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CHAPTER 1 INTRODUCTION

This dissertation is concerned with a class of stochastic models formulated using stochas-

tic differential equations with regime switching represented by a continuous-time Markov

chain, also known as hybrid switching diffusion processes. Our motivations for studying such

processes in this dissertation come from emerging and existing applications in biological sys-

tems, ecosystems, financial engineering, modeling, analysis, and control and optimization of

stochastic systems under the influence of random environments, with complete or partial

observations.

Chapter 2 focuses on Lotka-Volterra models given by stochastic differential equations with

regime switching represented by a continuous-time Markov chain. There have been resurgent

efforts in treating partially observed systems in the control and systems community. This

chapter is devoted to a class of such systems that have been around for many years, but

got more recent attentions owing to the new modeling perspective for complex systems

with random environment. Assuming the random environment can only be observed with

noise and focusing on Lotka-Volterra systems, we develop a new approach that will be of

interest not only to researchers in ecology and bio-systems, but also for control theorists,

operations researchers, and people who are working in system biology. Different from the

existing literature, the Markov chain is hidden and can only be observed in a Gaussian white

noise in our work. For such partially observed problems, we use a Wonham filter to estimate

the Markov chain from the observable evolution of the given process, and convert the original

system to a completely observable one. Then, we establish a number of essential biological

properties of the solution including regularity and positivity, stochastic boundedness, path
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continuity, asymptotic properties, permanence, and extinction. We also show how to design

feedback controls to make a population system permanent or extinct when the Markov chain

is only observed in white noise.

In Chapter 3, we develop optimal harvest strategies for Lotka-Volterra systems so as to

establish economically, ecologically, and environmentally reasonable strategies for popula-

tions subject to the risk of extinction. It is noted that simple-minded myopic unconstrained

harvesting strategies and over-harvesting could lead to detrimental effect causing local ex-

tinctions or depletion of numerous species; see the examples documented in [30]. Thus the

study on the optimal harvesting strategies has significant impact on the environment, ecol-

ogy, economy, and the society. To better reflect reality, a continuous-time Markov chain is

used to model the random environment. The underlying systems are thus controlled regime-

switching diffusions that belong to the class of singular control problems. Starting with a

model having multiple species, we construct upper bounds for the value functions, prove the

finiteness of the harvesting value, and derive properties of the value functions. Then we con-

struct explicit chattering harvesting strategies and the corresponding lower bounds for the

value functions by using the idea of harvesting only one species at a time. We further show

that this is a reasonable candidate for the best lower bound that one can expect. Moreover,

in some cases, the lower bounds provide a good approximation of the value functions.

In Chapter 4, we study optimal harvesting problems in random environments. For

stochastic control problems, to find the value function and the harvesting strategy, one

usually solves a so-called Hamilton-Jacobi-Bellman (HJB) equation. However, for singular

control problems with regime switching, the HJB equation is in fact a coupled system of non-

linear quasi-variational inequalities. A closed-form solution is virtually impossible to obtain.
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We take an alternative approach by using the Markov chain approximation methodology

developed by Kushner and Dupuis [28]. In contrast to the existing literature on numerical

methods for singular control problems, in the current work, we take a step towards more

useful and realistic model where the Markov chain is unobservable. Although much work was

devoted to to the analysis of systems in the past, there are key differences in the model that

make our analysis more delicate. Using a Wonham filter, we convert the partially observed

system into a fully observed controlled diffusion. Then to approximate the value function and

optimal strategies, Markov chain approximation techniques are used to construct a discrete-

time controlled Markov chain. Convergence of the algorithm is obtained by weak convergence

method.

Finally, in Chapter 5, we provide further discussions. We summarize the central theme

of the dissertation, provide further remarks, and present some future directions for future

work.
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CHAPTER 2 STOCHASTIC COMPETITIVE

LOTKA-VOLTERRA ECOSYSTEMS

UNDER PARTIAL OBSERVATIONS:

FEEDBACK CONTROLS FOR PER-

MANENCE AND EXTINCTION

2.1 Introduction

The traditional Lotka-Volterra equations, also known as the predator-prey equations, are

a pair of first-order, nonlinear, differential equations, which are frequently used to describe the

dynamics of biological or ecological systems in which two species interact, one as a predator

and the other as prey. Initially proposed in 1910 by Lotka in the theory of autocatalytic

chemical reactions [37], the equations were used to model predator-prey interactions [38]

in 1925. The rationale is that when two or more species live in proximity and share the

same basic requirements, they usually compete for resources, food, habitat, or territory. In

reference to the study of the systems in the literature, this work develops asymptotic analysis

of Lotka-Volterra models when random environment has to be taken into consideration. In

particular, we treat the case that the random environment is given by a hidden Markov chain

in continuous time.

Owing to the importance, the Lotka-Volterra models have received considerable atten-

tions from multi-disciplinary communities such as biology, ecology, dynamic systems, and

control and systems theory among others. There is a vast literature associated with the

models. Along with the development of the deterministic models (see [18, 38, 62]), increas-

ing attentions have placed on the stochastic counterpart that enables the consideration of

randomly perturbed systems. As pointed out in [47, 48] (see also [12, 13]), population mod-
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els should contain a multiplicative noise term, taking into account of the interaction of the

ecosystem with the environment. The interaction between noise and nonlinear determinism

in ecological dynamics adds an extra level of complexity and can give rise to the complex be-

havior of the system, which becomes very sensitive to initial conditions, various deterministic

external perturbations, and to fluctuations always present in nature (see [55, 61]).

Because of the recent effort in modeling systems with both continuous dynamics and

discrete events, the so-called hybrid models have gained much popularity. A trend of effort

is to depict the random environment that cannot be described by stochastic differential

equations using random switching processes; see for example, [34, 42, 70, 71] among others

and also [44,68] for a comprehensive treatment of switching processes.

The main issues concerning such systems include: Under what conditions, do the systems

have global solutions? When will the systems be stable? Whether the systems are stochas-

tically bounded? Whether or not the systems are stochastically permanent? Under what

conditions, the species will extinct? If there is a tendency of extinction, can we find feed-

back controls so that this extinction be suppressed. More specifically, for i = 1, 2, . . . , n,

let xi(t) be the population size of the i th species in the ecosystem at time t, denote

x(t) = (x1(t), . . . , xn(t))′ ∈ Rn (where z′ denotes the transpose of z for z ∈ Rl1×l2 with

l1, l2 ≥ 1). Consider a competitive Lotka-Volterra model in random environments with n

species given by

dx(t) = diag (x1(t), . . . , xn(t))
{[
b(α(t))− A(α(t))x(t)

]
dt+ Ξ(α) ◦ dw(t)

}
, (2.1)

and a constant initial condition x(0) = x0. In the model, w(·) = (w1(·), . . . , wn(·))′ is an

n-dimensional standard Brownian motion, and b(α) = (b1(α), . . . , bn(α))′, A(α) = (aij(α)),
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Ξ(α) = diag (σ1(α), . . . , σn(α)), α ∈M = {1, . . . ,m} represent the different intrinsic growth

rates, the community matrices, and noise intensities in different external environments, re-

spectively; α(t) is a finite state Markov chain. The above formulation is seen to be in the

sense of Stratonovich integral. This form is often considered to be more suitable for environ-

mental modeling (see [22]). For the stochastic differential equations in Stratonovich form, we

refer to [56]; see also [23, Section 5.5] and [49, Chapter 3] for explanations why Stratonovich

integral are more suitable for modeling in many applications.

Denote

ri(α) = bi(α) +
1

2
σ2
i (α), r(α) = (r1(α), . . . , rn(α))′ ∈ Rn,

diag(x) := diag (x1, . . . , xn) , x = (x1, . . . , xn)′ ∈ Rn.

(2.2)

Then the equivalent system in Itô sense is as follows

dx(t) = diag (x(t))

[
r(α(t))− A(α(t))x(t)

]
dt+ diag (x(t)) Ξ (α(t)) dw(t). (2.3)

The population model (2.3) was proposed and studied in details in [70, 71]. A question

naturally arises in practice: Can we design feedback controls so that the resulting system

becomes permanent or extinct if we only control a partially observed system? In particular,

an important problem concerns that the Markov chain α(t) is unobservable. That is, at any

given instance, the exact state of residency of the Markov chain is not known. Thus, we

cannot see α(t) directly but only have noise-corrupted observation in the form of α(t) plus

noise. Such scenarios frequently arise in the real world. Taking this fact into account, in our

previous work [57], we consider the case Ξ(α) = Ξ being independent of α and the population

process x(t) represents the noisy observation-hidden Markov chain observed in white noise.

We then used estimation schemes by means of the observable process x(t). Distinct from



7

that work, here we suppose that the diffusion matrix Ξ(α) depends on environments. If we

consider partially observed systems and use Wonham’s filter similar to [7, 57], a problem

arises since the filter is no longer finite dimensional. To be able to treat models in which the

diffusion coefficients depend on the Markov chain, we consider (2.3) in which the Markov

chain can only be observed in a Gaussian white noise. In addition, we consider the model

with a control built in. Consider the controlled population system

dx(t) = diag (x(t))

[
r(α(t))− A(α(t))x(t) + u(t)

]
dt+ diag (x(t)) Ξ (α(t)) dw(t), (2.4)

and

dy(t) = f(α(t))dt+ β(t)dB(t), y(0) = 0, (2.5)

where β(·) : [0,∞) 7→ R is a continuously differentiable function satisfying inft≥0 β(t) > 0,

f : M 7→ R is a one-to-one function, B(t) is a one-dimensional standard Brownian motion

being independent of w(t) and α(t), and u(t) = (u1(t), . . . , un(t))′ ∈ Rn is a feedback control.

For control problems of such partially observed systems, it is essential to converted them

to completely observed ones, which can be done by using a Wonham filter. For results on

the Wonham filter, we refer the reader to [63,69]. Numerical results, including sample means

and variances, assessment of approximation errors for Wonham’s filter are presented in [67].

In the literature, the Wonham filters have been used widely to investigate control problems

with partial observations; see [7, 14, 69] for applications in engineering science and finance,

respectively. For related uses of hidden Markov chains and filtering theory in ecology and

biology, we refer the readers to [15,31] and references therein.

In contrast to the existing results, our new contributions in this chapter are as follows.
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(i) We use Wonham’s filter to build a stochastic competitive Lotka-Volterra ecosystem when

the Markov chain is only observable in white Gaussian noise. (ii) We convert the partially

observed system to a fully observed system by replacing the unknown Markovian states

by their posterior probability estimates. (iii) We establish a number of essential biological

properties of the solution including regularity and positivity, stochastic boundedness, path

continuity, asymptotic properties, permanence, and extinction. (iv) We show how to design

feedback controls to make a population system permanent or extinct when the Markov chain

is only observed in white noise.

The rest of this chapter is organized as follows. Section 2.2 begins with the preliminaries

and problem formulation, where Wonham’s filter is introduced and the partially observed

models are converted to completely observable ones. Section 2.3 is devoted to the suppression

of population expression and biologically essential properties of the solution. Section 2.4

considers stochastic permanence and extinction. Feedback controls are investigated in Section

2.5 and numerical examples are provided in Section 2.6. Finally, the chapter is concluded

with some concluding remarks.

2.2 Formulation

Let α(t) be a finite state Markov chain taking values in M = {1, 2, . . . ,m} with the

generator Q = (qij) ∈ Rm×m. Assume throughout this chapter that both the Markov chain

α(t) and the n-dimensional standard Brownian motion w(t) are defined on a complete filtered

probability space (Ω,F , P, {Ft}) with the filtration {Ft} satisfying the usual conditions (i.e.,

it is right continuous, increasing, and F0 contains all the null sets). Denote by 11E the indicator
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function of the event E, and use the following notation throughout the chapter:

pk(t) := 11{α(t)=k}, k = 1, . . . ,m,

p(t) := (p1(t), . . . , pm(t))′ ∈ Rm,

Fyt := σ{y(s), 0 ≤ s ≤ t},

ϕk(t) := P (α(t) = k|Fyt ) = E[pk(t)|Fyt ], k = 1, . . . ,m,

ϕ(t) := (ϕ1(t), . . . , ϕm(t))′ ∈ Rm,

âij := max
k
aij(k), ǎij := min

k
aij(k),

r̂i := max
k
ri(k), ři := min

k
ri(k), σ̂2

i := max
k
σ2
i (k), σ̌2

i := min
k
σ2
i (k),

Rn
+ := {x = (x1, . . . , xn)′ ∈ Rn : xi > 0, i = 1, . . . , n},

Sm := {ϕ = (ϕ1, . . . , ϕm)′ ∈ Rm : ϕk ≥ 0,
m∑
k=1

ϕk = 1},

σi(ϕ) :=
m∑
k=1

σi(k)ϕk, ri(ϕ) :=
m∑
k=1

ri(k)ϕk, f(ϕ) :=
m∑
k=1

f(k)ϕk, for a ϕ ∈ Sm.

We first recall some results on Wonham’s filter. As we mentioned in Section 2.1, the

Markov chain α(t) is observed through (2.5). It was proved in [63] that the posterior proba-

bility ϕ(·) satisfies the following system of stochastic differential equations

dϕj(t) =
[ m∑
k=1

qkjϕk(t)− β−2(t)
(
f(j)− f (ϕ(t))

)
f (ϕ(t))ϕj(t)

]
dt

+β−2(t)
(
f(j)− f (ϕ(t))

)
ϕj(t)dy(t), j = 1, . . . ,m,

ϕj(0) = ϕ0
j , j = 1, . . . ,m,

(2.6)

where ϕ0 = (ϕ0
1, . . . , ϕ

0
m)′ ∈ Rm is the initial distribution of α(t). Let

dw(t) = β−1(t)
(
dy(t)− f (ϕ(t)) dt

)
, w(0) = 0,

be the one dimensional innovation process. Then the first m equations in (2.6) can be rewrit-
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ten as

dϕj(t) =
m∑
k=1

qkjϕk(t)dt+ β−1(t)
(
f(j)− f (ϕ(t))

)
ϕj(t)dw(t), j = 1, . . . ,m, (2.7)

which are easier to work with in the subsequent analysis. Equivalently,

dϕ(t) = Q′ϕ(t)dt+ β−1(t)C(t)ϕ(t)dw(t), (2.8)

where C(t) = diag (f(1), . . . , f(m))− f (ϕ(t)) Im, and Im is the m×m identity matrix. Note

that system (2.4) can be written as

dx(t) = diag(x(t))

[ m∑
k=1

pk(t)
(
r(k)− A(k)x(t)

)
+ u(t)

]
dt+ diag(x(t))

m∑
k=1

pk(t)Ξ(k)dw(t).

(2.9)

The solution of (2.8) is the well-known Wonham filter ϕ(t). which is an estimate of the

hidden state p(t). Replace p(t) by ϕ(t) in (2.9), we arrive at

dx(t) = diag(x(t))

[ m∑
k=1

ϕk(t)
(
r(k)− A(k)x(t)

)
+ u(t)

]
dt+ diag(x(t))

m∑
k=1

ϕk(t)Ξ(k)dw(t).

(2.10)

In component-wise form, system (2.10) becomes

dxi(t) = xi(t)

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t) + ui(t)

]
dt+ xi(t)

m∑
k=1

σi(k)ϕk(t)dwi(t).

(2.11)

Hence (2.8) and (2.10) form a competitive Lotka-Volterra ecosystem with complete observa-

tions.

We assume the following standing assumptions.

(A) For i, j = 1, . . . , n with i 6= j, min
k
aii(k) > 0, min

k
aij(k) ≥ 0.

(B) The feedback control is u(t) := u(x(t), ϕ(t)), where u(x, ϕ) is locally Lipschitz in (x, ϕ).
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Moreover, for i, j = 1, . . . , n, there are constants ci , di, λij ≥ 0, ρij ≥ 0, ρii > 0, and

λii > 0 such that for any tuple (x, ϕ) ∈ Rn
+ × Sm,

di −
n∑
j=1

ρijxj ≤ ui(x, ϕ) +
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t) ≤ ci −

n∑
j=1

λijxj. (2.12)

Observe that assumptions (A) and (B) ensure that our original population system is

competitive and this property still holds in the controlled system (2.11). For convenience,

let us combine (2.8) and (2.9) to obtain the following system

dx(t) = diag(x(t))

[ m∑
k=1

ϕk(t)
(
r(k)− A(k)x(t)

)
+ u(t)

]
dt

+diag(x(t))
m∑
k=1

ϕk(t)Ξ(k)dw(t),

dϕ(t) = Q′ϕ(t)dt+ β−1(t)C(t)ϕ(t)dw(t).

(2.13)

Let A(x, ϕ, t) denote the diffusion matrix of the population model (2.13). Then

A(x, ϕ, t) =

diag(x)
m∑
k=1

ϕkΞ(k) 0

0 β−1(t)Cϕ


diag(x)

m∑
k=1

ϕkΞ(k) 0

0 β−1(t)ϕ′C


=

A1 0

0 A2

 ,

where

A1 = diag{x2
1 (σ1(ϕ))2 , . . . , x2

n (σn(ϕ))2} and A2 = β−2(t)Cϕ(Cϕ)′.

Remark 2.1. Note that ϕ(t) is the probability vector conditioned on the observation σ{y(s) :

0 ≤ s ≤ t}, for each k ∈M and each t ≥ 0, ϕk(t) ≥ 0 and
m∑
k=1

ϕk(t) = 1, i.e., ϕ(t) ∈ Sm. We

will use this property of ϕ(t) frequently.

For x = (x1, . . . , xn)′ ∈ Rn
+, its norm is denoted by |x| =

(∑n
i=1 x

2
i

)1/2
. The operator

associated with (2.13) is defined as follows: For a sufficiently smooth real-valued function
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h : Rn
+ × Rm 7→ R being independent of ϕ, let

Lh(x, ϕ) =
n∑
i=1

∂h

∂xi
xi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk + ui

]
+

1

2

n∑
i=1

∂2h

∂x2
i

x2
i (σi(ϕ))2 . (2.14)

Now the study of (2.4) can be carried out by investigating system (2.13). Throughout

the chapter, we use K, Kκ to denote a generic positive constant whose exact value may be

different in different appearances where Kκ indicates that the constant depends on a quantity

κ to be specified later.

2.3 Properties of the Solution

Theorem 2.2. Assume (A) and (B) hold. Then for any initial condition (x(0), ϕ(0)) ∈

Rn
+× Sm, there is a unique solution (x(t), ϕ(t)) to (2.13) on t ≥ 0 such that x(t) remains in

Rn
+ almost surely, i.e., P{x(t) ∈ Rn

+ : for all t ≥ 0} = 1.

Proof. Since the coefficients of (2.13) are locally Lipschitz, there is a unique local solution

(x(t), ϕ(t))′ on t ∈ [0, ζ), where ζ is the explosion time (see [42, Theorem A.2]). Let l0 be

a sufficiently large positive integer such that every component of x(0) is contained in the

interval

(
1

l0
, l0

)
. For each l ≥ l0, we define

τl := inf

{
t ≥ 0 : xi(t) /∈

(
1

l
, l

)
, for some i = 1, .., n

}
. (2.15)

Clearly the sequence {τl} is monotonically increasing. Let τ∞ := lim
l→∞

τl. Then τ∞ ≤ ζ. It

suffices to show that τ∞ =∞ w.p.1. If this were false, there would exist a T > 0 and ε > 0

such that P{τ∞ ≤ T} > ε. Therefore we can find some l1 ≥ l0 such that

P{τl ≤ T} > ε, for all l ≥ l1. (2.16)

Consider the Liapunov function V (x, ϕ) =
n∑
i=1

(
xi − 1 − lnxi

)
, (x, ϕ) ∈ Rn

+ × Sm. Then
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V (x, ϕ) ≥ 0 for every (x, ϕ) ∈ Rn
+ × Sm. Using (2.10), detail computations lead to

LV (x, ϕ) =
n∑
i=1

(xi − 1)

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk + ui

]
+

1

2

n∑
i=1

(σi(ϕ))2

≤
n∑
i=1

xi

(
ci −

n∑
j=1

λijxj

)
− di +

n∑
j=1

ρijxj +
1

2

n∑
i=1

(σi(ϕ))2

≤
n∑
i=1

[
− λiix2

i +
(
ci +

n∑
j=1

ρji

)
xi +

σ̂2
i

2
− di

]
.

(2.17)

Hence LV (x, ϕ) is bounded above by some constant K > 0. By Dynkin’s formla, we obtain

EV (x(τl ∧ T ), ϕ(τl ∧ T ))− EV (x(0), ϕ(0)) = E

τl∧T∫
0

LV (x(s), ϕ(s)) ds ≤ KT.

It follows that

KT + V (x(0), ϕ(0)) ≥ EV (x(τl ∧ T ), ϕ(τl ∧ T )))

≥ E
[
V (x(τl), ϕ(τl)) 11{τl≤T}

]
.

(2.18)

Note that for each ω ∈ {τl ≤ T}, there is some i such that xi(τl(ω)) ≥ l or xi(τl(ω)) ≤ 1
l
.

Hence the properties of the function V (·, ·) give us

V (x(τl), ϕ(τl)) (ω) ≥ (lγ − 1− γ ln l) ∧
(

1

lγ
− 1 + γ ln l

)
. (2.19)

In view of (2.16) and (2.19), we get from (2.18) that

KT + V (x(0), ϕ(0)) ≥ ε

[
(lγ − 1− γ ln l) ∧

(
1

lγ
− 1 + γ ln l

)]
.

This leads to a contradiction as l→∞. Therefore, τ∞ =∞ a.s. 2

Next we shall show that solutions of the converted completely observable system (2.13)

has such properties as finite moments, path continuity, and positive recurrence. These prop-

erties are important from the biological point of view.

Theorem 2.3. Assume that (A) and (B) are satisfied. Then the following statements hold.
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(a) For any κ > 0,

sup
t≥0

E
[
|x(t)|κ

]
<∞.

(b) For any κ > 0,

lim sup
t→∞

E
[
|x(t)|κ

]
≤ Kκ <∞,

where the constant Kκ is independent of (x(0), ϕ(0)).

(c) The process x(t) is stochastically bounded, i.e., for any ε > 0, there is a constant

H = H(ε) such that for any (x(0), ϕ(0)), we have

lim sup
t→∞

P{|x(t)| ≤ H} ≥ 1− ε.

(d) The process (x(t), ϕ(t))′ is a Markov process having continuous sample paths a.s.

Proof. (a) Let

V (x, ϕ) =
n∑
i=1

xκi , (x, ϕ) ∈ Rn
+ × Sm.

Using (2.14), detail computations give us that

LV (x, ϕ) =
n∑
i=1

κxκi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk + ui

]
+

1

2

n∑
i=1

(σi(ϕ))2 κ(κ− 1)xκi

= κ
n∑
i=1

xκi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk + ui +

1

2
(κ− 1) (σi(ϕ))2

]
≤ κ

n∑
i=1

xκi

[
ci − λiixi +

|κ− 1|σ̂2
i

2

]
.

(2.20)

Hence LV (x, ϕ) is bounded above by some constant K > 0. Note that the boundedness of

κ
n∑
i=1

xκi

[
1

κ
+ ci +

|κ− 1|σ̂2
i

2
− λiixi

]
,
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by a positive constant can be obtained by studying the range of the above function in the

variable xi ∈ (0,∞), i = 1, . . . , n. Applying Itô’s formula to the function etV (x, ϕ), we obtain

E

[
et∧τl

n∑
i=1

xκi (t ∧ τl)

]
= E

n∑
i=1

xκi (0) +

∫ t∧τl

0

es[V + LV ] (x(s), ϕ(s)) ds

where τl is the stopping time defined by (2.15). Using (2.20), we have

E

[
et∧τl

n∑
i=1

xκi (t ∧ τl)
]
≤

n∑
i=1

xκi (0) + E

∫ t∧τl

0

κes
n∑
i=1

xκi

[
1

κ
+ ci +

|κ− 1|σ̂2
i

2
− λiixi

]
ds

≤
n∑
i=1

xκi (0) + E

∫ t∧τl

0

esKκds

≤
n∑
i=1

xκi (0) +Kκ(e
t − 1).

(2.21)

Letting k →∞ in (2.21), by virtue of Fatou’s lemma,

E
[
et

n∑
i=1

xκi (t)
]
≤

n∑
i=1

xκi (0) +Kκ(e
t − 1),

i.e.,

E

[
n∑
i=1

xκi (t)

]
≤ e−t

n∑
i=1

xκi (0) +Kκ(1− e−t).

Note that for x = (x1, . . . , xn)′ ∈ Rn
+, |x|κ ≤

(√
nmax

i
xi
)κ ≤ nκ/2

n∑
i=1

xκi , then

E
[
|x(t)|κ

]
≤ nκ/2

[
e−t

n∑
i=1

xκi (0) +Kκ(1− e−t)
]
. (2.22)

The desired inequality is easily obtained.

(b) follows from (2.22).

(c) follows from (b) with κ = 2 and Tchebyshev’s inequality.

(d) Both the drift and the diffusion coefficient given in (2.13) satisfy the linear growth and

Lipschitz condition in every bounded open set in Rn+m. By [23, Theorem 3.5], it suffices to
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show that there is a nonnegative, twice continuously differentiable function V : Rn
+×Sm → R

such that inf
|x|≥R,ϕ∈Sm

V (x, ϕ)→∞ as R→∞ and that there is an c > 0 satisfying LV ≤ cV .

