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result of induced immunological deficit: a 
simulation study
Peter Pemberton‑Ross1,2*, Thomas A Smith1,2, Eva Maria Hodel3, Katherine Kay3 and Melissa A Penny1,2

Abstract 

Effective population‑level interventions against Plasmodium falciparum malaria lead to age‑shifts, delayed morbid‑
ity or rebounds in morbidity and mortality whenever they are deployed in ways that do not permanently interrupt 
transmission. When long‑term intervention programmes target specific age‑groups of human hosts, the age‑specific 
morbidity rates ultimately adjust to new steady‑states, but it is very difficult to study these rates and the temporal 
dynamics leading up to them empirically because the changes occur over very long time periods. This study investi‑
gates the age and magnitude of age‑ and time‑ shifting of incidence induced by either pre‑erythrocytic vaccination 
(PEV) programmes or seasonal malaria chemo‑prevention (SMC), using an ensemble of individual‑based stochastic 
simulation models of P. falciparum dynamics. The models made various assumptions about immunity decay, trans‑
mission heterogeneity and were parameterized with data on both age‑specific infection and disease incidence at 
different levels of exposure, on the durations of different stages of the parasite life‑cycle and on human demography. 
Effects of transmission intensity, and of levels of access to malaria treatment were considered. While both PEV and 
SMC programmes are predicted to have overall strongly positive health effects, a shift of morbidity into older children 
is predicted to be induced by either programme if transmission levels remain static and not reduced by other inter‑
ventions. Predicted shifting of burden continue into the second decade of the programme. Even if long‑term surveil‑
lance is maintained it will be difficult to avoid mis‑attribution of such long‑term changes in age‑specific morbidity 
patterns to other factors. Conversely, short‑lived transient changes in incidence measured soon after introduction of 
a new intervention may give over‑positive views of future impacts. Complementary intervention strategies could be 
designed to specifically protect those age‑groups at risk from burden shift.
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Background
Countries and organizations aiming to reduce the public-
health burden of malaria have at their disposal an increas-
ing number of options for intervention. These cover 
a wide range of modes of action, potential strategies of 
deployment and cost, making comprehensive analysis of 
effectiveness and cost-effectiveness challenging. It is not 
possible to cover all intervention combinations of inter-
est by field trials, thus modeling and simulation can be 
useful to interpolate, optimize intervention packages and 
explore hypotheses [1].

This is particularly the case for analyses of the long-term 
effects of infection blocking interventions such as long-last-
ing insecticide-treated nets (LLINs) [2–4] or pre-erythro-
cytic vaccines (PEV) [5–7], but also to chemotherapy and 
prophylaxis strategies including test and treat [2], mass drug 
administration (MDA) [8] or seasonal malaria chemo-pre-
vention (SMC; formerly referred to as Intermittent Preven-
tive Treatment in children or IPTc) [9]. These interventions 
drive complex interplay of exposure and delay of natural 
immunity that may have counter-intuitive effects on sub-
sequent transmission and burden [10, 11]. The advantages 
of infection blocking interventions are clear; the immedi-
ate burden associated with the infection is averted, and at 
the same time onward transmission of the parasite can be 
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prevented with high enough coverage of the whole popula-
tion, and thus not just those receiving the intervention may 
be protected [12].

Such interventions directly reduce immune challenge to 
individuals using the interventions. MDA strategies typically 
stipulate age-stratified cohorts for treatment, which even in 
the ideal scenario of a programme with perfect coverage and 
compliance will only cover a given individual for the length 
of time they remain in the designated age band [13]. Current 
strategies for interventions often target children under five 
years of age, leaving them without protection at older ages. 
Excess disease incidence resulting from the immunological 
opportunity cost will, therefore, be expected in age groups 
older than those treated if everything else remains static. In 
addition, reductions in transmission either to intervened 
and non-intervened individuals also reduce immune chal-
lenge and hence acquisition of natural immunity and also 
potentially allows decay of pre-existing immunity. This does 
not argue against interventions that delay immunity acqui-
sition, but highlights the additional need to continue or 
increase coverage interventions for these individuals.

