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Abstract—The experimental results from 8 nm diameter sili-
con nanowire junctionless field-effect transistors with gate lengths
of 150 nm are presented that demonstrate on-currents up to
1.15 mA/pm for 1.0 V and 2.52 mA/pm for 1.8 V gate overdrive
with an off-current set at 100 nA/pum. On- to off-current ratios
above 10% with a subthreshold slope of 66 mV/dec are demon-
strated at 25 °C. Simulations using drift-diffusion which include
density-gradient quantum corrections provide excellent agreement
with the experimental results. The simulations demonstrate that
the present silicon-dioxide gate dielectric only allows the gate to
be scaled to 25 nm length before short-channel effects significantly
reduce the performance. If high-K dielectrics replace some parts
of the silicon dioxide then the technology can be scaled to at least
10 nm gatelength.

Index Terms—Electronic transport, 1D, junctionless transistor,
scattering mechanisms, silicon nanowire, simulations.

1. INTRODUCTION

ILICON nanowires have a multitude of potential ap-

plications, including transistors [1], [2], semiconductor
memories [3], photovoltaics [4], thermoelectric generators [5],
biosensors [6], colour selective photodetectors [7] and qubits
[8]. The use of nanowires in commercial products, however,
has to date been limited. A major challenge for transistor
nanoelectronic applications is that, as transistor dimensions are
reduced, it is difficult to maintain a low off-current (/u) whilst
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simultaneously maintaining a high on-current (/o). High I,
is fundamental for high gain and/or high speed in any transistor
technology and is therefore one of the key parameters requiring
optimisation.

Reducing I is significantly harder when transistor critical
dimensions reach levels where quantum mechanical tunnelling,
short channel effects [9] and statistical variability [10], [11]
can be significant. A single gate in a MOSFET transistor be-
comes unable to provide sufficient electrostatic control to fully
deplete carriers in the transistor channel, resulting in increased
Lot values [12]. A variety of new architectures, including ultra-
thin silicon-on-insulator (SOI) [13]-[15], double gate [13], [16],
FinFETs [17]-[21], - [22]/ Q-gate [23], tri-gate [19], junction-
less [2] and gate all-around (GAA) nanowire transistors [24],
[25] have therefore been developed to improve the electrostatic
control of the conducting channel. This is essential since a low
I,¢ implies low static power dissipation, and will therefore im-
prove power management in the multi-billion transistor circuits
employed globally in microprocessors, sensors and memory.

Here we demonstrate a solution by exploiting the quantum
effects of a 1-dimensional (1D) Si nanowire. Whilst 1D devices
have been produced in many material systems [26] here we
demonstrate 1D nanowires in a scalable, top-down Si technol-
ogy. According to the scaling theory of localization [27] metallic
behavior from high doping can only occur in 3D semiconducting
materials and not for systems with lower dimensionality (e.g.
1D nanowire system) where the transistor functionality will be
preserved. Also we demonstrate by moving to 1D, a Si nanowire
doped well above the 3D insulator-metal transition with high o,
whilst simultaneously providing excellent electrostatic control
for a low o and a ratio between the two of 10%.

Conventional MOSFETs running in inversion have a drain
current, Ip, that improves with reduced gate-length L, since
Ip o< £~(V, — Vr)? where 1 is the mobility, V, is the gate
voltage and Vr is the threshold voltage. As the dimensions of
these conventional transistors are reduced, however, higher dop-
ing in the channel is required to suppress short channel effects,
which in turn reduces the mobility, thus reducing Io,. The large
vertical electric field required to form an inversion layer also
significantly reduces the mobility, through interface roughness
scattering [2]. A substantial volume of research is therefore fo-
cused on investigating new high-mobility channel materials to
improve the drive current at lower voltages [28], [29]. Alterna-
tively, the problem can be circumvented by developing a range
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of flat-band devices, such as the junctionless transistor [2]. This
has a 3D wire-like channel rather than planar channel of MOS-
FETs, and acts as a gated resistor that pinches-off the carrier
density of the wire by the application of a gate voltage. It is a
normally-on device but by selecting a gate metal with an ap-
propriate work-function, it can become a depleted, normally-off
device. When switched on, and assuming flat-band conditions,
Ip is due to the resistive behaviour of the channel and is given
by

_ quNpA

I
D I,

Vb ey

where ¢ is the electronic charge, Np is the channel doping
density, A is the channel conducting area and Vp is the drain
voltage. Thus, Ip (= Ion) again improves with reduced L. The
channel doping can also be increased to improve /oy, as the drive
current is directly proportional to the electronic conductivity
of the channel, given by ¢ = quNp. However, this cannot be
increased arbitrarily because the higher the doping the closer the
semiconductor will be to a nearly-metallic system, making the
channel depletion for particular cross section very difficult. For
P-doped Si, this implies a doping limit of 3.5 x 10'® cm~3 [30],
although in small devices such as nanowires, surface state traps
and donor deactivation [31] can actually reduce the activated
carrier density, pushing the critical doping limit above the Mott
criteria.

