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a  b  s  t  r  a  c  t

Salivarian  trypanosomes  sequentially  express  only  one  variant  surface  glycoprotein  (VSG)
on  their  cell  surface  from  a large  repertoire  of VSG genes.  Seven  cryopreserved  animal
trypanosome  isolates  known  as  TeAp-ElFrio01,  TEVA1  (or  TeAp-N/D1),  TeGu-N/D1,  TeAp-
Mantecal01,  TeGu-TerecayTrino,  TeGu-Terecay03  and  TeGu-Terecay323,  which  had  been
isolated  from  different  hosts  identified  in  several  geographical  areas  of  Venezuela  were
expanded using  adult  albino  rats.  Soluble  forms  of predominant  VSGs  expressed  during  the
early infection  stages  were  purified  and  corresponded  to concanavalin  A-binding  proteins
with molecular  masses  of  48–67  kDa by  sodium  dodecyl  sulfate-polyacrylamide  gel elec-
tropohoresis,  and  pI values  between  6.1  and  7.5.  The  biochemical  characterization  of  all
purified soluble  VSGs  revealed  that  they  were  dimers  in their  native  form  and  represented
different  gene  products.  Sequencing  of  some  of  these  proteins  yielded  peptides  homol-
ogous  to  VSGs  from  Trypanosoma  (Trypanozoon)  brucei  and  Trypanosoma  (Trypanozoon)
evansi  and established  that  they  most  likely  are mosaics  generated  by homologous  recom-
bination.  Western  blot  analysis  showed  that all  purified  VSGs  were  cross-reacting  antigens

that were  recognized  by  sera  from  animals  infected  with  either  T. evansi  or Trypanosoma
(Dutonella)  vivax.  The  VSG  glycosyl-phosphatidylinositol  cross-reacting  determinant  epi-
tope  was  only  partially  responsible  for the  cross-reactivity  of  the  purified  proteins,  and
antibodies  appeared  to recognize  cross-reacting  conformational  epitopes  from  the vari-
ous  soluble  VSGs.  ELISA  experiments  were performed  using infected  bovine  sera  collected
from  cattle  in  a Venezuelan  trypanosome-endemic  area.  In particular,  soluble  VSGs  from

Abbreviations: ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); BCIP, 5-bromo-4-chloro-3 indolyl phosphate; Con A, concanavalin A;
RD,  cross-reacting determinant; DAB, diaminobenzidine; IEF, isoelectric focusing; LC/ESI-MS/MS, liquid chromatography/electrospray ionization-tandem
ass  spectrometry; NBT, nitro blue tetrazolium; o-PDM, N-N′-1,2 phenylenedimaleimide; p-PDM, N-N′-1,4 phenyllenedimaleimide; PMSF, phenyl methyl

ulfonyl fluoride; RAPD, random amplification polymorphic DNA; Rf, relative mobility; RoTat, Rode Trypanozoon antigen type; SDS-PAGE, sodium dodecyl
ulfate-polyacrylamide gel electrophoresis; sulfo-SMCC, sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate; VSG, variant surface gly-
oproteins.
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two  trypanosome  isolates,  TeGu-N/D1  and  TeGu-TeracayTrino,  were  recognized  by  93.38%
and 73.55%  of naturally  T.  vivax-infected  bovine  sera,  respectively.  However,  approximately
70% of  the  sera  samples  did not  recognize  all seven  purified  proteins.  Hence,  the  use  of  a
combination  of various  VSGs  for  the  diagnosis  of  animal  trypanosomosis  is  recommended.

rs.  Pub
©  2014  The  Autho

1. Introduction

Salivarian trypanosomes have a dense surface coat com-
posed predominantly of a unique type of variant surface
glycoproteins (VSG), which shields the invariant surface
proteins from host immune system effectors and pre-
vents complement activation (Turner et al., 1985). Despite
the high number of VSG and pseudo-VSG genes within
the trypanosome genome, each trypanosome expresses
only one VSG gene at a time from a telomeric expression
site, while the remaining VSG genes are transcriptionally
silent. VSG itself is highly immunogenic and elicits specific
trypanocidal responses from the host’s immune system.
Trypanosomes escape this immune response by switching
their dense protective VSG coat. As the infection pro-
gresses, a high host antibody titer to a particular VSG
causes clearance of trypanosomes expressing that particu-
lar VSG. However, trypanosomes that switch VSG expand
as a new population until they in turn are recognized by the
host immune system. Consequently, trypanosomes per-
sist in their mammal  hosts due to their antigenic variation
strategy (Barry and McCulloch, 2001; Taylor and Rudenko,
2006; Jackson et al., 2012).

In Venezuela, two non-tsetse transmitted salivarian
trypanosome species, Trypanosoma (Trypanozoon) evansi
and Trypanosoma (Dutonella) vivax, are the main cause
of animal trypanosomosis in livestock and generate a
significant economic impact. In Venezuela, both T. evansi
and T. vivax are mechanically transmitted by biting insects
including Tabanus, Cryptotylus, and Stomoxys species. In
Africa, T. vivax is highly prevalent in both tsetse-infested
and tsetse-free regions. The cyclical transmission of T.
vivax is limited to tsetse flies; mechanical transmission by
other biting flies allows T. vivax to spread in some tsetse-
free African regions where it is disseminated by tabanids
and stomoxes. Information available for the Llanos of
Venezuela indicates that ∼7% of horses suffer active infec-
tion with T. evansi (García et al., 2000; Castellanos et al.,
2010; Forlano et al., 2011). It has been calculated that losses
owing to horse mortality caused by this hemoparasitosis
would have amounted to US$ 7,486,000 for this region in
2008 (Moreno et al., 2013). García et al. (2005) have shown
by bloodsmear examinations, microhaematocrit centrifu-
gations and immunological assays that 6.7%, 11.4% and
39.5% of Venezuelan blood samples from water buffaloes
and other livestock contained trypanosomes. Moreover,
their results indicated that about 20% of the blood samples
contained T. vivax (García et al., 2005). García et al. (2006)
also evaluated the seroprevalence of trypanosomosis
and the prevalence of current trypanosome infection in

water buffaloes from the most important livestock areas
of Venezuela. Of the 644 animals investigated, 6.2% were
found infected with trypanosomes by blood centrifugation,
lished  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC
BY  license  (http://creativecommons.org/licenses/by/3.0/).

and 30.4% were found positive for anti-trypanosome anti-
bodies. The results of the PCR-based assay indicated that
92.5% of the animals with current infections were infected
with T. vivax (García et al., 2006). In addition, these
diagnostic studies demonstrated that the infection caused
by T. vivax was  practically asymptomatic in Venezuelan
endemic areas (García et al., 2005, 2006). Greif et al. (2013)
conducted a RNA-seq analysis of the Venezuelan T. vivax
LIEM-176 isolate. This study described proteins that were
differentially expressed between the LIEM-176 isolate and
the reference T. vivax Zaria Y486 Nigerian isolate (Greif
et al., 2013). Recently, García et al. (2014) investigated T.
vivax genetic diversity, population structure and the source
of outbreaks through the microsatellite multiloci genotype
analysis of isolates from across South America and West
Africa. Their results supported clonal propagation, and
were consistent with the hypothesis that the T. vivax iso-
lates from South America derived from common ancestors
recently introduced from West Africa (García et al., 2014).
Although Trypanosoma (Trypanozoon) equiperdum has not
been reported in Venezuela, Perrone et al. (2009) have
proposed that two  Venezuelan trypanosome isolates from
horses, TEVA1 (also known as TeAp-N/D1) and TeGu-N/D1,
previously thought to be T. evansi,  could belong to a
morphologically indistinguishable species within the
subgenus Trypanozoon, such as T. equiperdum.

