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Abstract

An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and

noncommunicable diseases and the dual burden of over- and undernutrition.Of particular practical concern are both 1) the need for

a better understanding of the bidirectional relations between nutritional status and the development and function of the immune

and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of

nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research

Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include

researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at

scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working

groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions

between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of

nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and

chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on

biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. EachWGwas tasked

with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This

review consists of a summary of the INSPIRE workshop and the WG deliberations. J Nutr 2015;145:1039S–108S.

Keywords: nutrition biomarkers, inflammation and nutrition, immune function and nutrients,

BOND and inflammation/infection, assessment of micronutrient biomarkers

PART I: EXECUTIVE SUMMARY OF THE

INSPIRE PROJECT

A. Introduction

The recent publication of the 2010 Global Burden of Disease
(GBD)17 analyses (1) and the launch of the new series on

maternal and child nutrition (2) highlight the current trends in
global health, particularly as they affect the ‘‘1000 day’’ period
of pregnancy through an infant�s first 2 y of life. As itemized in
Text Box 1, the following is apparent:
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d Great strides have been made in reducing the impact of
undernutrition on child health, but stunting and under-
nutrition remain major targets for the global health
community.

d An alarming trend has emerged in the global prevalence of
overweight and obesity (10) across the life course.

d This trend has extended into low-/middle-income coun-
tries (LMICs), historically the focus of efforts to address
undernutrition.

d The prevalence of noncommunicable diseases (NCDs),
cardiovascular diseases (CVDs), cancers, chronic respira-
tory diseases, and diabetes is increasing globally and
prominently in LMICs.

d Communicable infectious diseases (CIDs), including HIV,
malaria, tuberculosis, and diarrheal disease, remain daunt-
ing public health concerns, again hitting LMICs hardest.

d In most settings, a collision is occurring of CIDs, NCDs,
food insecurity, and malnutrition within the same popu-
lation and, in many settings, in the same individuals
[malnutrition = over- and/or undernutrition, reflecting an
imbalance of total energy, macronutrients (protein, fat,
carbohydrate), vitamins, and/or minerals].

This collision, including the dual burden of over- and under-
nutrition, is just beginning to be addressed in any meaningful
manner (11-14). All of these trends have significant implications
both in terms of their impact on the population and the health
systems designed to combat them. How to assess this complex
scenario is one of the great challenges confronting the global health
community.

From a biological perspective, 2 common threads run through
all of these problems: the importance of nutrition and the role of
inflammation. For any of these global health concerns, a strong
nutrition component exists both in terms of the role of nutrition
in susceptibility to and prevention and treatment of the disease,
as well as an outcome of the condition, i.e., the impact of each of
these on nutritional endpoints (intake, status). Inflammation is
also recognized as a common feature of both CIDs and NCDs
(15, 16). Moreover, we have learned that nutrition and inflam-
mation also share a bidirectional relation such that each affects
the other in ways that we are just beginning to appreciate (17).
For the purpose of this review (see Supplemental Figure 1 for a
table of contents), important definitions and terminologies are
provided in Text Box 2.

Our ability to delineate a clear role for nutrition in any
disease is complicated by the impact of inflammation. This
effect can occur as a result of the role of a given nutrient
biomarker as an ‘‘acute phase protein’’ rising or falling in
response to inflammation, or as a result of a direct impact of
inflammation on nutrient absorption or homeostasis. Our
understanding of the biology of any of these conditions, CIDs
or NCDs, and the role of either nutrition or inflammation,
demands a better appreciation of these complex interactions.
Once understood, the challenge then becomes the determination
of effective strategies to account for them for both individuals
and populations.

Of particular concern to those attempting to determine the
nature of the nutrition and health relation is the fact that both
acute and chronic inflammation may have a direct impact on the
selection, use, and interpretation of the most commonly used
biomarkers of nutrient status, function, or effect. This has
resulted in attempts to adjudicate this impact via approaches to
account for the influence of inflammation (25). However, the
complexity of this interaction continues to pose a dilemma for
clinicians trying to determine the nutritional needs of their
patients as well as for those planning or evaluating programs to
ameliorate malnutrition at a population level. This conundrum
has become a prominent driver of efforts to discover, develop,
and implement new biomarkers of nutrition, including the
efforts of such leading technical agencies as the CDC and the
WHO charged with providing advice to those conducting
surveys at regional or national levels (26).

B. Birth of INSPIRE

The challenges outlined above have also become obstacles in
global policy to address specific conditions. A prominent example
is the situation arising from concerns about the safety and
effectiveness of interventions to prevent and treat iron deficiency
(ID) in malaria-endemic areas (27). Historical concerns about
iron in the context of infection were heightened in response to a
study (28) reporting that universal iron supplementation during
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the original work is properly cited.
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nervous system; SSC, Scientific Steering Committee; sTfR, soluble trans-
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working group; ZnD, zinc deficiency; ZPP, zinc protoporphyrin; 1,25(OH)2D,

1,25-dihydroxyvitamin D; 25(OH)D, 25-hydroxyvitamin D.
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Text Box 2 Definitions and terminology
Acute phase response (APR):
d An innate body defense that triggers a sequence of physiologic changes in response to a myriad of stressors, including
microbial invasion, tissue injury, immunologic reactions, and inflammatory processes (18–20).

d Begins when activated macrophages, primed by IFN- g, release a complex network of cytokines such as TNF-a, IL-1, and IL-
6. Cytokines then stimulate hepatocytes in the liver to produce the acute phase proteins (see Working Group 1) (21–23).

Acute phase proteins:
d More than 200 plasma proteins are modulated by the APR (18).
d Functions include anti-proteinase activity, coagulation properties, transport functions, immune response modulation, and/or
miscellaneous enzymatic activity to restore the delicate homeostatic balance disturbed by trauma or infection

d Classification:
o positive or negative, reflecting their respective increase or decrease in response to the APR
o early, intermediate, or late, reflecting differential time course and differential magnitude of change in response to the APR
o type 1, stimulated by TNF and/or IL-1, or type 2, stimulated by IL-6
Acute inflammation:
d A physiologic response to infection or tissue injury that is usually self-limiting and resolves rapidly, allowing the body to
remain healthy and maintain homeostasis.

Chronic inflammation:
d Inflammatory responses that fail to regulate themselves become chronic and contribute to the continuation of the ‘‘disease’’
condition in the body; conditions of chronic inflammation include NCDs (cancer, CVD, diabetes, obesity, autoimmune diseases).

Clinical inflammation:
d Based on whether the individual has clear symptoms of the inciting cause of inflammation (e.g., clinical disease or trauma),
for example, fever. It can be either acute (e.g., active malaria) or chronic (e.g., latent infection with tuberculosis).

Subclinical inflammation:
d Has 2 phases and is characterized as follows:
o initial phase: there is a short (24–48 h) incubation period during which the pathogen canmultiply or invade tissues; this initial
phase may or may not be followed by clinical symptoms

o second phase: occurs during convalescence after an acute illness
d Inflammation may be covert if the infection is minor or the body�s immunity is particularly effective in preventing the disease
and able to isolate the cause of the infection, preventing clinical inflammation.

In both phases, subclinical inflammation may only be detected biochemically (24). The biochemical changes in inflammatory
biomarkers during subclinical inflammation strongly relate to alterations in many nutrient biomarkers. Hence, detecting the presence
of subclinical inflammation using inflammatory biomarkers in apparently healthy people is important in population studies.

Text Box 1 Trends highlighted in the GBD 2010 (1)
d Although the proportion of overall disease burden attributable to childhood underweight has more than halved between
1990 and 2010, it remains the eighth risk factor worldwide.

d High BMI has increased globally to become the sixth greatest risk factor worldwide.
d Among children ,5 y old, childhood underweight was still the leading risk factor worldwide in 2010, followed by
nonexclusive or discontinued breastfeeding and household air pollution from solid fuels.

d High blood pressure, high BMI, and high fasting blood glucose have all increased significantly in terms of their impact on
global health between the 1990 and 2010 GBD analyses.

d Deaths fromNCDs increased by;8million between 1990 and 2010, accounting for 2 of every 3 deaths (34.5 million) worldwide
in 2010. Of these, 8 million people died of cancer (38%more than in 1990), 12.9 million died of ischemic heart disease and stroke
collectively [1 in 4worldwide comparedwith 1 in 5 in 1990; 1.3million deaths were due to diabetes, twice asmany as in 1990 (1)].

Additional global health data
d More than 35 million people now live with HIV/AIDS; 3.3 million of them are under the age of 15 (3).
d In 2012, 2.3 million people were newly infected with HIV; 260,000 were under the age of 15.
d In 2012, 1.6 million people died of AIDS; 210,000 of them were under the age of 15 (4).
d In 2012, malaria caused an estimated 627,000 deaths (with an uncertainty range of 473,000–789,000), mostly among
African children (5).

d In 2012, there were ;207 million cases of malaria with;80% of cases limited to 17 countries, most prominently in Africa.
d The tuberculosis death rate decreased by 45% between 1990 and 2012 (6). Nevertheless, in 2012 there were ;8.6 million
new cases of tuberculosis and 1.3 million deaths (7).

d More than 95% of tuberculosis deaths occur in LMICs, and it is among the top 3 causes of death for women aged 15 to 44 (7).
d Diarrhea kills 2195 children every day—more than AIDS, malaria, and measles combined (8).
d Diarrheal diseases account for 1 in 10 child deaths worldwide (;760,000/y), making diarrhea the second leading cause of
death among children under the age of 5 (9).

INSPIRE Project 1041S

 at LIV
E

R
P

O
O

L S
C

H
O

O
L O

F
 T

R
O

P
IC

A
L M

E
D

IC
IN

E
 on M

ay 26, 2015
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


early childhood increased the risk of severe morbidity and
mortality from malaria and other infections, particularly when
supplements were given to individuals who were not iron-
deficient. In response to these concerns, theWHO/CDC amended
existing guidance with regard to use of iron supplements to
include the caveat that, in areas of endemic malaria, iron status
should be assessed before interventions (26). Aside from obvious
challenges of invasive blood sampling and capacity needs for such
a large undertaking, the predominant method for assessing iron
nutrition, serum ferritin measurement, is affected by the presence
of inflammation.

In response to the specific issues around the iron and malaria
question, a collaboration was initiated between the Eunice
Kennedy Shriver National Institute of Child Health and Human
Development (NICHD) of the US NIH and the Bill and Melinda
Gates Foundation to address the following objectives: 1)
identification and clarification of biological mechanisms affect-
ing iron metabolism (in both host and infectious organisms)
in malaria-endemic areas and 2) development of biomarkers/
indicators to assess iron status in women, infants, and young
children, including biomarkers of exposure, status, and function
that can be used in the context of inflammation/infection.

In addition, the NICHD has also partnered with the Bill and
Melinda Gates Foundation and others to initiate the Biomarkers of
Nutrition for Development (BOND) Program (29). The goal of the
BOND program is to service the food and nutrition community by
providing evidence-based advice about the best choice of bio-
markers for specific uses and to address key gaps in our knowledge
about how best to assess the role of nutrition in health. Phase I of
the BOND program included an evaluation of 6 nutrients— zinc,
iron, folic acid, vitamin B-12, vitamin A, and iodine—chosen for
their public health importance and because they represent the range
of issues confronting those who are addressing the role of nutrition
in research, clinical care, or program development/evaluation.

Consequent to the deliberations of the expert panels consti-
tuted under both projects, the mounting evidence outlined
above, and input from the larger community, it became clear
that the issue of inflammation and nutrient assessment was a
cross-cutting critical gap that needed to be addressed. In
response to this challenge, the ‘‘Inflammation and Nutritional
Science for Programs/Policies and Interpretation of Research
Evidence (INSPIRE)’’ Project was initiated.

C. Project description

The overarching goal of the INSPIRE project is to review the
evidence with regard to the relations between nutrition, immune
function, and the inflammatory response. The intent is to make that
information available for the development of principles and
guidance that could be universally applied to the discovery,
development, and use of current and new biomarkers. The guiding
principles are intended to inform and support the efforts of

individuals/organizations with an interest in the field, irrespective of
their level of expertise or nature of their activities. Specifically, the
INSPIRE project was designed to do the following:

d Review what is known about the impact of inflammation
(acute or chronic) on selection, use, and interpretation of
biomarkers specifically and nutrition more broadly, in-
cluding basic biology to explain the nature of nutrition/
inflammation interactions, implications for the use and
interpretation of biomarkers of nutritional status, func-
tion, and effect including monitoring and evaluation of
interventions, and implications for biomarker discovery
and development.

d Translate the extant knowledge: develop a document to be
published and posted on the BONDwebsite (30) that contains
a set of principles to inform and guide the community with
regard to how to account for the impact of inflammation on
selection, use, and interpretation of biomarker data.

d Develop a research agenda based on the outcomes of 1 and
2 above to address current gaps in our understanding of
the nutrition/inflammation relations.

I. Structure. The INSPIRE organizational structure consists of the
NICHD Secretariat and a Scientific Steering Committee (SSC)
(Supplemental Table 1). The SSC was established to provide
scientific oversight and guidance for theworking groups (WGs) and
to help develop the products of INSPIRE. To achieve the project
goals, the SSC identified 4 overarching themes, and 5 WGs were
formed to address elements of these themes (Text Box 3).

II. Process. The WGs consisted of 4 to 6 members and a chair,
chosen on the basis of input from the SSC. WG members are listed
in Supplemental Table 1. These WGs met via teleconference 2 to 3
times to further refine the suggested outline and to begin the process
of drafting the WG reports. A content-focused INSPIRE workshop
was convened in Bethesda, MD, 28–30 November 2012. This
provided WG members with the opportunity to invite others in
areas identified as relevant to the WG deliberations as well as
experts to provide additional insights about specific issues in need
of in-depth coverage. To address overlapping and cross-cutting
issues, the WGs were encouraged to closely collaborate in order to
avoid redundancy and to maintain a logical train of thought across
the WGs. The objectives of the workshop were as follows: 1) to
present preliminary results ofWG deliberations, 2) to discuss cross-
cutting issues to avoid overlap, and 3) to exchange ideas and obtain
experts� perspectives on specific topics identified by the WG.

Deliberations from the INSPIRE workshop supported the
process of developing the finalWG summary reports. Discussions
reinforced the notion of this effort as a progression of thought from
an understanding of the basic biology of inflammation/infection
and nutrition and culminating in suggestions about how best to
account for these interactions in making clinical and programmatic

Text Box 3 INSPIRE WG themes

WG theme 1: overview of the role of nutrition in immune function and the inflammatory response
WG theme 2: specific relations between nutrients, immune function, and inflammatory response—impact of nutrition on the
immune response

WG theme 3: specific relations between nutrients, immune function, and inflammatory response—impact of the immune
response on nutrition

WG theme 4: translating evidence to practice—approaches to addressing the nutrition and inflammation relations
WG theme 5: methodologies and new technologies including the potential use of systems biology and new ‘‘-omics’’
technologies for discovery of new biomarkers
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decisions based on the interpretation of extant data. Finally,
attention was paid to the identification of new technologies and
science that might be applied to further our understanding of these
relations.

These proceedings include a brief summary of the INSPIRE
workshop, manuscripts provided by invited speakers, and the
final WG reports. The summaries of deliberations of WGs 1–4
are presented in detail below. Highlights of WG 5 are found in
the text below after the description of that section of the
workshop.

III. Summary of the INSPIRE workshop. The INSPIRE
workshop opened with an overview provided by the SSC
co-chairs, Drs. Catharine Ross and Simin Meydani, and the
NICHD Secretariat, Dr. Daniel Raiten. The first session included
presentations by Stephen Hursting who reviewed the current
knowledge with regard to the relation of inflammation and
chronic disease (31). This was followed by a review of immu-
nology, mucosal immunobiology, innate immunity, and response
to pathogens provided by Dr. Kelsall�s review which included a
coverage of key elements of the immune response including the
biology and factors affecting the induction of IgA (32), an
introduction to various aspects of the role of the gut microbiota
in immune function (33, 34), and a brief discussion of inflam-
matory bowel disease as an exemplar of how these factors may
interact in a clinically relevant manner (35). See Supplemental
Figure 2 for the complete meeting agenda.

Each session that followed focused on the INSPIRE themes.
The theme 1 session began with an overview of ‘‘the role of
nutrition in immune function and the inflammatory response’’
by Dr. Harry Dawson who emphasized several key elements to
consider including the following: 1) contributory factors to the
inability to translate research findings into clinical practice, 2)
the importance of the choice or choices of species used to model
human responses, 3) challenges associated with defining nutrient
status in the context of the APR and its impact on selection and
interpretation of biomarkers of nutrient status, and 4) recogni-
tion that the effect of nutrition on specific immune response
pathways is related to many factors, including the severity of
deficiency, presence of other deficiencies, presence of other
infections, age, genetics, etc. Dr. Kate Claycombe followed with
an overview of the role of nutrition in the genetics and epigenetics
of inflammation (36).

The next set of content sessions focused on the bidirectional
relations between nutrition and inflammation. Dr. Zulfiqar
Bhutta began the discussion with an overview of nutrition,
immune function, inflammation, and infant health from a
global perspective (37) followed by an overview of the current
understanding of the relations between nutrition, the micro-
biome, gastrointestinal immunity, and inflammation (38). In
addition to providing coverage of the extant knowledge
regarding these relationships, Dr. Duffy (38) highlighted some
seminal questions for future attention including 1) can func-
tional ‘‘meta-omics’’ approaches lead to informed understand-
ing of microbial roles in digestion and metabolism, 2) will
understanding how foods shape the microbiota lead to healthier
lifestyles across generations, and, 3) what roles will the
biological action of small molecules produced by probiotic
strains play in health and disease?

The following session addressed the converse of the relation,
i.e., the impact of inflammation on nutrition. The opening
presentation was provided by Dr. Patrick van Rheenen, who
covered the clinical utility of currently available biomarkers
of gut wall integrity. He provided insights about the general

relations between malnutrition, gastrointestinal integrity, and
inflammation. This was followed by a discussion of the utility of
3 specific biomarkers in that context: measurement of citrulline
as a reflection of intestinal integrity (39, 40); intestinal FA
binding protein (I-FABP) (41), also a marker of gastrointestinal
integrity; and fecal calprotectin, a potential early signal for
intestinal inflammation (42).

Clinical implications of the relations between nutrition and
metabolic correlates of inflammation were the subjects of the
presentation by Dr. Liza Makowski (43). Dr. Makowski and
colleagues explored the interactions between oxidative stress,
inflammation, and such clinical outcomes as obesity and
diabetes. Their article is a summary of their work indicating
that certain obesogenic dietary patterns drive a tissue-specific
increase in oxidative damage that may affect functionality. Their
animal models offer potential mechanisms by which oxidative
stress via activation of inflammatory responses can affect insulin
signaling, glucose intolerance, and diabetes (43).

As outlined above, the goals of the INSPIRE initiative are to
present the extant knowledge with regard to what we know
about the relations between nutrition, immune function, and
inflammation but also to evaluate best ways to translate that
information into practical application. The session on transla-
tion included 2 presentations that addressed the latter.

In the field of clinical nutrition, much attention has been
generated by the observations linking inflammation to perfor-
mance and the interpretation of available biomarkers used to
assess of specific nutrients (25). One of the leaders in the effort to
address this conundrum is Dr. David Thurnham who provided
an overview of the state of the science and strategies for
addressing this complex dilemma in nutrition (25). The second
talk in this session was a discussion of mathematical/statistical
approaches to addressing inflammation/nutrition provided by
Dr. Ravi Varadhan.

One of the highlights of all of the presentations was a
discussion of the exciting new developments in approaches to
studying these complex interactions. The final session of the
workshop included presentations that highlighted some of these
new innovative approaches. Beginning with an overview by Ben
van Ommen of how best to apply systems biology to the question
of nutrition and inflammation, the session concluded with
coverage of the current understanding of proteome dynamics
presented by Dr. Mark Hellerstein. These presentations and the
subsequent deliberations were seminal in stimulating discussions
about the application of these new technologies to the study of
nutrition and inflammation and to reinforce the notion that the
evaluation of the role of nutrition must be conducted in a more
physiologic context that moves away from the ‘‘siloed’’ single-
nutrient approach that has predominated the field to date. The
deliberations of the last WG included listing a series of core
questions that might be addressed by using a ‘‘systems biology’’
approach outlined in Text Box 4.

To move this agenda forward, this WG described a 2-step
process that includes the following:

d Research phase focusing on the development of the systems
‘‘model’’ that can utilize existing and emerging approaches
including various ‘‘-omics’’ approaches (proteomics, genomics,
metabolomics) and computational systems approaches [the
WG highlighted the need to explore relations at various levels
of complexity and integration (e.g., intracellular, local tissues,
and systemic, including signaling processes] and can develop a
complex bioinformatics infrastructure. The essential elements
of this infrastructure consist of 3 essential components:
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o a knowledge database storing the interactions and path-
ways of interest, with an ability to apply bioinformatics
and visualizing tools for analyzing data at the network
level,

o specific metadata attached to each analyzed sample
describing the subject and his or her health status for
investigating large human data sets, and

o a way of integrating all relevant data sets for subsequent
meta-analyses.

d Translation phase:
o Move the result of research to application to support
nutritional practice and health care. The overarching goal
is the delivery of a relatively limited set of quantifiable
variables in accessible body fluids that are either key
regulators of the mechanisms involved or biomarkers of the
studied processes.

o Ideally, the novelty and advantage of the systems approach
are that it takes into consideration the complex context
within which nutrition and health outcomes must be
evaluated and treated (i.e., it includes consideration of all
relevant aspects of the individual including nutrient status,
health status, environmental factors, etc.).

o Such models and diagnostics subsequently need to be
applied in practical health care and dietary advice settings,
both in developed and developing countries.

The challenge will be to develop and implement infrastruc-
tures and on-site facilities, including point-of-care applications
that allow the use of all relevant diagnostics and biomarkers for
the translation of the systems research performed in a high-tech
laboratory setting and ultimately a field operation setting. In
addition to the requisite diagnostic tools that evolve from the
research, it will be critical to have local infrastructure, including
essential technical capacity and resources to support implemen-
tation at both point-of-care and eventually population levels to
support the creation and implementation and evaluation of
evidence-based public health programs.

PART II: WG REPORT SUMMARIES

The following are reports summarizing the deliberations of the
4 WGs. The INSPIRE Secretariat drafted these reports on the
basis of the deliberations of each of the WGs, with the goal of
presenting a progression of thought beginning with an overview

of the basic biology describing the relations between nutrition,
immune function, and inflammation (WG 1), followed by over-
views of the bidirectional nature of these relations [i.e., the impact of
nutrition on immune function/inflammation (WG2) and the impact
of inflammation, both acute and chronic, on nutrition (WG 3)],
and concluding with a focus on the translation of the extant
knowledge to develop some potential approaches to addressing
these relations specifically as they pertain to clinical/population-
based assessment (WG 4). Accompanying each summary is a list
of research priorities identified by the WGs. The INSPIRE
organizers and Secretariat gratefully acknowledge the efforts
and input of the WGs in the development of these reports.

A. WG theme 1: overview of immune function,
inflammation, role of nutrition, and considerations for
further study

Objective: The objective was to review the basic biology that
characterizes the relations between nutrition, immune function,
and inflammation and the relative strengths and weaknesses of
current approaches to research. WG 1 summary and conclusions
are provided in Text Box 5.

I. Introduction. Much is known about the intimate and
inextricable role of nutrition in immunity and/or inflammation
(44); however, few studies describe nutrient-mediated immuno-
modulation in humans. This review contains an overview of
several key elements of the nutrition-inflammation nexus
including the following: an examination of the roles of specific
micronutrients and their interactions in dependent pathways,
the potential effects of genetics and epigenetics in determining
the effects of nutrition on immunity and inflammation, and
coalescing all of this knowledge into a description of the nature
and impact of the APR. This overview is intended to provide
context for the subsequent discussions by the other WGs
involved in the INSPIRE review and concludes with a summary
of suggested research priorities. The case study nutrients covered
in this review are vitamin A, iron, zinc, vitamin D, folic acid, and
selenium and were chosen on the basis of their public health
importance and because they provide the most relevant evidence
with regard to their known effect on immunity.

II. Innate immune and barrier function. Innate immunity,
also referred to as nonspecific immunity, is the first line of
defense against invading pathogens and consists of anatomic
barriers and humoral and cellular components (Text Box 6).

Text Box 4 Core questions that ‘‘systems biology’’ could address
d How can ‘‘systems biology’’ be used to better understand the role of single and multiple micronutrients in such outcomes as
growth, neurological function, or immunocompetence?

d How can a better understanding of these roles be exploited to identify sensitive and specific biomarkers of nutrient exposure,
status, and function and the effect of nutritional interventions to address these functional domains?

d Would knowledge gained from this improved understanding have equal value/utility for clinical and population-based
applications?

d Within a given biological system, what biomarkers might be identified and exploited to assess the function role and effect of
micronutrient insufficiency/excess?

d What is the mechanism by which single- or multiple-micronutrient deficiency/excess affects body function, metabolism, and
particularly the innate or adaptive immune responses?

d Why do some micronutrients (either singly or in combination) have beneficial effects whereas others do not?
d With regard to the immune system/nutrition interface, how can the role of micronutrients in immune systems be exploited to
explain the impact of inflammation and the immune response on nutrition and vice versa?

d What is the appropriate level of nutrient supplementation to support healthy immune and inflammatory responses?
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Tables 1 and 2 summarize data from animal and human
models, respectively, with regard to the impact of specific
nutrients on aspects of innate immunity. The key points from
animal studies include the following:

d Protein-energy malnutrition (PEM) has its largest effect in
reducing barrier function, both epithelial (47–52) and
physiologic (53–55), followed by the function of macro-
phages (56–59), neutrophils (60–65), and to a lesser extent,
NK cell activity (66).

d Vitamin A and zinc deficiencies have effects similar to PEM
(67–77), with the exception that NK cell (but not macro-
phage) function is reduced by VA deficiency (VAD) (78,
79). Physiologic barrier function is not markedly affected
by either vitamin A or zinc.

d Vitamin D deficiency (VDD) has modest effects on innate
immunity, with the greatest effect seen on macrophage
function (80–86).

d ID primarily affects neutrophil function with less signifi-
cant effects on macrophage bacteriocidal function (see
‘‘Potential Points of Interaction between Micronutrients
Involved in Dependent Pathways’’ below).

The key points from human studies include the following:
d PEM has the largest effect on aspects of innate immunity
than do any of the nutrients covered. PEM reduces
epithelial (87–92) and physiologic (93–97) barrier function
as well as the function of macrophages (95, 98) and
neutrophils (62, 99–101). NK cell activity is also affected
to a lesser extent (66).

Text Box 5 WG 1 summary and conclusions
d A large body of literature documents the interactions between nutrition and the immune and/or inflammatory response.
d The nexus of much of this interaction is within the constellation of immunologic/neuroendocrinologic responses to stress
referred to as the ‘‘APR.’’

d The APR has profound consequences that affect both metabolism and nutritional homeostasis and the ability to assess
nutrient status vis-á-vis concentrations of biomarkers mobilized during an APR.

d Specific immune and inflammatory pathways that are affected by single nutrients remain largely undefined, which limits the
ability to translate the evidence into clinical use.

d Factors contributing to this inability are reviewed and include the following:
o choice or choices of species used to model human responses,
o difficulty in defining human nutrient status in clinical settings due to confounding effects of the APR,
o the concurrent presence of multiple nutrient deficiencies, and
o an emerging appreciation of interactions with the microbiome.
d This review includes information on the role of specific case study nutrients (vitamin A, vitamin D, zinc, iron, selenium, folic
acid) in dependent pathways.

Conclusions: Some useful consensus exists between animal and humanmodels as well as human-specific pathways. Suggestions
are offered for a focused research agenda that includes an expanded exploration of the effects of genetics and epigenetics in
these relations.

Text Box 6 Components of the innate immune system
d Anatomic barriers include the following:
o skin
o mouth and nose
o gastrointestinal tract
o respiratory tract
o eyes
d Inflammation: stimulated by infection/injury involving the release of chemical mediators to initiate the APR, etc.
d Physiologic barriers include the following:
o temperature
o pH
o oxygen tension
o production of proteins such as lysozyme, complement and antimicrobial components of the APR such as C-reactive protein
(CRP), serum amyloid A (SAA), a1-acid glycoprotein (AGP), cathelicidins, and defensins

d Complement system: responses that support both innate and adaptive/cellular immunity and consists of .30 membrane-
bound and soluble plasma proteins, is activated in a cascade-like manner, and is responsible for the detection and removal of
foreign entities/pathogens or marking them for attack (45, 46)

d Cellular components of the innate immune response:
o mast cells
o phagocytes, including macrophages, neutrophils, dendritic cells
o basophils and eosinophils
o NK cells
o gd T cells
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d VAD is primarily manifested through compromised epi-
thelial barrier function (67, 102–105) with a minimal effect
on NK cell activity (105–107).

d Zinc deficiency (ZnD) primarily compromises epithelial
barrier (108), macrophage (95), and neutrophil function
(109–111).

d VDD in humans has a modest effect on innate immunity,
with the exception of macrophage function and production
of cathelicidins and defensins (112).

d ID primarily affects neutrophil function.
As a result of increased interest in the activities of vitamin D

beyond the traditional focus on bone/calcium, an important new
understanding of vitamin D�s role in immune function has
emerged. Liu et al. (113) described a vitamin D–dependent
pathogen-sensing axis in human macrophages that highlights the
importance of vitamin D in innate immunity. They also described
a potential disparity in this response that could explain differences
in susceptibility to infections on the basis of racial/genetic
background. In essence, they described an innate immune
response involving activation of Toll-like receptors (TLRs) to
trigger direct antimicrobial activity against intracellular bacteria
that is mediated by NO in murine models but not in humans. In
this newly observed model in human macrophages, TLR activa-
tion upregulates the expression of the vitamin D receptor (VDR)
and the Vitamin D-1-hydroxylase genes, leading to induction of
the antimicrobial peptide cathelicidin and killing of intracellular
bacteria such as Mycobacterium tuberculosis. This is a primate-
specific response (114) and is greatly influenced by cytokines such
as IL-4 and IFN-g. Initially, these observations were restricted to
monocytes andmacrophages; however, recent studies showed that
cathelicidin antimicrobial peptide (CAMP) is induced by vitamin
D in keratinocytes and respiratory and bladder epithelial cells
(113). These data are derived from cell culture models. In vivo

data are emerging that support vitamin D–dependent induction of
cathelicidin in skin and peripheral blood monocytes by admin-
istration of large amounts of vitamin D to humans (115).

