20 1–2 1

N°11 368 18.81 52 17 32.69 40 1–6 2.5

N°12 880 18.37 9 9 100 539 1–139 60

N°13 80 31.92 105 37 35.24 96 1–8 4

N°14 16 27.61 81 3 3.7 5 1–2 1

All – 25.89 647 166 25.66 1165 1–139 12.5
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infected midguts and the global median oocyst number
was 12.5 (mean 7.02) (Table 2). Taking each experiment
individually, the number of oocysts observed in a midgut
ranged from 0 to 139 and median oocyst number varied
from 1 to 60 (range for means 1.43–59.88).
The gametocyte density was determined for 6 success-

ful experiments and ranged from 16 to 880 gametocytes/
μl of blood. There was a general trend showing that
prevalence of infection and oocyst number in midguts
increased with gametocyte density in blood samples
(Fig. 1). However, the correlation was statistically signifi-
cant only for oocyst number (rs = 0.849, P = 0.009) and
prevalence of infection (rs = 0.557, P = 0.088).

Comparative analysis of the susceptibility of An. funestus
and An. coluzzii to P. falciparum infection
The same infected blood was given to An. funestus and
An. coluzzii mosquitoes simultaneously in 12 parallel ex-
periments for comparison. The feeding rate was two to
three-fold higher in An. coluzzii lab strain compared to
the wild An. funestus (Additional file 1: Table S1). Among
the 11 experiments in which more than five mosquitoes
were dissected for both species, ten (90.91 %) resulted in

at least one infected mosquito in An. funestus compared
to nine (81.82 %) in An. coluzzii.
Overall, the two species showed high and comparable

susceptibility to P. falciparum infection. Based on the
nine experiments which were successful in both spe-
cies, the prevalence of infection in An. funestus was
38.52 % (range 6.25–100 %) and the median oocyst
number was 12.5 (mean 7.68; range 1–139). In parallel,
the prevalence of infection in An. coluzzii was 39.92 %
(range 6.85–97.5 %), while the median oocyst number was
32.1 (mean 20.33; range 1–351) (Fig. 2). These two param-
eters did not vary significantly between the two species
across experiments, with 2 exceptions (Additional file 1:
Table S1).

Discussion
The susceptibility of An. funestus to Plasmodium infec-
tion remains relatively uncharacterised in laboratory
conditions. The only two studies carried out to date
were limited to the use of the rodent parasite P. berghei
[22, 23]. This model organism is more amenable than
P. falciparum and has been instrumental in malaria re-
search studies leading to important discoveries on
mechanisms of parasite killing in Anopheles vectors
[12–14, 24, 38]. However, parallel analyses of An. gam-
biae transcriptional immune responses to P. berghei
and P. falciparum has revealed substantial differences
[14] pointing out the necessity to carry out such studies
on the human malarial transmission system. Here, we
report the first experimental infections of F1 progeny
of field caught An. funestus with its natural human
parasite P. falciparum.
The study of mosquito susceptibility requires that the

technique of infection be able to produce efficient and
robust infections in mosquito vectors. In the current
study, we tested the use of artificial glass-parafilm mem-
brane system to feed An. funestus mosquitoes with in-
fected blood from gametocyte carriers. This method is
clearly preferable to direct feeding assays for ethical rea-
sons, including avoiding the risk of infection of study
participants with cryptic pathogens that may be trans-
mitted when using wild-collected mosquitoes. Besides it
also offers the possibility to replace the donor’s serum
with a non-immune AB one to avoid transmission redu-
cing activity of serum components [39].
Nonetheless, the membrane feeding assays present

two important weaknesses which could impact the out-
come of infection experiments. First, an inappropriate
blood handling procedure can result in decline or loss
of gametocyte infectivity [40]. Secondly, the number of
mosquitoes taking a blood meal could be reduced, es-
pecially when using newly collected field mosquito
samples, which are not yet adapted to artificial feeding
in laboratory conditions [41, 42]. This would explain