Averting infection and disease in one age group is thus 
likely to be accompanied by an excess of episodes in older age 
groups of the same individuals: referred to as an age-shift. 
Such age-shifts of clinical disease are a result of changes in 
exposure and delay of blood-stage malaria infection immu-
nity acquisition, and are a general characteristic of infec-
tious disease epidemiology [14], especially where (as with 
malaria) there is typically endemic stability [15] rather than 
epidemics. There have consequently been recurrent sugges-
tions that interventions blocking malaria infection may lead 
to increases in clinical and severe disease burden in older 
individuals or at later time points [16–20]. While age-shifts, 
delays or rebounds are clearly predicted by many theoretical 
models of malaria dynamics [15, 21], direct measurement 
of these effects is generally impractical because of the short 
duration of most field trials, such as those used to establish 
the efficacy of ITNs [22–24] or of the RTS,S PEV [25, 26]. 
Where randomization is maintained for long enough, as in 
recent Phase II RTS,S trials [27, 28], a conventionally limited 
empirical analysis (i.e., one without accompanying serologi-
cal data) cannot distinguish such shifts from the mechanis-
tically distinct explanation of age- or time-dependence in 
the efficacy of the intervention. When a single population 
is followed up over a long period and effectiveness of inter-
ventions compared over time, (e.g. [29]) there is likely to be 
confusion about whether decreases in effect size are due to 
age-shifts and delayed morbidity or to resistance or insensi-
tivity to the intervention (e.g. [30]).

Field studies of age- and exposure-dependent prevalence 
and the incidence of disease [31–33] can be used to indicate 
how the steady-state patterns will be modified by reductions 
in malaria transmission. In endemic areas where repeated 

infection occurs, naturally immunity is acquired which 
reduces the frequency of clinical episodes but does not 
reach the level of complete resistance. This partial immunity 
acts to reduce the parasite load in infected individuals and is 
a major determinant of malaria incidence patterns, provid-
ing some protection against severe morbidity and mortality 
in older children and adults, particularly in hyper- and holo-
endemic areas [34]. The exact mechanisms of acquisition 
and decay of this immunity are poorly understood but the 
age- and exposure-relationships in the absence of interven-
tion are well known. While protection against severe disease 
is developed after even small numbers of infectious mos-
quito bites [35], recurrent infections are needed for the host 
to become clinically immune, and even lifelong exposure 
does not lead to solid protection against infection. This has 
the consequence that areas with higher transmission inten-
sities have lower risk of severe malaria after the first few 
years of life [36–38], and an earlier and narrower age-range 
of susceptibility to all disease [31].

The timing of age-shifts, delays, or rebounds depend on 
the transient dynamics of the system which in turn depend 
on the durations of the different stages of the parasite life-
cycle and the dynamics of human demography [39]. These 
factors together determine how population immunity 
changes over time, and prediction of age-shifts needs to take 
them all into account. Field studies generally cannot directly 
estimate these effects, but by using simulation models 
which account for the complex dynamics of malaria trans-
mission, immunity and morbidity that are parameterized 
with field data these effects and hypotheses can be explored. 
The magnitude of age-shifts induced by PEV and MDA 
have been simulated using an ensemble of open-source 
individual-based stochastic models of P. falciparum dynam-
ics (OpenMalaria) that have been fitted to extensive data 
on age- and exposure-patterns of prevalence and disease 
[40, 41]. Using this framework we simulate the effect of the 
introduction of PEV and SMC programmes, using standard 
deployment strategies into endemic settings. We do this to 
look at predictions as a result of examples of induced immu-
nological deficit. We assume transmission remains static for 
the period of follow-up, noting that in field studies this is 
likely not to be the case and thus the predicted magnitude 
of age-shifting is likely to be larger than in reality if there is 
increasing coverage of LLINs and access to treatment seen 
in recent years. Quantities of epidemiological interest were 
tracked as the programmes continued over a timespan of 
20 years. The results are compared to outcomes in a control 
population that does not receive either intervention.

Methods
OpenMalaria comprises an ensemble of discrete-time 
individual-based models of malaria in humans [40, 41] 
linked to population models of malaria in mosquitoes 
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[42], and a dynamic model of human demography [43]. At 
each time-point the simulations contain a representation 
of the parasite densities of each P. falciparum infection in 
each human in the model, as well as the infectiousness 
to mosquitoes and morbidity status. The mosquito popu-
lations are classified into uninfected, infected and infec-
tious vectors. Immunity is modelled in OpenMalaria via 
effects on parasite densities, which are reduced accord-
ing to that individual’s history of infections, taking into 
account the previous total cumulative parasite load expo-
sure and number of infection events. Several models in 
the ensemble allow for immunity decay. The details of 
these models and the fitting of the model parameters to 
data are outlined in [40, 41].