Various reports have shown a very high immunological
cross-reactivity between trypanosome species, in partic-
ular T. evansi and T. vivax (Desquesnes and Tresse, 1996;
Aray et al., 1998). Although in vivo outbred murine mod-
els of trypanosomosis (CD-1, RjOrl:Swiss mice) have been
developed using the IL 1392 strain of T. vivax that was  orig-
inally derived from the Y486 isolate from Africa (Leeflang
et al., 1976; Chamond et al., 2010; Blom-Potar et al., 2010),
and in vitro non-infective T. vivax epimastigote axenic cul-
tures have been reported using the same IL 1392 strain
(D’Archivio et al., 2011), the production of T. vivax anti-
gens continues to be a limiting factor because most T.
vivax stocks are restricted to large animals such as cattle,
sheep, goats, horses, donkeys and pigs, and possess rel-
atively low level parasitaemias. In contrast, rodents can
be readily infected in the laboratory with any stock of T.
evansi or T. equiperdum to obtain high quantities of para-
sites to prepare antigens for serological tests. For that
reason, we have focused on the diagnosis of T. vivax-caused
animal trypanosomosis by using cross-reacting antigens
isolated from other trypanosomes (Uzcanga et al., 2002,
2004; Camargo et al., 2004; Velásquez et al., 2014). Inter-
estingly, a 64-kDa glycosylated cross-reacting antigen from
the TEVA1 isolate was  proven to represent the soluble

form of a VSG (Uzcanga et al., 2004). This result was con-
sistent with several studies that have demonstrated that
entire VSG molecules, VSG peptides and VSG mimotopes

http://creativecommons.org/licenses/by/3.0/
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an be used to diagnose Trypanosoma (Trypanozoon) brucei
nd T. evansi infections (Bajyana Songa and Hamers, 1988;
enchenier et al., 2003; Ngaira et al., 2004; Sengupta et al.,
012; Van Nieuwenhove et al., 2012, 2013). In this study,
e investigated the potential use of VSG variants as diag-
ostic reagents for the detection of trypanosomosis caused
y T. vivax and T. evansi,  and examined whether the soluble
orm of these VSG antigens contained common epitopes
ecognized by sera from animals infected with either of
hese species of trypanosomes.

. Materials and methods

.1. Materials

Reagents were purchased from the following sources:
iddle range molecular weight protein markers, anti-
ouse IgG horseradish peroxidase conjugate, 5-bromo-4-

hloro-3 indolyl phosphate (BCIP), nitro blue tetrazolium
NBT), Promega; anti-rabbit IgG alkaline phosphatase con-
ugate, anti-bovine IgG horseradish peroxidase conjugate,
nti-bovine IgG alkaline phosphatase conjugate, anti-
quine IgG alkaline phosphatase conjugate, anti-mouse IgG
lkaline phosphatase conjugate, diaminobenzidine (DAB),
orseradish peroxidase type VI-A, fibrous DEAE-cellulose,
enzamidine, iodoacetamide, phenyl methyl sulfonyl flu-
ride (PMSF), N-N′-1,2 phenylenedimaleimide (o-PDM),
-N′-1,4 phenyllenedimaleimide (p-PDM), gel filtration
olecular weight protein marker kit, Staphylococcus aureus
8 protease, concanavalin A (Con A), 2,2′-azino-bis(3-
thylbenzothiazoline-6-sulphonic acid) (ABTS), methyl-�-
-mannopyranoside, methyl-�-d-glucopyranoside, Sigma;
-Sepharose, S-Sepharose, Sefacryl S-300, Pharmacia;  pre-

tained high molecular weight protein markers, Gibco BRL;
ulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-
arboxylate (sulfo-SMCC), nitrocellulose (0.45 �m pore
ize), Pierce; broad range isoelectric focusing calibration
it (3–10), Immobilin dry strips (pH 5–8), ampholites (pH
–10), BioRad.  All other chemicals were of the highest qual-

ty grade available.

.2. Parasites

Seven cryopreserved animal trypanosome isolates were
sed that had been isolated from different hosts from dif-
erent geographical areas of Venezuela. The details about
ach parasite isolate are presented in Table 1. Two  horse
solates, TEVA1 and TeGu-N/D1, formerly considered to be
. evansi,  showed distinctive random amplification poly-
orphic DNA (RAPD) patterns and may  belong to the T.

quiperdum species (Perrone et al., 2009). All the remaining
ve isolates clearly belong to the T. evansi species (Perrone
t al., 2009).

All isolates were passaged using adult albino rats
Sprague-Dawley), which were infected by intraperitoneal
noculation with 0.30 ml  of infected blood, containing
pproximately 108 trypanosomes. When the parasitaemia

eached approximately 107–109 trypanosomes/ml, blood
as extracted by cardiac puncture using 0.5 M EDTA as an

nticoagulant. Parasites were separated by anion-exchange
hromatography using a fibrous DEAE-cellulose column, as
itology 207 (2015) 17–33 19

previously described (Lanham and Godfrey, 1970). Para-
sites were washed and purified according to Camargo et al.
(2004).

2.3. Animal sera

Sera were obtained from 16 naturally infected, parasite
positive animals (11 cows, two donkeys, two  capybaras and
one buffalo) from El Frio ranch, Muñoz Municipality, Apure
State. Sera from six confirmed non-infected animals liv-
ing in Venezuelan trypanosomosis-free areas were used as
negative controls (three cows, one donkey and one capy-
bara from local farms; and one racehorse from La Rinconada
Racetrack, Caracas). Sera from two animals experimentally
infected with trypanosomes were used as positive con-
trols; one horse was infected with T. evansi TeAp-El Frio01
and one cow was  infected with T. vivax LIEM-176. Natu-
rally and experimentally infected animals were examined
for trypanosome infection using the micro-haematocrit
technique (Woo, 1970). Animals were also diagnosed as
negative or positive for trypanosomosis by indirect ELISA
(Aray et al., 1998), using the clarified antigenic fraction
from the TEVA1 isolate as the antigen source (Uzcanga et al.,
2002). For the diagnosis of bovine trypanosomosis, sera
from 121 cows were obtained from La Candelaria, La Esper-
anza, El Paradero and La Loma ranches, José Tadeo Monagas
Municipality, Guárico State, which is a trypanosomosis-
endemic area in Venezuela. All animal sera were stored at
−20 ◦C.

2.4. Purification of the soluble form of VSG from animal
trypanosomes

Parasites were homogenized on ice by sonication (four
cycles of 30 s each, with a 30 s resting period between)
using 10 ml  of 5 mM Tris–HCl pH 7.6, 1 mM benzamidine
1 mM iodoacetamide, 1 mM PMSF and 5 mM EDTA. The
homogenate was  incubated for 5 min  at room tempera-
ture and then centrifuged at 100,000 × g, for 30 min  at 4 ◦C
to obtain the supernatant and pellet fractions. The pel-
let fraction was extracted, incubated for 5 min  at room
temperature, and centrifuged as described above. Both
resulting supernatants were collected and loaded onto a
Q-Sepharose column (40 ml)  connected in tandem with a
S-Sepharose column (15 ml), according to the procedure
described previously (Uzcanga et al., 2002, 2004). Under
these conditions, the soluble VSG was  eluted in the non-
adhering fraction. The eluted proteins were monitored at
280 nm and the fractions were stored at −20 ◦C until use.

2.5. Detection of concanavalin A-binding glycoproteins

The protocol of Wood and Sarinama (1975) was used
to detect glycoproteins. In brief, the nitrocellulose mem-
branes with the transferred proteins were initially placed
in a TBST solution [50 mM Tris–HCl (pH 8.0), 150 mM NaCl,
0.1% (v/v) Tween 20] containing 1% (w/v) gelatin for 1 h.

Following incubation for 45 min  with 0.5 mg/ml  Con A in
TBST, the nitrocellulose sheets were incubated for 45 min
with horseradish peroxidase (0.1 mg/ml  in TBST). The reac-
tions were developed using DAB and hydrogen peroxide
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Table 1
Summary information of the animal trypanosome isolates used in this study.a

Sample no. Isolate name Natural host Geographical location (Ranch, Municipality,
State)

Year of isolation

1 TeAp-ElFrio01 Capybara (Hydrochoerus hydrochaeris) El Frio Ranch, Muñoz Municipality, Apure State April 1992
2  TEVA1 or TeAp-N/D1b Horse (Equus ferus caballus) N/Dd, Apure State N/Dd

3 TeGu-N/D1c Horse (Equus ferus caballus) N/Dd, Guárico State N/Dd

4 TeAp-Mantecal01 Horse (Equus ferus caballus) Mantecal Ranch, Muñoz Municipality, Apure
State

December 1996

5  TeGu-TerecayTrino Donkey (Equus africanus asinus)  Terecay Ranch, Camaguán Municipality,
Guárico State

November 1999

6  TeGu-Terecay03 Donkey (Equus africanus asinus)  Terecay Ranch, Camaguán Municipality,
Guárico State.

November 1999

7  TeGu-Terecay323 Donkey (Equus africanus asinus)  Terecay Ranch, Camaguán Municipality,
Guárico State

November 1999

a These isolates were previously characterized by Perrone et al. (2009).
b Donated by the Center of Biomedical and Veterinary Studies of the Simón Rodríguez National Experimental University, Caracas, Miranda State.

ty of Ve
c Donated by the Faculty of Veterinary Sciences of the Central Universi
d N/D, not determined.

and stopped using distilled water. Parallel experiments in
which the nitrocellulose membranes were treated with
Con A, previously incubated with 0.2 M or 0.5 M methyl-
�-d-mannopyranoside, methyl-�-d-glucopyranoside, or
a mixture of both carbohydrates, were included as
controls.