Fig. 1 Infection parameters of wild F1 An. funestus progeny. a Linear
regression and correlation between parasite density in blood and
prevalence of infection. b Linear regression and correlation between
parasite density in blood and median oocyst number in midguts
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the differences in feeding rate observed in this study
between the An. coluzzii Ngousso lab strain and the
first generation wild An. funestus.
In this study, mosquitoes became infected in the ma-

jority (over 75 %) of experiments demonstrating that the
parafilm/glass feeders system and the blood handling
procedure used for An. gambaie (s.l.) are also suitable
for An. funestus experimental infections. However, the
feeding rate of F1females from wild An. funestus mos-
quitoes varied significantly across experiments and did
not exceed 50 % in all cases. This was lower than those
previously reported in An. funestus Fumoz laboratory
strain (over 50 %) and in An. gambiae (51.9 %) [22]. The
difference could more likely be due to the use of mice
feeding system in the study of Lo & Coetzee [22] which
better mimics the natural feeding condition of Anopheles
mosquitoes and/or to a better adaptation of the Fumoz
lab strain to feed in lab conditions. By contrast, our re-
sults are comparable to those of a similar study con-
ducted in Senegal [42] in which the authors also used
the parafilm/glass feeder system to infect wild An. ara-
biensis F1 progeny and reported low feeding rate
(32.7 %) further confirming that freshly field collected
mosquitoes are not well adapted to feed on artificial
membrane as stated above. Nonetheless, low feeding rate
of wild Anopheles strains could be compensated by in-
creasing the number of mosquitoes for infection experi-
ments and this can now be easily achieved for An.

funestus, since collection and rearing of this mosquito
species have been significantly improved [15].
The infection parameters (mean prevalence of infec-

tion 25.66; median oocyst number 12.5, mean oocyst
load 7.02) recorded in this study were higher than that
reported in a similar one using the An. funestus insecti-
cide resistant (FUMOZ) and susceptible (FANG) lab
strains and P. berghei parasite (mean prevalence of infec-
tion 20 %) [22]. Conversely, wild An. funestus genotypes
from Mali (West Africa) exhibited significantly higher
prevalence of infection (62–97 %) when infected with P.
berghei [23]. The variations in prevalence of infection
between the three studies could be explained by three
main factors which have been shown to significantly pre-
dict the proportion of mosquitoes that become infected
after taking an infectious blood meal: (i) the difference
in gametocyte densities in blood used for experimental
infections [43]; (ii) the difference in gametocyte sex ratio
in blood [44]; and more likely (iii) the difference of in-
fectivity of Plasmodium species used [45]. However, it is
noteworthy that An. funestus is a vector of P. falciparum
and do not naturally interact with P. berghei. Therefore,
by using natural isolate of the human malaria parasite P.
falciparum, the present study gives the more realistic
picture of its vector competence.
Anopheles funestus displayed high and comparable

levels of susceptibility to P. falciparum infection in com-
parison to An. coluzzii as measured by the percentage of

Fig. 2 Variation of number of oocyst in individual An. funestus and An. coluzzii midguts in nine experiments. Each triangle represents the number
of oocysts in an individual midgut. Dotted lines on the X-axis separate experiment 12 from the rest to better see variation in oocyst number in all
experiments. The Y-axis on the left is related to experiments 1, 2, 4, 5, 6, 9, 10 and 13. The Y-axis on the right is only related to experiment 12, for
which very high number of oocysts in individual midgut was recorded
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experiments showing infected mosquitoes, prevalence of
infection and oocyst number in midguts. Our observa-
tions reinforce the view that both species are readily in-
fected with P. falciparum, the most common and
dangerous malaria parasite in sub-Saharan Africa, which
may have had a greater ability to develop defense strat-
egies against the mosquito immune system due to their
long period of co-evolution [40].
Although our primary objective was not to investigate

the kinetics of P. falciparum development in An. funes-
tus, the fact that oocysts were observed in midguts after
dissection of mosquitoes at day 7 gives preliminary indi-
cation that the parasite develops at similar rates to those
in An. gambiae [46]. Further investigations with dissec-
tion of mosquitoes at later time points at which sporozo-
ites should be observed in salivary glands are needed.

Conclusion
This study reported high levels of susceptibility of wild
An. funestus progeny to P. falciparum and since this
mosquito is widespread throughout Africa, malaria vec-
tor control research and implementation need to ser-
iously address this vector species too. Our results also
demonstrate the applicability of the parafilm/glass
feeding assays for An. funestus experimental infections
with its natural parasite P. falciparum. This open new
avenues toward further investigations of An. funestus-
Plasmodium interactions in natural system, taking ad-
vantage of genomic tools now available.

Additional file

Additional file 1: Table S1. Infection parameters in An. funestus and
An. coluzzii in nine parallel experiments. For each experiment, median
oocyst number followed by the same letter are not significantly different;
gametocyte densities correspond to the number of gamaetocytes per
microliter of blood. (DOCX 16 kb)
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