The OpenMalaria framework includes model compo-
nents of not just transmission dynamics, human infec-
tion, immunity acquisition and decay, the life cycles of 
the mosquito and the malaria parasite, but also inter-
ventions aimed at different parts of the malaria life-cycle 
such as LLINs and the availability and efficacy of drugs 
and the health system. This allows for a wide range of 
malaria interventions to be simulated and investigated 
and impact on disease burden and transmission dynam-
ics estimated. Malaria interventions are parameterized 
as much as possible using variables which correspond to 
real-world observables, to allowing one to simulate the 
effect of measurable changes in the local transmission 
environment. In particular, the ability to model vaccines 
and mass drug programmes at the population level and 
the pharmacokinetic (PK) profile at the individual level 
have made this investigations of both PEV and SMC 
feasible.

The ensemble of simulation models was previously 
described in detail by [41]. The present work uses a sub-
set of six of the model variants listed in Table  2 of that 
[41]. The model variants are discrete time micro-sim-
ulations of malaria in humans, originally developed for 
modeling of malaria vaccines [40].

Models for case-management [44], PEV [45] and for 
clinical outcomes and mortality are described by [46, 47]. 
Each of these papers gives details of the rationale for the 
model structure. Model parameterisation is described 
by [41]. Implementation of these models is described at: 
https://github.com/SwissTPH/openmalaria/wiki.

For each simulation, the infection-blocking interven-
tion (PEV or SMC) was introduced into a population 
of 100,000 people with endemic transmission with a 
seasonal pattern of two transmission seasons per year, 
similar to that found in certain sites in West Africa [41]. 
All individuals within the population were tracked for 
the first 20 years of the intervention, and yearly sur-
veys were taken to record the age-stratified episodes 
of uncomplicated malaria, episodes of severe malaria, 

hospitalizations due to severe malaria and direct and 
indirect mortality. The age-groups for stratification are 
given in Table  1. Disability-adjusted life years (DALYs) 
were calculated from these indicators using the method 
presented in [43]. These indicators in the treated popula-
tion were compared to a control cohort in a population 
that does not receive either intervention to provide a 
dynamic and age-specific picture of burden shift.

To simulate both PEV and SMC simulations, six model 
variants from the OpenMalaria repertoire [41] (Penny 
MA, Galactionova K, Tarantino M, Tanner M, Smith 
TA: The public health impact of malaria vaccine RTS,S 
in malaria endemic Africa: country-specific predictions 
using 18 month follow-up Phase III data and simulation 
models. BMC Medicine, forthcoming) were employed, 
with each variant including the same sub-model for 
pathogenesis and case-management, but differing by 
assumptions concerning immunity decay or heteroge-
neity in transmission or co-morbidity. Each of these has 
been parameterized by fitting to observed relationships 
between seasonal patterns of EIR and a range of out-
comes, including parasite prevalence and morbidity rates. 
This ensemble of models is used to provide insight into 
the scale of structural model error in the predictions. For 
each model variant a range of different EIRs and levels 
access to effective care was simulated, Table 1. The inclu-
sion of effects of curative malaria treatment is a crucial 
part of our simulations. Effective treatment which clears 
the blood stage of the malaria parasite reduces the length 
of a given malaria episode, and the chance of recurrences, 
severe sequelae and death. This has downstream impacts 
on the future immunity state and infectiousness of indi-
viduals, and the population-wide prevalence and trans-
mission dynamics which feedback in a complex nonlinear 
manner. In this study, it was assumed that each individual 
had a 14.5% probability of receiving blood-stage clear-
ance of the malaria parasite in any two week period with 
illness (intended to correspond to the situation in some 
areas of Senegal [48]). This summary probability thus 
takes into account access to treatment, treatment adher-
ence and compliance and any drug resistance.

The simulation of vaccination comprised the adminis-
tration of a PEV of three doses according to the sched-
ule of the WHO Expanded Program on Immunization 
(EPI), with 93% coverage at third dose achieved at an 
age of 14 weeks in the cohort, based on data from Penny 
MA, Galactionova K, Tarantino M, Tanner M, Smith 
TA (The public health impact of malaria vaccine RTS,S 
in malaria endemic Africa: country-specific predictions 
using 18 month follow-up Phase III data and simulation 
models. BMC Medicine, forthcoming). The simulated 
vaccine confers protection in this age group of initial 
efficacy against infection of 62.7% at third dose, which 

https://github.com/SwissTPH/openmalaria/wiki
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decays exponentially with a half-life of 1.12 years (Penny 
MA, Galactionova K, Tarantino M, Tanner M, Smith 
TA: The public health impact of malaria vaccine RTS,S 
in malaria endemic Africa: country-specific predictions 
using 18 month follow-up Phase III data and simula-
tion models. BMC Medicine, forthcoming). Effects of 
incomplete courses of vaccination were not included. The 
quoted results are derived as weighted averages of out-
puts for the different vaccine profiles detailed in Table 1 
and methodology detailed in Penny MA, Galactionova 
K, Tarantino M, Tanner M, Smith TA (The public health 
impact of malaria vaccine RTS,S in malaria endemic 
Africa: country-specific predictions using 18 month fol-
low-up Phase III data and simulation models. BMC Med-
icine, forthcoming).