III. Acquired immune function: animal and human studies.

The basic characteristics of the acquired immune system are
outlined in Text Box 7.

a. NF-kB signaling and induction and maintenance of

T-regulatory cells. NF-kB function and mechanism of activa-
tion are described in Text Box 8.

i. Nutrients and NF-kB signaling. Several hundred medi-
ators of NF-kB signaling pathways have been described in the
literature (117), including almost all essential nutrients and
>100 bioactive food components. Some specific effects of
nutrients include the following:

d Vitamin A: increased NF-kB occurs during experimental
VAD in mice (118) that is normalized by all trans retinoic
acid (ATRA) administration. Mechanistic evidence for in
vitro vitamin A–inhibited basal and LPS, TNF-induced NF-
kB activation (119) includes

o retinoic acid receptor (RAR) a–mediated reduction in p65
protein (118) and

o ligand-dependent cytoplasmic sequestration of p50/p65 by
retinoid X receptor (RXR) (120).

d Vitamin D: mechanisms of vitamin D–mediated inhibition
of NF-kB signaling include:

o inhibition of v-rel avian reticuloendotheliosis viral
oncogene homolog (Rel) transcription by competitive
binding of VDR/RXR binding to the Rel promoter (121),

o induction of IkBa (122) and inhibition of IkBa degrada-
tion (123), and

o hyperactivation of NF-kB occurs in VDR knockout mice
(124).

TABLE 1 Strength of evidence: impact of micronutrient deficiencies on nonspecific or innate immunity
(animal studies)1

PEM
deficiency

Vitamin A
deficiency

Vitamin D
deficiency

Zinc
deficiency

Iron
deficiency

Folate
deficiency

Selenium
deficiency

Epithelial barrier function ++++ ++++ — +++ + + +

Physiologic barriers ++++ ++ ++ + + — +

Macrophage function ++++ ++ +++ + + + +++

Neutrophil function +++ +++ + ++ ++ ++ +++

NK cell function ++ +++ + ++ ++ ++ 2/+

NK T cell function + ++ +++ ? ? ? ?

1 PEM, protein-energy malnutrition; 2/+, mixed evidence; +, weak evidence; ++, partial evidence; +++, good evidence; ++++, strong

evidence; ?, no studies.

TABLE 2 Strength of evidence: impact of micronutrient deficiencies on nonspecific or innate immunity
(human studies)1

PEM
deficiency

Vitamin A
deficiency

Vitamin D
deficiency

Zinc
deficiency

Iron
deficiency

Folate
deficiency

Selenium
deficiency

Epithelial barrier function ++++ ++++ — +++ + ++ ?

Physiologic barriers ++++ ++ + + + — ?

Macrophage function ++++ + + + + ? ?

Neutrophil function +++ ++ + ++ +++ ++ ?

NK cell function + + + ++ — ? 2/+

NK T cell function ? + ? ? ? ? ?

1 PEM, protein-energy malnutrition; 2/+, mixed evidence; +, weak evidence; ++, partial evidence; +++, good evidence; ++++, strong

evidence; ?, no studies.
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d Zinc: it can inhibit or stimulate NF-kB signaling in vitro
depending on the cell type and stimulus used (125). The
following zinc effects have been reported:

o Hyperactivation of NF-kB occurs in zinc-deficient mice in
response to sepsis (126).

o In humans, the generation of TNF by peripheral blood
mononuclear cells (PBMCs) in response to LPS is reduced
by short-term zinc deprivation.

o Bioinformantics analysis indicated that NF-kB binding to
its cognate element is reduced by ZnD (127).

o IL2 gene expression is decreased in zinc-deficient humans
(128). Interestingly, this relation and its correction are
proposed as a potential biomarker for ZnD in a manner
analogous to some of the classic enzyme stimulation assay
for vitamins (vitamin B-6, thiamin, and riboflavin). How-
ever, due to the lack of specificity (i.e., IL-2 expression is
affected by several other nutrients), this is unlikely to
assume a significant role as a specific zinc biomarker.

d Vitamin E: inhibition of NF-kB by such antioxidants as
vitamin E has been shown to occur via multiple mecha-
nisms (129).

b. Induction and maintenance of T-regulatory cells.

T-regulatory (Treg) cells play an integral role in self-regulatory
processes through their involvement in both shutting down
immune responses after successful elimination of pathogens and
in preventing autoimmunity (130, 131). Members of the Treg
cell family are numerous, but the best-characterized are those
that express CD4, CD25, and forkhead box P3 (FoxP3). Again,
specific nutrients have been implicated in various aspects of Treg
activity.

i. Role of vitamin A in Treg activity. Mouse gut dendritic
cells generate ATRA in response to specific stimuli such as TLR2
ligands (132). This locally generated ATRA imparts gut homing
specificity to T and B cells. ATRA is also essential for the
generation of gut-homing FoxP3-expressing Treg cells (133).
The generation of ATRAwas originally thought to be restricted

Text Box 7 Acquired or adaptive immunity
d Is not inherited
d Can be active, resulting from the development of antibodies in response to an antigen, as from exposure to an infectious
disease or through vaccination, or passive, resulting from the transmission of antibodies, as frommother to fetus through the
placenta, via breastfeeding or by the injection of antiserum

d Components of the acquired immune system include Tand B lymphocytes that are derived from the same hematopoietic stem
cells in bone marrow and morphologically indistinguishable until after they are activated

Antigen-presenting cells
To distinguish between ‘‘self’’ and a foreign or deranged cell, certain cells, e.g., dendritic cells, B cells, and to a lesser extent,
macrophages, are equipped with special ‘‘costimulatory" features that are recognized by receptors on T cells
B cells
d Function in the humoral immune response
d Are the source of immunoglobulins or antibodies, the function of which is to identify and neutralize foreign objects: the 5
types of antibodies are IgA, IgD, IgE, IgG, and IgM

T cells
d T precursors (or progenitors) migrate from the bone marrow to the thymus where they are called thymocytes and where they
develop into T cells

d Cytotoxic T cells [TCs, killer T cells, or cytotoxic T lymphocyte (CTLs)] induce the death of cells that are infected with
viruses (and other pathogens) or are otherwise damaged or dysfunctional

d Helper T cells [cluster of differentiation (CD) 4+ lymphocytes] are not cytotoxic but facilitate those processes via expression
of T cell receptors (TCRs) that recognize antigens; CD4 cells require a smaller stimulus for activation than cytotoxic T cells

d The activation of a naive helper T cell causes it to release cytokines, which influence the activity of many cell types, including
the antigen-presenting cells that activated it

d Helper T cells can provide extra signals that ‘‘help" activate cytotoxic cells

Text Box 8 NF-kB function and mechanism of activation
Function
d Serves as a major transcription factor that coordinates the innate and adaptive immune response
d NF-kB binding is necessary, but not sufficient, to regulate the expression of several thousand genes including the
proinflammatory cytokines IL-1b, TNF, and IL-6 (116)

Mechanism
d NF-kB is activated upon ligation of the T cell receptor, B cell receptor, or one of the many TLRs as well as in response to
proinflammatory cytokines, mitogens, growth factors, and oxidants

d Activation of NF-kB is a multistep process involving the following:
o degradation of inhibitory subunit [most commonly nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha(IkBa)], leading to

o ‘‘activation’’ of a 2-protein complex [most commonly p50 Nuclear factor NF-kappa-B (NFKB1)/p65 rel avian
reticuloendotheliosis (RELA)].

This complex migrates to the nucleus and binds to DNA in the promoter region of genes, and initiates transcription.
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to gut dendritic cells. However, recent data indicate that other
cytokines, such as IL-3 or IL-4, stimulate such other cells as
macrophages (134), basophils (135), and stellate cells (136) to
produce ATRA, leading to the generation of FoxP3-expressing
Treg cells in tissues such as lung and liver.

The induction and maintenance of Treg cells by ATRA is
extremely complex, and >200 studies, most using mice, have been
published to date. Certain aspects of this process are species-
specific. For example, the FoxP3 protein, the master regulatory
transcription factor in determining Treg differentiation, is tran-
siently induced upon human, but not mouse, T cell activation
(137). The mouse FoxP3 gene contains 3 functional retinoic acid
response elements (RAREs), 2 in the promoter region and 1 in the
enhancer region (138). Although treatment of human T cells with
ATRA or with an RAR-a agonist induces histone acetylation at
the FoxP3 gene promoter and FoxP3 expression (139), demon-
stration of an RARE in human FoxP3 has not been reported to
date. Last, only 18% of the nearly 5000 predicted FoxP3 DNA-
binding sites are conserved between species (140).

ii. Role of vitamin D in Treg activity. The mouse and
human FOXP3 promoters also contain functional vitamin D
response elements (VDREs) (141, 142). Increased FOXP3
expression has been reported after in vitro treatment of human
andmouse T cells with 1,25-dihydroxyvitamin D [1,25(OH)2D].
The situation in vivo may be more complex, because mice with a
T cell–targeted knockdown of the VDR manifested no change in
the frequency or function of peripheral FoxP3+CD4+ T cells.
These observations suggest a dominant influence on Treg induction
by non–T cells (143). In vivo data for vitamin A– and vitamin D–
dependent induction of Tregs in humans are emerging but are
extremely difficult to establish methodologically because of the
likely need to obtain biopsied materials (144–146).

iii. Role of other nutrients in Treg activity. In addition to
vitamins A and D, other nutrients may affect the induction of
Tregs. Tregs in mice express high levels of the folate receptor
(147), and gut Treg induction depends on dietary folate (148).
The zinc finger domains of FOXP3 are required for its function,
and approximately one-half of the transcription factors that
regulate FOXP3 contain zinc. However, zinc-deficient animals
have normal numbers of Tregs (149).

c. Nutrients and the acquired immune system. As
outlined in Table 3 and documented in Supplemental Tables
2–8, studies in animal models have revealed the following:

d PEM and deficiencies of vitamin A, zinc, or iron have a
robust, albeit variable effect in reducing antigen-presenting
cell (APC) function (150–160).

d PEM and vitamin A, zinc, and iron deficiencies exert their
greatest effect on reducing CD4+ T cell function (79, 161,
162). Proliferation is often reduced, and polarization to a
particular antigen is reduced/altered (163–165).

d VAD causes reduced trafficking of T and B cells to tissues
(158, 166, 167).

d CD8+ T cell function is the least studied of the major
components of acquired immunity.

d VDD has a modest effect on cell-mediated and humoral
immunity with the greatest effect seen on APC and T cell
function (85, 168–173). In particular, NK T cell develop-
ment in mice is critically dependent on vitamin D (173).

The data from human studies, presented inTable 4, reveal the
following:

d Only PEM has evidence attesting to an effect in reducing
human APC function (174).

d PEM and vitamin A and zinc deficiencies have their largest
effect in reducing CD4+ T cell function (98). There are
suggestions of reduced proliferation for all 3 and modest
evidence of alteration in polarization for VAD and supple-
mentation (106).

d VDD has a relatively minor effect on cell-mediated and
humoral immunity in humans, with the greatest effect seen
on APC and T cell function (175, 176).

d ID primarily affects CD4+ T cell function, with a lesser
effect on B cell function and no conclusive evidence with
regard to its impact on APCs (177–181).

d Megaloblastic anemia due to folic acid deficiency has been
associated with depressed cell-mediated immunity (182).

Parenthetically, the implications of the effect of PEM, vitamin
A, zinc, and iron on CD4+ T cell counts are important in the
context of interpreting the impact of nutritional interventions in
conditions such as HIV in which CD4+ T cell counts are used as
a primary outcome. Because we appreciate that nutrient
deficiency in itself affects CD4+ T cell count, we must design
studies that can distinguish between a disease (e.g., HIV
pathogenesis or treatment) effect and the impacts of malnutri-
tion or its amelioration. For example, a study that evaluates the
impact of a single or multiple micronutrient intervention on HIV
might include an HIV-negative control to be able to distinguish
between an HIV-specific effect and the impact of ameliorating
nutritional insufficiency. This distinction has obvious biological
and programmatic/public health implications.

Among the limitations of the extant evidence is that most of
the research to date has focused on the effect of single-nutrient
deficiencies on immune response. Few studies examined the
simultaneous association of multiple nutrients, or their status,
with immune function (183, 184). The design of such studies in
humans is challenging for several reasons, including

d our relatively limited understanding of the nature of
micronutrient interactions within biological systems,

d the complexities of the health context in low- to middle-
income settings where multiple-micronutrient insufficiency
may be common but often coexists with multiple other
conditions contributing to both acute and chronic inflam-
mation, and

d low prevalence of multiple-micronutrient deficiencies in
otherwise healthy participants in developed countries;

TABLE 3 Strength of evidence: impact of micronutrient deficiencies on cell-mediated and humoral
immunity (animal studies)1

PEM
deficiency

Vitamin A
deficiency

Vitamin D
deficiency

Zinc
deficiency

Iron
deficiency

Folate
deficiency

Selenium
deficiency

Antigen-presenting cell function ++ ++ ++ ++ ++ ? ?

T cell function ++++ +++ ++ +++ ++ ++ +++

B cell function ++ +++ + +++ + ? ++

1 PEM, protein-energy malnutrition, 2/+, mixed evidence; +, weak evidence; ++, partial evidence; +++, good evidence; ++++, strong

evidence; ?, no studies.
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when they do exist in certain subgroups such as adoles-
cents, certain racial groups, or the elderly, confounders
such as age, disease, etc., further complicate experimental
design and data interpretation.

d. Potential points of interaction between micronutri-

ents involved in dependent pathways. Several points of
interaction among the various micronutrients seem likely and
are outlined in the accompanyingText Box 9. For the purpose of
this overview, the general molecular actions of 4 micronutrients
(vitamins A and D, zinc, folic acid) will be the primary focus,
including their specific points of convergence on the regulation
of 2 major regulators of inflammation: NF-kB activity and the
induction, and maintenance, of Treg cells.

IV. Role of specific micronutrients in the immune system.

Tables 1–4 summarize the extant knowledge with regard to the
role of PEM and micronutrient deficiencies in immune function
(more details are shown in Supplemental Tables 2–8). Particular
attention was devoted to studies that identified mechanisms at
the cellular or molecular level. The following is a brief summary
highlighting key aspects of these relations. Particular attention is
given to those aspects for which congruity exists between
findings from animal and human models to inform the discus-
sion of well-characterized human-specific pathways.

a. Mechanisms of vitamin A effect on the immune

system. Most of the effects of vitamin A on immune or
inflammatory responses can be explained via binding of the
vitamin A metabolite, ATRA, to 1 of 3 zinc-finger proteins
containing members of the nuclear receptor superfamily, RAR-a,
RAR-b, and RAR-g (185). These function as ligand-dependent
transcriptional regulators by binding, usually as heterodimers
to RXR-a, -b, and -g and to RARE in target genes. Apo
(unliganded) RAR can also occupy regulatory elements at their
target genes and repress their expression. Ligand-dependent
repression of gene expression by RAR can also occur. Recent
estimates, in various human cell lines, indicate that RARs are
constitutively bound to ;500 genomic sites, and ATRA treat-
ment induces RAR binding to 500–600 DNA sites (186).

The number of genes actually regulated in this manner is
unknown. It has been >10 y since the last large-scale survey was
done. At that time, the estimated number of genes directly
regulated by retinoic acid was very large (187), whereas the
number of direct targets was fewer. Although new data are
needed to further elucidate the magnitude of these relations, it is
clear that vitamin A has multiple genetically mediated effects on
the immune response via the activities of ATRA.

b. Mechanisms of vitamin D effect on the immune

system. Although some effects of vitamin D are mediated
independently of VDR, the large majority of the activity of vitamin
D can be explained via binding of the vitamin D metabolite [1,25
(OH)2D] to a single, zinc-finger containing, ligand-activated
transcription factor, VDR. The heterodimeric partner, RXR, is
required for transcriptional activity. The VDR/RXR complex
binds to specific sites within the promoter region of genes known
as VDRE and activates transcription (188).

The presumed number of genes containing a VDRE and/or
regulated by VDR/RXR is very large. Recent human data suggest
that VDR can bind to >2700 sites in the genome and directly
regulates >200 genes (189). Like vitamin A, vitamin D can affect
immune function through this genetic interaction. Because
vitamins A and D share a nuclear receptor (RXR), compete for
coactivators and corepressors, and reciprocally regulate the
expression of their receptors, a wide variety of combined effects
on gene regulation likely occurs (190–192).

c. Mechanisms of the zinc effect on the immune

system. The molecular actions of zinc appear to be more
complex than those of vitamins A and D. In humans, the zinc-
containing proteome contains <3000 members (193). More than
10% of this proteome encodes enzymes, including alcohol and
aldehyde dehydrogenases, involved in vitamin A metabolism
(193). Zinc is also necessary to maintain the structural integrity
of proteins such as zinc-finger containing transcription factors
(194). Approximately 50% of all transcription factors, including
the vast majority of transcription factors involved in leukocyte
lineage commitment (T cell vs. B cell commitment, CD4 vs. CD8
lineage commitment, Treg commitment) and effector function,

TABLE 4 Strength of evidence: impact of micronutrient deficiencies on cell-mediated and humoral
immunity (human studies)1

PEM
deficiency

Vitamin A
deficiency

Vitamin D
deficiency

Zinc
deficiency

Iron
deficiency

Folate
deficiency

Selenium
deficiency

Antigen presenting cell function + ? ? ? ? ? ?

T cell function +++ ++ + ++ ++ ++ ++

B cell function ++ ++ + + + ? ++

1 PEM, protein-energy malnutrition; +, weak evidence; ++, partial evidence; +++, good evidence; ?, no studies.

Text Box 9 Potential pathways of intersection for micronutrients
d Myelomonocytic cell differentiation (vitamins A and D)
d Macrophage polarization (vitamins A and D, zinc, folic acid)
d B and T cell proliferation (zinc, iron, folic acid, others)
d T cell apoptosis (zinc, iron, vitamin A, vitamin E, others)
d Regulation of NF-kB activity (vitamins A, D, and E; zinc; iron; many others)
d Induction, and maintenance, of Treg cells (vitamins A and D, zinc, folic acid)
d Regulation of gene expression and/or activity of protein kinase C, cyclins, and cyclin-dependent kinases (e.g., as seen with
iron): such defects in one or more of these factors may affect or modulate lymphocyte responses to stimuli
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contain zinc (195). Furthermore, 477 members of the poly-zinc-
finger (poly-ZF) family of putative transcriptional repressors in
humans (330 in mice) involved in epigenetic gene silencing
contain zinc (195).

The ability of free zinc to act as an intracellular signaling
molecule, similar to calcium ion (Ca2+), was recently described
(196). An appreciation of the molecular complexities of zinc is
just emerging. It will be essential to determine what the
hierarchy of functional pathway maintenance is during ZnD.

d. Mechanisms of folic acid effects on the immune

system. The molecular actions of folic acid are also extraor-
dinarily complex. Folic acid, along with other nutrients involved
in one-carbon metabolism (e.g., methylcobalamin, choline,
betaine, and methionine), is required for the synthesis of DNA
and S-adenosylmethionine (SAM)–dependent methylation of
DNA and histones. The number of specific sites [specifically sites
on DNA where cytosine and guanine are separated by a
phosphate; referred to as cytosine-phosphate-guanine (CpG)
sites] in the genome that are potential targets for methylation is
staggering. The recent Encyclopedia of DNA Elements (EN-
CODE) project has identified 1.2 million putative CpG meth-
ylation sites in the human genome (8.6% of nonrepetitive
genomic CpGs) (197). The methylation pattern is unique to each
cell type. The number of genes regulated by histone methylation
is similar to that regulated by DNAmethylation, and the pattern
of histone methylation is unique to each cell type (198). The
roles of folate in methylation-dependent DNA modifications
will be covered in greater detail in the following section on
epigenetics.

V. Genetics and epigenetics of inflammation: role of

nutrition. Genetic variations/polymorphisms and copy number
variation have been shown to have potent effects on immune
function and inflammation (199). These observations were
extended into studies exploring the heterogeneity of responses
resulting from nutrition intervention trials.

The copy numbers of a gene typically vary as a result of
duplication of the portion of the chromosome that contains the
gene. This accounts for ;12% of variation found in the human
genome (200). In addition to established associations between
genetic variations of inflammatory cytokine genes and increased
circulating levels, other genetic variation such as changes in copy

number can modulate inflammation. To our knowledge, there
are no studies that examined the effect of copy number variation
on the effect of nutrition on immune function or inflammation,
but this could be a fertile area for future research.

a. Epigenetics. Understanding the role that epigenetics
plays in determining the plasticity and heterogeneity of human
immune responses is essential for planning and interpreting
data generated by nutrition intervention trials. Basic principles
regarding epigenetics and immunity/inflammation are high-
lighted in the accompanying Text Box 10. In the following
section, we will consider the role of nutritionally regulated
epigenetic control of genes involved in immunity and/or inflam-
mation.

Aside from the role of miRNA in immune development and
function, and despite the surging interest in epigenetics in the
past decade, surprising little is known about how immunity or
inflammation is modulated via epigenetic mechanisms. The
majority of epigenetic studies were conducted with the use of T
cells and macrophages. Factors that control T cell development
such as IL-2 are regulated via promoter demethylation in T
cells (202). Naive CD4+ T cells differentiate into specific and
stable T-helper (Th) cell phenotypes (including, but not limited
to, Th1, Th2, Th17, and Tregs). Chromatin remodeling allows
increased binding of specific factors to the regulatory regions
of IFNG in Th1 cells or IL4 (203) in Th2 cells.

Few studies have addressed how nutrients play a regulatory
role in altering immune function or inflammation via epigenetic
pathways. A small but rapidly growing literature suggests that
non-nutrient, bioactive food components may regulate epige-
netic pathways. Claycombe et al. discuss these in a companion
article to this supplement ‘‘Epigenetics of inflammation and
immune dysfunction: the role of nutrition’’ (36). The following
is a summary of the current knowledge about nutrient control
of epigenetic events in general with a focus on immune or
inflammatory responses.

b. Role of specific nutrients in genetics/epigenetics.

i. Role of vitamin A in epigenetic processes and the

genetics of immune function. Cell culture models and a very
small number of human clinical studies indicate that nutritional
factors including vitamins A and D affect numerous genes
involved in chromatin remodeling or processes that are involved
in epigenetic regulation.

Text Box 10 Basic principles of epigenetics
d Epigenetic modifications that lead to gene expression alterations involve transmitting heritable modifications without DNA
base pair changes.

d Epigenetics play a role in determining immune responses to various organisms.
d Epigenetic changes can persist postmitotically or transgenerationally.
d DNA methylation is considered to be the most permanent form of epigenetic regulation and is associated with
transgenerational effects, including genomic imprinting.

d Major epigenetic mechanisms include the following:
o Methylation of CpG islands found in the regulatory regions of DNA. The number of CpG sites in the genome that are
potential targets for methylation is very large (197).

o Post-translational modification of nucleosomal histone proteins. Examples of histone modifications include:
n methylation of histone lysine and arginine
n histone phosphorylation
n histone ubiquitination
n histone acetylation activity

o Generation of noncoding RNA, such as long intergenic noncoding ribonucleic acids (lincRNA) (201) or microRNA
(miRNA), that affect mRNA translatability or stability
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Hypomethylation of hepatic DNA occurs in response to
vitamin A treatment in rats (204), and hypermethylation of long
interspersed element (LINE) 1 is found in peripheral blood white
cells of vitamin A–deficient children (205). Genomewide DNA
methylation assays demonstrated several hundred differentially
methylated CpG sites between ATRA-treated human embryonic
stem cells and neuroblastoma cells (206). The mechanisms for
these phenomena are unknown, but ATRA induces glycine
N-methyltransferase, an enzyme that regulates the provision of
methyl groups. Because this mechanism has the potential to alter
the global abundance of methyl donors, and because vitamin A
has general actions on cell differentiation, it is unknownwhether
these effects are indirect or whether specific genes are targeted
for epigenetic regulation by vitamin A in vivo. Emerging
evidence suggests that both mechanisms are operative.

Substantial in vitro evidence exists for a role for ATRA in
epigenetic regulation of stem cell or tumor cell differentiation via
specific targeting of genes (Text Box 11). Evidence for effects of
vitamin A on epigenetic regulation of immune function is emerging.

Because ATRA has potent growth inhibitory and differenti-
ation actions on a wide range of leukemic cell lines, the majority
of studies examined the epigenetic effects of ATRA on the
differentiation of myeloid leukemia cells. Few studies have been
conducted in primary cells. RARa physically associates with the
H3-K4 histone methyltransferase-5 (MLL5) and promoter
region of CCAAT/enhancer binding protein e (C/EBPe), en-
hancing neutrophilic differentiation of the acute promyelocytic
leukemia cell line HL-60 (211). Upregulation of several miRNAs
occurs during ATRA-induced differentiation of the acute
promyelocytic leukemia nuclear bodies (NB4) (212).

The generation of the bioactive form of vitamin A is under
tight control. Studies in mice suggest that cytochrome P450
(CYP) 26A1, an enzyme involved in numerous aspects of drug
metabolism, is also involved in ATRA catabolism. It is induced
by ATRA and subject to a high level of epigenetic regulation.
Promoter methylation may play a limited role in Cyp26a1 gene
silencing in the absence of ATRA (213) but may account for lack
of ATRA induction of Cyp26a1 in ATRA-resistant cells (214). In
addition, high constitutive levels of methylated H3-K27 are
associated with the promoter of the mouse Cyp26A gene in
mouse F9 teratocarcinoma cells that are lost after treatment with
ATRA (214).

Simultaneously, increased recruitment of acetylated H3-K9
and H3-K14 to the Cyp26A promoter occurs in response to
ATRA treatment (214). Upon ATRA withdrawal, H3-K27
histone methylation occurs, which leads to polycomb repressive

complex 2–mediated gene silencing of Cyp26a1 in mouse
embryonic stem cells (215). The potential implications of these
types of interactions on drug safety and efficacy has been
discussed (216) and will be covered in further detail by WG 2.

ii. Role of vitamin D in epigenetic processes and the

genetics of immune function. Evidence is emerging for
vitamin D in epigenetic regulation of gene expression. Some of
this evidence is derived frommodels of tumor cell differentiation
in vitro. KDM6B/JMJD3 histone demethylase is induced by
vitamin D, but not ATRA, in human colon cancer cells (217) and
has been implicated in the regulation of cyclin-dependent kinase
inhibitor 1A (CDKN1A)/p21CIP1 by 1,25(OH)2D in normal
prostate cells (218). Histone acetylation controls cathelicidin
gene expression by vitamin D in keratinocytes (219). Vitamin D
induces the expression of miRNA in different cell types. Plasma
miRNA profiles have been determined in subjects given high-
dose vitamin D, but the within-subject heterogeneity and small
number of subjects precluded any determination of definitive
vitamin D–regulated miRNA (220).

The essentiality of vitamin D in regulating invariant invariant
NK T cell development in mice is thought to be via epigenetic
mechanisms (173). There is other evidence for a transgenera-
tional effect of vitamin D on immunity. Adult mice exposed to in
utero VDD developed milder and delayed experimental auto-
immune encephalomyelitis, but adult mice exposed to perinatal
VDD developed more severe and earlier onset experimental
autoimmune encephalomyelitis (221).

Like vitamin A, the generation and degradation of the
bioactive form of vitamin D is under tight control. The promoter
region of CYP27B1, the enzyme responsible for 1,25(OH)2D
generation, is demethylated, and histones associated with the
promoter deacetylated in response to vitamin D treatment in
mouse kidney proximal tubule-derived mouse cortical tubular
cells and the human embryonic kidney–derived cell line 293F
(222). The induction of CYP24A1, the enzyme responsible for
1,25-dihydroxyvitamin D3 catabolism, by VDR is dependent on
the expression of the histone demethylase KDM6B/JMJD3
(223). Inflammation can also affect the generation of 1,25-
dihydroxyvitamin D3 via epigenetic mechanisms. The miRNA
miR-125b, a positive regulator of inflammation in macrophages
(224), negatively regulates VDR and CYP24A1 (224, 225). A
greater association of KDM6B/JMJD3 to theCyp24A1promoter
gene and induction of Cyp24A1 mRNA occurs in response to
LPS in mouse macrophages (217). These data suggest that
inflammation leads to decreased VDR activity and increased
vitamin D catabolism.

Text Box 11 Epigenetic impact of ATRA
d DNA sequences found within genes involved in the regulation of morphogenesis (known as ‘‘homeobox transcription
factors’’) are prototypical ATRA-regulated genes.

d ATRA causes the recruitment of the histone H3-K27 demethylase lysine (K)-specific demethylase 6A KDM6A/UTX to the
promoters of the homeobox transcription factors HOXA13 and HOXB13 in human NTERA-2 clone D1 Cell Line human
(NT2/D1) teratocarcinoma cells (207, 208), leading to a loss of H3-K27 methylated histone and gene transcription.

d The histone H3-K27 demethylase KDM6B/JMJD3is an ATRA-inducible gene in mouse neural stem cells, human HeLa cells,
and human U2OS osteosarcoma cells (209).

d Treatment of neural stem cells with ATRA induced recruitment of KDM6B/JMJD3 to the promoter region of the homeobox
transcription factor distal-less homeobox (5Dlx5) (209).

d ATRA-treatment was accompanied by binding of methylated H3-K4 to the promoter region and demethylated H3-K27 to
the enhancer region of the RET gene in human neuroblastoma cell line (SK-N-BE) (210).
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iii. Role of zinc in epigenetic processes and the genetics

of immune function. In addition to the zinc-dependent
enzymes already mentioned, all class of enzymes involved in
epigenetic regulation depend on zinc to varying degrees. All
DNA methyltransferases, the Su(var)3–9, Enhancer of Zeste,
Trithorax (SET) domain–containing histone methyltransferase
family, and the great majority of histone demethylases are zinc-
dependent (226). Similarly, the human [MOZ (monocytic
leukaemia zinc finger protein), yeast Ybf2 (renamed Sas3, for
Something about silencing 3) and Sas2 and mammalian TIP60
(HIV Tat-interacting protein 60 kDa)] (MYST) family of histone
acetyltransferases and all members of the histone deacetylase
superfamily, except for the sirtuins, are zinc-dependent.

The mechanism or mechanisms behind these phenomena are
unknown. A recent study used miRNA profiling to identify
miRNAs that were responsive to zinc depletion and repletion in
humans (127). Other examples of some of the evidence with
regard to the impact of zinc status on epigenetic regulation of
gene expression are highlighted in Text Box 12.

iv. Folic acid and methylation events related to immu-

nity. A methyl-donor–deficient diet fed to pregnant sheep led to
immunologic changes, an increased APR (serum haptoglobin)
and serum IgG to exogenously administered ovalbumin in male
(but not female) lambs at 1 y postgestation (231).

v. Vitamin E. Polymorphisms at cytokine genes may
determine the effect of vitamin E on cytokine production in
the elderly (232). Having a G allele at the position 2174 of the
IL6 gene results in increased IL-6 in the circulation, and changes
from G to C decrease IL6 gene expression (233). In a similar
manner, G to A substitution at the 2308 position of the tumor
necrosis factor a (TNFA) gene has been shown to increase TNF-
a secretion (234) and a C-A substitution at position2863 in the
TNF gene is associated with decreased circulating TNF concen-
trations (235). In addition, single nucleotide polymorphisms in
the TNF gene and TNF secretion from PBMCs of elderly
subjects who are supplemented with vitamin E were tested.
Results showed that participants with the A/A and A/G
genotypes at TNF 308G > A who were treated with vitamin E
had significantly lower TNF production (232).

