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CHAPTER 1- INTRODUCTION 

1.1 Introduction to Folate Biology 

 Folates are B9 vitamins required for cellular growth (Stokstad, 1990). Mammalian cells 

cannot synthesize folates de novo, and must obtain these cofactors from exogenous sources. 

Folates contribute to several one-carbon transfer reactions in the synthesis of serine, methionine, 

thymidylate, and purine nucleotides. In its contribution to methionine synthesis, folates are 

required for the synthesis of S-adenosyl methionine, which is necessary for DNA, histone, and 

lipid methylation (Lu, 2000).  

The major circulating form of folate is 5-methyl tetrahydrofolate (THF) (Figure 1.1), 

which is converted to several other polyglutamylated forms (the preferred forms for metabolic 

single-carbon transfer reactions) following uptake of the monoglutamyl forms into cells (Moran, 

1999; Shane, 1989). Mammals must obtain folates through the diet. Dark green leafy vegetables 

and liver are foods which are high in folate content, although several other foods including 

bread, grains, and cereal have been fortified with folic acid, a synthetic form of folate not found 

in tissues (Jacques et al., 1999).  

At physiological pH, folates are hydrophilic anions and are unable to diffuse across 

membranes. Over time, two major facilitative transporters have evolved in mammals in order to 

facilitate transport of folates into cells, the reduced folate carrier (RFC; Solute Carrier (SLC) 

19A1) and the proton-coupled folate transporter (PCFT; SLC46A1) (Goldman et al., 1968; 

Matherly and Goldman, 2003; Qiu et al., 2006; Zhao et al., 2011a), as well as three isoforms of 

folate receptors (FRs) (α, β, and γ) (Elwood, 1989; Lacey et al., 1989; Ratnam et al., 1989; 

Sadasivan and Rothenberg, 1989; Shen et al., 1994; Shen et al., 1995).  
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Figure 1.1 Structure of tetrahydrofolate. THF is the major form of dietary folate. The N5 and 
N10 position can associate with several one-carbon moietys including methyl, formyl, methylene 
and methenyl, which can be used in biosynthetic reactions. THF can have additional glutamate 
groups added by FPGS, contributing to cellular retention.  
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RFC is an anion exchange transporter and a member of the major facilitator superfamily 

(MFS), which serves as the major folate uptake mechanism at neutral physiological pH and is 

ubiquitously expressed in tissues and tumors. PCFT is a proton/folate symporter and also an 

MFS protein, which serves as the primary mechanism of dietary folate uptake and with a 

specificity for acidic pH folate uptake and distinct transport specificities from RFC. PCFT shows 

substantial expression in the duodenum and jejunum, kidney, liver, and the choroid plexus (Inoue 

et al., 2008; Qiu et al., 2006; Umapathy et al., 2007; Zhao et al., 2009a; Zhao et al., 2009b). FRα 

and β are embedded in the plasma membrane by a glycosyl phosphatidylinositol (GPI) anchor in 

certain cells including renal cells and macrophages, respectively (Elnakat and Ratnam, 2004; 

Leamon and Low, 2001; Weitman et al., 1992b). FRs mediate uptake of folates into cells via 

receptor-mediated endocytosis (Kamen et al., 1988; Leamon and Low, 1991; Turek et al., 1993; 

Wu et al., 1997). FRα expression is found in the uterus, placenta, proximal renal tubules, and 

choroid plexus, while FRβ shows expression in hematopoietic cells, activated macrophages, and 

the placenta (Nakashima-Matsushita et al., 1999; Ratnam et al., 1989; Ross et al., 1994; Ross et 

al., 1999; Weitman et al., 1992b). There is also FRγ, which is secreted and serves an unknown 

purpose (Elnakat and Ratnam, 2004; Shen et al., 1995). 

 In addition to their role as facilitative transporters of folates, RFC and PCFT serve critical 

roles in the transport of antifolates for used in cancer chemotherapy (Figure 1.2). Antifolates 

including methotrexate (MTX), pemetrexed (PMX), raltitrexed (RTX) and pralatrexate (PDX) 

are transported by both RFC and PCFT, although RFC transport dominates under neutral pH 

conditions characterizing most tissues (Nakai et al., 2007; Sierra et al., 1997; Zhao and Goldman, 

2007). Both RFC and PCFT were shown to be abundantly expressed in a wide variety of solid  
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Figure 1.2 Structures of classical antifolate molecules. Structures for clinically relevant 
antifolates: MTX, PMX, RTX, PDX, and AMT, as well as antifolates which had clinical trials: 
LMX, ZD9331, GW1843U89, PT523, LY309887, AG2034. All drugs are described in Chapter 
1.6.1-1.6.4. 
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tumor cell lines, although gene expression data in primary tumors is still emerging (Desmoulin et 

al., 2012b; Kugel Desmoulin et al., 2011) (also see Chapter 5). Notably, PCFT is characterized 

by an acidic pH optimum and is well suited to transport in the acidic tumor microenvironment 

(Nakai et al., 2007; Zhao and Goldman, 2007). Because of the ubiquitous expression of RFC in 

normal tissues as well as tumors, there has been a recent interest in developing novel antifolate 

molecules targeting the tumor microenvironment via PCFT over RFC (Cherian et al., 2013; 

Desmoulin et al., 2012a; Golani et al., 2014; Wang et al., 2012; Wang et al., 2010; Wang et al., 

2011; Wang et al., 2015) (also see Chapters 5 and 6). While progress has been made in the 

development of PCFT-specific antifolate compounds, these have been developed entirely 

without PCFT structural modeling, due to the limited availability of PCFT structural data. 

Molecular modeling using x-ray crystal structures from other MFS proteins has provided an 

estimate of PCFT structure. Experimental manipulations of PCFT protein sequence have 

contributed to our understanding of PCFT topology and key structural determinants of PCFT 

function, in some cases validating and in other cases correcting the molecular models which have 

been developed (Hou et al., 2012; Shin et al., 2011; Shin et al., 2010; Shin et al., 2013; Shin et 

al., 2012; Subramanian et al., 2008; Unal et al., 2009a; Unal et al., 2009b; Unal et al., 2008; 

Visentin et al., 2015; Zhao et al., 2007; Zhao et al., 2011b; Zhao et al., 2012; Zhao et al., 2010) 

(also see Chapters 2, 3, and 4). A comprehensive understanding of PCFT structure is essential to 

understanding the mechanism of transport and is complementary to the development of novel 

cancer therapeutics targeting PCFT. This chapter serves as a review of the biology of folate 

transport and metabolism, as well as to deseribe the history of antifolate drug development 

leading to a novel series of PCFT-selective antifolate molecules as tumor-targeted drugs. 
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1.2 Reduced Folate Carrier 

 RFC has been well established as the main cellular and tissue folate uptake mechanism 

(Matherly and Hou, 2008; Matherly et al., 2007). RFC is ubiquitously expressed, and serves as 

the primary delivery system for both folates and antifolates throughout the body (Matherly et al., 

2007). RFC is a folate/anion antiporter in the MFS, and was first characterized in terms of its 

kinetic and thermodynamic properties more than 40 years ago (Goldman, 1969; Goldman, 1971; 

Goldman et al., 1968; Sirotnak et al., 1968). Murine RFC was first cloned in 1994 (Dixon et al., 

1994), while human RFC was cloned by multiple labs the following year (Moscow et al., 1995; 

Prasad et al., 1995; Williams and Flintoff, 1995; Wong et al., 1995). Human RFC is located on 

chromosome 21q22.3 (Moscow et al., 1995) and is regulated by multiple promotors spanning 35 

kb upstream from the major AUG translation start point, as well as many noncoding exons 

(Matherly et al., 2007). RFC is additionally regulated by promoter methylation and chromatin 

structure (Liu et al., 2004; Payton et al., 2005a; Payton et al., 2005b; Whetstine et al., 2002b). 

These mechanisms likely guarantee the ubiquitous expression of RFC. Measurements of RFC 

transcriptional expression in various tissues and tumor cell lines revealed the highest RFC 

expression in the placenta and liver, with additional high expression in kidney, lung, leukocytes, 

bone marrow and small intestine, and low levels in heart and skeletal muscles (Whetstine et al., 

2002a). Although the function of RFC in the small intestine is unclear, as RFC function is 

dramatically decreased in acidic pH, folate deficiency in rodents resulted in increased RFC 

transcript and protein levels (Liu et al., 2005).  

 As an anion-folate antiporter, RFC functions optimally at neutral physiological pH, and 

transport activity decreases dramatically at pHs below 7 (Sierra et al., 1997). While RFC has a 

low affinity for folic acid, (6S)5-formyl THF and (6S)5-methyl THF are excellent RFC 
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substrates (Goldman et al., 1968; Westerhof et al., 1995). Although transport of (6S)5-formyl 

THF is favored over the (6R) stereoisomer (Sirotnak et al., 1979), RFC displays no 

stereospecificity for 5-methyl THF (Chello et al., 1982; White et al., 1978). Additionally, many 

clinically used antifolates have strong affinity for RFC transport, including MTX, PMX, PDX 

and RTX (Jansen, 1999; Matherly and Hou, 2008; Matherly et al., 2007; Sirotnak et al., 1998; 

Visentin et al., 2013). Novel antifolates PT523 (talotrexin) and GW1843U89 are among the best 

RFC substrates yet described (Jansen, 1999; Rhee et al., 1994; Rosowsky et al., 1994; Wright et 

al., 2000).  

 As with all MFS transport proteins (Abramson et al., 2003; Huang et al., 2003), 

hydropathy plot analysis of RFC amino acid sequence (591 amino acids) predicted twelve 

transmembrane domains (TMDs) with both carboxyl and amino termini located within the 

cytosol (Figure 1.3) (Matherly and Hou, 2008; Matherly et al., 2007). Thease features have been 

confirmed by scanning cysteine accessibility methods (SCAM), N-glycosylation mutagenesis 

and hemagglutin epitope insertion (Cao and Matherly, 2004; Ferguson and Flintoff, 1999; Liu 

and Matherly, 2002). RFC is glycosylated at Asn58 on the first extracellular loop connecting 

TMDs 1 and 2, and mutation of this residue to Gln abolishes N-glycosylation without major 

effects on membrane targeting or transport activity (Matherly et al., 1991; Wong et al., 1998). As 

with many MFS proteins, RFC contains a long intracellular loop connecting the long distances 

between TMDs 6 and 7 (Figure 1.3). For RFC, this TMD6-7 loop shows the lowest amount of 

sequence conservation between species (human and rodents). Deletion of large segments of this 

loop region (amino acid residues 215-263 or 204-263) abolished transport, while replacement of 

this region with the MFS homolog SLC19A2 (thiamine transporter ThTr1) restored transport 

(Liu et al., 2003). Removal of the C- and N- termini had minimal effects on trafficking and  
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Figure 1.3 Membrane topology of the human reduced folate carrier. This figure shows the 
predicted topology for RFC, much of which has been experimentally confirmed. EL, 
extracellular loop; IL, intracellular loop. 
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function of RFC (Liu et al., 2003). RFC was expressed as two distinct half-molecules (amino 

acid residues 1-301 or 302-591) and while each half-molecule was non-functional, co-

transfection of both half-molecules restored RFC function (Witt et al., 2004). These results 

suggest that the TMD6-7 loop region of RFC plays a primarily structural role, connecting the 

long gap between TMDs 6 and 7. 

 In order to perform SCAM to characterize the RFC protein structure, a “cys-less” RFC 

was developed using mutagenesis to replace the 11 cysteine residues with serine (Cao and 

Matherly, 2003). In total, 282 RFC cysteine mutants were developed from cys-less RFC and 

used for 2-sulfonatoethyl methanethiosulfonate (MTSES) scanning via transfection into RFC-

null Hela (R5) cells. Based on patterns of MTSES transport inhibition, it was determined that 

TMDs 4, 5, 7, 8, 10 and 11 comprise the membrane translocation pathway for folate substrates 

(Hou et al., 2005; Hou et al., 2006), confirming models predicted by hydropathy modeling and 

MFS comparisons. Of the 282 cysteine mutants, only 10 were inactive for transport activity, 

including residues on TMD4 (Arg133, Ile134, Ala135, Tyr136, Ser138), TMD7 (Tyr281), 

TMD8 (Ser313) and TMD10 (Arg373). Arg133, Arg373 and Ser313 had been previously shown 

to be functionally important (Liu and Matherly, 2001; Sadlish et al., 2002; Sharina et al., 2001; 

Zhao et al., 1999). 

 RFC exists as a homo-oligomer (Hou and Matherly, 2009), although RFC monomers 

function independently (Hou et al., 2010). Cofolding of RFC monomers is necessary for 

intracellular trafficking and surface activity, such that RFC displays a dominant-negative effect 

(Hou and Matherly, 2009). When wild-type RFC and inactive mutant S138C RFC were co-

transfected into RFC-null (R5) HeLa cells, both RFC proteins displayed decreased cell surface 
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expression due to impaired cellular trafficking, as observed by confocal microscopy and surface 

biotinylation. 

1.3 Folate Receptors 

 Folate receptors (FRs) are high affinity folate binding proteins, which bind folic acid, 

reduced folates, and many antifolate molecules with low-nanomolar affinities, and bring them 

into the cell using an endocytosis mechanism (Rijnboutt et al., 1996; Sabharanjak and Mayor, 

2004). FRs exist in three isoforms; α, β, and γ (Elwood, 1989; Lacey et al., 1989; Ratnam et al., 

1989; Sadasivan and Rothenberg, 1989; Shen et al., 1994; Shen et al., 1995), which are each 

encoded by unique genes located at chromosome 11q13.3-q13.5 (Elnakat and Ratnam, 2004). 

Human FRs share 68-79% amino acid sequence identity. FRα contains three N-glycosylation 

sites, while FRβ and FRγ have only two. While FRα and FRβ are GPI-anchored glycoproteins, 

FRγ does not contain a signal for GPI-anchoring and is instead a secretory protein with an 

unknown function (Elnakat and Ratnam, 2004).  

 Membrane-bound (α and β) FRs function to mediate cellular folate uptake via 

endocytosis. Folates bind FRα/β at the plasma membrane, followed by invagination, formation, 

and budding-off of an endosome (Rijnboutt et al., 1996; Sabharanjak and Mayor, 2004). Release 

of folate ligand from FR ensues upon acidification of the endosome. Exit of the folate molecule 

from the endosome involves either diffusion out of the intact vesicle or pH-dependent transport 

processes (Kamen et al., 1988). PCFT has been implicated to play a role in the export of 

endosomal folates (Zhao et al., 2009b). 

 FRα shows expression primarily in the choroid plexus, retinal pigment epithelium, and 

proximal tubules in uterus, placenta, fallopian tubes, and kidney (Elnakat and Ratnam, 2004). In 

these tissues, FRα is expressed on the apical (luminal) surface of polarized epithelial cells, and 
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therefore does not come into contact with circulating folates (Chancy et al., 2000), a feature 

which protects these tissues from circulating FRα-targeted antifolate molecules (Weitman et al., 

1992b). FRβ is expressed in the placenta and hematopoietic cells (Elnakat and Ratnam, 2004). 