The SMC programme was implemented in the simula-
tions similar to that recommended by the WHO-Malaria 
Policy and Advisory Committee (MPAC) [49]. The simu-
lated pharmacodynamics (PD) were based on the effects 
of a combination of amodiaquine (AQ) and sulphadox-
ine–pyrimethamine (SP) administered monthly to all 
children aged 3–59 months during the transmission sea-
son, with a maximum of four administrations per season, 
Figure  1. Simulations of AQ-SP drug action were based 

on two previously calibrated and validated pharmacolog-
ical models of artesunate-AQ [50] and SP [51] treatment. 
The PK model for AQ assumed first-order absorption, 
linear elimination and used a pair of two-compartment 
disposition models to track the drug concentration of 
both the parent drug and active metabolite, in parallel 
over time [52]. This was combined with a PD model fol-
lowing Michaelis–Menton kinetics as described in [50]. 

Table 1 Simulation parameters

a EIR of 0.1 was not simulated, but any predictions for this level are taken as 10% of EIR 1.
b Probability of access to treatment for uncomplicated disease during a 5‑day period.
c Probability of access to hospital care (or equivalent) for severe disease during any 5 day period.

Variable Levels simulated for PEV and SMC

Model variants (1) R0000 base model

(2) R0068 heterogeneity in transmission: within‑host variability

(3) R0131 immunity decay in effective cumulative exposure

(4) R0132 immunity decay in immune proxies

(5) R0133 immunity decay in both immune proxies & effective cumulative exposure

(6) R0670 heterogeneity in susceptibility to co‑morbidity

Population size 100,000

Age‑group upper bounds (years) 1, 2, 3, 4, 5, 6, 10, 12, 16, 20, 30, 40, 50, 60, 70, 99

Survey intervals Yearly surveys for 20 years

Transmission pattern Seasonal, West Africa

EIR (infectious bites per person per year) 0.1a, 1, 2, 4, 8, 16, 64, 256

Uncomplicated case managementb (%) 0, 5, 40

Inpatient care for severe casesc (%) 0, 100

Vaccination coverage (%) 0, 100

PEV only SMC only

Cohort age EPI cohort
6, 10, 14 weeks old

All children aged between 3–59 months

Initial efficacy against infection (%) 62.7 100

Half‑life (years) 1.12 0.175

Weibull decay shape parameter (k) 1 (exponential decay) 3.300 (slow decay, followed by quick decay)

Number of simulations 67,680 10,080

Figure 1 Up to four doses are provided every season at monthly 
intervals during the main transmission season, according to the 
WHO‑MPAC recommendation.



Page 5 of 14Pemberton‑Ross et al. Malar J  (2015) 14:287 

The PK model for SP assumed both drugs were instanta-
neous absorbed, followed one-compartment kinetics and 
had linear elimination [51]. Sulphadoxine and pyrimeth-
amine act synergistically in combination and so drug 
effect was determined from an isobologram describing 
parasite survival in the presence of various SP concen-
trations [53] as described in [51]. The prophylactic effect 
ǫ(t) of this combination against re-infection over time t 
was parameterised by simulating amodiaquine and sul-
phadoxine–pyrimethamine administered to 1,000 indi-
viduals and estimating the probability infections were 
prevented in time for the appropriate age groups. This 
was fit to a Weibull decay curve of the form

with half-life � = 0.175 years and shape parameter 
k = 3.300. The quoted results are derived as weighted 
averages of outputs for different vaccine profiles as 
detailed in Penny MA, Galactionova K, Tarantino M, 
Tanner M, Smith TA (The public health impact of malaria 
vaccine RTS,S in malaria endemic Africa: country-spe-
cific predictions using 18 month follow-up Phase III data 
and simulation models. BMC Medicine, forthcoming).