To this end, take V (x, ϕ) =
n∑
i=1

x2
i . Then inf

|x|≥R,ϕ∈Sm
V (x, ϕ) → ∞ as R → ∞ and by the

calculation and estimation in (2.20) with κ = 2, we have

LV (x, ϕ) ≤ max
i

(
2ci + σ̂2

i

)
V (x, ϕ).

This completes the proof. 2

Theorem 2.4. Assume (A) and (B) hold. Then the following assertions hold.

(a) lim sup
t→∞

ln |x(t)|
ln t

≤ 1 a.s.,

(b) lim sup
t→∞

ln |x(t)|
t

≤ 0 a.s.

Proof. (a) The proof is a modification of that of [71]. We only give a sketch of the outline

and omit some technical details. Define

V (t, x, ϕ) = et ln (|x|) , (t, x, ϕ) ∈ [0,∞)× Rn
+ × Sm.

By Itô’s formula, we obtain

et ln (|x(t)|)− ln (|x(0)|)

=

∫ t

0

es
n∑
i=1

x2
i (s)

|x(s)|2

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(s)
)
ϕk(s) + ui(s)

]
+

1

2

(
1− 2x2

i (s)

|x(s)|2
)

(σi (ϕ(s)))2

]
ds+

∫ t

0

es ln
(
|x(s)|

)
ds

+
n∑
i=1

∫ t

0

es.
x2
i (s)

|x(s)|2
σi (ϕ(s)) dwi(s).

(2.23)

Using the argument as in [71, Theorem 3.3], there exist a Ω0 ⊂ Ω with P (Ω0) = 1 satisfying

that for any positive constants γ > 0, θ > 1, ε ∈ (0, 1) and any ω ∈ Ω0, there is a positive
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integer ξ = ξ0(ω) such that ξ ≥ ξ0(ω) and t ∈ [0, ξγ] imply

n∑
i=1

∫ t

0

es
x2
i (s)

|x(s)|2
σi (ϕ(s)) dwi(s) ≤

nεe−ξγ

2

n∑
i=1

∫ t

0

e2s x
4
i (s)

|x(s)|4
σ̂2
i ds+

θeξγ ln(ξ)

ε
. (2.24)

It follows from (2.23) and (2.24) that

et ln (|x(t)|)− ln (|x(0)|)

≤
∫ t

0

es
n∑
i=1

x2
i (s)

|x(s)|2

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(s)
)
ϕk(s) + ui(s)

+
1

2

(
1− 2x2

i (s)

|x(s)|2
)

(σi (ϕ(s)))2

]
ds+

∫ t

0

es ln
(
|x(s)|

)
ds

+
nεe−ξγ

2

n∑
i=1

∫ t

0

e2s x
4
i (s)

|x(s)|4
σ̂2
i ds+

θeξγ ln(ξ)

ε
.

≤
∫ t

0

es

[
ln |x(s)|+

n∑
i=1

x2
i (s)

|x(s)|2
[
ci − λiixi(s) +

1

2
σ̂2
i

]
+

n∑
i=1

nεes−ξγ

2

x4
i (s)

|x(s)|4
σ̂2
i −

n∑
i=1

x4
i (s)

|x(s)|4
σ̌2
i

]
ds+

θeξγ ln(ξ)

ε
.

(2.25)

Note that for any t ∈ [0, ξγ], s ∈ [0, t], and (x, ϕ) ∈ Rn
+×Sm, there exist Ki > 0 for i = 1, 2, 3

such that

ln (|x|) +
n∑
i=1

x2
i

|x|2
[
ci − λiixi +

1

2
σ̂2
i

]
+

n∑
i=1

nεes−ξγ

2

x4
i

|x|4
σ̂2
i −

n∑
i=1

x4
i

|x|4
σ̌2
i

≤ ln (|x|) +
n∑
i=1

x2
i

|x|2
(ci +

1

2
σ̂2
i )−

n∑
i=1

λii
x3
i

|x|2
+K1

≤ ln (|x|)−
min
i
λii

√
n
|x|+K1 +K2

≤ K3 +K1 +K2 = K.

(2.26)

In the above, we used the fact that min
i
εii > 0 and the function in variable t, ln (|t|)−

tmin
i
λii

√
n

is bounded above on (0,∞). We also used the inequality
n∑
i=1

x3
i ≥

1√
n
|x|3.

It then follows from (2.25) and (2.26) that

et ln (|x(t)|)− ln (|x(0)|) ≤ K(et − 1) +
θeξγ ln(ξ)

ε
.
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The desired result is obtained by repeating the argument in [71, Theorem 3.3].

(b) It is easily obtained from (a) that lim
t→∞

ln (t)

t
= 0. 2

This theorem says that the process x(t) will growth at most polynomially. By virtue of

this result, for any ε > 0, there is a positive random time Tε such that for any t ≥ Tε,

|x(t)| ≤ t1+ε a.s.

2.4 Stochastic Permanence and Extinction

It is well known that in the study of stochastic population systems, stochastic perma-

nence, which indicate that the species will survive forever, is one of the most important

concepts. Many works have been devoted to stochastic permanence for different population

models; see [32, 34, 35] among others. We first recall the definition of stochastic perma-

nence [32, Definition 3.2].

Definition 2.5. The population system (2.13) is said to be stochastically permanent if for

any ε ∈ (0, 1), there exist positive constants H = H(ε) and K = K(ε) such that

lim inf
t→∞

P{|x(t)| ≥ H} ≥ 1− ε, lim inf
t→∞

P{|x(t)| ≤ K} ≥ 1− ε, (2.27)

where (x(t), ϕ(t)) is the solution of the population system (2.13) with any initial condition

(x(0), ϕ(0)) ∈ Rn
+ × Sm.

Theorem 2.6. Assume that (A) and (B) are satisfied, and for i, j = 1, . . . , n, there are

constants γi > 0, εij ≥ 0, εii > 0, such that

ui(t)+
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t) ≥ γi+

1

2

(
σi (ϕ(t))

)2−
n∑
j=1

εijxj(t), t ≥ 0, i = 1, . . . , n.

(2.28)

Then the population system (2.13) is stochastically permanent.
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Proof. Let σ̂2 := min
1≤i≤n

σ̂2
i . Since γ := min

i
γi > 0, then there are positive constants θ and κ

such that

γ − 0.5θσ̂2 > 0, γ − 0.5θσ̂2 − nκ

θ
> 0, i = 1, . . . , n. (2.29)

Define

V1(x) =
( n∑
i=1

xi

)−1

, x ∈ Rn
+.

Applying Itô’s formula to V1(x(t)) leads to

dV1(x) =

{
− V 2

1 (x)
n∑
i=1

xi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk(t) + ui(t)

]
+V 3

1 (x)
n∑
i=1

(σi (ϕ(t)))2 x2
i

}
dt− V 2

1 (x)
n∑
i=1

xiσi (ϕ(t)) dwi(t),

where we suppressed t in x(t) for simplicity.

Define

V2(x) =
(
1 + V1(x)

)θ
, V3(x) = eκtV2(x), x ∈ Rn

+.

Then by Itô’s formula,

dV2(x) = θ(1 + V1(x))θ−1dV1(x) +
1

2
θ(θ − 1)(1 + V1(x))θ−2(dV1(x))2.

That is,

dV2(x) = θ(1 + V1(x))θ−2

{
− (1 + V1(x))V 2

1 (x)
n∑
i=1

xi

×
[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk(t) + ui(t)

]
+(1 + V1(x))V 3

1 (x)
n∑
i=1

(σi (ϕ(t)))2 x2
i +

θ − 1

2
V 4

1 (x)
n∑
i=1

x2
i (σi (ϕ(t)))2

}
dt

−θ(1 + V1(x))θ−1V 2
1 (x)

n∑
i=1

xiσi (ϕ(t)) dwi(t).
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It also follows from Itô’s formula that

dV3(x) = κeκtV2(x)dt+ eκtdV2(x)

= θeκtL (x(t), ϕ(t))− θeκt(1 + V1(x))θ−1V 2
1 (x)

n∑
i=1

xiσi (ϕ(t)) dwi(t),
(2.30)

where

L (x(t), ϕ(t)) = (1 + V1(x))θ−2

{
κ(1 + V1(x))2

θ

−(1 + V1(x))V 2
1 (x)

n∑
i=1

xi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk(t) + ui(t)

]
+(1 + V1(x))V 3

1 (x)
n∑
i=1

x2
i (σi (ϕ(t)))2 +

θ − 1

2
V 4

1 (x)
n∑
i=1

x2
i (σi (ϕ(t)))2

}
= (1 + V1(x))θ−2

{
κ(1 + V1(x))2

θ
+ V 3

1 (x)
n∑
i=1

x2
i (σi (ϕ(t)))2

+
θ + 1

2
V 4

1 (x)
n∑
i=1

x2
i (σi (ϕ(t)))2

−(1 + V1(x))V 2
1 (x)

n∑
i=1

xi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk(t) + ui(t)

]}
.

(2.31)

To proceed, we show that sup
t≥0

L (x(t), ϕ(t)) <∞. Observe that the following estimates hold.

V 3
1 (x)

n∑
i=1

x2
i (σi(ϕ(t)))2 ≤ σ̂2

n∑
i=1

x2
i( n∑

i=1

xi
)2
V1(x) ≤ V1(x)σ̂2,

−V 4
1 (x)

n∑
i=1

x2
i ≤ −

1

n
V 4

1 (x)
( n∑
i=1

xi
)2

= − 1

n
V 2

1 (x).

(2.32)

We also have

−(1 + V1(x)) V 2
1 (x)

n∑
i=1

xi

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj

)
ϕk(t) + ui(t)

]
≤ −(1 + V1(x))V 2

1 (x)
n∑
i=1

xi

[
γi +

1

2

(
σi (ϕ(t))

)2 −
n∑
j=1

εijxj(t)
]

≤ −V 3
1 (x)

n∑
i=1

xi

[
γi +

1

2

(
σi (ϕ(t))

)2
]

+ (1 + V1(x)) max
1≤i,j≤n

εij

≤ −V 4
1 (x)

n∑
i=1

x2
i

[
γi +

1

2

(
σi (ϕ(t))

)2
]

+ (1 + V1(x)) max
1≤i,j≤n

εij.

(2.33)
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In views of (2.31), (2.32), and (2.33),

L (x(t), ϕ(t)) ≤ (1 + V1(x))θ−2

{
V 2

1 (x)
κ

θ
+ V1(x)

(2κ

θ
+ σ̂2 + max

1≤i,j≤n
εij

)
+ max

1≤i,j≤n
εij +

κ

θ
− V 4

1 (x)
n∑
i=1

(
γi +

1

2

(
σi (ϕ(t))

)2 − θ + 1

2

(
σi(ϕ(t))

)2
)
x2
i

}
≤ (1 + V1(x))θ−2

{
V 2

1 (x)
κ

θ
+ V1(x)

(2κ

θ
+ σ̂2 + max

1≤i,j≤n
εij

)
+ max

1≤i,j≤n
εij +

κ

θ
−
(
γ − 0.5θσ̂2

)
V 4

1 (x)
n∑
i=1

x2
i

}
≤ (1 + V1(x))θ−2

{
V1(x)

(2κ

θ
+ σ̂2 + max

1≤i,j≤n
εij

)
+ max

1≤i,j≤n
εij +

κ

θ
− V 2

1 (x)

n

(
γ − 0.5θσ̂2 − nκ

θ

)}
.

It follows from (2.29) that

M := sup
t≥0

L (x(t), ϕ(t)) <∞.

Integrating and taking expectations on both sides of (2.30), we have

E
[
V3(x(t))

]
− V3(x(0)) ≤M

∫ t

0

θeκsds,

i.e.,

E
[
(1 + V1(x(t)))θ

]
≤ e−κt

(
1 + V1(0)

)θ
+
Mθ

κ
.

Note that for x = (x1, . . . , xn)′ ∈ Rn
+,
(∑n

i=1 xi
)θ ≤ nθ|x|θ. Now for any given ε ∈ (0, 1), let

H > 0 be such that
HθnθMθ

κ
≤ ε. By Tchebychev’s inequality, we obtain

P
(
|x(t)| < H

)
= P

(
V θ

1 (x(t)) >
1

Hθnθ
)
≤ HθnθE

[
V1(x(t))

]θ
≤ HθnθE

[
(1 + V1(x(t)))θ

]
≤ Hθnθ

[
e−κt

(
1 + V1(0)

)θ
+
Mθ

κ

]
.
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This implies that

lim sup
t→∞

P
(
|x(t)| < H

)
≤ HθnθMθ

κ
≤ ε.

That is, lim inf
t→∞

P
(
|x(t)| ≥ H

)
≥ 1 − ε. Hence the first inequality in (2.27) has been es-

tablished. The second inequality can be obtain by using the boundedness of moments in

Theorem 2.3 (b) and Tchebychev’s inequality. The proof is thus completed. 2

Remark 2.7. Assume that u = 0 and σi(k) = σi for all k = 1, . . . ,m and i = 1, . . . , n,

i.e., the matrix of intensities is independent of the environment. The assumption (2.28) now

becomes min
i,k

bi(k) > 0. In this case, the above theorem reveals the important fact that the

unobservable environment mental noise cannot make the population extinct if the intrinsic

growth rates of species are positive. This also presents a characterization of the white noise

represented by a Stratonovich integral in our population system.

Recall that the population is said to reach the extinction if lim
t→∞
|x(t)| = 0 a.s., i.e.,

lim
t→∞

n∑
i=1

xi(t) = 0 a.s. We now provide a sufficient condition for extinction and estimates of

the average in time of the underlying population.

Theorem 2.8. Assume that (A) and (B) are satisfied. Then the following statements hold.

(a) For each i = 1, . . . , n, lim sup
t→∞

lnxi(t)

t
≤ µi := sup

t≥0

(
ui(t) + ri(ϕ(t)) −

0.5 (σi(ϕ(t)))2
)

a.s. Hence if µi < 0 for all i = 1, . . . ,m, the population will decay

exponentially and reach the extinction.

(b) Suppose that for i = 1, . . . , n0 ≤ n, j = 1, . . . , n, there are constants γi > 0, εij ≥ 0,

εii > 0, such that

ui(t) +
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t) ≥ γi +

1

2

(
σi (ϕ(t))

)2 −
n∑
j=1

εijxj(t), t ≥ 0.
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In addition, µi < 0 for i > n0. Then

lim inf
t→∞

1

t

t∫
0

n0∑
i=1

xi(s)ds ≥
γ1,n0

ε̂1,n0

a.s.,

where γ1,n0 := min
1≤i≤n0

γi, ε̂1,n0 := max
1≤i,j≤n0

εij.

(c) Under the hypotheses of part (b), suppose for all 1 ≤ i ≤ n0 and t ≥ 0,

ui(t) +
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t)− 0.5n0

−1 min
1≤i≤n0

σ̂2
i +

n∑
j=1

εijxj(t) ≤ β1,n0 .

Then

lim sup
t→∞

1

t

∫ t

0

n0∑
i=1

xi(s)ds ≤
n0β1,n0

min
1≤i≤n0

εii
, a.s..

Proof. (a) By Itô’s formula, for each i = 1, . . . , n, we derive from (2.13) that

d[lnxi(t)] =
[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t) + ui(t)− 0.5 (σi(ϕ(t)))2

]
dt

+σi(ϕ(t))dwi(t) a.s.

Hence

lnxi(t) = lnxi(0) +

t∫
0

[ m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(s)
)
ϕk(s) + ui(s)− 0.5 (σi(ϕ(s)))2

]
ds

+

t∫
0

σi(ϕ(s))dwi(s).

That is,

lnxi(t) ≤ lnxi(0) +

t∫
0

(
ri(ϕ(s)) + ui(s)− 0.5 (σi(ϕ(s)))2

)
ds+

t∫
0

σi(ϕ(s))dwi(s)

≤ lnxi(0) + tµi +

t∫
0

σi(ϕ(s))dwi(s).

(2.34)

Dividing both sides by t and then letting t → ∞ we obtain lim sup
t→∞

lnxi(t)

t
≤ µi a.s. The

conclusion readily follows.
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(b) By Itô’s formula, we derive from (2.13) that

d
[

ln

n0∑
i=1

xi(t)
]
≥

[
γ1,n0 −

n∑
j=1

max
1≤i≤n0

εijxj(t)

]
dt+

n0∑
i=1

σi(ϕ(t))xi(t)dwi(t)

n0∑
i=1

xi(t)
. (2.35)

Hence

ln
[ n0∑
i=1

xi(t)
]
− ln

[ n0∑
i=1

xi(0)
]

≥ tγ1,n0 −
t∫

0

n∑
j=1

max
1≤i≤n0

εijxj(s)ds+

∫ t

0

n0∑
i=1

σi(ϕ(s))xi(s)dwi(s)

n0∑
i=1

xi(s)
.

That is,

t∫
0

n∑
j=1

max
1≤i≤n0

εijxj(s)ds ≥ tγ1,n0 + ln
[ n0∑
i=1

xi(0)
]
− ln

[ n0∑
i=1

xi(t)
]

+

∫ t

0

n0∑
i=1

σi(ϕ(s))xi(s)dwi(s)

n0∑
i=1

xi(s)
.

(2.36)

It follows from Theorem 2.4 that lim sup
t→∞

1
t

ln
[ n0∑
i=1

xi(t)
]
≤ 0. By the strong law of large

numbers for local martingales [36],

lim
t→∞

∫ t

0

n0∑
i=1

σi(ϕ(s))xi(s)dwi(s)

n0∑
i=1

xi(s)
= 0 a.s.

We can therefore divide both sides of (2.36) by t and then let t→∞ to obtain

lim inf
t→∞

1

t

∫ t

0

n∑
j=1

max
1≤i≤n0

εijxj(s)ds ≥ γ1,n0 . (2.37)

Since µi < 0 for i = n0 + 1, . . . , n, lim
t→∞

n∑
i=n0+1

xi(t) = 0. Thus (2.37) yields the conclusion.

(c) We proceed as in (b). In view of (2.35), we obtain

d
[

ln

n0∑
i=1

xi(t)
]
≤ β1,n0 −

n0∑
i=1

n−1
0 min

1≤i≤n0

εiixi(t) +

n0∑
i=1

σi(ϕ(t))xi(t)dwi(t)

n0∑
i=1

xi(t)
.
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Hence

ln
[ n0∑
i=1

xi(t)
]
− ln

[ n0∑
i=1

xi(0)
]

≤ tβ1,n0 −
t∫

0

n0∑
i=1

n−1
0 min

1≤i≤n0

εiixi(s)ds+

∫ t

0

n0∑
i=1

σi(ϕ(s))xi(s)dwi(s)

n0∑
i=1

xi(s)
,

i.e.,

t∫
0

n0∑
i=1

n−1
0 min

1≤i≤n0

εiixi(s)ds

≤ tβ1,n0 + ln
[ n0∑
i=1

xi(0)
]
− ln

[ n0∑
i=1

xi(t)
]

+

∫ t

0

n0∑
i=1

σi(ϕ(s))xi(s)dwi(s)

n0∑
i=1

xi(s)
.

(2.38)

Using the same argument as in (b), to obtain (c), all we need is to show that

lim
t→∞

1

t
ln
[ n0∑
i=1

xi(t)
]

= 0 a.s.

This follows from Theorem 2.4 part (b) and the fact that for any ω ∈ Ω,

lim
t→∞

1

t
ln
[ n0∑
i=1

xi(t, ω)
]
< 0 implies lim

t→∞

1

t

t∫
0

n0∑
i=1

xi(s, ω)ds = 0.

This completes the proof of the theorem. 2

Remark 2.9. By virtue of Theorem 2.6, if condition (2.28) holds, the population system

(2.13) is stochastically permanent. Now we can see from Theorem 2.8 that in such case,

(2.13) will not reach extinction almost surely, i.e., P{|x(t)| → 0, t → ∞} = 0. In addition,

we also have P{|x(t)| → ∞, t→∞} = 0.

2.5 Feedback Controls

Our goal here is to design suitable and simple feedback controls so that the resulting pop-

ulation model (2.13) has the desired asymptotic properties such as permanence, extinction,
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etc.

We first suppose that the species are certain insects and we wish to get rid of this

population. Thus we design a feedback control u so that the species become extinct. Such

controls can always be designed by the following theorem, which can be seen as a consequence

of Theorem 2.8.

Theorem 2.10. Assume that (A) is satisfied. If the feedback control u satisfies (B) and

ui(t) ≤ −κi − ri(ϕ(t)) + 0.5
(
σi(ϕ(t))

)2
, i = 1, . . . , n, (2.39)

for some constants κi > 0, then the controlled population system (2.13) decays exponentially

and reach the extinction. In particular, we can take

ui(t) = −κi − ri(ϕ(t)) + 0.5
(
σi(ϕ(t))

)2
, i = 1, . . . , n. (2.40)

If we use the control (2.40), by virtue of Theorem 2.8 (a), lim sup
t→∞

lnxi(t)

t
≤ −κi. More-

over, it also follows from (2.34) that E
[

ln
xi(t)

xi(0)

]
≤ −κit for all t ≥ 0. Hence it is worth to

mention that constants κi can be chosen to yield a desired rate of extinction for x(t).

Let us now consider the design of feedback controls to make the controlled system be

stochastically permanent. Such controls can always be designed by the following theorem,

which can be seen as a consequence of Theorem 2.6.

Theorem 2.11. Assume that (A) is satisfied. If the feedback control u satisfies (B) and

ui(t) ≥ κi +
1

2

(
σi (ϕ(t))

)2 −
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t)−

n∑
j=1

εijxj(t), i = 1, . . . , n,

for some constants κi > 0, εij > 0, εii > 0, then the controlled population system (2.13) is
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stochastically permanent. In particular, we can take

ui(t) = κi +
1

2

(
σi (ϕ(t))

)2 −
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t)−

n∑
j=1

εijxj(t), i = 1, . . . , n,

(2.41)

or

ui(t) = κi +
1

2

(
σi (ϕ(t))

)2 − r (ϕ(t)) , i = 1, . . . , n. (2.42)

By virtue of Theorem 2.8, if we use the control (2.41) (resp., (2.42)), then constants κi and

εij (resp., κi) can be chosen depending on our desired asymptotic behavior of
1

t

t∫
0

n∑
i=1

xi(s)ds.

In addition, we can maintain the persistence in the mean (see [35]) of n0 species while making

other species extinct. Note that the sub-ecosystem of species 1, . . . , n0 is called persistent in

the mean if there exist positive constants M1 and M2 such that

M1 ≤ lim inf
t→∞

1

t

∫ t

0

n0∑
i=1

xi(s)ds ≤ lim sup
t→∞

1

t

∫ t

0

n0∑
i=1

xi(s)ds ≤M2 a.s.

The corresponding feedback control can be constructed by using Theorem 2.8.

Theorem 2.12. Assume that (A) is satisfied. To maintain the persistence in the mean of the

first n0 species while making other species extinct, we can use the following feedback controls

ui(t) = κi +
1

2

(
σi (ϕ(t))

)2 −
m∑
k=1

(
ri(k)−

n∑
j=1

aij(k)xj(t)
)
ϕk(t)−

n∑
j=1

εijxj(t), i = 1, . . . , n0,

ui(t) = −κi − ri(ϕ(t)) + 0.5
(
σi(ϕ(t))

)2
, i = n0 + 1, . . . , n,

(2.43)

for some constants κi > 0, εij ≥ 0, εii > 0, or

ui(t) = κi − ri(ϕ(t)) + 0.5
(
σi(ϕ(t))

)2
, i = 1, . . . , n0,

ui(t) = −κi − ri(ϕ(t)) + 0.5
(
σi(ϕ(t))

)2
, i = n0 + 1, . . . , n.

Again, by virtue of Theorem 2.8, constants κi and εij are chosen depending on our desired
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asymptotic behavior of
1

t

t∫
0

n0∑
i=1

xi(s)ds and desired rate of extinction of species n0 + 1, .., n.

When the population of species n0 + 1, . . . , n is smaller than a very small number, it can

be thought that they are extinct. Then the population system of the first n0 species is

stochastically permanent by virtue of Theorem 2.6. If the noise intensities Ξ(k) is independent

of k, our feedback control can remove the effect of the random environment from the system,

and gives desired asymptotic properties. The following result follows from our preceding

analysis and [19]; see Theorem 3.1 and Theorem 4.2.

Theorem 2.13. Assume that (A) is satisfied, Ξ(k) = Ξ for all k, and x∗ = (x∗1, . . . , x
∗
n)′ ∈ Rn

is given. Then the following statements hold.

(a) Suppose x∗i > 0 for all i = 1, . . . , n. Let u(t) be in Eq. (2.41) with

κi −
n∑

i 6=j=1

εij
εjj
κj > 0,

n∑
j=1

εijx
∗
j = κi, i = 1, . . . , n.

Then

lim
t→∞

1

t

t∫
0

xi(s)ds = x∗i , i = 1, . . . , n.

(b) Suppose x∗i > 0 for i = 1, . . . , n0 < n and x∗i = 0 for i = n0 + 1, . . . , n. Let u(t) be in

Eq. (2.43) with

κi −
n0∑

i 6=j=1

εij
εjj
κj > 0,

n0∑
j=1

εijx
∗
j = κi, i = 1, . . . , n0.

Then

lim
t→∞

1

t

t∫
0

xi(s)ds = x∗i , i = 1, . . . , n0, lim
t→∞

xi(t) = 0, i = n0 + 1, . . . , n.