Expression of FRβ in normal bone marrow and peripheral blood cells is limited to the 

myelomonocytic lineage, such as mature neutrophils, and is reported as non-functioning (Pan et 

al., 2002; Reddy et al., 1999). 

1.4 Proton-Coupled Folate Transporter 

 Although an additional transport mechanism other than RFC was previously recognized 

as capable of intestinal folate uptake, it was not until 2006 that this transporter, PCFT, was 

identified and cloned, providing the molecular basis for low pH folate transport activity (Assaraf 

et al., 1998; Henderson and Strauss, 1990; Kuhnel et al., 2000; Sierra and Goldman, 1998; Zhao 

et al., 2004a; Zhao and Goldman, 2007). PCFT plays a critical role in absorption of dietary 

folates into the intestine, as demonstrated by hereditary folate malabsorption (HFM) patients 

harboring loss-of-function mutations, as well as by PCFT knockout mice (Atabay et al., 2010; 

Borzutzky et al., 2009; Diop-Bove et al., 2009; Lasry et al., 2008; Mahadeo et al., 2010; 

Mahadeo et al., 2011; Meyer et al., 2010; Min et al., 2008; Qiu et al., 2006; Salojin et al., 2011; 

Shin et al., 2011; Shin et al., 2010; Zhao and Goldman, 2007). PCFT knockout mice had 

undetectable levels of serum folate (Salojin et al., 2011). PCFT plays a major role in intestinal 

folate absorption, and has been shown to be expressed in certain other tissues (Desmoulin et al., 

2012a). 

1.4.1 PCFT Tissue Expression 

 PCFT has been identified as a folate transporter which operates at an acidic pH optimum, 

consistant with its main function of transporting dietary folates (Zhao and Goldman, 2007). 
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PCFT levels are highest at the apical brush border membrane of the proximal jejunum and the 

duodenum, but expression in other segments of the intestine and colon is dramatically decreased 

(Inoue et al., 2008; Qiu et al., 2006; Qiu et al., 2007; Urquhart et al., 2010). PCFT is also 

expressed in the choroid plexus and plays a role in folate transport into the central nervous 

system, where it may function in conjunction with FRs to release folates from endosomes 

(Wollack et al., 2008; Zhao et al., 2009b). While high levels of PCFT gene expression were 

detected in other tissues, in particular liver and kidney, its role in these tissues has not been 

explored (Desmoulin et al., 2012a). 

1.4.2 Hereditary Folate Malabsorption 

 Mutations in PCFT can cause HFM, a rare autosomal-recessive disease which results in 

loss of the low pH intestinal absorption of dietary folates by PCFT (Atabay et al., 2010; 

Borzutzky et al., 2009; Geller et al., 2002; Lasry et al., 2008; Mahadeo et al., 2010; Meyer et al., 

2010; Min et al., 2008; Qiu et al., 2006; Shin et al., 2011; Shin et al., 2010; Unal et al., 2009b; 

Zhao et al., 2007). HFM leads to systemic folate deficiency, and is associated with 

developmental delay, peripheral neuropathies, seizures, gait disorders, anemia, 

hypoimmunoglobulinemia, and Pneumocyctis jiroveci pneumonia (Geller et al., 2002). Loss of 

PCFT function in HFM also results in impaired transport of folates across the choroid plexus into 

the central nervous system (Wollack et al., 2008; Zhao et al., 2009b). Infants who present HFM 

display neurological defects, revealing the importance of PCFT function in the central nervous 

system. The existence of HFM implies the importance of PCFT folate transport in both the 

intestine and the nervous system. 

1.4.3 PCFT Function  

 PCFT exhibits an acidic pH optimum, transporting folates most effectively at pH 5-5.5, 
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with transport becoming less effective as pH increases (Inoue et al., 2008; Qiu et al., 2006; Zhao 

and Goldman, 2007; Zhao et al., 2009a). Above pH 7, PCFT is nearly incapable of folate 

transport, although specific transport efficiencies with increasing pH vary for particular 

(anti)folate molecules, largely reflecting differences in substrate binding (Zhao and Goldman, 

2007). Unlike RFC, PCFT shows similar binding affinities (Kt) for reduced folates (5-formyl and 

5-methyl THF) as for folic acid, and is stereospecific for (6S)5-formyl THF. PCFT shows 

stereospecificity for L- aminopterin over D-aminopterin, due to differences in binding affinity 

(Kt) (Menter et al., 2012). PCFT is known to transport MTX, RTX, LMX and PDX (Deng et al., 

2009; Desmoulin et al., 2012a; Qiu et al., 2007; Zhao et al., 2008), while PMX is widely 

considered to be the best PCFT substrate (Zhao and Goldman, 2007; Zhao et al., 2008). However, 

a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine antifolates have been shown to have 

similar or stronger affinities for PCFT as PMX (Cherian et al., 2013; Kugel Desmoulin et al., 

2011; Kugel Desmoulin et al., 2010; Wang et al., 2010; Wang et al., 2011; Wang et al., 2015) 

(also see Chapters 5 and 6). 

 PCFT transport of folates is electrogenic, producing a net positive charge, indicating that 

more than two protons are transported alongside bivalent folate anions (Qiu et al., 2006). PCFT 

couples downhill proton influx with uphill anion influx, and PCFT transport results in 

intracellular acidification (Zhao et al., 2009a). Under acidic conditions, PCFT displays channel-

like functions. Removal of Na+, K+, Ca2+, Mg2+, or Cl- does not effect PCFT transport, while 

carbonylcyanide p-trifluoro-methoxyphenylhydrazone (a proton ionophore) or nigericin (a 

K+/H+-exchanging ionophore) treatment does reduce PCFT transport activity (Inoue et al., 2008; 

Qiu et al., 2006). PCFT is capable of functioning without a proton gradient, in which case 

transport is dependent on membrane potentials (Qiu et al., 2006; Umapathy et al., 2007). An 
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“alternate access model,” similar to other previously studied MFS proteins was described 

(Abramson et al., 2003; Hou et al., 2012; Inoue et al., 2008; Qiu et al., 2006; Unal et al., 2009b). 

According to this model, PCFT is predicted to exist in two distinct conformations, an inward-

facing and an outward-facing form. In the outward-facing (extracellular) form, PCFT binds a 

proton first, followed by the folate molecule. The binding of folate causes a conformational 

change in PCFT, resulting in the inward-facing (intracellular) form, in which the folate molecule 

is released from PCFT first, followed by the release of the proton (the rate-limiting step) and 

then another conformational change back into the outward-facing form. In the absence of protons, 

the transformation from inward-facing to outward-facing conformation is the rate limiting step 

(Unal et al., 2009b). In the inward-facing conformation, TMDs 1, 2, 7 and 11 form an 

extracellular gate (Zhao et al., 2016). 

 Additionally, PCFT exists as an oligomer (Hou et al., 2012). PCFT dimers are the most 

common form, although higher-order oligomers have been identified. PCFT dimers are capable 

of restoring folate transport activity to inactive variants of PCFT, such that wild-type PCFT is 

capable of restoring activity to inactive PCFT mutants (such as the P425R mutation) via 

oligomerization (possibly explaining the recessive nature of HFM) (Geller et al., 2002; Hou et al., 

2012). 

1.4.4 PCFT Structure 

 The human PCFT protein is made up of 459 amino acid residues, with a predicted 

molecular mass of 49.8 kDa (Figure 1.4). By molecular modeling with MFS proteins, including 

the glycerol-3-phosphate transporter and lactose permease (Abramson et al., 2003; Huang et al., 

2003), hPCFT is predicted to have twelve transmembrane domains (TMDs), with both the N- 

and C- termini located in the cytosol. This basic structure has been verified experimentally by  
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Figure 1.4 Membrane topology of the human proton-coupled folate transporter. This figure 
shows the predicted topology for PCFT, much of which has been experimentally confirmed. 
Domains of interest in this dissertation have been highlighted. The 7 cys residues of PCFT are 
highlighted in red. TMD2 is highlighted in blue, while the TMD2-3 connecting loop is 
highlighted in green. TMDs 3 and 6 are highlighted in purple. The TMD6-7 connecting loop is 
highlighted in orange. EL, extracellular loop; IL, intracellular loop. 
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SCAM using MTSEA (2-aminoethyl methanethiosulfonate)-biotin in order to identify intra- and 

extracellular TMD-connecting loop regions (Unal et al., 2008; Zhao et al., 2010). On the first 

extracellular loop region (connecting TMDs 1 and 2), PCFT contains two N-glycosylation sites 

at Asn58 and Asn68, and loss of both of these residues by mutation to glutamine did not impact 

protein expression or transport function (Unal et al., 2008). Two cysteine residues, Cys66 (first 

extracellular loop) and Cys298 (fourth extracellular loop), form a disulfide bond which is not 

essential to transport function (Zhao et al., 2010). The first predicted intracellular loop region 

(connecting TMDs 2 and 3) is thought to contain a functionally important β-turn structure, 

although this has not been experimentally determined (Lasry et al., 2009; Lasry et al., 2008; 

Subramanian et al., 2008) (see Chapter 2). The third predicted intracellular loop, which connects 

TMDs 6 and 7, contains a long sequence of 30 amino acid residues, necessary to span the long 

gap between these two domains (see Chapter 4). The ten residues found on the C-terminus of 

PCFT (450 to 459) seem to play no obvious role, as experimental removal of these residues from 

PCFT sequence had no effect on transport function or membrane expression (Subramanian et al., 

2008).  

  Much work has been done to identify key amino acid residues of PCFT protein sequence. 

Often, these residues are characterized by expression of DNA vectors containing PCFT mutant 

coding sequence via transfection into PCFT-null cell lines, epitomized by the R1-11 HeLa cell 

line which lacks both PCFT and RFC expression (Diop-Bove et al., 2009). Transfected cells can 

be used to measure uptake of tritiated folates (folic acid, MTX, PMX) at pH 5.5 and 37oC in 

order to determine the functional impact of mutagenesis of the PCFT residue of interest. Via this 

method, experimental characterization of PCFT mutants identified in HFM patients has revealed 

several key residues in PCFT function (Zhao et al., 2007). One such residue, His281 (TMD7) 
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(Figure 1.4), faces the extracellular region of TMD7 and plays an important role in PCFT 

protonation, a feature which contributes to folate substrate binding (the H281A mutant PCFT 

displayed a 11.3-fold increase in Kt for [3H]folic acid compared to wild-type) (Unal et al., 2009a). 

Residue Glu185 (TMD5) plays a role in proton coupling, and mutations in Glu185 (including 

Ala, Leu, Cys, Asp, His, Gln) drastically decreased PCFT transport activity at acidic pH, while 

the E185A mutant showed no significant decrease in transport activity at pH 7.4 compared to 

wild-type PCFT and was capable of trans-stimulation (increased transport activity when pre-

incubated with substrate) (Unal et al., 2009b). Arg376 (TMD10) contributes to both proton 

coupling and substrate binding, as mutation to glutamine resulted in an increased Km (14-fold 

increase over wild-type) for PMX as well as a “proton slippage” effect, observed via 

electrophysiological analysis (Xenopus oocytes were used to measure currents associated with 

folate transport) (Mahadeo et al., 2010). Mutation of Pro425 (TMD12) to arginine had an impact 

on transport efficiency, although this effect was variable between different substrates (Shin et al., 

2012). In a kinetic comparison between MTX and PMX, P425R displayed decreased Vmax for 

both substrates, while the Kt value for MTX increased and the PMX Kt decreased (4.98-fold and 

0.68-fold relative to wild-type, respectively) (Shin et al., 2012). The dietary folate 5-methylTHF 

had the most notable loss in uptake of any substrate, suggesting a role for P425R in HFM (Shin 

et al., 2012). Asp156 (TMD4) mutation to tyrosine was discovered in an HFM patient, and side-

directed mutagenesis of Asp156 to several other residues (including Asn, Lys, Trp, Phe, Val) 

resulted in dramatic losses in cell surface protein expression, revealing the critical role of 

Asp156 in PCFT protein stability (Shin et al., 2010).  

Mutation of Arg113 (Figure 1.4) was also identified in multiple HFM patients. The 

R113C mutant protein cannot transport folate molecules due to protein misfolding, with a lack of 
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protein translocation to the apical membrane (Shin et al., 2011). One group predicted that 

Arg113 could protrude into the membrane cavity formed by TMDs 1, 3, 4, and 6, as shown by 

molecular modeling, due to a β-turn structure formed by residues 109-114 (DSVGRR sequence) 

in the TMD 2-3 connecting loop region, similar to other DXXGRR structures found within other 

MFS proteins (Lasry et al., 2008). However, this was not experimentally tested (see Chapter 2). 

Complete replacement of residues 109-114 with alanine resulted in endoplasmic reticulum 

retention and a loss of transport activity (Subramanian et al., 2008). Additionally, a study of 

aspartic acid residues in PCFT found that Asp109 is essential for transport function, and cannot 

be replaced with other residues (Shin et al., 2010).  

Other functionally important residues have been identified by random mutagenesis (via 

manipulation of both manganese and dGTP concentrations in PCR reactions) (Zhao et al., 

2011b). One study found that only 4.5% of all mutations had a direct impact on PCFT function, 

which is plausible given the rarity of HFM (Zhao et al., 2011b). In total, 26 independent loss-of-

function mutations were isolated. This study identified M222R (TMD6), V134E (TMD3) and 

L31P (TMD1) as mutations which dramatically decreased PCFT protein expression by ectopic 

expression and western blotting (Zhao et al., 2011b). The E232G (TMD6) mutatant protein was 

unable to form a structural conformation to facilitate folate transport, while the L161R (TMD4) 

mutation resulted in a reduced Vmax and I304F (TMD8) showed a decreased binding affinity 

(increased Kt) (Zhao et al., 2011b). While neither F426V (TMD12) nor L432H (TMD12) 

mutations showed any effect on transport activity, these mutations completely inhibited transport 

activity in combination, likely due to an instability of the protein structure rather than an 

interaction between the two residues (Zhao et al., 2011b).  

A systematic study of all tyrosine residues of PCFT identified several residues in TMDs 
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which face the substrate translocation pathway [Tyr291 (EL4), Tyr315 (TMD7), and Tyr362 

(TMD10)], as shown by cysteine mutant accessibility to MTSEA-biotin (Visentin et al., 2015). 

Interestingly, the mutant Y414C (EL6) showed transport which could be inhibited by MTSET 

(2-(Trimethylammonium)ethyl methanethiosulfonate, bromide), despite its extracellular position 

(Visentin et al., 2015). Tyr291 (EL4), Tyr362 (TMD10), and Tyr414 (EL6) all displayed 

enhanced transport compared to wild-type PCFT for 50 µM MTX (but not 0.5 µM MTX) when 

mutated to alanine, cysteine, or phenylalanine, while Tyr315 (TMD7) displayed this 

phenomenon only when alanine mutation was introduced (Visentin et al., 2015). Conversely, 

Tyr315 mutants for alanine, cysteine, and phenylalanine all displayed enhanced transport for 50 

µM PMX, a phenomenon explained by an increased Vmax, accompanied by a decreased Kt 

compared to wild-type PCFT. 