Model averaging was used to provide a representa-
tive picture of the typical observed dynamics over the 
a range of values for each of the factor levels simulated 
listed in Table 1, as in Penny MA, Galactionova K, Tar-
antino M, Tanner M, Smith TA (The public health 
impact of malaria vaccine RTS,S in malaria endemic 
Africa: country-specific predictions using 18 month 
follow-up Phase III data and simulation models. BMC 
Medicine, forthcoming). The PEV simulations were 
weighted to simulate access to care, vaccination coverage 
and transmission profiles comparable to those found in 
areas in West Africa. The weights used for transmission 
level were computed based on the prevalence rasters in 
[54], which were transformed into EIR values using the 
relationship in Penny MA, Maire N, Bever C, Pember-
ton-Ross P, Briët OJT, Smith DL, et al. (Distributions of 
malaria exposure in endemic countries in Africa con-
sidering country levels of effective treatment, submit-
ted) and the estimated level of access to effective care. 
This level was scaled from Demographic and Health 
Surveys (DHS) at admin-1 level [48]. The predictions of 
the SMC programme in the population are derived as 
weighted averages of outputs as detailed in Penny MA, 
Galactionova K, Tarantino M, Tanner M, Smith TA (The 
public health impact of malaria vaccine RTS,S in malaria 
endemic Africa: country-specific predictions using 18 
month follow-up Phase III data and simulation models. 
BMC Medicine, forthcoming).

(1)ǫ(t) = exp

(

−

(

t

�

)k

log 2

)

Results
The simulated SMC programme assumes frequent treat-
ment, resulting in predictions of much larger numbers of 
episodes averted than the PEV programme Figure 2, but 
with both programmes, over the whole of the 20 year fol-
low-up period, the average predicted number of malaria 
episodes show an excess in certain age groups compared 
to the control untreated cohort. In the PEV simulation, 
episodes of averted uncomplicated disease are predicted 
in the five youngest age groups (0–1, 1–2, 2–3, 3–4 and 
4–5 year olds) in all years of the programme (Figure 3), 
but this is accompanied by an excess of episodes pre-
dicted in all age groups between 5 and 20 years of age. 
No effect in the age groups older than 20 years old is 
observed in the predictions due to the 20 year time span 
of the simulation follow-up, and the lack of appreciable 
predicted population effect on transmission of simulated 
PEV introduced via EPI [5]. The first observed onset of 
excess episodes for the 5–6 year old age group occurs as 
early as 4–5 years after the start of vaccination, the ear-
liest time point a vaccinated child would reach this age. 
A similar temporal pattern to the onset of excess uncom-
plicated cases is predicted for the SMC programme 
(Figure  4) although this intervention affects older age 
groups than the PEV programme and is thus accompa-
nied by a relatively quicker onset and greater number 
of averted cases in the treated age groups, particularly 
in the 4–5 year old age group. The age and time pattern 
of clinical cases averted, and subsequent excess of cases 
in the intervened individuals, is also predicted for the 
averted DALYs distribution over time, Figures  5 and 6. 
After the initial year of the PEV programme, Figure  5, 
DALYs are averted constantly in the 0–1 and 1–2 year 
old age groups. However, as the study progresses excess 
DALYs are seen in an increasing number of age groups, 
as more age cohorts comprise previously vaccinated 
individuals with reduced natural immunity compared to 
same age control cohorts. The peak of the distribution of 
excess DALYs remains constant around the 4–5 and 5–6 
year old age groups. A similar pattern of excess cases and 
DALYs are seen in the SMC programme, Figure 6, affect-
ing older age groups than the PEV due to the older ages 
of intervention coverage. Averted DALYs in the youngest 
age groups are predicted in the first year of the SMC pro-
gramme, much sooner than in the PEV programme.

Predictions of excess uncomplicated episodes in the 
age groups older than 5 years old accumulate over time 
in both PEV and SMC programmes, Figure 7. Cumulative 
excess severe disease and deaths directly attributable to 
malaria are seen in all ages ≥4 years old for PEV and ≥6 
years old for SMC, the difference between interventions 
attributable to the continued administration of SMC to 
2–5 year olds.
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The same effect is predicted if we track a cohort 
through time, Figure 8. Individuals born in the first year 
of the simulation exhibit a similar pattern of averted 
uncomplicated episodes, with up to 0.6 episodes per per-
son year averted by SMC at the age of 3, accompanied by 
an excess of up to 0.2 episodes per year at the age of 9. A 
similar dynamic is observed for the PEV, Figure 8. Burden 

is partially shifted from the first 5 years of life primarily 
to the following 5 years, and excess burden is observed 
even at the age of 20 years old (i.e.  as long as 14 years 
after the last administration of SMC).

