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Energy Efficiency of Transmit Diversity Systems
Under a Realistic Power Consumption Model

Marcos Tomio Kakitani, Glauber Brante, Richard Demo Souza,and Muhammad Ali Imran

Abstract—We compare the downlink energy efficiency of spa-
tial diversity multiple transmit antenna schemes. We determine
the minimum required transmit power for a given outage prob-
ability. Our analysis shows that antenna selection is in general
the most energy efficient option as it requires a single radio-
frequency chain. We also investigate the limiting distances up to
which the antenna selection technique outperforms the transmit
beamforming scheme for different numbers of transmit antennas.

Index Terms—Energy efficiency, transmit diversity.

I. I NTRODUCTION

The information and communication technology (ICT) in-
dustry represents about 2% of the global CO2 emissions, with
the mobile networks operation representing around 10% of
the ICT industry emissions [1]. Estimates indicate that the
demand for data traffic will increase between a hundredfold to
thousandfold before 2020 [2], therefore reflecting in a potential
significant energy consumption increase.

Multiple antennas (MIMO) systems can present a consid-
erable signal-to-noise ratio (SNR) improvement if compared
to single antenna (SISO) systems, thus potentially increasing
the energy efficiency. The SNR gains of MIMO schemes for
a given target data rate for cellular networks were analyzed
in [3]. However, the authors consider only the transmit power,
other BS consumption factors as circuitry and cooling are not
considered. In [4] it is shown that if more realistic power
models are considered, the advantage of MIMO over SISO
is not always evident for short-range communication systems,
as wireless sensor networks. However, power models for large
scale wireless systems [5] are considerably different thanthe
power models for wireless sensor nodes [4]. The work in [6]
shows that for realistic BS power consumption models, MIMO
can be less efficient than SISO. However, the authors consider
only the case of a spatial multiplexing, where the multiple
antennas are used for increased spectral efficiency and not for
spatial diversity. A comparative analysis in terms of the symbol
error rate of different multi-antenna schemes, as transmit
antenna selection and beamforming, is presented in [7] and
[8]. However, the authors focus on optimizing the allocation
of the total transmit power and the circuitry consumption isnot
considered. The authors of [9] perform an energy efficiency
analysis of MIMO systems considering an appropriate power
allocation. Although the circuitry consumption is considered,

M. T. Kakitani and M. A. Imran, CCSR, University of Surrey, Guildford,
UK, e-mails: mtkakitani@ieee.org and m.imran@surrey.ac.uk

M. T. Kakitani, G. Brante and R. D. Souza, CPGEI, Federal University
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the analysis focuses on the optimum number of antennas, and
does not investigate the transmit antenna selection scheme.

We investigate the energy efficiency of transmit diversity
schemes for a target outage probability considering a realis-
tic BS power consumption model [5]. Two spatial diversity
schemes are considered: transmit beamforming (TBF), which
is the best performing scheme in terms of outage probability;
and transmit antenna selection (TAS), which is the simplest
solution in terms of required hardware. Our results show that
although TBF presents the best performance in terms of the
outage probability, the TAS scheme is the most energy efficient
option for most transmit distances, considerably outperforming
SISO transmission. Moreover the TAS scheme can outperform
TBF even with a smaller number of available transmit anten-
nas. Such advantage of TAS comes from the fact that only a
single radio-frequency (RF) chain is used at the transmitter,
while other multiple antenna schemes use an RF chain per
transmit antenna, compromising their energy efficiency. Tothe
best of our knowledge, there are no similar works that compare
the energy efficiency of TBF and TAS, including an analysis
of the limiting distances from which a scheme is more energy
efficient than the other.

II. SYSTEM MODEL

The BS power consumption model follows [5], with the
total energy consumption per bit being defined as:

E = (NTRX · P0 +∆p · P) /Rb, (1)

whereNTRX is the number of transceivers (TRXs), or RF
chains of the BS,P0 is the non-load-dependent power con-
sumption at the minimum non-zero output power,∆p is the
slope of the load-dependent power consumption,P is the
total RF output power at the antenna elements, andRb is
the bit rate in bits/s. Furthermore,Rb = δ · B, whereδ is
the spectral efficiency andB the system bandwidth. As the
power consumption of the mobile station (MS) is not relevant
compared to the power consumption of the BS, it is not
included in the analysis. We consider that the BS is equipped
with M transmit antennas and the MS has one receive antenna,
which is the most usual configuration for the MS. The path
loss between the BS and the MS is defined as [10]