Remark 2.14. Note that mathematically, it is possible to control a stochastic differential

equation by adding a white noise [45]. It is also proved that for a population system in which
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white noise is represented by a Itô’s integral, a white nose with sufficient large intensity may

make the underlying population extinct [32,34,35,42]. For this approach, we refer the reader

to [45, 57]. Moreover, one can also consider another feedback control in the diffusion part,

which can maintain the validity of Theorem 2.13 when the noise intensities Ξ(k) depends on

k. In this work, we only discuss a feedback control in drift part since it is more practical.

2.6 Numerical Examples

This section is devoted to a couple of examples. They are for demonstration purposes.

We begin with the Wonham filter equations. After ϕ(t) being found, we use it to obtain

the feedback control u(t). Although the filter provides precise results in the posterior prob-

abilities, the system often has to be solved numerically because it is nonlinear and because

observations are frequently collected in discrete moments.

To construct approximation algorithms, one may wish to discretize the stochastic dif-

ferential equations (2.6) directly. However, such a procedure is numerically unstable due to

the white noise perturbations [24, Section 13.3] and [43]. It may produce a non-probability

vector (e.g., some components might be less than 0 or the sum of the components might be

not 1). To overcome this difficulty, the authors in [43] suggested a method based on Clark

transformations, whereas a logarithm transformation was used in [67] to build approxima-

tions. Note that we are mainly interested in sample path approximations of the filters. Using

the approach suggested in [67] (see Section 8.4), we first transform the stochastic differential

equations and then design a numerical procedure for the transformed system.

Let vj(t) := lnϕj(t) for t ≥ 0 and j = 1, . . . ,m. It follows that ϕj(t) = evj(t). A straight-
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forward application of Itô’s formula to (2.6) leads to the following. For each j = 1, . . . ,m,

dvj(t) =
[
qjj +

∑
k 6=j

qkj
ϕk(t)

ϕj(t)
− β−2(t)

(
f(j)− f(ϕ(t))

)
f(ϕ(t))

−1

2
β−2(t)

(
f(j)− f(ϕ(t))

)2
]
dt+ β−2(t)

(
f(j)− f(ϕ(t))

)
dy(t),

vj(0) = lnϕ0
j(0).

(2.44)

Then we use Euler-Maruyama type approximations of (2.5) (see [67, p. 186]), (2.44), and

(2.10) to mimic the dynamics of our population system. Note that in the above, by using

the transformation ϕj(t) = evj(t), we have assumed implicitly that {ϕj} is bounded below

from zero. The relaxation of this condition can be found in [67]. Now we will use the above

results for numerical examples. To demonstrate the validity of our model, we denote by x̂(t)

the actual population process defined by (2.4) and compare x(t) with x̂(t). By path mean

square error, we mean
1

N

N∑
j=1

|xj − x̂j|2, where N is the number of iterations, xj and x̂j are

j th iterations of sample path approximations of x(t) and x̂(t), respectively. Our numerical

experiments show that our method is effective (see Figures. 1-5).

Example 2.15. We first consider a single species ecosystem in random environment (also

called a logistic model with regime switching). Let x(t) denote the population size of a certain

species at time t. Suppose that the Markov chain α(·) ∈ {1, 2} that models random environ-

ment. The generator of the continuous-time Markov chain is given by Q =

−2 2

3 − 3

, and

b(1) = 3, a(1) = 4, σ(1) = 2, b(2) = −2, a(2) = 1, σ(2) = 1. In this case, the corresponding

population system (2.3) is stochastically permanent (see [34, Theorem 6.1]). Now we sup-

pose that the Markov chain can only be observed through dy(t) = f(α(t))dt+2dB(t), where

f(1) = −1 and f(2) = 1. Then the population size x(t) and Wonham’s filter ϕ(t) satisfy the
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following equations

dx(t) = x(t)
[
5− 4x(t) + u(t)

]
ϕ1(t)dt+ x(t)

[
− 1.5− x(t) + u(t)

]
ϕ2(t)dt

+x(t)
[
2ϕ1(t) + ϕ2(t)

]
dw(t),

dϕ1(t) =
[
− 2ϕ1(t) + 3ϕ2(t)−

(
1− f(ϕ(t))

)
f(ϕ(t))ϕ1(t)

]
dt

+
(
1− f(ϕ(t))

)
ϕ1(t)dy(t),

dϕ2(t) =
[
2ϕ1(t)− 3ϕ2(t)−

(
2− f(ϕ(t))

)
f(ϕ(t))ϕ2(t)

]
dt

+
(
2− f(ϕ(t))

)
ϕ2(t)dy(t),

(2.45)

where f(ϕ(t)) = −ϕ1(t) + ϕ2(t) and u(t) is a feedback control.
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Figure 1: Sample paths of x(t) and x̂(t), with u(t) in (2.46)

Suppose that the species is a certain insect of the ecosystem for which we would like to

get rid of. By Theorem 2.10, we add a feedback control

u(t) = −κ−
[
5ϕ1(t) + 2.5ϕ2(t)

]
+ 0.5

[
2ϕ1(t) + ϕ2(t)

]2

, (2.46)

where κ > 0 is chosen depending on the rate of extinction. Taking κ = 1, we perform a
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computer simulation of 10,000 iterations of a sample path of x(t) with step size 4 = 0.005

and initial conditions x(0) = 3, ϕ1(0) = 0.1, ϕ2(0) = 0.9, u(t) in (2.46). The corresponding

sample paths of x̂(t) are shown in Figure 1. For these sample paths of x(t) and x̂(t), the

path mean square error is only 6× 10−4. It shows that the feedback control work very well.

Example 2.16. Consider a Lotka-Volterra model of two species competitive ecosystem with

a hidden Markov chain with

b(1) =

−0.5
−3

 , b(2) =

−1
−1

 , a(1) =

2 3

1 2

 , a(2) =

1 1

0 3

 , σ(1) =

2
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Figure 2: Sample paths of x1(t) + x2(t) and x̂1(t) + x̂2(t), with u(t) in (2.48)

similar argument as in Theorem 2.8 (see also [32]) tell us that the corresponding population

system (2.3) reaches the extinction. Now we suppose that the Markov chain can only be
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observed through dy(t) =
(
α(t)

)2
dt + (t2 + 1)dB(t). We would like to find a feedback con-

trol such that the controlled population size (x1(t), x2(t)) is stochastically permanent. The

population size (x1(t), x2(t)) satisfy

dx1(t) = x1(t)
[
1.5− 2x1(t)− 3x2(t) + u1(t)

]
ϕ1(t)dt

+x1(t)
[
− 1− x1(t)− x2(t) + u1(t)

]
ϕ2(t)dt+ 2x1(t)ϕ1(t)dw1(t),

dx2(t) = x2(t)
[
− 1− x1(t)− 2x2(t) + u2(t)

]
ϕ1(t)dt

+x2(t)
[
1− 3x2(t) + u2(t)

]
ϕ2(t)dt+ 2x2(t)dw2(t),

(2.47)

and (ϕ1(t), ϕ2(t)) satisfies Wonham’s equation. By Theorem 2.11, we can use the following

u1(t) = κ1 −
[
1.5ϕ1(t)− ϕ2(t)

]
+ 2ϕ2

1(t),

u2(t) = κ2 + 2−
[
− ϕ1(t) + ϕ2(t)

]
,

(2.48)

where κ1, κ2 are positive constants. We can choose κ1, κ2 to give a desired asymptotic

behavior of
1

t

t∫
0

(
x1(s) + x2(s))ds. Taking κ1 = κ2 = 2, we perform a computer simulation

of 10,000 iterations of sample paths of xi(t) and x̂(t) with step size 4 = 0.005 and initial

condition x1(0) = 4, x2(0) = 5, ϕ1(0) = 0.9, ϕ2(0) = 0.1, (u1(t), u2(t)) in (2.49). Since in this

case we are interested in x1(t) + x2(t) and x̂1(t) + x̂2(t), then we plot sample paths of these

processes in Figure 2. The path mean square errors are only 0.07866089 and 0.06132534, for

species 1 and 2, respectively. The histograms of the 10,000 iterations of x1(t) + x2(t) and

x̂1(t) + x̂2(t) is shown in Figure 3.

Repeating the simulation N = 1, 000 times, the corresponding frequency distributions

of x1(50) + x2(50) and x̂1(50) + x̂2(50) are displayed in Figure 4. Approximately, we have

E|x1(50) + x2(50)− x̂1(50)− x̂2(50)|2 ' 0.1399255. It can be seen that the solutions of our

model are very close to the actual evolution of population process on both qualitative and
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quantitative aspects.

Suppose we wish to maintain the second species and make the first species extinct. By
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Figure 5: Sample paths of xi(t) and x̂i(t), i = 1, 2, with u(t) in (2.49)

Theorem 2.12, we can use the following

u1(t) = 0, u2(t) = κ+ 2−
[
− ϕ1(t) + ϕ2(t)

]
, (2.49)

where κ is a positive constant. We can choose κ to give a desired asymptotic behavior of

1

t

t∫
0

x2(s)ds. Taking κ = 3, to visualize the effect of our feedback control, we plot sample

paths of the controlled population process xi(t) and x̂i(t) in Figure 5. The path mean square

errors are only 0.002089295 and 0.2592157, for species 1 and 2, respectively. Not only do

the above observations and calculations support the theoretical results but also show the

efficiency of our feedback controls.

2.7 Further Remarks

This chapter is devoted to the study of stochastic competitive Lotka-Volterra models

in random environments with an unobservable Markov chain. Under the framework of the

Wonham filtering, we first converted the underlying system to a fully observable system. Next
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we established the regularity, positivity, stochastic boundedness, permanence and extinction.

The design of feedback controls for stochastic permanence and extinction as well as other

desired asymptotic properties has been obtained. These results pave a way for practical

consideration for control problems of ecosystems under partial observation.
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CHAPTER 3 OPTIMAL HARVESTING STRATE-

GIES FOR STOCHASTIC COMPET-

ITIVE LOTKA-VOLTERRA ECOSYS-

TEMS

3.1 Introduction

This chapter develops optimal harvesting strategies for stochastic Lotka-Volterra models

of ecosystems that are represented by stochastic differential equations with regime switching

modeled by a continuous-time Markov chain. As noted by many researchers, one of the most

important problems in modern natural resources management is the establishment of eco-

logically, environmentally, and economically reasonable wildlife management and harvesting

policies; see [54] and references therein. It is noted that simple-minded myopic unconstrained

harvesting strategies and over-harvesting could lead to detrimental effect causing local ex-

tinctions or depletion of numerous species; see the examples documented in [30]. Thus the

study on the optimal harvesting strategies has significant impact on the environment, ecol-

ogy, economy, and the society.

Building on the corresponding models without controls in [70,71], the problem we consider

belongs to a class of singular stochastic control problems motivated by the establishment of

reasonable wildlife management and harvesting policies. There has been resurgent interests

in determining the optimal harvesting strategies in the presence of stochastic fluctuations

recently. Radner and Shepp [51] considered certain optimal corporate strategies. Alvarez and

Shepp [1] and Alvarez [3] studied optimal harvesting plans for the stochastic Verhulst-Pearl

logistic model and a similar model in the presence of a state-dependent yield structure.

Similar problems for another logistic population model were investigated in [39] by Lunggu
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and Oksendal. The papers [40] and [4] were one of the first in the analysis of the harvesting

problem for interacting populations. All of the aforementioned works dealt with species living

in a static environment. Recently, Song, Stockbridge, and Zhu [53], and Song and Zhu [54]

treated such class of singular control problems in random environments modeled by a Markov

chain, where the first one deals with a single species and the second one deals with multiple

species in the class of constrained harvesting options. Some results on numerical methods

for the above singular control formulations can be found in Jin, Yin, and Zhu [20].

In virtually all ecosystems, many species interact with each other and compete for re-

sources, food, habitat, or territory. Therefore, it is more practical and natural to consider

multiple interacting species. One of such most important population models is competitive

Lotka-Volterra ecosystems; see for example [6,32,58,70,71]. In particular, the hybrid stochas-

tic Lotka-Volterra ecosystems capture both stochastic fluctuations in intrinsic growth rates as

well as the abrupt changes in a random environment. However, to the best of our knowledge,

there have not been published results for the optimal harvesting problems. Our objective is

to fill in this gap. In fact, the known results on interacting population systems are of limited

scope (see [4, 40]). The difficulty arises from the complexity in the model of our interest, in

which the methods in [1–3] are no longer applicable. In this chapter, we establish properties

and characterizations of the value functions and develop optimal harvesting policies in some

special cases. It is worth to remark that the optimal harvesting problems under considera-

tion are not simple generalizations of the corresponding models in a static environment (see

Theorem 3.7) and also not a trivial combination of logistic population systems (see Theorem

3.7 as well as Example 3.9). Moreover, let us add that singular stochastic control has many

applications in various areas, for them we refer the reader to [17,50,53] and many references
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therein for such examples; see also [68] and [44] for comprehensive treatments of switching

diffusion process and applications.

In contrast to the existing results, our new contributions in this chapter are as follows.

(i) In lieu of a single species, we treat multi-species. Our model is a Lotka-Volterra ecosys-

tem with regime switching.

(ii) By constructing upper bounds for the value functions, not only do we prove the finite-

ness of the harvesting value but also derive further properties such as the continuity

of the value function, and the impact of large noise on extinction. When n = 1, we

characterize the value function as a viscosity solution of a coupled system of quasi-

variational inequalities. In particular, Theorem 3.5 and Corollary 3.11 are nontrivial

extensions of [53, Theorem 4.9] and [1, Proposition 1], respectively.

(iii) We construct explicit chattering harvesting strategies and the corresponding lower

bounds for the value functions by using the idea of harvesting only one species at a time.

We further show that this is a reasonable candidate for the best lower bound that one

can expect. Moreover, in some cases, the lower bounds provide a good approximation

of the value function. In particular, Theorem 3.7 and Corollary 3.10 are nontrivial

extensions of [53, Theorem 2.4] and [3, Lemma 3], respectively.

The rest of this chapter is organized as follows. Section 3.2 begins with the problem

formulation. Section 3.3 is devoted to properties and upper bounds for the value function.

Section 3.4 considers chattering harvesting policies and we use them to establish a lower

bound for the value function. Finally, the paper is concluded with some further remarks in

Section 3.5. To facilitate the reading, all proofs are placed in Section 3.6.
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3.2 Formulation

We work with a complete filtered probability space (Ω,F , P, {Ft}) with the filtration

{Ft} satisfying the usual conditions (i.e., it is right continuous, increasing, and F0 contains

all the null sets). For i = 1, 2, . . . , n, let ξi(t) be the population size of the ith species in

the ecosystem at time t, and denote by ξ(t) = (ξ1(t), . . . , ξn(t))′ ∈ Rn (where z′ denotes the

transpose of z for z ∈ Rl1×l2 with l1, l2 ≥ 1). Consider a competitive ecosystem of n species

given by

dξ(t) = diag (ξ(t))
{[
b(α(t))− A(α(t))ξ(t)

]
dt+ Ξ(α(t))dw(t)

}
, (3.1)

and a constant initial condition ξ(0) = x. In the model, w(·) = (w1(·), . . . , wn(·))′ is an

n-dimensional standard Brownian motion, and b(α) = (b1(α), . . . , bn(α))′, A(α) = (aij(α)),

Ξ(α) = diag (σ1(α), . . . , σn(α)) with α ∈ M = {1, . . . ,m} represent the different intrinsic

growth rates, the community matrices, and noise intensities in different external environ-

ments, respectively; α(t) is a finite state Markov chain.

The population model (3.1) was proposed and studied in details in [70, 71]. Necessary

and sufficient conditions for permanence and extinction were proved in [34]. In a recent

work [58], we designed feedback controls for permanence and extinction when the Markov

chain is unobservable. In this work, we consider that the ecosystem is subject to harvesting.

Our formulation follows that of [54] closely. Denote

F (x, α) = diag (x)
[
b(α)− A(α)x

]
, G(x, α) = diag (x) Ξ(α).

For later use, we introduce the generator of the process (ξ(t), α(t)). For a function h(·, ·) :

[0,∞)n ×M 7→ R such that h(·, α) is twice continuously differentiable function for each
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α ∈M, we define

Lh(x, α) =
n∑
i=1

∂h

∂xi
(x, α)xi

(
bi(α)−

n∑
j=1

aij(α)xj

)
+

1

2

n∑
i=1

∂2h

∂x2
i

x2
iσ

2
i (α)

+
∑
j∈M

qαj
[
h(x, j)− h(x, α)

]
.

where ∇h(·, α) and ∇2h(·, α) denote the gradient and Hessian matrix of h(·, α), respectively.

Let Z(t) = (Z1(t), . . . , Zn(t))′ ∈ Rn, where Zi(t) denote the total number harvested (to

be defined shortly) from the species i up to time t. Then X(t) = (X1(t), . . . , Xn(t))′ ∈ Rn,

the population size of the harvested population, satisfies

X(t) = x+

t∫
0

F (X(s), α(s))ds+

t∫
0

G(X(s), α(s))dw(s)− Z(t), (3.2)

with initial conditions

X(0−) = x ∈ Rn
+, α(0) = α ∈M. (3.3)

Let fi(·, ·) : [0,∞)n ×M 7→ (0,∞) represent the instantaneous marginal yields accrued

from exerting the harvesting strategy Zi for the species i, also known as the price of species i.

Let τ = inf{t ≥ 0 : Xi(t) = 0, for all i = 1, . . . , n} be the extinction time of the ecosystem.

Let r > 0 be the discounting factor and Ex,α denote the expectation with respect to the

probability law when the process (X(t), α(t)) starts with initial condition (x, α). For an

appropriate control process Z(·), the expected total discounted reward is defined by

J(x, α, Z) : = Ex,α

τ∫
0

e−rsf(X(s−), α(s−)) · dZ(s)

= E

τ∫
0

e−rsf(Xx(s−), αα(s−)) · dZ(s),

(3.4)

Harvesting strategy. An n-dimensional admissible harvesting strategy is a stochastic pro-
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cess Z(t) satisfying the following conditions:

(a) Zi(t) is nonnegative for any t ≥ 0 and nondecreasing with respect to t,

(b) Zi(t) is cadlag and adapted to Ft = σ{w(s), α(s), 0 ≤ s ≤ t}, and

(c) J(x, α, Z) <∞, for any (x, α) ∈ Rn
+ ×M, where J(·) is the functional defined above.

(d) Xi(t) ≥ 0, for any t ≤ τ , where τ = inf{t ≥ 0 : Xi(t) = 0, for all i = 1, . . . , n} is the

extinction time of the population system.

Thus, (3.4) represents the total discounted reward from harvesting. Note that τ might

be infinite. Let Ax,α denote the collection of all admissible harvesting strategies with initial

conditions given by (3.3). Then the optimal harvesting problem is to maximize the expected

total discounted reward from harvesting and find an optimal harvesting strategy Z∗ ∈ Ax,α

such that

V (x, α) := J(x, α, Z∗) = sup
Z∈Ax,α

J(x, α, Z). (3.5)

For each time t, note that X(t−) is the state before harvesting starts at time t, while

X(t) is the state immediately after. Hence X(0) may not be equal to X(0−) due to an

instantaneous harvest Z(0) at time 0. Throughout the paper we use the convention that

Z(0−) = 0. If Z consists of an immediate harvest at time t, then this jump size is denoted

by ∆Z(t) := Z(t)− Z(t−), and Zc(t) := Z(t)−
∑

0≤s≤t
∆Z(s) denotes the continuous part of

Z. Also note that ∆X(t) := X(t)−X(t−) = −∆Z(t) for any t ≥ 0. Denote the solution to

(3.2) with initial condition specified by (3.3) by (Xx(t), αα(t)) if necessary. For x, y ∈ Rn,

with x = (x1, . . . , xn)′ and y = (y1, . . . , yn)′, we write x ≤ y if xj ≤ yj for each j = 1, . . . , n.

We also define x · y :=
n∑
j=1

xjyj.
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For convenience, let us combine frequently referred hypotheses in the following.

(A) (i) aij(α) ≥ 0 and aii(α) > 0, for any i, j = 1, . . . , n, α ∈M,

(ii) For each i and α, fi(·, α) is continuous. Moreover, fi(x, α) ≥ fi(y, α) for each

α ∈M whenever x ≤ y.

Condition (A)(i) means that the ecosystem under consideration is of competitive type.

Condition (A)(ii) is motivated by the fact that “the law of decreasing demand guarantees

that the profitability of a harvested individual increases as its density decreases” (see [2]).

It is argued that the smaller the population becomes, the higher the harvesting costs are.

However, as long as the harvesting costs increase at a smaller rate than that of the revenues,

then (A)(ii) still holds.

3.3 Properties and Upper Bounds of Value Functions

This section is devoted to several properties of the value function. We first establish a

verification theorem whose proof utilizes the generalized Itô formula, the monotonicity of

f , and the regularity of (Xx(t), αα(t)). Then we obtain some upper bounds for the value

function. Further properties when n = 1 are also provided. We present a number of results

below. The proofs are relegated to Section 3.6.

Theorem 3.1. Assume (A). Suppose that there exists a function W : Rn
+ ×M 7→ R+ such

that W (·, α) is twice continuously differentiable for each α ∈ M and that W (·) solves the

following coupled system of quasi-variational inequalities

sup
(x,α)

{
(L − r)W (x, α),max

i

[
fi(x, α)− ∂W

∂xi
(x, α)

]}
≤ 0, (3.6)

where (L − r)W (x, α) = LW (x, α)− rW (x, α). The following assertions hold.
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(a) We have

V (x, α) ≤ W (x, α) for all (x, α) ∈ Rn
+ ×M.

(b) Define the non-intervention region C = ∩ni=1Ci, with

Ci := {(x, α) ∈ Rn
+ ×M : fi(x, α)− ∂W

∂xi
(x, α) < 0}.

Suppose that (L− r)W (x, α) = 0, for all (x, α) ∈ C, and that there exists a harvesting

strategy Z̃ ∈ Ax,α and a corresponding process X̃ such that the following statements

hold:

(i) (X̃(t), α(t)) ∈ C for Lebesgue almost all 0 ≤ t ≤ τ.

(ii)
t∫

0

[
∇W (X̃(s), α(s))− f(X̃(s)), α(s)

]
· dZ̃c(s) = 0 for any t ≤ τ .

(iii) lim
N→∞

Ex,α

[
e−rTNW (X̃(TN), α(TN))

]
= 0, where for each N = 1, 2, . . . ,

βN := inf{t ≥ 0 : |X(t)| ≥ N}, TN := N ∧ βN ∧ τ. (3.7)

(iv) If X̃(s) 6= X̃(s−), then

W (X̃(s), α(s))−W (X̃(s−), α(s−)) = −f(X̃(s−)), α(s−)) ·∆Z̃(s).

Then V (x, α) = W (x, α) for all (x, α) ∈ Rn
+ ×M, and Z̃ is an optimal harvesting

strategy.

By virtue of Theorem 3.1 (a), any twice continuously differentiable solution to (3.6) is

an upper bound for the value function. Furthermore, the additional conditions in Theorem

3.1(b) help us to find an optimal harvesting strategy. In practice, it is, however, usually very

difficult to find an explicit solution. We now give some explicit upper bounds for the value
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function.

To proceed, for each i = 1, . . . , n, ei denotes the standard unit vector in the ith direction.

It is worth to mention that in the following result, we will show that the value function is

continuous at 0 without using the approach in [53]; see Lemma 4.3 and Proposition 4.7.

Theorem 3.2. Assume that (A) holds and for each i = 1, . . . , n and each α ∈ M, fi(·, α)

is continuously differentiable. Then the following assertions hold.

(a) There exist positive integers N and K such that

V (x, α) ≤
n∑
i=1

∫ xi

0

fi(ϕ ei, α)dϕ+KN
n∑
i=1

x
1/N
i for all (x, α) ∈ Rn

+ ×M. (3.8)

Therefore, lim
x→0

V (x, α) = 0 for all α ∈M.

(b) Suppose that for each i = 1, . . . , n and each α ∈M,

Mi(α) := sup
ϕ>0

[
ϕfi(ϕ ei, α)

(
bi(α)− aii(α)ϕ

)
+

m∑
k=1

qαk

∫ ϕ

0

fi(u ei, k)du− r
∫ ϕ

0

fi(u ei, α)du

]
<∞.

(3.9)

Then there exists a positive number M such that

V (x, α) ≤
n∑
i=1

∫ xi

0

fi(ϕ ei, α)dϕ+
M

r
for all (x, α) ∈ Rn

+ ×M.

Remark 3.3. Note that (3.9) holds for a wide class of price functions fi(·). For instance,

(i) if fi0(·, α) is independent of α, then (3.9) holds for i = i0 and all α ∈M,

(ii) if lim
ϕ→∞

ϕfi(Liϕ, α) =∞, then (3.9) is satisfied . Moreover, if there are positive numbers

C1, C2, γ1 ≥ 0, γ2 ∈ (γ1, γ1+1) such that C2ϕ
−γ2 < fi0(Li0ϕ, α) < C1ϕ

−γ1 for all α ∈M

and for all sufficiently large ϕ, then (3.9) holds for i = i0 and all α ∈M.