In another study, Zhao et. al. identified point mutation c.575G>A, an inactivating PCFT 

mutation of G192V, which led to the evaluation of the evolutionally conserved G189XXG192 

domain of TMD5, as “GXXG” domains have been shown to serve as RNA binding domains 

without a known function in membrane transporters (Zhao et al., 2012). Inactivating mutations in 

both glycine residues (G189A, G192V) were identified, while additional residues lining the 

substrate binding domain were also identified (Zhao et al., 2012). When mutated to cysteine, 

both Ile188 and Met193 interacted with MTSET (as indicated by loss of transport activity), 

indicating their aqueous accessibilities (Zhao et al., 2012). I188C MTSET transport inhibition 

was abolished by PMX co-incubation at 0°C, suggesting its direct role in substrate binding. 

M193C did not display this phenomenon, indicating its position in the substrate binding cavity 

without a direct role in substrate binding.  

As with all MFS proteins, PCFT forms two distinct halves composed of TMDs 1-6 on 
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one side, and TMDs 7-12 on the other. These two halves are linked by a TMD6-7 connecting 

loop (residues 236 to 265), the longest of PCFT’s transmembrane loop domains, containing 30 

amino acids (see Chapter 4). This region contains the functionally important residue His247, 

which has been suggested to interact with Ser172, another intracellular residue, and serve as a 

functional gatekeeper for transport substrate access to the substrate binding site (Unal et al., 

2009a). Mutation of His247 to alanine resulted in increased binding affinities (decreased Kt, Ki) 

for several substrates, while influx (Vmax) was decreased, and transport of folate and protons also 

became uncoupled (Unal et al., 2009a).  

A recent study characterized an extracellular “gate” in PCFT. While in the inward-facing 

conformation, TMDs 1, 2, 7, 11 come within close proximity to one another toward the 

extracellular ends of each TMD (Zhao et al., 2016). This was confirmed via crosslinking 

experiments using single- and double-cysteine mutants of Q45C, N90C, L290C, S407C and 

N411C (Zhao et al., 2016). In many combination double-cysteine mutants, disulfide bonds 

formed between cysteine residues, preventing the labeling with MTSEA-biotin which was 

observed in single-cysteine mutants (Zhao et al., 2016). Treatment of these mutants with 

dithiothreiotol (DTT) to break disulfide bonds enhanced transport, while chemical crosslinking 

using CuPh or CdCl2 inhibited transport. Chemical crosslinking could be blocked by incubation 

of PCFT with folic acid, restoring transport activity (Zhao et al., 2016). 

1.4.5 PCFT Oligomerization 

Several studies have identified PCFT homo-oligomers (Hou et al., 2012; Zhao et al., 

2012). One study demonstrated oligomerization by protein crosslinking using 1,1- methanediyl 

bismethanethiosulfonate (MTS-1-MTS, a chemical which crosslinks nearby cysteine residues 

together) (Zhao et al., 2012) (also see Chapter 3), while another showed fluorescence resonance 
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energy transfer (FRET) between co-expressed YPet- and ECFP*-tagged PCFT monomers and 

co-binding of HA- and His10-tagged PCFT monomers to nickel-affinity columns (Hou et al., 

2012). As previously mentioned, PCFT dimers displayed a dominant-positive functional 

phenotype. Wild-type PCFT can restore activity to the inactive PCFT mutant P425R, such that 

when wild-type PCFT was cotransfected with P425R in equal amounts, the transport of [3H] 

MTX was greater than that of wild-type alone, and equal to that of two wild-type PCFT 

transfectants (Hou et al., 2012). Confocal microscopy also revealed that cotransfection with 

wild-type PCFT increased trafficking of P425R PCFT to the surface membrane (Hou et al., 

2012). 

Studies have attempted to identify the dimerization interface for PCFT. The human PCFT 

sequence contains two “GXXXG” motifs, which are analogous to previously described 

dimerization motifs found in other proteins, and which form a flat surface and allow for a tight 

interaction between two transmembrane α-helicies (Duan et al., 2011; Gerber and Shai, 2001; 

Lebovka et al., 2014; McClain et al., 2003; Melnyk et al., 2002; Mendrola et al., 2002; Mueller 

et al., 2014; Overton et al., 2003; Polgar et al., 2004; Russ and Engelman, 2000; Whittington et 

al., 2001; Wilson et al., 2015; Zhao et al., 2012). For human PCFT, these groups are found from 

Gly93 to Gly97 (TMD2), which is highly conserved, and from Gly155 to Gly159 (TMD4) which is 

not conserved (Figure 1.4). An initial study of this region found that mutations G93A and G97A 

did not inhibit protein crosslinking by MTS-1-MTS (a measure of PCFT oligomerization), 

although this study did not include the TMD4 GXXXG motif (Zhao et al., 2012). Further 

investigation of this region by Gly-to-Leu mutations revealed that disruptions of either or both of 

the GXXXG motifs had no effect on PCFT oligomerization, reflected in protein crosslinking, 

and rather decreased protein stability and intramolecular packing (Wilson et al., 2015).  
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 Other studies have utilized cysteine-less PCFT to crosslinking of PCFT monomers. By 

replacing each individual cysteine residues with serine (Figure 1.4), and examining cysteine-

crosslinking via MTS-1-MTS treatment, localization of a putative dimerization domain of PCFT 

could be determined (Zhao et al., 2012). Of the seven cysteine residues of PCFT, only Cys229 

was implicated as important for MTS-1-MTS crosslinking (thus, in forming an oligomer 

interface), suggesting a possible role for TMD6 in PCFT oligomerization (Zhao et al., 2012) (see 

Chapter 3).  

1.5 The Metabolic Role of Folates 

The biological significance of folates relates to their participation in one-carbon transfer 

reactions which are critical to the de novo synthesis of thymidylate and purine nucleotides, the 

catabolism of formic acid and histidine, the conversion of homocysteine to methionine and 

interconversions between glycine and serine (Stokstad, 1990; Tibbetts and Appling, 2010). Via 

synthesis of methionine, a precursor of S-adenosyl methionine, folates contribute to the 

methylation of DNA, histones, lipids, and neurotransmitters (Lu, 2000). Folate molecules consist 

of three structural components: the pteridine ring, the p-aminobenzoic acid, and the L-glutamine 

(Assaraf, 2007; Zhao et al., 2009a) (Figure 1.1). Folic acid is the synthetic form of metabolically 

important folates, which vary in the level of oxidation of the pteridine ring, the single-carbon 

moieties (formyl, methyl, methylene, methenyl) bound to the N5 and/or N10 positions, and the 

level of polyglutamylation (Stokstad, 1990). 5-Methyl THF is the major circulating folate form. 

Following cellular uptake 5-methyl THF is polyglutamylated by folylpoly-γ-glutamate synthase 

(FPGS), a process by which between 2 and 8 glutamyl residues are linked to the γ-carboxyl of 

the p-aminobenzoic acid of THF, which contributes to the cellular retention of THF (Shane, 
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1989) (Figure 1.1). Then, THF can be converted to various forms bound to single-carbon units to 

contribute to metabolic reactions (Stokstad, 1990). 

1.5.1 One-Carbon Metabolism 

The main source of single-carbon units comes from the conversion of serine to formate in 

the mitochondria (Barlowe and Appling, 1988; Barlowe and Appling, 1990; Davis et al., 2004; 

Garcia-Martinez and Appling, 1993; Gregory et al., 2000; Herbig et al., 2002; Kastanos et al., 

1997; Pasternack et al., 1994; Pasternack et al., 1996; Patel et al., 2003; Quinlivan et al., 2005; 

Tibbetts and Appling, 2010). In the mitochondria, carbon 3 of serine is transferred to THF in a 

relation catalyzed by serine hydromethyltransferase (SHMT), which produces 5,10-

methyleneTHF and glycine (Figure 1.3) (Tibbetts and Appling, 2010). 5,10-MethyleneTHF is 

converted to 10-formylTHF by either methylenetetrahydrofolate dehydrogenase (MTHFD) 2 

(MTHFD2) (embryonic tissues) (Mejia and MacKenzie, 1985) or MTHFD2-like (MTHFD2L) 

(adult tissues) (Bolusani et al., 2011) (Figure 1.5). 10-FormylTHF can be reduced to formate and 

THF by MTHFD 1-like (MTHFD1L) 10-formyl THF synthase (Prasannan et al., 2003), after 

which formate can be exported to the cytoplasm and react with unsubstituted THF via MTHFD1 

to form 10-formylTHF (cytosolic) (Figure 1.5) (Hum et al., 1988; Paukert et al., 1977; Schirch, 

1978; Smith et al., 1980). 

MTHFD1 can also convert 10-formyl THF to 5,10-methenyl THF or, subsequently, 5,10-

methylene THF (Hum et al., 1988; Paukert et al., 1977; Schirch, 1978; Smith et al., 1980; 

Thigpen et al., 1990). 5,10-MethyleneTHF donates its methylene group to deoxyuriine 

monophosphate (dUMP) to synthesize thymidylate (dTMP) in a reaction catylized by 

thymidylate synthase (TS) (Figure 1.5) (Friedkin and Roberts, 1956; Phear and Greenberg, 1957). 

In this reaction, 5,10-methylene THF is converted to dihydrofolate (DHF), which can be  
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Figure 1.5 Folate metabolic pathways. The schematic shows metabolic steps which are 
metabolized by folates, resulting in the synthesis of purines, thymidine, methionine, serine and 
glycine. 
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converted to unsubstituted THF by DHF reductase (DHFR) (Figure 1.5) (Humphreys and 

Greenberg, 1958; McDougall and Blakley, 1960). An alternate route for 5,10-methyleneTHF is 

to be reduced to 5-methylTHF by 5,10-MethyleneTHF reductase (MTHFR) (Figure 1.5), which 

can donate its methyl group to homocysteine, synthesizing methionine via methionine synthase 

and regenerating unsubstituted THF (Hatch et al., 1961). 

1.5.2 Purine Biosynthesis 

Purines are an essential component of both DNA and RNA, while also regulating 

enzymatic activity and serving to mediate energy transfer in the cell as components of ATP, 

cyclic AMP, NADH and coenzyme A (King et al., 1983). Differentiated adult cells can usually 

satisfy purine requirements through purine salvage mechanisms, while proliferating cells usually 

rely on de novo purine biosynthesis in order to meet the demands of DNA and RNA synthesis 

(Denkert et al., 2008; Fairbanks et al., 1995; Howell et al., 1981; Jackson and Harkrader, 1981; 

King et al., 1983; Kondo et al., 2000; LeLeiko et al., 1983; Mackinnon and Deller, 1973) De 

novo purine biosynthesis inhibitors prevent lymphocyte and tumor cell growth, suggesting that 

purine salvage pathways are insufficient in these rapidly-dividing cell types (Christopherson et 

al., 2002; Hovi et al., 1976). 

10-FormylTHF can be used in the de novo synthesis of purine nucleotides (Figure 1.6). 

The formate group of 10-formylTHF can be dontated to β-glycinamide ribonucleotide (GAR) 

formyltransferase (GARFTase) and 5-aminoimidazole-4-carboxamide (AICA) ribonucleotide 

formyltransferase (AICARFTase), catalyzing the third and ninth, respectively, of the ten steps in 

de novo purine biosynthesis from phosphoribosyl pyrophosphate (PRPP) to inosine 

monophosphate (Figure 1.6). This leads to a net transfer of two one-carbon units transferred from  
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Figure 1.6 De novo purine biosynthesis. The 10 steps from PRPP to inosine monophosphate 
are detailed. Two steps are catalyzed by 10-formylTHF, step 3 (catalyzed by GARFTase) and 
step 9 (catalyzed by AICARFTase). The AGF series of compounds discussed in this dissertation 
inhibit GARFTase. 
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10-formylTHF and to the C-2 and C-8 of the purine ring and the regeneration of two molecules 

of unsubstituted THFs (Hartman and Buchanan, 1959b; Smith et al., 1981; Smith et al., 1980). 

Hypoxanthine PRPP is also required in purine salvage. Hypoxanthine phosphoribosyl 

transferase converts guanine and hypoxanthine into GMP and IMP (inosine monophosphate), 

respectively, while adenine is converted to AMP by adenosine phosphorribosyl transferase; both 

reactions require PRPP (Murray, 1971). This pathway was characterized in avian models, and 

has since been shown to be conserved across all nearly all species (Hartman and Buchanan, 

1959a).  

1.5.3 Polyglutamylation of Folates 

In the blood, folates exist primarily in the monoglutamate form (Assaraf, 2007; Stokstad, 

1990). However, upon transport into the cell, folates are polyglutamylated by FPGS. FPGS can 

be located in both the cytosol and the mitochondria (McGuire et al., 2000), and catalyzes an 

ATP-dependent reaction to add glutamic acid groups to the γ-carboxyl group of folates. This 

reaction can occur multiple times, sequentially, such that multiple glutamates can be bonded to a 

single folate molecule (Figure 1.1). The primary purpose of polyglutamylation is to contribute to 

the cellular retention of folate molecules (Baugh et al., 1973; McBurney and Whitmore, 1974; 

Moran, 1999; Moran et al., 1976). Following polyglutamylation, folates become better substrates 

for folate-dependent enzymes, including TS, GARFTase and AICARFTase (Allegra et al., 1985; 

Allegra et al., 1987; Baggott et al., 1986; Jackman et al., 1991b; Schirch and Strong, 1989; Shih 

et al., 1997). Additionally, long chain (n>3) polyglutamate folates are no longer substrates for 

RFC or several efflux proteins including multidrug resistance proteins (MRPs) and breast cancer 

resistance protein, which contributes to their cellular retention (Assaraf, 2006; Matherly and 

Goldman, 2003; Volk and Schneider, 2003; Wielinga et al., 2005; Zeng et al., 2001).  
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1.6 Antifolate Treatment of Cancer 

Rapidly proliferating tumor cells have specific metabolic requirements, as excessive 

nutrient quantities are needed to support synthesis of macromolecules required for cell division. 