2.6. Sequencing of VSG polypeptides by liquid
chromatography/electrospray ionization-tandem mass
spectrometry (LC/ESI-MS/MS)

Samples of purified soluble forms of VSG (∼10–20 �g)
were digested overnight with trypsin. The resulting pep-
tides were analyzed by LC/ESI-MS/MS using the Ultimate
3000 (Dionex Inc.) nanoLC system coupled to a 4000 QTRAP
(Applied Biosystems) (McMahon et al., 2010), at the Univer-
sity of Dundee Fingerprints Proteomics Facility. MASCOT
was employed for the identification of the tryptic peptides,
after searching the NCBInr and the T. brucei brucei genome
database as there is not yet a complete T. evansi genomic
database available.

2.7. Gel filtration chromatography

The purified proteins were applied to a Sephacryl S-300
size-exclusion column [Total volume (Vt) = 188 ml]  previ-
ously equilibrated with 50 mM Tris–HCl (pH 8.0), 150 mM
NaCl, 5 mM �-mercaptoethanol, employing a flow rate of
0.175 ml/min. The column was calibrated using protein
standards with molecular masses ranging from 12.4 to
200 kDa. The excluded (V0) and included volumes were
determined by chromatographing blue dextran and potas-
sium dichromate, respectively. The eluting fractions were
separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). The elution volume (Ve) was

measured for each protein, and the corresponding dis-
tribution coefficient was calculated using the following
equation:

Kav = Ve − V0

Vt − V0
nezuela, Maracay, Aragua State.

The molecular weight of each purified VSG was empiri-
cally determined by plotting the Kav value of each standard
versus the logarithm of its molecular weight.

2.8. Cross-linking of the soluble VSG forms purified from
different trypanosome isolates

Samples of the purified soluble form of each VSG (8 �g)
were incubated with different cross-linking reagents,
namely sulfo-SMCC (5 mM),  o-PDM (5 mM)  or p-PDM
(5 mM),  for 1 h, at room temperature. Sulfo-SMCC stock
solution was  freshly prepared in water, while o-PDM and
p-PDM stock solutions were freshly prepared in dimethyl
sulfoxide. The reaction with sulfo-SMCC was  carried out
in 10 mM sodium phosphate (pH 7.2), whereas the reac-
tions with both phenylenedimaleimides were performed in
25 mM Tris–HCl (pH 7.5) and 2.5 mM magnesium acetate.
For controls, samples of the soluble form of each VSG were
incubated with only the corresponding buffers, in the pres-
ence or absence of the appropriate amount of dimethyl
sulfoxide. All samples were separated by SDS-PAGE and the
cross-linked products were analyzed by silver staining.

2.9. 2D isoelectric focusing/SDS-PAGE analysis of purified
VSGs

Samples of the soluble form of each purified VSG (10 �g)
were precipitated with cold 80% (v/v) acetone and 0.07%
(v/v) �-mercaptoethanol and then resuspended in a solu-
tion containing 0.5% (v/v) ampholytes (pH 3–10), 8 M urea,
0.5% (v/v) Triton X-100 and 1.3 mM dithiothreitol. Isoelec-
tric focusing (IEF) was  performed in a Protean IEF Cell
(Bio-Rad) following the instructions of the supplier, using
polyacrylamide IPG 7 cm strips (ReadyStripTM, Bio-Rad)
containing a linear ampholyte gradient (pH 5–8). Follow-
ing the initial fractionation, the strips were incubated with
350 mM Tris–HCl (pH 6.8), 6 M urea, 30% (v/v) glycerol,

1.7% (w/v) SDS and 1% (w/v) dithiothreitol for 10 min  at
room temperature, and then with 350 mM Tris–HCl (pH
6.8), 6 M urea, 30% (v/v) glycerol, 1.7% (w/v) SDS and 2.5%
(w/v) iodoacetamide, for 10 min  at room temperature. The
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trips were placed on top of a 1 mm thick slab gel contain-
ng 10% (w/v) polyacrylamide and the second dimension

as performed as described by Laemmli (1970). After sil-
er staining the gel, the isoelectric points of the isoforms of
he purified proteins were empirically determined by plot-
ing the pI value of each of the 2D standard protein markers
ersus their relative mobility (Rf).

.10. Immunoblotting

For Western blot analyses, proteins were transferred
rom the gels to nitrocellulose sheets as described pre-
iously (Towbin et al., 1979). The nitrocellulose filters
ere incubated with animal sera (dilution 1:100) or poly-

lonal antibodies, which were prepared in mice ascitic fluid
Overkamp et al., 1988; Cartledge et al., 1992) (dilution
:5000) or in rabbit serum (dilution 1:400) against the
oluble VSG form of the TEVA1 isolate. The membranes
ere then treated with the appropriate dilution of alka-

ine phosphatase-conjugated secondary antibodies against
quine, bovine, mouse or rabbit IgG. On the basis of evolu-
ionary relationships, secondary antibodies against equine,
ovine, and mouse IgG were used when sera from donkeys,
uffalo, and capybaras, respectively, were employed as the
rimary antibodies. Polypeptide bands were visualized by
he addition of NBT and BCIP, according to the manufac-
urer’s instructions.

.11. Mild acid treatment

To assess the contribution of the glycosyl-
hosphatidylinositol cross-reacting determinant (CRD)
pitope in the sera cross-reactivity against the VSG
amples, the purified soluble form of each VSG (50 �g)
as treated for 1 h at room temperature with 1 M HCl as
escribed previously (Schneider et al., 1990). Untreated
amples were included as controls. After neutralization
ith 1 M NaOH, samples were reduced by the addition of

% (v/v) �-mercaptoethanol and heated at 100 ◦C for 5 min.
amples were separated by SDS-PAGE and transferred
o nitrocellulose sheets. The sheets were cut into 4 mm
trips and were individually developed to evaluate the
ecognition of the soluble VSG forms by sera from animals
aturally or experimentally infected with trypanosomes.
embranes were also developed using rabbit polyclonal

ntibodies (dilution 1:400) against the soluble VSG forms
f the TEVA1 isolate. Western blotting was performed as
escribed above.

.12. Partial digestions of the soluble VSG form of each
rypanosome isolate with S. aureus V8 protease

The purified soluble VSG forms of the seven try-
anosome isolates were partially digested with S. aureus
8 protease in 50 mM Tris–HCl (pH 8.1), following the pro-
edure described by Down et al. (1991). Samples containing
0 �g of each protein were precipitated with 80% (v/v) cold

cetone (1 ml,  at −20 ◦C for 10 min). The reactions were
entrifuged at 14,000 × g for 5 min, and the supernatants
ere removed. The precipitates were reconstituted with

0 mM Tris–HCl (pH 8.1). Two different concentrations of
itology 207 (2015) 17–33 21

the protease were employed: (a) 1:25 protease:protein
(1.12 units) and (b) 1:75 protease:protein (0.37 units).
The samples were incubated for 4.5 h at room tempera-
ture. Reactions were terminated by heating at 100 ◦C for
5 min  in Laemmli sample buffer (1970). The resulting pro-
teolytic products were separated by SDS-PAGE on a 15%
(w/v) polyacrylamide gel. Sample aliquots were transferred
to nitrocellulose sheets for subsequent Western blot anal-
ysis.

2.13. Diagnosis of bovine trypanosomosis by indirect
ELISA using the purified soluble VSG forms as
cross-reacting antigens

Indirect ELISA was undertaken according to the method
described by Aray et al. (1998). ELISA plates were sen-
sitized with the purified proteins (1 �g of protein/well),
diluted in carbonate-bicarbonate buffer (pH 9.6), and left
overnight at 4 ◦C in a humid chamber. Blocking buffer (PBS
containing 0.1% (v/v) Tween 20 and 2% (w/v) gelatin) was
applied in excess to each well for 1 h, at 37 ◦C. Bovine
sera (121 samples) obtained from an endemic area in the
Guárico State, Venezuela, were diluted 1:100 in blocking
buffer. A 100 �l aliquot of the diluted serum was added
per well. After an extensive wash, 100 �l of horseradish
peroxidase-conjugated secondary antibody against bovine
IgG (dilution 1:2000 in blocking buffer) was added to each
well. The colorimetric reaction was  developed after adding
100 �l of a solution containing 10% (w/v) ABTS and 0.0075%
(v/v) hydrogen peroxide in 0.05 M phosphate-citrate buffer
(pH 5).