Using the same arguments as in the preceding theorem, we obtain the following result

for the case all species have the same price.
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Theorem 3.4. Assume that (A) holds. Moreover, for each α ∈M, f(·, α) : [0,∞) 7→ (0,∞)

is non-increasing, continuously differentiable, and

fi(x, α) = f
( n∑
j=1

xj, α
)
, (x, α) ∈ Rn

+ ×M.

Then the following assertions hold.

(a) There exist positive integers N and K such that

V (x, α) ≤
∫ ∑n

i=1 xi

0

f(ϕ, α)dϕ+KN
n∑
i=1

x
1/N
i for all (x, α) ∈ Rn

+ ×M.

(b) Suppose that for each i = 1, . . . , n and each α ∈M,

Mi(α) := sup
x∈Rn+

[
xif(

n∑
j=1

xj, α)
(
bi(α)− aii(α)xi

)
+

m∑
k=1

qαk

∫ ∑n
j=1 xj

0

f(ϕ, k)dϕ− r
∫ ∑n

j=1 xj

0

f(ϕ, α)dϕ

]
<∞.

(3.10)

Then for each (x, α) ∈ Rn
+ ×M, we have

V (x, α) ≤
∫ ∑n

i=1 xi

0

f(ϕ, α)dϕ+
M

r
,

for some positive constant M .

To proceed, we derive the next result.

Theorem 3.5. Assuming that (A) holds, we have the following results.

(a) For each α ∈M and any 0 < y ≤ x, we have

V (x, α) ≥ f(x, α) · (x− y) + V (y, α). (3.11)

(b) If n = 1, V (·, α) is continuous on [0,∞) for each α ∈M. Moreover, V (·) is a viscosity
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solution of the system of quasi-variational inequalities

max

{
(L − r)W (x, α), f(x, α)− dW

dx
(x, α)

}
= 0, (x, α) ∈ R+ ×M, (3.12)

that is,

(i) for any (x0, α0) ∈ R+ ×M and W (·, α) ∈ C2(R+) satisfying (V −W )(x, α) ≥

(V −W )(x0, α0) = 0, for all x in a neighborhood of x0 and all α ∈M, we have

max

{
(L − r)W (x0, α0), f(x0, α0)− dW

dx
(x0, α0)

]}
≤ 0.

(ii) for any (x0, α0) ∈ R+ ×M and W (·, α) ∈ C2(R+) satisfying (V −W )(x, α) ≤

(V −W )(x0, α0) = 0, for all x in a neighborhood of x0 and all α ∈M, we have

max

{
(L − r)W (x0, α0), f(x0, α0)− dW

dx
(x0, α0)

}
≥ 0.

Example 3.6. Consider a stochastic logistic population model with harvesting,

dX(t) = X(t)
[
b(α(t))− a(α(t)X(t)

]
+ σ(α(t))X(t)dw(t)− dZ(t). (3.13)

This model without harvesting was studied in details in [34]. The optimal harvesting

problem when M = {1} and a constant price function was also explicitly solved in [1].

Unfortunately, due to the presence of random environment modulated by a Markov chain,

we are unable to find an explicit optimal harvesting strategy and the corresponding value

function. However, by virtue of Theorem 3.5, the value function V (·) is a viscosity solution

of the coupled system of quasi-variational inequalities (3.12) with the boundary condition

V (0, α) = 0, α ∈ M. Moreover, [20] provides us with ways to approximate the optimal

harvesting strategy and the corresponding value function using numerical methods.
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3.4 Chattering Harvesting Strategies

The term “chattering harvesting strategy” was introduced in [53, Theorem 2.4] and pre-

viously exploited in [2, Corollary 1]. A chattering strategy is an admissible harvesting policy

that instantaneously harvests a sufficiently small amount many times in a sufficiently small

interval of time until the population system becomes extinct.

For optimal harvesting problems in one dimension [1, 53], when the discounted factor is

sufficiently large, driving the process instantaneously to extinction is the optimal harvesting.

Another interesting result is that the chattering harvesting strategy might give an approxi-

mation of an optimal harvesting, [53, Theorem 2.4]. In light of these observations, we now

study the chattering harvesting policy for the stochastic competitive Lotka-Volterra models.

Compared to the case of a single species in [53], our ecosystem is of multi-species and co-

efficients in the model are not linear growth, then the analysis is more delicate. Since our

ecosystem has more than one species, a question naturally arise: should we make all species

extinct at a time or in some specific order? The authors in [40] stated a conjecture that it

is almost surely never optimal to harvest from more than one population at a time. Our

chattering harvesting strategy will be designed by using this idea. To proceed, let Sn be the

set of all permutations of {1, . . . , n}, and

H(x, α) = sup
(i1,...,in)∈Sn

H(i1,...,in)(x, α), (x, α) ∈ Rn
+ ×M,

where

H(1,2,...,n)(x, α) : =

∫ x1

0

f1(ϕ, x2, . . . , xn, α)dϕ+

∫ x2

0

f2(0, ϕ, x3, . . . , xn, α)dϕ

+ · · ·+
∫ xn

0

fn(0, . . . , 0, ϕ, α)dϕ, (x, α) ∈ Rn
+ ×M,

and for any permutation (i1, . . . , in) of {1, . . . , n}, H(i1,...,in)(x, α) is analogously defined.
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Theorem 3.7. Suppose that (A) holds and for each α ∈ M, f(·, α) is uniformly Lipschitz

continuous. Then for any (x, α) ∈ Rn
+ ×M and ε > 0, there exists a admissible harvesting

strategy Zε ∈ Ax,α under which

J(x, α, Zε) ≥ H(x, α)− ε.

The harvesting strategy Zε is a policy that instantaneously harvests a sufficiently small

amount many times of species in some specific order in a sufficiently small interval of time

until the ecosystem becomes extinct. As a result,

V (x, α) ≥ H(x, α), for all (x, α) ∈ Rn
+ ×M.

The chattering harvesting strategies {Zε} that we obtained above give us a lower bound

for the value function. For the system of n species, in a very small time interval, we harvest

only one species until its extinction. In the next time interval, we harvest another species

until its extinction. We then repeat this process until the extinction of the whole population

system. Continuing in this way, we harvest only one population at a time. One can try to

harvest a small amount of all species at a time and make them all extinct at the same time,

but the stated lower bound cannot be attained.

Remark 3.8. Using the same argument as in [53, Remark 3.2], we can show that if f(x, α)

is strictly decreasing in x for each α ∈ M, then assumptions in Theorem 3.1(b) can never

be satisfied, i.e., no optimal harvesting strategy Z∗ (defined in (3.5)) can be constructed

by using Theorem 3.1. Moreover, there might be no optimal harvesting policy Z∗ at all.

Indeed, consider the logistic population model (3.13). Assume (A) and for each α ∈ M,

f(·, α) is uniformly Lipschitz, continuously differentiable and strictly decreasing. Moreover,
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suppose that r is sufficiently large so that (L− r)H(x, α) < 0 for all (x, α) ∈ R+ ×M with

H(x, α) =
∫ x

0
f(ϕ, α)dϕ. By virtue of Theorem 3.1(a) and Theorem 3.7,

V (x, α) = H(x, α), (x, α) ∈ R+ ×M.

Now for any admissible strategy Z ∈ Ax,α and a corresponding harvested process X, a

similar argument as in [53, Proposition 2.3] (or [2, Lemma 2]) leads to

J(x, α, Z) ≤ H(x, α) + Ex,α

∫ τ

0

e−rs(L − r)H
(
X(s), α(s)

)
ds. (3.14)

If P (τ > 0) > 0, then Ex,α
∫ τ

0
e−rs(L − r)H

(
X(s), α(s)

)
ds < 0. It follows from (3.14) that

J(x, α, Z) < H(x, α). Otherwise, Z is the policy that drives the system instantaneously to

extinction w.p.1, i.e.,

J(x, α, Z) = xf(x, α) <

∫ x

0

f(ϕ, α)dϕ = H(x, α) = V (x, α),

due to the fact that f(·, α) is strictly decreasing for each α. Hence there is no optimal

harvesting strategy at all. However, for sufficiently small ε, chattering harvesting strategies

{Zε} are ε-optimal or near-optimal harvesting ones.

Example 3.9. Suppose f1(x1, x2, α) =
1

1 + x1

, f2(x1, x2, α) =
1

1 + x1 + x2

. Let us consider

the harvesting problem for a competitive Lotka-Volterra ecosystems of 2 species

dX1(t) = X1(t)
(
b1(α(t))− a11(α(t))X1(t)− a12(α(t))X2(t)

)
dt

+σ1(α(t))X1(t)dw1(t)− dZ1(t)

dX2(t) = X2(t)
(
b2(α(t))− a21(α(t))X1(t)− a22(α(t))X2(t)

)
dt

+σ2(α(t))X2(t)dw2(t)− dZ2(t),

(3.15)
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with initial conditions x = (x1, x2)′ ∈ R2
+, α ∈M. We have

H(1,2)(x, α) =

∫ x1

0

f1(ϕ, x2, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ = ln |1 + x1|+ ln |1 + x2|,

and H(2,1)(x, α) = ln |1 + x1 + x2|. Hence V (x, α) ≥ H(x, α) = ln |1 + x1| + ln |1 + x2|.

Now we suppose that b1(α) ≤ r and b2(α) ≤ r for all α ∈ M. Then detail computations

give us that (L − r)H(x, α) ≤ 0 for all (x, α) ∈ R2
+ × M. By virtue of Theorem 3.1,

V (x, α) ≤ H(x, α). Therefore, V (x, α) = H(x, α). The chattering harvesting strategies can

provide an approximation of the optimal harvesting. Indeed, since V (x, α) = H(1,2)(x, α),

for given ε > 0, by chattering harvesting the first species, and then the second one as in

Theorem 3.7, in a sufficiently small time interval, we have a ε-optimal harvesting strategy.

We now consider the case

a12(α) = a21(α) = 0, f1(x, α) = f1(x1, α), f2(x, α) = f2(x2, α), (x, α) ∈ R2
+ ×M,

that is, there is no interaction between species in the ecosystem, then (3.15) is just a trivial

combination of logistic population systems. By virtue of Theorem 3.7,

V (x, α) ≥
∫ x1

0

f1(ϕ, 0, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ, (x, α) ∈ R2
+ ×M. (3.16)

In practice, different species interact with each other and compete for resources, food,

habitat, or territory. Therefore, it is natural to ask whether (3.16) still holds. In other words,

is it true that ∫ x1

0

f1(ϕ, 0, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ,

a lower bound for the value function? We claim that this statement might be false. Indeed,

suppose that two species have the same price, that is, there are nonincreasing functions
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f(·, α) : [0,∞) 7→ (0,∞) such that f1(x1, x2, α) = f2(x1, x2, α) = f(x1 + x2, α). Detail

computations give us

H(x, α) =

∫ x1

0

f(ϕ+ x2, α)dϕ+

∫ x2

0

f(ϕ, α)dϕ =

∫ x1+x2

0

f(ϕ, α)dϕ,

and ∫ x1

0

f1(ϕ, 0, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ =

∫ x1

0

f(ϕ, α)dϕ+

∫ x2

0

f(ϕ, α)dϕ.

Suppose that b1(α) ≤ r, b2(α) ≤ r for all α ∈ M. Again, by Theorem 3.1 (a) and

Theorem 3.7, we can show that V (x, α) = H(x, α). In many cases, for instance, taking

f(ϕ, α) =
1

1 + ϕ
(x, α) ∈ R2

+ ×M,

we have

H(x, α) = V (x, α) <

∫ x1

0

f1(ϕ, 0, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ, for all (ϕ, α) ∈ R+ ×M.

Thus
∫ x1

0
f1(ϕ, 0, α)dϕ+

∫ x2
0
f2(0, ϕ, α)dϕ cannot be a lower bound for the value function.

As a consequence of Theorem 3.1(a), in an extreme case the discounting is so severe that

the population evolves almost surely towards extinction independently of its initial state. In

this case, it is optimal to harvest the entire population instantaneously. As pointed out in [3],

if this condition holds, other ecological and preservation issues may enter to preclude this

tactic. However, this may not be the case for the chattering harvesting strategies because we

can use this strategy and stop it before the possible extinction. Then the ecosystem evolutes

and approaches its stationary state. Hence it is interesting to study the efficiency of the

chattering harvesting strategies in some special cases. To proceed, we assume the following

condition.
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(B) Either

(i) fi(·, α) is continuously differentiable with bounded first order partial derivatives

and (3.9) holds for each (i, α), and

H(x, α) =
n∑
i=1

∫ xi

0

fi(ϕ ei, α)dϕ, (x, α) ∈ Rn
+ ×M,

(ii) or for each (i, α), there is a continuously differentiable function with bounded

derivative f(·, α) : [0,∞) 7→ (0,∞) satisfying (3.10) and

fi(x, α) = f(
n∑
j=1

xj, α), i = 1, . . . , n, (x, α) ∈ Rn
+ ×M.

Corollary 3.10. Assume that (A) and (B) hold. Then there is a positive constant M such

that

H(x, α) ≤ V (x, α) ≤ H(x, α) +M, for all (x, α) ∈ Rn
+ ×M. (3.17)

Moreover, if there exists (i, α) such that

lim
xi→∞

∫ xi

0

fi(ϕ ei, α)dϕ =∞, (3.18)

then

lim
xi→∞

H(x, α)

V (x, α)
= 1.

Intuitively, H(x, α) can be seen as the current harvesting potential since for any ε > 0, the

value H(x, α)−ε can be obtained by using a suitable chattering harvesting strategy. By virtue

of Corollary 3.10, the value function is the sum of the current harvesting potential H(x, α)

and the maximum present expected value of the accumulate net convenience yields accrued

from postponing the harvesting decision and keeping the population alive after a small time
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interval. Moreover, under condition (3.18), chattering harvesting strategies become optimal

when some initial population xi is sufficiently large.

When n = 1,M = 1 and f(x) ≡ 1, the author in [1] studied how the value of harvesting

reacts when stochastic fluctuations are so severe, that is, the noise intensities are very large.

It is proved that in that case, the value of harvesting approaches the value which is attained

by instantaneously depleting the population. This is reasonable since for sufficiently large

noise intensities, the population tends to extinct [32, 34]. It indicates that the harvesting

activity should be done in a very short time interval. Due to the complexity in the model

of our interest, the approach in [1] is no longer applicable, so we proceed using the upper

bounds of the value function.

Corollary 3.11. Assume that (A) and (B) hold. Let κ := inf
(i,α)

σ2
i (α). Then

lim
κ→∞

V (x, α) = H(x, α),

uniformly in (x, α) such that |x| ≤M and α ∈M, for any positive constant M .

Example 3.12. Let us consider the optimal harvesting problem for a competitive Lotka-

Volterra ecosystems of 3 species, with initial conditions x = (x1, x2, x3)′ ∈ R3
+, α ∈ M =

{1, 2}, and

f1(x, 1) = 1, f1(x, 2) = 1 +
1

x1 + 1
,

f2(x, 1) =
1√

x1 + x2 + 1
, f2(x, 2) = 1 +

e−x1√
2 + x2 + x3

,

f3(x, 1) = f3(x, 2) =
1

x2
1 + 1

+
1

x3 + 1
.

Since f1(x, 1) = f1(x1, 1), f2(x, 1) = f2(x1, x2, 1), and f3(x, 1) = f3(x1, x3, 1), then the

sequence of chattering harvesting strategies which approximates H(x, 1) make species extinct
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in the order of corresponding numbers in (1, 2, 3), i.e.,

H(x, 1) = H(1,2,3)(x, 1) =

∫ x1

0

dϕ+

∫ x2

0

1√
ϕ+ 1

dϕ+

∫ x3

0

(1 +
1

ϕ+ 1
)dϕ

= x1 + 2(
√
x2 + 1− 1) + x3 + ln(x3 + 1).

Similarly, the sequence of chattering harvesting strategies which approximates H(x, 2)

make species extinct in the order of corresponding numbers in (1, 3, 2). Therefore, we obtain

that

H(x, 2) = H(1,3,2)(x, 2) =

∫ x1

0

(
1 +

1

ϕ+ 1

)
dϕ+

∫ x3

0

(
1 +

1

ϕ+ 1

)
dϕ+

∫ x2

0

(
1 +

1√
2 + ϕ

)
dϕ

= x1 + ln |1 + x1|+ x3 + ln |1 + x3|+ x2 + 2(
√
x2 + 2−

√
2).

By virtue of Corollary 3.10, there exists a positive constant M such that

H(x, α) ≤ V (x, α) ≤ H(x, α) +M for all (x, α) ∈ R3
+ ×M.

Moreover, we have lim
|x|→∞

H(x, α)

V (x, α)
= 1. This tells us that if initial population of some species i

is very large, then the sequence of chattering harvesting strategies provides a good approxima-

tion for the optimal harvesting. Finally, by virtue of Corollary 3.11, lim
κ→∞

V (x, α) = H(x, α),

uniformly in (x, α) such that |x| ≤ M and α ∈ M, for any positive constant M , where

κ := inf
(i,α)

σ2
i (α). In other words, the intertemporal profits accrued by waiting and postponing

the harvesting decision are arbitrarily small for sufficiently large noise intensities.

3.5 Further Remarks

In this chapter, we have developed optimal harvesting strategies for regime-switching

Lotka-Volterra systems. One of the interesting aspects of our results is the chattering strate-

gies developed. Although the idea was exploited in [40], it has not been fully developed prior

to our work. This work is devoted to Lotka-Volterra ecosystems. Nevertheless, the methods

developed can be adopted to other optimal controls involving harvesting.
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3.6 Proofs of Technical Results

Proof of Theorem 3.1. The proof is similar to that of [53, Theorem 2.1]; see also [40].

Since we use part (a) frequently in this chapter, for convenience, we provide a detail proof

for this part. Fix some (x, α) ∈ Rn
+ ×M and Z ∈ Ax,α, and let X denote the corresponding

harvested process. Choose N sufficiently large so that |x| < N . By virtue of [70],

βN →∞, a.s. as N →∞, (3.19)

where βN and TN were defined in (3.7). Then Dynkin’s formula leads to

Ex,α
[
e−rTNW (X(TN), α(TN))

]
−W (x, α)

= Ex,α

∫ TN

0

e−rs(L − r)W (X(s), α(s))ds− Ex,α
∫ TN

0

e−rs∇W (X(s), α(s)) · dZc(s)

+Ex,α
∑

0≤s≤TN

e−rs
[
W (X(s), α(s−))−W (X(s−), α(s−))

]
.

It follows from (3.6) that

Ex,α
[
e−rTNW (X(TN), α(TN))

]
−W (x, α)

≤ −Ex,α
∫ TN

0

e−rs∇W (X(s), α(s)) · dZc(s) + Ex,α
∑

0≤s≤TN

e−rs∆W (X(s), α(s−)),

(3.20)

where ∆W (X(s), α(s−)) = W (X(s), α(s−)) − W (X(s−), α(s−)). By virtue of the mean

value theorem, we obtain

∆W (X(s), α(s−)) = ∇W (XZ(s), α(s−)) ·∆X(s) = −∇W (XZ(s), α(s−)) ·∆Z(s),

for some point XZ(s) on the line connecting the points X(s) and X(s−). Using (3.6) again,

also noting that f(·, α) is nonincreasing for each α ∈M and ∆Z(s) ≥ 0, we have

∆W (X(s), α(s−)) ≤ −f(X(s), α(s−)) ·∆Z(s). (3.21)
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Since W (·) is nonnegative, it follows from (3.20) and (3.21) that

W (x, α) ≥
[
Ex,α

∫ TN

0

e−rsf(X(s), α(s)) · dZc(s) + Ex,α
∑

0≤s≤TN

e−rsf(X(s−), α(s−)) ·∆Z(s)

]
= Ex,α

∫ TN

0

e−rsf(X(s−), α(s−)) · dZ(s).

Letting N →∞, it follows from (3.19) and the bounded convergence theorem that

W (x, α) ≥ Ex,α

∫ τ

0

e−rsf(X(s)−, α(s−)) · dZ(s).

Taking supremum over all Z ∈ Ax,α, we obtain W (x, α) ≥ V (x, α). 2

Proof of Theorem 3.2.

(a) Let W (x, α) =
n∑
i=1

∫ xi
0
fi(ϕ ei, α)dϕ+KN

n∑
i=1

x
1/N
i , (x, α) ∈ Rn

+ ×M. Then

∂W

∂xi
(x, α) = fi(xi ei, α)+

K

x
1−1/N
i

,
∂2W

∂x2
i

(x, α) =
∂fi
∂xi

(xi ei, α)−K(N − 1)

Nx
2−1/N
i

, (x, α) ∈ Rn
+×M,

where K and N are to be specified. For each i = 1, . . . , n, fi(x, α) − ∂W

∂xi
(x, α) < 0, for all

(x, α) ∈ Rn
+ ×M. By virtue of Theorem 3.1(a), it suffices to show that (L − r)W (x, α) ≤

0 for all (x, α) ∈ Rn
+ ×M. Indeed,

(L − r)W (x, α) =
n∑
i=1

fi(xi ei, α)xi

(
bi(α)−

n∑
j=1

aij(α)xj

)
+

n∑
i=1

m∑
k=1

qαk

∫ xi

0

fi(ϕ ei, α)dϕ

+
n∑
i=1

Kx
1/N
i

(
bi(α)−

n∑
j=1

aij(α)xj

)
−

n∑
i=1

K(N − 1)

2N
σ2
i (α)x

1/N
i

+
1

2

n∑
i=1

∂fi
∂xi

(xi ei, α)σ2
i (α)x2

i − r
n∑
i=1

∫ xi

0

fi(ϕ ei, α)dϕ− rKN
n∑
i=1

x
1/N
i

≤
n∑
i=1

xi

(
fi(xi ei, α)bi(α) +

∑
k 6=α

qαkfi(0, α)

)
−

n∑
i=1

K
(
rN − bi(α)

)
x

1/N
i −

n∑
i=1

Kaii(α)x
1+1/N
i

≤
n∑
i=1

(
C1xi − C2x

1+1/N
i − rKN

2
x

1/N
i

)
(3.22)
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with C1, C2 are positive constants being independent of i, α and N > max
i,α

2bi(α)

r
. Note that

in the above, we used the fact that fi(·, α) is nonincreasing for each (i, α). It can be shown

that for sufficiently large K, (L − r)W (x, α) ≤ 0 for all (x, α) ∈ Rn
+ ×M. The conclusion

follows.

(b) Let

W (x, α) =
n∑
i=1

∫ xi

0

fi(ϕ ei, α)dϕ+
M

r
, (x, α) ∈ Rn

+ ×M.

Then

∂W

∂xi
(x, α) = fi(xi ei, α),

∂2W

∂x2
i

(x, α) =
∂fi
∂xi

(xi ei, α), (x, α) ∈ Rn
+ ×M,

It suffices to show that (L − r)W (x, α) ≤ 0 for all (x, α) ∈ Rn
+ ×M. Indeed,

(L − r)W (x, α) =
n∑
i=1

fi(xi ei, α)xi

(
bi(α)−

n∑
j=1

aij(α)xj

)
+

n∑
i=1

m∑
k=1

qαk

∫ xi

0

fi( eiϕ, k)dϕ

+
n∑
i=1

∂fi
∂xi

(xi ei, α)σ2
i (α)x2

i − r
n∑
i=1

∫ xi

0

fi(ϕ ei, α)dϕ−M

≤
n∑
i=1

[
xifi( eixi, α)

(
bi(α)− aii(α)xi

)
+

m∑
k=1

qαk

∫ xi

0

fi(ϕ ei, k)dϕ− r
∫ xi

0

fi(ϕ ei, α)dϕ

]
−M.

The conclusion follows from (3.9). 2

Proof of Theorem 3.5.

(a) The proof is similar to [53, Lemma 4.1]. The details are thus omitted.

(b) Using the same argument as in Lemma 4.2 [53], for each α ∈M and any 0 < y ≤ x,

we obtain

V (x, α) ≤ V (y, α) + max
j∈M

V (x− y, j). (3.23)
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Hence for y < x < z, using (3.11) and (3.23) yield

V (x, α) ≤ V (y, α) + max
j∈M

V (x− y, j) ≤ V (x, α) + max
j∈M

V (x− y, j),

and

V (x, α)−max
j∈M

V (z − x, j) ≤ V (z, α)−max
j∈M

V (z − x, j) ≤ V (x, α).

By virtue of Theorem 3.2(a),

lim
z↓x

V (z − x, α) = lim
y↑x

V (x− y, α) = 0,

for each α ∈M. Taking the limit when y ↑ x and z ↓ x, we arrive at

V (x, α) ≤ lim
z↓x

V (z, α) ≤ V (x, α) ≤ lim
y↑x

V (y, α) ≤ V (x, α).

Hence V (·, α) is continuous on [0,∞) for each α ∈ M. Now the proof of Theorem 4.9 [53]

still holds in our case. The conclusion follows. 2

Proof of Theorem 3.7. Fix some (x, α) ∈ Rn
+×M and ε > 0. Throughout the proof, we use

K0 to denote a generic positive constant depending only on x,m, and constant coefficients

of (3.1). The exact value of K0 may be different in different appearances.

Without loss of generality, let the permutation (1, 2, . . . , n) of {1, . . . , n}. We will design

a chattering harvesting strategy Zε such that

J(x, α, Zε) ≥ H(1,2,...,n)(x, α)− ε.