Variants in the genes encoding TNFA, IL10, and glutathione
S-transferase pi 1 (GSTP1) influence the effect of a-tocopherol
on inflammatory cell responses in healthy men (236). GSTP1 is
one of the members of the glutathione S-transferase supergene
family that has been suggested to play a role in the pathogenesis
of cancer (237). By using PBMCs from healthy men who were
treated with LPS, another study showed that anti-inflammatory
effects of vitamin E supplementation (e.g., decreased IL-6
secretion) depends on having the GG genotype at position 313
of the GSTP1 gene (236).

Clearly much has been learned, at the basic biological level,
about the processes of genetic and epigenetic regulation of

immune function and inflammation. The clinical implications of
these processes are just emerging, as is our understanding of the
roles that individual or multiple micronutrients might play. The
research agenda engendered by these enticing relations is
discussed below.

VI. The APR and the study of nutrition-inflammation

interactions. The application of our basic understanding of
the immune system and its implications for health are best
understood by the phenomena that occur in response to many
stressors, including microbial invasion, tissue injury, immuno-
logic reactions, and inflammatory processes. The array of
immunologic, neuroendocrine, and neurobiological responses
is collectively referred to as the APR (238). Because of a diversity
of stimuli, differential kinetics and magnitude, and other factors
that can affect the APR, establishing a single unifying definition
has been difficult. Because conditions that might contribute to an
APR within given study designs/descriptions have not been
consistently provided, the ability to gain a full appreciation of
the impact of the APR on nutrition has been challenging;
however, some general concepts are understood. General char-
acteristics and manifestations of the APR are described in Text
Box 13.

Aside from the metabolic impact of the APR on substrate
utilization and nutrient homeostasis, of particular relevance to
the impact of the APR on nutrition are the changes in numerous
plasma protein concentrations. Plasma concentrations of >200
proteins change in response to acute inflammation and are
referred to as APPs (245) (the APP classification scheme can be
found in Text Box 14).

Our ability to further explore the APR and characterize its
impact is contingent on the models used to explore these
relations. We learned what cytokines induce specific APPs, the
function of specific APPs, and that the magnitude and duration
of the APR can be species-specific. For example, CRP is a major
positive APP in humans, pigs, and dogs, whereas SAA, serum
amyloid P (SAP), and haptoglobin are the major APPs in mice
(245). Human, but not rodent, CRP activates the classical
pathway of complement in serum (248). Thus, care must be
taken when choosing the species to model the human APR.

a. Nutritional/metabolic implications of the APR. The
APR and accompanying changes in APP concentrations can
result in profound metabolic consequences with significant
nutritional implications (Text Box 15).

Although evidence exists for extrahepatic synthesis of APPs,
the majority are derived from hepatocytes in higher order
vertebrates. Table 5 shows a survey of the most commonly
encountered human APPs along with their putative functions.
Recent evidence from proteomic studies in stress-challenged
mice and humans suggests the existence of several hundred more
proteins that might meet this definition (249, 250).

Text Box 12 Impact of zinc status
d ZnD induces global DNA hypomethylation in vivo (227).
d In vivo evidence exists for an epigenetic component related to the immunosuppressive effects of high and low concentrations
of zinc.

d Gestational zinc deprivation in mice leads to immunodeficiency that can be observed through 3 subsequent generations
(228).

d Zinc supplementation of zinc-repleted pregnant rats suppresses immune functions in their offspring (229).
d Prenatal zinc supplementation of zinc-adequate rats also adversely affects immunity in offspring (230).
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b. Roles and impact of APPs. Approximately 50% of the
major APPs are involved in nutrient transport or regulation
of nutrient status. This challenges the ability to distinguish
between changes in nutrient status consequent to exposure
vs. the response of a nutrient-related APP to an APR. It
might also compromise efforts to implement and monitor an
intervention effectively in a patient experiencing an APR,
because the metabolic responses to the APR may, by their
nature (i.e., a physiologic override of normal metabolic/
nutritional processes), be intransigent to usual approaches to
mitigation (e.g., use of a dietary supplement to increase
concentrations).

Conversely, it is also the case that certain aspects of the
APR are blunted in severely malnourished children (251–
253). Another important consideration in this context is the
impact of chronic stress on the APR and consequent meta-
bolic problems. The latter scenario is exemplified by what we
have learned about the impact of HIV infection on the
inflammatory response and subsequent changes in metabolism
that might account for some of the chronic untoward compli-
cations of that disease and its treatment (254–256). These types
of disease-mediated chronic relations will be discussed in further
detail by WG 3.

In addition to the broad impact of the APR cascade, APPs
also play specific roles within the human body and are outlined
in Text Box 16.

In many ways, the response to stresses such as infections may
be seen as paradoxical (i.e., having a negative impact on both
host and pathogen). This view is particularly evidenced by the
nutritional responses to infection (e.g., nutrient sequestration,
anorexia) (257). To understand how this paradox is manifested
and how it is intended to defend the host, it is useful to look at
what is known about specific nutrients in this context.

Sequestration of nutrients to limit the growth and function of
pathogens has been proposed as one reason for the redistribution
of some nutrients during the APR. This is most evident for iron
(259) but may also occur with zinc (260). Another intriguing
possibility is that nutrient deprivation increases the level of stress
on all host cells, causing those that are subsequently stressed by
intracellular pathogens or trauma to die (257). Similarly, to limit
host tissue damage, sequestration of pro-oxidant nutrients and a
change in the antioxidant balance in favor of the host in response
to reactive oxygen species (ROS) produced during the immune
response have been proposed (18). Last, compartmentalization
of nutrients during inflammation may create a permissive
environment for inflammation to occur via temporary removal

Text Box 13 Characteristics of the APR
d A coordinated response between neuroendocrine and immune systems
d Allows for controlled inflammatory response to support tissue repair and immune competence in response to a particular
stressor

d The hypothalamic-pituitary-adrenal (HPA) axis and sympathetic/adrenomedullary system then provide rapid and adaptive
counter-regulatory mechanisms critical for host survival by ensuring energy substrate mobilization, hemodynamic stability,
and restoration of homeostasis to avoid the deleterious effects of prolonged inflammation (239)

d Corticosteroids and catecholamines are the major stress hormones that induce an APR; glucagon, growth hormone, and
renin also contribute to a lesser extent

Mechanism of the neuroendocrine-inflammatory APR
d The APR is initiated by inflammatory cytokines (TNF, IL-1b, and IL-6), resulting in the stimulation of corticotropin (CRH)
to increase corticosteroid and catecholamine production (240).

d The HPA exerts inhibitory effects on the innate immune system and inflammatory response, including a decrease in
inflammatory cytokine production and modification of leukocyte trafficking and function (239).

d These stress hormones suppress Th1 cytokine production and stimulate Th2 cytokine production.
d A selective shift from a proinflammatory to an anti-inflammatory state occurs mediated by adaptive changes in Th1 and Th2
cytokine production.

d Glucocorticoids, norepinephrine, and epinephrine inhibit IL-1, TNF, IFN-g, and IL-12 production and upregulate IL-10, IL-
4, and TGF-b production (241).

d Glucocorticoids also inhibit chemokine secretion, including monocyte chemoattractant protein (MCP) 1 and IL-8 (242), and
proliferation and differentiation of all immune cells, including dendritic cells and macrophages.

d Glucocorticoids and norepinephrine similarly inhibit the actions of NF-kB cells to suppress proinflammatory cytokine
production (243).

d The sympathetic nervous system (SNS) innervates the main sites of the immune system and postganglionic fibers terminate in
primary and secondary lymphoid organs.

d Epinephrine systemically regulates the immune system, whereas norepinephrine receptors are selectively expressed on Th1
cells (244).

Text Box 14 Different classification schemes of APPs
d Positive or negative: reflecting their respective increase or decrease in response to the APR
d Early, intermediate, or late: reflecting differential time course and differential magnitude of change in response to the APR
d Type 1 (stimulated by TNF and/or IL-1b, enhanced by IL-6) or type 2 (stimulated by IL-6) (246)
d A change of ;25% in plasma concentration of a protein in response to inflammation has been suggested as the simplest
criterion to define an APP (247).
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of nutrients (e.g., vitamin A, zinc) that negatively regulate
NF-kB activity (118, 126).

c. Case study: vitamin A and the APR. Rather than a full
discussion of each of the putative APP mechanisms, a case study
exploration of the various proposed scenarios using vitamin A as
an example will be illuminating. Although vitamin A is absolutely

required for mounting an effective immune response, it is
tempting to speculate that temporarily inhibiting plasma delivery
of vitamin A to tissues is beneficial to the host by creating a
favorable environment for inflammation. The accompanyingText
Box 17 outlines potential mechanisms that might describe how
this limitation might occur and evidence for how this may
manifest in the context of infection.

Several strategies have been designed to assess nutrient status
in the face of the APR, including the use of a single APR to
identify subjects with and without an active APR, reporting
nutrient concentrations and prevalence rates of deficiency in
those with and without elevated APPs, or using multiple APPs to
adjust nutrient values for phase or severity of infection (271,
272). Each of these strategies may be useful, but they are limited,
and identification of biomarkers of nutrient status that are not
sensitive or responsive to inflammation remains an important
avenue of research. This will be addressed extensively by WG 4.
The application of genomic metabolomic and/or proteomic
approaches to this problem may be useful (127, 273, 274).

VII. Conclusions. Considerable progress has been made toward
understanding the mechanistic roles of specific nutrients in the
function of leukocytes of rodent models and in human cell lines.
In particular, the discovery of cell signaling networks by which
nutrients regulate the differentiation and phenotype of regulatory
leukocytes has been an important development. The translation
of these mechanistic results in ways that improve outcomes in
human diseases has been limited. Aside from the obvious
inability to control the experimental environment, the complex
nutritional context of at-risk human populations presents a
daunting challenge. For example, although research with rodents
typically examines deficiencies of a single nutrient in a diet in
which all other nutrient amounts are optimal, human diets may
commonly be lacking in multiple nutrients and simultaneously
have certain nutrient excesses. Consequently, a key research
priority is the need to examine interactions between essential
nutrients with the immune and related systems to determine if
they have additive, synergistic, facilitating, or unpredictable
effects relative to an individual�s nutritional status.

In human populations, genetic and epigenetic differences
likely account for important variations in the response of the
immune system to nutrient fortification. Reliance on inbred
mouse species housed in highly controlled environments may not
be the most relevant model for understanding the implication of
these genetic interactions in humans. New approaches for model
systems that more closely duplicate the dietary, genetic, and
hygienic realities of human populations should be considered.

VIII. Research Priorities. Recent estimates indicate that rats,
mice, and hamsters account for;80% of the animals used in all
laboratory experimentation (275). Although some of these data

Text Box 15 Metabolic/nutritional impact of the APR
d Decreased nutrient intake (anorexia, fever)
d Impaired nutrient metabolism including decreased nutrient digestion, accelerated endogenous losses of nutrients, and
changes in nutrient transport and regulation)

The functional basis of these changes includes the following:
d Direct antipathogen activities (e.g., increased CRP, complement)
d Host-induced stressors that inhibit pathogens (e.g., fever and iron sequestration)
d Reallocation of resources to establish an effective immune response (e.g., mobilization of amino acids frommuscle for use by
hepatocytes and leukocytes)

TABLE 5 Function of the major acute phase reactants1

Function

Positive

a1-Acid glycoprotein (AGP/ORM) Opsonin

a1-Antitrypsin Serpin

a1-Glycoprotein (SAP) Opsonin

a2-Macroglobulin Serpin

Angiogenin Angiogenesis

Ceruloplasmin2 Fe oxidation, Cu transport

Complement component 3 Opsonin

Complement component 4 binding protein Opsonin

Complement factor B Opsonin

CRP Opsonin

Ferritin2 Fe sequestration

Fibrinogen Coagulation

Gc globulin (vitamin D binding protein)2 Complement activation,

vitamin D transport

Haptoglobin2 Fe sequestration

Hemopexin2 Fe sequestration

Hepcidin antimicrobial peptide2 Fe sequestration

Histidine-rich glycoprotein Hemostasis

Lactoferrin2 Fe sequestration

LPS binding protein Bacterial pattern recognition receptor

Mannose-binding lectin (protein C) 2 Complement activation

Metallothionein2 Zn transport

Serum amyloid A1 Chemoattractant

Serum amyloid A2 Unknown

Transcobalamin?2 Vitamin B-12 transport

von Willebrand factor Hemostasis

Negative

Albumin2 Oncotic pressure, lipid transport

a2-HS-glycoprotein Ca2+ transport?

Apolipoprotein A-I2 Lipid metabolism

Retinol binding protein 42 Retinol transport

Selenoprotein P2 Se transport

Thyroxine-binding globulin Thyroid hormone transport

Transcortin Glucorticoid transport

Transferrin2 Fe transport

Transthyretin2 Thyroid hormone transport

1 AGP, alpha 1 acid glycoprotein; CRP, C-reactive protein; Gc, group-specific component

globulin; HS, Heremans-Schmid; ORM, orosomucoid; SAP, serum amyloid P; ?, possible.
2 Involved in nutrient transport.
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reflect mandatory safety testing of cosmetic products—and
discipline-specific uses have not been compiled—the proportion
of rodents used in nutrition and immunologic research is likely
to be similar. A survey of the literature (provided here as Tables
1–4) indicates that the vast majority of evidence for effects of
micronutrients on the immune system comes from animal
models. There are compelling reasons to use rodent models
including well-defined genetics, a vast array of genetically altered
animals, ease of care, control of diet, and a high reproductive
rate. However, there are substantial differences in the structure,
regulation, and responsiveness of the immune system, particu-
larly in mechanisms related to inflammation, between humans
and rodents that should not be ignored (276–278) when trying to
extrapolate findings made in rodents to humans. Clearly,
identifying and establishing better models that can provide
more translatable findings to humans is a high research priority
(279).

Another high-priority research objective is the development
of better biomarkers of nutritional status that can be applied to
diverse healthy populations as well as those with infections or
inflammation. Current efforts are limited by the confounding
effects of the APR on the selection and interpretation of nutrient
biomarkers. Conversely, there are the impacts of PEM and
single- and multiple-micronutrient malnutrition on the APR.
Most mechanistic studies use single-micronutrient deficiencies
and attempt to control for decreases in food intake when
possible. In fact, single-micronutrient deficiencies are rare and
often coexist with PEM in resource-limited settings. To the
limited degree that they have been studied in experimental
models, multiple deficiencies can often have an additive or
synergistic effect on the immune response. Similarly, multiple
infections found in resource-limited settings are likely to affect
nutrient requirements to a greater degree than single infections.

If an individual is malnourished (over- or undernourished) in
calories or nutrients, his/her exposure to bioactive food compo-
nents or drugs will be quite different from that of those
individuals who are nutritionally adequate. In addition to the
well-studied effects of vitamins and minerals on immune
function, bioactive compounds in foods such as L-theanine,
flavonoids/polyphenols such as epigallocatechin gallate, cur-
cumin, and isothiocyanates such as phenethyl isothiocyanate
and sulforaphane also affect immune or inflammatory responses
when fed to animals (280). A limited number of studies show
that these compounds are active in humans as well (280–282).

The interaction of the effects of micronutrient status with the
gut microbiota is an emerging area of research interest (283).
The composition of the gut microbiota is affected by nutritional
status and nutrition/eating habits. Overnutrition affects the gut
microbiota, and a large number of studies have shown that
caloric/fat intake influences the ratio of different phyla of
bacteria within the intestinal tract (283). Humans and animals
with high fat intakes tend to have more Firmicutes, a phyllum of
bacteria that may actually enhance fat absorption (284). With
regard to undernutrition, a limited number of studies have
shown that PEM is permissive for more pathogenic bacteria (90,
285). It is not clear whether malnutrition sets up conditions that
are favorable for pathogenic bacterial growth and/or whether
impaired immune surveillance leads to outgrowth of noncom-
mensal bacteria. Recent studies indicate that some microbiomes
actually contribute tomalnutrition (91). A limited number of other
studies also suggest that vitamin A (286), selenium (287), iron
(288), and zinc deficiencies (289) may affect the microbiome. Text
Box 18 includes a list of research priorities highlighted in this
review.

B. WG theme 2: specific relations between nutrients,
immune function, and inflammatory response—impact
of nutrition on the immune response

Objective: Review the extant data to evaluate the impact of
malnutrition on immune function and the inflammatory re-
sponse. WG 2 summary and conclusions can be found in Text
Box 19.

I. Introduction. The evidence with regard to the impacts of
malnutrition, including both under- and overnutrition, on health
across the life cycle is incontrovertible (1). As outlined by WG
1 and summarized in Table 6, many of the effects of undernu-
trition are mediated through the immune system, including
changes in host defenses that affect resistance to or recovery
from infections. In addition, overnutrition may induce chronic
inflammation that increases the risk of both infectious and
NCDs. Furthermore, effects can be lasting, even across gener-
ations, predisposing undernourished children in utero to the
metabolic syndrome and related diseases later in life (322, 323).

This review includes examples of undernutrition, including
undernutrition defined by poor growth (i.e., underweight,
stunting, and wasting) and deficiencies of specific micronutrients
(vitamin A, zinc, and iron) as well as overnutrition, focusing on
obesity. For each example, a geographic and life cycle perspective

Text Box 16 Putative roles of APPs
d Effector molecules
d Regulating inflammation
d Nutrient transport
d Redistribution of substrates for the synthesis of positive APPs and maintenance of plasma oncotic pressure are 2 nonspecific
mechanisms proposed for the change.

d Nutrient sequestration limiting access to pathogens or to limit oxidative damage:
o iron
o zinc
For example, vitamin D binding protein has multiple functions:
o it binds 95% of vitamin D in plasma,
o acts as a macrophage-activating factor and neutrophil chemoattractant, and
o participates in the classical and alternative complement activation pathways (115).
o During an APR, it circulates in the plasma at molar concentrations 20-fold higher than the total amount of bound vitamin D
metabolites (258), indicating that its immunologic role may dominate its transport function during the APR.
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is offered along with a description of the clinical signs and
biochemical markers that define each condition. The principal
aim will be to describe the impact of malnutrition on the immune
system and on the related risk of disease. The primary data
sources for this review are human studies, including results from
nutrition intervention trials that were either preventive (i.e.,
trying to prevent malnutrition and related disease risk) or
therapeutic (i.e., trying to treat a particular disease, such as
pneumonia, in subjects at risk of deficiency). Data from animal
studies that offer unique insights were also considered. A final
goal is to address how malnutrition may affect commonly used
biomarkers of inflammation.

II. Vitamin A. The biology and biomarkers used for assessing
vitamin A were recently reviewed (324), and are discussed in
more detail in WG 3. A brief overview of the basics of vitamin A
is provided in Text Box 20.

a. Epidemiology of VAD. The challenge of obtaining
vitamin A, a fat-soluble vitamin, is great in many settings because
preformed vitamin A is found primarily in animal-source foods
including liver, eggs, and whole milk. Although it can also be
obtained through precursors (b-carotene and other provitamin A
carotenoids), which are found in orange-yellow vegetables and
fruit and green leafy vegetables, the conversion of carotenoids to
vitaminA is variable. Text Box 20 provides a summary of causes
contributing to VAD.

On the basis of serum retinol concentrations <0.70 mmol/L
(or 20 mg/dL), 122 countries are characterized as having
moderate to severe VAD problems in preschool-aged children,

whereas 88 countries fulfill this criterion with regard to pregnant
women; it is estimated that a total of 190 million children and 19
million women are affected (5). The regions that are most
affected by VAD are Africa and Southeast Asia (325). Preschool-
aged children and pregnant women face the highest risk,
reflecting high nutritional demands and high infectious disease
burden (325). The principal clinical manifestation of VAD is
xerophthalmia in various levels of severity, ranging from night
blindness and Bitot�s spots to corneal scarring and blindness.
Other consequences of VAD are anemia and a higher risk of
child mortality from infectious diseases (325).

b. Effects of VAD/vitamin A supplementation on

immune function and disease risk. As discussed by WG 1,
VAD and vitamin A supplementation affect a range of innate and
adaptive immune functions. Overall, VAD has been associated with
decreased barrier function and skewing toward a Th1 response.
Several human studies documented that VAD is associated with
increasedTh1-driven delayed-type hypersensitivity (DTH) responses
and reduced Th2-driven antibody responses to vaccines; vitamin A
supplementation reverses these responses (104, 105, 326). An
animal study indicated that a high vitaminA intakemay be linked to
asthma (164), an association that remains to be studied in humans.
Vitamin A supplementation has mostly been reported to have
reciprocal effects of VAD (Table 6).

The important effects of vitamin A on immune function are
reflected in the many community and clinical studies that showed
that vitamin A affects mortality and morbidity. Large random-
ized trials led to meta-analyses concluding that prophylactic
vitamin A supplementation of children between 6 mo and 5 y of

Text Box 17 Possible mechanisms to explain vitamin A�s role in immune response
d Vitamin A, via conversion to ATRA, can inhibit NF-kB activation (118).
d ATRA can inhibit macrophage responses to proinflammatory stimuli in vitro and in vivo (119).
d Vitamin A/ATRA is necessary for immune tolerance via Treg induction in in vitro and in vivo animal models (133).
Confirmation of vitamin A�s role is provided by 4 types of observations:
d Elimination of infections sometimes leads to a relatively rapid rebound in plasma retinol without nutritional intervention
(23).

d Repletion can be more difficult during infections (261, 262).
d Acute, high-dose repletion can sometimes increase pathology (e.g., respiratory infections) (263, 264).
d Host-pathogen competition for vitamin A: examples include helminth parasites, such as Ascaris and Onchocerca, which
express a range of retinol-binding proteins, retinol dehydrogenases, and RARs and may utilize retinol/retinoic acid for
growth and development (265–267).

Several RARs have also been found in the long terminal repeat of the HIV virus, and replication of HIV is stimulated or
inhibited by ATRA (268–270).

Text Box 18 Research priorities
d Identifying/establishing models to better translate findings to humans
d Improved understanding of the interactions of micronutrient status with the gut microbiota
d Understanding the cost/benefits of accounting for the influence of the APR on interpretation and use of biomarkers of
nutrient status

d Determining the hierarchy of cells and molecules for possession of deficient nutrients in order to maintain their function
d Determining potential points of interaction of nutrients with pleotropic effects on immune function
d Understanding the role of genetic variation on the responses to micronutrients
d Improved understanding about the potential impact of micronutrient interventions on immune function, particularly in
individuals in whom activation of elements of the immune system has already occurred

d Understanding how nutrients metabolism may be affected by inflammation via epigenetic pathways
d Understanding how nutrients may play a regulatory role in altering immune function or inflammation via epigenetic
pathways
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age reduces overall mortality by 23–30% (290, 327–328)
(Table 7). Trials in infants <6 mo of age produced conflicting
results. No study found a beneficial effect between 1 and 5 mo of
age, and the effect in neonates is still under debate; whereas some
studies suggested a beneficial effect in South Asia and in boys, the
results have been heterogeneous (332). One possible explanation
for the apparent lack of benefit of vitamin A supplementation
below 6 mo of age is that infants in such studies are protected
from infection by maternally derived immune factors (e.g., serum
IgG, factors in breast milk) to a greater degree than are older
infants. Thus, the benefits of correcting VAD on survival are less
pronounced.

Disease-specific studies have likewise not shown uniformly
beneficial effects. Although vitamin A may have a preventive
effect on the incidence or severity of diarrhea and measles in
community trials, it has had little or the opposite effect on
respiratory infections (105). The same is seen in studies of
vitamin A as a therapeutic agent (Table 7).

More in-depth mechanistic studies have provided clues to
these conflicting results. For instance, neonatal vitamin A
supplementation had a different effect on in vitro whole-blood
cytokine responses depending on the sex and the vaccination
status of the children (301). Vitamin A supplementation of 6- to
15-mo-old children differentially modified the association be-
tween gut chemokine and cytokine responses and duration of
infections, depending on the infectious pathogen (351). Also,
although it is clear that inflammation is associated with decreased
serum retinol and RBP concentrations, the role of vitamin A
supplementation on inflammation and its markers is less clear.
Vitamin A supplementation of children <5 y of age increased
their APP, CRP, and AGP values in response to vomiting and
diarrhea but not in response to cough and fever (297) (Table 8).

Clearly, VAD is associated with critical impairment of
immune function. However, the effects of vitamin A supple-
mentation on the immune system may lead to variable clinical
outcomes, depending on the nature of the immune response
needed to combat the infecting pathogens. For this reason,
vitamin A supplementation may be a double-edged sword. For
some—and on the basis of the clinical trials, presumably most—
infectious diseases, vitamin A supplementation may be benefi-
cial; in other situations it may be harmful (369, 370). Important
effect modifiers may be population vitamin A status, age, sex,
vaccination status, season, pathogen prevalence, disease type,

and disease burden. The latter is also reflected in differences in
effect over region and season (332, 370).

III. Zinc. The basics of zinc biology and biomarkers were
recently reviewed (371) and are discussed in more detail by WG
4. A brief summary of zinc assessment methods is found in the
accompanying Text Box 21.

Estimates of the childhood deaths attributable to zinc
deficiency are based on a population-level modeling. The
population-attributable fractions for ZnD for diarrhea, pneu-
monia, and malaria are calculated by estimating the reduction in
mortality if the risk of ZnD was reduced by a theoretical
minimum in children <5 y old (377).

a. Epidemiology of ZnD. ZnD is a global problem that
contributes significantly to disease morbidity and mortality,
particularly in low-income countries (372, 378). Although
severe ZnD is rare, mild to moderate deficiency is common
throughout the world (372) and is a predisposing factor for a
range of infections, particularly diarrhea (379). ZnD is esti-
mated to account for 450,000 deaths annually, >4% of deaths
among young children, and 1% of all deaths in children globally
(378).

The estimation of zinc availability in the diet in combination
with childhood stunting rates to generate a likelihood of
deficiency remains the accepted method for assessing
population-based ZnD. The estimation of zinc availability in
the diet in combination with childhood stunting rates to generate
a likelihood of deficiency has been used by the International Zinc
Consultative Group (380) and remains the accepted method for
assessing population-based ZnD. On the basis of estimates of
dietary zinc availability and the prevalence of childhood
stunting, it is estimated that ;15–30% or 1–2 billion of the
world�s population is zinc deficient (378, 381). The prevalence of
ZnD is greatest in South and Southeast Asia, sub-Saharan
Africa, and Central America (372, 382). Mild to moderate ZnD
is thought to be common in low-income populations, especially
in populations with a low consumption of zinc-rich animal-
source foods and high intakes of foods rich in phytates, which
inhibit zinc absorption (383). Children <5 y of age, pregnant
women, and the elderly comprise the groups at high risk of
deficiency. Within those groups, premature and small-for-
gestational-age infants and preschool-aged children, predomi-
nantly those 6–23 mo of age are at greatest risk (372, 379).

Text Box 19 WG 2 summary and conclusions
d The review uses data on 3 micronutrients (vitamin A, zinc, and iron), anthropometrically defined undernutrition (stunting,
wasting, and underweight), and obesity to evaluate the effect on the following:

o immune function,
o recovery of immune function in response to nutritional interventions,
o related health outcomes (e.g., risk of infection), and
o markers of inflammation.
d Malnutrition in all forms impairs both innate and adaptive immunity, resulting in changes that can impair resistance to or
recovery from infections.

d Supplementation can have benefits (e.g., reducing mortality and some types of morbidity in the case of vitamin A and zinc)
but may also increase risk of adverse outcomes in selected populations as has been seen for both vitamin A and iron.

d Adverse outcomes may result from supplementation to nondeficient individuals in population-based programs, but the
underlying mechanisms accounting for both benefit and potential adverse effects require further research in order to target
intervention programs appropriately.

d Conclusion: nutrition for optimal health and immune function appears to require balance, without stunting, wasting, and
underweight on one hand, and without obesity on the other hand. Similarly, micronutrient deficiencies impair immunity, but
supplementation of at least some micronutrients to nondeficient individuals may cause harm under some circumstances.
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Infants are particularly vulnerable because the zinc content of
humanmilk declines sharply in the postpartum period regardless
of maternal zinc status (372).

b. Effects of ZnD or supplementation on immune

function and disease risk. As discussed by WG 1, zinc is
known to play a critical role in the integrity, function, and
maintenance of host defense systems (384, 352, 353) (summarized
in Text Box 22).

Furthermore, interactions of ZnD and environmental enterop-
athy (EE) that plague children in developing areas may well be
synergistically interactive, each worsening the other and their
potential impact on impaired child development (386). Human

and animal studies showed that mild ZnD can impair multiple
mediators of host immunity, ranging from physical barriers of the
skin to innate and acquired immunity, increasing the risk of severe
infection (387, 354). Globally, these effects translate to 10% of
diarrheal diseases, 16% of acute lower respiratory infections, and
18% of malaria episodes being attributed to ZnD (378). Of the
450,000 deaths attributed to ZnD, >50% result from diarrhea
(378). In addition, poor zinc status has been implicated in ;7%
and 10% of pneumonia and malaria deaths, respectively (378).

Neither ZnD nor zinc supplementation has an appreciable
effect on responses to bacille Calmette-Guérin (301), diph-
theria and tetanus toxoid (388), rabies (389), influenza (390),

TABLE 6 Effects of micronutrient supplementation on immune function and vaccine responses (human studies)1

Type of malnutrition and type
of immune function Effects of supplementation on immune system (reference)

Vitamin A

Epithelial barrier function d High-dose VAS above 6 mo of age decreases risk of death from infections such as measles and diarrheal diseases (290)
d VAS in the context of HIV infection or lower respiratory tract infections has been associated with adverse outcomes

(105, 263, 290–292)
d Improved barrier function (105)
d Abnormal dual-sugar (lactulose, mannitol) intestinal permeability inversely correlated with serum retinol (293) and partially

normalized by supplementation in VA-deficient individuals in some studies (294) but not others (295, 296)
d Increased symptomatology after high-dose VAS during acute lower respiratory tract infections reported in some studies (105) may

indicate restored mucus production

Innate physiologic barriers d VAS did not affect CRP, SAA, and/or AGP concentrations among children with subclinical or clinical VAD (297–299)
d CRP and AGP did not change in men with low VA stores given VA (300)

Macrophage function d Increased monocyte numbers (301)
d Decreased TNF-a concentrations in children (301) but the opposite in men (106)
d Decreased IFN-g concentrations in children (302) but not in pregnant women (303)
d Increased IL-10 concentrations in children (105, 301) but no or an opposite effect in adults (106, 303, 304)

Neutrophil function d Neutrophil phagocytosis of latex beads increased in VA-deficient children given a single dose of VA (305)
d Neutrophil phagocytosis of E. coli did not change in men with low VA stores given VA (300)

NK cell function d An increase in NK cells in HIV-infected children supplemented with VA (105)
d NK cell numbers did not change in men with low VA given supplemental VA; however, there was a positive correlation between VA

stores and peripheral blood NK cells (300)

T cell function d Increased lymphocyte counts, particularly CD4 counts (105)
d CD4:CD8 ratios were increased or unchanged by supplementation (306)
d Increase in naive CD4 T cells after supplementation; higher memory CD8, CD45RO (307)
d Higher mitogen-induced IL-2, IL-4, and TNF in response to supplementation (106)

B cell function d Supplementation had no overall effect on measles vaccine response (308) and a negative response in individuals with baseline

high titers (103)
d No overall effect on oral polio vaccination
d Supplemented children increased IgG1 responses to DTP, minor IgG3 response, no change in IgG2 and IgG4 (309)
d No overall effect on BCG vaccine in VA-supplemented children, lower response in VA-supplemented boys at 2 mo (310)
d Increased antibody responses to some vaccines (measles vaccine by 9 mo of age, oral polio vaccine, type 1, hepatitis B vaccine,

rabies vaccine) (103)
d Short-term diminished cellular response to PPD in boys (103) and hospitalized children (105)

Zinc

Epithelial barrier function d Zn supplementation in children led to an improvement in the lactulose:mannitol excretion ratio in some (311) but not other (312,

313) studies; ratio may improve in infected children without Zn deficiency given supplemental Zn (314)

Innate physiologic barriers d Zn-supplemented children had higher serum complement C3 (315)

NK cell function d Children with diarrhea supplemented with Zn supplementation do not exhibit an increase in NK cells (316)
d Increased NK cell activity in the elderly (317)

T cell function d Increased CD4+ cell count in AIDS patients (318)
d Increased thymocyte count in thymus (319)
d Increased thymulin activity (320)
d No consistent effect of Zn supplementation on DTH to TB antigen [reviewed in (103)]

B cell function d No effect of Zn supplementation of mothers on BCG response in children (321)

1 AGP, a1-acid glycoprotein; BCG, bacille Calmette-Guérin; CD, cluster of differentiation; CD45RO, cluster of differentiation antigen 45 RO; CRP, C-reactive protein; DTH, delayed-

type hypersensitivity; DTP, diphtheria tetanus-pertussis; PPD, purified protein derivative; SAA, serum amyloid A; TB, tuberculosis; VA, vitamin A; VAD, vitamin A deficiency; VAS,

vitamin A supplementation.
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Haemophilus influenza type b (321), and pneumococcal
vaccines (389, 391). Zinc supplementation, however, may
improve antibody responses to cholera vaccination in children
(392). It should be noted that the influence of zinc status on

vaccination has not been well studied. Most of the evidence is
drawn from secondary analyses or small observational studies.
Few account for the effects of age, sex, degree of deficiency,
supplement dose, and duration of dosing.