2.14. Other procedures

The protein concentration was determined as reported
by Bradford (1976), using bovine serum albumin as pro-
tein standard. SDS-PAGE was  carried out on 1.5-mm thick
slab gels containing 10 or 15% (w/v) polyacrylamide as
described by Laemmli (1970). Coomassie blue R-250 or sil-
ver staining was  used for protein visualization.

3. Results

3.1. Virulence of the seven Venezuelan animal
trypanosome isolates

The seven trypanosome isolates showed significant
differences in virulence based on the measurement of
parasitaemia in infected rats. For TEVA1 and TeGu-N/D1
isolates, the parasitaemia reached ∼109 trypanosomes/ml
within 3–5 days, and infected animals died when the blood
was not extracted in time. For the TeAp-Mantecal01 and
TeAp-El Frio 01 isolates, the parasitaemia reached about
107–109 trypanosomes/ml over a period of 8–12 days.
Finally, the TeGu-Terecay323, TeGu-Terecay03 and TeGu-
TerecayTrino isolates, isolated from naturally infected
donkeys, required weeks to months (5–10 weeks) to

reach approximately 107 trypanosomes/ml. Based on
these observations, TeGu-Terecay323, TeGu-Terecay03,
and TeGu-TerecayTrino were the less virulent trypanosome
isolates, the virulence of TeAp-Mantecal01 and TeAp-El
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Fig. 1. SDS-PAGE analysis of purified VSG soluble forms from Venezue-
lan Trypanosoma sp. isolates. The clarified soluble fraction from seven
Venezuelan animal trypanosome isolates was chromatographed on a Q-

Sepharose column connected in tandem with a S-Sepharose column. The
flow-through fractions were separated by SDS-PAGE and visualized by
silver staining.

Frio 01 was intermediate, while TEVA1 and TeGu-N/D1
were the most virulent isolates.

3.2. Purification and characterization of the soluble VSG
forms from seven Venezuelan animal trypanosome
isolates

As shown previously for the TEVA1 isolate (Uzcanga
et al., 2002, 2004), the soluble VSG form purified for each
trypanosome isolate was enriched in the flow through frac-
tion, following chromatography of the soluble antigenic
extracts on a Q-Sepharose column connected in tandem
with an S-Sepharose column. In all cases, a prominent pro-
tein peak was obtained in the flow-through fraction (data
not shown).

SDS-PAGE analysis of the resulting protein peaks was
performed under reducing conditions (Fig. 1). Major
polypeptide bands with molecular masses of 48–67 kDa
were observed in all samples, which may  represent the
soluble forms of their VSGs. The estimated sizes of the
soluble VSG polypeptide bands for each trypanosome iso-
late were as follows: 59, 62 and 63 kDa (TeAp-El Frio01);
64 kDa (TEVA1); 56, 63 and 65 kDa (TeGu-N/D1); 62, 63 and
64 kDa (TeAp-Mantecal01); 66 kDa (TeGu-TerecayTrino);
63 kDa (TeGu-Terecay03 isolate); 48, 56, 60, 63 and 67 kDa
(TeGu-Terecay323). In addition, minor polypeptide bands
of lower apparent molecular weights (<48,000) were
observed in some of the fractions, which likely correspond
to VSG degradation products. The final yields of the puri-
fied soluble VSGs forms for each of the seven isolates
were determined and corresponded to a major component
of each trypanosome isolate, representing approximately

15–20% of the total parasite soluble protein.

In view of the fact that the parasite populations that
were used for VSG preparation were not cloned, it is possi-
ble that the parasites harvested from a rat might contain a
itology 207 (2015) 17–33

mixture of different VSG variants. However, since the para-
sites were collected on the peak of parasitaemia, and based
on the fluctuating behavior of the trypanosome infection in
which a clone prevails over the other clones, we expected to
find a predominant VSG in infected rats and consequently,
in the purified VSG fraction. If there were more than single
VSG proteins in the purified fractions, they probably would
correspond to minor components.

To determine the glycosylation status of the VSG
polypeptides, all purified proteins were separated by
SDS-PAGE, transferred to a nitrocellulose membrane and
analyzed by lectin blotting using Con A. The major polypep-
tides bands isolated from the various animal trypanosomes
were recognized by Con A (Fig. 2A, Panel I). The pattern
of Con A recognition resembled that of the polypep-
tides stained with Coomassie blue (Fig. 1). Con A binding
was  blocked when the incubation was undertaken in the
presence of 0.2 M or 0.5 M methyl-�-d-mannopyranoside,
methyl-�-d-glucopyranoside, or a mixture of both car-
bohydrates (data not shown). Thus, the purified proteins
from the seven trypanosome isolates are glycoproteins
that likely contain paucimannose or high-mannose N-
glycans, as described for VSGs expressed by other salivarian
trypanosomes (Mehlert et al., 2002). In addition, the
purified soluble VSGs appeared to contain either �-d-
glucose or derivatives of �-d-glucose. In the absence
of �-mercaptoethanol, the glycopolypeptide bands of all
samples migrated with an apparent molecular weight of
approximately 60–63 kDa (Fig. 2B, Panel I). This suggests
the formation of various intrachain disulfide bridges in
the purified soluble form of all VSGs. Furthermore, two
polypeptides were observed in the non-reducing sample of
the soluble VSG forms of the TeGu-N/D1 isolate: a 60 kDa
band and a 130 kDa band (Fig. 2B, Panel I). This result
indicated the formation of disulfide bonds between corre-
sponding monomers of the soluble VSG form. In contrast,
there was  no difference in the protein profile when the
TEVA1 sample was run under non-reducing conditions.
This indicates that the VSGs purified from the TEVA1 and
TeGu-N/D1 isolates are products of two  different genes.

Rabbit polyclonal antibodies directed against the VSG
soluble form of the TEVA1 isolate were tested against the
soluble VSG forms obtained from the seven different para-
site isolates. These polyclonal antibodies recognized all of
the soluble VSG forms, especially the proteins purified from
the TEVA1 and TeGu-N/D1 isolates (Fig. 2A, Panel II). Under
non-reducing conditions, these antibodies recognized the
soluble VSG forms of all seven isolates (Fig. 2B, Panel II),
but with lower intensity compared to the reduced sam-
ples (Fig. 2A, Panel II). Thus all the purified soluble VSG
forms contained common epitopes. Moreover, the soluble
VSGs from the TEVA1 and TeGu-N/D1 isolates had high
similarity to each other. The same polyclonal antisera also
recognized the 60 and 130 kDa polypeptide bands of the
non-reducing sample of the soluble VSG forms purified
from the TeGu-N/D1 isolate (Fig. 2B, Panel II). Interest-
ingly, polyclonal antibodies produced in mice ascitic fluid

against the soluble VSG forms of the TEVA1 isolate recog-
nized only the soluble VSG forms of the TEVA1 and the
TeGu-N/D1 isolates under both reducing (Fig. 2A, Panel III)
and non-reducing conditions (Fig. 2B, Panel III). Together,



R. Camargo et al. / Veterinary Parasitology 207 (2015) 17–33 23

Fig. 2. The trypanosome purified proteins are glycoproteins recognized by anti-VSG polyclonal antibodies. SDS-PAGE analysis of all purified proteins was
performed under reducing (A) or non-reducing conditions (B). Proteins (5 �g) were transferred to nitrocellulose membranes and analyzed using Con A
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Panel I), or polyclonal antibodies against the VSG soluble forms from the
II).

hese results demonstrated that soluble forms of different
SG variants were purified.