γ = λ2/
[

(4π)2dα
]

, (2)

whereλ is the wavelength,d is the BS to MS distance, and
α is the path loss exponent. We consider the path loss after
the power amplifier, thus the antennas consumption is already
included in the model. Moreover, the unity energy fading
coefficienthi, between the BSi-th transmit antenna and the
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MS receive antenna, is of the Rayleigh quasi-static type, the
average SNR isρ = γ·P

N
, N = N0 ·B is the noise power, and

N0 is the thermal noise power spectral density per Hertz.
The following analysis is based on the outage probability,

which is defined as the probability that the instantaneous SNR
falls below the thresholdβ = 2δ − 1 at the MS [10].

III. T RANSMISSION SCHEMES

Note that as in (1) bothP0 and ∆p are fixed, andRb

is also often a fixed design parameter, the minimum energy
consumption is obtained by minimizing the transmit power
P . In this section we determine the minimum required power
P⋆, for a given target outage probabilityO⋆, for both TBF
and TAS.

In a system employing the TAS scheme, as only the selected
transmit antenna is active, a single RF chain is required
(NTRX = 1). The outage probability is [11]

OTAS(M) = [1− exp (−β/ρ)]M . (3)

From (3) we can derive the minimum required transmit
power by TAS for a given outage probabilityO⋆ as

P⋆
TAS(M) = (−βN) /

[

γ ln
(

1−O⋆
1

M

)]

. (4)

For a given number of transmit antennasM and target
outage probabilityO⋆, the total energy consumption per bit
for TAS is

ETAS(M) = [P0 +∆p · P
⋆
TAS(M)] /Rb. (5)

Note that ETAS(M
′) ≤ ETAS(M

′′) if M ′ ≥ M ′′, as
(O⋆)

1

M′′ ≤ (O⋆)
1

M′ with 0 < O⋆ < 1. Therefore, with respect
to the energy efficiency, the number of available transmit
antennas in TAS, from which the best one is selected, should
be made as large as possible.

The best performing transmit diversity scheme is the TBF,
for which NTRX = M , and the outage probability is [10]:

OTBF(M) = 1− exp

(

−β

ρ

)M−1
∑

m=0

1

m!

(

β

ρ

)m

, (6)

which can be rewritten as

OTBF(M) = Γ

(

M,
β

ρ

)

/ Γ (M) , (7)

where Γ (a, z) =
∫ z

0
ta−1e−tdt is the lower incomplete

Gamma function andΓ (a) =
∫∞

0
ta−1e−tdt is the complete

Gamma function. At sufficiently high SNR or small outage
probability, as considered in this paper, the incomplete Gamma
function can be well approximated byΓ(a, z) = 1

a
· za, thus

OTBF(M) ≈

(

β

ρ

)M
1

Γ (M + 1)
. (8)

The minimum required transmit power for a target outage
probability can be found from (8) as

P
⋆
TBF(M) = (βN) /

(

γ [Γ(M + 1)O⋆]
1

M

)

, (9)

while the total energy consumption is

ETBF(M) = [M · P0 +∆p · P
⋆
TBF(M)] /Rb, (10)

which, opposed to (5), is not a monotonically decreasing
function withM . In another words, in this case it is not always
true thatETBF (M

′′) ≤ ETBF (M
′) if M ′′ ≥ M ′. However,

for the initial condition ofETBF (M
′) = ETBF (M

′′), and
after replacingETBF , P⋆

TBF , andγ by (10), (9) and (2), we
can determine a sufficient distancedTBF,TBF (M

′,M ′′) from
which usingM ′′ transmit antennas is more energy efficient
than usingM ′ antennas (M ′′ > M ′), as shown in (11). Thus,
using more transmit antennas is not always a more energy
efficient solution in TBF.

Note that if the required transmit power is small enough
(equivalently, the distance between the BS and the MS is
small enough) so that the circuitry power is more relevant than
the transmit power, then TAS is more energy efficient than
TBF for any number of transmit antennas. Thus, in principle,
TAS is a more energy efficient solution. However, due to its
better outage performance, there might be a distance from
which TBF with a given number of transmit antennas is more
energy efficient than TAS with another number of antennas.
Thus, let us consider that TAS operates withM ′ antennas and
TBF with M ′′ antennas. Then, similarly to the derivation of
equation (11), and based on (2), (4), (5), (9) and (10), it is
possible to find a limiting distancedTAS,TBF (M

′,M ′′), up
to which TAS withM ′ antennas is more energy efficient than
TBF with M ′′ antennas, as shown in (12), even ifM ′ ≤ M ′′.
Note from equation (12) that the numerator can never assume
negative values. Thus, the denominator must be greater than
zero. Then we have the condition

M ′ < (lnO⋆) /
[

ln
(

1− exp
(

− (M ′′!O⋆)
1

M′′

))]

, (13)

which has to be fulfilled, otherwise TBF never outperforms
TAS.