II. FABRICATION

The transistors were fabricated from 55 nm SOI wafers from
SOITEC with a 145 nm buried oxide. The Si channel was im-
planted with phosphorus at 15 keV to allow majority of dopants
to sit at the bottom part of the channel with a dose of 4 x 10'°
cm~2 before being annealled at 950 °C for 90 seconds to pro-
vide a doping density of 8 x 10*° cm~3. Temperature dependent
Hall bar measurements on large samples [32] were used to de-
termine that the activated dopant density was 4 x 10'? cm™3.
This is well above the Mott criteria for Si:P, implying that the
bulk material is strongly metallic in electronic behaviour [30]
which is confirmed by the temperature dependence of the elec-
tronic properties [32]. The top Si was then etched to reduce the
thickness for the smallest dimension nanowires before a Vistec
VB6 electron beam lithography tool was used to pattern the
nanowire using hydrogen silsesquioxane (HSQ) resist. Initially
HSQ resist was used as an mask to etch 55 nm nanowires with
24, 16 and 8 nm widths, after which via holes were opened in
PMMA resist to selectively thin down Si channel. A low damage
SF4/C4Fg inductivity coupled plasma etch [33] was undertaken
before the resist was stripped and a thermal oxide grown at
950 °C. Optical lithography was then used to define electrical
contacts using 20 nm of Ni and 50 nm of Pt after the oxide had
been stripped with HF. An anneal in forming gas at 380 °C for
15 minutes was used to alloy the contacts forming NiSi Ohmic
contacts with a specific contact resistance of 0.8 2-mm. Finally
electron beam lithography was used with 400 nm of PMMA
resist to lift-off the Al gate.
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Fig. 1. (a) A cross sectional elemental map of the 8 £ 0.5 nm diameter
nanowire with 16 nm SiO» thickness extracted from an EELS TEM image.
(b) A SEM image of the gate over the top of the Si channel and parts of the
source-drain regions. The nanowire length is 150 nm.
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Fig. 2. The drain current, Ip as a function of gate voltage for Si nanowires
with three different widths of 8 nm, 16 nm, and 24 nm. The drain voltage, Vp
= 1.5 V and all measurements are at 293 K. The insert is an elemental map of
a cross-section of the smallest nanowire, measured by TEM-EELS, which was
used to determine the nanowire diameter.

The oxidation step resulted in the nanowires being suspended
above the buried oxide of the substrate preventing a short
gate-length being realised later in the fabrication process as
reliable lift-off requires resist significantly thicker than any step
height. A wide Al gate was therefore deposited by lift-off of
total length of 2 ym but since the nanowire length was 150 nm,
the effective gate-length, L, is 150 nm. The gate oxide of 16 nm
equivalent oxide thickness (EOT) for the devices has an inte-
grated deep interface trap density, D;; below 10'° cm~2eV~!
as extracted from measurements on test capacitors fabricated on
the same chips. An electron energy loss spectroscopy (EELS)
transmission electron microscope (TEM) image of the smallest
nanowire with a diameter of 8 &= 0.5 nm is presented in Fig. 1(a)
and the lateral geometry of the device is presented in Fig. 1(b).
Fig. 2 also provides the TEM image of the 8 nm nanowire.
The fabrication techniques and electronic properties of similar,
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ungated, larger nanowires including the extraction of D;; have
been published elsewhere [3], [32], [33].

The distance from source/drain contact to gate edge and Si
channelis 4 and 5 pum respectively. Si channel along with source-
drain regions were implanted in a single step to 4 x 10! cm?.
NiSi was used to form ohmic contacts, where each contact had
a transfer resistance of 0.3 Q2-mm, sheet resistivity of 60 Q/m?
and specific contact resistivity of 1.5 x 10'? Qm?. Each contact
was designed to have an area of 5 x 10'” m? and by combining
a square with a triangle narrowing to the nanowire allowed to
reduce the access resistance and resulting in each contact having
an overall resistance of 3 €.