Text Box 20 Basics of vitamin A: biology and assessment
d Primary causes of VAD include:
o poor intake/food insecurity [the limited availability/accessibility of either animal source (preformed) vitamin A or alternative
sources of vitamin A] and

o poor absorption (e.g., fat malabsorption).
d A high infectious disease burden can lead to decreased appetite, decreased absorption, liver or kidney disease, and other
factors affecting loss of retinol binding protein (RBP), and depletion of body stores through excessive metabolism and
increased excretion of vitamin A (325).

d Vitamin A is stored in the liver, and the most widely used biomarkers in population studies are serum retinol and serum RBP
(324).

d Retinol is transported through the serum by RBP in an ;1:1 molar ratio; thus, these markers correlate closely with one
another.

d Serum retinol and RBP also correlate with liver vitamin A stores in subjects with or at risk of clinical deficiency.
d RBP is also a negative APP; thus, inflammation and infection have a negative effect on serum retinol and RBP concentrations
(324).

d More quantitative assessment techniques include the following:
o Dose-response tests that indicate the adequacy of liver stores and isotope-dilution tests that reflect the amount of vitamin A
stored in the liver. Both are labor intensive and expensive compared with serum retinol and RBP (324).

o Conjunctival impression cytology has been used as a marker for vitamin A status but has not been widely adopted (324).
d More accurate and stable biomarkers of VAD are needed.

TABLE 7 Effects of interventions (preventive and therapeutic) on clinical outcomes (human studies)

Type of malnutrition
Effect of preventative intervention on

clinical outcomes (reference)
Effect of therapeutic intervention on

clinical outcomes (reference)

Vitamin A d Decreased overall mortality in children between 6 mo and 5

y of age (290, 327–328)

d Decreased severity of measles infection (105, 329)

d No effect on overall mortality in children between 1 and 5

mo of age (330)

d No effect or even increased severity of pneumonia (105,

263, 331)
d Conflicting evidence with regard to effect on overall

mortality in neonates (332)

d Beneficial effect of low daily doses vs. high doses on

incidence and duration of respiratory infections (333)
d Reduced incidence of measles infection (105) in infant boys

but not infant girls (334)
d Reduced incidence and severity of diarrhea severity for

some pathogens (105, 335, 336)
d Reduced incidence and severity of malaria (105)
d Potentially increased incidence and severity of respiratory

infections (105)
d Increased mother-to-child transmission of HIV (105)

Zinc d Decreased morbidity: diarrhea, pneumonia, and malaria

episodes (337–339)

d Decreased mortality: diarrhea (340)

d Decreased incidence of opportunistic infections in AIDS

patients (341)

d Decreased morbidity: fewer diarrhea episodes (340)

d Fewer treatment failures in serious infections of suspected

bacterial etiology in young infants (342)
d Conflicting evidence of impact in the treatment of

pneumonia (343–345)
d Reduced duration of cold symptoms (346); increased

duration of fever and inflammatory responses in treatment

of gram-negative catheter sepsis in adults and childhood

pneumonia (347, 348)

Iron d Increased risk of malaria and of death in malaria-endemic

areas (349, 350)

d No clear benefits

d Risk may be greater in nondeficient individuals
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Results of preventive trials in children living in areas of
endemic ZnD showed that zinc supplementation significantly
reduced the incidence of pneumonia and persistent diarrhea
(379, 337, 338) (Table 7). Zinc prophylaxis in children is
associated with a reduction in diarrhea mortality of 13% and
pneumonia mortality of 15%; however, despite the implied
association of zinc status with malaria mortality (199), zinc
prophylaxis does not appear to affect deaths frommalaria (339),
raising questions about both the value of current methods of zinc
assessment and the specific role of zinc in malaria. Significant
reductions in acute and persistent diarrhea morbidity were also
observed in zinc-supplemented children in therapeutic trials
(340). On the basis of these results, the WHO recommended in
2004 that children be given oral zinc for 10–14 d with oral
rehydration salts for the treatment of diarrhea (393).

Evidence of whether or not zinc supplementation provides a
similar therapeutic benefit to children with severe pneumonia is
conflicting (343–345). However, results from a recent trial in India
indicate that zinc adjunctive therapy can reduce treatment failures
in infants aged 7–120 dwith severe infections of suspected bacterial
etiology (342). On the other hand, some data suggest that
supplementation during the clinical phase of gram-negative infec-
tions may exaggerate APRs and prolong hospitalization (347, 348,
394). The clinical and immunologic effects of therapeutic zinc
supplementation on the outcome of infection are likely to depend
on age, zinc dosage and frequency, degree of deficiency, region, and
infectious agent. Further mechanistic studies are needed to optimize
zinc therapy and to define populations most likely to benefit.

IV. Iron. The biology of iron and the available assessment tools
have been reviewed extensively (27, 395) and are discussed by
WG 4. Text Box 23 summarizes some of the basics.

a. Epidemiology of ID. Nutritional ID and ID-anemia are
highly prevalent, with the WHO estimating that 16.6% of the
world�s population was affected in 2000, with prevalence rates
being highest (>20%) in sub-Saharan Africa, India, other
countries in Asia, the Pacific Islands, and the Middle East
(398). ID typically results from a combination of dietary
inadequacy and high physiologic need resulting from growth
in infants and children and from the demands of the fetus during
pregnancy. Menstrual blood loss is another condition that
increases iron requirements and hence the risk of deficiency
(397). Thus, infancy and early childhood, pregnancy, and
childbearing years are the principal life stages in which ID is a
risk (399, 400).

b. Effects of ID on immune function and disease risk. As
outlined by WG 1 and summarized in Text Box 24, ID affects
key aspects of innate immunity.

A recent review found that ID in humans does not affect
antibody responses to vaccination (including responses to T
cell–dependent antigens), although the data are limited and
impaired responses were noted in animal studies (103). The
contribution of ID to morbidity and mortality from infectious
diseases worldwide is less than that attributed to VAD and ZnD
(406).

A critical element of the interaction of iron with infection is
the restriction of iron availability to invading pathogens (which,
like host cells, require iron for growth). This is a major part of the
innate defense of mammals against microorganisms that have
specific mechanisms for acquiring iron in low-iron environments,
such as host tissues (259, 407). In brief, the acute phase peptide
hepcidin is synthesized in the liver in response to infection or
inflammation (IL-6 plays a specific role in inducing its transcrip-
tion) and it blocks the normal flow of iron from the gut, senescent

TABLE 8 Effects of malnutrition (or supplementation) on commonly used markers of inflammation
(evidence from human studies)1

Marker (reference)

Type of malnutrition CRP AGP IL-6 TNF-a IL-10 IL-4

Vitamin A [2,3 Y2,4 (297) [2,3 Y2,4 (297) — [2 (106, 303) Y (106) [2 (106)

Zinc — — — Y (352–358) — —

Iron — — Y (354) Y (359) — Y (360)

Underweight, stunting, or wasting (PEM) Y (361) — Y (98) Y (98) — 4 (98)

Obesity [ (362–368) [ (362–368) [ (362–368) [ (362–368) — —

1 AGP, a1-acid glycoprotein; CRP, C-reactive protein; PEM, protein-energy malnutrition; Y, decrease, [, increase; 4, variable.
2 Supplementation.
3 In children with diarrhea and vomiting.
4 In children with cough and fever.

Text Box 21 Basics of zinc: clinical effects and assessment
d The most common effects of severe ZnD in humans include growth retardation, delayed sexual maturation, skin lesions,
anorexia, alopecia, poor cognitive development, and impaired immune function (372, 373).

d The most common causes of ZnD are dietary insufficiency, limited nutrient bioavailability from local diets, and excretion
during recurrent episodes of infection.

d Plasma, urinary, and hair zinc are reliable biomarkers of zinc status in healthy populations.
d Their use in deficient populations is problematic (374).
d Plasma zinc concentrations are most often used to assess zinc status at the population level and have a cutoff of,0.65 mg/dL
to define ZnD in children (375).

d Plasma zinc is influenced by factors unrelated to zinc status, including inflammation and recent dietary intake, making it a
poor indicator of individual zinc status (376).

1060S Supplement

 at LIV
E

R
P

O
O

L S
C

H
O

O
L O

F
 T

R
O

P
IC

A
L M

E
D

IC
IN

E
 on M

ay 26, 2015
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


erythrocytes, or tissue iron stores via transferrin to the bone
marrow or other tissues in need of iron. This activity of hepcidin
markedly decreases serum iron concentrations, which restricts
iron availability to extracellular pathogens and may also affect
iron availability to intracellular pathogens (e.g., malaria para-
sites) that depend on transferrin-mediated iron acquisition. This
host response prompts the inference that iron supplementation
during infection may be detrimental, a topic that is covered in
greater detail by WG 3. Although results are equivocal for most
infections, it is clear that iron supplementation in areas where
malaria is endemic can have adverse effects, perhaps by enhanc-
ing survival of the parasite but possibly via other mechanisms as
well, including promotion of iron-catalyzed oxidative damage or
facilitation of concurrent bacterial infections by opportunistic,
invasive pathogens such as Salmonella (28, 259, 349, 350).

V. Undernutrition. For the purposes of this discussion and
consistent with the work ofWG 1, undernutrition will be referred
to as PEM to distinguish it from single- or multiple-micronutrient
deficiencies. The primary manifestations of PEM covered are
underweight (low weight-for-age), stunting (low height-for-age),
and wasting (low weight-for-height).

a. Epidemiology of underweight, stunting, and wasting.

The prevalence of under-5 underweight, stunting, and wasting
due to undernutrition, although diminished due to aggressive

public health interventions, remains high (1). The most vulnerable
remain in low-income countries. Regional differences are seen,
with underweight beingmost prevalent in Asia and eastern Africa,
stunting in eastern and middle Africa as well as in South Central
Asia, and wasting in South Central Asia. Severe wasting (<3 SDs)
is often used as a trigger for nutritional rehabilitation programs
and is most common in South Central Asia and middle Africa.
The causes of PEM are diverse, but in these affected regions early
childhood infections are typically associated with poor water and
sanitation, poverty, food insecurity, and inadequate health care
(408). In particular, a low availability of micronutrient-rich,
animal-source foods is associated with the development of
malnutrition (406). Repeated episodes of infection leading to
impaired absorptive function also likely contribute to the devel-
opment of undernutrition and may compound the problem of
inadequate food intake (323).

PEM can also develop in adults and is typically defined as a
BMI (in kg/m2) <18.5. Older adults are at particular risk of
malnutrition, with the prevalence of low BMI increasing 4-fold
above 75 y of age compared with those aged 45–64 y in the
United States (409). Older adults also tend to have lower lean
body mass and higher adiposity than younger adults due to loss
of muscle mass with aging (410). The development of malnutri-
tion in the elderly is complex and may include poverty, decreased
ability to prepare food, depression, or the development of illness,

Text Box 22 Summary of zinc effects on immune system and markers of inflammation
d In experimental studies in human volunteers, ZnDwas associated with decreased thymulin activity, limited proinflammatory
cytokine responses, decreased CD4/CD8 T-lymphocyte ratios, and impaired NK cell lytic activity (320).

d Similar deficits were observed in in vitro and animal studies along with leucopenia, thymic atrophy, altered antibody
diversity, and compromised B lymphocyte development and antibody production, particularly of IgG subclasses (353, 354).

d Macrophage function is also adversely affected, suppressing opsonization and dysregulation of intracellular killing, cytokine
production, and phagocytosis in deficient animals (354, 355, 385).

d Supplementation has been shown to restore or improve host barrier defenses and innate and adaptive immune function in
experimental studies in animals and humans and in patients with altered zinc metabolism (379, 353) (Table 6).

d The impact of zinc status on Th17 or Treg cells is not known.
d Studies with animal models have shown that ZnD has impacts on inflammatory markers including a shift from Th1- to Th2-
type cytokine responses, in which the expressions of the Th1 cytokines IFN-g and IL-2 and the proinflammatory cytokine
TNF are downregulated (352, 354, 355) (Table 8).

d Zinc supplementation can restore production of proinflammatory cytokines (353).
d Although inflammation is associated with decreased plasma zinc concentrations (356, 357), data from one recent study
suggest that zinc status has no impact on serum CRP concentrations (358).

Text Box 23 Basics of iron: clinical effects and assessment
d The principal clinical manifestation of ID is microcytic, hypochromic anemia resulting from ID erythropoiesis.
d Iron is an important component of hemoglobin, hence the effect of deficiency on erythropoiesis, but it is also a key
component of myoglobin as well as many enzymes that affect a wide range of physiologic processes.

d In addition to anemia, ID can cause other, often ‘‘subclinical,’’ physiologic deficits in muscle function, energy metabolism,
cognitive function, and immune function (396).

d Assessment of iron status is challenged in the context of infection and inflammation due to the innate iron homeostatic
process, including changes in iron absorption and subsequent changes in circulating iron and iron transport proteins, the
primary biomarkers of iron status.

d ID is diagnosed by using a combination of indicators of iron nutrition, including serum iron, percentage of saturation of
transferrin (the principal serum transport protein for iron) with iron, and serum concentration of ferritin, the soluble serum
form of the iron storage protein primarily found in the liver and other tissues where iron is stored (397).

d A growing consensus exists for the use of the ratio of serum ferritin to soluble transferrin receptor as the best indicator of iron
status because it is less susceptible to the effects of inflammation on biomarker performance and interpretation (27).

d Other indicators such as hepcidin and zinc protoporphyrin (ZPP) are discussed by WG 4.
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but a common feature is a decrease in appetite or ’’physiologic
anorexia’’ (322).

b. Effects of PEM on immune function and disease risk.

The relation between PEM and host resistance to infections is
bidirectional. This relation is magnified at either end of the life
course, but particularly in the first 2 y of life in children living in
areas with heavy pathogen exposures. Infections can precipitate
poor nutrition via several mechanisms (406, 411), and antibiotic
use during refeeding from malnutrition can enhance recovery,
suggesting that an untreated (and undiagnosed) bacterial infection
was inhibiting recovery (412). In addition, the frequency, severity,
and risk of mortality from diarrhea, pneumonia, malaria, and
other infections are highest in malnourished children due, at least
in part, to impaired host defenses. Moreover, PEM indirectly
affects the risk of infection and perhaps even NCDs via its role as
the core of several ‘‘vicious cycles of poverty’’ (322, 397).

The effects of PEM occur through both its effects on immune
and inflammatory function as well as on host protective barriers
and development (2). The putative mechanisms by which PEM
affects immune function and inflammationwere covered byWG1.

Acquired or cell-mediated immunity (CMI) is impaired by
anthropometrically defined undernutrition. Infants and children
with underweight, wasting, and stunting are typically also at risk of
multiple-micronutrient malnutrition deficiencies; thus, it can be
difficult to specifically associate particular immune deficiencies with
these conditions. CMI is also specifically impaired in elderly adults
with PEM. Serum antibody responses to vaccination also seem to
be impaired in the elderly (256) unlike in younger malnourished
subjects. Some additional, relevant aspects of the impact and risks
associated with PEM are summarized in Text Box 25.

Although acquired immunity, including CMI, is most con-
sistently affected by PEM, some aspects of innate immunity may
also be affected in underweight, wasted, and stunted individuals,
with effects being more pronounced in more severely malnour-
ished patients, (e.g., those 3 SD below the expected mean, or
with a clinical presentation of Kwashiorkor or Marasmus).
Relevant aspects of the impact of PEM on the innate immune
systems are highlighted in Text Box 25.

VI. Obesity.

a. Epidemiology of obesity. According to the WHO (418)
and the recent GBD analysis (1), the global prevalence of
overweight/obesity (BMI >30) is increasing at alarming rates,

even in LMICs. Of particular concern is the dramatic increase in
overweight/obesity in children <5 y of age.

Biochemical markers of obesity include high serum leptin,
low adiponectin, and elevated inflammatory makers including
CRP, TNF, and IL-6 (362–365). Insulin resistance and type 2
diabetes are often comorbidities with obesity. Coincident with
the increase in obesity rates has been a concurrent increase in
those comorbid NCDs, including hypertension, diabetes, CVD
risk, and cancer (1). It has been suggested that the development
of insulin resistance and diabetes may be due to the state of
chronic low-grade inflammation found in obesity (366, 367).

b. Effects of obesity on immune function and disease

risk. Obesity and its concomitants (e.g., insulin resistance) have
been associated with impaired immune/inflammatory responses
(419, 420). A summary of the reputed effects of obesity on
immune function/inflammation and disease risk are found in
Text Box 26.

With respect to vaccinations, there are several studies
reporting impaired responses in obese adults and children
including the following:

d An impaired response was found to hepatitis B vaccination
(444, 445).

d A decreased anti-tetanus antibody response after tetanus
vaccination was observed in obese compared with healthy-
weight children (446).

d Trivalent influenza vaccination was associated with a lower
antibody titer 1 y after vaccination, and impaired CD8
responses were observed against vaccine strains in obese
individuals (447).

In support of the human studies, animal models of diet-
induced obesity clearly demonstrated immune impairment and
increased inflammation. Closely mimicking human obesity, mice
with diet-induced obesity developed insulin resistance, elevated
leptin, and elevated lipid TGs leading to fatty liver and increased
inflammatory markers (448–450). Compared with lean mice,
diet-induced obese mice had greater morbidity and mortality
from primary and secondary influenza infections (451, 452),
impaired resistance to Leishmania major infection (453), and
increased mortality from S. aureus–induced sepsis (454).

VII. Conclusions.Nutrients affect the immune system in a variety
of ways (455).We reviewed howmalnutrition—due to VAD, ZnD,
ID, stunting, wasting, underweight, and obesity—affect immune

Text Box 24 Summary of the impact of iron on immune function and inflammation
d ID affects the function of phagocytes such as neutrophils and macrophages (359, 401).
d As a transition metal and because of its oxidation-reduction potential, iron is an important component of the active site of
enzymes such as NADPH oxidase and myeloperoxidase, which are important in producing the oxidative burst involved in
killing microorganisms ingested by phagocytes.

d Although phagocytic function is not impaired by ID, neutrophils and macrophages from iron-deficient individuals have an
impaired ability to generate an oxidative burst and produce hypochlorous acid, key components of bacterial killing (402,
403).

d Defects in bacterial killing by neutrophils have also been documented in ID and recover within 2 wk of initiation of iron
supplementation (404).

d Production of proinflammatory cytokines such as TNF and IL-6 by innate immune cells is also reduced by ID (359).
d In the adaptive immune system, lymphocyte function is impaired by ID because proliferation requires the activity of iron-
containing enzymes including ribonucleotide reductase. ID inhibits the proliferation of T lymphocytes and, to a lesser extent,
B lymphocytes (359).

d Thymic function and the number of T cells in the periphery are also diminished by ID (401, 405), but supplementation has a
variable effect on restoring the number of peripheral T cells (103). ID was associated with lower production of the Th2
cytokine IL-4 and higher production of the Th1 cytokine IFN-g (360).
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function. Malnutrition in all of these forms is uniformly associated
with impaired immune function, and mechanistic studies reveal
effects on both the innate and adaptive immune systems. Not
surprisingly, malnutrition is also associated with increased suscep-
tibility to infectious diseases and mortality.

In mechanistic studies there is evidence that treatment of
malnutrition restores immune function; and population-based
intervention trials, in some cases, showed decreased morbidity
and mortality with supplementation. However, some population
studies also raise concerns; particularly for micronutrient
supplementation there are indications of lack of effects or
adverse outcomes of supplementation in some situations. As
discussed above, adverse outcomes were seen during vitamin A
and iron supplementation programs, and the mechanisms
underlying these adverse effects may involve altered host
resistance.

The nutritional state for optimal immune function appears to
require balance, without stunting, wasting, and underweight on
one hand, and without obesity on the other hand. Similarly,
micronutrient deficiencies impair immunity, but excesses of at
least some micronutrients may cause harm under some circum-
stances. More research is needed to refine our understanding of
the mechanisms of and solutions to these circumstances.

VIII. Research priorities. A list of research priorities is provided
in Text Box 27. For all of the nutritional scenarios covered in the
present review, it seems clear that more studies are needed to
optimize the use of supplementation in order to maximize
benefit and minimize risk.

C. WG theme 3: specific relations between nutrients,
immune function, and inflammatory response—impact
of the immune response on nutrition and impact of
inflammation/infection on nutrition

Objective: To evaluate the evidence with regard to the impact of
inflammation on nutrition/nutrient status across the continuum
of inflammatory conditions (from acute infection to chronic
NCD states). Please see Text Box 28 for WG 3 summary and
conclusions.

I. Introduction. This review follows and builds on the
information presented by WGs 1 and 2 with a particular focus
on the impact of acute and chronic inflammatory conditions on
nutrition and, wherever possible, on nutrient biomarker selec-
tion, use, and interpretation. Commonly used inflammation and
nutritional biomarkers are reported by WG 4. Of particular
concern is the impact of the inflammatory APR in terms of both
relevant aspects of its pathophysiology and its effects on
biomarker selection and interpretation. In addition, the more
generalized ‘‘acute stress response’’ will be discussed because it
also contributes to the response to disease. The review begins
with an overview of the current understanding of the clinical
implications of the APR and the distinct but related acute stress
response. This is followed by a summary of the critical role of
gastrointestinal ecology. After an outline of general features of
the infection-nutrition interaction, 6 case study nutrients are
reviewed in order to explore these relations. Several case study
clinical contexts are presented including the following: infec-
tious disease exposures and EE, reflecting the implication of

Text Box 25 Summary of relevant effects of PEM on immune function/inflammation
d PEM is associated with significant deficits in the function of the thymus, accounting, at least in part, for the decreased
numbers of T cells seen in secondary lymphoid tissues (e.g., lymph nodes) and blood (413, 414).

d The impact on the T cell compartment appears to have a negative effect on some vaccine responses (e.g., DTH) and response
to bacille Calmette-Guérin (BCG) vaccine that depend particularly on T cells (103).

d DTH responses to common environmental antigens are also impaired by PEM and, in turn, are associated with an increased
risk of infection (415).

d Although the DTH response is sensitive to PEM, such associations are not seen when analyzing serum antibody responses to
vaccination (103).

d The impact of PEM may be greater on CD4 Th than on cytotoxic CD8 T cells, as indicated by a decreased ratio of CD4 to
CD8 cells (98).

d Responses by Th1 cells, which produce IFN-a, are also diminished (413).
d Secretory IgA responses do seem to be impaired by PEM (416), perhaps due to defects in IgA secretion across epithelial
surfaces (a feature of IgA and IgM responses to mucosal infections) rather than to defects in antibody production (98) that
could affect all antibody classes.

d The adverse effect of PEM on CMI could be caused by deficits in energy or specific micronutrients (e.g., vitamins, amino
acids) having direct effects on the thymus or peripheral T cells (417).

d Other indirect effects may result from the host�s physiologic response to PEM, including endocrine-mediated effects (e.g.,
increased corticosterone concentrations, decreased leptin concentrations as a result of decreased fat mass) (98, 413).

d Intestinal permeability is increased in severe malnutrition (263, 264) and could increase the risk of invasive bacterial disease.
d Although many aspects of neutrophil function (e.g., phagocytosis) can remain normal in undernourished patients, defects
have been seen in bacterial killing (260, 265) as well as in the killing ability of NK cells (260).

d Complement activity can also be impaired in PEM, although the effect is heterogeneous (266).
d Increased blood glucocorticoid concentration has also been seen in PEM (257, 260)
d Impaired innate immunity likely contributes to the increased risk of bacteremia in children with PEM (267).
d Inflammatory responses mediated by innate immune cells are also impaired, because PEM decreases the production of 3
important proinflammatory cytokines that mediate the induction of the APR, IL-1a, TNF, and IL-6 (260).

d Lower IL-1a production is also associated with a lower fever response in malnourished children with bacterial infections
(268).

d Providing high-quality protein during nutritional rehabilitation restores the APP response (269) by an as yet to be determined
mechanism.
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derangements in intestinal integrity; chronic and NCDs; preg-
nancy and infancy; and a brief discussion of drug-nutrient
interactions. To set the stage for this discussion, the following
sections will briefly address 2 distinct but related aspects of the
human response to stress, the inflammatory APR and the acute
stress response.

II. Global health and the inflammatory APR. As described in
detail by WG 1, an APR is a stereotypic, generalized host
reaction, caused by a cascade of cytokines released by activated
phagocytic cells (238). However, recent research suggests that
different stimuli eliciting an APR may not only have different
effects on the magnitude of the responses but also lead to the
qualitatively different responses highlighted by WG 1. A range
of medical, physiologic, and environmental conditions may
precipitate an APR (Table 9).

In low-income countries, infectious diseases continue to be
major causes of the APR, although some infections may
downregulate or impair the ability to mount an APR. More-
over, as highlighted in the GBD study (1), NCDs, including
obesity, are assuming a greater role in the health picture in
these same resource-constrained settings. Thus, both the
infectious and NCD burden is considerable, especially among
the poor, due to lack of safe water and sanitation, inadequate
vaccination coverage, poor health care access and delivery, and
the combination of food insecurity and limited dietary diversity
leading to poor nutrition. Hence, elevated serum APPs occur
not only among those with acute clinical infection but also
among asymptomatic individuals, reflecting subclinical, resid-
ual, unrecognized infection or chronic NCDs. In view of the
increasing importance of obesity, the latter is considered as a
specific inflammatory state in a later section of this review
(section V.b.).

In addition to diseases, the environment has also assumed
a more prominent role as a factor contributing to poor health
and the manifestations of the APR. One exposure that has
assumed increasing importance to the global health commu-
nity is the impact of household fossil fuel use for indoor cook
stoves (456). Dutta et al. (457) reported systemic inflamma-
tion (evidenced by increased serum IL-6, IL-8, TNF, and
CRP) among rural Indian women cooking with biomass fuels
compared with those cooking with a clean fuel such as
liquefied petroleum gas.

III. The acute stress response. In addition to the APR, the
body also has an exquisite system for responding to stress, broadly
referred to as the acute stress response. The acute stress response,
also known as the ‘‘fight or flight response,’’ was initially
described by Cannon (458) and represents a cascade of events
involving the SNS and the HPA. The stress response is distinct
from the APR in that the latter is an immune/inflammatory
response triggered by cytokine response to a stimulus, whereas the
former is a more generalized metabolic response to stress
involving multiple systems, most prominently the neuroendocrine
axis. The components and physiologic implications of the APR
are described by WG 1. The characteristics of the acute stress
response and its links to the inflammatory response including the
intimate interaction with the neuroendocrine system, mediated
largely via the HPA and the sympathetic/adrenomedullary system,
are described in Text Box 29.

a. Evidence that chronic stress can be harmful to the

host. The link between immune function/inflammation and the
acute stress response has clinical implications that have just
begun to be explored. Although the acute stress response effects
are temporary, such that catabolism and immunosuppression are
initially beneficial, over a prolonged time period these effects can
be damaging. As a result, the host could be more vulnerable to
infections, neoplastic disease, and metabolic derangements.
General causes and implications of chronic inflammation were
reviewed by WG 4.

The impact of this type of chronic stress can result in an
increase in glucocorticoids, thereby antagonizing growth hor-
mone actions on fat tissue. Chronic episodes of stress may lead
to an attenuation of growth hormone actions to induce lipolysis,
which could contribute to increased visceral adiposity. In
addition, enhanced glucocorticoid secretion can lead to insulin
resistance and profound hyperinsulinemia (464).

Experimental basic science showed that in monosodium
L-glutamate (MSG)–induced hypothalamus-damaged and hyper-
adipose rats, exposure to LPS resulted in HPA hyperactivity
likely due to leptin resistance, hyperinsulinemia (which may
precede insulin resistance), and hypertriglyceridemia (465). In
addition, catecholamines can induce production of the proin-
flammatory cytokine IL-6 locally at the myocardium (466); IL-6
stimulates hepatic production of CRP, which can contribute to
progression of atherosclerosis. Persistent elevations in catechol-
amines can alter hemodynamics and lead to endothelial injury.

Text Box 26 Summary of effects of obesity on immune function/inflammation
d Lowered numbers of circulating leukocytes and impaired proliferation of mitogen-stimulated lymphocytes (368)
d Increased thymic aging and reduction in the diversity of the T cell repertoire (421)
o Changes in NK cell numbers (422) and skewing toward a Treg and Th2 T cell phenotype (423) have also been reported, with
increases in serum concentrations of TNF, IL-6, IL-1b, CRP, and leptin (362–368).

d Obese patients have longer stays in intensive care units and have an increased risk of dying after hospitalization (424, 425).
d Obesity is an independent risk factor for infections after surgery (426–428).
d Obesity is also an independent risk factor for a worse outcome after infection with pandemic influenza A (H1N1) (429–433).
d Obese subjects have a greater risk of hospitalization with respiratory infections during the influenza season than do nonobese
individuals (434).

d Associations have been reported between higher BMI/obesity in children and a greater risk of respiratory illness (435) as well
as a greater severity of respiratory syncytial infection (436). However, other studies found no increased risk of respiratory
illness in obese subjects (437, 438).

d Higher BMI also been associated with a greater risk of periodontal infections (439), Staphylococcus aureus nasal carriage
(440), gastric infection byHelicobacter pylori (441), and herpes simplex virus type 1 infection diagnosed via serum antibody
(442).

d Obesity (adiposity) is associated with inflammation via the impact on macrophages (443).
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The injured endothelium releases chemokines that attract mon-
ocytes, lymphocytes, and glucocorticoids, which could facilitate
the early stages of atherosclerosis through induction of vascular
cellular adhesion molecules (467).

