
This is a repository copy of Label-free affinity biosensor arrays : novel technology for 
molecular diagnostics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/111980/

Version: Accepted Version

Article:

Johnson, Steven David orcid.org/0000-0002-1786-3182 and Krauss, Thomas Fraser 
orcid.org/0000-0003-4367-6601 (2017) Label-free affinity biosensor arrays : novel 
technology for molecular diagnostics. Expert Review of Medical Devices. pp. 177-179. 

https://doi.org/10.1080/17434440.2017.1283982

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Label-free affinity biosensor arrays: novel technology for molecular diagnostics 
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1. Introduction 

The enzyme-linked immunosorbent assay (ELISA) has been the cornerstone of in vitro protein 

diagnostics for over 40 years, and remains critical throughout healthcare for the detection and 

quantification of disease biomarkers in clinical samples [1]. However, the emergence of 

personalized and stratified medicine with their inherent requirement for multiplexed, high-

throughput diagnostics, together with the ease-of-use and low cost requirements imposed by the 

drive towards point-of-care diagnostics are changing the landscape. Innovative diagnostic devices 

are essential for realizing these emerging trends.  

 

Label-free affinity biosensors are widely considered to be the technological solution to address 

these challenges. These analytical devices consist of a highly specific, high affinity probe 

molecule, most commonly an antibody, that is immobilized on the surface of a physiochemical 

transducer. The transducer monitors any binding event directly, i.e. without the need for an 

additional antibody, enzymatic, fluorescent or radioactive label, or any other amplification method, 

to provide a response that is proportional to the concentration of bound molecules. Possibly the 

best known biosensor of this type is the surface plasmon resonance (SPR) sensor for monitoring 

of antibody-antigen interactions [2]. SPR exploits the high sensitivity of surface plasmons to 

refractive index changes close to a metal surface, which leads to a change in resonance angle or 

wavelength. A local change in refractive index, for example due to the binding of an antigen to an 

antibody immobilized on the metal surface, can thus be detected in real-time and label-free by the 

corresponding shift in resonance. Today, SPR is a well-established biophysical technique that 

underpins fundamental research across the biological and biomedical sciences. SPR is however 

rarely used in clinical diagnostics, mainly due to high instrument and sensor costs. Current 

biosensor research is therefore focused on alternative technologies that can provide highly 

sensitive and selective protein detection but on a platform that is easy to use, low cost and 



amenable for use in the clinic, at point-of-care or even in the home. Innovative biosensor research 

is flourishing; 2898 articles with ‘biosensor’ in the title were published in 2015 compared to 504 in 

2000 (data from Web of Science). Much of the research to date has focused on the development 

and optimization of transducer materials, including a recent emphasis on carbon-based biosensors 

[3,4], and physiochemical transduction strategies, with transducers that are sensitive to the optical, 

electrochemical and mechanical properties of biological molecules receiving most attention. A 

number of comprehensive review articles have been published that focus on biosensor 

transduction strategies [5-7]. There is also a significant body of work on optimized surface 

chemistries for antibody immobilization and alternative high-affinity binding agents such as 

antibody fragments, DNA and peptide aptamers, and molecularly imprinted polymers [8]. This 

editorial provides an overview of two major trends of biosensor research, namely the move 

towards high-density biosensor arrays and the development of multi-modal biosensor 

technologies.  

 

2. The fabrication of high-density biosensor arrays for multiplexed diagnostics 

A comprehensive understanding of complex biological processes, both in health and disease, will 

require high-throughput quantification of molecular expression profiles, ideally in a single test. This 

multiplexed approached to protein monitoring is not only critical for fundamental biomedical 

research, but also underpins strategies for personalized medicine and the discovery of novel 

disease biomarkers. The multiplexed detection of tens, hundreds or even thousands of protein 

species in a small clinical sample is a significant technological challenge that requires new 

technological solutions. To this end, many types of photonic and electrochemical biosensors 

already use the low-cost, yet high volume and high precision mass-manufacturing techniques 

developed by the semiconductor industry that is capable of producing biosensors with a sub-

micrometer footprint, ideal for high-density integration. Unfortunately, the biochemical 

functionalisation technology required to place different probe molecules onto each sensor does not 

offer the same level of integration. For example, dot-printing approaches for creating antibody 

arrays are currently spatially limited to around 0.1 mm. Although the resolution of these printing 

techniques is likely to improve, the feature sizes required for high-density biosensor arrays capable 



of handling extremely small sample volumes are likely to remain beyond the scope of such 

systems. While high spatial resolution molecular immobilization has been demonstrated in the 

laboratory, for example using nanografting [9] or dip-pen nanolithography [10], these serial 

approaches do not provide the high-throughput required for mass-fabrication of high-density 

protein arrays.  