.3. Mass spectrometry analysis of soluble VSG
olypeptides

In order to corroborate the identity of the different
oluble VSG preparations, samples were trypsinized in
olution and the peptides were analyzed by LC/ESI-
S/MS. Analysis of the tryptic peptides from the

oluble VSG forms of the TEVA1 isolate retrieved the
ollowing peptides sequences: (i) Lys-Gly-Asp-Lys-
eu-Val-Thr-Asn-Ile-Leu-Arg-Asn (KGDKLVTNILRN);
ii) Lys-Glu-Ile-Phe-Asp-Thr-Pro-Leu-Asp-Ser-Arg-Gln
KEIFDTPLDSRQ); and (iii) Lys-Ala-Leu-Thr-Ala-Leu-Ala-
hr-Ala-Ser-Glu-Arg-Asn (KALTALATASERN). According to
he examined databases, the obtained sequences yielded
nly one hit to a putative VSG from T. brucei TREU927
Tb927.4.5460).
A similar analysis was performed for the VSG
oluble forms from the T. evansi TeAp-Mantecal01
solate. The following peptides were sequenced:
i) Lys-Leu-Phe-Ala-Ala-Ile-Ala-Asn-Ala-Pro-Lys-Val
solate prepared in either rabbit sera (Panel II) or mice ascitic fluid (Panel

(KLFAAIANAPKV); (ii) Arg-Glu-Asp-Ile-Phe-Thr-
Ala-Glu-Leu-Ala-Lys-Val (REDIFTAELAKV); (iii)
Arg-Ala-Val-Ser-His-Leu-Glu-Ser-Thr-Asp-Ile-Ile-Lys-Gly
(RAVSHLESTDIIKG); (iv) Lys-Gly-His-Ile-Asp-Glu-Phe-
Leu-Asn-Val-Ala-Glu-Lys-Val (KGHIDEFLNVAEKV); and
(v) Lys-Val-Val-Asp-Ala-Thr-Phe-Ala-Asn-Ile-His-Asn-
Ala-Lys-Leu (KVVDATFANIHNAKL), which matched the
primary sequence of a VSG of the T. evansi clone ShTat1.3
(AAL15903.1). In addition, other peptide sequences were
acquired during the analysis of the soluble VSG forms
from the TeAp-Mantecal01 isolate. The peptide with the
following sequence: Arg-Val-Ile-Leu-Pro-Ala-Val-Ala-Tyr-
Gly-Gly-Glu-Val-Ala-Gly-Ala-Ile-Ser-Ser-Ala-Leu-Lys-Phe
(RVILPAVAYGGEVAGAISSALKF) corresponded to another
VSG from T. evansi (AAK49461.1). Moreover, a variety
of the obtained sequences matched putative VSGs from
T. brucei,  such as: (i) Lys-Glu-Ala-Val-Val-Ala-Leu-Val-
Gly-Glu-Gly-Lys-Thr (KEAVVALVGEGKT) that hit a VSG
from T. brucei TREU927 (Tb927.6.5450); (ii) Arg-Ala-Ala-

Ile-Tyr-Ser-Gln-Leu-Gln-Lys-Gly (RAAIYSQLQKG) that
hit another VSG from T. brucei TREU927 (Tb927.5.230);
and (iii) Lys-Leu-Ile-Thr-His-Val-His-Val-Glu-Ala-Arg-Cys
(KLITHVHVEARC) that also hit a putative VSG from T.
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Fig. 3. Gel filtration chromatography and cross-linking of the purified soluble VSGs. Panel A: The native molecular weight of the purified proteins was  esti-
mated  using a Sephacryl S-300 molecular exclusion column. The calibration curve was established with �-amylase (�-A, 200 kDa), alcohol dehydrogenase
(ADH, 150 kDa), bovine serum albumin (BSA, 67 kDa), ovoalbumin (Ovo, 43 kDa), carbonic anhydrase (CA, 29 kDa), and cytochrome C (CC, 12.4 kDa). Elution

E and im
re incub
positions of the purified VSG soluble forms were determined by SDS-PAG
vivax.  Panel B: Samples of the purified soluble form of each VSG (8 �g) we
at  room temperature. M,  protein markers.

brucei (Q4FKD2 or Tb09.244.1350). Although no sequence
information was attained for the rest of the purified
proteins, the results obtained for the TEVA1 and TeAp-
Mantecal01 proteins indicated that the purified proteins
corresponded to the soluble form of VSG variants from
animal trypanosomes.

3.4. Gel filtration chromatography

Samples of all purified VSG soluble forms were
applied to a Sephacryl S-300 molecular exclusion column
with a set of protein markers. SDS-PAGE and West-
ern blot analyses, using sera from an experimentally
infected cow, allowed estimation of the elution vol-
ume  of each purified protein. The purified protein sizes
were empirically determined by plotting the Kav value
of each standard versus the logarithm of its molecular
weight (Fig. 3A). Molecular masses of 130 kDa, 140 kDa,
138 kDa, 134 kDa, 122 kDa, 137 kDa, and 139 kDa for
the soluble VSG forms purified from TeAp-El Frio01,

TEVA1, TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino
TeGu-Terecay03, and TeGu-Terecay323, respectively, were
estimated, demonstrating that all purified proteins corre-
spond to dimers in their native form. A dimeric quaternary
munoblotting using sera from a bovine experimentally infected with T.
ated with 5 mM sulfo-SMCC (top panel) or o-PDM (bottom panel), for 1 h

structure is a common attribute of reported VSGs from sali-
varian trypanosomes.

3.5. Covalent cross-linking of the purified VSG soluble
forms

Samples of all purified VSG soluble forms were incu-
bated with sulfo-SMCC, o-PDM or p-PDM; three bifunc-
tional reagents capable of covalently linking proteins.
Sulfo-SMCC is a heterobifunctional cross-linker capable
of forming bridges between Cys and Lys spatially located

about 11.6 ´̊A apart. o-PDM and p-PDM are specific homob-
ifunctional agents that cross-link Cys residues located at

approximately 9 ´̊A and 12 ´̊A, respectively. Incubation of the
purified soluble VSG forms with sulfo-SMCC produced dif-
fuse polypeptides bands that migrated at approximately
118–140 kDa (Fig. 3B, top panel). Although p-PDM did
not cross-link any of the purified soluble VSGs (data not
shown), o-PDM was capable of cross-linking some of the

VSG variant soluble forms (Fig. 3B, bottom panel) and pro-
duced polypeptides bands that migrated at approximately
118–160 kDa. The molecular weights obtained suggested
the formation of dimeric cross-linked products, supporting
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ig. 4. Two-dimensional electrophoresis of the purified soluble VSGs. IEF w
pH  5–8). Following the initial fractionation, strips containing the separat
n  top of a slab gel containing 10% (w/v) polyacrylamide. The second dim
tained. The isoelectric points of the various VSG isoforms found for each

he fact that purified soluble VSGs are dimers. As expected,
he migration of all purified proteins by SDS-PAGE was  not

odified in the control samples (data not shown).

.6. Isoelectric point determination

Two-dimensional electrophoresis of the VSG soluble
orms purified from all seven isolates of Trypanosoma sp.
as performed (Fig. 4). Using protein markers, the iso-

lectric points and molecular masses of all soluble VSG
ariants were calculated. As expected, all the soluble VSGs
ave pI values between 6.1 and 7.5 and there were at
east three isoforms of each of the purified proteins. The
esults obtained were as follows: (i) TEVA1: three spots
ith an apparent molecular mass of 64 kDa and pI val-
es of 6.4, 7.0 and 7.6; (ii) TeAp-Mantecal01: two  spots
ith an apparent molecular mass of 62 kDa and pI val-
es of 6.9 and 7.4; (iii) TeGu-N/D1: three spots with an
pparent molecular mass of 63 kDa and pI values of 6.5,
.9 and 7.5; (iv) TeAp-ElFrio01: five spots, three with an
pparent molecular mass of 62 kDa and pI values of 6.1, 6.7
nd 7.2, and two spots with an apparent molecular mass

f 45 kDa and pI values of 6.3 and 6.9; (v) TeGu-Terecay
23: nine spots, three with an apparent molecular mass of
7 kDa and pI values of 6.1, 6.6 and 7.2, three with appar-
nt molecular masses of 61–63 kDa and pI values of 6.1,
rmed using polyacrylamide strips containing a linear ampholyte gradient
ins were incubated with an appropriate concentration of SDS and placed
was performed as described by Laemmli (1970) and the gels were silver
even animal trypanosome isolates are shown.

6.5 and 6.9, and three with an apparent molecular mass
of 58 kDa and pI values of 6.1, 6.5, and 7.0; (vi) TeGu-
Terecay03: three spots with an apparent molecular mass
of 63 kDa and pI values of 6.4, 6.8, and 7.3; and (vi) TeGu-
TerecayTrino: seven spots, five with an apparent molecular
mass of 66 kDa and pI values of 6.2, 6.4, 6.7, 6.9 and 7.4,
and two with an apparent molecular mass of 45 kDa and
pI values of 6.7 and 7.4. Spots of lower apparent molecular
weights (<58,000) were observed in TeAp-ElFrio01, which
required approximately 12 days to reach the appropriate
parasitaemia; and in TeGu-Terecay323, TeGu-Terecay03,
and TeGu-TerecayTrino, which were the less virulent try-
panosome isolates and required 5–10 weeks to reach the
proper parasitaemia. These spots likely correspond to VSG
degradation products, which may  be accounted for by the
variation in parasitaemia observed between these different
trypanosome isolates.