The cascade of events associated with HIV infection exemplifies
the potential detrimental effects of a chronic acute stress response.
HIV-infected monocytes and macrophages are stimulated to
produce IL-1, TNF, and IFN-a, which can increase CRH release
and thus potentially affect immunomodulation of cytokine pro-
duction (254). Taken together, the chronic activation of glucocor-
ticoids and catecholamines can cause changes in the inflammatory
cytokine milieu to selectively alter the pattern of cytokine secretion
from Th1 to Th2. This may be linked in part to the increased
predominance of visceral adiposity (255), insulin resistance (256),
and atherosclerosis (468) in HIV-infected patients.

IV. Overview of clinical implications of infection. The
impact of infection on nutrition is incontrovertible. Text Box
30 outlines the general pathways by which this impact is
manifested.

Infections and undernutrition constitute a 2-way causal
interrelation, the ‘‘malnutrition-infection cycle,’’ whereby
undernutrition generally increases risk and severity of infec-
tion and infections and/or their treatment may impair food
intake and nutritional status. This scenario is played on a
global scale and puts infants and children <5 y at particular
risk (408). The historic approach with regard to nutrition is
to develop and roll out intervention programs to address
particular aspects of this situation (e.g., universal single/
multiple-micronutrient interventions and/or vaccines). How-
ever, evidence continues to emerge that, in the absence of a
full appreciation of the complexities of a given health context
and the biology of nutrition within that context, nutritional
interventions to circumvent this cycle may have deleterious
effects. The elements of this complexity are highlighted in
Text Box 31.

The complexities of this cycle are illustrated by the results of
a large study in a highly malarious area in which daily iron
supplementation in young children increased infectious adverse
events, especially in those considered iron replete (28). Another

Text Box 27 Research priorities
d Accurate and stable biomarkers of VAD
d Effect of vitamin A supplementation on inflammation and inflammatory markers
d Mechanisms behind the variable clinical outcomes seen as a result of the impact of vitamin A on the different immune
responses

d Effect of vitamin A supplementation on neonates and infants ,6 mo
d Influence of zinc status on vaccine response
d Other confounders in the zinc–vaccine response association (age, sex, degree of zinc deficiency, etc.)
d Impact of therapeutic vs. preventive use of zinc supplementation for different clinical outcomes
d Mechanistic studies to optimize zinc therapy and to define populations most likely to benefit
d Impact of zinc status on Th17 or Treg cells

Text Box 28 WG 3 summary and conclusions
d A paradigm is presented that incorporates an appreciation of the complex global health scenario and the importance of
considering the intimate and inextricable interactions between inflammation and nutrition and their impact on health status
assessment.

d The multiple effects of inflammation on both inflammatory and nutritional biomarkers are presented in a variety of
conditions that exemplify these effects, including various infections and NCDs (e.g., obesity, obstructive lung diseases), and
from a life cycle stage perspective (pregnancy and infancy).

d Attention is given to the important role of the gastrointestinal barrier and the gastrointestinal ecology including the emerging
appreciation of the importance of the microbiome.

d Additional coverage includes the immunologic and nutritional manifestations of derangements in this ecology commonly
referring to as ‘‘environmental enteropathy.’’

d The conditions covered illustrate both the complexity of host profiling and the need for identifying priority biomarkers that
reflect status, function, and effect of interventions in individuals and at the population level.

d Context-specific examples are considered in relation to gut integrity and secondary effects of drug exposures.
d Infections and undernutrition coexist in underprivileged individuals and populations and constitute a 2-way causal
interrelation, the ‘‘malnutrition-infection cycle,’’ whereby undernutrition generally increases the risk and severity of infection
and infections and/or their treatment may impair food intake and affect nutritional status.

d Infection and inflammation influence nutritional status and biomarker selection and interpretation in multiple ways
including the following:

o altered intakes through effects on appetite
o altered absorption through effects on mucosal integrity
o increased caloric requirements through altered metabolism and host immune responses
d Six nutrients are considered in detail (iron; vitamins A, D, and B-12; zinc; and folate), and summary statements of extant
evidence about the roles that these nutrients play in inflammation are presented.

d Research priorities are highlighted ranging from basic science to epidemiologic profiling and the identification of risk
categories.
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example is the observation that vitamin A supplementation,
which generally lowers mortality in children, increased the risk
of mother-to-child HIV transmission in pregnant and postpar-
tum HIV-infected women in Tanzania (469), although not in
South Africa (470) or Malawi (471). In infants of HIV-positive
mothers, postpartum maternal and neonatal vitamin A supple-
mentation may hasten progression to death in breastfed children
who are PCR negative at 6 wk (291). The following sections
cover specific examples of the infection-malnutrition cycle.

Having laid out the basic concepts underlying the potential
interactions between inflammation, infection, and nutrition, it is
useful to explore how these interactions affect specific aspects of
nutrition. To explore this aspect of the inflammation/nutrition
relation, 6 specific nutrients—iron, zinc, vitamin A, folate,
vitamin B-12, and vitamin D—are examined. The following 8
questions were used to frame this discussion:

d What is the role of [nutrient] in the basic biology of
immunity/inflammation? (This was extensively addressed
by WGs 1 and 2.)

d What is the evidence that [nutrient] status or intervention
affects inflammation/infection? (This is informed by mate-
rials presented by WG 2.)

d Is there evidence that inflammation/infection affects [nu-
trient] status?

d What mechanisms are responsible for altering [nutrient]
status?

d Is there evidence that different infections or types and
sources of inflammation have differential effects on [nutri-
ent] status?

d Is there evidence that host genetic effects modulate the
effects of infection/inflammation on [nutrient] status?

d What are the implications for host [nutrient] status?
d What are the implications for biomarker assessment of
[nutrient] status?

The responses to these questions are outlined for each of the 6
nutrients in Supplemental Table 9 and Supplemental Figure 3).

a. Exposure to specific and multiple infections through

the life course. It is not uncommon for individuals in low-

income countries to have multiple, coexisting infections and
NCDs. The scenario is best exemplified by the comorbidities
associated with HIV infection (472). Although HIV is most
commonly used as the example of comorbidity, the recent
analysis of the GBD clearly indicates that there are various
colliding epidemics of infectious diseases and NCDs occurring
particularly in low-/middle-income settings (1). Other examples
of comorbid conditions include latent infections (e.g., mycobac-
teria, cytomegalovirus), chronic helminth infections (e.g., geo-
helminths, schistosomes, filariae) maintained by regular exposure,
chronic viral infections (HIV; hepatitis A, B, and C), with
frequent, superimposed acute respiratory, gastrointestinal, and
urogenital tract infections. In childhood, diarrhea may occur 6–8
times/y.

The inflammatory drivers are multiple, especially because
infection exposure occurs from birth onward. These patterns of

comorbidity may be complex. Helminth infections are often

established in early childhood, and the prevalence and intensity

peaks in childhood, with persistent infection exposure through

TABLE 9 Conditions that may precipitate an APR1

Medical

Diseases Accidents Physiologic Environmental

Infection Trauma Gestation Indoor cooking with biomass fuel

Noninfectious inflammatory

diseases (diabetes, cancer)

Burns Parturition Pollution (toxin exposures)

Infarction and hemorrhage Latrogenic (surgery,

drugs, radiation)

Vaccination Climate change (temperature/

weather extremes)

1 APR, acute phase response.

Text Box 29 Evidence for the link of the acute stress response and inflammation
d Synergistic coupling of the HPA axis and SNS may be required for host anti-inflammatory actions.
d CRH receptor knockout mice have an impaired stress response (459).
d When the HPA axis is interrupted by adrenalectomy, mice transform into more inflammation-susceptible hosts and
demonstrate increased mortality when exposed to viral infections; this susceptibility is diminished when glucocorticoid
replacement is given (460).

d In sympathectomized mice, macrophage stimulation with LPS results in increased production of TNF (239, 461).
d A defective HPA or sympathetic/adrenomedullary response may account for altered pathophysiology seen in several
autoimmune diseases, such as rheumatoid arthritis. In rheumatoid arthritis, the local inflammatory response is intensified
and there is a predominant shift toward Th1 cytokine production (IL-12, TNF), which may result from an attenuated
response of the HPA axis (241).

d Lewis rats, possessing a hypoactive HPA axis, are more prone to Th1-shifted states, such as arthritis, when exposed to
pathogens, such as streptococcal cell wall (462).

d After patients underwent insulin tolerance testing, plasma corticotropin and cortisol concentratons were reported to be
lower in patients with rheumatoid arthritis vs. healthy controls (463).

d In addition, patients with rheumatoid arthritis may have a reduction in sympathetic nerve fibers, which diminishes the anti-
inflammatory response from the sympathetic/adrenomedullary system (241).

d Patients with sustained inflammatory disease may have blunted HPA or SNS responses.

1066S Supplement

 at LIV
E

R
P

O
O

L S
C

H
O

O
L O

F
 T

R
O

P
IC

A
L M

E
D

IC
IN

E
 on M

ay 26, 2015
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


adulthood. Along with effects such as EE discussed below, these
infections give rise to APRs during the tissue-phase of the
primary infection or during reinfection, whereas stable, low-
intensity infections may not be associated with elevated levels of
acute phase reactants.

The chronicity of effect depends on the nature of the
infection, including its transmission patterns. Some examples
include the following:

d In holoendemic malaria areas with year-round transmis-
sion, a large proportion of the population, including
pregnant women, may experience asymptomatic parasite-
mia, concurrent elevation of serum APRs, and anemia of
chronic inflammation.

d Overt tuberculosis, which affects 11 million people/y,
causes a massive APR; but even latent tuberculosis, which
affects one-third of the world�s population, has been
associated with a slightly increased APR (H Friis, Univer-
sity of Copenhagen, personal communication, 2012).

d HIV continues to be a significant problem, with >34 million
people now living with HIV/AIDS; 3.4 million of them are
<15 y old (473). Current knowledge with regard to their
nutritional needs was recently reviewed (474). Comorbid
conditions (both infectious and NCDs) continue to be a
common concomitant of HIV infection and may impair
ability to produce an APR, thereby further increasing the risk
of common and opportunistic infections that drive an APR.

The use and interpretation of nutritional biomarkers must
take into account these age-specific and potentially multiple
effects of infection. This also highlights the importance of clear
clinical definitions of subject categories in studies of nutritional
biomarkers.

b. Chronic malaria and parasitic infections. In 2010,
there were 219 million cases of malaria, with ;80% of cases
limited to 17 countries, most prominently in Africa with an
estimated 660,000 deaths (with an uncertainty range of 490,000–
836,000), mostly among African children (475). Not only does
this represent a significant global health concern but its unique
characteristics offer specific insights into the nature and implica-
tions of chronic exposure.

Many children, adults, and pregnant women living under
conditions of perennial malaria transmission remain susceptible
to malaria parasitemia. This is often asymptomatic due to the
partial acquisition of malarial immunity. Chronic parasitemias
lasting several months are common in such individuals unless
treated with antimalarial drugs. Age differences in patterns of
malaria immunity relate to this chronicity of exposure. Hepa-
tosplenomegaly occurs with persistent infections and a chronic
inflammatory state develops, often with hypergammaglobulin-
emia, which is attributable to reticuloendothelial and lymphoid
hyperplasia. In a minority of individuals this may result in
hyperreactive malaria splenomegaly with enormous splenic
enlargement (476). Chronic exposures to other parasitic infec-
tions (e.g., schistosomiasis) may also cause hepatosplenomegaly,
and these coexposures may further exacerbate chronic inflam-
mation. Pathologic hepatic disease in childhood can lead to
anemia, RBC production failure, and growth impairment. The
association between hepatosplenomegaly, secondary to these
chronic exposures, and cytokine responses has been little studied
(477). Proinflammatory mechanisms are important, but there is
little research relating these to nutritional correlates and
biomarkers and their potential interactions (478). The following
sections describe what is known about the impact of infection,

Text Box 30 Effects of infections on nutritional status and validity of biomarkers
d Infection may affect nutritional status directly as a result of poor appetite, local lesions, or other manifestations causing pain
(e.g., oral or esophageal ulcers impairing food intake, diarrhea impairing absorption and increasing excretion of nutrients).

d The APR mediated through its cardinal manifestations may result in:
o fever via increases in resting energy expenditure,
o anorexia via reduction in the intake of energy and nutrients, and
o impaired absorption and increased utilization and excretion of nutrients.
d Infection and the APR also affect nutrition indirectly via the role of some nutrient biomarkers as acute phase reactants (e.g.,
ferritin), thereby influencing their validity if used to assess specific micronutrient status. These effects are more severe with
generalized, frequent, or recurrent infections.

Text Box 31 Factors that might affect nutritional interventions
d Baseline nutritional intake and status of the individual/population including the following:
o impact of infection/inflammation on biomarkers used to assess status
o deficient vs. replete: a particular consideration for ‘‘universal’’/countrywide intervention programs
d Stage of the life cycle:
o infants: breastfeeding
o children: complementary feeding
o pregnancy/lactation
d Bioavailability, safety, and efficacy of proposed dose, form, composition, and administration route of the intervention,
particularly within the specific conditions of the region/cultural setting

d Appreciation of the nature of the concurrent infection or infections and the body�s response to infection/inflammation as
outlined by WGs 1 and 2

d The nature of the biological relation between a given nutrient and an infectious organism (e.g., malaria)
d The impact of other therapeutic interventions (e.g., drugs, vaccines)
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NCDs, and certain physiologic states on nutrition with specific
examples provided within each category.

c. Intestinal barrier integrity. Any discussion of the
interaction between infection, nutrition, and health must include
an appreciation of the expanding understanding of the critical
roles played by the gastrointestinal environment. The impor-
tance of gastrointestinal integrity is demonstrated by numerous
reports documenting a relation between increased intestinal
permeability and poor growth in low-income countries (479–
481). In addition, the gastrointestinal environment, including
the critical influence of the gut microbiome, plays an integral
role as a barrier protecting the host from invasion by pathogenic
organisms found in our environment. Key features of and
approaches for assessing gastrointestinal function/integrity are
highlighted in Text Box 32.

Although much has been learned about the interactions
between the gut microbiome, immune system, and nutrition
(283), the association of measurements of inflammatory markers
of gut wall integrity with nutritional profiles has not been
studied extensively. This is an important research gap because
enteric infections are common causes of child morbidity and
mortality, particularly in low-resource settings; thus, identifica-
tion of relevant biomarkers for assessing risk is a priority.

d. Environmental enteropathy. EE, also called tropical
enteropathy, is a chronic subclinical condition caused by persis-
tent fecal-oral contamination that results in colonization of the
small intestine, destruction of intestinal villi, and inflammation
(490, 491). The relations between EE, malnutrition, and devel-
opment are complex and include impaired cognition and behav-
ioral development in infants and young children consequent to the
loss of essential nutrients integral to brain development (492,
493). EE has been implicated as a cause of stunting or chronic
malnutrition; as much as 40%of stunting among under-5 children
is attributed to EE in sub-Saharan Africa (494). Not only are
growth and development adversely affected by EE, it also causes
impaired immunologic responses to oral vaccines (495).

The epidemiology of EE is not well described, because
diagnostic criteria are lacking, as are reliable point-of-care
biomarkers. The intestinal permeability test using lactulose and
mannitol has been used extensively to assess the integrity of
intestinal barrier function, but it is limited due to its sensitivity
and specificity. Candidate biomarkers currently being tested
include neutrophil myeloperoxidase, fecal neopterin, citrulline,
Regeneration gene 1A, Regeneration gene 1B, antibody to
bacterial cell wall LPS core oligosaccharide (EndoCab antibody),
and zonulin (see above section on intestinal barrier integrity)
(491).

Immunologic manifestations of EE are outlined in Text
Box 33.

People living in communities in poor conditions of hygiene
and sanitation are not equally affected by EE, which implies the
need to discover underlying factors, such as genetic predisposi-
tion, amount of exposure to pathogen, role of pre-existing
malnutrition, as well as the role of immune system (490).
Characterization of EE in at-risk individuals is clearly important
for the interpretation of nutritional biomarkers.

V. Chronic and noncommunicable diseases. As highlighted
in the recent review of the GBD (1), there are several alarming
global trends that occur with regard to NCDs.

d The prevalence of high BMIs has increased globally to
become the sixth greatest risk worldwide.

d 1.3 million deaths were due to diabetes in 2010, twice as
many as in 1990.

d Deaths from NCDs (diabetes, CVD, cancer) increased by
;8 million between 1990 and 2010, accounting for 2 of

every 3 deaths (34.5 million) worldwide in 2010.

Each of the major NCDs has been shown to have a strong
inflammatory component, including cancer (498–500), CVD

(501–503), and diabetes (504–506). For the purposes of this

review, WG 3 chose to focus on obesity and chronic obstructive
pulmonary disease (COPD) as examples of the inflammation,

nutrition, and NCD nexus.
a. The double burden of malnutrition. Developed nations

in the 1980s saw an upsurge in overweight and obesity among

adolescents. Now, LMICs are facing the same problem of an
increasing prevalence of overweight/obesity. In addition, these

same settings are facing the added trend of overweight and

obesity coexisting with undernutrition (associated with deficits
of calories, specific single or multiple nutrients) in the same

individuals, households, or communities—a condition called the
double burden of malnutrition (6). This double burden is

occurring in many settings, but recent data from Bangladesh
offer a graphic example of the problem. In Bangladesh, where

childhood stunting prevalence is one of the highest in the world
(41% with height-for-age z scores #2, and 24% of women

chronically malnourished with a BMI <18.5), overweight and

obesity affect 17% women of childbearing age (507).
Among the challenges presented by the double burden are

how best to develop and roll out programs to address either

under- or overnutrition in settings in which both coexist.
Clinically, the concern becomes how best to assess not only

nutritional status broadly but how best to address potential
interactions of over- and undernutrition with inflammation (i.e.,

with the APR). As will be outlined below, obesity (and its

comorbidities) has an array of effects on the inflammatory
response and vice versa. Add to that the impact of anomalies in

the status of single or multiple micronutrients, and one can
envision a complex scenario that can affect clinical accuracy and

the development of effective interventions. Clearly, this com-
plexity outlines an urgent research agenda.

The role and impact of selected nutrients on immune function
and the inflammatory response were covered by WGs 1 and 2

and are covered in additional detail in Supplemental Table 9.
The following is a brief discussion of the relations between

overweight/obesity individuals and inflammation.
b. Overweight and obesity are chronic inflammatory

states. Overweight and obesity are inflammatory in nature

because adipose tissue releases a number of inflammatory
mediators (508). The main source of the mediators is believed
to be macrophages that infiltrate adipose tissue, although adipo-
cytes also contribute to the inflammatory process. Chronic low-
grade inflammation is also a risk factor for type 2 diabetes and the
metabolic syndrome (a complex of symptoms that include a
combination of obesity, hypertension, impaired fasting glucose, or
dyslipidemia). In obese subjects, compared with those with
normal weight, there is an upregulation of systemic indicators
of inflammation such as total leukocyte count, serum APRs,
proinflammatory cytokines and chemokines, soluble adhesion
molecules, and prothrombotic mediators. Although there may be
an overlap between obese and nonobese states, obese individ-
uals may have a severalfold increase in serum concentrations of
TNF, IL-6, MCP-1, IFN-g–induced protein 10, IL-18, macro-
phage migration inhibitory factor (MIF), and regulated on
activation, normal T cell expressed and secreted (RANTES).

These chronic inflammatory mediators occurring in over-
weight and obesity are considered to be involved in insulin
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resistance and the metabolic syndrome. Adipose tissue is in fact a
large endocrine organ secreting the proinflammatory hormone
leptin and the hormones visfatin and resistin, which cause
insulin resistance (509–511). In addition, it produces APRs,
cytokines, chemokines, growth factors, components of the

alternative complement system, and RBP. Ectopic deposition
of adipose tissue may also occur in the absence of obesity and
causes inflammation. This is particularly important in causing
cardiac pathologies if the deposit is in the heart. This perhaps
underlies the ‘‘thin-fat’’ hypothesis of increased atherosclerotic

Text Box 33 Immunologic/inflammatory impacts of EE
d Mechanistically, the manifestations of EE are the result of a persistent cell-mediated inflammatory reaction in the mucosa,
which leads to increased rates of cell destruction (496).

d Lamina propria T cell subpopulations (CD3, CD4, and CD8) are higher than normal, but CD8:CD4 values are normal.
d Cells expressing the CD25 activation marker are more commonly observed.
d Intraepithelial lymphocytes are common and contain perforin granules that reflect cytotoxic capability and indicate that the
mucosa is under severe distress.

d The mucosa of children with EE shows increased numbers of both pro- and anti-inflammatory cytokine-producing cells,
although this increase is smaller in children with malnutrition.

d Cells producing anti-inflammatory cytokines are markedly reduced in severely malnourished children, giving an upper hand
to proinflammatory cytokine–producing cells (497).

Text Box 32 Key features of the gastrointestinal barrier
d The barrier between the indigenous community of bacteria comprising the ‘‘gut microbiome,’’ residing in the gastrointestinal
lumen and the sterile bloodstream, is formed by a layer of epithelial cells closely interconnected by tight junctions. This
barrier plays a significant role in protecting the hosts from a myriad of potential adverse environmental exposures (482).

d These cells produce an antimicrobial layer composed of defensins, immunoglobulins, and mucins.
d Underneath the epithelium lies a complex network of communicating dendritic and immune cells that prevent leakage of
luminal contents into the systemic circulation.

d The microbiome itself forms an ecological barrier that deters pathogens. Disruption of this intestinal barrier increases gut
permeability and enables luminal bacteria and microbe-associated products to enter the bloodstream, a process called
‘‘bacterial translocation’’ (68, 483, 484).

d Bacterial translocation has been implicated in numerous infectious [e.g., HIV (485) or malaria (486)] and noninfectious [e.g.,
liver (487)] diseases.

Approaches to assessing loss of gastrointestinal barrier integrity or function
d Dual sugar absorption test:
o This test is based on the premise that large sugar molecules such as lactulose do not cross the intestinal barrier in the healthy
patients, whereas smaller molecules such as mannitol do.

o Loss of gut wall integrity causes lactulose to leak into the circulation and results in an increase in the urinary lactulose-to-
mannitol ratio.

o Because of its laborious nature the dual sugar absorption test is unsuitable for monitoring purposes in clinical practice in
resource-poor settings.

d Citrulline test for functional enterocyte mass:
o Citrulline is a nonessential amino acid that is produced from glutamine in small intestinal enterocytes. Loss of enterocytes
results in declining circulations of citrulline in the blood and is shown in cytotoxic treatment–induced mucositis (40).

o Serum concentrations of citrulline $20 mmol/L predict success of small bowel nutritional rehabilitation in short bowel
syndrome, villous atrophy syndrome, and chemotherapy-induced mucositis.

o The utility of this test to assess recovery of enterocyte mass in rehabilitated malnourished patients to allow transition to
community care has not been established.

o The presence of intestinal inflammation does not affect plasma citrulline concentrations.
d Calprotectin:
o Calprotectin is a cytosolic protein with antimicrobial activity that is released from neutrophils in the gastrointestinal tract
and is found in high concentrations in the stool of patients with intestinal inflammation (e.g., Crohn disease and ulcerative
colitis).

o Healthy infants and toddlers have higher stool amounts than do school-aged children, teenagers, and adults. This finding is
consistent with the observation that the gut microbiome functionally matures in the first few years of life (488).

o Calprotectin amounts may be elevated in the stool of malnourished children with EE, although this has not yet been
examined.

d Several other biomarkers have been identified, which may have utility in assessing gut inflammation (489):
o lactoferrin
o the enzyme biomarker, M2-PK, an early marker for colorectal polyps
o S100A12 (a genetic marker that might be associated with neutrophil function and inflammation)
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heart disease among Indians who have increased visceral fat
deposition that may not be associated with obesity (512). The
concentration of inflammatory mediators in obesity is reduced
with increased physical activity (513, 514), although whether
the reduction is due to physical activity itself or to reduced body
weight needs to be clarified.

c. Inflammation and nutrition in obstructive lung

diseases. Persistent inflammation seen in many chronic diseases
is associated with increased morbidity and mortality (515–518).
Moreover, therapies aimed at reducing inflammation were found
to lower overall mortality among healthy people with elevated
CRP (519), reduce progression of atherosclerosis in patients with
coronary artery disease (520), and improve exercise capacity
(521) in patients with COPD. The topic of how inflammation
affects nutrition in chronic NCDs or vice versa, however, is less
well studied. In this section, obstructive lung disease (OLD) is
discussed as an example of the bidirectional relation that may
exist between inflammation and nutrition in chronic diseases, in
order to identify potential gaps in our understanding (character-
istics of OLD are shown inText Box 34). In Figure 1, a schematic
is provided of the bidirectionality of this relation identifying
potential nutritional contributors and outcomes. A range of
nutritional disturbances is considered, including obesity, weight
loss, muscle wasting, adipose tissue accumulation, and specifi-
cally, micronutrients and vitamins A and D (Figure 1).

In chronic conditions such as asthma, inflammation and
nutritional disturbances are often related to epiphenomena such
as environmental exposures to tobacco smoke, air pollution, or
airborne allergens. Evidence that inflammation leads to worse
nutrition is reported in studies linking increased TNF production
(527–530) and higher resting energy expenditure (531) with being
underweight in patients with COPD. Moreover, the systemic
inflammation may also be directly responsible for muscle wasting
and cachexia seen in some patients with COPD (532–535). It was
also reported that high-sensitivity CRP was a marker for impaired
energy metabolism, lower functional capacity, and a lower St.
George�s Respiratory Questionnaire score in patients with COPD
(536). Previous studies showed that a low fat-free mass assessed
by bioelectrical impedance analysis is an independent predictor of
mortality irrespective of fat mass (534).

More recently, a placebo-controlled randomized trial in
patients with COPD found that nutritional supplementation, in
combination with a short course of anabolic steroids vs.
nutritional supplementation alone, enhanced gain in fat-free
mass and respiratory muscle function in depleted patients with
COPD over an 8-wk period (537); however, a post hoc analysis
did not identify a survival benefit from the intervention (538).
Hence, more evidence is needed to determine if the prevention of
weight loss in patients with COPD is a modifiable endpoint with
nutritional interventions, and if such interventions lead to a
measureable survival benefit.

i. Obesity and OLD/asthma. The importance of obesity in
asthma has received increasing attention over the past decade, in
part because of the striking increase in the prevalence of global
obesity (550–552) change (539–541). Potential mechanisms to
explain the impact of obesity on asthma are outlined inText Box 35.

Research in a multitude of settings with the use of various study
designs in children and adults has identified an association between
obesity and asthma (544–551). However, there is insufficient
evidence to state whether obese children have a greater risk of more
severe asthma (541).

In terms of potential interventions, a few small-scale, random-
ized studies examined the role of weight loss in adults (552–554)
but none have been conducted in children. A recent systematic

review found weak evidence to support weight reduction as an
intervention to improve asthma outcomes. Better evidence on the
relation between weight loss and asthma outcomes will be
provided by the BE WELL (Breathe Easier through Weight Loss
Lifestyle) intervention, a randomized clinical trial of the efficacy
of an evidence-based, comprehensive, behavioral weight-loss
intervention in obese adults aged 18–70 y with suboptimally
controlled, persistent asthma (555).

ii. Specific micronutrients and OLD. The role of micro-
nutrient deficiencies in the etiology of OLD has also gained
considerable attention over the past 2 decades (556). Multiple
observational studies found micronutrient deficiencies to be
associated with either asthma (557–565) or COPD (566, 567),
although randomized supplementation trials yielded inconsis-
tent results (558, 561, 562). Plausible mechanisms and extant
evidence for 2 micronutrients, vitamins A and D, are presented
in Text Box 36.

Inflammation and nutritional disturbances observed in OLD
could also be epiphenomena of environmental exposures that
result in allergic inflammatory responses. For example, cigarette
smoke, ozone, and nitrogen oxides (primarily NO and NO2) are
all rich in free radicals (597), which may not only affect overall
antioxidant micronutrient concentrations but also increase local
inflammatory responses in the lung. Allergic inflammation in the
lungs may also occur in response to traffic-related pollutants as
evidenced by observations of positive associations between
traffic, ambient pollutant exposures, and both asthma and
allergy outcomes in asthmatic children (598–605).

The existence of plausible mechanisms to explain possible
interactions between specific or multiple micronutrients in the
absence of clinical trial data to support such relations suggests
either poor design or lack of attention to sound principles of
nutritional assessment in such trials (e.g., the need for accurate
baseline data to establish status before interventions or to
explain subject status). A need also exists for better clinical
characterization, including nutrient-specific biomarkers, that
accounts for the potential impact of inflammation in order to
address these relations. Better data are needed with regard to the
role of nutrients in OLD, both in terms of etiology/risk and as
potential outcomes (primary: nutrient malnutrition; secondary:
metabolic derangements leading to loss of appetite, changes in
body composition) of the OLD process.

VI. Pre- and postnatal conditions, outcomes, and inflammation.

Pregnancy inflammation (infectious or noninfectious) is often
associated with increased risk of adverse pregnancy outcomes,

FIGURE 1 Bidirectional relation between inflammation and nutrition

in obstructive lung diseases. Various nutritional contributors and

outcomes are associated with systemic inflammation resulting from

lung inflammation in obstructive lung disease. Original to manuscript

produced with permission fromWilliam Checkley. CRP, C-reactive protein.
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and subclinical endotoxemia has been associated with systemic
and adipose tissue inflammation in pregravid obese women
(606). The features of noninfectious inflammation in pregnancy
are highlighted in Text Box 37.

a. Oxidative stress in pregnancy and in prematurity.

Tissue lipid peroxidation is increased in healthy pregnancy, but
gestational increases in lipid peroxidation by-products are aggra-
vated in overweight, obese, and diabetic pregnant women, and
oxidative stress is an important consequence of pregnancy obesity
that can directly affect micronutrient status. Oxidative stress
associatedwith increased ROS and/or reactive nitrogen species has
also been linked to poor reproductive outcomes (e.g., idiopathic
infertility, poor semen quality, and low-quality oocytes) (619) as
well as poor implantation and increased endometriosis via
placental ischemia/hypoxia-mediated defects (620). Thus, it has
been suggested that early-onset pre-eclampsia, spontaneous mis-
carriage, and intrauterine growth restriction may represent a
spectrum of placental oxidative stress–related disorders (620). The
role of oxidative stress biomarkers (F2-isoprostanes, oxidized low
density lipoprotein, malondialdehyde, hyperhomocysteinemia,
NO, peroxynitrites, 8-oxodeoxyguanosine, reduced glutathione/
oxidized glutathione, 4-hydroxy-2-nonenal, tyrosine nitration)
and their nutritional modification in relation to pregnancy
pathogenesis requires further investigation (619).