Excess severe disease and deaths are also predicted 
to occur earlier than excess uncomplicated disease, 
Figure 9, in some cases after little more than half the time 
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Figure 2 Cumulative uncomplicated episodes averted over time. The age‑groups affected by burden shift differ markedly between PEV and SMC 
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after the start of the programme. For all episode severi-
ties, the first onset of excess cases happens sooner at high 
exposure, measured here by the entomological inocula-
tion rate (EIR). At very low exposure (EIR = 1 infective 
bite per person per annum), the first onset of excess 

uncomplicated disease can be as late as 10 years after the 
start of the programme.

The predicted total number of uncomplicated epi-
sodes averted over the entire population is positive for 
both strategies, demonstrating, that despite predictions 
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Page 8 of 14Pemberton‑Ross et al. Malar J  (2015) 14:287 

of age-shift in disease, there is an overall positive ben-
efit of the programmes with more cases averted in the 
younger age groups than any possible predicted excess 
of cases when PEV protection wanes or children reach 
ages older than target SMC ages. The benefits are primar-
ily predicted to be younger age-groups for PEV than for 
SMC, Figure 2. This is due to the target age groups of the 
interventions but also to the very large amount of disease 
averted in the intervened age groups immediately after 
the start of each programme.

Conclusion
Age-shifting of disease, delayed morbidity or rebounds in 
morbidity and mortality will generally occur when par-
tially effective malaria interventions are deployed in ways 
that do not permanently interrupt transmission. Such 
age-shifts have been observed in previous field studies 
of chemoprophylaxis [20] and discussed at length in his-
torical literature, but such effects will be hard to detect in 
field trials if follow-up is not long enough or background 
transmission decreases during trials. It is conjectured 
that all models of malaria dynamics that capture age pat-
terns of transmission and disease incidence relationships 

for P. falciparum will predict these effects of age-shifting 
for any transmission reducing intervention that prevent 
infections in individuals, especially when targeted to 
young ages. The two malaria interventions considered 
here, PEV and SMC, covered different age groups for 
implementation, with both preventing new infections in 
individuals for varying lengths of time and in the case of 
SMC cleared infections when given. Both interventions 
are predicted to result in age-shifting of disease, with 
some excess clinical cases in older ages once the inter-
vention no longer protects. Despite this age-shifting of 
disease, an overall positive benefit is predicted, with the 
number of clinical cases averted larger than any possi-
ble excess in older ages. This is in part due to the inter-
ventions targeting young ages where disease burden is 
higher. In simulations of naive and near naive individuals 
in settings with low malaria prevalence, the OpenMalaria 
models predict recurrent illness from single infections; 
they incorporate dynamic effects of treatment; and they 
reproduce the age patterns of uncomplicated episodes in 
a study [31] in which there is a strong ’cross-over’ effect 
in the sense that in older age groups, clinical incidence 
in the lower transmission site was higher than at higher 
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Figure 5 Averted DALYs at four timepoints in the PEV programme.
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exposure. In the models, these patterns are partly driven 
by the high treatment rates in these villages, a situation 
somewhat similar to an SMC programme. Other models 
might reproduce these effects to lesser extents if they are 
parameterised using different constraints and data [15].

Three different sets of scenarios leading to rebounds 
or age-shifts can be distinguished: (a) when interven-
tion deployment over the whole population is maintained 
long-term at a constant level, there is typically an initial 
phase during which the burden reduction is maximal, 
followed by readjustment to a new steady-state during 
which there may be a temporary increases of morbidity 
rates above the steady-state levels. This pattern is clearly 
seen in OpenMalaria analyses of rebounds in long-
term LLIN programmes [3]. (b) Discontinuation of pro-
grammes, such as single-round LLIN distributions [3], or 
weakening or cessation of sets of repeated programmes 
[55], is followed ultimately by a return to the original 
steady-state (assuming exogenous factors remain the 
same). The transient dynamics that may involve tempo-
rary increases of morbidity rates above the initial level. 

Situation (c), analysed in this paper, occurs when the 
intervention is provided only to a specific age range, but 
is maintained long-term. This shares some of the charac-
teristics of (a) in that it potentially leads to a new steady 
state if the interventions reduce transmission, but is sim-
ilar to (b), in that since the intervention is only applied 
to each individual for a finite period so each individual 
emerges from the protected age range with diminished 
immune readiness relative to non-intervened individu-
als and that expected for a given environment’s intrin-
sic potential for malaria. So the new steady state entails 
an age-shift in the pattern of disease. The timing of the 
effects for PEV and SMC are remarkably similar, though 
the ages affected are very different.