The order of each number in (1, 2, . . . , n) is the order of extinction of the corresponding

species in the system. We first describe Zε and then for simplicity, we only give a detail

proof for the case n = 2. For n > 2, we use the analogously argument.
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Let k and γ be positive integers. Define

ρ = k−γ, δi = xi/k
i, xji = xi − jδi, i = 1, . . . , n, j = 1, . . . , ki,

and

tj = jρ/kn, j = 0, 1, . . . , kn − 1.

We construct a harvesting strategy Zε = (Zε
1 , . . . , Z

ε
n)′, where Zε

i increases only on the

set {tj : j = 0, . . . , ki − 1}. The corresponding harvested process is denoted by X =

(X1, . . . , Xn)′. Note that X(t0−) = x = (x0
1, . . . , x

0
n)′. Define ∆Z(t0) = Z(t0) = (δ1, . . . , δn)′.

Then X(t0) = (x1
1, . . . , x

1
n)′, and it therefore implies

X(t1−) = X(t0) +

∫ t1

t0

F (X(s), α(s))ds+

∫ t1

t0

G(X(s), α(s))dw(s). (3.24)

For each real number a, we denote a+ := max{a, 0}. At time t = t1, define

∆Zi(t1) = (Xi(t1−)− x2
i )

+,

so that Xi(t1) ≤ x2
i and allow the process X to diffuse until time t = t2. For j = 1, . . . , k−1,

we define

∆Zi(tj) =
(
Xi(tj−)− xj+1

i

)+

.

Then

X(tj+1−) = X(tj) +

∫ tj+1

tj

F (X(s), α(s))ds+

∫ tj+1

tj

G(X(s), α(s))dw(s), (3.25)

where X(tj) = X(tj−)−∆Z(tj). Hence ∆Z1(tk−1) = X1(tk−1−) and species 1 is extinct at

time tk−1. Next we harvest remaining species. In general, define

∆Zi(tj) :=
(
Xi(tj−)− xj+1

i

)+

, i = 2, .., n, j = ki−1, . . . , ki − 1,
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and

Xi(tj+1−) = Xi(tj) +

∫ tj+1

tj

Fi(X(s), α(s))ds+

∫ tj+1

tj

Gi(X(s), α(s))dw(s).

Hence ∆Zi(tki−1) = Xi(tki−1−), species i is extinct at time tki−1, and the population system

is extinct at time tkn−1. In the above, we adopt the convention that Xi(t) = 0 if t ≥ tki−1. We

will show that for sufficiently large γ and k, J(x, α, Zε) ≥ H(1,2,...,n)(x, α)− ε. For simplicity,

let n = 2.

The expected total discounted reward from the first species corresponding to the har-

vesting strategy Zε is

J1(x, α, Zε) = Ex,α

k−1∑
j=0

e−rtjf1(X(tj−), α(tj−))∆Z1(tj).

Define

R1(x, α) :=
k−1∑
j=0

f1(xj1, x
j
2, α)δ1.

We want to estimate |J1(x, α, Zε)−R1(x, α)|. In fact, we have

|J1(x, α, Zε)−R1(x, α)| ≤
k−1∑
j=0

Ex,α|e−rtjf1(X(tj−), α(tj−))∆Z1(tj))− f1(xj1, x
j
2, α)δ1|

≤
k−1∑
j=1

[
Ex,α

∣∣∣[f1(X(tj−), α(tj−))− f1(xj1, x
j
2, α)

]
δ1

∣∣∣
+Ex,α

∣∣∣f1(X(tj−), α(tj−))
[
∆Z1(tj)− δ1

]∣∣∣
+Ex,α

∣∣∣[e−rtj − 1
]
f1(X(tj−), α(tj−))∆Z1(tj)

∣∣∣]
:=

k−1∑
j=1

(A1
j +B1

j + C1
j ).

In what follows, we analyze the terms A1
j , B

1
j , C

1
j separately. First we note that for any

j = 0, . . . , k − 1, |Xi(tj)| ≤ xi. Using the similar argument as in Theorem 3.1 [70], it can

be shown that for any p > 0, E|X(t)|p ≤ K0 for all t ∈ [tj, tj+1). Observe that for each
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α ∈M, Fi(·, α) and Gi(·, α) are polynomials with order 2 and 1, respectively. It follows that

E
∣∣∣ ∫ tj+1

tj
Fi(X(s), α(s))ds+

∫ tj+1

tj
Gi(X(s), α(s))dw(s)

∣∣∣2 ≤ K0(tj+1 − tj)

= K0t1,

(3.26)

and as a consequence,

E|∆Zi(tj)| = E|(Xi(tj−)− xj+1
i )+| ≤ K0, (3.27)

where recall that K0 is a generic positive constant depending only on x,m, and constant

coefficients of (3.1). It follows from (3.24) and the Chebyshev inequality that

P{∆Zi(t1) = 0} = P{Xi(t1−) ≤ x2
i }

= P
{
x1
i +

∫ t1

t0

Fi(X(s), α(s))ds+

∫ t1

t0

Gi(X(s), α(s))dw(s) ≤ x2
i

}
= P

{∫ t1

t0

Fi(X(s), α(s))ds+

∫ t1

t0

Gi(X(s), α(s))dw(s) ≤ −δi
}

≤ P
{∣∣∣ ∫ t1

t0

F1(X(s), α(s))ds+

∫ t1

t0

G1(X(s), α(s))dw(s)
∣∣∣ ≥ δi

}
≤ K0t1

δ2
i

.

(3.28)

Note that Xi(t1) = x2
i if ∆Zi(t1) > 0. Hence we have

P
{
Xi(t1) 6= x2

i

}
≤ P

{
∆Zi(t1) = 0

}
≤ K0t1

δ2
i

.

(3.29)

Using the same argument as that of (3.28) and (3.29), we obtain

P{∆Zi(t2) = 0} = P{∆Zi(t2) = 0, Xi(t1) = x2
i }+ P{∆Zi(t2) = 0, Xi(t1) 6= x2

i }

≤ K0t1
δ2
i

+
K0t1
δ2
i

=
K0t2
δ2
i

,

and

P
{
Xi(t2) 6= x3

i

}
≤ P

{
∆Zi(t2) = 0

}
≤ K0t2

δ2
i

.
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Continuing in this manner, it follows that

P{∆Zi(tj) = 0} ≤ K0tj
δ2
i

, j = 1, 2, . . . , k − 1, (3.30)

and

P
{
Xi(tj) 6= xj+1

i

}
≤ K0tj

δ2
i

, j = 1, 2, . . . , k − 1. (3.31)

Using the conditions that f1(·, α) is Lipschitz continuous for each α ∈ M with Lipschitz

constant L > 0 and uniformly bounded, we obtain

A1
j = E

∣∣∣f1(X(tj−), α(tj−))− f1(xj1, x
j
2, α)

∣∣∣δ1

≤ E
∣∣∣f1(X(tj−), α)− f1(xj1, x

j
2, α)

∣∣∣δ1 + E
∣∣∣f1(X(tj−), α(tj−))− f1(X(tj−), α)

∣∣∣δ1

≤ L
(
E|X1(tj−)− xj1|+ E|X2(tj−)− xj2|

)
δ1 +K0P{α(tj−) 6= α}δ1

≤ L
(
E|X1(tj−)− xj1|+ E|X2(tj−)− xj2|

)
δ1 +K0tjδ1,

(3.32)

where in the last inequality we used the property of the Markov chain α(·). Using (3.25),

(3.26), and (3.31), we obtain

E|Xi(tj−)− xji | ≤ E|Xi(tj−1)− xji |

+E

∣∣∣∣ ∫ tj

tj−1

Fi(X(s), α(s))ds+

∫ tj

tj−1

Gi(X(s), α(s))ds

∣∣∣∣
≤ E1/2|Xi(tj−1)− xji |2E1/2

[
IXi(tj−1)6=xji

]
+K0

√
t1

≤ K0x
j
i

√
tj−1

δi
+K0

√
t1 ≤

K0
√
tj

δi
+K0

√
t1.

(3.33)

Since δ1 ∈ (0, 1), then tj <
√
tj and

√
t1 <

√
tj. With these observations, using (3.32) and

(3.33), we arrive at

A1
j ≤ L

(K0
√
tj

δ1

+
K0
√
tj

δ2

+K0

√
t1

)
δ1 +K0tjδ1

≤ K0

(√
tj +

δ1
√
tj

δ2

)
,

(3.34)
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Next we estimate B1
j . Since f1(·, ·) is uniformly bounded, it follows that

B1
j ≤ K0E|∆Z1(tj)− δ1|

= K0E|
(
∆Z1(tj)− δ1

)
I{∆Z1(tj)=0}|+K0E|

(
∆Z1(tj)− δ1

)
I{∆Z1(tj)6=0}I{X1(tj−1)=xj1}

|

+K0E|
(
∆Z1(tj)− δ1

)
I{∆Z1(tj) 6=0}I{X1(tj−1)6=xj1}

|

:= Bj1 +Bj2 +Bj3.

(3.35)

By virtue of (3.30),

Bj1 ≤ δ1
K0tj
δ2

1

=
K0tj
δ1

. (3.36)

It follows from (3.26) that

Bj2 = K0E|
(
∆Z1(tj)− δ1

)
I{∆Z1(tj)6=0}I{X1(tj−1)=xj1}

|

= K0E|
(
X(tj−)− xj+1

1 − δ1

)
I{∆Z1(tj)6=0}I{X1(tj−1)=xj1}

|

= K0E|
(
X(tj−)− xj1

)
I{∆Z1(tj)6=0}I{X1(tj−1)=xj1}

|

= K0E|
[ ∫ tj

tj−1

F1(X(s), α(s))ds+

∫ tj

tj−1

G1(X(s), α(s))dw(s)
]
I{∆Z1(tj)6=0}I{X1(tj−1)=xj1}

|

≤ K0

√
t1.

(3.37)

For the term Bj3, using the Cauchy-Schwarz inequality, (3.27), and (3.31), we obtain

Bj3 ≤ K0E
1/2|
(
∆Z1(tj)− δ1

)
I{∆Z1(tj)6=0}|2E1/2|I{X1(tj−1)6=xj1}

|2

≤ K0

√
tj−1

δ1

≤ K0

√
tj
δ1

.

(3.38)

From (3.35), (3.36), (3.37), and (3.38), we have

B1
j ≤

K0tj
δ1

+K0

√
t1 +

K0
√
tj

δ1

≤ K0

√
tj
δ1

,

(3.39)
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since
√
t1 <

√
tj and tj <

√
tj. For the term Cj, we again use the uniform boundedness of

f1(·, ·) and (3.27) to obtain

C1
j = E

∣∣∣[e−rtj − 1
]
f1(X(tj−), α(tj−))∆Z1(tj)

∣∣∣
≤ K0(1− e−rtj)

≤ K0tj.

(3.40)

It follows from (3.34), (3.39), and (3.40) that

|J1(x, α, Zε)−R1(x, α)| ≤
k−1∑
j=1

(
K0

(√
tj +

δ1
√
tj

δ2

)
+K0

√
tj
δ1

+K0tj

)
≤ K0

√
t1

[δ1 + 1

δ1

+
δ1

δ2

] k−1∑
j=1

√
j

≤ K0k
−0.5γ−1kk2 = K0k

−0.5γ+2,

(3.41)

where we used

t1 = k−γ−2,
k−1∑
j=1

√
j ≤

k−1∑
j=1

(j + 1) ≤ K0k
2,

δ1 + 1

δ1

+
δ1

δ2

≤ K0

δ1

+
δ1

δ2

≤ K0k.

The expected total discounted reward from the second species corresponding to the harvest-

ing strategy Zε is

J2(x, α, Zε) = Ex,α

( k−1∑
j=0

e−rtjf2(X(tj−), α(tj−))∆Z2(tj)

+
k2−1∑
j=k

e−rtjf2(0, X2(tj−), α(tj−))∆Z2(tj)

)
.

(3.42)

Define

R2(x, α) :=
k2−1∑
j=k

f2(0, xj2, α)δ2.

We will estimate

∣∣∣Ex,α k2−1∑
j=k

e−rtjf2(0, X2(tj−), α(tj−))∆Z2(tj)−R2(x, α)
∣∣∣
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as the way we did for |J1(x, α, Zε)−R1(x, α)|. We have∣∣∣Ex,α k2−1∑
j=k

e−rtj f2(0, X2(tj−), α(tj−))∆Z2(tj)−R2(x, α)
∣∣∣

≤
k2−1∑
j=k

Ex,α|e−rtjf2(0, X2(tj−), α(tj−))∆Z2(tj))− f2(0, xj2, α)δ2|

≤
k2−1∑
j=k

[
Ex,α

∣∣∣[f2(0, X2(tj−), α(tj−))− f2(0, xj2, α)
]
δ2

∣∣∣
+Ex,α

∣∣∣f2(0, X2(tj−), α(tj−))
[
∆Z2(tj)− δ2

]∣∣∣
+Ex,α

∣∣∣[e−rtj − 1
]
f2(0, X2(tj−), α(tj−))∆Z2(tj)

∣∣∣]
:=

k2−1∑
j=k

(A2
j +B2

j + C2
j ).

(3.43)

Note that (3.26), (3.27), (3.30), and (3.31) still hold for i = 2 and all j = k, . . . , k2−1. Hence

using the same arguments for A1
j , B

1
j , C

1
j , we obtain

A2
j ≤ K0

√
tj,

B2
j ≤ K0

√
tj
δ2

,

C2
j ≤ K0tj, j = k, . . . , k2 − 1.

(3.44)

Now we observe that t1 = k−γ−2,
k2−1∑
j=k

√
j ≤

k2−1∑
j=k

(j+ 1) ≤ K0k
4,

1

δ2

≤ K0k
2. It follows from

(3.43) and (3.44) that∣∣∣ k2−1∑
j=k

e−rtj f2(0, X2(tj−), α(tj−))∆Z2(tj)−R2(x, α)
∣∣∣

≤ K0

k2−1∑
j=k

√
tj
δ2

≤ K0

√
t1

1

δ2

k2−1∑
j=k

√
j

≤ K0k
−0.5γ−1k2k4

= K0k
−0.5γ+5,

(3.45)
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By virtue of (3.41) and (3.45), for γ = 12 and sufficiently large k, we obtain

|J1(x, α, Zε)−R1(x, α)| ≤ ε

4
,∣∣∣ k2−1∑

j=k

e−rtjf2(0, X2(tj−), α(tj−))∆Z2(tj)−R2(x, α)
∣∣∣ ≤ ε

4
.

(3.46)

Moreover, since f1(·, α) is nonincreasing and continuous, then for sufficiently large k,

R1(x, α) =
k−1∑
j=0

f1(xj1, x
j
2, α)δ1 ≥

k−1∑
j=0

f1(xj1, x2, α)δ1

≥
∫ x1

0

f1(ϕ, x2, α)dϕ− ε

4
.

(3.47)

Similarly, for sufficiently large k,

R2(x, α) =
k2−1∑
j=0

f2(0, xj2, α)δ2 −
k−1∑
j=0

f2(0, xj2, α)δ2

≥
k2−1∑
j=0

f2(0, xj2, α)δ2 −
x2

k
f2(0, 0, α)

≥
∫ x2

0

f2(0, ϕ, α)dϕ− ε

4
.

(3.48)

It follows from (3.42), (3.46), (3.47), and (3.48) that

J(x, α, Zε) ≥ J1(x, α, Zε) + Ex,α

k2−1∑
j=k

e−rtjf2(0, X2(tj−), α(tj−))∆Z2(tj)

≥ R1(x, α)− ε

4
+R2(x, α)− ε

4

≥
∫ x1

0

f1(ϕ, x2, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ− ε.

Since ε is arbitrary,

V (x, α) ≥ H(1,2)(x, α) =

∫ x1

0

f1(ϕ, x2, α)dϕ+

∫ x2

0

f2(0, ϕ, α)dϕ.

Moreover, since we can interchange the order of species in the harvesting policy, we also have

V (x, α) ≥ H(2,1)(x, α) =

∫ x2

0

f2(x1, ϕ, α)dϕ+

∫ x1

0

f1(ϕ, 0, α)dϕ.

The conclusion follows. 2
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Proof of Corollary 3.10. By virtue of Theorem 3.7, V (x, α) ≥ H(x, α) for each (x, α) ∈

Rn
+×M. If (B)(i) holds, from Theorem 3.2, we have V (x, α) ≤ H(x, α)+M for a sufficiently

large positive number M . Otherwise, (B)(ii) is satisfied. In this case,

H(x, α) = H(1,2,...,n)(x, α) =
n−1∑
i=1

∫ xi

0

f(ϕ+ xi+1 + · · ·+ xn, α)dϕ+

∫ xn

0

f(ϕ, α)

=

∫ ∑n
i=1 xi

0

f(ϕ, α)dϕ.

Hence it follows from Theorem 3.4 that V (x, α) ≤ H(x, α) + M for some positive number

M . Therefore (3.17) always holds. Suppose that (3.18) is satisfied. Then lim
xi→∞

H(x, α) =

lim
xi→∞

∫ xi
0
fi(ϕ ei, α)dϕ =∞. The conclusion follows. 2

Proof of Corollary 3.11. For any M > 0 and ε > 0, let N be sufficiently large such that

1

N

n∑
i=1

x
1/N
i < ε, whenever |x| ≤M,α ∈M.

Let W (x, α) = H(x, α) +
1

N

n∑
i=1

x
1/N
i , (x, α) ∈ Rn

+ ×M. Suppose that (B)(i) holds. The

other case is analogously proved. Proceeding as in Theorem 3.2, it follows from (3.22) that

(L − r)W (x, α) ≤
n∑
i=1

xi

(
fi(xi ei, α)bi(α) +

∑
k 6=α

qαkfi(0, α)

)
−

n∑
i=1

rN − bi(α)

N2
x

1/N
i −

n∑
i=1

aii(α)

N2
x

1+1/N
i −

n∑
i=1

N − 1

2N3
κx

1/N
i

≤
n∑
i=1

(
C1xi −

C2

N2
x

1+1/N
i − κ

3N2
x

1/N
i

)
with C1, C2 being positive constants independent of i, α and N > sup

i,α

bi(α)

r
. It can be shown

that for sufficiently large κ, (L − r)W (x, α) ≤ 0 for all (x, α) ∈ Rn
+ ×M. Hence

H(x, α) ≤ V (x, α) ≤ W (x, α) ≤ H(x, α) + ε whenever |x| ≤M,α ∈M.

The conclusion follows from the fact that ε > 0 is arbitrarily small. 2
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CHAPTER 4 NUMERICAL METHODS FOR OP-

TIMAL HARVESTING STRATEGIES

IN RANDOM ENVIRONMENTS UN-

DER PARTIAL OBSERVATIONS

4.1 Introduction

This chapter focuses on optimal harvesting problems for ecosystems formulated by

stochastic differential equations with regime switching represented by a continuous-time

Markov chain. The problem belongs to the class of singular stochastic control problems mo-

tivated by the establishment of ecologically, environmentally, and economically reasonable

wildlife management and harvesting policies. Recently, there has been a resurgent interest

in determining the optimal harvesting strategies in the presence of stochastic fluctuations.

Radner and Shepp [51] derived the optimal strategy of a model for corporate strategy. Al-

varez and Shepp [1] studied the optimal harvesting plan for the stochastic Verhulst-Pearl

logistic model. All the aforementioned works dealt with species living in an environment

with a fixed configuration. Recently, Song, Stockbridge, and Zhu [53] and [59] considered

singular control problems in random environments modeled by a Markov chain. Note that

the paper [53] dealt with a single species and [59] treated multiple species with interactions.

Suppose that there is a single species X(t) whose growth is subject to the usual fluc-

tuations as well as the abrupt changes of a random environment. Harvesting strategies are

introduced to derive financial benefit as well as to control the growth of the population.

Let Z(t) denote the total amount harvested from the species up to time t. The goal is to

find a harvesting strategy Z(t) that maximizes the expected total discounted reward from

harvesting, up to the time when the population falls to a given threshold (e.g., extinction),
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which has the following economic interpretation. Let X(t) be the value at time t of as-

set/security/investment and Z(t) represent the total amount paid in dividends up to time

t. Then R+ = (0,∞) can be regarded as the solvency set, and (4.13) becomes the problem

of finding the optimal stream of dividends from the collection of assets until the time of

bankruptcy; see [5, 11,20].

Harvesting may occur instantaneously, so results in a singular stochastic control problem

in the sense that the optimal harvesting strategy Z(t) may not be absolutely continuous

with respect to the Lebesgue measure of the time variable. For instance, if the discounted

reward and noise intensity are sufficiently large, driving the population to extinction in-

stantly or chattering harvesting strategies might be optimal or near-optimal; see [1, 53, 59].

Similarly, for insurance problems, insurance companies may distribute dividends on discrete-

time intervals resulting in unbounded payment rate. In other words, in contrast to regular

stochastic control problems, in which the displacement of the state due to control is dif-

ferentiable in time, the harvesting problem considered in this work allows the displacement

to be discontinuous. To find the value function and the harvesting strategy, one usually

solves a so-called Hamilton-Jacobi-Bellman (HJB) equation. However, for singular control

problems with regime switching, the HJB equation is in fact a coupled system of nonlin-

ear quasi-variational inequalities. A closed-form solution is virtually impossible to obtain.

The Markov chain approximation methodology developed by Kushner and Dupuis [28] be-

comes a viable alternative. As pointed out in [28], a probabilistic approach using the Markov

chain approximation method for controlled diffusions has the following advantages. First, the

Markov chain approximation method allows one to use physical insights derived from the

dynamics of the controlled diffusion in obtaining a suitable approximation scheme. Second,
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the Markov chain approximation method does not require much regularity of the controlled

processes (solutions of the controlled stochastic differential equations) nor does it rely on

the uniqueness properties of the associated HJB equations. This is particularly appealing

when the not much information concerning the regularity of the associated PDEs is known.

Though it is important to develop methods for numerical approximations for singular control

problems, the results are still scare. For singular controlled diffusions without regime switch-

ing, Budhiraja and Ross [9] and Kushner and Martins [27] are two of the representative

works that carry out a convergence analysis using weak convergence and relaxed control for-

mulation for singular control problems in the setting of Itô diffusions. Recently, some works

have been devoted to numerical methods for singular controls with regime switching. Jin,

Yin, and Zhu [20] developed numerical algorithms for finding optimal dividend pay-out and

reinsurance policies under a generalized singular control formulation. A numerical algorithm

for optimal dividend payment and investment strategies of regime-switching jump diffusion

models with capital injections was then introduced in Jin and Yin [21].

In our work, we focus on the harvesting problem for a partially observed system with a

hidden Markov chain. So far, the work on numerical solutions has mostly concentrated on the

case the Markov chain being observable. In reality, the environment (Markov chain) can often

be only observed with noise. That is, at any given instance, the exact state of residency of the

Markov chain is not known. Thus, we cannot see α(t) directly but only have noise-corrupted

observation in the form of α(t) plus noise. An effective way to handle control problems of such

partially observed systems is to converted them to completely observed ones, which can be

done by using a Wonham filter (see, for example, [63]). In the literature, the Wonham filters

have been used widely to investigate control problems with partial observations; see [58,64]



72

for applications in engineering, finance, and ecology.

Compared to the aforementioned works on numerical methods for singular control prob-

lems, in the current work, we take a step towards more useful and realistic model where the

Markov chain is unobservable. Although main ideas developed are crucial to the analysis of

the current work, there are key differences in the model that make our analysis more deli-

cate. Using a Wonham filter, we convert the partially observed system into a fully observed

controlled diffusion. We then design approximation procedures for the optimal strategies and

the value function. We need to use a couple of step sizes h = (h1, h2). The parameter h1 > 0

is a discretization parameter for state variables, and h2 > 0 is the step size for time variable.

In the actual computing, the computations are involved due to the presence of the Wonham

filter.

In contrast to the existing results, our new contributions in this chapter are as follows.

(i) We use Wonham’s filter to formulate the harvesting problem in random environments

when the Markov chain is only observable in white Gaussian noise.

(ii) We convert the partially observed system to a fully observed system by replacing the

unknown Markovian states by their posterior probability estimates.

(iii) We develop numerical approximation schemes based on the Markov chain approxi-

mation method. Although Markov chain approximation techniques have been used

extensively in various control problems, the work on combination of such method for

a singular control problem with partial observation seems to be scarce to the best of

our knowledge.

The rest of this chapter is organized as follows. Section 4.2 begins with the problem formula-
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tion. Section 4.3 presents the numerical algorithm based on the Markov chain approximation

method. In Section 4.4, we establish the convergence of the algorithm. Finally, the chapter is

concluded with a numerical example for illustration; some further remarks are also provided.

4.2 Formulation

For i = 1, . . . , r, let X i(t) be the population size of the ith species in the ecosystem

at time t and denote X(t) =
(
X1(t), . . . , Xr(t)

)′ ∈ Rr (with z′ denoting the transpose of

z ∈ Rr1×r2 with r1, r2 ≥ 1). Suppose that species X i(t) live in random environments. In

addition to the random fluctuations of the population, we also assume that the growth of

the species is subject to abrupt changes within a finite number of configurations of the

environment. For simplicity, we assume that the switching among different environments is

memoryless and that the waiting time for the next switch is exponentially distributed. In

fact, this phenomenon is frequently observed in nature; see [52, 68]. Thus we can model the

random environments and other random factors in the ecological system by a continuous-

time Markov chain α(t) taking values in M = {1, 2, . . . ,m} with the generator given by

Q = (qij) ∈ Rm×m. Assume throughout this chapter that both the Markov chain α(t)

and the r-dimensional standard Wiener process w(·) =
(
w1(·), . . . , wr(·)

)′
are defined on a

complete filtered probability space (Ω,F ,F(t), P ), where {F(t)} is a filtration satisfying the

usual conditions (i.e., it is right continuous, increasing, and F(0) contains all the null sets).