There is good evidence that oxidative stress is associated with
preterm birth complications due to an underdeveloped and highly
stressed antioxidant system (621, 622). Because the activity of key
antioxidant enzymes only matures in the last weeks of gestation,
preterm infants have a developmentally immature antioxidant
system showing generally low activity of superoxide dismutase,
catalase, and glutathione peroxidase enzyme activities, thus
predisposing to oxidative stress. Moreover, preterm infants

demonstrate a relatively high activity of the xanthine/xanthine
oxidase system that can aggravate oxidative stress via production
of superoxide anion.Membrane a-tocopherol concentrations and
plasma and tissue carotenoid concentrations are lower in prema-
ture infants than in full-term infants due to lack of placental
transfer of lipophilic antioxidants during the late gestation (623).
There are also indications of problems with the intestinal
absorption of fat-soluble antioxidant micronutrients, such as
tocopherol, in premature infants, which might relate to the
immaturity of the intestine and limited absorption of these
vitamins. Because of the current conflicting findings, further
research is needed to establish whether preterm or term human
milk, both of which contain a range of hydrophilic and lipophilic
antioxidants, provides better protection against oxidative stress
than formulas fortified with a few antioxidants.

Preterm oxidative stress and metabolic programming of the
fetus may propel the fetus toward obesity and insulin resistance.
Maternal obesity also contributes to an environment in which
the embryo and fetus may be exposed to oxidative stress,
because the expression of genes related to oxidative stress are
elevated in the placenta of obese women. Lipid peroxides,
oxysterols, and oxidized lipoproteins can act as ligands for
nuclear receptors such as liver X receptor, which is involved in
important metabolic pathways, and lead to metabolic program-
ming of the offspring toward insulin resistance and future
obesity (624, 625). Pregnancy obesity is also reported to impair
fetal iron status, which may be linked to hepcidin homeostasis
(626).

b. Acute and chronic infection in pregnancy. It has been
well established that pregnant women are more susceptible to
some infections, and for this reason they represent a special
population group (627). Systemic immune responses in pregnancy

Text Box 34 Characteristics of OLD
OLDs are a group of chronic respiratory conditions characterized by:
d airflow limitation,
d wheezing,
d dyspnea, and
d increased work of breathing (484, 522).
The spectrum of OLD ranges from:
d reversible airway disease, more commonly seen in asthma, to
d irreversible airway disease associated with emphysema and more commonly seen in COPD (523).
Inflammation occurs both locally in the lungs but also in the systemic circulation (524). In both asthma and COPD, local
inflammation leads to airflow limitation either through:
d hypertrophy of mucous glands,
d excessive secretions, or
d bronchial smooth muscle hyperactivity.
In chronic OLD, the inflammation leads to either airway remodeling (525) or destruction of lung parenchyma. Chronic lung
inflammation in COPD is followed by increased systemic inflammation, weight loss, and low muscle mass (526).

Text Box 35 Obesity and OLD/asthma: potential mechanisms
d Reduced lung volumes (542)
d Greater airway responsiveness (543)
d Increased local and systemic inflammation that may be associated with an exaggerated response to environmental triggers
(541)

d An increase in abdominal fat mass associated with a chronic elevation of the circulating concentrations of inflammatory
mediators including CRP and pro- and anti-inflammatory cytokines and chemokines, leading to a state of low-grade
inflammation (508 )
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are modulated rather than suppressed (628) and are influenced by
placental cytokine networks (Figure 2); these changes include
both proinflammatory and anti-inflammatory profiles (613). In
addition the adaptive immune response is downregulatedwhereas
innate immunity is enhanced. As a result, pregnant women are
more susceptible to parasitic infections and to severe bacterial and
viral infections. This leads to distinct inflammatory pathways with
maternal, placental, and fetal consequences (630). Specific path-
ways are described in the following sections, indicating biomarkers
that are induced or altered by inflammation, and indicating
relations with nutritional status and biomarker profiling.

Important outcomes of pregnancy infection are preterm birth
and low birth weight, both of which have important nutritional
characteristics that effect biomarker profiles. These adverse
pregnancy outcomes may result from acute infection late in
pregnancy or from chronic infection with persistent low-grade
inflammation from early gestation. Bacterial vaginosis and
chorioamnionitis may be nutritionally modulated, and maternal
iron status could be important, with the mucosal immune
biomarker lactoferrin in influencing infection profiles (629).

Other chronic pregnancy infections, such as soil-transmitted
helminths, contribute to maternal nutritional anemias, which are
associated with similar adverse pregnancy outcomes (631–633).
Low-grade bacteremia and/or cytokines generated within oral
tissues have also been associated with increased risk of preterm
birth and neonatal morbidity (634). In the context of low-grade
inflammation, regardless of cause, extent, and location, there is
evidence for an impact on gastrointestinal morphology and
function, which can have nutritional implications (635). Thus, the
effects of both acute and chronic infections on nutritional status
raise the possibility that nutritional interventions, in addition to

infection control, could modulate pregnancy outcomes, especially
in developing countries where an underlying prevalence of
undernutrition is common and where exposure to pregnancy
infections such as malaria is often high (632). Nevertheless, few
studies have examined how pregnancy inflammation/infection
itself directly modulates nutritional status or biomarker profiles of
the mother or the infant. Even the utility of CRP as an indicator of
inflammation/infection during pregnancy has been questioned
(636). Studies usually describe how infection and inflammation
are associated with nutritional deficiencies [e.g., iron, vitamin
B-12, folate, and vitamin D for bacterial vaginosis (637–639) and
anemia or obesity for stillbirths (640)].

c. Fetal and infant infection. The immunologic responses
by the maternal, placental, and/or fetal immune systems can affect
fetal development (641) and perinatal survival. The question of
whether these adverse effects are due to a direct effect of the
pathogen (viral, bacterial) or are secondary through maternal
responses to inflammation/cytokines requires further investiga-
tion. Some investigators consider that impaired offspring TLR
function is associated with increased susceptibility to infections
and to preterm labor (613).

Several infections are known to affect fetal growth. An
important example in humans is Plasmodium falciparum
malaria, which, after placental parasite sequestration, induces
specific maternal endocrine, immunologic, and hematologic
responses that are associated with fetal growth restriction and
preterm birth (642). Infants born to these mothers exposed to
malaria in pregnancy have increased infant anemia and mortal-
ity risk (643). Another example encompasses the range of
gastrointestinal nematodes, which are mostly chronic maternal
infections, and which have been associated with stunting in the

Text Box 36 Case studies: micronutrients and OLD/asthma
Vitamin A
d Vitamin A is necessary for optimal lung epithelial cell differentiation and lung development (68, 568, 569).
d Animal studies have shown that VAD promotes airway hyper-responsiveness and alters the mechanical properties of the lung
parenchyma (570).

d Multiple observational studies found that VAD is associated with a higher risk of asthma (571–575). However, no
randomized trials have been conducted to support a causal relation.

d In a follow-up of 5430 children randomly assigned to receive vitamin A supplementation early in life (i.e., maternal
supplementation or during the first 6 mo of infancy), supplementation with vitamin A was not associated with a decreased
risk of asthma or lower forced expiratory volume in 1 s to forced vital capacity (FEV1:FVC) ratios at 9–23 y of age (576).

d Observational studies identified an inverse association between asthma risk and vitamin A status, which may be explained by
reduction in serum retinol due to inflammation. So it is not clear whether this is a nutritional effect or a secondary
consequence of inflammation.

Vitamin D
d Poor prenatal vitamin D status has been implicated in increased asthma risk and severity in the offspring, although evidence
to support an important relation remains controversial (577).

d VDD may impair lung development and function (578–580) and may weaken immunologic defenses against respiratory
infections, which could trigger asthma exacerbations (581).

d Low vitamin D concentrations may increase risk of allergic sensitization leading to abnormalities in the allergic immune
response (582).

d Several studies reported an association between VDD and increased asthma risk (581, 583–590).
d Evidence exists for a link between lower maternal vitamin D intake and higher risk of wheezing, allergic rhinitis, and eczema
in childhood (591–595).

d In a multicenter study in the United States, vitamin D insufficiency (,30 mg/L) was predictive of severe asthma exacerbations
(586).

d No randomized trials have been published on the effects of vitamin D supplementation to prevent asthma or to reduce
morbidity.

d Five ongoing clinical trials may provide further insights into the role of vitamin D in the chronic inflammation related to
asthma (596).
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offspring (644). At least in an animal model, these infections in
pregnancy may lead to offspring stunting by causing inflamma-
tion, and this has been associated with increased cortisol
concentrations and altered cytokine profiles (645).

Infants of mothers with pregnancy inflammation and/or
infection have altered systemic immune exposures. A fetal
inflammatory response syndrome is described in which infants
born after placental infection have elevated inflammatory cyto-
kine profiles (628, 646), despite absence of cultivable microor-
ganisms. Constituents in breast milk help protect the infant from
enteric infections (e.g., lactoferrin), whereas inflammatory fac-
tors, such as in subclinical and clinical mastitis and which
influence postnatal infection transmission via breast milk (e.g.,
HIV), may directly influence infant mucosal immunity as well as
the infant�s microbiome. This is an area for further research.

d. Mastitis. Mastitis, an inflammatory condition of the
breast tissues, may or may not be accompanied by infection
(647, 648).Milk stasis and infection are the 2 majors causes of
mastitis (647, 649), but the concept of mastitis as used in
contemporary empirical studies remains inconsistent, perhaps
due to the disparate views of its etiology (650). The details of the
inflammatory response have been best described in cows (651).

In humans, subclinical mastitis (SCM) is usually defined by
the absence of external inflammatory symptoms and one or
more of the following indicators: reduced milk secretion,
increased sodium-to-potassium (Na+:K+) ratio, elevated IL-8
concentrations, elevated milk leukocyte or somatic cell count,
and/or a high bacterial count in a milk sample. Other ancillary
tests include the following: milk microbiological cultures, N-
acetyl-b-D-glucosaminidase activity, pH, lactose content, elec-
trical conductivity, flow measurements, and quantification of
APPs (648, 652). Some suggest that somatic cell and IL-8 counts
are more informative indicators of mammary inflammation than
sodium content (653). Others suggest microbial identification
techniques based on pyrosequencing of the 16S ribosomal RNA
gene to obtain a description of the human-milk microbiome

(654), as a useful diagnostic tool to assess pathogen persistence
(655). Metagenomic and transcriptomic analysis of milk sam-
ples from healthy and mastitis-affected women are currently
underway. Preliminary results indicate that human mastitis may
be characterized by a mammary bacterial dysbiosis, a process in
which the population of mastitis agents increases whereas other
bacteria, normal or commensal mammary microbiota, decrease
(648). How these responses relate to, or result from, maternal
nutritional factors is little studied.

Mastitis enhances vertical mother-infant transmission of infec-
tions, particularly HIV (656). Prompt diagnosis and treatment
prevents lactation failure, recurrent mastitis, and breast abscess
(655), but the source of entry of pathogenic bacteria remains
uncertain. In contrast to mastitis, systemic inflammation,

Text Box 37 Features of noninfectious inflammatory conditions of pregnancy
d Normal pregnancy may increase serum a1-antichymotrypsin (ACT) (587, 588, 607), and parturition induces an APR (589,
590, 608), with serum ACT concentrations occurring at levels similar to those found in patients with tuberculosis (609).

d Macrophage infiltration of adipose tissue and the placenta is characteristic of established obesity.
d In pregnancy, obesity is associated with an exaggerated inflammatory response with increased macrophage recruitment to
the placenta resulting in elevated proinflammatory cytokine production (606).

d Macrophage-associated cytokines linked to insulin resistance include MCP-1, macrophage inflammatory protein 1a (MIP-
1a), IL-1, IL-6, and IL-18 (610).

d Obese women with gestational diabetes mellitus release more leptin in response to cytokine stimulation than do those
without diabetes (611, 612).

d Pregnancy inflammation (infectious or noninfectious) is often associated with increased risk of adverse pregnancy outcomes,
and subclinical endotoxemia has been associated with systemic and adipose tissue inflammation in pregravid obese women
(606).

d Binding of pathogenic microbes to TLRs, which are widely expressed at the maternal-fetal interface, commonly results in the
production of cytokines and antimicrobial factors via a common signaling pathway during pregnancy (613).

d TLRs have also been linked with their expression in the placenta in cases of macrophage-driven inflammation in obesity and
intrauterine infection, subsequent chorioamnionitis, and preterm delivery (613, 614).

d An association between in utero markers of inflammation and increased risk of preterm birth has been reported (615, 616).
d A ‘‘leaky’’ placenta has been associated with the pathophysiologic defects associated with inflammation resulting from
obesity and/or oxidative stress associated with diabetes (617). These defects include increased vascular endothelial growth
factor (VEGF), vascular leakage of albumin, and altered junctional adhesion molecules.

d Changes in placental transfer of lipids (FAs) and cytokines have been noted in obese pregnant women and in those with
diabetes (618).

d This ‘‘leakage’’ is one of the suspected side effects of gestational diabetes mellitus and pregestational diabetes.

FIGURE 2 Maternal and fetal effects with infectious and noninfec-

tious inflammation. Factors such as infections, hormonal factors, or

maternal obesity affect the systemic immune system during preg-

nancy. Maternal and fetal immune responses are modulated by

placental pro- and anti-inflammatory cytokine networks. Adapted from

reference 629 with permission.
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although unconfirmed, may be the cause of SCM. SCM may
affect the health of the newborn (657), because it may alter milk
composition through changes in intramammary inflammation
and leakage, changes in the metabolic activity of the mammary
epithelial cells, and inflammation-mediated changes in nutrient
transport (648, 652).

Mastitis has been associated with oxidative stress (658) and
changes in cytokine gene and protein expression associated with
adaptive immunity (659). In some conditions, supplementation
with vitamins A, D, and E and copper and seleniumwas protective
against mastitis (652), but others reported in HIV-infected women
that antioxidant micronutrient supplementation did not lower
(660), and might even increase the risk of SCM (661).

e. Polymorphisms and epigenetic effects associated

with infection, inflammation, oxidative stress, and preg-

nancy outcomes. Polymorphisms in the TLR genes have been
associated with both increased susceptibility to infections, in
particular bacterial vaginosis, and with preterm labor (613).
Some superoxide dismutase and catalase polymorphisms have
been related to the development of prematurity complications. It
was suggested that single nucleotide polymorphisms involved in
the generation of ROS and reactive nitrogen species, or free
radical scavenging proteins, might be used to identify preterm
infants who might benefit from specific antioxidant prevention
strategies against free radical–mediated diseases (662). More
recently, the emerging role of oxidant molecules in fetal
programming was reviewed (663). It is now recognized that
genomewide association studies only explain a small proportion
of the known heritability of phenotypes. Future studies based on
higher definition exome chips that can identify highly penetrant
but rare variants, using full genome sequencing to better
examine regulatory regions, and studies of genone-epigenome
interactions, will better illuminate these issues.

Basic principles of epigenetics were highlighted byWG 1 (Text
Box 10). More specifically, in pregnancy, the epigenetic effects of
maternal infection, oxidative stress, and nutrition exposures on
fetal immune response genes have been little studied (663).
Nutritional interactions may be critical because oxidative stress
has been associated with epigenesis (663). Changes inmethylation
patterns can be directed or stochastic in nature. Animal experi-
ments clearly show that changes in maternal methyl-donor supply
(choline, methionine, folate, and vitamin B-12) can influence the
offspring phenotype (664). Emerging data from humans are
confirming such associations and, importantly, indicate that
maternal nutritional exposures before and during the earliest
stages of pregnancy can be critical (665, 666). Folic acid
supplements in pregnancy have been associated with a slightly
increased risk of wheeze and lower respiratory infection in
children up to 18 mo, which may relate to methyl donors in the
maternal diet during pregnancy that influence respiratory health
in children, consistent with epigenetic mechanisms (667).

Similarly, the consequences of cigarette smoking in pregnancy
on these important aspects of early development may have an
epigenetic basis (668), and may influence nutrition in children,
including risk of obesity and stunting (669).The periods of
gestational susceptibility of the epigenome need to be defined
precisely, particularly in relation to peak gestational periods of
exposure or infection risk. An example of an infectious disease
exposure is the well-established peak P. falciparum malaria
prevalence at 13–16 wk gestation in primigravidae living in high
malaria transmission areas (670).

f. Profiling nutritional and inflammatory biomarkers in

mothers and infants in relation to clinical outcomes.

Profiling of nutritional and inflammatory biomarkers in mothers

and neonates at birth should be emphasized to allow identification,
through longitudinal studies, of baseline characteristics related to
subsequent infant immunologic responsiveness, infection risk,
nutritional status, and vaccine efficacy. In particular, there is a need
for a better understanding of mechanisms affecting iron acquisi-
tion of pathogens causing pregnancy and perinatal infections,
because this could have implications for maternal iron supple-
mentation (629). Two recent epidemiologic studies showed that
iron status predicted malaria risk in very young children.
Tanzanian infants recruited at birth and who developed ID during
follow-up had significantly decreased odds of subsequent parasi-
temia (23% decrease; P < 0.001) and subsequent severe malaria
(38% decrease; P = 0.04) (671). ID was also associated with 60%
lower all-cause mortality (P = 0.04) and 66% lower malaria-
associated mortality (P = 0.11) (671). Likewise, malaria risk was
predicted by iron status in Malawian preschool-aged children,
suggesting that ID protects against malaria parasitemia and clinical
malaria in young children (672). Children with ID at baseline had
a lower incidence of malaria parasitemia and clinical malaria
during a year of follow-up [adjusted HRs (95% CI): 0.55 (0.41,
0.74) and 0.49 (0.33, 0.73), respectively]. Whether these infection
risks are definable using birth/neonatal nutritional and/or inflam-
matory profiling is uncertain. The extent to which invasive
bacterial disease is present may also be a risk and unclear (673).

In pregnant women, host iron status may affect maternal and/
or neonatal infection risk, potentially contributing to neonatal
death (629). Iron acquisition mechanisms of pathogens causing
stillbirth, preterm birth, and congenital infection are described but
not understood in relation to host iron status. There is in vitro
evidence that iron availability influences the severity and chro-
nicity of infections that cause these clinical outcomes. However, in
vivo, the risk is unknown because relevant studies of maternal
iron supplementation did not assess infection risk (629). Caution
with maternal iron supplementation may be indicated in iron-
replete women who have high infection exposure, but the
challenge in distinguishing iron-replete and iron-deficient women
remains. The investigation of infection risk in relation to iron
status in mothers and infants and the relevance of nutritional
biomarker profiling is certainly an area in need of further research.

VII. Inflammation in specific conditions: drug exposures.

a. Nutrition and pharmacology: overview. In the face of
pandemic infection and the explosion of NCDs, the use of
available single- and multiple-drug regimens will be expected to
increase in all settings. Similarly, efforts to ameliorate hunger and
more specifically single- and multiple-micronutrient insuffi-
ciencies continue to be a high global health priority. The potential
clash of these public health interventions demands attention.
Numerous examples of the potential for adverse effects of
nutrient-drug interactions have been explored previously in the
context of conditions such as cancer (674) and HIV (216, 675).

The role of nutrition in all aspects of pharmacology (phar-
macokinetics and pharmacodynamics) was been outlined previ-
ously (216). Essentially, nutrients and drugs share common
pathways and mechanisms of absorption, metabolism, trans-
port, and elimination. Consequently, the potential exists for
either of these to affect the other. The implications of these
potential interactions are significant when one appreciates the
magnitude and complexity of the global health reality, i.e., that
major infectious diseases and NCDs are treated with the
available single- (and more often multiple-) drug regimens. As
noted throughout this report, these conditions continue to be
highly prevalent in LMICs, subject in many cases to the impact
of food insecurity and all aspects of the malnutrition continuum,
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including exposure to large-scale, high-dose micronutrient
interventions. Thus, a need exists to recognize the potential for
adverse outcomes consequent to the bidirectional relation
between nutrients and drugs.

Aside from the well-established mechanisms of interactions
outlined in Text Box 38, recent studies have highlighted another
route, via genetic induction of key enzymes within critical
pathways of drug metabolism.

For example, 1,25(OH)2D was observed to regulate genes
responsible for the production of enzymes (including CYP3A4)
responsible for detoxification in the intestine (676). This study,
which was followed by numerous others, highlights an impor-
tant and underappreciated role for vitamin D in drug metabolism
through the induction of gene expression of key drug-
metabolizing enzymes. This phenomenon should be evaluated
closely, particularly in light of the expanding interest in vitamin D
supplementation to boost immune function and for use in
numerous conditions including HIV and other infections. Several
of these types of interactions, including a similar enzyme-nutrient
interaction involving vitamin A, were highlighted by WG 1.

The following is a brief coverage of specific aspects of these
relationss as pertains to inflammation, nutrition, and health.

b. Steroids. Numerous studies in humans have documented
effects on inflammation of various drug exposures, although how
these changes translate into effects on nutritional status or nutrient
status or assessment (i.e., biomarker performance or interpreta-
tion) is less well defined. A basic categorization into steroidal and
nonsteroidal compounds might be used for considering the
influence of drug exposures. One of the most extensively
documented compounds is the human glucocorticoid cortisol (or
hydrocortisone). Various synthetic glucocorticoids are used in
therapy and affect the immune system, with specific clinical
consequences. . Glucocorticoids antagonize TNF-stimulated lipol-
ysis and reduce resistance to the antilipolytic effect of insulin in
human adipocytes (677). The extent to which this occurs may
reduce the potentially deleterious effects of excess lipolysis and
contribute to fat deposition in obesity, as well as inducing appetite
leading to weight gain. Other effects include the inhibition of
prostaglandin synthesis at the level of phospholipase A2 and cyclo-
oxygenase isomerase, potentiating the anti-inflammatory effect
(678). Glucocorticoids act nonselectively and may impair normal
anabolism, leading to negative nitrogen balance, altered amino
acid profiles, and muscle breakdown.

c. Nonsteroidal compounds. Several anti-inflammatory
drugs fall into this category, including aspirin, statins, and flavones,
all of whichmay have an adjunctive effect on chronic inflammation.
Aspirin can attenuate lipid-induced insulin resistance in healthy
men, unrelated to changes in inflammatory markers (679). Aspirin
is also commonly associated with gastrointestinal bleeding, poten-
tially leading to mucosal injury and ulceration (680), and oxidative
stress associated with released iron and inflammation, a scenario
that can contribute to altered nutrient/micronutrient absorption and
should be considered in clinically assessing nutritional status.

Reduced inflammation is also an effect of statins, which, in
the NHANES 1999–2004, were associated with lower CRP and
white blood cell (WBC) counts (681). These multiple effects
indicate that drug exposures should be considered in the assess-
ment of nutritional homeostasis. A detailed review of these effects
is required to improve understanding of the consequences of the
potentially wide variety of drug exposures on nutritional bio-
markers in various clinical situations.

VIII. Conclusions. Assessing micronutrient status in the presence
of inflammation is difficult due to changes in APPs associatedwith

infection and pathophysiologic changes in the host. These may
involve changes in rates of synthesis and breakdown, plasma
volume changes and hemodilution, and tissue sequestration.
Improved understanding of the impact of inflammation on
nutritional status is essential to correctly assess micronutrient
status and to target those with the greatest need.

In this review a framework was presented to enable a
structured approach to these assessments. It is essential to have
an understanding of acute and chronic stress responses to
inflammation and to translate impact in specific risk groups
and among those living under different exposure conditions.
The variability between infectious and noninfectious expo-
sures is considered. Where possible, a generic approach has
been adopted, although specific examples are used to illustrate
particular host response pathways. The paradigm of multiple
infection exposure is emphasized, and various templates were
used to summarize the multiple effects of inflammation on both
inflammatory and nutritional biomarkers in a variety of condi-
tions, with an emphasis on obesity, pregnancy and infancy, and
chronic infections. These illustrate both the complexity of host
profiling and the need for identifying priority biomarkers, and
those with functional significance on clinical outcomes. Context-
specific examples were considered in relation to gut integrity and
to the secondary effects of drug exposures. Nutrients considered
in detail include iron, vitamin A, vitamin D, vitamin B-12, zinc,
and folate (Supplemental Table 9). Summary statements of
evidence that these nutrients play a role in inflammation were
presented. The biochemical and functional consequences for the
host and implications for biomarker assessment were considered.

IX. Research priorities. Research priorities are highlighted in
Text Box 39 and range from basic science to epidemiologic
profiling and the identification of risk categories.

d. WG theme 4: translating evidence to practice—
approaches to addressing the nutrition and
inflammation relations

Objective: 1) Identify clinically and programmatically relevant
biomarkers of inflammation in the context of acute inflammation/
infection and chronic inflammation/NCDs; 2) explore the impact of
inflammation on nutrient biomarkers and summarize key features
and challenges in nutrient biomarker performance and interpreta-
tion and use in the context of acute vs. chronic inflammation and
individuals vs. populations; 3) identify approaches and evaluate
options to account for the impact of inflammation on biomarker
selection, use, and interpretation in clinical settings/points of care
and population- level surveys. WG 4 summary and conclusions can
be found in Text Box 40.

I. Introduction. As reviewed by WGs 1–3, our understanding of
the interrelations between nutrition, immune function, and the
acute and chronic inflammatory response continues to evolve.
Coincident with the emergence of new knowledge is the need to
translate this evidence to clinical and public health practice. In this
section, the clinically and programmatically relevant biomarkers of
inflammation, the impact of inflammation on nutrient biomarkers,
and potential approaches to account for the impact of inflamma-
tion on nutrient biomarker interpretation will be addressed. The
vernacular with regard to immune function and inflammation is
complex, and many of the core concepts were presented in the
previous sections (WGs 1–3).

II. APR and APPs. The production of APPs is induced and
regulated by the cytokines in response to tissue damage/stress.
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The types of APPs are covered in more detail by WG 1. Table 10
summarizes the response of several positive and negative APPs to
inflammation. Compared with cytokines that have very short
half-lives, APPs remain longer in the blood and can therefore be
matched with changes in nutrient biomarker concentrations.
The characteristic changes in APPs resulting from the APR have
primarily been evaluated in healthy adults undergoing elective
surgeries (24, 374, 685, 686).

III. Acute vs. chronic inflammation. An inflammatory re-
sponse can be caused by infections and noninfectious entities,
such as trauma, autoimmune disease, and chronic disease. The
causes of inflammation can be characterized as acute (lasting
days to weeks) or chronic (lasting months to years). There may
be exceptions to these categories of inflammation, because
certain diseases or conditions do not fit into a single category.

Acute inflammation is characterized by the following fea-
tures:

d It begins within seconds of a cellular insult by such harmful
stimuli as bacteria, viruses, parasites, toxins, or trauma.

d It may initially be covert or subclinical before clinical
symptoms appear.

d Macrophages or blood monocytes (24) are the cells most
commonly associated with initiating the APR cascade.

d Activated macrophages release cytokines (e.g., IL-1 and
TNF), which then trigger the next series of reactions.

d These reactions take place locally and act primarily on the
microcirculation at the site of ‘‘injury’’ in a nonspecific
response.

d Locally, stroma cells (e.g., fibroblasts and endothelial cells)
are activated to cause the release of a second wave of
cytokines that include IL-6, as well as additional IL-1 and
TNF. These cytokines magnify the homoeostatic stimulus
and potentially prime all cells in the body with the potential
to initiate and propagate this homeostatic response.

Chronic or low-grade inflammation is a critical element of
NCDs, including the pathogenesis of atherosclerosis and insulin
resistance (687, 688), and is characterized by a 2- to 3-fold
elevation in systemic plasma concentrations of several cytokines
including TNF and IL-6 as well as CRP (689). Why inflammation

does not resolve with a return to homeostasis is not yet understood.
Chronic inflammation may be due to loss of a barrier function, a
continued APR to a normal nonthreatening stimulus, or infiltra-
tion of high numbers of inflammatory cells into areas where they
are not normally found (17). The overproduction of inflammatory
mediators may amplify the inflammatory response [e.g., oxidants,
cytokines, chemokines, eicosanoids, or matrix metalloproteinases
(17)] and contribute to the chronicity of inflammation.

IV. Implications of chronic inflammation. The recognition of
the profound impact of inflammatory states on health outcomes
is just beginning to be recognized. As outlined in Text Box 41,
the emerging evidence with regard to the role of chronic
inflammation in the elderly offers a good case study of the
potential implications of these relations.

Despite the increasing awareness of the association between
inflammatory markers and adverse health outcomes in older
adults, the integration of these inflammatory markers into clinical
practice has been limited. Possible reasons for this include a lack
of clear mechanistic understanding, a plethora of inflammatory
mediators that can now be measured, and the inconsistent
relations of these markers with age-related outcomes. It has been
argued that the main impediments to the clinical application of
inflammatory mediators are their profusion and the inconsistency
of their relation to outcomes (708, 713).

V. Clinically/programmatically relevant biomarkers of in-

flammation. This section highlights specific biomarkers of
inflammation that are most commonly used in clinical and public
health settings. These biomarkers may be used to reflect one or
more categories of inflammation, namely acute, subclinical, or
chronic inflammation. Although serum markers of inflammation
are often used to reflect systemic inflammation, they are, in
general, not specific for diagnosing individual clinical conditions.
However, inflammatory markers are occasionally used clinically
for nonspecific diagnosis of serious underlying disease to mark
treatment response and to predict clinical outcomes (714). An
extensive review of inflammatory biomarkers used in research
settings is outside the scope of this review. The most commonly
used inflammatory biomarkers, their ranges, and their uses are

Text Box 38 Potential mechanisms of nutrient-drug interactions
d Ingestion:
o Both drugs and disease can cause changes in appetite and nutrient intake; resultant malnutrition can affect drug efficacy.
d Absorption:
o Drugs and foods can have a mechanical effect, via binding or adsorption, that can influence the absorptive processes resulting
in an increase or decrease in drug and nutrient absorption.

o Some drugs can affect gastrointestinal motility, thereby increasing or decreasing absorption of nutrients.
o Chemical factors, in particular the pH of the stomach contents and the influence of foods therein, can affect the subsequent
absorption of drugs.

d Metabolism:
o Mixed function oxidase (MFO)/CYP isozymes and conjugase systems convert drugs and nutrients into their active and
excretory forms and are nutrient/cofactor dependent. Therefore, specific nutrient deficiencies or excesses can affect these
systems and either increase or decrease activity.

o Certain drugs can increase the activity of the MFO systems required to convert nutrient precursors into their active forms.
Non-nutritive bioactive components in foods, supplements, and complementary and alternative medicine therapies (e.g., St.
John�s wort, flavonoids) can induce MFO activity, thereby affecting drug metabolism.

d Functional utilization/activation of dependent systems:
o Epigenetics: impact of nutrients and/or drugs on genetics/phenotypic expression
d Distribution: the utilization of both drugs and nutrients depends on body composition (obesity is a factor as is weight loss),
availability, and functional integrity of transport proteins and receptor integrity and intracellular metabolic machinery.
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summarized in Table 11. The following sections provide some
additional details.

a. WBCs. Leukocytosis, an increase in the number of WBCs,
has long been recognized as a nonspecific marker of systemic
infection, tissue damage, allergic reaction, malignancy, or phys-
iologic processes. Leukocytosis is classified according to the
component of WBCs that contribute to an increase in the total
number of WBCs; types include increased neutrophil count,
lymphocyte count, monocyte count, eosinophilic granulocyte
count, basophilic granulocyte count, or blastocyte (immature)
cells. WBC count is routinely used clinically as an initial screening
marker in patients with fever. Although most bacterial infections
cause neutrophilia ($10,000/mm3), the WBC and neutrophil
counts alone are not sensitive or specific enough to accurately
predict bacterial infection. Automated cell counter analyzers,
common in many clinical laboratories, provide precise informa-
tion on WBC counts as part of a complete blood count profile
using only a small volume of freshly collected anticoagulated
whole blood. Cutoff values for elevated WBC counts are age-
specific and vary greatly (>11,000/mL in adults).

b. CRP. CRP is an APP produced in response to acute injury,
infection, or other inflammatory stimuli. Because CRP concen-
tration increases within 4–6 h of an insult and is a measure of
underlying systemic inflammation, it has numerous clinical uses
including detecting bacterial infection, autoimmune disease, and

malignancy, as well as measuring response to treatment (714).
CRP may also remain elevated in the presence of a continued,
chronic inflammatory process [e.g., atherosclerosis, rheumatoid
arthritis, and obesity (715)].