3.7. The soluble VSG forms purified from seven different
Venezuelan trypanosome isolates are recognized by sera
from animals naturally infected with either T. evansi or T.
vivax
Western blot analysis was undertaken to evaluate
recognition of the purified proteins by sera from horses,
donkeys, capybaras and cows naturally infected with either
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Fig. 5. Purified soluble VSGs are recognized by sera from T. evansi- and T. v
infected horses (H), donkeys (D), capybaras (C), or bovines (B) to evaluate
were included as positive controls. Sera from uninfected (−) and infected

T. evansi or T. vivax. Sera from experimentally infected
animals were included as positive controls. The purified
soluble VSG forms were recognized by sera obtained from a
horse and a cow experimentally infected with T. evansi and
T. vivax, respectively (Fig. 5, Lanes a and h), but not by serum
from an uninfected racehorse (Fig. 5, Lane b). The purified
proteins from all T. evansi isolates were also recognized by
sera obtained from donkeys (Fig. 5, Lanes c and d) and a
capybara (Fig. 5, Lane f) that had been naturally infected
with T. evansi,  but not by sera from an uninfected donkey
(Fig. 5, Lane e) or an uninfected capybara (Fig. 5, Lane g).
Furthermore, purified proteins were not recognized by sera
from uninfected cows (Fig. 5, Lanes t, u, and v). Interest-
ingly, most of the purified soluble VSG forms from different
trypanosome isolates were well recognized by sera from
cows naturally infected with T. vivax (Fig. 5, Lanes i–s).
However, soluble VSG forms from the TeGu-TerecayTrino
and TeGu-Terecay03 isolates were weakly recognized by
sera from cows naturally infected with T. vivax (Fig. 5, Lanes
i–s).

3.8. The inositol-1,2-cyclic phosphate moiety of the CRD
is partially responsible for the cross-reactivity of the
purified VSG soluble forms
Rabbit polyclonal antibodies against the soluble VSG
forms of the TEVA1 isolate (Fig. 6A) and sera from a cow
(Fig. 6B), a buffalo (Fig. 6C), a capybara (Fig. 6D), a horse
(Fig. 6E) and two donkeys (Fig. 6F and G), which had been
ected animals. Western blotting was performed using sera from naturally
ition of the purified proteins. Sera from experimentally infected animals
s (+) were used.

naturally infected with trypanosomes, were used to mon-
itor the CRD-dependent cross-reactivity of the purified
proteins from the seven Venezuelan trypanosome isolates.
Samples of all soluble VSG forms were treated (+) with 1 M
HCl or left untreated (−) (Schneider et al., 1990). Mild acid
treatment causes decyclization of the inositol-1,2-cyclic
phosphate moiety of the CRD in vitro (Zamze et al., 1988;
Schneider et al., 1990) and destroys the antigenicity of the
inositol structure.

As shown previously (Fig. 2A, Panel II), rabbit poly-
clonal antibodies against the soluble VSG forms of the
TEVA1 isolate recognized all seven soluble untreated VSG
forms, especially proteins purified from the TEVA1 and
TeGu-N/D1 isolates (Fig. 6A, −). All purified proteins were
recognized by sera obtained from a cow (Fig. 6B, −) and
a horse (Fig. 6E, −) that had been experimentally infected
with T. vivax and T. evansi,  respectively. Also, they were
recognized by sera obtained from a buffalo (Fig. 6C, −), a
capybara (Fig. 6D, −) and two  donkeys (Fig. 6F, − and G, −)
that had been naturally infected with trypanosomes. These
results confirmed that the purified soluble VSG forms from
the various trypanosome isolates were antigens partially
responsible for the cross-reactivity between T. evansi and
T. vivax.

In most cases, there was  only a slight decrease in the

recognition of the seven antigens by all sera following mild
acid treatment (Fig. 6A–G, +). These results indicated that
the inositol-1,2-cyclic phosphate moiety of the CRD is only
partially responsible for the cross-reactivity of the purified
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Fig. 6. Effect of mild acid treatment on the cross-reaction of the purified proteins. The soluble VSG forms of the seven Venezuelan isolates of Trypanosoma sp.
were  incubated either with 1 M HCl (+) or without (−), for 1 h, at room temperature. Samples were separated by SDS-PAGE, and transferred to nitrocellulose
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heets. The blots were cut into 4 mm strips and developed using either ra
Panel  A) or sera from animals either naturally or experimentally infected
D),  a horse (E) and two  donkeys (F and G) naturally infected with trypan

roteins. However, a complete blockage of recognition by
everal animal sera was observed following mild acid treat-
ent of the soluble VSG form of the TeGu-Terecay03 isolate

Fig. 6).

.9. Limited proteolysis with S. aureus V8 protease of the
even purified soluble VSGs

Following limited proteolysis with S. aureus V8 pro-
ease, the resulting polypeptide fragments were compared
y SDS-PAGE analysis to examine similarities among the
rimary structures of the seven purified proteins. Common
roteolytic profiles are expected for protein variants that
ossess conserved three-dimensional folding. Although
ome clear differences were evident, the generated V8
roteolytic patterns for the seven soluble VSGs were sim-

lar, showing polypeptide bands with apparent molecular
asses of 49, 37.4, 34.4, 30.5, 17.7, 12.6 and 11.2 kDa (Fig. 7,
op panel). As expected, higher digestion of the purified
roteins occurred when more (Fig. 7, top panel, Lane c)
ather than less (Fig. 7, top panel, Lane b) S. aureus V8
rotease was used.
yclonal antibodies directed to the soluble VSG form of the TEVA1 isolate
ypanosomes (Panel B–G). Sera from a bovine (B), a buffalo (C), a capybara
were used.

To identify antigenic regions within the purified sol-
uble VSGs, the proteolytic fragments were analyzed by
immunostaining. Polyclonal antibodies produced in rabbits
against the soluble VSG forms of the TEVA1 isolate (Fig. 7,
middle panel) and serum from a bovine naturally infected
with T. vivax (Fig. 7, bottom panel) were used. Both sera
recognized all the untreated soluble VSGs, and some of
their proteolytic fragments. However, recognition of the
soluble VSG forms of TEVA1, as well as its proteolytic frag-
ments, was higher when the polyclonal antibodies were
used. In particular, a major polypeptide fragment of about
49 kDa was attained when the purified VSG from TEVA1
was treated with the V8 protease. These antibodies also rec-
ognized polypeptide bands between 18 and 40 kDa in size
of the TEVA1 VSG variant (Fig. 7, middle panel). Low recog-
nition of the resulting proteolytic fragments of the soluble
VSGs of the other trypanosome isolates was observed when
these antibodies were employed, with only some recogni-

tion in the 40–60 kDa region (Fig. 7, middle panel). Lower
recognition of the proteolytic fragments was  attained when
the bovine serum was  used (Fig. 7, bottom panel). Common
proteolytic bands, with molecular masses of approximately
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Fig. 7. Limited proteolysis of the soluble VSGs using S. aureus V8 protease. Samples of each purified protein (40 �g) were either left untreated (a), or
r 4.5 h a

 panel) 

 from a
partially digested with 1.12 (b) or 0.37 (c) units of S. aureus V8 protease fo
using  a 15% (w/v) polyacrylamide gel. Gels were either silver stained (top
rabbit against the soluble VSG form from TEVA1 (middle panel), or serum

59.4, 49, 37.4, 34.4 and 33 kDa (Fig. 7, bottom panel) were
barely detected in most purified soluble VSGs. This suggests
that antibodies against the soluble VSG forms of the TEVA1
isolate and antibodies in the serum of the bovine naturally
infected with T. vivax recognized cross-reacting conforma-
tional epitopes from the various soluble VSGs, which were
lost following proteolysis with the V8 protease.

3.10. Recognition of the purified soluble VSG forms by
sera from bovine living in a trypanosomosis-endemic area

Indirect ELISA was used to evaluate recognition of the
purified soluble VSG forms from different trypanosome
isolates by sera from bovine living in a trypanosomosis-
endemic region of Guárico State, Venezuela (Fig. 8A). Most
purified soluble VSGs were recognized by >60% of the sera.
However, soluble VSG from the TeAp-Mantecal01 isolate
was recognized by only 46% of the bovine sera. Notably, the
soluble VSG from the TeGu-N/D1 isolate was recognized by
93.38% of the bovine sera samples tested. Soluble VSG from
the TeGu-TeracayTrino isolate was recognized by 73.55%
of the sera. Thirty-six sera (corresponding to 29.8% of the
total sera samples tested) recognized the purified soluble

VSGs obtained from the seven trypanosome isolates. Only
four sera recognized a single soluble VSG sample, which
corresponded to the variant from the TeGu-N/D1 isolate
(Fig. 8B).
t room temperature. SDS-PAGE analysis of these samples was performed
or analyzed by Western blotting using polyclonal antibodies produced in

 bovine naturally infected with T. vivax (bottom panel).