 

Electrochemically controlled functionalization is a promising approach to spatially direct the 

immobilization of biomolecules, that simultaneously meets the requirements of resolution, speed, 

and the ability to coat each biosensor within an array with a different probe molecule. For example, 

electrochemical cleavage of the gold-thiol bond has been used to direct the immobilization of 

different proteins onto 20 µm diameter metallic electrodes separated by 15 µm [11]. The electrode 

microarray was subsequently used to demonstrate label-free, electronic detection of cyclin-

dependent protein kinases in whole-cell lysates, with no measurable cross-talk between 

functionalized electrodes. A similar spatial resolution (1 µm) was also demonstrated using 

electrochemical grafting of diazonium salts onto conductive surfaces [12]. The use of diazonium 

salts is applicable to a wide variety of conductive surfaces, including silicon, and has recently been 

exploited to create a label-free, silicon photonic biosensor array with the potential for highly-

multiplexed molecular detection [13]. These studies demonstrate the great potential of 

electrochemically-directed approaches for site-selective functionalization. Further research will 

determine the ultimate spatial resolution achievable and explore the limits of functionalization 

across a high-density array in terms of speed, specificity and efficiency and whether this is 

sufficient for production at a scale viable for commercialization. 

 

3. Multi-modal, label-free biosensors. 

The majority of existing label-free biosensors are single mode; detection is provided by a 

transducer sensitive to single physiochemical property. For example, the formation of an antibody-

antigen complex is detected in SPR by measuring the corresponding change in refractive index, 

while capacitive biosensors detect the change in impedance of an antibody layer upon antigen 

binding. Biosensors that combine multiple transduction mechanisms are becoming increasing 



popular. Such truly multi-modal assays can simultaneously probe multiple biomolecular properties, 

e.g. in the optical, electronic and/or chemical domains to provide greater insight and broaden the 

range of systems accessible for analysis. A prominent example of such multi-modal biosensing is 

electrochemical SPR (EC-SPR), where the gold surface that supports the optical mode is also 

used as the working electrode in an electrochemical cell. The complementary information 

contained in both the electrochemical and optical domains not only provides deeper insight into the 

biomolecular processes occurring at surfaces, but has also been used to improve biosensor 

accuracy. For example, a glucose biosensor based on an EC-SPR has been demonstrated in 

which the simultaneous electrochemical and optical measurements were combined to differentiate 

between the enzymatic activity of glucose oxidase and the unwanted background of non-enzymatic 

reactions [14]. Novel insights into enzymatic activity have also been reported using a multi-modal 

biosensor that combines electrochemical measurements with quartz crystal microbalance (QCM), 

which is sensitive to changes in both the mass and viscoelasticity of an immobilized molecular 

layer [15].  

 

Ideally, one would like to combine the best of both worlds, i.e. multiplexing large arrays of sensors 

on a tiny surface area capable of profiling biomarker content in a small sample volume, with each 

sensing region performing multiple types of analysis. So far, this is not possible: existing 

microarrays can perform many tests in parallel, but they require a relatively large volume due to 

their macoscopic size; SPR and QCMD can perform multimodal analysis, but only on a single or a 

very small number of spots. We believe that the route towards true multimodal multiplexed 

detection is silicon technology. To this end, the electrophotonic silicon biosensor combines 

photonic and electrochemical detection in a single, microfabricated biosensor array. The ability to 

combine electrochemical and optical detection in silicon was achieved by controlling the doping 

density profile of a silicon photonic microring resonator such that the dopants were located in a thin 

layer at the silicon surface. The doped surface layer can thus be optimized to be sufficiently 

conductive to support electrochemical processes while thin enough to minimize losses of the 

optical mode confined within the resonant structure. The same platform can also be used to 



electrochemically direct the immobilization of probe molecules, thereby achieving both multimodal 

and highly multiplexed detection. 

 

4. Conclusions and outlook 

Changes in approaches to healthcare require a new generation of diagnostics that are able to 

detect large numbers of proteins simultaneously, with high sensitivity and selectivity, and in a 

platform that is simple, cheap and portable enabling tests to be performed in clinic, at point-of-care, 

or even in the home. Label-free affinity biosensors are an emerging technology with the potential to 

meet these requirements and significant progress has been made, especially by exploiting the 

technological advances of the silicon microelectronics industry. While the translation of this new 

diagnostic technology and associated biomarkers into clinical practice still pose a number of 

technical, scientific and regulatory challenges, the opportunities to transform healthcare practice 

and patient outcomes are substantial.  
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