Clinically, 5 mg/L originally defined the limit of detection of
the method of analysis, and 10 mg/L was accepted as the upper
level of the normal range. To identify subclinical inflammation in
apparently healthy people in population studies and in research,
5 mg/L has generally become accepted as the upper limit of the
normal range (716). CRP is used (in combination with other risk
factors) to define risk groups for CVD.The American Heart
Association and the CDC defined CVD risk groups as follows:
low-risk CRP, <1.0 mg/L; average risk, 1.0–3.0 mg/L, and high
risk, >3.0 mg/L (717).

Small differences in normal CRP concentrations have been
found relative to race, age, and sex (718–720); however, because
CRP responses to inflammation are usually large, and these
differences are small, they received little attention until the
introduction of the new high-sensitivity CRP assay that allows
measurement to concentrations of 0.3 mg/L, compared with
3 mg/L for the modern conventional assay. Population data from
NHANES 1999–2002 indicate that concentrations of CRP are
higher among women than amoung men (median: 2.7 vs. 1.6
mg/L, respectively) and increase with age [median: 1.4 mg/L (20
– 29 y) vs. 2.7 mg/L (>80 y)] but vary less across categories of

Text Box 39 Research priorities
Inflammation in specific conditions
d Elucidation of host mechanisms that influence iron acquisition by pathogens, particularly in the context of pregnancy and
congenital and perinatal infections

d Nutritional correlates of proinflammatory states secondary to parasitic infection
d Long-term trials of nutritional supplementation, with or without anabolic steroids, on mortality outcomes in COPD
d Data to determine if reduction in inflammation reduces muscle wasting and all-cause mortality
d Trials of micronutrient supplementation in later life to determine effects on asthma exacerbations or severity
d An improved understanding of the pathogenic mechanisms related to environmental exposures may help identify the
relevance of these to potential nutritional therapies

d Evaluation of preterm or term human milk, containing a range of hydrophilic and lipophilic antioxidants, for protection
against oxidative stress in infants compared with formulas fortified with a few antioxidants

d Systematic review of effects of drug exposures on biomarkers of nutritional status
d Maternal and infant microbiome profiles and mucosal immunity
Inflammation in pregnancy and nutritional modulation of immune responsiveness
d Investigation of epigenetic influences on fetal immune responses and relation to nutritional exposures
d Critical periods of susceptibility to the epigenome need to be identified in relation to peak gestational periods of exposure
(e.g., gestational timing of period of undernutrition) or for infection; e.g., for P. falciparummalaria peak prevalence at 13–16
wk gestation in high-transmission areas)

d Longitudinal studies in mothers and infants are required to identify the outcomes of these maternal exposures in their
children in terms of clinical outcomes and inflammatory and nutritional biomarkers

Characterization of nutritional and inflammatory biomarkers of risk
d Characterization at birth of nutritional and inflammatory biomarkers to identify, through longitudinal studies, their relation
with subsequent infant immunologic responsiveness, infection risk, nutritional status, and vaccine efficacy (this approach
requires descriptive noninterventional studies and a focus on risk profiling in the first 2 y of life)

d Tests of development and cognition are relevant as additional assessment categories
d Characterization of inflammatory factors in subclinical and clinical mastitis that may influence postnatal infection
transmission via breast milk (e.g., HIV) and that may directly influence infant mucosal immunity as well as the infant
microbiome

d The role of oxidative stress biomarkers (F2-isoprostanes, oxidized LDL, malondialdehyde, hyperhomocysteinemia, NO,
peroxynitrites, 8-oxodeoxyguanosine, reduced glutathione/oxidized glutathione, 4-hydroxy-2-nonenal, tyrosine nitration)
and their nutritional modification in relation to pregnancy pathogenesis

d Evaluation of serum citrulline cutoffs in severely undernourished children as a recovery biomarker of the enterocyte cell mass
and of fecal calprotectin as a biomarker of EE (calprotectin and other proxy markers should also be further assessed in less
severely undernourished children)
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race or ethnic background (719). Later work by Cartier et al. (
720 found that if CRP concentrations are adjusted for subcu-
taneous adipose tissue, the sex differences disappear, suggesting
the greater subcutaneous fat in women to be responsible for the
higher CRP concentrations.

The preanalytical stability of CRP in serum or plasma is
excellent (11 d at room temperature, 2 mo refrigerated, 3 y frozen
at 220�C) (721). No significant difference has been observed
between samples collected either while fasting or nonfasting (722)
and diurnal variation of CRP is negligible (723). Most CRP assays
provide comparable results (724, 725), probably due to the
availability of international reference materials and external
quality assessment (EQA) programs to monitor the degree of
variability and bias in laboratory assays (e.g., UK National EQA
Service, US College of American Pathologists).

c. AGP. AGP is a slower reacting positive APP (see Table 10)
(24). At birth, concentrations are low and increase slowly,
reaching adult values by 10 mo of age (726).

The methods of analysis are similar to those for CRP. There is
a certified human serum reference material [ERM-DA470/IFCC
(727)] for calibration and since 2008 it has been possible to
standardize methods against this. There is an EQA scheme
available, which is run by Randox Laboratories Ltd. UK (728).

AGP is not commonly used in clinical situations but is used
for assessing longer-term (>5 d) or subclinical inflammation in

population studies. With the onset of infection or trauma,
changes in plasma nutrient concentrations closely parallel those

of CRP. As clinical symptoms disappear, CRP concentrations fall

sharply, but nutrient concentrations (e.g., iron, vitamin A) do

not respond as rapidly. Therefore, AGP, which remains elevated

longer than CRP and may take 3–5 d to reach a plateau, is often

used to monitor inflammation during this time period (24).
The combination of CRP and AGP has been used to detect

those who have only recently been infected and who are not yet

showing clinical evidence of disease (increased CRP only) and

those who have recovered and are convalescing (increased AGP

with or without an increased CRP). However, as mentioned

earlier, the changes in CRP and AGP have been described on the

basis of acute tissue injury secondary to surgical procedures, so it

is unclear how CRP and AGP act in response to an infectious

agent (24).
d. ESR. The ESR is defined as the rate at which erythrocytes

suspended in plasma settle when placed in a vertical tube (mm/h)

and is a nonspecific measure of inflammation that primarily reflects

plasma viscosity. It is often assessed in low-resource settings with

the use of an upright tube, but automated analyzers are also

available. Despite its wide use, ESR has a number of disadvantages

compared with other biomarkers (e.g., CRP), including slow

changes in response to treatment and false elevation secondary to

Text Box 40 WG 4 summary and conclusions
d For the evaluation of the available options to address the effect of inflammation on nutrition, a number of working
definitions were presented: APR, APP, and categories of inflammation (e.g., acute, chronic, clinical, and subclinical
inflammation).

d TheWG also described the relative strengths and weaknesses of commonly used biomarkers of inflammation includingWBC
count, CRP, AGP, erythrocyte sedimentation rate (ESR), albumin, procalcitonin (PCT), TNF, and IL-6.

d Differences between acute and chronic inflammation were delineated.
d The WG outlined currently available options to account for the potential impact of inflammation on nutrient biomarker use
and interpretation:

o Inclusion of CRP and/or AGP measurements as adjuncts to nutritional assessments. However, consensus has been elusive
with regard to how best to use these inflammatory markers in data analysis and interpretation.
o Use of cytokines: although there has been interest, this approach has been found to be generally less useful in this context,
primarily because cytokines have a substantially shorter half-life than do CRP or AGP. As a consequence, concentrations of
cytokines may have returned to normal while the effect of subclinical inflammation on nutrient biomarkers continues.
o Identification of biomarkers that are relatively less affected by inflammation (e.g., soluble transferrin receptor vs. ferritin).
However, this approach is often a challenge due to higher cost, assay difficulty, and factors that may affect these markers (e.g.,
transferrin receptor is increased in malaria).
d The WG explored aspects of these interactions on biomarkers of specific nutrients including iron, vitamin A, hemoglobin,
zinc, iodine, folate, and vitamins B-6, B-12, C, and D.

WG recommendations:
d One or more biomarkers of inflammation should be measured in assessments of micronutrient status in populations with a
known or suspected moderate-to-high prevalence of inflammation. At a minimum, CRP should be measured because of its
feasibility and the availability of data on its relation to nutrient biomarkers. The ideal cutoff for CRP needs further
evaluation and is likely lower than the 5 or 10 mg/L used in the literature.

d The addition of AGP as a measure of longer-term inflammation is probably useful in most settings and should be measured
with CRP if resources are available, with a cutoff of 1 g/L. CRP and AGP cutoffs may also differ by demographic group (e.g.,
age, sex) and by nutrient biomarker, which needs to be investigated.

d With regard to available adjustment options for inflammation, the WG concluded the following:
o In settings with considerable prevalence of inflammation, the exclusion approach may bias prevalence estimates and reduce
precision and should therefore not be used. The correction factor approach is being readily used and is relatively simple to
apply to data sets. However, it may also bias prevalence estimates and may not be applicable in all settings, where regression
modeling may provide an alternate preferred approach.
Conclusion: Until more work is done to achieve consensus on approaches to account for inflammation, the WG recommended
presenting data on the prevalence of micronutrient deficiencies in the population overall as well as among those with
inflammation and among those with no inflammation.
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anemia. ESR is probably most useful clinically when markedly
elevated (>100 mm/h), indicating infection or neoplasm (729).

e. Albumin. Albumin is most commonly used as a marker of
nutritional status (adequate protein intake) and also acts as a
negative APP. The complex mechanisms responsible for serum
albumin control render the interpretation of serum albumin
concentrations challenging (730). Unlike prealbumin or trans-
thyretin, which has a short half-life (;2 d) and therefore reflects
recent dietary intake, albumin has a long half-life (;20 d);
however, albumin is affected by several other factors and therefore
has little value in the assessment of monitoring of nutritional
status ( 731). Distribution ranges have been shown to differ on the
basis of age and sex (732). A normal concentration is 3.5–5 g/dL
(732).

f. PCT. PCT is the prohormone of calcitonin. It has been
identified as a biomarker of inflammation with potential for
distinguishing bacterial from viral infections and correlates well
with clinical severity (733, 734). Compared with either CRP or
WBCs, PCT has been shown to be a better marker for identifying
patients with invasive bacterial infections (735). In healthy
individuals, circulating concentratons of PCT are generally very
low but can increase by thousands-fold within 4 to 6 h in
response to systemic infection (peaking as early as 12 to 24 h after
onset). By contrast, CRP concentrations increase slowly during
the first 6–12 h, peaking 48 to 72 h after infection onset. PCTalso
shows a dose-response relation, with higher concentrations
correlating with increased severity of infection (735). The cutoff
point for PCT varies widely and is most commonly $0.5 mg/L
but can be as low as $0.12 mg/L (736). Multiple methods for
PCTmeasurement are available from serum or plasma, including
rapid, manual, and automated immunometric assays. The choice
of assay and cutoffs depends on the intended clinical use (737).

g. TNF-a. The origin of TNF in chronic inflammation is
mainly the infiltrated macrophages in adipose tissue (738).

Concentrations of TNF are 7.5 higher in obese than in lean
subjects (739). Increased concentrations have also been ob-
served in smokers; in patients with type 2 diabetes, metabolic
syndrome, and atherosclerosis; and in aging (739–741). TNF
promotes endothelial activation, increasing vascular permea-
bility; decreases insulin sensitivity; and contributes to the
progression of atherosclerosis (742–744). Plasma concentra-
tions of TNF predict the risk of myocardial infarction (745).
The most common available methods for TNF measurement
are ELISA and radioisotope-labeled immune assays. Cutoffs
are not standardized, and the reference range can vary from
0.55 to 2.53 pg/mL (746).

h. IL-6. IL-6 has been classified as both a pro- and anti-
inflammatory cytokine (747). It inhibits TNF production (748)
and also stimulates the production of IL-1 receptor antagonist,
IL-10, and soluble TNF receptors, which have anti-inflammatory
effects (747, 749). IL-6 is released from contracting muscles
during exercise, inducing lipolysis and fat oxidation and is
involved in glucose homeostasis (689). The role of IL-6 in insulin
resistance remains controversial. IL-6 can be measured by ELISA.
Although IL-6 precedes the increase in CRP after exposure to
bacterial infection, it has a very short half-life. Cutoff points vary
in the literature from 25 to 150 ng/L (750, 751).

i. Conclusions. In summary, numerous biomarkers of
inflammation are available to detect acute, subclinical, and chronic
inflammation in both clinical and public health settings. Table 11
summarizes the most commonly used biomarkers of inflamma-
tion. Text Box 42 contains a summary and some suggestions with
regard to the available biomarkers of inflammation.

VI. Nutrition and inflammation: specific nutrient perspectives.

a. Overview. The myriad of causative factors and types of
inflammation that need to be considered in the context of
nutritional assessment were covered in the previous WG reviews

TABLE 10 Acute phase proteins in response to an inflammatory event1

Acute phase protein Acronym Normal range
Amount of

response to inflammation
Time to

maximum response

Positive
C-reactive protein CRP 0.001–10 mg/L 20- to 1000-fold 24–48 h

a1-Acid glycoprotein AGP 0.6–1.0 g/L 2–5 times 4–5 d

a1-Antichymotrypsin ACT 0.2–0.6 g/L 2–5 times 24–48 h

Ceruloplasmin 0.3–0.4 g/L 30–60% 4–5 d

Haptoglobin 0.5–2.6 g/L — —

Fibrinogen 1.9–3.3 g/L 30–60% 24–48 h

Serum amyloid A SAA ;0.01 g/L 20- to 1000-fold 24–48 h

White blood cells WBCs .11,000/μL (adults) — 10 h

Erythrocyte sedimentation rate ESR Age ,50 y: Up to 100-fold

Men, 0–15 mm/h

Women, 0–20 mm/h

Age $50 y:

Men, 0–20 mm/h

Women, 0–30 mm/h

Procalcitonin PCT #0.5 μg/L 200-fold 6–24 h

Negative

Transferrin 2.0–3.0 g/L 230% to 60% 24–48 h

Albumin Alb 35–50 g/L 230% to 60% 1–2 wk

Prealbumin (transthyretin) PAB 140–450 mg/L (depending

on age)

230% to 60% 24–48 h

Retinol binding protein RBP .0.7 μmol/L 226% to 40% 24–48 h

1 Data adapted from references 24 and 682–684 with permission.
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and are briefly summarized in Text Box 43. Similarly, basic
concepts with regard to the nature of the nutrient-inflammation
relations were also covered previously by the INSPIRE WG
reviews. The following sections cover the key features and
challenges to interpretation presented by the inflammatory
response of biomarkers of specific nutrients. The nutrients
included below are those that have been addressed in the
previous WG reviews, with a particular focus on the 6 nutrients
that were covered under the BOND project: iron, zinc, iodine,
vitamin A, folate, and vitamin B-12. These nutrients were
selected for their public health importance and because the
relations described represent the range of issues that the
community needs to address when choosing and interpreting a
nutrient or nutrients for clinical or population surveillance
purposes. Vitamin D and hemoglobin are also covered because
of their obvious importance to global health. The emphasis on
these nutrients does not imply that similar effects are absent with
other nutrients.

b. Iron. ID remains the most common micronutrient
deficiency in the world, but the distinction of nutritional ID is
often obscured by inflammation because the normal control of
iron metabolism is disrupted by the primary mediators of the
APR (i.e., TNF and IL-1) (752).

As outlined in Text Box 44 and reviewed in detail elsewhere
[(753) and BOND iron review], a myriad of biomarkers exist
that can be applied to the assessment of iron nutrition.

The BOND iron review can be found on the BONDwebsite (30).
The complexity of iron assessment led the WHO/CDC technical
consultation on the assessment of iron status at the population level
to compare the theoretical advantages for population-based surveys
of the following 5 indicators of iron status: hemoglobin, serum
ferritin, soluble transferrin receptor (sTfR), ZPP/erythrocyte proto-
porphyrin (EP), andmean cell volume (MCV) (26). TheWHO/CDC
consultation recommended serum ferritin as the single best indicator
in areas where inflammation is less common and measuring sTfR in
areas where inflammation is prevalent.

Hepcidin is a promising iron biomarker, because it is
suppressed during ID and anemia but stimulated by inflamma-
tion, infection, and iron overload (754). Although hepcidin may
be a sensitive marker for iron utilization and absorption, few
data are available on hepcidin concentration and its relation to
established iron markers in population studies. The relative
strengths/weaknesses of other biomarkers of iron were previ-
ously reviewed (753).

Links between inflammation and iron biomarkers:

current guidance. With the use of data obtained from
NHANES for women 20–49 y of age, the following associations
were reported (755):

d Aweak positive association was seen between body iron and
CRP (body iron 0.7 mg/kg higher when CRP is >5 mg/L)

d A strong positive association between ferritin and CRP
(24% higher ferritin concentrations when CRP is >5 mg/L)

Text Box 41 Implications of low-grade/chronic inflammation: case study—elderly
d Many older adults exhibit a low-grade proinflammatory state characterized by increased concentrations of cytokines and
APPs (690).

d Potential causes include the following (691):
o increased production of ROS,
o development of disease-specific pathological processes,
o increased fat mass,
o decreased sex hormones, and
o increased senescent cells
d Chronic infections may also produce low-grade elevation of many of these same mediators.
d Epidemiologic studies have used inflammatory markers such as IL-1, IL-6, and TNF and their receptors to examine the
associations between adverse health outcomes in older adults and the chronic proinflammatory state.

d Although serum cytokines were once thought to be simple markers of inflammatory processes, increasing evidence suggests
that some of these markers, including IL-6 and TNF, can have a powerful pathophysiologic impact on cells and tissues over
time (498, 692, 693).

d Studies have shown significant associations between these markers and reduced physical function (694–698), cognitive
function (699–704), incident mobility disability (705–707), and dementia (708, 709–712).

TABLE 11 Summary of commonly used biomarkers of inflammation1

Biomarker of
inflammation Normal range Settings where used

Clinical vs.
population use

Use in resource-limited
settings Comments

WBC 4–11,000/μL Acute inflammation (usually infection) Clinical Y Varies by age

CRP 0.001–10 mg/L Acute, subclinical, chronic Clinical, population Y

AGP 0.6–1.0 g/L Subclinical Population Y

ESR 0–30 mm/h Acute, subclinical, chronic Clinical Y Increases with age and

higher in females

Albumin 30–50 g/L Acute inflammation (usually infection) Clinical N Decreased during pregnancy

PCT #0.5 μg/L Acute inflammation (usually infection) Clinical N

IL-6 — Chronic Population N Use in aging

TNF-aR1 — Chronic Population N Use in aging

1 AGP, a1-acid glycoprotein; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; N, no; PCT, procalcitonin; TNF-aR1, TNF-a receptor 1; WBC, white blood cell; Y, yes.
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d A weak positive association between sTfR and CRP (4%
higher sTfR concentrations when CRP is >5 mg/L) (755)

Although the first 2 associations remained significant after
controlling for certain covariates, the association for sTfR was
no longer significant after controlling for age, sex, race-ethnicity,
smoking, supplement use, fasting, and estimated glomerular
filtration rate (eGFR). Of note, this population had a low
prevalence of elevated CRP (;20%) and ID (10–19%); thus,
these relations may be not be directly applicable to populations
with a high prevalence of these conditions. Text Box 45 contains
a summary of suggested approaches to iron assessment for
populations.

Anemia: hemoglobin. Anemia remains a major and com-
plex global health problem affecting one-quarter of the world�s
population, most commonly women and preschool-aged chil-
dren (756). One of the Global Targets for 2015 byWHOmember
states is a 50% reduction in the prevalence of anemia among
women of reproductive age (757). The causes of anemia include
inadequate dietary intake of micronutrients, most prominently
iron, increased bodily demand for iron, inherited hemoglobinop-
athies, and infections (758). Hemoglobin is the main biochemical
indicator of anemia and can be easily measured in surveys and in
clinical settings by using a portable hemoglobinometer, such as the
HemoCue (Radiometer Group) (759).

Although the relation between current or recent illness and
anemia, the so-called ‘‘anemia of infection,’’ has been well
characterized (760–763), the relation between biomarkers of
inflammation and the prevalence of anemia is less studied.
Several studies reported statistically significant relations be-
tween APP and anemia as shown in Text Box 46.

The current evidence suggests an association between APP
and anemia, although the strength of the association appears to
be less than that found between APP and other nutrient-specific
biomarkers (e.g., serum ferritin). In addition, there may be other
factors that may influence the strength of the association of APPs
and anemia within a population, such as the overall prevalence
of both anemia and inflammation. Although expert groups have
provided guidance on adjusting hemoglobin concentrations for
altitude and cigarette smoking, no such guidance has been
provided on how to account for APPs.

A need exists for more research on the association between
inflammation and anemia. In the interim, some authors have
recommended that cross-sectional surveys that collect informa-
tion on anemia and markers of inflammation present the
prevalence of anemia both among those with and without

inflammation, in addition to the overall prevalence of anemia
and the prevalence of inflammation, in order to allow for
comparisons between populations (764, 765).

c. Vitamin A. VAD remains a significant public health
problem, primarily in preschool-aged children and pregnant
women (770). The epidemiology of VAD was discussed in the
WG 2 review and indicators of vitamin A have been reviewed
extensively (BOND review) (30). Text Box 47 provides a
summary of currently available biomarkers of vitamin A.

Influence of inflammation on vitamin A assessment. As
outlined by WGs 1 and 2 and above, RBP is a negative APP (i.e.,
RBP decreases in the presence of an APR). Because RBP is the
carrier protein for retinol, retinol concentrations also decrease in
the presence of inflammation. Consequently, inflammation
affects the interpretation of serum retinol and RBP.

Thurnham et al. (716) carried out a meta-analysis to
calculate factors to adjust serum retinol concentrations for the
presence of inflammation using CRP and AGP to define the stage
of inflammation. In the presence of elevated CRP concentrations
(>5 mg/L), serum retinol concentrations were 13% lower; in the
presence of elevated CRP and AGP (>1 g/L), serum retinol
concentrations were depressed by 24%, and elevated AGP
concentrations alone decreased serum retinol concentrations by
11% compared with the normal (presumably uninflamed)
group. Recently, the same factors were used to adjust RBP
concentrations because of the good correlation between RBP
and retinol. In NHANES data from adults, very similar results
were obtained because there was a weak negative association
between serum retinol and CRP (;10% lower concentrations of
serum retinol when CRP was >5 mg/L) (755). This association
was true for crude data as well as after controlling for age, sex,
race/ethnicity, smoking, supplement use, fasting, and eGFR.

Although this proposed adjustment seems to work under
conditions of nonspecific inflammation, this approach may not
be applicable in all settings. For example, in a recent study from
a malaria-endemic area, concentrations of RBP, after adjustment
for inflammation, showed residual differences of 20.09 mmol/L
between apparently healthy preschool-aged children with and
without Plasmodium parasites. This seems to indicate that the
meta-analysis correction for inflammation may not completely
adjust concentrations when malaria, as indicated by malaria
parasitemia, is reported (774).

Because human milk has been suggested as a potentially
useful biomarker of vitamin A status of women and, by
extrapolation, of their children and potentially other groups

Text Box 42 Summary of common biomarkers of inflammation
d CRP remains the most commonly used biomarker of inflammation, both in clinical settings and to evaluate inflammation in
populations.

d Several portable assays for CRP are available, which makes it a useful biomarker in resource-poor settings.
d Biomarkers such as PCT offer potentially more sensitive options compared with CRP and may be useful clinically to
distinguish between bacterial and viral infections.

d In populations, AGP when measured together with CRP may be useful to detect subclinical inflammation.
d The use of ESR is not recommended in population settings, because several exogenous factors can affect values, and
numerous population-specific cutoffs are therefore needed.

d Cytokines, such as TNF and IL-6, may have utility in detecting chronic inflammation in certain populations, such as the
elderly. However, their routine clinical or programmatic use in populations has yet to be defined.

d Defining cutoffs for inflammatory biomarkers is an urgent research priority, in particular for clinical practice.
d These cutoffs may depend on the setting and nature of the target population as well as how they are used to account for the
effect of inflammation on nutrition biomarkers.
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within the population (324), it is useful to explore the potential
impact of inflammation on the use of breast-milk vitamin A
concentrations and interpretation. To date, limited evidence
suggests that human-milk vitamin A is not susceptible to the
influence of inflammation (775). However, recent data from a
subset of women recruited as part of a national survey in
Cameroon indicate that human-milk vitamin A concentrations
(casual samples at $1 mo postpartum) were associated with
CRP, and this association seemed to be explained by a decrease
in plasma RBP (776). The overall relation between inflamma-
tion, specific biomarkers such as CRP and human-milk vitamin
A remains unresolved. In part, the ability to more definitively
delineate this relation will be contingent on comparisons
between populations of low vs. high prevalence of VAD.

d. Zinc. The importance of zinc to health and, more
specifically, the immune system and the APR was described by
WGs 1 and 2 and reviewed recently (371). With specific regard

to zinc assessment, the current view of the international nutrition
community as represented by the International Zinc Nutrition
Consultative Group and WHO is that serum or plasma zinc
concentration is the primary indicator for use in the assessment of
zinc status of a population (375). Potential factors influencing the
interpretation of serum/plasma zinc concentrations include age,
sex, time of day of the blood collection, and the fasting status of
the individual (371). Cutoffs have therefore been established for
different age and sex groups and blood sampling conditions (777).
In addition to plasma/serum zinc, a number of other biomarkers
(listed in Text Box 48) have been identified and are at various
stages of viability for either clinical or population-based use.With
the exception of plasma/serum zinc, most are not widely used
either clinically or for population-based surveillance.

Influence of inflammation on zinc assessment. As far as
the potential impact of inflammation, it has been reported that
zinc is shifted from the bone marrow into the liver during the

Text Box 43 Specific signals that inflammation may need to be considered in the context of nutrient assessment
d The type of inflammation (acute vs. chronic, clinical vs. subclinical, and etiologies of inflammation) may also be important to
consider when evaluating the impact of inflammation on nutrition biomarkers.

d Acute inflammation is most commonly indicated by the presence of the following:
o systemic bacterial infections,
o tissue injury, and
o allergies caused by food and environmental exposures.
d Conditions most often associated with the presence of chronic inflammation include the following:
o gastrointestional disturbances such as celiac and inflammatory bowel diseases and environmental enteritis,
o obesity,
o arthritis,
o asthma, and
o NCDs including diabetes, cancer, and CVD.
d Other individual factors, such as age, socioeconomic status, diet, and breastfeeding may influence the APR and therefore the
pattern of inflammation.

d Specific environmental conditions may predict the presence of inflammation, including conditions found in resource-
constrained settings/LMICs such as poor sanitation, poor water quality, and food safety concerns.

d In postpartum women, APPs remain elevated for some weeks after delivery.

Text Box 44 Currently available indicators of iron status
Iron stores
d Bone marrow iron
d Ferritin
d Body iron stores or transferrin receptor (TfR):ferritin ratio
Iron supply
d Serum/plasma iron
d Total iron-binding capacity
d Transferrin saturation
d EP or ZPP
d Reticulocyte hemoglobin concentration
Functional iron deficit
d sTfR
d Hemoglobin
d Hematocrit (or packed cell volume)
d MCV
d Mean cell hemoglobin
d RBC distribution width
Experimental biomarkers
d Hepcidin
d Non–transferrin-bound iron
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APR (779). As a consequence, plasma/serum zinc concentrations
are decreased and do not reflect zinc intakes in individuals
experiencing infections/acute inflammation. The degree to
which inflammation reduces serum/plasma zinc concentrations
and approaches to account for this effect are unclear. In a
multisite cohort study in children in Africa, for every increment
in CRP concentrations by 1.0 mg/L, plasma zinc was 1.0 mmol/L
lower (780). To date, a biomarker has not been identified that
differentiates dietary ZnD from a response to infection/
inflammation (374, 781). One potential alternative might be hair
zinc concentrations, which were observed to be stable during
acute infections in a few studies (782).

e. Folate. The role of folate in public health has been
reviewed extensively (783). Of the currently available bio-
markers, the most commonly used are serum folate, RBC folate,
and plasma homocysteine concentrations. Text Box 49 provides
a list of available biomarkers for assessing folate.

Influence of inflammation on folate assessment. The
reported relation between markers of inflammation and folate
biomarkers has been inconsistent in the literature. Weak
associations between CRP, AGP, and serum or erythrocyte
folate have been reported but not consistently. Among adults
in NHANES, there was a weak negative association between
serum folate and CRP (;5% lower concentrations of serum
folate when CRP is >5 mg/L) and a weak positive association
between RBC folate and CRP (;5% higher concentrations
when CRP is >5 mg/L) (755). Plasma total homocysteine,

which is elevated in deficiencies of folate, vitamin B-12,
riboflavin, and vitamin B-6, may also be elevated in chronic
inflammation states (784).

f. Vitamin B-12. The role of vitamin B-12 in health and
disease was previously reviewed (785, 786). The available
biomarkers of vitamin B-12 were also recently reviewed (785)
and are summarized in the Text Box 50.

Influence of inflammation on vitamin B-12 assessment.

None of the vitamin B-12 specific biomarkers, serum vitamin B-
12, holotranscobalamin, and MMA, are correlated with CRP or
AGP, even in populations with a high prevalence of acute
infection (787). Comments on total homocysteine are the same
as for folate in the preceding section.

g. Iodine. Iodine is a trace element required by the thyroid
gland to produce thyroxine and tri-iodothyronine, thyroid
hormones necessary for multiple processes related to normal
growth and development. The biology including a review of all
available biomarkers (Text Box 51) of iodine was recently
completed (788).