Folates are required to contribute to the de novo synthesis of purine nucleotides and thymidylate 

necessary for DNA replication (Scotti et al., 2013) (Figure 1.5). In order to keep up with the 

folate requirements, tumors have been shown to express folate transporters and receptors (Kugel 

Desmoulin et al., 2011). Membrane transport of circulating folates is essential, as folates exist as 

anions at physiological pH. Both PCFT and RFC have been shown to be expressed in a wide 

variety of human tumor cell lines (Gonen et al., 2008; Kugel Desmoulin et al., 2011; Matherly et 

al., 2007; Zhao et al., 2004a). For 29 of 32 human tumor cell lines including cell lines from the 

National Cancer Institute 60 cell line panel, [3H]MTX uptake was shown to be increased at pH 

5.5 compared to pH 7.4, suggesting PCFT-mediated uptake (Zhao et al., 2004a). FRα 

overexpression has been shown in several cancer types including ependymal brain tumors and 

non-mucinous adenocarcinomas of ovary, cervix, and uterus (Bueno et al., 2001; Buist et al., 

1995; Campbell et al., 1991; Elnakat and Ratnam, 2004; Evans et al., 2001; Garin-Chesa et al., 

1993; Ross et al., 1994; Veggian et al., 1989; Weitman et al., 1994; Weitman et al., 1992a; Wu et 

al., 1999). FRα expression increases with tumor stage in ovarian cancer (Buist et al., 1995; 

Garin-Chesa et al., 1993; Veggian et al., 1989). FRα is expressed in some non-small cell lung 

cancer patients (NSCLC), although expression levels are highly variable (Christoph et al., 2013; 

Nunez et al., 2012; O'Shannessy et al., 2012) (also see Chapter 5). FRβ expression was found in 

chronic myelogenous leukemia and acute myelogenous leukemia, but not in acute lymphoblastic 

leukemia (ALL) (Pan et al., 2002; Ross et al., 1999).  
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1.6.1 DHFR Inhibitors 

 Based on observations which established the importance of folates in cancer progression, 

Sidney Farber and colleagues at Harvard hypothesized in 1947 that cancer cell proliferation 

could be inhibited via folate antagonists, based on the observation that folic acid stimulated 

leukemic cell growth (Farber et al., 1947). Aminopterin (AMT) (Figure 1.2), an antifolate 

synthesized by Yellapragada Subbarow, was the first ever chemotherapeutic compound shown to 

cause remission of ALL (Farber and Diamond, 1948). AMT was later improved through the 

synthesis of MTX (Figure 1.2), which could be used to treat ALL with fewer side effects and less 

toxicity (Farber, 1949). MTX remains relevant today as a treatment for ALL, lymphomas, and 

several solid tumors (Jolivet et al., 1983; Monahan, 2001; Pui and Evans, 2006), as well as non-

malignant diseases such as rheumatoid arthritis, psoriasis and Crohn’s disease (Chladek et al., 

1998; Feagan et al., 1995; Wessels et al., 2008). AMT, too, has found new interest in therapy of 

cancer and inflammatory diseases (Cole et al., 2008; Menter et al., 2012). As such, antifolate 

compounds have remained an essential class of cancer chemotherapeutic for nearly 70 years. 

However, the therapeutic utility of MTX is limited by its lack of tumor specificity and the 

existence of both de novo and acquired resistance (Matherly et al., 2007; Zhao and Goldman, 

2003). 

 Both MTX and AMT are highly potent inhibitors of DHFR (Gonen and Assaraf, 2012; 

Zhao and Goldman, 2003). DHFR inhibition causes accumulation of DHF, generated by TS. 

DHF is reduced to THF by DHFR, and the buildup of DHF as a result of DHFR inhibition causes 

net depletion of unsubstituted THF and termination of THF-dependent carbon transfer reactions 

in the biosynthesis of thymidylate, purine nucleotides, methionine and serine (Matherly et al., 

1987; Seither et al., 1989). AMT has a much stronger affinity than MTX for both RFC and FPGS, 
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which adds additional glutamates to folate molecules and contributes to cellular retention 

(Matherly et al., 1985). Thus, AMT enters the cell and is polyglutamylated much more quickly 

than MTX, resulting in much higher levels of AMT polyglutamates (Matherly et al., 1985), and 

displays far more potent antitumor activity than MTX (Goldin et al., 1955; Sirotnak et al., 1984). 

However, this may also be the reason for the increased toxicity of AMT in patients, reflecting the 

ubiquitous expression of RFC. 

 PDX (10-propargyl-10-deaza-AMT) (Figure 1.2) was the product of a collaboration 

between F. M. Sirotnak of Memorial Sloan-Kettering Cancer Center and J. I. Degraw of 

Southern Research Institute to improve cellular pharmacology of antifolate compounds. PDX 

precursors 10-deaza-AMT and 10-ethyl-10-deaza-AMT were more potent than MTX (Schmid et 

al., 1985; Sirotnak et al., 1984; Sirotnak et al., 1993). PDX, the third generation in this series of 

compounds, was found to be 3-fold less potent at DHFR inhibition than MTX, but displayed 10-

fold higher transport rates by RFC and higher polyglutamylation by FPGS, ultimately resulting 

in increased drug efficacy toward breast cancer, NSCLC and leukemia cell lines both in vitro and 

in vivo (DeGraw et al., 1993; Sirotnak et al., 1998; Visentin et al., 2013). In phase I and II trials, 

which included non–small-cell lung cancer and peripheral T-cell lymphoma patients, PDX 

showed both efficacy and safety, leading to the Food and Drug Administration (FDA) approval 

for the treatment of relapsed, refractory peripheral T-cell lymphoma in 2009 (Krug et al., 2003; 

Marchi et al., 2013; O'Connor et al., 2009; Thompson, 2009). Since 2009, PDX has been tested 

in combination with other therapies in several different cancer types with promising results 

(Azzoli et al., 2007; Marchi et al., 2010; Toner et al., 2006; Zain and O'Connor, 2010a; Zain and 

O'Connor, 2010b). 
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 PT523 (Figure 1.2) is a hemiphthaloylornithine antifolate synthesized by A. Rosowsky 

and colleagues at Dana-Farber Cancer Institute (Rosowsky et al., 1988). PT523 is a strong 

inhibitor of DHFR with a submicromolar Kt for RFC, while also being a very poor substrate for 

PCFT (Kugel Desmoulin et al., 2010; Rhee et al., 1994; Rosowsky et al., 1988; Wang et al., 

2010; Wright et al., 2000; Zhao and Goldman, 2007). PT523 lacks a terminal glutamate, and is 

not a substrate for polyglutamylation, which decreases the impact of intracellular THF levels on 

PT523 compared to MTX. In a phase I study including 18 patients with relapsed or refractory 

NSCLC, PT523 displayed acceptable toxicity and efficacy (2 partial responses, 9 stable disease) 

after multiple chemotherapy cycles (Lima et al., 2006). 

1.6.2 TS Inhibitors 

 RTX (Tomudex; ZD1694; (S)-2-(5-methyl((2-methyl-4-oxo-1,4-dihydroquinazolin-6-

yl)methyl)amino)thiophene-2-carboxamido)pentanedioic acid) (Figure 1.2) is a quinazoline 

antifolate and an inhibitor of TS. RTX was designed by scientists at the Institute for Cancer 

Research and Astra Zeneca (Hughes et al., 1999; Jackman and Calvert, 1995). Earlier attempts to 

develop a TS-targeted antifolate resulted in CB3717 (N10-propargyl-5,8-dideazafolic acid; N-[4-

[N-[(2-amino-4-hydroxy-6-quinazo-linyl)methyl]prop-2-ynylamino] benzoyl]-L-glutamic acid), 

which showed efficacy against ovarian, liver and breast cancers in phase I/II clinical trials but 

also resulted in hepatic toxicity and dose-limiting nephrotoxicity in 70% of patients given doses 

above 450 mg/m2 (Jackman and Calvert, 1995). In order to reduce toxicity and increase 

solubility, CB3717 was modified by substitution of the 2-amino group with 2-desamino-2-

methyl, replacement of benzoyl ring with thiophene ring, and replacement of N10-propargyl with 

a methyl (Jackman et al., 1996; Jackman et al., 1991a; Jackman et al., 1991b). These 

modifications resulted in RTX, which is a poorer TS inhibitor than CB3717. RTX is a greater 
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RFC and FPGS substrate than CB3717, resulting in enhanced antitumor efficacy in vivo and in 

vitro as well as increased water solubility (Hughes et al., 1999; Jackman et al., 1991b). RTX has 

been approved for use in the treatment of advanced colorectal cancer in Australia, Canada, and 

Europe, and for treatment of malignant pleural mesothelioma in combination with cisplatin in 

several European countries (Chu et al., 2003; Surmont and van Meerbeeck, 2011). RTX 

represents the success of developing structure activity relationships (SAR) through careful 

testing of chemical modifications made to antifolate compounds. 

 ZD9331 (Plvitrexed, BGC9331) (Figure 1.2) is a quinazoline antifolate with a γ tetrazole. 

ZD9331 lacks FPGS activity but remains an excellent RFC substrate and inhibitor of TS 

(Jackman and Calvert, 1995; Jackman et al., 1997). While RFC is the primary mechanism of 

transport, ZD9331 is also a substrate for FRs and PCFT (Jansen, 1999; Matherly and Gangjee, 

2011). ZD9331 was developed with the intention of circumventing polyglutamylation-based 

resistances tumors can develop during antifolate treatment, associated with low FPGS or high γ-

glutamyl hydrolase activity (Zhao and Goldman, 2003), and ZD9331 activity was preserved in 

RTX-resistant L1210 murine leukemia cells with low FPGS activity (Jackman et al., 1997). 

Phase II clinical trials of ZD9331 showed some efficacy in patients with metastatic colorectal, 

ovarian, and pancreatic cancers with a manageable toxicity profile (Hainsworth et al., 2003; 

Louvet et al., 2004; Rader et al., 2003; Schulz et al., 2004; Smith and Gallagher, 2003). 

 GW1843U89 (Figure 1.2) was discovered at the Burroughs Wellcome Company in an 

attempt to identify antifolates which might be useful as antimicrobial agents (Smith et al., 1999). 

GW1843U89 is an extremely potent TS inhibitor, with a Ki of 0.09 nM, while also being an 

excellent RFC substrate (Duch et al., 1993). GW1843U89 is a good FPGS substrate, but the 

diglutamyl GW1843U89 is a poor FPGS substrate, leading to diglutamyl GW1843U89 being the 
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major cellular form (Duch et al., 1993; Hanlon and Ferone, 1996). Polyglutamylation status of 

GW1843U89 seemed to have no effect on TS inhibition (Hanlon and Ferone, 1996). 

GW1843U89 was later encapsulated in liposomes, forming the new drug OSI-7904L, which was 

shown to be well tolerated in patients and effective in patients with advanced gastric cancer or 

gastroesophageal cancers (Falk et al., 2006) but not patients with advanced biliary cancer 

(Ciuleanu et al., 2007). 

 In the case of antifolates that target either TS or DHFR, cell death occurs due to a lack of 

thymidylate and accumulation of dUMP (Matsui et al., 1996; Yin et al., 1997). The net effect is a 

decrease in the level of deoxythymidine triphosphate (dTTP), which results in the 

misincorporation of deoxyuridine triphosphate (dUTP) into DNA synthesis. This causes DNA 

strand breaks, as dUTP incorporation into DNA is recognized as incorrect and cycles of 

unsuccessful excision-repair occur, leading to cell death (Bronder and Moran, 2003) 

1.6.3 Inhibitors of De Novo Purine Biosynthesis 

 Lometrexol (LMX) (Figure 1.2) is a (6R) diastereomer of 5,10-dideaza THF which was 

developed by E.C. Taylor of Princeton University and Chuan (Joe) Shih of Eli Lilly in an attempt 

to develop antifolates which have enzyme targets other than DHFR (Mendelsohn et al., 1999b; 

Moran et al., 1989; Taylor et al., 1985). LMX is structurally identical to THF, with the exception 

that carbons 5 and 10, which participate in carbon transfer reactions and have been replaced with 

nitrogens. LMX is an RFC substrate, although it can also be transported by PCFT and FRs 

(Desmoulin et al., 2012a; Jansen, 1999; Matherly et al., 1993; Westerhof et al., 1995). LMX is 

polyglutamylated by FPGS (Baldwin et al., 1991; Matherly et al., 1993; Moran et al., 1989), and 

polyglutamyl forms of LMX are potent GARFTase inhibitors, depleting cells of ATP and GTP 

(Beardsley et al., 1989; Mendelsohn et al., 1999b; Moran et al., 1989). Because loss of ATP 
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renders p53 transcriptionally inert, LMX displayed cytotoxicity in a p53-independent manner 

(Bronder and Moran, 2003). Based on in vivo and in vitro models, LMX was considered a 

promising anticancer agent (Beardsley et al., 1989; Mendelsohn et al., 1999b; Moran et al., 1989). 

However, in Phase I clinical trials, LMX treatment resulted in severe toxicity, with dose-limiting 

myelosuppression and mucositis (Ray et al., 1993). Clinical toxicity can be reduced by the co-

administration of folic acid with LMX, allowing for a ten times greater dose than LMX treatment 

without folic acid (Roberts et al., 2000a). It was hypothesized that the high toxicity may be 

caused by a gradual release of LMX metabolites from the liver (Taber et al., 1991), that folate 

depletion increased liver FR expression, contributing to increased uptake (Mendelsohn et al., 

1996; Pohland et al., 1994) and that polyglutamate forms of LMX are essentially impossible to 

eliminate from circulation (Jackman, 1999). 

 In an attempt to reduce the toxicities of LMX, LY309887 [(2S)-2-[[5-[2-[(6R)-2-amino-

4-oxo-5, 6, 7, 8-tetrahydro-1H-pyrido [2,3-d] pyrimidin-6-yl] ethyl] thiophene- 2-carbonyl] 

amino] pentanedioic acid] (Figure 1.2) was synthesized. LY309887 was designed to have lower 

FR affinity, lower polyglutamylation, and increased affinity for GARFTase compared to LMX 

(Budman et al., 2001; Mendelsohn et al., 1996; Mendelsohn et al., 1999b; Wang et al., 1992). 

Another compound, AG2034 [N-[(5-(2-[(6S)-2-amino-4-oxo-4,6,7,8-tetrahydro-1H-

pyrimido[5,4-b][1,4]thiazin-6-yl]ethyl)thiophen-2-yl)carbonyl]-L-glutamic acid] (Figure 1.2) 

was designed based on the X-ray crystal structure of GARFTase, and AG2034 was shown to be a 

potent GARFTase inhibitor (Almassy et al., 1992; Boritzki et al., 1996) and exhibited reduced 

FR affinity (Boritzki et al., 1996). However, in phase I clinical trials, both LY309887 and 

AG2034 showed similar cumulative toxicities to those observed in LMX-treated patients (Bissett 

et al., 2001; Boritzki et al., 1996; Budman et al., 2001; Kisliuk, 2003; Roberts et al., 2000b).   
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1.6.4 Multitargeted Antifolate 

 PMX (LY231514;Alimta;N-[4-[2-(2-amino-4,7-dihydro-4-oxo1H-pyrrolo[2,3d] 

pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid) (Figure 1.2) was synthesized by Eli Lilly in an 

attempt to meet FDA requirements of purity and to eliminate chirality at the 6 position of the 5-

deazapteridine ring of LMX by replacement with a pyrrolo[2,3-d]pyrimidine ring (Taylor, 1993; 

Taylor et al., 1992). In vitro experiments revealed that PMX was a potent TS inhibitor, and 

additionally was a weak inhibitor of DHFR, GARFTase and AICARFTase (Shih et al., 1997; 

Taylor et al., 1992). PMX is also an excellent substrate for both PCFT and RFC, being among 

the best substrates for PCFT (Wang et al., 2004; Westerhof et al., 1995; Zhao et al., 2008). 