A general characteristic of all of these phenomena is 
that they are evident much sooner in high transmission 
settings, and that the largest burden shifts are also seen at 
the highest transmission levels. In such settings, one fac-
tor influencing burden shift to the 4–10 month age group 
is maternal immunity, as this is the age at which the pro-
tection conferred by transplacental maternal antibodies 
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Figure 6 Averted DALYs at four timepoints in the SMC programme.
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is expected to wane. This has the potential to leave this 
age group particularly vulnerable, as both maternal and 
clinical immunity diminish without the interim immune 
challenge required to produce a replacement protection 
[32]. However, this is likely to be an important factor 
only in very high transmission settings where a substan-
tial amount of exposure is experienced in this short 
age-window.

In low-transmission settings, without increasing cov-
erage of transmission reducing interventions, resur-
gence of disease may be distributed over a very long 
period after programme start, predicted to extend at 
least into the second decade. This makes it unlikely 
that this will be detected in the majority of controlled 
field trials of MDA or vaccination, which have relatively 
short follow-up periods. Many other changes in both 
malaria interventions and in environmental drivers of 
transmission are likely over such time-scales, so even 
if long-term surveillance is maintained it will be diffi-
cult to avoid mis-attribution of such long-term changes 
in age-specific morbidity patterns to other factors. 
Conversely, short-lived transient changes in incidence 

measured soon after introduction of a new interven-
tion may give misleading views of future impacts [3]. 
An immediate drop in incidence in one age group may 
be interpreted as evidence of success, but this should 
always be judged in the context of longer time shifts in 
incidence in this and other age groups.

A key determinant of these long-term dynamics is the 
very slow decay of population immunity when the chal-
lenge is reduced. The analysis suggests that the immuno-
logical “opportunity cost” that is paid during the period 
in which new infections are blocked, mainly results from 
the recruitment of unexposed infants into the popula-
tion, not from loss of immunological memory in previ-
ously exposed cohorts. While there is field evidence 
that treating asymptomatic infections increases subse-
quent susceptibility in the short-term [56–58], signifi-
cant immunity persists for a very long time [59]. Only by 
assuming very slow decay of immunity (or none at all) 
could the OpenMalaria models be fitted to the available 
data [41, 43]. It follows that the timing and extent of age-
shifts is sensitive to the birth-rate and age-distribution 
of the human population, and that models need to use 