Samples were prepared for TEM analysis using standard
‘lift-out’ procedures on a FEI Nova Dualbeam Focused Ion
Beam system. TEM and STEM were conducted on a JEOL
ARM?200cF instrument equipped with a cold field emission gun
that was operated at 200 kV and a CEOS (probe) aberration cor-
rector. EELS data were collected using a Gatan 965 Quantum
ER spectrometer using the Dual EELS [34] and Spectrum Imag-
ing [35] methodologies. Energy dispersive x-ray spectroscopy
(EDS) was conducted simultaneously using a Bruker XFlash
detector.

The dc current-voltage characteristics were measured using
an Agilent B1500 semiconductor parameter analyser at room
temperature (293 K) with a Cascade Microtech probe station.
For the ac lock-in measurements a constant voltage setup was
used consisting of a 77 Hz 0.1 V amplitude ac sinusoidal sig-
nal from an Agilent 33521A function generator with a voltage
divider (10 M€ and 1 k2 resistors) and the current measured
using a 1 k€2 resistor with a Stanford Research SR830 lock-in
amplifier.

III. EXPERIMENTAL RESULTS

The drain current as a function of gate voltage, measured
for nanowires with three different diameters, is presented in
Fig. 2. The nanowire diameters were measured by TEM, us-
ing the extent of the crystalline lattice observed in cross-section
(see Fig. 2) and confirmed using scanning TEM EELS maps,
which clearly distinguishes the Si nanowire core from its SiOy
surroundings, as illustrated in Fig. 1(a). Only the smallest, 8 nm
diameter nanowire demonstrated good transistor characteristics,
where the gate has excellent electrostatic control of the channel
and with Ion to Iy ratios above 10%. As the diameter of the
nanowire increase to 16 nm then the Iy, to I ratio reduces
to ~250 and for the 24 nm diameter nanowire Iy, to Io iS
only ~2.5. For larger nanowire diameter devices (> 40 nm),
no significant change in the current with gate voltage was ob-
served. The subthreshold slope for the 8 nm diameter nanowire
was 66 mV/dec which is close to the theoretical minimum of
60 mV/dec at room temperature whilst the 16 nm diameter
nanowire had a subthreshold slope of 570 mV/dec.

For the 8 nm diameter nanowire the change in threshold volt-
ages extracted at 10 mV and 1.5 V (see Fig. 3) was 159 mV,
allowing the drain induced barrier lowering (DIBL) to be ex-
tracted as 106 mV/V. This is a relatively high value and is
attributed to the thick gate oxide observed in Fig. 1, in addition
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Fig. 3. The experimentally recorded drain current, Ip as a function of gate
voltage for the 8 nm Si nanowire for a range of drain currents from 5 mV to
1.5 Vat293 K.
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Fig.4. The transfer characteristics demonstrating the experimentally obtained

drain current versus source-drain voltage for a range of gate voltages from 0 V
to 1.2 Vat 293 K.

to the fact that the Al gate is not completely wrapped around
the nanowire. Indeed, the EELS map inset in Fig. 1(a) indicates
that a void was around the underside of the nanowire rather
than a complete wrap-around gate, probably due to resist not
being completely developed before the Al gate was deposited
(the black U-shaped region around the nanowire oxide). The
Al gate directly contacts the nanowire oxide only at the top of
the image. An optimised process will improve the DIBL per-
formance in future devices and the simulations presented later
in the paper will provide guidance over the required changes to
improve performance.

Figs. 3 and 4 summarise the variations in nanowire drain cur-
rent during operation. Fig. 3 presents the dependence on the
gate voltage for a range of source-drain voltages, Vpg whilst
Fig. 4 demonstrates the dependence on drain voltage for a range
of gate voltages. The peak transconductance was extracted as
26.5 1S (3.31 mS/pm) at Vp = 1.2 V. The raw current-voltage



data of Figs. 3 and 4 suggests that [, is 2.7 times larger than
that measured previously for 180 nm gate-length inversion mode
Si nanowires with 5 nm diameter [24], although only by con-
sidering the gate overdrive voltage from a given I,z voltage
can an accurate comparison with other results be made. Fig. 3
clearly demonstrates that a different metal with a work function
higher then Al is required to achieve I,z at zero gate voltage.
The threshold voltage as extracted by the transconductance to
drain current ratio method is 0.18 V at Vp = 1.5 V. Setting the
Iog at 100 nA/pum with a gate overdrive of 0.5 V produces a
drain current of 165 p2A/pm for the present 150 nm gate-length
nanowires, which is relatively low compared to high mobility,
130 nm gate-length InAs devices with 601 pA/pm [29].