4. Discussion

The diagnostic value of VSG molecules in T. evansi
and T. brucei infections has been extensively reported
(Van Meirvenne et al., 1977; Magnus et al., 1982; Van
Meirvenne et al., 1995; Verloo et al., 2000; Holland et al.,
2002; Atarhouch et al., 2003; Rogé et al., 2013). Currently,
native and recombinant VSG antigens are used in most
antibody detection and DNA-based tests for salivarian try-
panosomes. For example, an indirect latex agglutination
test (LATEX/T.b.g), consisting of a lyophilized suspension
of latex particles coated with VSGs of the variable anti-
gen types LiTat 1.3, LiTat 1.5 and LiTat 1.6 from T. brucei
gambiense,  has been successfully employed for diagnosis
of human African trypanosomosis (Penchenier et al., 2003).
Most T. evansi populations can also be identified using diag-
nostic assays. These include direct card agglutination tests
(CATT/T. evansi)  (Bajyana Songa and Hamers, 1988; Verloo
et al., 2000; Atarhouch et al., 2003; Holland et al., 2002),
indirect latex agglutination tests (LATEX/T. evansi)  (Verloo
et al., 2000; Holland et al., 2002) or PCR assays (Ngaira et al.,
2004), and are based on detection of the predominant VSG
gene of T. evansi Rode Trypanozoon antigen type (RoTat)
1.2, a variable antigen type that has been cloned from a

T. evansi stock, isolated in 1982 from a water buffalo in
Indonesia (Bajyana Songa and Hamers, 1988). These tests
have shown high specificity and sensitivity. However, the
RoTat 1.2 VSG gene is absent in some T. evansi trypanosomes
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Fig. 8. Indirect ELISA of the soluble VSGs using bovine sera obtained from a trypanosomosis-endemic region of Venezuela. ELISA plates were sensitized
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Ngaira et al., 2004; Salim et al., 2011). Therefore, use of
ests based only on the RoTat 1.2 VSG gene can potentially
ead to false-negative results. Thus, novel diagnostic meth-
ds for the detection of animal trypanosomosis are needed.

Various recent studies have described several promis-
ng recombinant proteins for the serodiagnosis of T. evansi
nd T. vivax. Tran et al. (2009) generated an antibody
etection ELISA for T. evansi infection in camels by using

 recombinant extracellular domain of an invariant sur-
ace glycoprotein 75 (rISG75) expressed in Escherichia coli
ELISA/rISG75). The ELISA/rISG75 demonstrated an almost
erfect agreement with three established antibody detec-
ion tests based on VSG RoTat 1.2: an ELISA for T. evansi,
he CATT/T.  evansi card agglutination test for trypanoso-

osis, and an immune trypanolysis assay. Moreover,
LISA/rISG75 tests on a small serum sample set of T.
rucei brucei-infected goats, T. evansi RoTat 1.2-infected
orses, and T. equiperdum-infected rabbits showed that
ISG75 was panreactive within the Trypanozoon subgenus.
ince tandem repeat proteins of trypanosomatid parasites
enerally possess high antigenicity, they also have been
onsidered to be potential antigens for trypanosomosis.
he repeat sequences of the flagellar-associated GM6  pro-
eins of T. vivax (TvGM6) and Trypanosoma (Nannomonas)
ongolense (TcoGM6) were recombinantly expressed and
urified (Pillay et al., 2013). The purified GM6  antigens
ere subsequently used in an indirect ELISA that was  opti-
ized for detection of trypanosome infection in bovine

era. Pillay et al. (2013) demonstrated that the TvGM6
as an excellent candidate antigen for the development

f a point-of-treatment test for diagnosis of T. vivax, and
o a lesser extent T. congolense,  African animal trypanoso-
osis in cattle. In addition, recombinant T. b. brucei GM6
TbbGM6) and T. evansi GM6  (TeGM6-4r) were proven to
e valuable as serodiagnostic antigens for T. evansi infection
Thuy et al., 2012; Nguyen et al., 2014). Although the use of
1 �g of protein/well) and 121 bovine sera (dilution 1:100) obtained from
era samples that recognized each of the purified soluble VSG forms from
recognized 1–7 of the purified VSG soluble forms.

recombinant antigenic proteins of T. evansi and T. vivax may
be an alternative source of antigens which appeared to be
very useful for the serodiagnosis of animal trypanosomo-
sis, given that they can be highly reproducible and have the
additional benefit that laboratory animal usage is reduced,
native antigens have the advantage that they possess the
original three dimensional conformation of the protein
and bear all co- and post-translational covalent modifica-
tions, which might represent essential epitopes for antigen
immunoreactivity. As shown here, not only the protein
component but also the inositol-1,2-cyclic phosphate moi-
ety of the glycosyl-phosphatidylinositol anchor is partially
responsible for the cross-reactivity of the purified VSG
soluble forms. In addition, unpublished results using oxi-
dation with sodium metaperiodate followed by sodium
borohydride reduction have shown that carbohydrate epi-
topes are also important for the immunorecognition of the
purified VSG soluble antigens (Uzcanga G.L., unpublished
results). Recently, Fikru et al. (2014) also developed a T.
vivax specific PCR test based on the T. vivax proline race-
mase (TvPRAC) gene, which proved to be fully specific for
T. vivax, irrespective of its geographical origin.

In this study, we purified the soluble forms of the pre-
dominant VSG variants from seven Venezuelan isolates of
animal trypanosomes originally obtained from naturally
infected horses, donkeys and a capybara. The biochemical
and immunological characterization of the purified pro-
teins revealed that each of these variants corresponded
to different VSG molecules. The purified soluble VSGs of
the TEVA1 and TeAp-Mantecal01 trypanosome isolates
were analyzed by liquid chromatography-electrospray tan-
dem mass spectrometry. Three of the tryptic peptides

sequenced from the purified soluble VSG of the TEVA1
isolate generated only one hit with a T. brucei TREU927
gene that encoded for a putative VSG (Tb927.4.5460). How-
ever, the theoretical isoelectric point for the Tb927.4.5460
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gene product, determined using the Compute pI/Mw tool
(http://web.expasy.org/compute pi/) was 8.69, which dif-
fered from the experimentally obtained values for the
isolelectric point of the three isoforms isolated from
TEVA1. In addition, the rest of the tryptic peptides that
were sequenced from the soluble VSG forms of the
TEVA1 isolate did not match any of the VSGs reported in
the kinetoplastid genomics resource database (TriTrypDB,
http://tritrypdb.org/tritrypdb/). Therefore, VSG isoforms
from TEVA1 are probably products of gene recombina-
tion in which the homologous gene for Tb927.4.5460 is
involved. Given that VSGs may  enter a telomeric expres-
sion site via homologous recombination, there is potential
for the formation of new VSGs that are mosaics of exist-
ing VSGs (Marcello and Barry, 2007). Five peptides from
the soluble VSGs of the TeAp-Mantecal01 T. evansi isolate
matched with the amino acid sequence of the AAL15903.1
VSG gene product from the T. evansi clone ShTat1.3, and
another peptide matched with the T. evansi AAK49461.1
VSG gene product. VSGs AAL15903.1 and AAK49461.1 have
theoretical isoelectric points of 7.51 and 6.59, respectively,
which are similar to the experimental isoelectric points
(7.4 and 6.9) obtained for the soluble VSG forms from
the TeAp-Mantecal01 T. evansi isolate. In addition, the
last 38 amino acids of the VSG AAL15903.1 gene prod-
uct were identical to the C-terminal amino acid sequence
from a VSG of the T. evansi YNB isolate (VSG YNBC2),
which was originally isolated in 1987 from a naturally
infected buffalo in the Yunnan province, China (Jia et al.,
2011). Although VSG YNBC2 does not have any poten-
tial N-glycosylation sites (Jia et al., 2011), the soluble VSG
forms isolated from the TeAp-Mantecal01 T. evansi isolate
were identified as glycoproteins in this study. Therefore,
the VSGs from the TeAp-Mantecal01 T. evansi isolate also
appear to be a homologous recombination product of the
VSG AAL15903.1, the VSG AAK49461.1 and the VSG YNBC2
genes.