0.0

0.5

1.0

1.5

2.0

Y
01

Y
02

Y
03

Y
04

Y
05

Y
06

Y
10

Y
12

Y
16

Y
20

Y
30

Y
40

Y
50

Y
60

Y
70

Y
99

Age group

C
um

ul
at

iv
e 

ca
se

s 
av

er
te

d
 p

er
 p

er
so

n−
ye

ar

Uncomplicated cases averted
 PEV

0.00

0.02

0.04

0.06

0.08

Y
01

Y
02

Y
03

Y
04

Y
05

Y
06

Y
10

Y
12

Y
16

Y
20

Y
30

Y
40

Y
50

Y
60

Y
70

Y
99

Age group

C
um

ul
at

iv
e 

ca
se

s 
av

er
te

d
 p

er
 p

er
so

n−
ye

ar

Severe cases averted
 PEV

0.0000

0.0025

0.0050

0.0075

Y
01

Y
02

Y
03

Y
04

Y
05

Y
06

Y
10

Y
12

Y
16

Y
20

Y
30

Y
40

Y
50

Y
60

Y
70

Y
99

Age group

C
um

ul
at

iv
e 

ca
se

s 
av

er
te

d
 p

er
 p

er
so

n−
ye

ar

Direct deaths averted
 PEV

0.0

2.5

5.0

7.5

Y
01

Y
02

Y
03

Y
04

Y
05

Y
06

Y
10

Y
12

Y
16

Y
20

Y
30

Y
40

Y
50

Y
60

Y
70

Y
99

Age group

C
um

ul
at

iv
e 

ca
se

s 
av

er
te

d
 p

er
 p

er
so

n−
ye

ar

Uncomplicated cases averted
 SMC

−0.2

0.0

0.2

0.4

Y
01

Y
02

Y
03

Y
04

Y
05

Y
06

Y
10

Y
12

Y
16

Y
20

Y
30

Y
40

Y
50

Y
60

Y
70

Y
99

Age group

C
um

ul
at

iv
e 

ca
se

s 
av

er
te

d
 p

er
 p

er
so

n−
ye

ar

Severe cases averted
 SMC

−0.03

0.00

0.03

0.06

Y
01

Y
02

Y
03

Y
04

Y
05

Y
06

Y
10

Y
12

Y
16

Y
20

Y
30

Y
40

Y
50

Y
60

Y
70

Y
99

Age group

C
um

ul
at

iv
e 

ca
se

s 
av

er
te

d
 p

er
 p

er
so

n−
ye

ar

Direct deaths averted
 SMC

Figure 7 Cumulative averted episodes in each age group per person‑year, over the 20 year course of both PEV and SMC programmes.
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realistic age-distributions if they are to give reliable indi-
cations of the extent of age-shifts.

The dynamics of age-shifts also depend on the slow 
build-up of natural immunity under parasitological 
challenge. An important feature of this is an increase 
in the force of infection with age for the first few years 
of life [60]. The OpenMalaria models capture this by 
assuming natural exposure is a function of body size, 
reflecting increasing biting by mosquitoes on larger 
hosts [61, 62] Figure 10 (figure taken from [63]). This is 
implemented as an age-dependent scaling factor, which 
expresses the number of bites received as a child as a 
fraction of the bites received by a fully-grown adult, 
proportional to the ratio in surface areas Figure 11 [63]. 
The consequent effect of child growth on exposure mag-
nifies the age-shifting effect because when the exog-
enous protection of the treated cohort is lost at a time 
when their increased size leaves them more vulnerable 
than younger children.

Even sustained interventions which include more age-
groups over longer periods will not necessarily entirely 
prevent age-shifting of disease [3], but there may be a 
benefit to the use of complementary interventions tar-
geted specifically to those age-groups at risk of burden 
shift. This could take the form of further infection-block-
ing interventions such as increasing usage of LLINs in 
those age groups (with LLINS also reducing transmission 
by their direct effects on mosquitos) and PEV booster 
programmes, particularly if longer half-life PEVs become 
available. Further simulation studies would be useful to 
help optimise design of such mitigation strategies and 
investigate cost-effectiveness. The simulation predic-
tions that, SMC averts clinical cases in the age group 
into which PEV induces excess cases suggests that SMC 
may be an appropriate strategy for mitigating the age 
shifts induced by a PEV, and will be a subject of future 
work. Modelling is useful to establish the optimal timing, 
cohorts and administration regimes for such combination 
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Figure 8 Uncomplicated episodes averted in cohort born in the first year of the programmes. The areas shaded green indicate the ages at which 
the intervention is administered. The burden averted in the first 5 years of life is partially shifted to later life, particularly the 5 years immediately fol‑
lowing. Although the scale of the effects differs markedly between the two interventions, the general profile is quite similar.
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programmes and would additionally provide cost-effec-
tiveness estimates of intended programmes to national 
malaria control programs for budget impact analysis.

The age-patterns of infection and disease in the models 
were fitted to the data of a number of field studies (see 

Additional file 1), and the results are thus heavily driven 
by data, rather than by somewhat uncertain assumptions 
about pathogenesis and immunity. Empirical studies 
that have investigated age shifts of malaria interventions 
have found results similar to our simulations [20, 64]. 
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Figure 9 Time to first onset of excess incidence at a range of exposure levels in the PEV programme, coloured by episode severity. Multiple points 
at the same EIR represent simulations with different transmission models and random seed.

Figure 10 The effect of body surface area on mosquito bites 
received. The proportion of bites from Anopheles gambiae s.s mos‑
quitoes received by the child is plotted against the proportion of the 
surface area contributed by the child. The diagonal line corresponds 
to direct proportionality.

Figure 11 OpenMalaria function modelling the effect of age on 
number of mosquito bites received. Shown is the ratio of bites 
received to those received by an adult (A(a(i, t))/Amax(t) by age 
a(i, t). The continuous line corresponds to proportionality between 
bites received and expected body surface area. The dotted line 
shows a similar model which assumes proportionality between bites 
received and body weight.
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However, generalization from models fitted to a limited 
set of locations is inevitably associated with uncertainties, 
especially since the age patterns of disease must depend 
on local factors such as patterns of co-morbidity. The 
greatest uncertainties attach to the assumptions about 
the models of intervention effects, especially of SMC, 
where the assumptions about the relationship between 
coverage and effective protection remain untested.
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