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Abstract

Background: Diseases occur in populations whose individuals differ in essential characteristics, such as exposure
to the causative agent, susceptibility given exposure, and infectiousness upon infection in the case of infectious
diseases.

Discussion: Concepts developed in demography more than 30 years ago assert that variability between individuals
affects substantially the estimation of overall population risk from disease incidence data. Methods that ignore
individual heterogeneity tend to underestimate overall risk and lead to overoptimistic expectations for control.
Concerned that this phenomenon is frequently overlooked in epidemiology, here we feature its significance for
interpreting global data on human tuberculosis and predicting the impact of control measures.

Summary: We show that population-wide interventions have the greatest impact in populations where all individuals
face an equal risk. Lowering variability in risk has great potential to increase the impact of interventions. Reducing
inequality, therefore, empowers health interventions, which in turn improves health, further reducing inequality, in a
virtuous circle.
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Background
The World Health Organization (WHO) has defined a
new strategy for tuberculosis (TB) prevention, care and
control – the End TB Strategy – and set, among its
targets, to reduce the incidence rate of the disease by
90 % in 20 years (2015–2035) [1]. There is some urgency
for TB control as drug resistance increases and popula-
tions become more mobile – TB becomes more difficult
to treat while effectively infecting the world’s poorest
communities no matter where they live. Consequently,
WHO estimates that the reduction in global incidence
must accelerate from the current 2 % per year [2] to
meet new targets, and advocates strong social protection
in addition to universal health care [3]. The marked
heterogeneity in TB risk makes its dynamics particularly
responsive to synergistic policies, such as targeted social
measures or targeted HIV treatment to reduce variation,

combined with TB interventions targeting the whole popu-
lation to reduce disease. Adding to previous studies, which
have assessed targeting control at the poor [4] or imple-
menting population-wide measures with fixed stratifica-
tion of disease risk [5], here we examine how the impact
of universal coverage interventions, such as a hypothetical
vaccine against TB, depends on the underlying risk distri-
bution in a population. Universal coverage interventions
have greater impact on disease in populations where all
individuals face similar risks, indicating that reducing
inequality empowers existing disease control tools.

Misuse of population averages
In tuberculosis, it is well known that some groups have
much higher risk to acquire infection and develop dis-
ease than the majority of the population: incarcerated
prisoners (20 times higher in Brazil [6]), persons living
with HIV (8 times higher in a South African community
[7]), geographical hotspots within urban settings (3 times
higher in people living in the poorest areas in Rio de
Janeiro [8]), among others. Behind these differences are
differences in basic parameters, which measure how
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frequently each person is likely to meet an infectious
case of TB and become infected, as determined by the
way social mixing patterns combine with individual vul-
nerabilities [4]. These effective contact rates are then av-
eraged and scaled into the so-called basic reproduction
number, R0, defined as the average number of secondary
disease cases caused by an average infectious person in a
totally susceptible population. Similarly, the incidence of
TB in the population is usually presented as a single
number, which implicitly represents a weighted average
of the incidences in groups of different sizes and relative
risks. All this averaging would be fine if disease probabil-
ities were linearly related with exposure intensity, but
incidence describes a non-linear relationship with R0

(Fig. 1). This relation has a concave form due to the
stronger depletion of susceptible hosts at higher trans-
mission intensities. As a result, averaging incidences
leads to underestimated R0 and overoptimistic control
expectations at the population level as recently demon-
strated by a theoretical study applicable to infectious
diseases more generally [9].

Why there is a tendency to underestimate control efforts
To illustrate the idea, we use a transmission model for
TB, developed previously [10] and replicated in the
appendix. In Fig. 1a, b incidence data for different coun-
tries are shown in a colour scheme defined by WHO
region [2], superimposed on how rates of TB incidence
relate to R0 according to two realisations of the model: a
homogenous assumption, where all individuals experi-
ence the same rates of infection, disease progression and
transmission (Fig. 1a); and a heterogeneous implementa-
tion where 4 % of individuals have a higher risk to con-
tract the infection and infect others [8, 10, 11] (Fig. 1b).
All parameters satisfy the same mean values across the
two model realisations, allowing comparison and dem-
onstrating how heterogeneity in risk has a striking ability
to modify the correspondence between incidence and
R0. More specifically, to a given incidence, the heteroge-
neous model associates a reproduction number that is
higher than that given by the corresponding homogeneous
counterpart, resulting in greater resilience to universal
coverage control efforts.
For intuition, consider a population with some distri-

bution of TB risk. The first people to be infected are
those with higher risk, leaving behind a susceptibility
pool with an average risk that decreases over time, by a
process of cohort selection [12, 13], until the system
reaches equilibrium. Thus cohort selection acts effect-
ively to suppress disease incidence, the more so the
higher the transmission intensity. Now suppose that TB
transmission is formulated into a model that collapses
the risk distribution into its mean value. Cohort selec-
tion no longer occurs because all individuals in this

model have the same risk, and therefore the system
sustains a higher disease incidence by the time it
reaches equilibrium. It follows that when two popula-
tions present the same overall disease incidence, we
should expect a higher average risk where inequality is
higher, but this is not revealed in overall disease inci-
dence. Interestingly, any universal coverage interven-
tion that reduces (directly) transmission potential also
reduces (indirectly) the suppression imposed by cohort
selection, and this effect is greater where inequality is
higher. Therefore, intervention impact is effectively
lower under risk inequality and this is aggravated as the
intervention progresses.