For a junctionless transistor the channel is a doped semicon-
ductor so when the device is switched on the drift mobility in
the channel is derived from Ohms law with the Drude model in
the relaxation time approximation using (1). A drift mobility of
109 cm?V~1s~!; was extracted from the channel at Vi = Vp
= 1.5 V using the data in Fig. 2 and (1). Previous larger sili-
con nanowires in a Hall bar configuration measured with an ac
constant current technique of 100 nA produced 70 cm?V~!s!
[32] but those measurements had a geometrical uncertainty of a
factor of two. The large experimental uncertainty in measuring
the carrier densities in nanowires only allows these mobility
results to be stated as comparable due to the large experimental
geometrical uncertainty.

Comparing I,5 at 100 nA/pm with a gate overdrive of 1.0
V, the present 150 nm gate-length nanowires have a drain cur-
rent of 1.15 mA/pm, which is significantly higher than the 0.61
mA/pm measured previously from 25 nm gate-length Si MOS-
FETs [36] and the 0.62 mA/um measured from 50 nm gate-
length InGaAs MOSFETSs [29]. Higher voltages provide even
higher performance: for example, I,¢ at 10 pA/um with a gate
overdrive of 1.8 V, the present 150 nm gate-length nanowires
have 2.52 mA/pum drain current. This is significantly higher than
the 0.92 mA/pm from 80 nm gate-length high-voltage 3D trigate
MOSFETsS from a 22 nm system on chip commercial technol-
ogy [19]. These results indicate that the present nanowires are
better for higher voltage applications since the thick gate oxide
and low mobility limits the low voltage performance.

IV. SIMULATIONS

All simulations in this study are carried out with the drift-
diffusion (DD) module of the TCAD simulator GARAND [37].
In this particular case the DD approximation includes density-
gradient quantum corrections (DG) [38]. Currently, in order
to speed up the simulation, work is ongoing to calibrate the
DG correction to the 2D Schrodinger-3D Poisson solver. The
2D Schrodinger solution for nanowires with smaller than 8 nm
cross-section could provide a more accurate picture of the quan-
tum confinement effects [39].

Fig. 5 compares the experiment and simulation results demon-
strating that a good match between the experimental data and
simulation results has been achieved. This good match between
the experiment and the simulation is achieved by calibrating the
electron mobility. The Masetti model is used to account for the
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Fig. 5. A comparison between the experimental data (circles) and the simu-

lation for Vp g of 1.0 V (green) and 0.005 V (blue).

Fig. 6. A 3D view of the nanowire showing the used materials: red is an Si
channel, yellow is an SiO2 oxide and blue is a contact region.

doping dependence of the low field mobility [40], the Lombardi
model accounts for surface acoustic limited mobility and surface
roughness limited mobility [41], and the Caughey-Thomas field
dependent mobility model is used to account for the saturation
velocity [42]. Importantly, a correct calibration of the simula-
tion results to the experimental data has been achieved not only
for the low drain voltages but also for the high drain voltages.
Small discrepancies, however, in the sub-threshold slope (SS)
remain due to the fact that the 3D TCAD nanowire model is a
smooth device without any source of statistical variability and
oxide traps.

Fig. 6 presents the 3D graphical representation of the simu-
lated device. The simulated structure has identical device dimen-
sion and material parameters as the experimental device. Our
3D TCAD model is a junctionless nanowire transistor (NWT)
with an 8 nm cross section and a 150 nm channel (gate) length.
Guided by the experimental TEM images, we have chosen a
16 nm SiO, §2-shaped gate oxide.

Fig. 7 shows a 2D cut through the middle of the device. As
expected, the charge concentration increases as the gate voltage
is increased. More importantly, it is visible from Fig. 7 that
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Fig.7. A cut through the middle of the nanowire showing the cross section of
the device. The electron density is shown in the channel region. Yellow is SiO9
and blue is the contact region at high drain Vp = 1.0 V.

g

Fig. 8. The 3D electron density profile along the nanowire for Vp g = 5 mV.
@V, <Vpr,0)V, =Vr,()Vy > Vp,and (d) Vy >> Vr.

the charge transport is through the middle of the channel, far
away from the Si/SiO; interface. This observation is consistent
with the operational mode of junctionless devices [2], [43]. It
is also consistent with interface roughness scattering not being
the mobility limiting mechanism for these nanowires as was
previously demonstrated with larger nanowires produced by the
same process [32]. When the gate voltage is below Vr, the
device is in a depletion mode. In the case when the gate voltage
is well above V7, the transistor is in a partial depletion state.