Therefore, and which is our main finding, even though TBF
performs better than TAS in terms of outage probability, TAS
can outperform TBF in terms of energy efficiency up to some
practical BS to MS distances, even if using less transmit
antennas. For instance, ifO⋆ = 10−2 and M ′ = 2, then
TAS is always more energy efficient than TBF no matter the
choice ofM ′′. Moreover, using (12) we can show that, for a
set of realistic parameters, TAS with onlyM ′ = 2 antennas
outperforms TBF withM ′′ = 5 antennas up to the reasonably
large distance ofdTAS,TBF = 1.6 km, which we consider to
be a quite surprising result.

Finally, in the case of SISO transmission (NTRX = 1)

OSISO = 1− exp (−β/ρ) , (14)

so that the minimum required transmit power is

P⋆
SISO = (−βN) / [γ ln(1−O⋆)] , (15)

and the total consumed energy per bit becomes

ESISO = (P0 +∆p · P
⋆
SISO) /Rb. (16)

Let us compare the energy efficiency of SISO and TAS.
For ESISO ≤ ETAS we must haveO⋆

1

M ≥ O⋆, which is only
valid (with equality) forM = 1. Thus, the SISO transmission
is always outperformed by TAS forM ≥ 2. However, if SISO
is compared to TBF, then similarly to (11) and (12), we can
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dTBF,TBF (M
′,M ′′) =





λ2P0(M
′′ −M ′)[(M ′′)!O⋆]

1

M′′ [(M ′)!O⋆]
1

M′

(4π)2∆pβN
{

[(M ′′)!O⋆]
1

M′′ − [(M ′)!O⋆]
1

M′

}





1

α

, (11)

dTAS,TBF (M
′,M ′′) =





−λ2 ln
(

1−O⋆
1

M′

)

[(M ′′)!O⋆]
1

M′′ P0 (M
′′ − 1)

(4π)
2
∆pβN

{

[(M ′′)!O⋆]
1

M′′ + ln
(

1−O⋆
1

M′

)}





1

α

, (12)

dSISO,TBF (M) =





−λ2 ln (1−O⋆) [(M)!O⋆]
1

M P0 (M − 1)

(4π)2 ∆pβN
{

[(M)!O⋆]
1

M + ln (1−O⋆)
}





1

α

. (17)

obtain the limiting distancedSISO,TBF up to which SISO
outperforms TBF withM antennas, as shown in (17).

IV. RESULTS

The system parameters are:N0 = −174 dBm/Hz and
α = 3. We analyze a scenario with bandwidthB = 10 MHz,
as in [5]. The parameters of the macro power model also
follow [5], with P0 = 84 W and ∆p = 2.8. For increased
efficiency, we consider that the macro BS uses a remote radio
head, so that the power amplifier module is mounted at the
same physical location as the transmit antenna.

Figure 1 presents the consumed energy per bit for an outage
probability of O⋆ = 10−2 and δ = 3 b/s/Hz. We can see
that the TAS schemes are the most energy efficient up to
a given distance. Considering the same number of transmit
antennas for both schemes, TAS is only outperformed by
TBF for large distances. For example, forM = 2 TAS is
outperformed by TBF whend > 1595 m, for M = 3 the
distance isd > 2323 m, for M = 4, TBF outperforms TAS
for d > 2905 m, and forM = 5, TAS is only outperformed
by TBF for d > 3393 m. Moreover, with only two transmit
antennas, TAS(M = 2) is outperformed by TBF (M = 3)
whend > 1415 m, by TBF (M = 4) whend > 1540 m, and
by TBF (M = 5) for d > 1664 m. It must be mentioned that
the presented limiting distances obtained through simulations
and the values obtained from equations (11), (12), and (17)
show a close match. Moreover, as the required transmit power
is inversely proportional to the scheme’s diversity order,note
that the slopes of the curves are also inversely proportional
to the diversity order. Then, although the TBF schemes have
the best performance in terms of outage, when the total
energy consumption is considered they are outperformed by
TAS for most distances, as the latter consumes much less
circuitry power. In addition, for short distances, while the
TAS schemes are still the most energy efficient, the TBF
schemes are also outperformed by SISO transmission, which
has the worst outage performance, but a smaller circuitry
consumption. Finally, note that when the TBF schemes are
compared, TBF (M = 5) is the least energy efficient for
short distances due to the larger circuitry consumption, but
for greater distances, as the transmit power gets more relevant,
TBF (M = 5) becomes the most energy efficient among the
TBF schemes in Figure 1.
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Figure 1. Total consumed energy per bit considering the transmission from
a macro BS to a MS forO⋆ = 10−2 andδ = 3 b/s/Hz.