Unlike MTX or RTX, the antitumor efficacy of PMX is maintained or even enhanced in cells 

with low RFC expression, so long as PCFT is expressed (Zhao et al., 2008). PMX is highly 

polyglutamylated and is among the best known FPGS substrates, although polyglutamylation is 

negatively affected by intracellular folate status (Desmoulin et al., 2012b; Shih et al., 1997; Zhao 

et al., 2001; Zhao et al., 2004b). PMX polyglutamylation enhanced TS inhibition, as PMX 

pentaglutamate showed a TS Ki value of 1.3 nM compared to 109 nM for parent PMX. Ki values 

for GARFTase and AICARFTase were much higher, suggesting decreased inhibition potency of 

these enzymes, although polyglutamates were still more potent inhibitors than non-polyglutamyl 

drug (Shih et al., 1997; Taylor et al., 1992). Additionally, PMX has a very low affinity for DHFR. 

Potent TS inhibiton by PMX would obviate any effect on DHFR, as dihydrofolate would not be 

generated once TS is inhibited. 

 Recently, it has been suggested that AICARFTase may be a more important secondary 

target for PMX than originally realized (Racanelli et al., 2009; Rothbart et al., 2010). Treatment 

with PMX results in an accumulation of the purine synthesis intermediate 5-aminoimidazole-4-
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carboamide ribotide (ZMP), the AICARFTase substrate (Racanelli et al., 2009). ZMP is an AMP 

mimetic and can activate AMP-activated protein kinase (AMPK), which phosphorylates proteins 

involved in initiation of energy metabolism, cap-dependent translation, and lipid synthesis 

(Mihaylova and Shaw, 2011). AMPK phosphorylation due to PMX treatment results in inhibition 

of mTOR signaling in lung and colon cancer cells (Gwinn et al., 2008; Inoki et al., 2003; 

Racanelli et al., 2009; Rothbart et al., 2010). However, in the absence of direct TS inhibition, 

AMPK activation by PMX or by direct AMPK activators (metformin) did not produce an 

antiproliferatve effect in KB tumor cells (Mitchell-Ryan et al., 2013). PMX was found to act 

synergistically with the multi-kinase inhibitor sorafenib by promoting autophagy which led to 

activation of apoptosis pathways, thereby enhancing antitumor effects (Bareford et al., 2011). 

 PMX was approved by the FDA in 2004 for treatment of malignant pleural mesothelioma 

in combination with cisplatin (Hazarika et al., 2005). In 2008, PMX was approved as a primary 

treatment for non-squamous NSCLC (NS-NSCLC) coadminstered with cisplatin (Cohen et al., 

2009) and in 2009 for maintenance therapy in patients with local advanced or metastatic NS-

NSCLC (Cohen et al., 2010). Randomized clinical trials have revealed that PMX is superior to 

other chemotherapy agents in the treatment of NS-NSCLC, while being inferior to other drugs in 

squamous cell lung cancer either as monotherapy or in combination with platinum-based 

chemotherapies (Ciuleanu et al., 2009; Hanna et al., 2004; Scagliotti et al., 2009; Scagliotti et al., 

2008). 

 Despite widespread use in the treatment of NS-NSCLC, the utility of PMX in the 

treatment of these patients is modest, as the median progression free survival of these patients is 

only 3.5 months when treated with PMX and carboplatin in combination and 3.6 months when 

treated with PMX monotherapy (Ardizzoni et al., 2012). This suggests that there is a high 
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amount of variability in the efficacy of PMX between patients. As a standard practice, patients 

who will be treated with PMX are given dexamethasone (Dex) in order to reduce the possibility 

of a severe skin rash caused by PMX treatment. Patients are given 4 mg Dex twice the day 

before treatment, once the day of and once the day after. The effects of Dex are mediated by the 

glucocorticoid receptor (GR), a transcription factor which can regulate cell proliferation, 

apoptosis, immune response, inflammation, and cellular senescence (Ge et al., 2012; 

Mangelsdorf et al., 1995; Vilasco et al., 2011). An immunohistochemical analysis of GR 

expression in NSCLC showed heterogeneity of GR expression, with approximately half of the 

tumors showing a relatively high GR expression (Lu et al., 2006). In vitro studies of NS-NSCLC 

cell lines revealed that Dex treatment suppresses cell progression into S-phase, causes down-

regulation of TS, DHFR, RFC and PCFT and reduces the efficacy of PMX in cells with high 

GRα expression (Patki et al., 2014). These effects were p53-independent and could be restored 

within 24 hours, suggesting that Dex treatment before, during, and after PMX treatment can 

drastically reduce the efficacy of PMX in patients with high tumor GR expression (Patki et al., 

2014). 

1.6.5 Antifolate Resistance 

 Resistance to MTX via impaired RFC function has been identified in vitro (Hill et al., 

1979; Niethammer and Jackson, 1975; Sirotnak et al., 1968; Sirotnak et al., 1981) and in many 

disease types, including ALL, osteosarcoma, colorectal cancer and primary central nervous 

system lymphoma (Belkov et al., 1999; Ferreri et al., 2004; Gorlick et al., 1997; Guo et al., 1999; 

Ifergan et al., 2003; Levy et al., 2003; Wettergren et al., 2005; Yang et al., 2003). This impaired 

RFC function can be the result of either decreased RFC expression or reduced RFC function 

(Assaraf, 2007; Matherly and Goldman, 2003; Matherly et al., 2007), results which can be 
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produced by a variety of mutations including promoter methylation, point mutations, frameshift 

mutations, genomic deletions and loss of RFC alleles (Chattopadhyay et al., 2006; Ding et al., 

2001; Rothem et al., 2002; Worm et al., 2001; Zhao et al., 2004b; Zhao et al., 1999). 

 Reduced polyglutamylation can also result in antifolate resistance (Drake et al., 1996; Li 

et al., 1992; Liani et al., 2003; Mauritz et al., 2002; McCloskey et al., 1991; McGuire et al., 

2000; Pizzorno et al., 1989; Pizzorno et al., 1988; Pizzorno et al., 1995). Folate-dependent 

enzymes, such as TS and DHFR, can aquire mutations which reduce the impact of antifolates, 

either via enzyme mutations resulting decreased drug affinities or increased enzyme expression 

(Albrecht et al., 1972; Alt et al., 1978; Dolnick et al., 1979; Drake et al., 1996; Flintoff and 

Essani, 1980; Freemantle et al., 1995; Goldie et al., 1980; Haber et al., 1981; Horns et al., 1984; 

Jackman and Calvert, 1995; Jackson and Harrap, 1973; Jackson et al., 1976; Kitchens et al., 

1999; McIvor and Simonsen, 1990; Melera et al., 1984; Melera et al., 1988; Mini et al., 1985; 

Miyachi et al., 1995; Nunberg et al., 1978; O'Connor et al., 1992; Sigmond et al., 2003; 

Srimatkandada et al., 1989; Tong et al., 1998; Trent et al., 1984; Wang et al., 2001; White and 

Goldman, 1981). MTX resistance can be acquired through DHFR gene amplification (Alt et al., 

1978) which has been observed clinically in various cancers following treatment with MTX 

(Horns et al., 1984; Trent et al., 1984). Additionally, overexpression of MRPs may also 

contribute to antifolate resistance (Assaraf, 2006; Assaraf, 2007). MRP1, MRP2 and MRP3 have 

been shown to be methotrexate transporters (Assaraf, 2006) 

1.6.6 Utility of FRα Overexpression in Cancer for Therapy and Imaging 

 Because of the ubiquitous expression of RFC, which causes the non-specific action of 

classical antifolates toward normal tissues as well as tumors, there has been an increased interest 

in utilizing FRα overexpression in cancer (and limited normal tissue expression) for a variety of 
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purposes, including both therapeutics and imaging. This concept has been demonstrated by the 

development of ONX0801 (previously BGC 945), a FRα-specific TS inhibitor with a low 

affinity for RFC (Gibbs et al., 2005; Theti et al., 2003). This compound displays a 70% binding 

affinity compared to folic acid, and a Ki of 1.2 nM for TS (Gibbs et al., 2005) and an IC50 of 3.6 

nM in KB cells (Theti et al., 2003). This compound was licensed by Onyx Pharmacuticals for a 

Phase I study, laying the groundwork for numerous FRα-targeted molecules. 

 In addition to therapeutics, FRα-targeted imaging agents are also being developed. A 

radiolabeled derivitave of folic acid, 111In-DPTA-folate, was shown to detect new ovarian cancer 

in mice as well as patients in a phase I/II clinical study (Siegel et al., 2003).  A version of folic 

acid conjugated with 99mTechneitum, called EC20, uses a more cost effective label with a shorter 

half-life, and has demonstrated higher specificity to FRα and a higher clearance rate from the 

blood and kidneys (Leamon et al., 2002). EC20 has been used to image over 200 ovarian cancer 

patients (Sega and Low, 2008). 

 Recently, there has been an interest in utilizing FR overexpression in various cancer types 

to deliver cytotoxic drugs via conjugation with folic acid. The first of these to be evaluated in 

tumor therapy was EC131, a folate-maytansinoid conjugate (Reddy et al., 2007). Maytansinoid, a 

microtubule-inhibiting agent, was shown to be tumor-targeted to FR-positive M109 tumors in 

BALB/c mice and tumor growth was inhibited.  

 A conjugate of folate and desacetylvin-blastinemonohydrazide (a derivative of 

microtubule destabilizing agent vinblastine), Vintafolide (or EC145), has been shown to be safe 

in a phase I clinical study (Lorusso et al., 2012; Vlahov et al., 2006). Multiple phase II and III 

clinical trials have been performed in lung and ovarian cancer (Edelman et al., 2012; Lorusso et 

al., 2012). One phase II clinical study showed that ovarian cancer patients with higher FRα 
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expression displayed longer progression free survival when treated with vintafolide compared to 

patients treated with PEGylated liposomal doxorubicin (Naumann et al., 2013). However, the 

subsequent phase III clinical trial failed because the vintafolide-treated patients did not meet the 

preliminary outcome for progression free survival (Merck, 2014). An additional phase II clinical 

study in lung adenocarcinoma patients failed to demonstrate a firm conclusion on efficacy of 

vintafolide due to non-random study design (Hanna et al., 2014). 

 Another folate conjugate, EC0225, is a folate linked to both a vinca alkaloid and 

mitomycin, has had a phase I clinical trial to determine the maximum tolerated dose (Sharma et 

al., 2010). Additional folate conjugates including Epofolate [a folate and epothilone A 

(microtubule stabilizing agent) conjugate], EC0489 (a vintafolide analogue), and EC1456 (a folic 

acid-tubulysin small-molecule drug conjugate) all had a phase I clinical trials (Gokhale et al., 

2013; Leamon et al., 2011; Lee et al., 2002; Peethambaram et al., 2015; Reddy et al., 2009).  

1.6.7 Tumor Targeted Antifolates with PCFT and FR Selectivity 

 Cancer cells have an increased need for energy and biosynthesis of nucleotides due to 

enhanced rates of growth and proliferation. In order to meet this demand, cancer cells become 

reliant on the altered metabolism known as the “Warburg effect,” or aerobic glycolysis, in which 

cells become highly glycolytic despite the presence of normal oxygen levels (Lunt and Vander 

Heiden, 2011). In order to maintain a normal intracellular pH, glycolytically-produced acids 

must be flushed out of the cell, which cells achieve by increasing expression and/or activity of 

plasma membrane ion pumps and transporters. Examples include H+-ATPases and vacuolar 

ATPases (Hinton et al., 2009; Martinez-Zaguilan et al., 1993; Sennoune et al., 2004), the Na+/K+ 

exchanger (Chiang et al., 2008; Kumar et al., 2009; McLean et al., 2000; Miraglia et al., 2005), 

and the monocarboxylate H+ efflux symporter (Chiche et al., 2012; Kennedy and Dewhirst, 2010; 
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Pinheiro et al., 2008a; Pinheiro et al., 2008b; Pinheiro et al., 2010). Increased activity of these 

transporters allows cells to maintain an intracellular pH of ≥7.4, while creating a tumor 

microenvironment of extracellular pH ranging from ~6.7-7.1. This is opposed to normal 

differentiated adult cells, which have an intracellular pH of ~7.2 and an extracellular pH of ~7.4 

(Busco et al., 2010; Gallagher et al., 2008; Gillies et al., 2002; Stuwe et al., 2007; Webb et al., 

2011). This acidic tumor microenvironment creates an H+-electrochemical gradient which acts as 

a driving force for proton-coupled solute transporters at the cell membrane, while also increasing 

substrate affinity and broadening substrate specificity for these transporters (Leuthold et al., 

2009; Nozawa et al., 2004; Qiu et al., 2006; Rubio-Aliaga et al., 2003). 

 There is a precedent for tumor targeting using chemotherapeutics which are specifically 

transported by proton-coupled transporters (Anderson and Thwaites, 2010). Proton-coupled 

di/tripeptide transporters PepT1 and PepT2 have shown increased tumor expression and activity 

and provide utility in transporting cancer therapies, including prodrugs floxuridine and 

cytarabine (Sun et al., 2009), photodynamic therapy and the imaging agent 5-aminolevulinic acid 

(Anderson et al., 2010), and bestatin, an aminopeptidase inhibitor (Nakanishi et al., 2000; Rubio-

Aliaga and Daniel, 2002). A proton-coupled amino acid transporter, PAT1, has also been shown 

to mediate uptake of 5-aminolevulinic acid and L-cycloserine in low pH conditions (Anderson et 

al., 2004; Anderson et al., 2010). Several members of the organic anion transporter (OAT) 

family displayed low pH polypeptide transport (Leuthold et al., 2009). OATP1A2 has been 

shown to transport MTX at low pH (Badagnani et al., 2006), while OATP2B1 has also 

demonstrated low pH antifolate transport (Visentin et al., 2012). 

 PMX is a 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolate with a p-

amino-benzoyl glutamate attached by a 2-carbon bridge region. The 6-substituted regioisomer of 
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PMX has no activity against tumor cells (Shih, 1993), but 6-substituted regioisomers with an 

elongated carbon bridge region connecting the heterocycle and the p-aminobenzoate including 

three (AGF17) or four (AGF23) (Figure 1.7) carbons were cabable of inhibiting proliferation of 

KB and IGROV1 cells at nanomolar drug concentrations (Deng et al., 2008). These compounds 

were later characterized in Chinese hamster ovary (CHO) (Flintoff et al., 1976) cells engineered 

to express either human RFC (PC43-10) (Wong et al., 1995) or human PCFT (R2/PCFT4) (Deng 

et al., 2009), and it was reported that AGF17 and AGF23 were selective for PCFT over RFC and 

were active at nanomolar concentrations (Kugel Desmoulin et al., 2010), while also being 

inhibitors for FRα- and β-expressing CHO cells (RT16 and D4, respectively) (Deng et al., 2008). 