Fig 1 Global tuberculosis incidence per 100,000 person-years. a, b,
Endemic equilibrium states for model in appendix (black curves: a,
homogeneous; b, heterogeneous). Colored lines represent the TB
incidences reported by WHO in all countries, and associated R0.
Countries are color-coded by WHO region: African (red); South-East Asia
(yellow); Eastern Mediterranean (cyan); Western Pacific (green); Europe
(blue); The Americas (magenta). c, Simulation of a vaccine that halves
susceptibility to infection and reduces reactivation rate by 90 %.
Dashed and dash-dotted curves correspond to populations with
variance-to-mean ratios of 0 (homogeneous) and 20 (heterogeneous),
respectively, in two epidemiological settings: baseline incidence of 1000
per 100,000 person-years (red); and 50 per 100,000 person-years (grey)
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Universal coverage intervention impact
In Fig. 1c, we introduce a universal coverage interven-
tion – for example a vaccine against TB. We consider
settings that, in 2015, present mean incidences of 1000
per 100,000 person-years (red), as in the highest burden
African countries, and a more common scenario of 50
per 100,000 person-years (grey). For each setting, we
contrast the time course of incidence rates under a vac-
cine that effectively halves everybody’s susceptibility to
infection and reduces reactivation rate by 90 %, assum-
ing that the risk distribution is homogeneous (dashed)
or heterogeneous (dash-dotted). The impact of the inter-
vention is consistently higher under homogeneous risks,
although the magnitude of the difference can vary be-
tween settings. In this case, the higher incidence setting
shows greater difference in predicted impact: over
20 years, the vaccine reduces incidence by 91 % or just
by 10 %, depending on whether the variance-to-mean
ratio in risk is 0 (homogeneous) or 20 (heterogeneous)
(Fig. 1c, red). The same simulation for a population pre-
senting a lower baseline incidence of 50 per 100,000
person-years leads to more consistent reductions by,
respectively, 94 % or 92 % after 20 years although the
reduction is slower when heterogeneity is accounted for
(Fig. 1c, grey).
Figure 2 summarises how the 20-year impact of the

simulated vaccination programme decays with risk het-
erogeneity, considering a range of variance-to-mean
ratios between 0 and 20. An extended impact analysis
over baseline incidences is provided in the appendix.
Additional file 1: Figure S1 shows expected incidences
20 years since the intervention has started, as well as a
projection of the same measures when new equilibria
are eventually established. Time to approach equilib-
rium varies considerably across settings, appearing par-
ticularly high in those settings which are closer to

elimination, thus indicating the importance of accurate
time descriptions as elimination is approached.

Conclusions
The analysis provided here has profound implications
for the assessment of progression towards control tar-
gets, such as those recently set by the WHO [1]. We
have used a hypothetical vaccine to quantify how hetero-
geneity in individual disease risk can compromise the
performance of control programmes. In this exercise,
the recommended target of 90 % reduction in incidence
by 2035 can be comfortably met in settings where the
incidence is 50 per 100,000. In contrast, when incidence
is much higher, e.g. 1000 per 100,000, then considerably
more effort is required. Averaging model parameters
over groups of very different risk tends to unrealistically
assign low values to transmission indices, such as R0,
leading to overoptimistic control expectations especially
in high incidence regions.
In highlighting the sensitivity of programme outcomes

to the actual distribution of disease risks in populations,
we hope to stimulate a concerted action by the research
community to optimise analytic tools. Incidence data at
finer stratification are needed for the construction of stra-
tegic models that better capture heterogeneities in trans-
mission. Models and targets need to take explicit account
of risk inequalities and their determinants. Meanwhile, as
shown here, policies that reduce risk inequalities, whether
social [14, 15] or biomedical [16], are expected to boost
the impact of population-wide interventions that target
tuberculosis. Any disease specific control programme that
ensures health interventions to work better for those at
greater risk [17], contributes to the huge task of making
populations more homogeneous, besides the more imme-
diate returns in terms of reducing the target disease. Social
protection and poverty alleviation actions [18, 19] can
then synergise with these programmes to increase the
power of already existing disease control tools.

Additional file

Additional file 1: Mathematical model and extended intervention
impact analysis. (PDF 422 kb)
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