In an effort to capture the salient feature that continuous dynamics and discrete events

coexist in the ecosystem, we model the evolution in the absence of harvesting by the stochas-

tic differential equation

dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t), X(0) = x0 ∈ Rr
+, α(0) = α0 ∈M, (4.1)
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where b(·) : Rr ×M 7→ Rr, σ(·) : Rr ×M 7→ Rr×r are suitable functions. Furthermore,

we assume that the Brownian motion w(·) and the Markov chain α(·) are independent, a

commonly used assumption in the literature.

We attempt to answer the question: Can we solve optimal harvesting problems if the

Markov chain is hidden and we can only treat a partially observed system? In particular, we

cannot see α(t) directly but only have noise-corrupted observation in the form of α(t) plus

noise. That is, we can observe the following process

dy(t) = g(α(t))dt+ σ0dB(t), y(0) = 0, (4.2)

where σ0 is a positive constant, g :M 7→ R is a one-to-one function, B(t) is a one-dimensional

standard Brownian motion being independent of w(t) and α(t).

To proceed, we denote by 11E the indicator function of the event E, and use the following

notation throughout this chapter.

pj(t) := 11{α(t)=j}, j = 1, . . . ,m,

ϕj(t) := P (α(t) = j|y(s), 0 ≤ s ≤ t) , j = 1, . . . ,m.

(4.3)

Since ϕj(t) is the probability vector conditioned on the observation σ{y(s), 0 ≤ s ≤ t},

ϕj(t) ≥ 0 and
m∑
j=1

ϕj(t) = 1. Based on this property, it is sufficient to work with

ϕ(t) :=
(
ϕ1(t), . . . , ϕm−1(t)

)′
. Such approach helps us to reduce one dimension in the ac-

tual computation. The actual state space for ϕ(t) is

Sm−1 := {ϕ := (ϕ1, . . . , ϕm−1)′ ∈ Rm−1 : ϕj ≥ 0,
m−1∑
j=1

ϕj ≤ 1}. (4.4)

For given functions b(·) : Rr ×M 7→ Rr, σ(·) : Rr ×M 7→ Rr×r, and g :M→ R, we define

b(x, ϕ) =
m∑
j=1

ϕjb(x, j), σ(x, ϕ) =
m∑
j=1

ϕjσ(x, j), g(ϕ) =
m∑
j=1

ϕjg(j),
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for each (x, ϕ) ∈ Rr × Sm−1, where Sm−1 was defined in (4.4) and ϕm = 1−
m−1∑
i=1

ϕi.

We first recall some results of Wonham’s filter. As was mentioned, the Markov chain α(t)

is observed through (4.2). It was proved in [63] that the posterior probability ϕj(·) satisfies

dϕj(t) =
[ m∑
k=1

qkiϕk(t)− σ−2
0

(
g(j)− g(ϕ(t))

)
g(ϕ(t))ϕj(t)

]
dt

+σ−2
0

(
g(j)− g(ϕ(t))

)
ϕj(t)dy(t), j = 1, . . . ,m,

ϕj(0) = ϕj0, j = 1, . . . ,m,

(4.5)

where (ϕ1
0, . . . , ϕ

m
0 )′ is the initial distribution of α(t). Introduce a one dimensional innovation

process

dw(t) = σ−1
0

(
dy(t)− g(ϕ(t))dt

)
, w(0) = 0.

Then the first m− 1 equations in (4.5) can be rewritten as

dϕj(t) =
m∑
k=1

qkjϕk(t)dt+ σ−1
0 ϕj(t)

(
g(j)− g(ϕ(t))

)
dw(t), j = 1, . . . ,m− 1. (4.6)

With the use of (4.3), (4.1) can be written as

X(t) = x0 +

t∫
0

m∑
j=1

pj(s)b(X(s), j)ds+

t∫
0

m∑
j=1

pj(s)σ(X(s), j)dw(s), (4.7)

Replacing the hidden state pj(t) by its estimate ϕj(t) in (4.7), we arrive at

X(t) = x0 +

t∫
0

m∑
j=1

ϕj(s)b(X(s), j)ds+

t∫
0

m∑
j=1

ϕj(s)σ(X(s), j)dw(s),

i.e.,

X(t) = x0 +

t∫
0

b(X(s), ϕ(t))ds+

t∫
0

σ(X(s), ϕ(t))dw(s), (4.8)

Let Z(t) = (Z1(t), . . . , Zr(t))′ ∈ Rr, where Zi(t) denote the total number harvested (to

be defined shortly) from the species i up to time t. Then ξ(t) = (ξ1(t), . . . , ξr(t))′ ∈ Rr, the
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population size of the harvested population, satisfies

ξ(t) = x0 +

t∫
0

b(ξ(s), ϕ(t))ds+

t∫
0

σ(ξ(s), ϕ(t))dw(s)− Z(t), (4.9)

with initial data

ξ(0−) = x0 ∈ Rr
+, ϕ(0) = ϕ0 ∈ Sm−1. (4.10)

At each time t, ξ(t−) is the state before harvest starting at time t, while ξ(t) is the state

immediately after. Hence ξ(0) may not be equal to ξ(0−) due to an instantaneous harvest

Z(0) at time 0. Throughout the work we use the convention that Z(0−) = 0. If Z consists

of an immediate harvest at time t, then this jump size is denoted by ∆Z(t) := Z(t)−Z(t−),

and Zc(t) := Z(t)−
∑

0≤s≤t
∆Z(s) denotes the continuous part of Z. Since Z(·) is not required

to be absolutely continuous with respect to the Lebesgue measure of the time variable, it

is referred to as singular control. Also note that ∆ξ(t) := ξ(t) − ξ(t−) = −∆Z(t) for any

t ≥ 0. Hence (4.6) and (4.9) form a controlled process (ξ(t), ϕ(t)) ∈ Rr×Sm−1 with complete

observation and the initial condition (x0, ϕ0).

An admissible harvesting strategy is a stochastic process Z(t) satisfying the following

conditions:

(a) Z(t) is right continuous, nonnegative, and nondecreasing with respect to t,

(b) Z(t) is adapted to σ{w(s), ϕ(s) : 0 ≤ s ≤ t}, augmented by the P -null sets,

(c) J(x0, ϕ0, Z) < ∞, for any (x0, ϕ0) ∈ Rr
+ × Sm−1, where J(·) is the functional defined

below.

(d) ξ(t) ≥ 0, for any t ≤ τ , where τ = inf{s ≥ 0 : ξi(s) = 0, for all i = 1, . . . , r} is the

extinction time of the system.
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Note that τ might be infinite. If τ =∞ a.s., then the corresponding harvesting strategy

belongs to the class of singular control with state constraints [54]. Let Ax0,ϕ0 denote the

collection of all admissible harvesting strategies with initial conditions given by (4.10).

Let f i(·) :M 7→ R+ := (0,∞) represent the instantaneous marginal yields accrued from

exerting the harvesting strategy Zi for species i, also known as the price of species i. Define

f
i
(ϕ) =

∑m
j=1 ϕ

jf i(j) for each ϕ ∈ Sm−1, with ϕm = 1−
∑m−1

j=1 ϕj. Then R+ is regarded as

the survival set of each species and we impose ξi(t) = 0 for t ≥ inf{s ≥ 0 : ξi(s) = 0}. For a

fixed harvesting process Z ∈ Ax0,ϕ0 , the expected total discounted reward from harvesting

is defined by

J(x0, ϕ0, Z) :=
r∑
i=1

Ex0,ϕ0

τ∫
0

e−asf
i
(ϕ(s))dZi(s), (4.11)

where a > 0 is the discounting factor and Ex0,ϕ0 denotes the expectation with respect to the

probability law when the process (ξ(t), ϕ(t)) starts with initial condition (x0, ϕ0). The goal

is to maximize the expected total discounted reward from harvesting and find an optimal

harvesting strategy Z∗ such that

J(x0, ϕ0, Z
∗) = V (x0, ϕ0) := sup

Z∈Ax0,ϕ0
J(x0, ϕ0, Z). (4.12)

To proceed, we introduce the generator of the combined process (X(t), ϕ(t)). For any

twice continuously differentiable function W (·, ·) : Rr × Sm−1 7→ R, we define

LW (x, ϕ) =
r∑
i=1

Wxi(x, ϕ)b
i
(x, ϕ) +

1

2

r∑
i,j=1

aij(x, ϕ)Wxixj(x, ϕ) +
m−1∑
j=1

Wϕj(x, ϕ)
m∑
k=1

qkjϕk

+
1

2σ2
0

m−1∑
j=1

[m−1∑
k=1

ϕjϕk
(
g(j)− g(ϕ)

)(
g(k)− g(ϕ)

)]
Wϕjϕk(x, ϕ),

(4.13)
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where

b(x, ϕ) =
(
b

1
(x, ϕ), . . . , b

r
(x, ϕ)

)′ ∈ Rr, a(x, ϕ) = (aij(x, ϕ)) = σ(x, ϕ)σ′(x, ϕ) ∈ Rr×r.

Our standing assumptions are as follows.

(A1) b(·, ·) and σ(·, ·) satisfy the usual local Lipschitz condition and there exists a positive

constant C1 such that

x′b(x, ϕ) + |σ(x, ϕ)|2 ≤ C1(|x|2 + 1) for all (x, ϕ) ∈ Rr × Sm−1. (4.14)

(A2) There exists a positive constant C2 such that a(x, ϕ)−C2Ir is positive definite for each

(x, ϕ) ∈ Rr × Sm−1, and

aii(x, ϕ)−
∑
j:j 6=i

|aij(x, ϕ)| ≥ 0 for all (x, ϕ) ∈ Rr × Sm−1, i = 1, . . . , r, (4.15)

where Ir is the r × r identity matrix.

Under (A1), for any initial condition (x0, ϕ0) ∈ Rn
+ × Sm−1, the system (4.6)-(4.8) has the

unique global solution (x(t), ϕ(t)) ∈ Rr × Sm−1 for all t ≥ 0 (see [68]). Assumption (A2) is

imposed for convenience. There are several ways of relaxing the condition (4.15) for which we

refer to [27, p.110]. Meanwhile, the first condition in (A2) is a non-degeneracy requirement

for the diffusion part. If it does not hold, one can use a trick in [27, p.288-289] which requires

more complex notation and the use of another Brownian motion.

Before proceeding further, recall that if the value functions are sufficiently smooth, they

are solutions of the following system of HJB equations (see [53])

max
((
L − r

)
W (x, ϕ), f

i
(ϕ)−Wxi(x, ϕ), i = 1, . . . , r

)
= 0, (x, ϕ) ∈ Rr

+ × Sm−1,

W (x, ϕ) = 0, (x, ϕ) = {0} × Sm−1.

(4.16)
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Using the same argument as in [53, Theorem 2.1], one can also establish a verification

theorem that leads to an optimal harvesting strategy. However, due to the presence of partial

observation, it is very difficult to find value functions and optimal harvesting policies explic-

itly except for some special cases. Our task to follow is to construct a numerical procedure

for solving the optimal control problem.

4.3 Numerical Algorithm

The basic idea behind the numerical method is to find a controlled Markov chain in

discrete time to approximate the controlled diffusions. The method is similar to [9,20,27,28].

However, some important modifications are required due to the presence of a combination

of singular control and partial observation.

4.3.1 Approximation Algorithm of the Wonham Filter

In this section, we deal with the numerical algorithms for the two components system.

We begin with the Wonham filter equations. To construct approximation algorithms, one

may wish to discretize the stochastic differential equations (4.5) directly. However, such a

procedure is numerically unstable due to the white noise perturbations. It may produce

a non-probability vector (e.g., some components might be less than 0 or the sum of the

components might not equal to 1). To overcome this difficulty, we use the approach sug-

gested in [67, Section 8.4], in which a logarithm transformation is used to transform the

stochastic differential equations and then a numerical procedure for the transformed system

is constructed.

Define

vj(t) := lnϕj(t) for t ≥ 0, j = 1, . . . ,m.
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It follows that ϕj(t) = ev
j(t). An application of Itô’s formula to (4.6) leads to that for each

j = 1, . . . ,m,
dvj(t) =

[ m∑
k=1

qkj
ϕk(t)

ϕj(t)
− 1

2σ2
0

(
g(j)− g

(
ϕ(t)

))2
]
dt+

1

2σ0

(
g(j)− g

(
ϕ(t)

))
dw(t),

vj(0) = ln(ϕj0).

(4.17)

We use the constant step size h2 > 0 for time variable. There are a couple of ways to

construct discrete-time approximation of Wonham’s filters. One possibility is the approach

in [67] (see Section 8.4). Here employing the approximation algorithm constructed in [64],

we can discretize (4.17) as follows.

vh2,j0 = ln(ϕj0), ϕh2,j0 = ϕj0,

gh2n =
m∑
k=1

g(k)ϕh2,kn ,

rh2,jn =
m∑
k=1

qkj
ϕh2,kn

ϕh2,jn

− 1

2σ2
0

(
g(j)− gh2n

)2
,

vh2,jn+1 = vh2,jn + h2r
h2,j
n +

1

σ0

(
g(j)− gh2n

)√
h2ζn,

ϕh2,jn+1 = exp
(
vh2,jn+1

)
/

m∑
k=1

exp
(
vh2,kn+1

)
,

(4.18)

where {ζn} is a sequence of independent and identically distributed random variables.

Let {ϕh2n } be the sequence of discretized posterior probabilities in which ϕh2n =

(ϕh2,1n , . . . , ϕh2,m−1
n )′. We use the last equation in (4.18) to reinforce that ϕh2n ∈ Sm−1 for

each n. Such property is convenient for convergence verifications of the problem under con-

sideration. Note that ϕh2,jn appeared as the denominator in (4.18) and we have focused on

the case that ϕh2,jn stays away from 0. A modification can be made to take into consideration

the case of ϕh2,jn = 0. This is done as follows. In lieu of (4.18), let M be a fixed but otherwise
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arbitrarily large real number. Construct the approximation according to:

vh2,j0 = ln(ϕj0), ϕh2,j0 = ϕj0,

gh2n =
m∑
k=1

g(k)ϕh2,kn ,

rh2,jn =
[ m∑
k=1

qkj
ϕh2,kn

ϕh2,jn

− 1

2σ2
0

(
g(j)− gh2n

)2
]
11{ϕh2,kn ≥e−M} −M11{ϕh2,kn <e−M},

vh2,jn+1 = vh2,jn + h2r
h2,j
n +

1

σ0

(
g(j)− gh2n

)√
h2ζn,

ϕh2,jn+1 = exp
(
vh2,jn+1

)
/

m∑
k=1

exp
(
vh2,kn+1

)
,

(4.19)

The conditions needed for the convergence analysis of the Wonham filter approximation

are as follows.

(A3) {ζn} is a sequence of independent and identically distributed random variables satis-

fying

Eζn = 0, Eζ2
n = 1, E|ζn|2+γ <∞, for some γ > 0.

4.3.2 Approximation Algorithm of the Harvested Process

In what follows, we construct a discrete-time finite state Markov chain to approximate

the harvested process ξ(t). Let h1 > 0 be a discretization parameter for state variable, and

recall that h2 > 0 is the step size for time variable that we used above. Denote h = (h1, h2).

In the later presentation, for simplicity, we also use ϕh for ϕh2 . By writing h→ 0, we mean

h = (h1, h2)→ (0, 0).

Let U ∈ (0,∞) be an upper bound introduced for numerical purpose only. Moreover,

assume without loss of generality that the boundary point U is an integer multiple of h1.

Define

Lh1 := {x = (k1h1, . . . , k
rh1)′ ∈ Rr : ki = 0,±1,±2, . . . } ∩ [0, U + h1]r.
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Let {ξhn : n = 0, 1, . . . } be a discrete-time controlled Markov chain with state space Lh1

such that the controlled Markov chain well approximates the local behavior of the controlled

diffusion (4.9). We define the difference

∆ξhn = ξhn+1 − ξhn.

At any discrete-time step n, we can either exercise a harvesting action, a reflection action,

or not to apply a control. Each of these is described precisely in what follows. If we do not

apply a control, then the increment ∆ξhn is to “behave like” an increment of
∫
bdt +

∫
σdw

over a small time interval. We call this a “diffusion step”. We can write

∆ξhn = ∆ξhnI{diffusion step at n} + ∆ξhnI{harvesting step at n} + ∆ξhnI{reflection step at n}. (4.20)

The chain and the control will be chosen so that there is exactly one term on the right-

hand side of (4.20) is positive. Let πh = (πh0 , π
h
1 , . . . ) denote the sequence of control actions

at time 0, 1, . . . We take πhn = −i, 0, or i, if we exercise a reflection on species i, not to apply

a control, or harvesting action on species i at time n, respectively. Let {ψhn} be the sequence

of discretized posterior probabilities associated with {ξhn}, to be defined shortly. Let Eh,π
x,ψ,n,

Covh,πx,ψ,n denote the conditional expectation and covariance given by

{ξhk , ψhk , πhk , k ≤ n, ξhn = x, ψhn = ψ, πhn = π},

respectively. By stating that {ξhn} is a controlled discrete-time Markov chain on a finite

state space Lh1 with transition probabilities from state x to another state y, denoted by

ph((x, y)|π, ψ), we mean that the transition probabilities are functions of control action π

and posterior probability ψ. The sequence {ξhn} is said to be locally consistent with respect
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to (4.9) if it satisfies

Eh,0
x,ψ,n∆ξhn = b(x, ψ)h2 + o(h2), Covh,0x,ψ,n∆ξhn = a(x, ψ)h2 + o(h2),

sup
n, ω
|∆ξhn| → 0, h→ 0.

(4.21)

We define ξh0 = x0 and ψh0 = ϕ0, where ϕ0 is the initial value of the Wonham filter. For

each n ≥ 0, if πhn = i, we assume that the harvesting amount for species i at time n is h1.

Hence the harvesting amount for the chain at time n is ∆zhn = h1

r∑
i=1

ei11{πhn=i}. If the i th

component of ξhn equals U +h1 for some i, a reflection step on species i0 = inf
i
{ξh,in = U +h1}

is exerted definitely. i.e., πhn = −i0. Moreover, we require that reflection takes the i0 th

component of the chain from U + h1 to U . We denote by ∆ghn the random vector that is

the reflection amount for the chain at time n, then ∆ghn = h1

r∑
i=1

ei11{πhn=−i}. To reflect the

fact that reflection and harvesting terms change the population process instantaneously, we

define ψhn+1 = ψhn if πhn = i or πhn = −i. If πhn = 0 and ψhn = ϕhk for some integer k, we define

ψhn+1 = ϕhk+1. Hence we have defined the sequences {ψhn} and {ξhn} recursively.

As described above, the control at each step, is specified by the choice of an action:

diffusion, harvesting, or reflection. Denote Fhn = σ{ξhk , ψhk , πhk , k ≤ n}. The sequence πh is

said to be admissible if πhn is σ{ξh0 , . . . , ξhn, ψh0 , . . . , ψhn, πh0 , . . . , πhn−1} − adapted, and for any

x ∈ Lh1 , we have

P{ξhn+1 = x|Fhn} = P{ξhn+1 = x|ξhn, ψhn, πhn} = ph(ξhn, x|ψhn, πhn),

P
{
πhn = − inf

i
{ξh,in = U + h1}

∣∣∣ξh,in = U + h1 for some i,Fhn
}

= 1,

P{πhn = −i|ξh,in ≤ U,Fhn} = 0,

where ξh,in denote the i th component of the vector ξhn. The class of all admissible control

sequences for initial state (x0, ϕ0) will be denoted by Ahx0,ϕ0
.
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For each triple (x, ψ, i) ∈ Lh1 × Sm−1 × {0, i,−i : i = 1, . . . , r}, we first define a family

of the interpolation intervals ∆th(x, ψ, i). For diffusion steps, if the state of the chain is x

and the state of the discretized Wonham’s filter is ψ, ∆th(x, ψ, i = 0) will be taken to be

h2; whereas for harvesting steps and reflection steps, ∆th(x, ψ, i) will be taken to be 0. This

reflects the fact that for the controlled diffusion process, reflection and harvesting terms can

change the state instantaneously. Therefore, we define

∆th(x, ψ, i) = h2I{i=0},

th0 = 0,

∆thk = ∆th(ξhk , ψ
h
k , π

h
k ),

thn =
n−1∑
k=0

∆thk.

(4.22)

Let

ηh := inf{n : ξhn = 0 ∈ Lh1}, τh := thηh .

For (x0, ϕ0) ∈ Lh1 × Sm−1 and πh is admissible, the cost function for the controlled Markov

chain is defined as

Jh(x0, ϕ0, z
h) =

r∑
i=1

E

ηh−1∑
k=1

e−at
h
kf

i
(ψhk )∆zh,ik , (4.23)

where ∆zhk =
(
∆zh,1k , . . . ,∆zh,rk

)′
. The value function of the controlled Markov chain is

V h(x0, ϕ0) = sup
zh

Jh(x0, ϕ0, z
h). (4.24)

4.3.3 Transition Probabilities and Local Consistency

Let ei ∈ Rr be the standard unit vector in the i th direction, i = 1, . . . , r. Now we define

the approximation to the first and the second derivatives of V (·, ·) by finite difference method
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using stepzise h1 > 0 for the state variable as

V (x, ϕ)→ V h(x, ϕ),

Vxi(x, ϕ)→ V h(x+ h1ei, ϕ)− V h(x, ϕ)

h1

, if b
i
(x, ϕ) ≥ 0,

Vxi(x, ϕ)→ V h(x, ϕ)− V h(x− h1ei, ϕ)

h1

, if b
i
(x, ϕ) < 0,

Vxixi(x, ϕ)→ V h(x+ h1ei, ϕ)− 2V h(x, ϕ) + V h(x− h1ei, ϕ)

h2
1

,

Vxixj(x, ϕ)→ 2V h(x, ϕ) + V h(x+ h1ei + h1ej, ϕ) + V h(x− h1ei − h1ej, ϕ)

2h2
1

−V
h(x+ h1ei, ϕ) + V h(x− h1ei, ϕ) + V h(x+ h1ej, ϕ) + V h(x− h1ej, ϕ)

2h2
1

, if aij(x, ϕ) ≥ 0,

Vxixj(x, ϕ)→ −2V h(x, ϕ) + V h(x+ h1ei − h1ej, ϕ) + V h(x− h1ei + h1ej, ϕ)

2h2
1

+
V h(x+ h1ei, ϕ) + V h(x− h1ei, ϕ) + V h(x+ h1ej, ϕ) + V h(x− h1ej, ϕ)

2h2
1

, if aij(x, ϕ) < 0,

(4.25)

For the first and the second derivatives with respect to the posterior probability, we use

similar approximations. We proceed to figure out the transition probabilities. We define for

a real number a that a+ = max{a, 0}, a− = −min{0, a}. Then a = a+ if a ≥ 0 and a = −a−

if a < 0. Moreover, |a| = a+ + a− and a = a+ − a−. To find transition probabilities of the

controlled Markov chain, we plug all the necessary expressions into the first part of system

(4.16), then use the symmetry of the a(x, ϕ) matrix, combine like terms and divide by the

coefficient of V h(x, ϕ). The transition probabilities are coefficients of the resulting equation.

For x ∈ Lh1 and ψ ∈ Sm−1, we define the transition probabilities at diffusion steps in the

following way,

ph(x, x+ h1ei|ψ, π = 0) =

(
aii(x, ψ)/2−

∑
j:j 6=i
|aij(x, ψ)|/2 + b

i+
(x, ψ)h1

)
h2

h2
1

,

ph(x, x− h1ei|ψ, π = 0) =

(
aii(x, ψ)/2−

∑
j:j 6=i
|aij(x, ψ)|/2 + b

i−

(x, ψ)h1

)
h2

h2
1

,

(4.26)
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ph(x, x+ h1ei + h1ej|ψ, π = 0) = ph(x, x− h1ei − h1ej|ψ, π = 0) =
aij+(x, ψ)h2

2h2
1

,

ph(x, x+ h1ei − h1ej|ψ, π = 0) = ph(x, x− h1ei + h1ej|ψ, π = 0) =
aij

−
(x, ψ)h2

2h2
1

,

ph(x, x|ψ, π = 0) = 1−
∑

ph(x, x± h1ei|ψ, π = 0)−
∑

ph(x, x+ h1ei ± h1ej|ψ, π = 0).

(4.27)

Assumption (A2) guarantees that ph(x, x+ h1ei|ψ, π = 0) ≥ 0 and ph(x, x− h1ei|ψ, π =

0) ≥ 0 for all (x, ψ) ∈ Lh1 × Sm−1. Moreover, by choosing proper h1 and h2 (for instance,

h2 = o(h2
1)), we can reasonably assume that ph(x, x|ψ, π = 0) ≥ 0, that is, the transition

probabilities in (4.26) and (4.27) are well-defined. At reflection steps and harvesting steps,

we define

ph(x, x− h1ei)|ψ, π = ±i) = 1. (4.28)

The definition of the transition function at 0 is not important since in the analysis of the

control problem, the chain will be stopped the first time it hits 0. For the sake of specificity, we

set aij(x, ψ) = aji(x, ψ) = b
i
(x, ψ) = 0 for all j = 1, . . . , r if xi = 0 and ph(0, 0|ψ, π = 0) = 1.