 Following AGF17 and AGF23, 6-substituted pyrrolo[2,3-d]pyrimidine with thienoyl-for-

benzoyl substitutions were synthesized, designated AGF94 (three carbon bridge) and AGF71 

(four carbon bridge) (Figure 1.7). This thienoyl replacement of the side-chain phenyl moiety was 

inspired by the same substitution used in the creation of LY309887 (Mendelsohn et al., 1999b) 

and AG2034 (Boritzki et al., 1996). AGF94 and AGF71 are PCFT-selective antifolates (Kugel 

Desmoulin et al., 2011; Wang et al., 2010; Wang et al., 2011) with IC50 values for R2/PCFT4 

CHO cells of 3.34 nM and 43 nM, respectively (Wang et al., 2010; Wang et al., 2011). Both 

AGF94 and AGF71 showed significant inhibition of tumor growth in vivo in IGROV1 

xenografts (Wang et al., 2011). AGF94 additionally inhibited growth of H2452 (malignant 

mesothelioma) cells in vitro and in vivo as tumor xenografts in severe-combined 

immunodeficient (SCID) mice (Cherian et al., 2013). Both drugs displayed potent GARFTase 

inhibition in R2/PCFT4 CHO cells (IC50s of 0.69 nM for AGF94, 1.96 nM for AGF71) (Wang et 

al., 2011), as measured with an in situ metabolic assay which measured incorporation of 

[14C]glycine into the GARFTase product formyl GAR. AGF71 and AGF94 displayed inhibition 
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Figure 1.7 Structures of novel antifolates. Structures of novel tumor-targeted pyrollo[2,3-
d]pyrimidines with specificity for PCFT over RFC. All compounds were synthesized by Dr. 
Aleem Gangjee of Duquesne University in collaboration with Dr. Larry Matherly. All drugs are 
discussed in Chapter 1.6.7. 
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 of colony formation in PCFT-expressing CHO cells (derived from R2, CHO cells which lack 

RFC and PCFT expression) establishing cell killing, and both showed dose and time dependent 

killing (Wang et al., 2011). In HeLa cells, AGF94 and AGF71 were shown to be 

polyglutamylated at pH 6.8, while AGF94 revealed ~6 times greater polyglutamate accumulation 

compared to AGF71 (Desmoulin et al., 2012b). Compounds with longer carbon bridge regions 

displayed far less efficacy in vitro toward PCFT-expressing tumor cells (Wang et al., 2010; 

Wang et al., 2011). 

 A series of thieonyl regioisomers of AGF71 were synthesized, in which the position of 

the sulfur atom varies within the thiophene ring between molecules. Two of these novel 

compounds, AGF117 (thienoyl substitutions 3’,5’) and AGF118 (2’,4’) (Figure 1.7), were 

inactive towards RFC-expressing PC43-10 CHO cells but were very active towards PCFT-

expressing R2/PCFT4 CHO cells (IC50s of 63.82 for AGF117, 41.54 for AGF118) (Wang et al., 

2012). AGF117 and AGF118 also displayed potent GARFTase inhibition in IGROV1 ovarian 

cancer cells (IC50s of 2.03 nM for AGF117, 1.79 nM for AGF118). As with AGF17 and AGF23, 

AGF94, AGF71, AGF117 and AGF118 exhibited activity towards FR-expressing CHO cell lines 

(Wang et al., 2012; Wang et al., 2010; Wang et al., 2011). 

 A series of thieonyl regioisomers was also developed for AGF94. These include two 

potent PCFT-targeted compounds, AGF150 (thieonyl substitutions 2’,4’) and AGF154 (3’,5’) 

(Figure 1.7) (Wang et al., 2015) (also see Chapter 5). These drugs have very low IC50 values in 

R2/PCFT4 cells (5.39 nM for AGF150 and 6.51 nM for AGF154) (Wang et al., 2015). AGF150 

and AGF154 were shown to be potent GARFTase inhibitors via a spectrophotometric assay with 

recombinant human GARFTase (formyltransferase domain) (Ki values of 13 nM for AGF150, 

9.1 nM for AGF154 and 68 nM for AGF94), as well as parallel in situ GARFTase assays in KB 
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cells (IC50 values of 2.4 nM for AGF150, 2.6 nM for AGF154, and 3.5 nM for AGF94) (Wang et 

al., 2015). AGF150 and AGF154 also exhibited significant FR-binding affinities and in vitro 

efficacies in inhibiting proliferation of FR-expressing CHO cell lines (Wang et al., 2015). This 

characteristic of PCFT and FR dual-targeting may be a feature which could benefit the therapy of 

tumors that express FRs along with PCFT such as epithelial ovarian cancer (George and 

Matherly, unpublished) and a subset of NS-NSCLC (Wang et al., 2015) (also see Chapter 5). In 

vivo, AGF154 inhibited tumor growth of SKOV3 xenografts in SCID mice in a similar manner to 

AGF94, albeit at a lower dose (28 mg/kg for AGF94, 16 mg/kg for AGF154) (Wang et al., 2015). 

The development and characterization of tumor-targeted antifolates with PCFT selectivity and 

potent inhibition of de novo purine biosynthesis, typified by AGF17, 23, 71, 94, 117, 118, 150 

and 154, provides a definitive proof-of-concept for tumor targeting via PCFT (with or without 

FR).  

This dissertation will focus on both the characterization of important PCFT 

functional/structural determinants of drug transport, as well as the continued development and 

application of novel tumor targeted PCFT-selective antifolate compounds. 
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CHAPTER 2- PROTON-COUPLED FOLATE TRANSPORTER TRANSMEMBRANE  
 DOMAIN 2-3 CONNECTING REGION FORMS REENTRANT LOOP  
 STRUCTURE 

 
2.1 Introduction 

PCFT is predicted to have 12 TMDs with cytosolic N and C termini (Figure 1.4) (Unal et 

al., 2008; Zhao et al., 2010). This has been experimentally validated by indirect 

immunofluorescence staining of N- and C-terminal hemagglutinin (HA)-tagged human (h)PCFT 

and by SCAM involving Cys insertions into the TMD loop domains and reaction with MTSEA-

biotin (Zhao et al., 2010). The extracellular location of the loop connecting TMDs 1 and 2 was 

further evidenced by the fact that two predicted N-linked glycosylation sites in that loop (Asn-58 

and Asn-68) are glycosylated in human PCFT (Unal et al., 2008). Other aspects of hPCFT 

structure have been validated, including reactivity of membrane-impermeable 

methanethiosulfonate reagents with Phe157, Gly158, and Leu161 in TMD4 and with Ile188 in 

TMD5. Because methanethiosulfonate reactivity was protected by the hPCFT antifolate substrate 

PMX, these residues likely lie within or near the aqueous accessible substrate binding site (Shin 

et al., 2013; Zhao et al., 2012). Most recently, TMDs 1, 2, 7, and 11 have been shown to form an 

extracellular “gate” when PCFT is in the cytosol-facing conformation (Zhao et al., 2016). 

However, the contributions of other TMDs to the three-dimensional hPCFT structure have not 

been determined. 

 A number of specific amino acid residues were implicated as functionally important in 

hPCFT including Glu185 (TMD5; involved in proton coupling), His281 (TMD7; involved in 

substrate binding), and Arg376 (TMD10; impacts proton and substrate binding) (Figure 1.4) 

(Mahadeo et al., 2010; Unal et al., 2009a; Unal et al., 2009b). His247, localized to the loop 
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domain between TMDs 6 and 7, is predicted to interact with Ser172 at the cytoplasmic opening 

to control substrate access to the aqueous binding site (Unal et al., 2009a) (see Chapter 4). 

 The conserved loop domain linking TMD2 and TMD3 (residues 109–114) is of particular 

interest. This stretch is predicted to have a cytoplasmic orientation (Figure 1.4) and includes 

Asp109 and Arg113, both of which cannot be replaced by other amino acids regardless of charge 

or polarity (Lasry et al., 2008; Shin et al., 2010; Zhao et al., 2007). It was predicted that the loop 

region connecting TMD2 and TMD3 including Asp109 and Arg113 forms a β-turn structure 

involving the DSVG tetrapeptide and may be functionally important (Lasry et al., 2008; 

Subramanian et al., 2008). By homology modeling based on the GlpT template, Arg113 was 

predicted to protrude into a hydrophobic cavity composed of TMDs 1, 3, 4, and 6 (Lasry et al., 

2008). However, experimental confirmation was not provided. 

 In this chapter we use SCAM with a cys-less (clhPCFTHA) hPCFT that exhibits 

functional characteristics virtually identical to wild-type (wthPCFTHA) hPCFT and MTSEA-

biotin, combined with systematic site-directed mutagenesis, to directly explore the structural and 

functional significance of the TMD2-3 loop domain and TMD2 in hPCFT. Our results establish 

that the TMD2-3 domain forms a novel “reentrant loop” structure and suggest that amino acids at 

positions 93 and 94 in TMD2 may comprise part of a critical substrate binding domain with 

aqueous accessibilities (Yan and Luo, 2010). Our results are unprecedented and provide 

important new insights into key structural and functional determinants of hPCFT uptake. The 

work described in this chapter was previously published in the Journal of Biological Chemistry 

(Wilson et al., 2014). 

2.2 Materials and Methods 

2.2.1 Reagents 
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 [3’,5’,7-3H]MTX (20 Ci/mmol) was purchased from Moravek Biochemicals (Brea, CA). 

Unlabeled MTX was provided by the Drug Development Branch, NCI, National Institutes of 

Health (Bethesda, MD). Folic acid was purchased from Sigma. PMX (Alimta) was purchased 

from LC Laboratories (Woburn, MA). Tissue culture reagents and supplies were purchased from 

assorted vendors with the exception of fetal bovine serum (FBS), which was purchased from 

Hyclone Technologies (Logan, UT). 

2.2.2 Generation of Cys-less hPCFT and Single-substitution Mutants 

 clhPCFTHA, including a HA epitope at the C terminus in pCDNA3, was prepared by PCR 

from the C-terminal HA-tagged wthPCFTHA (Hou et al., 2012) construct by mutagenizing 

individual Cys residues (Cys21, -66, -151, -229, -298, -328, and -397) to serine using the 

QuikChangeTM Multi Site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA) as 

described by the manufacturer. Single amino acid substitutions were generated using either wt or 

clhPCFTHA as a template and the QuikChangeTM site-directed mutagenesis kit (Agilent). Primers 

were developed using the QuikChangeTM Primer Design program (Agilent) and are available 

upon request. PCR conditions were 95 °C for 30s, 55°C for 1 min, and 68°C for 8 min for 16 

cycles. All mutations were confirmed by DNA sequencing by Genewiz, Inc. (South Plainfield, 

NJ). 

2.2.3 Cell Culture 

 The hPCFT-null R1-11 HeLa cell line was a gift of Dr. I. David Goldman (Bronx, NY) 

(Diop-Bove et al., 2009). Cells were grown in RPMI 1640 media supplemented with 10% FBS, 

1% penicillin/streptomycin, and 2 mM L-glutamine. For transfections with hPCFT constructs, 

R1-11 cells were seeded in 60-mm culture dishes at a density of 0.8 million cells per plate in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS and antibiotics. 
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After 24 h, the cells were transfected with hPCFT expression constructs (above) in pCDNA3 (1 

µg/plate) using Lipofectamine 2000 (Invitrogen) (10 µl/plate) in Opti-MEM as described by the 

manufacturer (Invitrogen). After 4 h the transfection medium was replaced with DMEM 

containing 10% FBS. 

2.2.4 Membrane Transport 

 Forty-eight hours post-transfection, cellular uptake of [3H]MTX (0.5 µM) was measured 

over 2 min at 37 °C in 60-mm dishes in 2-(N-morpholino)ethanesulfonic acid (MES)-buffered 

saline (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 mM glucose; pH 5.5), as 

previously described (Kugel Desmoulin et al., 2010). Cells were washed 3x with Dulbecco’s 

phosphate-buffered saline (PBS), and the cells were solubilized in 0.5 N NaOH. Levels of 

intracellular radioactivity were calculated as pmol/mg of protein based on measurements of 

radioactivity and protein concentrations of the alkaline cell homogenates (Laemmli, 1970) (34). 

In some experiments cells were pretreated for 15 min at 37 °C with MTSEA-biotin (see below) 

before the transport assays with [3H]MTX treatments. To measure MTX transport kinetics, cells 

were treated with concentrations of [3H]MTX between 0.33 and 5 µM with results analyzed 

using Lineweaver-Burke plots for determinations of Kt and Vmax values. For determining Ki 

values for nonradioactive substrates including folic acid and PMX, cells were treated with 0.5 

µM [3H]MTX and inhibitors at concentrations from 0.3 to 1.5 µM. Results were analyzed by 

Dixon plots to calculate Ki values. To compare the optimal pH for transport by wt and 

clhPCFTHA, transport assays were performed at pH values from 5.5 and 7.2. MES-buffered 

saline was used for pHs 5.5, 6.0 and 6.5, whereas HEPES-buffered saline (20 mM HEPES, 140 

mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 mM glucose) was used for pH values 6.8 and 7.2. 

2.2.5 Surface Biotinylation with MTSEA-biotin 
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 Forty-eight hours post-transfection (above), cell surface proteins were surface-

biotinylated with MTSEA-biotin (Biotium, Hayward, CA). MTSEA-biotin was freshly dissolved 

in DMSO at 2 mg/100 µl and then diluted 1:100 in PBS. Cells were washed with PBS twice and 

treated with MTSEA-biotin solution for 30 min at room temperature. The MTSEA-biotin was 

aspirated, and cells were treated with 14 mM β-mercaptoethanol in PBS for 5 min to quench the 

reactions, then washed twice with PBS. To collect crude membrane proteins, plates were placed 

in 4 °C and treated with 1.4 ml of hypotonic buffer (0.5 mM Na2 HPO4 , 0.1 mM EDTA, pH 

7.0) containing a protease inhibitor mixture (Roche Applied Science). The cells were removed 

from the plates with a rubber policeman, followed by centrifugation at 16,000 rpm for 10 min at 

4 °C. The supernatants were removed, and cell pellets were resuspended in 0.4 ml of lysis buffer 

(50 mM Tris base, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, pH 7.4) by 

vortexing, then mixed on a rotisserie shaker for 1 h at 4°C. The samples were centrifuged at 

16,000 x g for 15 min at 4 °C, leaving the detergent-solubilized membrane proteins in the 

supernatant. An aliquot (25 µl) of this fraction was used as a loading control, and the remaining 

375 µl were added to 50 µl of streptavidin-agarose resin (Thermo Scientific, Waltham, MA) 

(prewashed 3x with lysis buffer). This mixture was mixed overnight at 4 °C in a rotisserie shaker. 