Similar conclusions are obtained for other spectral efficien-
cies and the sameO⋆ = 10−2, as is shown in Figure 2 for a
BS-MS distanced = 1000 m. Note that the TAS schemes are
the most energy efficient for most of the spectral efficiencies,
with TAS only being outperformed by TBF if the spectral ef-
ficiency is significantly increased, resulting in scenarioswhere
the required transmit transmit power has a larger impact in the
energy efficiency than the circuitry consumption. Moreover,
for a given number of antennasM , both schemes TAS and
TBF have an optimal energy efficiency for a given distance,
which can be obtained by the differentiation of equations (5)
and (10) with respect to the spectral efficiencyδ. However,
for brevity, these equations are not included in this paper.

Figure 3 shows that, forδ = 3 b/s/Hz andd = 1000 m, in
the case of a milder target outage asO⋆ = 10−1 the transmit-
ting circuitry consumption becomes even more relevant, and
the advantage of TAS increases. Moreover, although the SISO
scheme is still the least energy efficient for most distances, its
performance becomes more competitive. In opposition, for a
very strong outage requirement asO⋆ = 10−4, although the
relevancy of the transmitting circuitry consumption decreases,
TAS (M = 5) is still the most energy efficient scheme. Table I
provides more detailed information for the case ofO⋆ = 10−4.
Note that the TAS (M = 5) scheme is outperformed by
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Figure 2. Total consumed energy per bit considering the transmission from
a macro BS to a MS forO⋆ = 10−2 andd = 1000 m.
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Figure 3. Total consumed energy per bit considering the transmission from
a macro BS to a MS forδ = 3 b/s/Hz andd = 1000 m.

TBF (M = 5) only when d > 2267 m. Moreover, when
compared to the scenario from Figure 1, the advantage of TAS
over the TBF schemes slightly decreases.

We have investigated the case ofM > 5 transmit antennas,
but the qualitative conclusions are the same. Furthermore,if
the number of antennas at the MS increases, the required trans-
mit power decreases, and the circuitry consumption gets even
more relevant in the energy efficiency analysis, making TAS
still a more efficient solution than TBF. Moreover, transmit
diversity schemes based on space-time coding perform worse
than TBF in terms of outage and use the same number of RF
chains. Therefore, such techniques are less energy efficient
than TBF. As we show that TAS already outperforms TBF
in terms of energy efficiency, we did not include results for
space-time coding techniques for the sake of brevity.

V. CONCLUSIONS

We investigate the energy efficiency of transmit diversity
systems for a given target outage probability, consideringa

Table I
L IMITING DISTANCES FOR WHICHTAS IS OUTPERFORMED BYTBF, FOR

O⋆ = 10−4 AND δ = 3 B/S/HZ.

d [m]

ETAS(M
′) < ETBF (M ′′)

M ′ = 2, M ′′ = 2 699
M ′ = 2, M ′′ = 3 608
M ′ = 2, M ′′ = 4 677
M ′ = 2, M ′′ = 5 740
M ′ = 3, M ′′ = 3 1289
M ′ = 4, M ′′ = 4 1810
M ′ = 5, M ′′ = 5 2267

realistic power consumption model. The simulation results
show the liming distance from which one transmit scheme
start to outperform the other scheme. We provide an ana-
lytical formula that calculates the limiting distance directly
(without need for simulations). Both simulation and analytical
calculation of the limiting distance show a close match. We
show that TAS, even though not the best in terms of outage
probability, can be a very energy efficient solution. That isa
consequence of TAS requiring a single RF chain, while TBF
requires an RF chain per transmit antenna, compromising its
energy efficiency. It is only in the case of considerably large
distances that the required transmit power prevails over the
circuitry consumption, and TBF can outperform TAS in terms
of energy efficiency.
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