Rabbit polyclonal antibodies directed against the VSG
soluble form of the TEVA1 isolate were capable of recog-
nizing all of the soluble VSG forms. The rabbit polyclonal
antibodies were capable of recognizing either the CRD, an
antigenic component common to all VSG soluble forms,
or some conformational epitopes of the various VSG vari-
ants. In contrast, polyclonal antibodies produced in mice
ascitic fluid against the soluble VSG forms of the TEVA1 iso-
late recognized only the soluble VSG forms of the TEVA1
and the TeGu-N/D1 isolates. Thus, the polyclonal anti-
bodies produced in mice ascitic fluid did not recognize
the CRD component of all soluble VSG forms of the dif-
ferent trypanosome isolates. In T. brucei,  the S. aureus
V8 protease cleaves some soluble VSG variants into an
N-terminal domain and a C-terminal domain contain-
ing 350–400 residues and 50–100 residues, respectively
(Freymann et al., 1984). Similarly, the purified soluble VSGs
presented in this study were digested by the S. aureus V8
protease into N-terminal and C-terminal fragments. The
proteolytic fragments obtained after digestion of the sol-

uble VSGs of the TEVA1 and TeGu-N/D1 isolates with the S.
aureus V8 protease were also recognized by the polyclonal
antibodies produced in mice ascitic fluid against the soluble
VSG forms of the TEVA1 isolate. However, the S. aureus V8
itology 207 (2015) 17–33

protease-digested fragments of the other five purified solu-
ble VSGs were not well-recognized when these antibodies
were employed. Thus, the soluble VSGs from the TEVA1 and
TeGu-N/D1 isolates appeared to be more similar to each
other than to the purified proteins of the other isolates.
Our results also showed low recognition of the individual
V8 proteolytic fragments by sera from bovines naturally
infected with T. vivax. Thus the cross-reacting epitopes that
were recognized in the purified soluble VSGs appeared not
to be linear but structural or conformational. Reactivity
of the fragments completely disappeared when the higher
proteolytic fragments of the soluble VSGs, which are asso-
ciated with the N-terminal domain of the proteins, were
cleaved. Sengupta et al. (2012) expressed a recombinant
truncated protein corresponding to the N-terminal domain
of the T. evansi RoTat 1.2 VSG. This protein remained
reactive with all combinations of sera from buffalo, dog,
lion and leopard infected with T. evansi.  Similar antibody
reactions by ELISA and CATT were observed for animals
immunized with either the whole parasite lysate or the
truncated N-terminal portion of the RoTat 1.2 VSG. A plau-
sible explanation is that all T. evansi strains that infected
the animals from which the sera were tested, expressed the
RoTat 1.2 VSG, as seen by Verloo et al. (2001) with a collec-
tion of T. evansi populations from South America, Asia and
Africa that were isolated from various host species. Alter-
natively, another reasonable explanation is that the VSG
N-terminal domain contains an important cross-reacting
epitope. Van Nieuwenhove et al. (2012) searched for mimo-
topes with diagnostic potential for T. brucei gambiense VSG
LiTat 1.3 and VSG LiTat 1.5. They identified a sequence in
the N-terminal region of these proteins that appears to
be responsible for epitope formation. More recently, Van
Nieuwenhove et al. (2013) tested and compared a syn-
thetic biotinylated peptide corresponding to amino acids
268–281 of the VSG LiTat 1.5 (peptide 1.5/268–281), and
native VSGs LiTat 1.3 and LiTat 1.5 in an indirect ELISA with
102 sera from patients with human African trypanosomosis
and 102 endemic human African trypanosomosis-negative
controls. They concluded that the biotinylated peptide
1.5/268–281 may  replace native VSGs in serodiagnostic
tests. However, the diagnostic accuracy obtained was lower
than that acquired for the full-length native VSG LiTat 1.3
and VSG LiTat 1.5. Similarly to the RoTat 1.2 VSG, VSG LiTat
1.3 and VSG LiTat 1.5 appear to have reactive epitopes in
the hypervariable N-terminal domain of the protein.

All seven trypanosome isolates utilized in this study
were previously identified as T. evansi using both Try-
panozoon primers and specific primers for T. evansi.
However, Perrone et al. (2009) compared these Try-
panosoma sp. isolates using the RAPD technique. They
found that TEVA1 and TeGu-N/D1 had a remarkable 96.7%
similarity and were genetically polymorphic when com-
pared to the remaining T. evansi isolates, with similarity
coefficients of between 57.9% and 68.4%. Therefore, they
proposed that the TEVA1 and TeGu-N/D1 isolates belong
to a morphologically indistinguishable species within the

subgenus Trypanozoon, such as T. equiperdum, which has
not been reported in Venezuela before, and indicated that
the rest of the isolates corresponded to T. evansi.  However,
Masiga et al. (2006) proposed that T. evansi is a polyphyletic

http://web.expasy.org/compute_pi/
http://tritrypdb.org/tritrypdb/
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pecies. By analyzing population genetics of T. evansi using
mplified restriction fragment length polymorphism, they
uggested that there were two independent origins of T.
vansi from T. brucei,  and classified the T. evansi isolates
nto two genetically quite different types, type A and type
. Type A spread to its current worldwide distribution,
hereas type B remained more local to East Africa. Hence,

he polyphyleticity of T. evansi may  also explain the genetic
eterogeneity observed by Perrone et al. (2009) when
hese trypanosome isolates were compared by RAPDs.
hese alternative interpretations have generated contro-
ersy regarding the correct definition of the species to
hich each of the trypanosome isolates belong. It would

e interesting to characterize all seven of the Venezuelan
rypanosome isolates used in this study by performing PCR
nalysis, using: (i) primers derived from the sequence of
he maxicircle kDNA of T. brucei encoding the NADH dehy-
rogenase subunit 5 (nad5) gene (Li et al., 2007); (ii) T.
vansi type B specific primers EVAB1 and EVAB2, which
ere designed from the minicircle sequence (Njiru et al.,

006), and (iii) primers targeting the inter-specific length
ariation of the internal transcribed spacer (ITS) regions of
ibosomal genes, which have been reported to differ among
rypanosome species (Cox et al., 2005).

The whole genome sequencing of T. evansi is still
ngoing and data for this organism is not completely avail-
ble yet (https://www.sanger.ac.uk/resources/downloads/
rotozoa/trypanosoma-evansi.html). However, our under-
tanding of how antigenic diversity is organized has
een greatly improved by the T. brucei reference genome
equence (Berriman et al., 2005). Recently, Jackson et al.
2012) compared the genome of T. brucei with T. congolense
nd T. vivax, and revealed how the variant antigen reper-
oire has evolved and how it might affect contemporary
ntigenic diversity. They reconstructed VSG diversification
howing that T. congolense uses variant antigens derived
rom multiple ancestral VSG lineages, whereas in T. brucei
SG have recent origins and ancestral gene lineages have
een repeatedly co-opted to novel functions. Using phylo-
enetic incompatibility as a metric for genetic exchange,
ackson et al. (2012) showed that the frequency of recom-
ination was comparable between T. congolense and T.
rucei but was much lower in T. vivax. Moreover, Jackson
t al. (2012) also showed that VSG structural diversity
as greater in T. vivax than in T. brucei and T. congolense.

n this study, immunological analysis showed that sera
rom T. vivax-positive bovines recognize the soluble forms
f the predominant VSGs expressed by seven different
enezuelan isolates of trypanosome species during the
arly infection stages. Some of the T. vivax-infected bovine
era recognized all purified soluble VSG variants, while
era from other infected animals recognized only a selec-
ion of the isolated soluble VSGs. Interestingly, despite the
uge repertoire of VSG genes existing on salivarian try-
anosome genomes and their hypervariability, our findings
learly revealed that VSGs are antigens that contain com-
on  epitopes which are recognized by sera from animals
nfected with either T. evansi or T. vivax. Moreover, anti-
SG antibodies appeared to behave as markers of infection

or non-tsetse transmitted trypanosomes due to the cross-
eactivity exhibited by their VSGs. Notably, the soluble
itology 207 (2015) 17–33 31

VSG of the TeGu-N/D1 isolate was the best cross-reacting
antigen of all the purified soluble variants, recognizing
93.38% of the bovine sera collected from a trypanosomosis-
endemic area of Venezuela. Thus this VSG may  be an
important candidate for use in a diagnostic test. In spite of
all of these results, only about 30% of the sera were capable
of recognizing all seven purified VSGs. Therefore, we  sug-
gest the use of a combination of VSGs as diagnostic reagents
for animal trypanosomosis, instead of a single VSG.

5. Conclusions

We  purified the soluble forms of the predominant VSG
variants expressed by seven Venezuelan isolates of animal
trypanosomes originally obtained from naturally infected
horses, donkeys and a capybara. The biochemical charac-
terization and immunological evaluation of the purified
proteins revealed that each of these variants corresponded
to different VSG molecules. Interestingly, all purified VSGs
showed cross-reactivity with T. vivax. Despite the huge
repertoire of VSG genes on these trypanosome genomes
and their variability, our results demonstrate the poten-
tial use of VSG variants, either singly or in combination, for
the diagnosis of non-tsetse transmitted animal trypanoso-
mosis.
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