The following day the mixture was centrifuged at 16,000 x g for 1 min, and the supernatant was 

aspirated. The resin was washed 3 times with lysis buffer, followed by a wash with lysis buffer 

supplemented with 2% SDS. Bound proteins were released from the streptavidin resin by heating 

to 95 °C for 5 min in 2x Laemmli loading buffer that contained dithiothreitol (Laemmli, 1970). 

For some experiments protection from MTSEA-biotin biotinylation by the PCFT substrate, PMX, 

was tested. For these experiments, plates were treated with 2 ml of PBS containing 250 µM PMX 
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for 15 min immediately before MTSEA-biotin treatment. Results were compared with those for 

untreated controls, incubated in parallel. 

2.2.6 Western Blotting 

 Procedures for SDS-polyacrylamide gel electrophoresis, and electrotransfer to 

polyvinylidene difluoride membranes (Pierce) were identical to previously reported methods 

(Hou et al., 2012). For standard Western blotting, membrane proteins were electrophoresed on 

7.5% polyacrylamide gels in the presence of SDS (Laemmli, 1970) and electroblotted onto 

polyvinylidene difluoride membranes (Pierce) (Matsudaira, 1987). Blots were probed with anti-

HA antibody (Covance, Princeton, NJ) and IRDye800-conjugated secondary antibody. Anti-β-

actin antibody (Sigma) was used to probe for loading controls. Imaging and densitometry were 

performed with an Odyssey Infrared Imaging System (LI-COR, Lincoln, NE). 

2.2.7 Statistical Analysis 

 Unpaired t tests were conducted using GraphPad 6.0 software. 

2.3 Results 

2.3.1 Alanine-scanning Mutagenesis of TMD2 and the TMD2-3 Loop Region of hPCFT 

 A previous study used progressive alanine substitution mutagenesis with stretches of 

alanines to disrupt the predicted TMD2-3 β-turn in hPCFT and found that transport activity was 

abolished due to impaired intracellular trafficking to the plasma membrane (Subramanian et al., 

2008). As an extension of this work, we used a targeted alanine-scanning mutagenesis strategy 

with individual alanine substitutions across this stretch (including flanking regions) with 

wthPCFTHA as a template and extended this to include the entire TMD2 for a total of 33 mutants 

spanning positions 85–118 (Figure 1.4). Mutant hPCFT constructs were transfected into hPCFT-

null R1-11 HeLa cells. Membrane transport of [3H]MTX was measured at pH 5.5, the pH  
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Figure 2.1 Impact of scanning alanine mutagenesis on hPCFT expression and transport. 
Panel A, wthPCFTHA and alanine mutants in TMD2 and the TMD2-3 loop domain were 
transiently transfected into R1-11 cells, and hPCFT activity was determined after 48 h by 
[3H]MTX uptake assay at pH 5.5 over 2 min at 37 °C. Results are expressed as relative to 
wthPCFTHA and are reported as the mean values ± S.E. (error bars) from triplicate experiments. 
Results for D109A, G112A, and R113A were not significantly increased over those for R1-11 
cells (p < 0.05, noted by asterisks). wthPCFTHA is indicated by the gray bar. TMD2 mutants are 
shown in black, and the TMD2-3 loop mutants are shown in white. Panels B and C, Western 
blots are shown for membrane proteins (10 g) from HA-tagged TMD2 (Panel B) and TMD2-3 
loop (Panel C) alanine mutants isolated 48 h after transient transfections of R1-11 cells. Results 
are shown for membrane proteins probed with HA-specific antibody with equal loading 
confirmed with β-actin. Results are representative of at least two blots from independent 
experiments. Figure previously published in Wilson et. al. J Biol Chem. 2014. 



 

 

53 

optimum for PCFT, and HA-tagged hPCFT proteins in crude plasma membranes were assayed 

by Western blotting with HA-specific antibody. We found that all 33 hPCFT alanine mutants 

were expressed in crude membranes (Figure 2.1B) and that 30 of these were active for transport 

(25–115% of wthPCFTHA), including all of the mutants in TMD2 (Figure 2.1A). Conversely, for 

residues located in the TMD2-3 loop domain (i.e., positions 109, 112, and 113), Ala 

replacements abolished uptake ([3H]MTX uptake values were not significantly different from 

those with R1-11 cells (p < 0.05)). Although most of the TMD2-3 loop mutants were detected at 

substantial levels on Western blots, for the Gly-112 and Arg-113 mutants, loss of transport 

activity was associated with substantially reduced hPCFT membrane expression (Figure 2.1C). 

 These results with Asp109 and Arg113 are consistent with previous reports that any 

amino acid replacement (including even conservative substitutions) at these positions was 

inactive (Lasry et al., 2008; Shin et al., 2010; Subramanian et al., 2008; Zhao et al., 2007) (9, 11, 

17, 30). For Asp109, mutation disrupts the DSVG tetrad (109-112) and β-turn in the TMD2-3 

loop domain. Similarly, mutation of Gly112 to Pro significantly reduced hPCFT expression on 

Western blots (Figure 2.2B) and caused a complete loss of transport activity (Figure 2.2A), 

further implying that disruption of the β-turn structure results in protein misfolding and protein 

degradation. By contrast, with Arg114, we found that mutation to increasingly non-conservative 

residues, including Lys, His, and Asp, preserved expression on Western blots (Figure 2.2B) 

while progressively decreasing transport without abolishing it altogether (Figure 2.2A). 

2.3.2 Cys-scanning Mutagenesis and Cys Accessibilities to Biotinylation with MTSEA-
biotin for TMD2 and the TMD2-3 Loop Region of hPCFT 
 
 Our goal was to further determine the structural and functional significance of TMD2 and 

the TMD2-3 loop domain in hPCFT using Cys-scanning mutagenesis and SCAM. hPCFT  
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Figure 2.2 Characterization of hPCFT mutants. Panel A, TMD2 and TMD2-3 loop mutants 
were transiently transfected into R1-11 cells, and PCFT activity was determined 48 h later by 
[3H]MTX uptake assay at 37 °C at pH 5.5 over 2 min. Results are expressed as relative to 
wthPCFTHA and are reported as the mean values S.E. (error bars) from triplicate experiments. 
Results for the F94R and G112P mutants were not significantly increased over the level in R1-11 
cells (noted by the asterisks; p > 0.05). TMD2 mutants are shown in black, and TMD2-3 loop 
mutants are shown in white. wthPCFTHA is indicated by a gray bar. Panel B, Western blots of 
membrane proteins (10 µg) from HA-tagged TMD2 and TMD2-3 loop mutants 48 h after 
transient transfections of R1-11 cells. Results are representative of at least two independent 
experiments. Figure previously published in Wilson et. al. J Biol Chem. 2014. 
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includes 7 Cys residues (Figure 1.4), two (Cys66 and Cys298) of which form a disulfide linkage 

(Zhao et al., 2010). Because Cys residues in wthPCFTHA reacted with thiol-reactive MTSEA-

biotin in pilot studies (not shown), we generated a “Cys-less” hPCFT construct (with a C-

terminal HA epitope) by mutating the seven Cys residues to serine. When transiently expressed 

in hPCFT-null R1-11 HeLa cells, clhPCFTHA retained 77.5% (± 2.8%) of the transport activity of 

wthPCFTHA. The addition of 10 µM PMX completely blocked MTX transport levels for both wt 

and clhPCFTHA (Figure 2.3B). clhPCFTHA displayed a similar decrease in the level of membrane 

hPCFT protein on Western blots (70 ± 10%) of the wthPCFTHA level (Figure 2.3A). clhPCFTHA 

and wthPCFTHA showed nearly identical transport characteristics including Kt and Vmax values 

for [3H]MTX and Ki values for folic acid and PMX (Table 2.1). Furthermore, for both 

clhPCFTHA and wthPCFTHA, pH-dependent transport of [3H]MTX was essentially identical with 

decreasing activity from the high level measured at pH 5.5 and the very low levels above pH 7 

(Figure 2.3C). Collectively, these results establish that wt and clhPCFTHA are functionally 

equivalent. 

 To study the roles of the TMD2 and TMD2-3 loop regions in hPCFT structure and 

transport function, we used site-directed mutagenesis with clhPCFTHA as a template to introduce 

single Cys residues from positions 85 to 118 (Figure 1.4). The 33 individual Cys constructs were 

transiently transfected into R1-11 HeLa cells, followed by assays of [3H]MTX uptake at pH 5.5 

and of hPCFT protein levels on Western blots (Figure 2.4A-C). Cys substitutions at a number of 

positions were less tolerated than were the Ala substitutions (compare Figures 2.1A and 2.4A). 

Twenty-eight of the 33 Cys mutants were considered “active” based on statistically significant 

increases in [3H]MTX uptake (2-fold; p < 0.05) over the very low residual level in R1-11 cells. 

These include Cys mutants of several residues (Asn90, Leu104, Gly105, Pro115) with modest  
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Figure 2.3 Characterization of Cys-less hPCFT. Panel A, wthPCFTHA and CL- PCFT were 
transiently transfected into R1-11 cells. A Western blot of membrane proteins (10 µg) prepared 
48 h post-transfection for HA-tagged wthPCFTHA and clhPCFTHA is shown. β-Actin was used to 
confirm equal loading. Results are representative of three independent experiments. By 
densitometry, the hPCFT/ β-actin ratios of clhPCFTHA were 70% (± 10%) of the wthPCFTHA 
level. Panel B, hPCFT transport was measured 48 h later by [3H]MTX uptake assay at pH 5.5 
over 2 min, with (black) or without (gray) the addition of unlabeled 10 µM PMX. Data are 
presented as the mean values S.E. from three to seven independent experiments. For clhPCFTHA, 
transport was 77.5% (± 2.8%) that for wthPCFTHA. Transport was inhibited in the presence of 10 
µM nonradioactive PMX. Panel C, the pH dependence for [3H]MTX uptake over 2 min from pH 
5.5 to 7.2 for transiently expressed wthPCFTHA and clhPCFTHA in R1-11 cells is shown. Results 
are presented as the mean values ± S.E. from triplicate experiments. Figure previously published 
in Wilson et. al. J Biol Chem. 2014. 
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TABLE 2.1 

Kinetic Analysis of WT- and CL-PCFT. 
 
 
 
 
 
 
 
 

 
WT-PCFT and CL-PCFT were transiently transfected into R1-11 cells, and PCFT transport was 
measured 48 h later by [3H]MTX uptake assay at pH 5.5 over 2 min. To determine Kt and Vmax 
values, cells were treated with [3H]MTX with concentrations between 0.33 µM and 5 µM, with 
results analyzed by Lineweaver-Burke plots. To determine Ki values, cells were incubated with 
0.5 µM [3H]MTX with folic acid or PMX as competitors from 0.3 µM to 1.5 µM, and results were 
analyzed by Dixon plots. Data are presented as mean values +/- standard errors from three 
independent experiments. 
 

  

 
Constant 

 
Compounds 

hPCFT Variants 
WT-PCFT CL-PCFT 

Kt
 
(µM) MTX 0.44 ± 0.06 0.51 ± 0.03 

Vmax (pmol/mg/min) MTX 276.8 ± 59.7 236.2 ± 27.5 
Ki (µM) Folic Acid 1.51 ± 0.18 1.49 ± 0.45 
Ki (µM) PMX 0.13 ± 0.04 0.13 ± 0.05 
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Figure 2.4 Characterization of hPCFT single-Cys mutants. Panel A, TMD2 and TMD2-3 
loop single-Cys hPCFT mutants were transiently transfected into R1-11 cells, and PCFT activity 
was measured after 48 h by [3H]MTX uptake assay at pH 5.5 over 2 min. Results are expressed 
as relative to those for clhPCFTHA and are reported as mean values ± S.E. (error bars) from 
triplicate experiments. Transport levels for W107C, D109C, G112C, R113C, and R114C mutants 
(noted with asterisks) were not significantly increased over the low level in R1-11 cells (p > 
0.05), whereas transport for the other 28 samples was significantly increased over the transport 
level in R1-11 cells (p < 0.05). clhPCFTHA is indicated by the gray bar. The TMD2 mutants are 
shown in black, and the TMD2-3 loop mutants are shown in white. Panels B and C, Western blot 
analysis was performed on membrane proteins (10 µg) prepared from HA-tagged TMD2 (Panel 
B) and the TMD2-3 loop (Panel C) Cys mutants 48 h post-transfection. Results are shown for 
hPCFT proteins probed with HA-specific antibody, with equal loading confirmed with β-actin. 
Results are representative of at least two blots from independent experiments. Figure previously 
published in Wilson et. al. J Biol. Chem 2014. 
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levels of transport. Analogous to their Ala mutant counterparts, Cys replacements at Asp109, 

Gly112, and Arg113 were completely inert (Figure 2.4A). Whereas Ala replacements of Trp107 

and Arg114 preserved substantial transport activity (Figure 2.1A), transport was abolished for 

Cys replacements at these positions (Figure 2.4A). For many of the Cys mutants, transport 

activity paralleled levels of hPCFT protein on Western blots (Figure 2.4B-C), suggesting that the 

substantial losses of transport for the inactive hPCFT Cys mutants were likely the result of 

mutant protein misfolding, resulting in impaired intracellular trafficking and protein degradation. 

However, for a few of the Cys mutants in the TMD2-3 loop domain (i.e. Cys105 and Cys108), 

transport was disproportionately low relative to the levels of PCFT protein (Figure 2.4A-C), 

suggesting functionally inactive protein. 

 For the 28 active Cys mutants spanning TMD2 and the TMD2-3 loop region, we used 

MTSEA-biotin to establish their aqueous accessibilities in forming an aqueous transmembrane 

pathway for anionic (anti)folate substrates. MTSEA-biotin is a membrane-impermeable, 

bifunctional reagent that includes thiol-reactive MTS and biotin moieties, thus permitting 

isolation of biotinylated hPCFT protein by precipitation with streptavidin beads for analysis on 

Western blots. R1-11 cells were transiently transfected with the active Cys hPCFT mutants, then 

treated with MTSEA-biotin, followed by pull-down with streptavidin beads. The biotinylated 

proteins were eluted and analyzed on Western blots with HA-specific antibody, and the results 

were compared with those for total hPCFT proteins in membrane fractions sampled before 

MTSEA-biotin treatments. The G207C hPCFT mutant mapping to the extracellular loop 3 

domain (Figure 1.4) was used as a positive control for the pulldown experiments. 