Let ξh,in denote the i th component of the vector ξhn. Using the above transition probabil-

ities, we have

Eh,0
x,ψ,n∆ξh,in = Eh,0

x,ψ,n(ξh,in+1 − ξh,in )

= b
i
(x, ψ)h2,

(4.29)

for i 6= j,

Eh,0
x,ψ,n

(
∆ξh,in ∆ξh,jn

)
=

2aij
+

(x, ψ)h2

2h2
1

h2
1 −

2aij
−

(x, ψ)h2

2h2
1

h2
1

= aij(x, ψ)h2,

(4.30)

and Eh,0
x,ψ,n

(
∆ξh,in

)2
= aii(x, ψ)h2 + o(h2), when h→ 0. Note that b(·, ·) is bounded on Lh1 ×

Sm−1. The local consistence of the controlled Markov chain {ξhn} with transition probabilities
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defined in (4.26) and (4.27) follows.

4.4 Convergence

4.4.1 Continuous-Time Interpolation and Time Rescaling

One of the main goals of the study is to show that the value function of the controlled

Markov chain defined in (4.24) converges, as h = (h1, h2) → (0, 0), to the value function of

the limit control problem. This convergence result allows for the computation of near optimal

policies for the control problem by numerical method. We next introduce the continuous-

time interpolation and time rescaling techniques that will be used in the proof of our main

convergence result.

The continuous-time interpolations of various processes will be constructed to be piece-

wise constant on the time interval [thn, t
h
n+1), n ≥ 0. For use in this construction, we define

nh(t) = max{n : thn ≤ t}, t ≥ 0. We first define discrete time processes associated with the

controlled Markov chain as follows. Let zh0 = gh0 = Bh
0 = Mh

0 = 0 and define for n ≥ 1,

zhn =
n−1∑
k=0

∆zhk , ghn =
n−1∑
k=0

∆ghk ,

Bh
n =

n−1∑
k=0

11{πhk=0}E
h
k∆ξhk , Mh

n =
n−1∑
k=0

(∆ξhk − Eh
k∆ξhk )11{πhk=0}.

(4.31)

The piecewise constant interpolations, denoted by (ξh(·), ψh(·), zh(·), gh(·), Bh(·),Mh(·))

are naturally defined as

ξh(t) = ξhnh(t), ψh(t) = ψhnh(t),

zh(t) = zhnh(t), gh(t) = ghnh(t),

Bh(t) = Bh
nh(t), Mh(t) = Mh

nh(t) t ≥ 0.

(4.32)

Define Fh(t) = σ{ξh(s), ψh(s), gh(s), zh(s) : s ≤ t} = Fh
nh(t)

. Using the representation of
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diffusion steps, harvesting steps, reflection steps in (4.20), we obtain

ξhn = x0 +
n−1∑
k=0

∆ξhk11{πhk≤−1} +
n−1∑
k=0

∆ξhk11{πhk≥1} +
n−1∑
k=0

∆ξhk11{πhk=0} (4.33)

Using the interpolations defined above, we have

ξh(t) = x0 +Bh(t) +Mh(t)− zh(t)− gh(t). (4.34)

Recall that ∆thk = h2 if πhk = 0 and ∆thk = 0 if πhk ≥ 1 or πhk ≤ −1. It follows that

Bh(t) =

nh(t)−1∑
k=0

b(ξhk , ψ
h
k )∆thk

=

∫ t

0

b(ξh(s), ψh(s))ds−
∫ t

th
nh(t)

b(ξh(s), ψh(s))ds

=

∫ t

0

b(ξh(s), ψh(s))ds+ εh1(t),

(4.35)

with {εh1(·)} is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh1(t)| = 0, for any 0 < T0 <∞.

We now attempt to represent Mh(·) in a form similar to the diffusion term in (4.9). Factor

a(x, ϕ) = σ(x, ϕ)σ′(x, ϕ) = P (x, ϕ)D2(x, ϕ)P ′(x, ϕ),

where P (·) is an orthogonal matrix, D(·) = diag{d1(·), . . . , dr(·)}. By assumption (A2),

inf
(x,ϕ)

di(x, ϕ) > 0 for all i = 1, . . . , r. Define D0(·) = diag{1/d1(·), . . . , 1/dr(·)}. Define

wh(t) =

∫ t

0

D0(ξh(s), ψh(s))P ′(ξh(s), ψh(s))dMh(s)

=

nh(t)−1∑
k=0

D0(ξhk , ψ
h
k )P ′(ξhk , ψ

h
k )(∆ξhk − Eh

k∆ξhk )11{πhk=0}.

(4.36)

Then we can write

Mh(t) =

∫ t

0

σ(ξh(s), ψh(s))dwh(s) + εh2(t), (4.37)
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with {εh2(·)} is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh2(t)| = 0, for any 0 < T0 <∞.

Using (4.35) and (4.37), we can write (4.34) as

ξh(t) = x0 +

∫ t

0

b(ξh(s), ψh(s))ds+

∫ t

0

σ(ξh(s), ψh(s))dwh(s)− zh(t)− gh(t) + εh(t), (4.38)

with εh(·) is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh(t)| = 0, for any 0 < T0 <∞.

The modified dynamics of (4.9) corresponding to (4.38) is given by

ξ(t) = x0 +

t∫
0

b(ξ(s), ϕ(t))ds+

t∫
0

σ(ξ(s), ϕ(t))dw(s)− z(t)− g(t), (4.39)

with the presence of the reflection component g(·) and the harvesting component z(·).

The cost function in (4.23) can also be rewritten as

Jh(x0, ϕ0, z
h(·)) =

r∑
i=1

E

∫ τh

0

e−asf
i
(ψh(s))dzh,i(s), (4.40)

where zh(·) = (zh,1(·), . . . , zh,r(·))′. In fact, since we have defined ph(0, 0|ψ, π = 1) = 1, we

can rewrite (4.40) with τh =∞.

Time rescaling. Next we will introduce the time rescaling that will be used in our

work. Our ultimate goal is to show that V h converges to V in a large enough interval [0, U ]

as h = (h1, h2) → (0, 0). A common approach for proving the convergence of V h to V is

to begin by showing that the collection {ξh(·), ψh(·), wh(·), gh(·), zh(·)} is tight, and then

characterize the subsequential weak limits suitably. However, for singular control problems,

showing the tightness of the above family becomes problematic since in general, the family

{gh(·), zh(·)} may fail to be tight. To overcome this difficulty, the analysis must be done in
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a “stretched-out” time scale, analogously to the approach previously used by Kushner [27],

Budhiraja and Ross [9] on singular control problems.

First the rescaled time increments {∆t̂hn : n = 0, 1, . . . } are defined as follows

∆t̂hn = h211{πhn=0} + h111{πhn≤−1} + h111{πhn≥1},

t̂0 = 0, t̂n =
n−1∑
k=0

∆t̂hk, n ≥ 1.
(4.41)

The time scale is stretched out by h1 at the reflection and harvesting steps.

Definition 4.1. The rescaled time process T̂ h(·) is the unique continuous nondecreasing

process satisfying the following:

(a) T̂ h(0) = 0;

(b) the derivative of T̂ h(·) is 1 on (t̂hn, t̂
h
n+1) if πhn = 0, i.e., n is a diffusion step;

(c) the derivative of T̂ h(·) is 0 on (t̂hn, t̂
h
n+1) if πhn 6= 0, i.e., n is a reflection step or a

harvesting step.

Thus T̂ h(·) does not increase at these t at which a harvesting step or a reflection step

occurs. It follows from the above definition that

T̂ h(t̂n) = thn and T̂ h(t̂n+1)− T̂ h(t̂n) = ∆thn.

Moreover, for t ≥ 0 and δ > 0, 0 ≤ T̂ h(t+δ)−T̂ h(t) ≤ δ. Define the rescaled and interpolated

process ξ̂h(t) = ξh(T̂ h(t)) and likewise define ψ̂h(·), ẑh(·), ĝh(·), B̂h(·), M̂h(·), ŵh(·), and the

filtration F̂h(·) similarly. It follows from (4.34) that

ξ̂h(t) = x0 + B̂h(t) + M̂h(t)− ẑh(t)− ĝh(t). (4.42)



91

Using the same argument that produced (4.38) we obtain

ξ̂h(t) = x0 +

∫ t

0

b(ξ̂h(s), ψ̂h(s))dT̂ h(s) +

∫ t

0

σ(ξ̂h(s), ψ̂h(s))dŵh(s)− ẑh(t)− ĝh(t) + ε̂h(t),

(4.43)

with ε̂h(·) is an F̂h(·)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|ε̂h(t)| = 0, for any 0 < T0 <∞. (4.44)

Denote

Ĥh(·) =
(
ξ̂h(·), ψ̂h(·), ŵh(·), ẑh(·), ĝh(·), T̂ h(·)

)
, h = (h1, h2).

To proceed, we give the definition of existence and uniqueness of weak solution and state

some more assumptions.

Definition 4.2. By a weak solution of (4.6)-(4.39) we mean that there exists a prob-

ability space (Ω,F , P ), a filtration F(t), and process
(
ξ(·), ψ(·), z(·), g(·), w(·), w(·)

)
such

that w(·) and w(·) are independent F(t)-Wiener processes, z(·) and g(·) are F(t)-adapted,

and (4.6)-(4.39) are satisfied. For an initial condition (x0, ϕ0), by the weak sense unique-

ness, we mean that irrespective of probability space, the probability law of solution(
ξ(·), ψ(·), z(·), g(·), w(·), w(·)

)
to (4.6)-(4.39) is determined by the probability law of(

ψ(·), z(·), w(·), w(·)
)
.

(A4) For each initial condition, there exists a solution to (4.6)-(4.39) and this solution is

unique in the weak sense.

4.4.2 Proof of Convergence

In this subsection, we use the weak convergence methods to obtain the convergence of

the algorithms. We refer the readers to [8,16] for standard references and [26,28] for a brief
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account of concepts and results in the theory of weak convergence that we will use in the

sequel. Let D[0,∞) denote the space of functions that are right continuous and have left-

hand limits endowed with the Skorohod topology. All the weak analysis will be on this space

or its k-fold products Dk[0,∞) for appropriate k.

Theorem 4.3. Assume (A1)-(A4). Let the approximating chain {ξhn} be constructed with

transition probabilities defined in (4.26)-(4.28),

Hh(·) =
(
ξh(·), ψh(·), wh(·), zh(·), gh(·), T h(·)

)
be the continuous-time interpolation defined in (4.31)-(4.32), (4.36), Definition 4.1, and

Ĥh(·) be the corresponding rescaled processes. Then Ĥh(·) is tight. As a result, Ĥh(·) has a

weakly convergent subsequence with the limit denoted by

Ĥ(·) =
(
ξ̂(·), ψ̂(·), ŵ(·), ẑ(·), ĝ(·), T̂ (·)

)
,

having continuous paths w.p.1.

Proof. It follows from the definition of {ψhn} and interpolation intervals constructed in (4.22)

that if n is a harvesting step or a reflection step, ∆thn = thn+1 − thn = 0 and ψhn+1 = ψhn.

Otherwise, n is a diffusion step, ∆thn = thn+1− thn = h2 and ψhn+1 = ϕhk+1 if ψhn = ϕhk. By virtue

of the continuous time interpolation ψh(·) in (4.32), we have

ψh(t) = ϕhk, for t ∈ [kh2, kh2 + h2), k = 0, 1, . . . ,

with the sequence {ϕhn} constructed in (4.18). With this observation, the tightness of ψh(·)

can be obtained as in [67, Theorem 8.15]. For other components, we use the same estimations

as in [27, Theorem 5.3] using the tightness criteria in [25, p. 47]. Let T0 < ∞ be a positive
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constant and τ0 be a stopping time which is not bigger than T0. Then for any δ > 0,

Eh
τ0

∣∣wh(τ0 + δ)− wh(τ0)
∣∣2 = O(δ) + εh(δ), (4.45)

where terms E|εh(δ)| → 0 uniformly in τ0 as h → 0. Taking lim suph→0 followed by limδ→0

yield the tightness of {wh(·)}. The tightness of {ψ̂h(·)} and {ŵh(·)} are obtained due to the

stretching out of the timescale.

Following the definition of “stretched out” timescale,

Eh
τ0
|ẑh(τ0 + δ)− ẑh(τ0)|2 ≤ rh2

1E
h
τ0

(number of harvesting steps in

interpolated interval [τ0, τ0 + δ))2

≤ rh2
1 max{1, δ2/h2

1}

≤ r(h2
1 + δ2).

(4.46)

Similarly,

Eh
τ0
|ĝh(τ0 + δ)− ĝh(τ0)|2 ≤ r(h2

1 + δ2). (4.47)

Thus {ẑh(·), ĝh(·)} is tight. The tightness of {T̂ h(·)} follows from the fact that

0 ≤ T̂ h(τ0 + δ)− T̂ h(τ0) ≤ δ.

Next we prove the tightness of {ξ̂h(·)}. It follows from (4.42), (4.46), and (4.47) that

Eh
τ0
|ξ̂h(τ0 + δ)− ξ̂h(τ0)|2 ≤ 4Eh

τ0
|B̂h(τ0 + δ)− B̂h(τ0)|2 + 4Eh

τ0
|M̂h(τ0 + δ)− M̂h(τ0)|2

+4Eh
τ0
|ẑh(τ0 + δ)− ẑh(τ0)|2 + 4Eh

τ0
|ĝh(τ0 + δ)− ĝh(τ0)|2

≤ Kδ2 +Kδ + 8r(h2
1 + δ2),

where K is a positive constant depending only on upper bounds of b(·, ·) and σ(·, ·) on

Lh1 × Sm−1 ⊂ [0, U + 1]r × Sm−1. This show the tightness of {ξ̂h(·)}. Hence Ĥh(·) is tight.

By virtue of Prohorov’s Theorem, Ĥh(·) has a weakly convergent subsequence with the limit
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Ĥ(·).

By the definition of T̂ h(·), it is Lipschitz continuous with Lipschitz coefficient 1. By

virtue of the Skorohod representation, such property also holds for T̂ (·). Since sizes of jumps

of ξ̂h(·), ŵh(·), ẑh(·), and ĝh(·) go to 0 as h→ 0, then their limits have continuous paths w.p.1

(see [26, p. 1007]). Finally, consider the tight sequence
(
ψh(·), ψ̂h(·), T̂ h(·)

)
with the weak

limit
(
ψ̃(·), ψ̂(·), T̂ (·)

)
. Using the same argument as in (see [67, Section 8.4]),we obtain that

ψ̃(·) solves the Wonham filter equation, then it has continuous paths w.p.1. It then follows

from ψ̂h(·) = ψh(T̂ h(·)) that ψ̂(·) = ψ̃(T̂ (·)). Therefore, ψ̂(·) has also continuous paths w.p.1.

This completes the proof. 2

In what follows, for notational simplicity, we still denote the convergent subsequence of

Ĥh(·) by Ĥh(·). By Skorohod’s representation, with a slight abuse of notation, we can always

assume that the convergence is also pathwise w.p.1 in the topology of the path space and is

uniform on bounded time interval. We proceed to characterize the limit process.

Theorem 4.4. Under conditions of Theorem 4.3, let F̂(t) be the σ-algebra generated by

{ξ̂(s), ψ̂(s), ŵ(s), ẑ(s), ĝ(s), T̂ (s) : s ≤ t}.

Then the following assertions hold.

(a) ŵ(t) is an F̂(t)- martingale with quadratic variation process T̂ (t)Ir.

(b) ẑ(·), ĝ(·), and T̂ (·) are nondecreasing and nonnegative.

(c) The limit processes satisfy

ξ̂(t) = x0 +

∫ t

0

b(ξ̂(s), ψ̂(s))dT̂ (s) +

∫ t

0

σ(ξ̂(s), ψ̂(s))dŵ(s)− ẑ(t)− ĝ(t). (4.48)
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Proof. (a) Let Êh
t denote the expectation conditioned on F̂h(t) = Fh(T̂ h(t)). Recall that

wh(·) is an Fh(·)- martingale and by the definition of ŵh(·), for any δ > 0,

Êh
t

(
ŵh(t+ δ)− ŵh(t)

)
= 0,

Êh
t

(
ŵh(t+ δ)ŵh(t+ δ)′ − ŵh(t)ŵh(t)′

)
=
(
T̂ h(t+ δ)− T̂ h(t)

)
Ir + ε̂h(δ),

(4.49)

where E|ε̂h(δ)| → 0 as h → 0. To characterize ŵ(·), let q be an arbitrary integer, t > 0,

δ > 0 and {tk : k ≤ q} be such that tk ≤ t < t+ δ for each k. Let Ψ(·) be a real-valued and

continuous function of its arguments with compact support. Then in view of (4.49), we have

EΨ(Ĥh(tk), k ≤ q)
[
ŵh(t+ δ)− ŵh(t)

]
= 0, (4.50)

and

EΨ(Ĥh(tk), k ≤ q)
[(
ŵh(t+ δ)ŵh(t+ δ)′ − ŵh(t)ŵh(t)′ −

(
T̂ h(t+ δ)− T̂ h(t)

)
Ir − ε̂h(δ)

]
= 0.

(4.51)

By using the Skorohod representation and the dominated convergence theorem, letting h→ 0

in (4.50), we obtain

EΨ(Ĥ(tk), k ≤ q)
[
ŵ(t+ δ)− ŵ(t)

]
= 0. (4.52)

Since ŵ(·) has continuous paths w.p.1, (4.52) implies that ŵ(·) is a continuous F̂(·)-

martingale. Moreover, (4.51) gives us that

EΨ(Ĥ(tk), k ≤ q)
[
ŵ(t+ δ)ŵ(t+ δ)′ − ŵ(t)ŵ(t)′ −

(
T̂ (t+ δ)− T̂ (t)

)
Ir

]
= 0. (4.53)

Then part (a) follows.

(b) The monotonicity and non-negativity of ẑ(·), ĝ(·), and T̂ (·) follow immediately from

that of ẑh(·), ĝh(·), and T̂ h(·), respectively.
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(c) The proof of this part is motivated by that of [28, Theorem 10.4.1]. By virtue of

Skorohod representation, the uniform convergence of
(
ξ̂h(·), ψ̂h(·), T̂ h(·)

)
to
(
ξ̂(·), ψ̂(·), T̂ (·)

)
on bounded time interval, we obtain∫ t

0

b(ξ̂h(s), ψ̂h(s))dT̂ h(s)−
∫ t

0

b(ξ̂(s), ψ̂(s))dT̂ (s)→ 0 as h→ 0, (4.54)

uniformly in t on any bounded time interval w.p.1. For each positive constant δ and a process

ν̂(·), define the piecewise constant process ν̂δ(·) by ν̂δ(t) = ν̂(kδ) for t ∈ [kδ, kδ + δ), k =

0, 1, ... Then, by the tightness of (ξ̂h(·), ψ̂h(·)), (4.43) can be rewritten as

ξ̂h(t) = x0 +

∫ t

0

b(ξ̂h(s), ψ̂h(s))dT̂ h(s) +

∫ t

0

σ(ξ̂h,δ(s), ψ̂h,δ(s))dŵh(s)− ẑh(t)− ĝh(t) + ε̂h,δ(t),

(4.55)

where lim
δ→0

lim sup
h→0

E|ε̂h,δ(t)| = 0. Owing to the fact that ξ̂h,δ and ψ̂h,δ take constant values on

the intervals [nδ, nδ + δ), we have∫ t

0

σ(ξ̂h,δ(s), ψ̂h,δ(t))dŵh(s)→
∫ t

0

σ(ξ̂δ(s), ψ̂δ(t))dŵ(s) as h→ 0, (4.56)

which are well defined w.p.1 since they can be written as finite sums. Combining (4.54)-

(4.56), we have

ξ̂(t) = x0 +

∫ t

0

b(ξ̂(s), ψ̂(s))dT̂ (s) +

∫ t

0

σ(ξ̂δ(s), ψ̂δ(t))dŵ(s)− ẑ(t)− ĝ(t) + ε̂δ(t), (4.57)

where lim
δ→0

E|ε̂δ(t)| = 0. Taking limit in the above equation as δ → 0 yields the result. 2

Theorem 4.5. Under conditions of Theorem 4.3, for t < ∞, define the reverse R(t) =

inf{s : T̂ (s) > t}. For any process ν̂(·), define the rescaled process ν(·) by ν(t) = ν̂(R(t)). Let

F(t) be the σ-algebra generated by {ξ(s), ψ(s), w(s), z(s), g(s), R(s) : s ≤ t}. The following

assertions hold:
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(a) R(·) is right continuous, nondecreasing, and R(t)→∞ as t→∞ w.p.1.

(b) z(·) and g(·) are right-continuous, nondecreasing, nonnegative, and F(t)-adapted pro-

cesses.

(c) w(·) is a standard F(t)-Wiener process, ψ(·) satisfies the system of Wonham filter

equations (4.5), and

ξ(t) = x0 +

∫ t

0

b(ξ(s), ψ(s))ds+

∫ t

0

σ(ξ(s), ψ(t))dw(s)− z(t)− g(t). (4.58)

Proof. (a) We will argue via contradiction that T̂ (t) → ∞ as t → ∞ w.p.1. Suppose

P [supt≥0 T̂ (t) <∞] > 0. Then there exist positive constants ε and T0 such that

P [sup
t≥0

T̂ (t) < T0 − 1] > ε. (4.59)

We first observe that

t+ r|zh(t) + gh(t)| ≥
nh(t)−1∑
k=0

(
h211{πh=0} + h111{πh≥1} + h111{πh≤−1}

)
.

Since T̂ h(·) is nondecreasing and T̂ h(t̂hn) = thn,

T̂ h
(
t+ r|zh(t) + gh(t)|

)
≥ T̂ h

( nh(t)−1∑
k=0

(
h211{πh=0} + h111{πh≥1} + h111{πh≤−1}

))
= T̂ h(t̂hnh(t)) = thnh(t) ≥ t− 1.

(4.60)

The last inequality above is a consequence of the inequalities th
nh(t)
≤ t < th

nh(t)+1
= th

nh(t)
+

h2 < th
nh(t)

+ 1.

It follows from (4.34) that for each fixed t ≥ 0, sup
h
E
(
|zh(t) + gh(t)|

)
<∞. Hence for a

sufficiently large K,

P{r|zh(T0) + gh(T0)| ≥ 2K} ≤
rE
∣∣zh(T0) + gh(T0)

∣∣
2K

<
ε

2
. (4.61)
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In views of (4.60) and (4.61), we obtain

P
[
T̂ h(T0 + 2K) < T0 − 1

]
≤ P

[
T̂ h
(
T0 + r|zh(T0) + gh(T0)|

)
< T0 − 1, r|zh(T0) + gh(T0)| < 2K

]
+P
[
r|zh(T0) + gh(T0)| ≥ 2K

]
<
ε

2
for all small h = (h1, h2).

(4.62)

Since T̂ h converges weakly to T̂ , it follows from (4.62) that lim inf
h→0

P
[
T̂ h(T0+2K) < T0−1

]
≤

ε/2. This contradicts (4.59) (see [8, Theorem 1.2.1]). Hence T̂ (t)→∞ as t→∞ w.p.1. Thus

R(t) < ∞ for all t and R(t) → ∞ as t → ∞. Since T̂ (·) is nondecreasing and continuous,

R(·) is nondecreasing and right-continuous.

(b) follows the fact that ẑ(·) and ĝ(·) are continuous, nondecreasing, nonnegative, and

R(·) is right-continuous.

(c) We first note that although R(·) might fail to be continuous, w(·) = ŵ(R(·)) has

continuous paths w.p.1. Indeed, consider the tight sequence
(
wh(·), ŵh(·), T̂ h(·)

)
with the

weak limit
(
w̃(·), ŵ(·), T̂ (·)

)
. Since ŵh(·) = wh(T̂ h(·)), we must have that ŵ(·) = w̃(T̂ (·)).

It follows from the definition of R(·) that for each t ≥ 0, we have T̂ (R(t)) = t. Hence

w(t) = ŵ(R(t)) = w̃
(
T̂ (R(t))

)
= w̃(t). Since magnitude of jumps of wh(·) go to 0 as h→ 0,

w̃(·) also has continuous paths w.p.1. This shows that w(·) = ŵ(R(·)) has continuous paths

w.p.1. By the same argument for the tight sequence
(
ψh(·), ψ̂h(·), T̂ h(·)

)
, we obtain that ψ(·)

also has continuous paths w.p.1. Moreover, it satisfies the system of Wonham filter equation

(4.5) (see [67, Section 8.4]).