(©) (d)

Fig. 9. The 3D electron density profile along the nanowire for Vpg = 1.0 V.
@V, =-05V,(b)Vy, =00V,(c)Vy; =05V, and(d) V, = 1.0 V.

Figs. 8 and 9 confirm the electron transport through the body
of the channel. These figures demonstrate the electron charge
distribution along the channel for different values of the gate
voltage at low and high values, respectively. At the low gate
biases the transistor is turned off due to an electrostatic pinch-
off (see the top of Figs. 8 and 9). It is clear that the position of this
pinch-off depends on the applied drain bias. At the high drain
biases (see Fig. 9), the pinch-off region is close to the drain.
On the contrary, at the low drain bias (see Fig. 8), the pinch-off
is the middle of the device. At the high gate biases (see the
bottom of Figs. 8 and 9), well above V7, the device operates
in flat-band conditions and, as a result, the current pathway is
through the body of the transistor. As a result, we are confident
that our simulation results not only can accurately reproduce the
experimental Ip — Vi; curves but they also accurately capture
the underlying physics in junctionless nanowire devices.

At present the gate length is significantly larger than com-
mercial devices which are presently below 20 nm gatelengths.
From the experimental point of view, therefore, it is important
to know what is the minimal gate length at which the device
will still behaves as a transistor at a particular channel doping
concentration. In this case our simulations can provide the most
efficient way to explore the numerous combinations of channel
doping concentration and gate length.

In order to answer the above question, what is the minimal
gate length at which the devicewill still behaves as a transistor at
a particular channel doping concentration, three different chan-
nel doping concentrations and five different gate lengths are
considered. Fig. 10 reveals the Ip — Vi curves for junction-
less nanowire devices with a doping concentration of 1 x 10'?
cm 3 for five different gate lengths. The channel length is kept
at 150 nm long while the gate is symmetrically reduced from
both ends of the device. For example, in the case of the 10 nm
device, the gate is exactly in the middle of the channel cover-
ing only 10 nm of the 150 nm long nanowire body. The same



10
10°
< /
£ 10°
i: E o
=3 E E
C  of ;
£ 10
5 / — 150nm Gate Length |
E — 100nm Gate Length E
12 — 50nm Gate Length E
10 — 25nm Gate Length
L — 10nm Gate Length J
-14 3 /- | . . : . E
107 05 0 0.5 1 15
Gate Voltage (V)
Fig. 10. The drain current vs. gate voltage for a channel doping density of

1 %109 em™3, Vp = 1.0 V and Si NWT with a diameter of 8 nm for five
different gate lengths: 10 nm, 25 nm, 50 nm, 100 nm, and 150 nm.

4

10
I ——
E — E
1()‘6 3 / E
£ 10°
= L ,
=3 E E
O 10 F 3
£10
5 — 150nm Gate Length
% — 100nm Gate Length %
12fF — 50nm Gate Length b
10 — 25nm Gate Length
L — 10nm Gate Length J
-14 E L L L L L L L ‘ L L . L N E
1077 05 0 05 1 15
Gate Voltage (V)
Fig. 11.  Drain current vs. gate voltage for a channel doping density of 4 x

101 cm—3, Vp = 1.0 V and SINWT with a diameter of 8 nm for five different
gate lengths: 10 nm, 25 nm, 50 nm, 100 nm, and 150 nm.

approach has been used for all other gate lengths where the gate
is kept centered in the middle of the device.

Fig. 10, also demonstrates that for this particular doping
concentration of 1 x 10'? ¢m™3 transistor-like behaviour is
observed all the way down to the 25 nm length gate. The de-
vices with the 50, 100 and 150 nm gate lengths demonstrate good
transistor-like behaviour with a SS of around 61 mV/dec and
an I, /I g ratio of around 10%. The crossings of the Ip — Vg
curves at around V; = 1.0 V occur due to the fact that when the
gate length is decreased the wire behaves as a resistor. This can
be compared to adding two resistors on both sides of the gate
where the resistance increases with shortening the gate length.