Influence of inflammation on iodine assessment. Lim-
ited data exist to suggest an association between inflammation
and urinary iodine. In NHANES (adults), a weak positive
association was observed between urine iodine and CRP (;8%
higher concentrations when CRP is >5 mg/L) for crude data, but
the association was no longer significant after controlling for
age, sex, race/ethnicity, smoking, supplement use, fasting, eGFR,
and urine creatinine (755). Illness, including infection, sepsis,

Text Box 45 Approaches to iron assessment for populations
d The recommendation of the WHO/CDC consultative group for population-based iron assessment was a combination of the
following:

o hemoglobin (with due recognition that there are other causes of anemia besides ID),
o serum ferritin and sTfR, and, where possible,
o the serum concentration of an APP (e.g., CRP or AGP) (26).
d In places where there is little inflammation, serum ferritin concentrations are recommended as the best indicator of ID.
d If infectious diseases are seasonal, the survey should be done in the season of lowest prevalence.
d Another approach to adjust concentrations of ferritin for the presence of inflammation is to use correction factors based on
CRP and AGP measurements, as proposed by Thurnham et al. (272).

Text Box 46 Significant relations between APP and anemia
d In a national cross-sectional survey in Papua, New Guinea, preschool-aged children, the prevalence of anemia was higher
among those with elevated CRP, AGP, or both. Similarly, anemia was higher in the incubation and early convalescence stages
of inflammation compared to children with no inflammation (764). There was a stronger association between elevated CRP
and anemia than between AGP and anemia. Children with inflammation had a prevalence of anemia;1.5 to 1.7 times higher
than those without inflammation.

d A national cross-sectional survey in Nicaragua of preschool-aged children found that children with an elevated AGPwere 1.4
times more likely to have anemia, controlling for age and mother�s educational level (765).

d In Marshallese children aged 1–5 y anemia prevalence was significantly higher among those with an elevated CRP or AGP
than in those with a normal CRP/AGP (766).

d In a study in HIV-positive post-partum Zimbabwean women, those with an elevated AGP had significantly lower
hemoglobin concentrations than those without elevated AGP (767).

d Nonmalarial inflammation (defined as elevated CRP and/or AGP without malaria) was the third most important risk factor
for anemia in preschool-aged Kenyan children, after malaria and ID, controlling for multiple nutritional and demographic
factors (768).

d Wieringa et al. (357) reported that infants with an elevated AGP had a slightly higher prevalence of anemia, although this
was not statistically significant, and there was no association between elevated CRP and anemia.

d Gamble et al. (769) found no association in preschool-aged children (ages 1–5 y) between anemia and a combined marker of
inflammation based on TNF-a and AGP.

INSPIRE Project 1083S

 at LIV
E

R
P

O
O

L S
C

H
O

O
L O

F
 T

R
O

P
IC

A
L M

E
D

IC
IN

E
 on M

ay 26, 2015
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


trauma, and chronic diseases, can cause alterations in tri-
iodothyronine, tetra-iodothyronine, and thyrotropin levels, even
in individuals with normal underlying thyroid function (789).

h. Vitamin D. VDD is common in much of the world. The
risk or prevalence is higher in dark-skinned people, infants/young
children, pregnant women, the elderly, and in women who are
covered for religious reasons as well as in northern latitudes,
particularly after winter. As outlined by WGs 1 and 2, an
expanding body of evidence attests to the importance of vitamin
D to immune function and the inflammatory response, with
potential therapeutic applications for acute and chronic infectious
and inflammatory diseases (790). Of the currently available
biomarkers (Text Box 52), 25-Hydroxy vitamin D [25(OH)D]
has been accepted as the most reliable indicator, particularly of
exposure (791).

Influence of inflammation on vitamin D assessment.

Although considerable evidence exists to associate concen-
trations of 25(OH)D with various inflammatory states and
CRP (792), a cause or effect relation has not been established.
Data on the influence of inflammation on biomarkers of
vitamin D status are limited. Among adults from NHANES,
there was a weak negative association between serum 25(OH)D
and CRP (;5% lower concentrations when CRP is >5 mg/L).
This was true for crude data as well as after controlling for age,
sex, race/ethnicity, smoking, supplement use, fasting, and eGFR
(755).

i. Summary of impact of inflammation on nutrient

biomarkers. The impact of inflammation on nutrient bio-
markers is well described for several key nutrients, such as
iron and vitamin A. For many nutrients (e.g., vitamin D or
iodine), there appears to be an association between their
biomarkers and markers of inflammation. However, it is not
at all clear whether this reflects a cause or effect relation.
More study is needed to refine our understanding of these
relations. In the interim, because of the ubiquitous nature of
acute/chronic inflammation and its effects on nutrient bio-
markers, WG 4 suggested that the routine assessment of
inflammatory status be included along with nutrient assess-
ment. This will enable a more reliable and valid interpretation

of the results of micronutrient status assessment of both
patients and populations.

The WG recognized that the inflammatory response may be
associated with higher or lower nutrient biomarker concentra-
tions (i.e., it will be difficult to determine a cause or effect
relation). In addition, the magnitude of effect in different
settings and how to account for the effects of individual factors
remain important research questions. Table 12 summarizes the
effects of inflammation on some of the key nutrient biomarkers
used in both clinical and public health settings. Additional
details on the assessment, cutoffs, and interpretation of nutrient
biomarkers are provided in the BOND reports found on the
BOND website (30).

VII. How to account for the potential impact of inflamma-

tion on biomarker selection, use, and interpretation. As
outlined above and by WGs 1–3, the relation between inflam-
mation and nutrient biomarkers has a significant impact on the
selection, use, and interpretation of nutritional biomarkers for
assessment of micronutrient biomarkers. The complications
caused by these relations can lead to incorrect diagnosis in
individuals, as well as over- or underestimation of the prevalence
of micronutrient deficiencies in a population; furthermore,
inflammation may affect the ability to accurately monitor and
evaluate the impact of nutritional interventions (357).

Although no current standardized and universally accepted
method or methods for accounting for inflammation exist,
several approaches have been proposed. The suggested ap-
proaches may vary by nutrient biomarkers as well as in the
setting used (e.g., clinical care vs. public health or population
surveys). As discussed previously, the issue of bias is important in
comparing approaches to account for the impact of inflamma-
tion on nutrient biomarkers. For example, individuals who have
a higher prevalence of inflammation may also have a higher
prevalence of micronutrient deficiencies. The following sections
will explore specific aspects of nutrient assessment from the
perspective of clinical/point of care vs. population assessment,
followed by an overview of the relative strengths and weaknesses
of proposed solutions to this conundrum.

Text Box 47 Currently available indicators of vitamin A
d Night blindness: primary functional biomarker
d Serum retinol:
o Retinol in serum measured by HPLC is the most widely used and accepted indicator for vitamin A status.
o Concentrations of retinol ,0.7 mmol/L in children aged 6–72 mo indicates VAD (770, 771).
o Retinol is homeostatically regulated and is not a good indicator of status when there are adequate liver stores of vitamin A
(770).

d RBP:
o RBP is more stable than retinol.
o It can be measured by using an ELISA technique, which is a much simpler method than HPLC (772).
o RBP typically uses the same cutoff as for retinol, although population-specific cutoffs may be advisable becausee the RBP:
retinol ratio is consistently ,1:1 (773).
o Because it correlates well with retinol, RBP measurements can be used to estimate vitamin A status.
d Breast-milk retinol (cutoff of #1.05 mmol or 8 mg/g milk fat) may reflect recent consumption rather than long-term status
(324).

d Relative dose response (RDR) (cutoff of $20%) (771)
d Modified relative dose response (MRDR; cutoff ratio of $0.06)
o Both RDR and MRDR are susceptible to inflammation.
o MRDR and RDR tend to be used more in research situations rather than in population studies (771).
d Retinol isotope dilution: although not widely used clinically or programmatically, this is the most sensitive biomarker of
vitamin A status to liver reserves of vitamin A.
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a. Considerations for clinical settings/point of care. As
reviewed by WG 3, infection and inflammation can affect
individual nutritional status through several mechanisms,
including suppression of appetite, altered nutrient absorption
and excretion, increased caloric requirements through altered
metabolism, and nutrient-drug interactions. In a study that
estimated the magnitude of the effect of inflammation on plasma
micronutrient concentrations of hospitalized patients, for each
micronutrient the change in plasma concentrations varied mark-
edly from patient to patient (793). The authors concluded that, in
the presence of moderate or severe systemic inflammatory
response (CRP >20 mg/L), plasma concentrations of selenium,
zinc, and vitamins A, B-6, C, and D were clinically uninterpret-
able. However, it was possible to interpret these micronutrients if
the systemic inflammatory response was less severe: for zinc when
CRP is <20mg/L, for selenium and vitamins A andDwhenCRP is
<10 mg/L, and for vitamins B-6 and C when CRP is <5 mg/L. In
clinical settings, it may be best to re-evaluate the nutritional status
of individuals when the inflammation has resolved. However,
certain chronic disease conditions, such as short gut syndrome,
feature a high prevalence of subclinical inflammation as well as
rapid transit and malabsorption of nutrients, and thus a high risk
of multiple-micronutrient deficiencies (794). Similarly, children in
resource-poor settings who are exposed to frequent infections
with associated anorexia are at risk of long-standing malnutrition
of clinical significance. In such settings, regular, frequent moni-
toring of micronutrient status is needed and should be assessed
with measurements of APPs, such as CRP.

b. Considerations for population-level surveys. Population-
level estimates of micronutrient status are important for the

implementation, monitoring, and evaluation of nutrition pro-
grams, as well as for comparisons between countries. Population-
level interventions to address micronutrient deficiencies focus on
the prevention of deficiency and shifting the population distribu-
tion of a biomarker (or reducing overall prevalence) rather than
treating high-risk individuals. The effects of inflammation on
population-level estimates of nutrition status are significant and
can lead to distorted estimates of micronutrient deficiencies, either
overestimating or underestimating the true prevalence, if inflam-
mation is not accounted for in the analysis (357). Furthermore,
the extent of the effect likely depends on the prevalence of
inflammation and prevalence of the deficiency in the population.

Examples of where accounting for the effect of inflammation
on micronutrient prevalence estimates would be helpful include
the following:

d A country assesses the prevalence of a micronutrient defi-
ciency, finds the prevalence is high, and implements a
population-level intervention program, such as fortification,
micronutrient powders, or supplementation. Another survey is
performed at a later time to see if the prevalence of the
micronutrient deficiency has decreased. If the prevalence of
APPs differs between the 2 surveys, this could potentiallymask
an apparently effective intervention program or make an
intervention appear to be successful when in fact it was not.

d In comparing countries or geographic areas within a
country, decisions may be made to start intervention
programs and/or allocate resources in areas with a higher
prevalence of a micronutrient deficiency. If the level of
inflammation differs between geographic areas, this may
affect the prevalence of the micronutrient deficiency and

Text Box 48 Currently available zinc biomarkers/indicators
Plasma/serum zinc
d Most widely used
d May reflect recent meals rather than usual dietary intake
d Affected by inflammation
Potential alternatives
d Hair zinc
o Potential alternative to plasma/serum zinc because it appears to be unaffected by inflammation
o Offers technical challenges (sample collection, contamination, etc.)
d Urinary zinc
Emerging biomarkers
d Nail zinc
d Zinc-dependent proteins (e.g., metallothioniene)
d Oxidative stress and DNA integrity
d Zinc kinetics
d Functional biomarkers (e.g., taste acuity, neurobehavioral function)
Not useful
d Erythrocyte and leukocyte zinc (778)
d Zinc-dependent enzymes

Text Box 49 Currently available folate biomarkers/indicators
d Serum folate
d RBC folate
d Plasma total homocysteine
d Urinary folate/folic acid
d Urinary and serum p-aminobenzoylglutamate (pABG) and p-acetamidobenzoylglutamte (apABG); these are catabolites of
folate oxidative metabolism.
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result in inappropriate program interventions and/or allo-
cation of resources.

Before deciding on approaches to account for inflammation,
issues related to biomarker assessment must first be addressed,
as follows:

d To assess the prevalence of micronutrient deficiencies, the
methods used to collect, store, transport, and analyze the
specimens must be performed with high quality. There are
generally expert groups that provide guidance on the
laboratory tests available, their advantages and disadvan-
tages, laboratory quality assurance programs, and cutoff
values to identify abnormal concentrations (e.g., WHO
expert groups, International Council for Control of Iodine
Deficiency, BOND).

d The quality of CRP andAGPmeasurements is also important,
as is ensuring the quality of laboratory methods. One area
that is in need of further investigation is to assess the relation
between APPs and micronutrient biomarkers, each on their
continuous scale (which may need to be transformed), and
determine if there are clear cutoffs for the APP or if alternative
methods to account for the APPs that do not rely on cutoffs
are needed. Currently, one cutoff is used for CRP and/or for
AGP and applied equally to all micronutrient biomarkers
thought to be affected by inflammation, but this approach
would benefit from further investigation.

d Some surveys measure only CRP, some only AGP, and some
collect both. Strategies on how to deal with a variety of
approaches based on these APPs from existing surveys are
needed. If resources are available, measuring both CRP and
AGP is preferred. If limited, either CRP or AGP should be
measured, although further investigation is needed to
determine, for each nutrient biomarker, whether CRP alone,
AGP alone, or some combination of the 2 can account for
inflammation.

c. Review of proposed approaches. Potential approaches
to account for inflammationwill be discussed in detail and include
ignoring inflammation, exclusion of individuals with inflamma-
tion, adjustment of the biomarker cutoff values, correction
factors, statistical approaches, and others. Again, the approach
will depend on whether applied in a clinical or public health
setting and the context or underlying prevalence of inflammation.

i. Ignore inflammation. This approach is used if APPs are
not measured or APPs are measured but ignored in the analysis
of nutritional status. Although this approach is currently used

for some biomarkers of micronutrient status, it may result in an
under- or overestimate of the prevalence of that micronutrient
depending on the biomarker and the context. For the context
issue, this would depend on the prevalence of the elevated APP
and the strength of the association between the APP and the
micronutrient biomarker. If the prevalence of the elevated APP is
low, such as in many developed countries, then ignoring the
prevalence of an elevated APPwould likely have a minimal effect
on the prevalence of the micronutrient deficiency. In populations
with a high prevalence of elevated APPs, this could have a large
impact on the prevalence of the micronutrient deficiency. In
comparing 2 cross-sectional surveys within a country, it is often
assumed that the prevalence of an elevated APP tends to change
little within a country. However, there is little information
available about how the prevalence of elevated APPs varies
within a country over time. In countries with a low prevalence of
elevated APPs this is probably less of an issue. However, in
countries with higher prevalence of elevated APPs, one might
expect that the prevalence of elevated APPs may have seasonal
variability due to the effect of infectious diseases and perhaps
other factors that affect APP concentrations, such as programs
to treat infectious diseases. For example, in 4 cross-sectional
surveys conducted in preschool-aged children in the same 60
villages in Kenya in 2007–2010, the prevalence of elevated CRP
varied from 10.5% to 48.2% (795).

ii. Exclusion. In this approach, those with an elevated APP
are excluded from the analysis. An important issue is the cutoff
used to define an elevated APP. For example, although a cutoff
for CRP of >5 mg/L is typically used by investigators to define
subclinical inflammation in nutrition surveys (716), a lower
cutoff of >3 mg/L is recommended to define cardiovascular risk
(796). Furthermore, it is not clear whether APP cutoff values
should vary by nutrition biomarkers. The effect of the exclusion
approach can be quite variable depending of the prevalence of
the elevated APP and the strength of the association between the
APP and micronutrient biomarker. In some countries, the
prevalence of elevated APPs can be very low and therefore
excluding them would have little effect on the prevalence of
micronutrient deficiencies. However, in some areas, the preva-
lence of elevated APPs can be quite high, up to 60% or higher.
Excluding those with inflammation can affect precision and,
most likely, validity. For precision, in areas with a high
prevalence of elevated APPs, the exclusion approach can
dramatically lower the sample size and therefore reduce the
precision of the prevalence estimate of the micronutrient

Text Box 50 Currently available vitamin B-12 biomarkers/indicators
d Serum/plasma total vitamin B-12
d Serum holotranscobalamin
d Serum/plasma methylmalonic acid (MMA)
d Plasma total homocysteine

Text Box 51 Currently available iodine biomarkers/indicators
d Urinary iodine concentration
d Thyrotropin
d Thyroglobulin
d Tri-iodothyronine and tetra-iodothyronine
d Goiter
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deficiency. Concerning validity, individuals with an elevated APP
may be systematically different from those with a normal APP. In
some settings, it is likely that those with an elevated APP are of
lower socioeconomic status (SES), and by excluding them, the
estimate of the prevalence of micronutrient deficiencies would be
biased. For example, in Laos, the prevalence of elevated CRP in
children was significantly different according to maternal educa-
tion (797). Among preschool-aged children in Papua, New
Guinea, those with an elevated CRP, AGP, or both were younger
and more likely to be stunted or underweight (764).

iii. Use of different micronutrient deficiency cutoff

values for those with and without an elevated APP. In this
approach, one cutoff value for micronutrient deficiency is used for
those without an elevated APP and a different cutoff used for
those with an elevated APP. For example, for serum ferritin, the

cutoff for preschool-aged children is <12 mg/L; however, if the
child is known to have inflammation, the cutoff value of <30 mg/L
has been suggested (798). This is problematic because it does not
account for varying degrees of inflammation (799). Furthermore,
having different cutoffs may be confusing, because this does not
provide a distinct international standard. One issue with this
approach is that the cutoff values may differ by target group and
even perhaps the context of the survey—for example, one
performed in an area with a high level of malaria vs. a survey
performed in an area without malaria—or may differ between
developed and developing countries. Therefore, for this approach
to be useful, context-specific cutoffs may be needed.

iv. Four-level inflammation correction factor approach.

This approach uses concentrations of CRP >5 mg/L and AGP
>1 g/L to create the following 4 inflammation categories (272):

Text Box 52 Currently available vitamin D biomarkers/indicators
d 25(OH)D:
o generally recognized as the best currently available biomarker
o reflects intake
o functional relevance not clearly established
d Functional biomarkers:
o parathyroid hormone
o calcium absorption
o bone resorption
o bone mineral density

TABLE 12 Summary of key nutrient biomarkers1

Nutrient
Commonly used

biomarker/indicators
Magnitude and direction
of inflammation effect

Settings where
used Notes

Iron Ferritin +++ Clinical, research, population

sTfR + Research, population sTfR assays are not yet standardized and compare poorly

Hemoglobin Clinical

Body iron + Research, population

Ratio of TfR:ferritin + Research

TfR index + Research, clinical

ZPP + Clinical, population

Hepcidin 0 Research

Vitamin A Retinol 2 Clinical, research, population

RBP 2 Research, population

Breast-milk retinol Research

Retinol dose response test Research

Zinc Serum/plasma zinc 2 Clinical, population Not reliable in clinical settings if patient inflamed

Folate Erythrocyte folate + Clinical, population

Plasma or serum folate 2 Clinical, population

Vitamin B-12 Serum/plasma total cobalamin 0 Clinical, population

Serum holotranscobalamin Research Superior diagnostic performance of holotranscobalamin

is controversial

Plasma/urine MMA 0 Clinical, population MMA assay is more expensive

Plasma total homocysteine + Clinical Elevated in both folate and vitamin B-12 deficiency

Iodine Urinary iodine 0 Population No known association with inflammation

Vitamin D 25(OH)D 2 Clinical, population

Vitamin B-6 Plasma pyridoxal 5-phosphate 2 Research, population

Vitamin C Serum ascorbic acid 2 Research, population Freshly prepared serum needs to be promptly acidified with

meta-phosphoric acid and frozen to stabilize ascorbic acid

1 MMA, methylmalonic acid; RBP, retinol binding protein; sTfR, soluble transferrin receptor; TfR, transferrin receptor; ZPP, zinc protoporphyrin; 0, no change; 25(OH)D,

25-hydroxyvitamin D; 2, decrease; +, increase; +++, major increase.
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d Reference: normal CRP and AGP concentrations
d Incubation: CRP concentration is elevated but AGP is
normal

d Early convalescence: both CRP and AGP are elevated
d Late convalescence: CRP is normal but AGP is elevated

A number of correction factors can then be derived on the basis
of these 4 categories. For example, the ratio of geometric means of
reference group (neither CRP nor AGP is increased) to those of the
respective inflammation groups is calculated. The correction
factor approach groups people with subclinical inflammation into
‘‘risk’’ categories depending on their relation with the time of
initial infection and the period of clinical disease. This approach is
suitable where the subjects are apparently healthy, that is, they
show no evidence of symptoms requiring medical intervention
and only demonstrate subclinical inflammation. For serum
ferritin, correction factors calculated as part of a meta-analysis
were also proposed (272). Overall, for the studies included in the
meta-analyses, inflammation increased ferritin by;30% and was
associated with a 14% (95% CI: 7%, 21%) underestimation of
ID. When applying the meta-analysis correction factors in an area
endemic for malaria, concentrations of ferritin, after adjustment

for inflammation, showed a residual difference of +12 mg/L

between apparently healthy preschool-aged children with and

without Plasmodium parasites. This observation indicated that
the meta-analysis correction for inflammation might not com-

pletely adjust concentrations when malaria is reported (774). The

correction factor approach has raised awareness of the effect of
APPs on biomarkers of micronutrient status and has been applied

frequently. Advantages of this approach are that it is easy to apply

and is preferred in many situations to ignoring inflammation or

exclusion. The disadvantages of this approach include the
following: 1) the survey must have both CRP and AGP, 2) it

does not account for possible effect modifiers and confounders (e.

g., age, sex, SES), 3) it is applied assuming the current cutoffs for
CRP and AGP are applicable to all biomarkers of micronutrient

status, and 4) the net effect of the correction factor is that it results

in prevalence estimates of micronutrient status similar to the
exclusion approach when internal correction factors are applied.

Compared with the exclusion approach, the 4-category inflam-

mation model has better precision but is still subject to the

potential biases that may occur when the exclusion approach is
applied.

TABLE 13 Summary of approaches to account for inflammation1

Approach Description Settings where useful Pros Cons Notes

Ignore inflammation APPs not measured or

nothing done to ac-

count for APPs

1) Nutrient biomarkers

that have no associa-

tion with inflammation,

2) settings with low

prevalence of inflam-

mation

Easy Biased estimate of nutri-

ent status

May be ok when compar-

ing 2 surveys in the

same setting if concen-

tration of APP is stable

Exclusion Remove individuals with

elevated APPs

Settings with low preva-

lence of inflammation

Easy 1) Relies on concrete APP

cutoffs, 2) may lose

sample size (precision),

3) may introduce bias

(validity)

Need standard cutoffs for

APPs; exclude based on

which APP? (CRP 6

AGP)

Change nutrient biomarker

cutoff

Use different cutoff for

nutrient indicator for

those with inflamma-

tion (e.g., ferritin ,30

ug/L)

Single population with

fixed effects

Easy 1) Does not account for

varying degrees of in-

flammation, 2) cutoffs

may differ by target

group

Cutoffs need to be defined

Four-level inflammation

correction factors

Use CRP and AGP to create

4 categories (no inflam-

mation, incubation, early

convalescence, and late

convalescence)

No demographic differ-

ences between those

with and without sub-

clinical inflammation

Relatively easy 1) Need both CRP and

AGP, 2) does not ac-

count for potential con-

founders and effect

modifiers, 3) produces

similar estimates as

exclusion approach

Individual country CF vs.

meta-analysis CF

Direct standardization Apply weights to preva-

lence estimates

Need to weight by target

group, setting, etc.

May allow for compari-

sons between surveys

Regression modeling Linear regression taking

into account potential

interaction and con-

founding to produce

corrected micronutrient

concentration to pro-

duce corrected micro-

nutrient concentration

that accounts for in-

flammation

Covariates are measured Accounts for continuous

effect of inflammation

on biomarkers

Difficult

1 AGP, a1-acid glycoprotein; APP, acute phase protein; CF, correction factor; CRP, C-reactive protein.
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v. Direct standardization. The direct standardization ap-
proach is commonly applied to comparing mortality statistics
between geographic areas with different age distributions. A
similar approach could be applied to the prevalence of micro-
nutrient deficiencies by standardizing on the prevalence of
elevated APPs. As with mortality statistics, there could be
different standardized weights depending on whether the
country is a developing or developed country. In addition,
there may be different weights depending on the target group.
The approach would be to calculate the prevalence of micro-
nutrient deficiency in those with and without inflammation, then
calculate a weighted prevalence estimate by using a ‘‘standard’’
prevalence estimate of inflammation (e.g., 30%). This approach
does not correct for inflammation per se but allows for a more
valid comparison of surveys over time within a geographic area
or in the comparison of different geographic areas. That is, if the
prevalence of inflammation wasmade to be the same in all surveys
(taking into account development status and target group), a fair
comparison could be made.

vi. Regression modeling. In the analysis of survey data, the
relation between the micronutrient biomarker and APPs could
be investigated through the use of linear regression. Linear
regression is a statistical approach tomodel the relation between a
scale dependent variable y and one or more explanatory variables
denoted x. There may be a need to transform the micronutrient
biomarker, so that it has an approximately normal distribution
(800). A nonlinear impact of APPs on micronutrient biomarkers
can also be accommodated by using generalized additive models
(801). Regression modeling could also take into account potential
interaction (i.e., the relation between the micronutrient biomarker
and the APP is modified by a third factor) and confounding. The
regression model could include, for example, covariates such as
age, sex, anthropometry, and SES. Covariates can play 2 different
roles in the regression models: they could predict the true nutrient
concentration (i.e., nutrient concentrations under no inflamma-
tion) and they could modify the effect of inflammation on nutrient

concentration. The modeling process would yield an adjustment
equation for the micronutrient biomarker and would be applied
to those with the elevated APP in order to remove the impact of
inflammation. For example, to calculate an adjusted ferritin for
the effects of CRP, one would use the slope of CRP from the
regression as follows: adjusted ferritin = ferritin – CRP 3 slope.

For anemia, a regression approach is commonly used to
adjust individual hemoglobin values to account for altitude
(802). This approach is used at the individual level to categorize
an individual as anemic or not anemic and at the population
level to estimate the prevalence of anemia adjusted for altitude.

Advantages to the regression approach are that it can account
for the impact of covariates, and, unlike the correction factor
approach, it adjusts for the impact of inflammation in a
continuous manner, i.e., the higher the APP, the greater the net
correction. It also does not rely on the use of specific cutoffs for
APPs. If this approach is promising, it may be possible to derive an
equation that would allow for the correction of various micro-
nutrient biomarkers across all surveys, similar to correcting
hemoglobin for altitude. A potential challenge is that the relations
between CRP and/or AGP and different nutritional biomarkers
are nonlinear. AGP increases only slowly after the initial trauma;
therefore, AGP is rarely increased between the time of infection
and the appearance of clinical signs. Thus, elevated AGP
concentrations are only found during convalescence and probably
show a reasonably stable (positive or negative) relation with the
biomarker concentration. In the case of CRP, the concentration of
this protein increases rapidly after infection and biomarker
concentrations change in parallel (e.g., ferritin positively, retinol
and RBP negatively). During convalescence, the relation is
dampened—CRP decreases rapidly whereas some nutritional
biomarkers return to normal more gradually. Thus, although AGP
may lend itself to regression modeling techniques, the relation
between CRP and micronutrients is more complicated because,
depending on the point in time relative to the infection, the
strength of the association might vary.

Text Box 53 Research priorities
d What biomarkers of inflammation should be used in different settings? There is a need to evaluate the utility of composite/
aggregate markers of inflammation. In addition, better biomarkers of chronic inflammation and organ/tissue-specific
biomarkers need to be developed. Research on the strength of the association between each micronutrient biomarker and
CRP and AGP is needed. Somemicronutrient biomarkers may change in response to inflammation more like CRP, somemore
like AGP, and others somewhere in between. What APP cutoffs should be used?

d Investigate the optimal APP cutoff value for each micronutrient biomarker. For each micronutrient biomarker, investigate
various cutoff values for CRP and AGP that have the strongest relation with the micronutrient biomarker. This could be
through receiver-operator characteristic (ROC) approaches or other approaches. It is possible that for each biomarker of
micronutrient status, there could be a different cutoff value of CRP and/or AGP.

d Do the characteristic patterns of change in APPs differ according to inflammation etiologies (e.g., trauma, infection,
subclinical inflammation)?

d Are the type, level, and duration of inflammation important?
d Are there settings where inflammation can be ignored?
d What are potential confounders of inflammation in different settings (age, sex, SES, stunting, malaria, HIV, tuberculosis,
etc.)? In assessing the association between micronutrient biomarkers and APPs, it is important to determine if the association
is modified or confounded by other factors, such as age, SES, infections, and malnutrition. Ignoring effect modification and
confounding could lead to less than optimal ways to account for APPs in assessing micronutrient status.

d What is the role of inflammation on the nutrient content of breast milk?
d Longitudinal studies of otherwise healthy, inflamed individuals (e.g., vaccine response)
d Is a modeling approach feasible and valid to address the inflammation and nutrition association?
d Longitudinal collection of inflammatory and nutrient biomarkers and morbidity data with or without an accompanying
nutrient intervention

d Standardization of inflammatory biomarkers
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Kung�u et al. (803) used regression modeling to adjust for the
influence of APR on iron status indicators. A recent article (804)
developed a regression approach to account for inflammation
and compared it with the correction factor approach. This study
found a similar prevalence of ID by using the 2 approaches.
However, these regression approaches did not model the impact
of covariates. The regression model formulation and the
underlying assumptions for valid adjustment are not clear in
these approaches. More work is needed to develop statistical
approaches that rigorously model the relation between micro-
nutrient markers and APPs, and the impact of the covariates on
them. Such models would possess well-characterized inferential
properties (e.g., bias, SE) and transparent assumptions.

To further evaluate approaches to account for inflammation,
the CDC, the Global Alliance for Improved Nutrition, and the
NICHD have formed a collaborative research group called
Biomarkers Reflecting Inflammation and Nutrition Determi-
nants of Anemia, which is conducting secondary analysis from
nationally and regionally representative nutrition surveys (805).

VIII. Conclusions and research priorities. In summary, al-
though several approaches to account for inflammation have been
proposed in the literature, there is currently no consensus on a
single preferred method (Table 13). Nevertheless, the effect of
inflammation on nutrient biomarkers cannot be ignored, and we
recommend that at a minimum one or more biomarkers of
inflammation be measured in assessments of nutritional status in
populations with a known or suspected moderate-to-high prev-
alence of inflammation (as measured by elevated APPs). Although
there is no current consensus onwhich inflammatory biomarker to
use, we recommend at a minimum measuring CRP, because it is
feasible to measure and data are available on its relation to
nutrient biomarkers. The addition of AGP as a measure of longer-
term inflammation is probably useful in most settings and should
be measured with CRP if resources are available The ideal cutoffs
for CRP and AGP need further investigation and may not be the
same in all settings and for all nutrition biomarkers.

In settings with a considerable prevalence of inflammation, the
exclusion approach may result in biased prevalence estimates and
will reduce precision. The correction factor approach is beingmore
readily used and is relatively simple to apply to data sets. However,
it may not be applicable in all settings. Further investigation into
regression modeling appears to be warranted, because it is less
subject to bias and allows for continuous correction of inflamma-
tion, even at levels below traditionally used cutoffs.

Until more work is done to achieve consensus on approaches to
account for inflammation (see research priorities in Text Box 53),
we recommend presenting data on the prevalence of micronutrient
deficiencies in the population overall, and presented separately for
those with inflammation and those without inflammation.
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