Before characterizing w(·), we note that for t ≥ 0, {R(s) ≤ t} = {T̂ (t) ≥ s} ∈ F̂(t) since

T̂ (t) is F̂(t)-measurable. Thus R(s) is an F̂(t)-stopping time for each s ≥ 0. Since ŵ(t) is
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an F̂(t)-martingale with quadratic variation process T̂ (t)Ir,

E
[
ŵ(R(t) ∧ n)|F̂(R(s))

]
= ŵ(R(s) ∧ n), n = 1, 2, . . . ,

Eŵ(R(t) ∧ n)ŵ(R(t) ∧ n)′ = ET̂ (R(t) ∧ n)Ir,

(4.63)

and T̂ (R(t) ∧ n) ≤ T̂ (R(t)) = t. Hence for each fixed t ≥ 0, the family {ŵ(R(t) ∧ n), n ≥ 1}

is uniformly integrable. By that uniform integrability, we obtain from (4.63) that

E
[
ŵ(R(t))|F̂(R(s))

]
= ŵ(R(s)),

that is E
[
w(t)|F(s)

]
= w(s). This proves that w(·) is a continuous F(·) -martingale. We next

consider its quadratic variation. By the Burkholder-Davis-Gundy inequality, there exists a

positive constant C independent of n = 1, 2, . . . such that

E|ŵ(R(t) ∧ n)|2 ≤ CE

[(
sup

0≤s≤R(t)

|ŵ(R(s) ∧ n)|2
)]

≤ CE|T̂ (R(t) ∧ n)| ≤ Ct.

Thus the families {ŵ(R(t) ∧ n), n ≥ 1} and {T̂ (R(t) ∧ n), n ≥ 1} are uniformly integrable

for each fixed t ≥ 0. Combining with the fact that ŵ(·), T̂ (·) have continuous paths, for

nonnegative constants s ≤ t, we have

ŵ(R(s) ∧ n)ŵ(R(s) ∧ n)′ − T̂ (R(s) ∧ n)Ir = E
[
ŵ(R(t) ∧ n)ŵ(R(t) ∧ n)′ − T̂ (R(t) ∧ n)Ir|F̂(R(s))

]
→ E

[
ŵ(R(t))ŵ(R(t))′ − T̂ (R(s))Ir|F̂(R(s))

]
= E

[
w(t)w(t)′ − tIr|F(s)

]
.

(4.64)

Note that the first equation in (4.64) follows from the martingale property of ŵ(·)ŵ(·)′−T̂ (·)Ir

with respect to F̂(t). Letting n→∞ in (4.64), we arrive at

E
[
w(t)w(t)′ − tIr|F(s)

]
= w(s)w(s)′ − sIr.
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Therefore, w(·) is an F(t) - Wiener process. A rescaling of (4.48) yields

ξ(t) = x0 +

∫ t

0

b(ξ(s), ψ(s))ds+

∫ t

0

σ(ξ(s), ψ(t))dw(s)− z(t)− g(t).

The proof is complete. 2

Theorem 4.6. Under conditions of Theorem 4.3, let V h(x0, ϕ0) and V (x0, ϕ0) be value

functions defined in (4.24) and (4.12), respectively. Then V h(x0, ϕ0)→ V (x0, ϕ0) as h→ 0.

Proof. We first show that as h→ 0,

Jh(x0, ϕ0, z
h) →

r∑
i=1

E

∫ τ

0

e−atf
i
(ψ(t))dzi(t)

= J(x0, ϕ0, z(·)),

(4.65)

where τ = inf{s : ξ(s) = 0}. Indeed, for a harvesting strategy zh = {zhn}, we have

Jh(x0, ϕ0, z
h) =

r∑
i=1

E

ηh−1∑
k=0

e−at
h
kf

i
(ψhk )∆zh,ik

=
r∑
i=1

E

∫ t̂hηh

0

e−aT̂
h(t)f

i
(ψ̂h(t))dẑh,i(t).

(4.66)

By a small modification of the proof in Theorem 4.5 (a), we have T̂ h(t) → ∞ as t → ∞

w.p.1. It also follows from the representation (4.34) and estimates on Bh(·) and Mh(·) that

{zh(n+ 1)− zh(n) : n, h} is uniformly integrable. Thus, by the definition of T̂ h(·),

r∑
i=1

E
∫∞
T0
e−aT̂

h(t)f
i
(ψ̂h(t))dẑh,i(t) ≤

r∑
i=1

E

∫ ∞
min{t:T̂h(t)≥T0}

Ke−asdzh,i(s)

≤
r∑
i=1

E

∫ ∞
T0

Ke−asdzh,i(s)→ 0,

uniformly in h as T0 → ∞. In the above argument, we have employed the fact that we

can replace t̂hηh in (4.66) by infinity, and T̂ h(T0) ≤ T0. Then by the weak convergence,

the Skohorod representation (therefore, the uniform convergence of
(
ẑh(·), ψ̂h(·), T̂ h(·)

)
to
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(
ẑ(·), ψ̂(·), T̂ (·)

)
on bounded time interval), and uniform integrability, for any T0 > 0,

r∑
i=1

E

∫ T0

0

e−aT̂
h(t)f

i
(ψ̂h(t))dẑh,i(t)→

r∑
i=1

E

∫ T0

0

e−aT̂ (t)f
i
(ψ̂(t))dẑi(t).

Therefore, we obtain

r∑
i=1

E

∫ ∞
0

e−aT̂
h(t)f

i
(ψ̂h(t))dẑh,i(t)→

r∑
i=1

E

∫ ∞
0

e−aT̂ (t)f
i
(ψ̂(t))dẑi(t),

or equivalently,

r∑
i=1

E

∫ t̂hηh

0

e−aT̂
h(t)f

i
(ψ̂h(t))dẑh,i(t)→

r∑
i=1

E

∫ τ̂

0

e−aT̂ (t)f
i
(ψ̂(t))dẑi(t),

where τ̂ = inf{s : ξ̂(s) = 0}. On inversion of the timescale, the above expression can be

written as

r∑
i=1

E

∫ τ

0

e−atf
i
(ψ(t))dzi(t).

Thus, Jh(x0, ϕ0, z
h)→ J(x0, ϕ0, z(·)) as h→ 0.

Next, we prove that

lim sup
h

V h(x0, ϕ0) ≤ V (x0, ϕ0). (4.67)

For any small positive constant ε, let z̃h be an ε-optimal harvesting strategy for the chain

{ξhn}, i.e.,

V h(x0, ϕ0) = sup
zh

Jh(x0, ϕ0, z
h) ≤ Jh(x0, ϕ0, z̃

h) + ε.

Choose a subsequence {h̃} of {h} such that

lim sup
h→0

V h(x0, ϕ0) = lim
h̃→0

V h̃(x0, ϕ0) ≤ lim sup
h̃→0

J h̃(x0, ϕ0, z̃
h̃) + ε. (4.68)

Without loss of generality (passing to an additional subsequence if needed), we may assume
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that

Ĥ h̃(·) =
(
ξ̂h̃(·), ϕ̂h̃(·), ŵh̃(·), ẑh̃(·), ĝh̃(·), T̂ h̃(·)

)
converges weakly to

Ĥ(·) =
(
ξ̂(·), ϕ̂(·), ŵ(·), ẑ(·), ĝ(·), T̂ (·)

)
,

and z(·) = ẑ(R(·)). It follows from our claim in the beginning of the proof that

lim
h̃→0

J h̃(x0, ϕ0, z̃
h̃) = J(x0, ϕ0, z(·)) ≤ V (x0, ϕ0), (4.69)

where J(x0, ϕ0, z(·)) ≤ V (x0, ϕ0) since V (x0, ϕ0) is the maximizing cost function. Since ε is

arbitrarily small, (4.67) follows from (4.68) and (4.69).

To prove the reverse inequality lim inf
h

V h(x0, ϕ0) ≥ V (x0, ϕ0), for any small positive

constant ε, we choose a particular ε-optimal harvesting strategy for (4.6) and (4.39) such

that the approximation can be applied to the chain {ξhn} and the associated cost compared

with V h(x0, ϕ0). By an adaption of the method used for singular control problems [27, 41],

for given ε > 0, there is a ε-optimal harvesting strategy z(·) and Wiener process w(·) for

(4.6)-(4.39) with the following properties: (a) There are Tε <∞, ρ > 0, and δ > 0 such that

z(·) are constants on the intervals [nρ, nρ + ρ), only one of the components can jump at a

time, and the jumps take values in the discrete set {kδ : k = 1, 2, . . . }; also z(·) is bounded

and is constant on [Tε,∞); (b) there is a θ > 0 such that

P
(
∆zi(nρ) = kδ|z(mρ),m < n,w(s), ψ(s), s ≤ nρ

)
= qnki

(
kρ, z(mρ),m < n,w(pθ), ψ(pθ), pθ ≤ nρ

)
, i = 1, ..., n,

where qnki(·) can be supposed to be continuous in the w variables. Next, we adapt this

harvesting strategy to the chain {ξhn} by a harvesting strategy zh = {zhn} using the same
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method as in [27, p. 1459]. As a preparation, we first note the following. Suppose that we wish

to apply a harvesting action of ”impulsive“ magnitude ∆z to the chain at some interpolated

time t0. Define nh = min{k : thk ≥ t0}, with thk was defined in (4.22). Then starting at step nh,

apply [∆z/h1] successive harvesting steps. Let zh(·) denote the piecewise interpolation of the

harvesting strategy just defined. Since the values of the times thn do not increase during the

sequence of successive harvesting steps just described, zh(·) is just a step function with jump

h1[∆z/h1] at time thnh . Moreover, zh(·) is constant on time intervals [nρ, nρ+ ρ). Therefore,

when using such controls, there is no need to rescale time in the convergence proof and

{zh(·)} is tight in the Skorohod topology.

With the observations in the last paragraph, we are ready to define the ”adapted“ form

of z(·) to use on {ξhn}. Let zh(·) denote the interpolated form of the ”adaption“. We will

define zh(·) such that it has the same number of impulsive changes as does z(·). Each of

the impulses is to be realized for the chain via the method used in the above observation.

By the weak convergence argument analogous to that of preceding theorems, but with-

out the time rescaling, we obtain the weak convergence
(
ξh(·), ψh(·), wh(·), zh(·), gh(·)

)
→(

ξ̃(·), ψ̃(·), w̃(·), z̃(·), g̃(·)
)
, and the limit solves (4.6)-(4.39), where

(
ψ̃(·), w̃(·), z̃(·)

)
has the

distribution of
(
ψ(·), w(·), z(·)

)
. By the weak sense uniqueness assumption (A4),

(
ξ̃(·), ψ̃(·)

)
is the unique solution to (4.6)-(4.39) with the ε-optimal strategy z̃(·). It follows that

J(x0, ϕ0, z̃(·)) ≥ V (x0, ϕ0) − ε. By the optimality of V h(x0, ϕ0) and the above weak con-

vergence,

V h(x0, ϕ0) ≥ Jh(x0, ϕ0, z
h)→ J(x0, ϕ0, z̃(·)).
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Thus,

lim inf
h→0

V h(x0, ϕ0) ≥ V (x0, ϕ0)− ε.

Since ε is arbitrarily small, the conclusion follows. 2

4.5 A Numerical Example

We consider a single species ecosystem in random environment subjected to the harvesting

as follows

dξ(t) = ξ(t)
(
b(α(t))− c(α(t))ξ(t)

)
dt+ σ(α(t))dw(t)− dZ(t). (4.70)

Suppose that the Markov chain α(·) ∈ {1, 2} that models random environment. The gener-

ator of the continuous-time Markov chain is given by Q =

−1 1

1 − 1

, and

b(1) = 2, c(1) = 2, σ(1) = 1, b(2) = 7, c(2) = 1, σ(2) = 0.5.

We suppose that the Markov chain can only be observed through dy(t) = g(α(t))dt+ dB(t),

where g(1) = −1, g(2) = 1. Introduce the innovation process

dw(t) = dy(t)− g(1)ϕ1(t)dt− g(2)ϕ2(t)dt, w(0) = 0.

Using the Wonham filter, we can convert the incompletely observed system to the following

system with complete observation

dξ(t) = ξ(t)
[
b(1)− c(1)ξ(t)

]
ϕ1(t)dt+ ξ(t)

[
b(2)− c(2)ξ(t)

]
ϕ2(t)dt

+
[
σ(1)ϕ1(t) + σ(2)ϕ2(t)

]
dw(t)− dZ(t),

dϕ1(t) =
[
q11ϕ1(t) + q21ϕ2(t)

]
dt+

[
g(1)− g(1)ϕ1(t)− g(2)ϕ2(t)

]
ϕ1(t)dw(t),

ϕ2(t) = 1− ϕ1(t),

(4.71)
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Let a = 0.05, f(1) = f(2) = 1. In this case, ϕ(t) = ϕ1(t) and f(ϕ(t)) = 1. Then for an

admissible strategy Z(·),

J(x, ϕ, Z) = E

∫ τ

0

e−asdZ(s).

Based on the algorithm constructed in Section 4.3, we carry out the computation by value

iterations. Let Z0 be the harvesting policy that drive the system to extinct immediately.

Then J(x, ϕ, Z0) = x for all (x, ϕ). Letting Z0 be the initial harvesting strategy, we set the

initial values

V h
0 (x, ϕ) = x, x = 0, h1, 2h1, . . . , U = 10, ϕ = 0, h1, 2h1, . . . , 1.

We outline how to find an improved values of V (·, ·) as follows. At each level x =

h1, 2h1, . . . , U , denote by π(x, n) the action we choose, where π(x, n) = 2 if we choose a

harvesting action and π(x, n) = 1 if we choose not to do such action. Thus, initially we

choose π(x, 0) = 2 for all x and we seek for better policies which give larger values. If we

take a harvesting action, an improved value of V (x, ϕ) is calculated by using

V h,2
n+1(x, ϕ) = V h

n (x− h1, ϕ) + f(ϕ)h1.

Otherwise, we choose not to harvest. Plugging all the necessary finite difference expressions

into the first part of system (4.16), we obtain

V h(x, ϕ) =
1

1 + ah2

[
V h(x+ h1, ϕ)ph(x, x+ h1|ϕ, π) + V h(x− h1, ϕ)ph(x, x− h1|ϕ, π)

+V h(x, ϕ+ h1)

(
q11ϕ+ q21 − q21ϕ

)+
h2h1 + 1

2
ϕ2(−2 + 2ϕ)2h2

h2
1

+V h(x, ϕ− h1)

(
q11ϕ+ q21 − q21ϕ

)−
h2h1 + 1

2
ϕ2(−2 + 2ϕ)2h2

h2
1

+V h(x, ϕ)

(
ph(x, x|ϕ, π)− |q

11ϕ+ q21 − q21ϕ|h2h1 + ϕ2(−2 + 2ϕ)2h2

h2
1

)]
,
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where 1
1+ah2

≈ e−ah2 plays the role of discounting part. Hence an improved value V h,1
n+1(x, ϕ)

is calculated by using

V h,1
n+1(x, ϕ) =

1

1 + ah2

[
V h
n (x+ h1, ϕ)ph(x, x+ h1|ϕ, π) + V h

n (x− h1, ϕ)ph(x, x− h1|ϕ, π)

+V h
n (x, ϕ+ h1)

(
q11ϕ+ q21 − q21ϕ

)+
h2h1 + 1

2
ϕ2(−2 + 2ϕ)2h2

h1

+V h
n (x, ϕ− h1)

(
q11ϕ+ q21 − q21ϕ

)−
h2h1 + 1

2
ϕ2(−2 + 2ϕ)2h2

h2
1

+V h
n (x, ϕ)

(
ph(x, x|ϕ, π)− |q

11ϕ+ q21 − q21ϕ|h2h1 + ϕ2(−2 + 2ϕ)2h2

h2
1

)]
,

Initial Population
0

2
4

6
8

10

F
ilter S

tate

0.0

0.2

0.4

0.6
0.8
1.0

V
alue F

unction

0

5

10

15

Figure 6: Optimal value function versus initial population and initial filter state

Therefore, we can find the optimal action and the corresponding improved V h
n+1(x, ϕ) as
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follows.

π(x, n) := argmax{i = 1, 2 : V h,i
n+1(x, ϕ)},

and

V h
n+1(x, ϕ) := V

h,π(x,n)
n+1 (x, ϕ).

The iterations stop as soon as the increment V h
n+1(·)− V h

n (·) is below some tolerance.
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Figure 7: Optimal value function versus initial population with ϕ = 0.1 and ϕ = 0.9

Figure 6 shows the value function V (x, ϕ) as a function of initial population x and initial

filter state ϕ. To highlight the effect of initial filter states, in Figure 7, we plot graphs of
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Figure 8: Optimal policies versus initial population and initial filter state

V (·, 0.1) and V (·, 0.9). Note that J(·, ·, Z0) is also referred as current harvesting potential, and

V (·, ·) − J(·, ·, Z0) can be seen as the maximum present expected value of the accumulate

net convenience yields accrued from postponing the harvesting decision and keeping the

population alive after a small time interval; see [1] and [59]. Figure 8 and Figure 9 provide

optimal policies, with “1” denoting not to harvest and “2” denoting harvesting actions.

It can be seen from Figure 6 and Figure 7 that the value function is concave and the

optimal harvesting policy is a barrier strategy. This notice agrees with observations and

results in [20] and [11]. To be more specific, if the population is higher than some barrier
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level, a harvesting action is chosen, and the value function increases with unity slope (since

we take f(1) = f(2) = 1). Moreover, the barrier levels are different in different Wonham

filter states.
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Figure 9: Optimal policies versus initial population with ϕ = 0.1 and ϕ = 0.9

4.6 Further Remarks

This chapter focused on numerical methods for solution of optimal harvesting strategies

in random environments. Note that different from applications in finance, in which the X(t)

is observed, here we have another observation y(t) process. Such a model is natural for

ecological systems. They also appear in many communication systems, networked systems,

as well as cyber-physical systems. The novelties of our approach include that (1) we depicted
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the random environment as a hidden Markov chain; (2) we treated the resulting singular

control problem under partial observations; (3) we used Wonham filter as a bridge and built

numerical approximation methods based on Markov chain approximation techniques to solve

the optimal control problem under partial observations.

The convergence of the algorithms was proved. A numerical example was used to demon-

strate the performance of our algorithm. The problem considered here can be modified to

treat dividend optimization in insurance risk management, and networked control systems.

Not only can the approach be applied the harvest problem under consideration, but also

it opens up the domain for treating more general singular control problems under partial

observations.
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CHAPTER 5 CONCLUDING REMARKS AND FU-

TURE DIRECTIONS

In this dissertation, we have concentrated on asymptotic properties and controls for

stochastic population systems with Markovian switching. First, we study ecological proper-

ties of Lotka-Volterra models with partial observations. Then, stochastic permanence and

extinction using feedback controls are investigated. Next, we keep working on Lotka-Volterra

systems under a different objective in which we aim at constructing optimal harvesting strate-

gies. Finally, we focus on the optimal harvesting problem for a general switching diffusion

with partial observations by Markov chain approximation method.

Although the dissertation is mainly devoted to ecosystems, the methods and techniques

developed can be used in certain related systems with a hidden Markov chain or involving

optimal controls of harvesting. Thus the results and the simulation study will be of interests

not only to people working in ecological systems, but also for researchers in other disciplines

as well.

Several directions may be worthwhile for further study and investigation. One can study

the design of feedback controls of an ecosystem modulated by a regime-switching jump dif-

fusion system in which the hidden Markov chain is observed in white noise. Such models

are more realistic since many sudden-environmental shocks, e.g., earthquakes, hurricanes,

epidemics, etc. can be taken into account. Using switching diffusions with delays for model-

ing population dynamics has drawn much attention recently; see [33]. A related problem of

interest is to develop optimal harvesting strategies for such models. The Markov chain ap-

proximation method developed for numerical methods of controlled stochastic systems with
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delays in [29] appears promising. Although for ecological applications, one usually examines

continuous-time systems, it is also interesting to study similar problems in discrete time for

other applications with a hidden Markov chain.

Regarding to the harvesting problem, we have assumed that the Markov chain takes value

in a finite set M. Frequently, one deals with the situation that the random environment

has many discrete states (i.e., the state space of M is large). To reduce the computation

complexity, we may consider the cases that the Markov chain is nearly decomposable. To

be more specific, the generator may be written as Qε = (Q̃/ε) + Q̂, where Q̃/ε models the

fast varying dynamics and Q̂ depicts the slowly varying motions. Such a structure enables

us to reduce the computational complexity by using time-scale separation techniques. The

second possibility is that the Markov chain is time varying with a generator Q(t). Assume

that the rate of change of the generator Q(t) varies slowly in time that the Markov chain can

achieve its equilibrium before there is any significant change in the rate. Treating queueing

models, a singularly perturbed model was proposed in [46]. Such an idea can be adopted

to our current problem to treat time-varying systems with similar feature. These problems

deserve in-depth study and investigation.
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ABSTRACT

NONLINEAR STOCHASTIC SYSTEMS AND CONTROLS:

LOTKA-VOLTERRA TYPE MODELS, PERMANENCE AND EXTINCTION,

OPTIMAL HARVESTING STRATEGIES,

AND NUMERICAL METHODS FOR SYSTEMS UNDER PARTIAL OBSERVATIONS

by

KY QUAN TRAN

August 2016

Advisor: Dr. G. George Yin

Major: Mathematics (Applied)

Degree: Doctor of Philosophy

This dissertation focuses on a class of stochastic models formulated using stochastic dif-

ferential equations with regime switching represented by a continuous-time Markov chain,

which also known as hybrid switching diffusion processes. Our motivations for studying such

processes in this dissertation stem from emerging and existing applications in biological sys-

tems, ecosystems, financial engineering, modeling, analysis, and control and optimization of

stochastic systems under the influence of random environments, with complete observations

or partial observations.

The first part is concerned with Lotka-Volterra models with white noise and regime

switching represented by a continuous-time Markov chain. Different from the existing litera-

ture, the Markov chain is hidden and can only be observed in a Gaussian white noise in our
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work. We use a Wonham filter to estimate the Markov chain from the observable evolution

of the given process, and convert the original system to a completely observable one. We

then establish the regularity, positivity, stochastic boundedness, and sample path continuity

of the solution. Moreover, stochastic permanence and extinction using feedback controls are

investigated.

The second part develops optimal harvest strategies for Lotka-Volterra systems so as to es-

tablish economically, ecologically, and environmentally reasonable strategies for populations

subject to the risk of extinction. The underlying systems are controlled regime-switching

diffusions that belong to the class of singular control problems. We construct upper bounds

for the value functions, prove the finiteness of the harvesting value, and derive properties

of the value functions. Then we construct explicit chattering harvesting strategies and the

corresponding lower bounds for the value functions by using the idea of harvesting only one

species at a time. We further show that this is a reasonable candidate for the best lower

bound that one can expect.

In the last part, we study optimal harvesting problems for a general systems in the

case that the Markov chain is hidden and can only be observed in a Gaussian white noise.

The Wonham filter is employed to convert the original problem to a completely observable

one. Then we treat the resulting optimal control problem. Because the problem is virtually

impossible to solve in closed form, our main effort is devoted to developing numerical ap-

proximation algorithms. To approximate the value function and optimal strategies, Markov

chain approximation methods are used to construct a discrete-time controlled Markov chain.

Convergence of the algorithm is proved by weak convergence method and suitable scaling.



123

AUTOBIOGRAPHICAL STATEMENT

Ky Quan Tran

Education

• Ph.D. in Applied Mathematics, Wayne State University, August 2016 (expected)

• M.A. in Mathematical Statistics, Wayne State University (2014)

• M.S. in Mathematical Analysis, Hue University, Vietnam (2008)

• B.A. in Mathematics Education, Hue University, Vietnam (2006)

Awards

• The Albert Turner Bharucha-Reid Award for Outstanding Achievement in the PhD
Program (2016), Department of Mathematics, Wayne State University

• Outstanding Research Award (2015), Department of Mathematics, Wayne State Uni-
versity

• The Paul A. Catlin Award for Outstanding Achievement in Master’s Program (2014),
Department of Mathematics, Wayne State University

• Outstanding Service by a Graduate Teaching Assistant (2013), Department of Math-
ematics, Wayne State University

Publications and Preprints

K. Tran and G. Yin, Asymptotic expansions for solutions of parabolic systems asso-
ciated with multi-scale switching diffusions, submitted.

K. Tran, G. Yin, L. Y. Wang, and H. Zhang, Singularly perturbed multi-scale switch-
ing diffusions, Dynamic Systems and Applications, 25 (2016), 153-174.

K. Tran and G. Yin, Numerical methods for optimal harvesting problems in random
environments under partial observations, Automatica J. IFAC., 70 (2016), 74-85.

K. Tran, G. Yin, and L. Y. Wang, A generalized Goodwin business cycle model in
random environment, Journal of Mathematical Analysis and Applications, 438 (2016),
no. 1, 311-327.

K. Tran and G. Yin, Optimal harvesting strategies for stochastic competitive Lotka-
Volterra ecosystems, Automatica J. IFAC., 55 (2015), 236-246.

K. Tran and G. Yin, Stochastic competitive Lotka-Volterra ecosystems under partial
observation: feedback controls for permanence and extinction. Journal of the Franklin
Institute, 351 (2014), no. 8, 4039-4064.

K. Tran and G. Yin, Hybrid competitive Lotka-Volterra ecosystems with a hidden
markov chain, Journal of Control and Decision, 1 (2014), no. 1, 51-74.

K. Tran and G. Yin, Asymptotic expansions of solutions for parabolic systems as-
sociated with transient switching diffusions. Applicable Analysis, 93 (2014), no. 6,
1239-1255.


	Wayne State University
	1-1-2016
	Nonlinear Stochastic Systems And Controls: Lotka-Volterra Type Models, Permanence And Extinction, Optimal Harvesting Strategies, And Numerical Methods For Systems Under Partial Observations
	Ky Quan Tran
	Recommended Citation


	tmp.1481066073.pdf.Ut4Hb