Fig. 11 reveals similar conclusions to those presented in the
previous paragraph for a set of devices where the doping concen-
tration in the nanowire has been increased to 4 x 10'? cm™3.
The transistors with the 10 and 25 nm gate length, however,
have a worse I,,, /I, ratio in comparison to the same devices
in Fig. 10. The reason being that the doping concentration is
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increased from 1 x 10'? cm™3 to 4 x 10'” cm™® which leads
to an increase of V. All other devices, however, with the gate
lengths of 150 nm, 100 nm and 50 nm show a value of the
Ion /Lo ratio of at least 107,

Fig. 12 shows results when the channel doping is further
increased to 8 x 10'? cm™3. In this case both the 10 nm and
25 nm devices show almost perfect metallic behaviour with poor
SS and little gate modulation. The 150 nm and 100 nm devices,
however, keep the 108 Iy, /Iog ratio and an almost ideal SS.
Hence, controlling the channel doping and the gate length is
essential in order to maintain transistor-like behaviour with a
good SS and I,,, /I, ratio. More importantly, our simulation
demonstrate that all devices with gate length bellow 10 nm
at various channel doping concentrations have a high leakage
current and a low 1, /I, ratio which cannot satisfy the criteria
for scaling.

Improving the device behaviour and decreasing the gate
length to below 25 nm can be achieved by introducing high-
K materials in the oxide [19], [44]. This leads to a reduction
of the effective equivalent oxide thickness (EOT) which in turn
leads to an improvement of the electrostatic control of the chan-
nel. Indeed, this is clearly visible in Fig. 13 where the 16 nm
oxide layer is compared to simulated devices where this oxide
is is split into two regions: an § nm SiO; layer to maintain a low
trap state density and 8 nm high-K layer to provide better elec-
trostatic control. Both Al O3 and HfO, high-K materials have
been modelled and the results compared in Fig. 13. Introducing
the high-K material improves the leakage current significantly
and shifts the voltage threshold (V) to higher gate voltages in
comparison to the pure SiO, gate oxide material. Also, the de-
vice with the highest dielectric constant (HfO5) has the lowest
leakage current and the highest voltage threshold (V).

As a next step, it is important to analyse the behaviour of
the transistors with various gate-lengths when the EOT of the
oxide is significant reduced to allow the gate-length to be scaled
below 10 nm. Fig. 14 investigates a range of gate-lengths down
to 5 nm when an EOT of 1 nm is achieved using 0.5 nm of
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Fig. 14.  Drain current vs. gate voltage for a channel doping density of 1 x

109 em ™3, Vp = 1.0 V and Si NWT with a diameter of 8 nm for three different
gate lengths: 5 nm, 7 nm, and 10 nm with three different oxide thicknesses:16 nm
SiO9, 8 nm SiO9 + 8 nm HfO9 and 0.5 nm SiO9 + 3 nm HfO,.

Si0s to reduce the interface state density and 3 nm of the high
K material HfO,. Fig. 14 reveals an important conclusion that
even for the transistor with the shortest gate-lengths of 5 nm,
7 nm and 10 nm, it is possible to turn the device on and off
when the HfO; is added. All devices demonstrate good SS
close to the theoretical minima of 60 mV/dec and the I, /o5
ratio is greater than 10%. Hence, introducing the high-K material
and decreasing the EOT could indeed improve significantly the
device behaviour and allow the technology to be scaled down at
least 5 nm gate-lengths.

V. CONCLUSION

In this paper we report an investigation of junctionless devices
from the experimental and computational point of view. Based
on our work we can conclude that the junctionless device with
an 8 nm cross section and a 150 nm gate length demonstrate

excellent transistor-like behaviour with a SS of 66 mV/dec and
al0% I, /L ratio. The gate length can be scaled down com-
fortably to 50 nm and the wire still retains properties of a good
transistor. In order to scale the devices down to 10 nm at this
particular cross-section of 8 nm, the only option is to introduce a
high-K material as an oxide. Other possible options to improve
the device performance is to either decrease the cross-section
of the nanowire or to reduce the EOT by decreasing the phys-
ical thickness of the SiO, and the high-K oxide. Indeed, such
experimental and computational work is under investigation. At
present the variability and reliability issues in such ultra-scaled
junctionless nanowire transistors has yet to be studied and this
will be the topic of future investigations.
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