 Cys mutants at positions 85-89 mapping to the exofacial segment of TMD2 (Figure 1.4) 

were extensively biotinylated, likely reflecting their extracellular accessibilities to the  
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Figure 2.5 Biotinylation of single-Cys mutants in TMD2 and the TMD2-3 loop with 
MTSEA-biotin. Panels A and B, TMD2 (Panel A) and TMD2-3 loop (Panel B) single-Cys 
mutants were transiently transfected into R1-11 cells, and 48 h later cells were treated with 
MTSEA-biotin. Cells were harvested, and membranes prepared, solubilized, and incubated with 
streptavidin beads to pull down biotinylated proteins. The G207C mutant located in the 
extracellular loop 3 domain (Figure 1.4) was used as a positive control for the pulldown assays. 
Biotinylated proteins were eluted and analyzed by Western blotting using an anti-HA antibody 
(Pull down). An aliquot (25 µl) of the crude membrane fraction before MTSEA-biotin treatment 
was also analyzed by Western blotting as a control (Membrane). Panels C and D, transiently 
transfected R1-11 cells were treated with or without 250 µM PMX before treatment with 
MTSEA-biotin, streptavidin precipitation, and Western blotting as described for Panels A and B. 
Panel E, TMD2 and TMD2-3 loop single-Cys mutants were transiently transfected into R1-11 
cells. After 48 h, cells were incubated with or without MTSEA-biotin followed by assay of 
PCFT transport with [3H]MTX at pH 5.5 over 2 min. Results are expressed relative to the non-
treated sample and are reported as the mean values ± S.E. for two (positions 104 –111) or three 
(R1-11, clhPCFTHA, and positions 207, 158, 93, and 94) independent experiments. For positions 
158, 93, and 94, losses of transport activity by MTSEA-biotin treatment compared with untreated 
samples were statistically significant (p < 0.05; noted by asterisk). In the transport experiments, 
clhPCFTHA and G207C were negative controls, whereas MTSEA-biotin-reactive G158C was 
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used as a positive control (all shown in gray) (Shin et al., 2013). Results for the TMD2 mutants 
are shown in black, and TMD2-3 loop mutants are shown in white. Panel F, diagram of the 
TMD2-3 reentrant loop structure. Figure previously published in Wilson et. al. J Biol Chem. 
2014. 
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 hydrophilic MTSEA-biotin reagent (Figure 2.5A, upper panel). However, other positions in 

TMD2 also reacted with MTSEA-biotin, especially positions 93 and 94, predicted to lie in the 

mid-TMD2 region, although flanking positions were poorly or completely unreactive. For the 

G93C mutant, reaction with MTSEA-biotin is particularly notable given its modest levels in the 

total membrane fraction (Figure 2.5A, lower panel). For the TMD2-3 loop (positions 107-114) 

and flanking regions (104-106, 115-118), predicted to have a cytosolic orientation, we found that 

the G105C, A106C, S108C, S110C, and V111C clhPCFTHA mutants were uniquely reactive with 

MTSEA-biotin in comparison with other mutants (e.g. L104C and P115C) (Figure 2.5B). Thus, 

positions 93 and 94 in TMD2 and positions 105, 106, 108, 110, and 111 in the TMD2-3 loop 

region seem to be aqueous accessible despite their predicted membrane topologies. 

2.3.3 Impact of hPCFT Substrate on Biotinylation and Transport Inhibition by 
Biotinylation 
 
 To examine whether the MTSEA-biotin-reactive positions in the TMD2 and the TMD2-3 

loop regions (positions 93, 94, 105, 106, 108, 110, and 111) contribute to an aqueous binding 

domain for hydrophilic (anti)folate substrates, we preincubated transiently transfected R1-11 

cells expressing the G93C, F94C, L104C, G105C, A106C, S108C, S110C, and V111C mutants 

with the PCFT substrate PMX (250 µM) before treatment with MTSEA-biotin. Controls were 

incubated in parallel without PMX. Biotinylated proteins were precipitated with streptavidin 

beads and analyzed on Western blots. PMX substantially decreased MTSEA-biotin reactivity 

with Cys residues at positions 93 and 94 (Figure 2.5C). However, the biotinylated TMD2-3 loop 

residues were unaffected by PMX treatment (Figure 2.5D). To determine whether biotinylation 

of these residues also inhibited transport activity, we incubated transiently transfected R1-11 

cells expressing G93C, F94C, L104C, G105C, A106C, S108C, S110C, and V111C hPCFT 

mutants with [3H]MTX (0.5 µM) for 15 min at 37 °C with or without a 15 min MTSEA-biotin 
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pretreatment. In this series of experiments, clhPCFTHA and G207C were negative controls, 

whereas MTSEA-biotin-reactive G158C was used as a positive control (Shin et al., 2013). 

 We found that of these residues, only for the G93C and F94C mutants was transport 

significantly inhibited by biotinylation (Figure 2.5E, 63.5 and 18.2%, respectively; p < 0.05). 

Collectively, these results are consistent with the notion of a direct interaction between positions 

93 and 94 and substrate, although an indirect effect mediated by conformational changes 

resulting from more distal substrate binding cannot be excluded. 

2.4 Discussion 

 In this chapter we studied the structural and mechanistic roles of TMD2 and the TMD2-3 

loop region in hPCFT. Our results establish aqueous accessibilities of residues located in the 

TMD2-3 loop despite their predicted membrane topologies. These results are best interpreted as 

a reentrant loop structure (Figure 2.5F), similar to those reported for other MFS transporters (e.g. 

EAAT1) (Seal and Amara, 1998; Yan and Luo, 2010). These results support those of 

Subramanian et al., which establish that disruption of the TMD2-3 loop results in hPCFT protein 

misfolding and loss of surface expression and transport activity (Subramanian et al., 2008). In 

previous studies it was reported that Asp109 and Arg113 in this stretch cannot be replaced with 

even conservative substitutions (Lasry et al., 2009; Zhao et al., 2007). Our results show that this 

now extends to the G112P mutant as well, although substitutions (Lys, His, Asp) at Arg114 were 

tolerated. Finally, our results suggest that positions 93 and 94 in TMD2 may directly participate 

in forming the hPCFT substrate binding pocket/membrane translocation pathway. Determining 

the structural determinants of hPCFT membrane transport is requisite to understanding the 

molecular mechanisms of transport, including critical determinants of (anti)folate binding. 
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CHAPTER 3- TRANSMEMBRANE DOMAINS 3 AND 6 OF THE PROTON-COUPLED 
             FOLATE TRANSPORTER FORM OLIGOMERIZATION INTERFACE 
 

3.1 Introduction 

 Reflecting its biological and therapeutic importance, studies have begun to explore key 

structural determinants of hPCFT function (Hou et al., 2012; Hou and Matherly, 2014; Matherly 

et al., 2014). Thus, structurally and/or functionally important residues in hPCFT were identified, 

including Asp109, Arg113 , Asp156 , Gly158 , Leu161 , Ser172 , Glu185 , Ile188 , Gly189 , 

Gly192 , Glu232 , His247 , His281 , Ile304 , Arg376 and Pro425 (Lasry et al., 2008; Mahadeo et 

al., 2010; Matherly et al., 2014; Shin et al., 2011; Shin et al., 2010; Shin et al., 2013; Unal et al., 

2009a; Unal et al., 2009b; Zhao and Goldman, 2007; Zhao et al., 2011b; Zhao et al., 2012), and 

stretches including TMDs 2, 4 and 5 were identified by SCAM as forming substrate-

binding/membrane-translocation domains (Shin et al., 2013; Zhao et al., 2012) (also see Chapter 

2). hPCFT is N-glycosylated at Asn58 and Asn68 (Unal et al., 2008). A unique β-turn structure 

in the TMD 2–3 loop region forms a novel reentrant loop structure and is essential for 

intracellular trafficking and high level transport (Lasry et al., 2008; Subramanian et al., 2008; 

Unal et al., 2008) (also see Chapter 2). 

 hPCFT forms homo-oligomers both in detergent solution and in situ with the hPCFT 

dimer as the dominant form (Hou et al., 2012). With ectopically expressed hPCFT, 

oligomerization was established by cross-linking with MTS-1-MTS, blue native gel 

electrophoresis, binding of co-expressed haemagglutinin (HA) and His10-tagged hPCFT 

monomers to nickel affinity columns and FRET between co-expressed YFP (YPet)- and 

enhanced cyan fluorescent protein (with K26R/N164H mutation; ECFP*)-tagged hPCFT 

monomers (Hou et al., 2012). Combined wt and inactive mutant P425R hPCFTs exhibited a 

distinctive ‘dominant-positive’ transport phenotype, implying positive co-operativity between 
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hPCFT monomers and functional ‘rescue’ of mutant hPCFT by wthPCFT (Hou et al., 2012). 

hPCFT oligomers were also identified by Zhao et al. by homobifunctional cross-linking with 

MTS-1-MTS and a putative TMD6 interface between hPCFT monomers was implied from the 

finding that MTS-1-MTS treatment generated cross-links between Cys229 (located in TMD6) in 

individual PCFT monomers, but not when Cys229 was mutated to serine (Zhao et al., 2012). 

Based on these results, the experiments described in this chapter explore the roles of residues 

localized to TMDs 3 and 6 in forming critical structural interfaces between hPCFT monomers. 

The work described in this chapter was previously published in Biochemical Journal (Wilson et 

al., 2015) 

3.2 Materials and Methods 

3.2.1 Reagents 

[3’ ,5’ ,7-3H]MTX (20 Ci/mmol) was purchased from Moravek Biochemicals. Unlabelled 

Mtx was provided by the Drug Development Branch, National Cancer Institute, National 

Institutes of Health. Synthetic oligonucleotides were obtained from Invitrogen. Tissue culture 

reagents and supplies were purchased from assorted vendors with the exception of FBS, which 

was purchased from Hyclone Technologies. The cross-linking reagent 1,6-hexanediyl 

bismethanethiosulfonate (MTS-6-MTS) was purchased from Toronto Research Chemicals. 

3.2.2 Cell Culture 

The RFC- and hPCFT-null HeLa cell line, designated R1-11 (Diop-Bove et al., 2009), 

was a gift of Dr I. David Goldman (Bronx, NY). R1-11 cells were maintained in complete RPMI 

(Roswell Park Memorial Institute) 1640 medium containing 10% FBS, 2 mM L-glutamine, 100 

units/ml penicillin and 100 µg/ml streptomycin (Hou et al., 2012). 

3.2.3 hPCFT Plasmid Constructs and Transient Transfections 
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Cysteine-less (cl) hPCFT (see Chapter 2), including a HA epitope at the C-terminus 

(clhPCFTHA) in pCDNA3 was prepared by PCR from the hPCFTHA construct (Diop-Bove et al., 

2009), by mutagenizing Cys21 , Cys66 , Cys151 , Cys229 , Cys298 , Cys328 and Cys397 to 

serine, using the QuikChangeTM Multi Site-Directed Mutagenesis Kit (Agilent) (see Chapter 2) . 

Single cysteine replacements were generated using clhPCFTHA as template and the 

QuikChangeTM Site-Directed Mutagenesis Kit (Agilent). Primers were designed using the 

QuikChangeTM Primer Design program (Agilent) and are available upon request. All mutations 

were confirmed by DNA sequencing by Genewiz, Inc. 

wthPCFTHA and mutant hPCFT constructs (see below) were transiently transfected into 

R1-11 HeLa cells with Lipofectamine-Plus reagent (Invitrogen), as previously described (Hou et 

al., 2005) (also see Chapter 2). With all transfections, cells were harvested after 48 h for 

transport and for preparing plasma membranes and Western blotting (see below). For 

experiments in which results for transfections with two plasmid constructs were directly 

compared with results for cells transfected with a single plasmid construct, constant DNA 

amounts were maintained by adding empty pCDNA3 (Invitrogen) to the single transfections. 

3.2.4 Membrane Transport Experiments 

Cellular uptake of [3H]MTX (0.5 µM) was measured over 2 min at 37° C in 60-mm 

dishes in MES-buffered saline (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2 and 5 

mM glucose) at pH 5.5 (Kugel Desmoulin et al., 2010) (see Chapter 2). Levels of intracellular 

radioactivity were expressed as pmol/mg protein, calculated from direct measurements of 

radioactivity and protein contents (Lowry et al., 1951) of the cell homogenates. 

3.2.5 Membrane Preparations and Western Blot Analysis of Plasma Membrane hPCFT 

Proteins 



 

 

67 

Plasma membrane preparations, SDS/PAGE and electrotransfer to polyvinylene 

difluoride membranes (Pierce) were as reported previously (Hou et al., 2005) (see Chapter 2). 

Detection and quantification of immunoreactive proteins used anti-HA (Covance) or and 

IRDye800-conjugated secondary antibody with an Odyssey® infrared imaging system (LI-COR). 

β-Actin was used as a loading control (Sigma). 

3.2.6 Cross-linking of Cysteine-substituted Mutants of hPCFT 

Forty-eight hours post-transfection with hPCFT mutants, R1-11 cells (in 60-mm dishes) 

were washed twice with Dulbecco’s PBS and then treated with MTS-6-MTS [freshly dissolved 

in DMSO at 7.2 mg/ml (30 mM) and then diluted in PBS 1:100 (0.072 mg/ml or 0.3 mM)] on ice 

for 1 h. The cells were washed twice with PBS, then treated with 1.4 ml of hypotonic buffer (0.5 

mM Na2 HPO4 , 0.1 mM EDTA, pH 7.0) which contained a protease inhibitor cocktail (Roche) 

on ice for 30 min. The cells were scraped from the dishes with rubber policemen and then 

centrifuged at 16,000 x g at 4° C for 10 min. The cell pellets were solubilized in 0.4 ml of lysis 

buffer (50 mM Tris-base, 150 mM NaCl, 1% NP40 and 0.5% sodium deoxycholate, pH 7.4), 

then centrifuged (16,000 x g, 4° C) for 15 min to remove cell debris. The supernatant was frozen, 

protein contents determined [Bradford assay (BioRad)] and constant protein amounts were 

analysed by Western blotting using DTT-free 2× SDS/PAGE loading buffer.  

3.2.7 Molecular Modeling 

Using the crystal structure of GlpT (1PW4) as template (Huang et al., 2003), we did 

homology modelling of the hPCFT monomer with Robetta Server (http://robetta.bakerlab.org). 

The top five hPCFT homology models retrieved through Robetta were evaluated by 

superimposing them over crystal structures of LacY, obtained at various states (1PV6, 1PV7, 

2CFP, 2CFQ, 2V8N and 2Y5Y) and of GlpT (1PW4), by Chimera MatchMaker 
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(http://www.cgl.ucsf.edu/chimera) with parameters optimized by superimposing GlpT (1PW4) 

over LacY (1PV6) that gave the lowest RMSD values over the longest Cα atoms. This was based 

on the notion that all crystal structures from three members (LacY, GlpT and EmrD) of the MFS 

of transporters have preserved both secondary and tertiary structure elements during evolution 

(Abramson et al., 2004). The hPCFT model (hPCFT_R5) showing the lowest RMSD values 

(above) was manually adjusted with COOT (http://lmb.bioch.ox.ac.uk/coot/) to reflect the 

TMD2-3 re-entrant loop (see Chapter 2), resulting in hPCFT_R5_2-3RL. The hPCFT_R5_2-3RL 

model was further validated by assigning known residues that line the potential substrate binding 

pocket of hPCFT. The validated hPCFT_R5_2-3RL homology model was used to build an 

hPCFT dimeric model using MDOCK server (Pierce et al., 2014), based on the notion that 

hPCFT forms oligomers with the dimer as dominant species (Hou et al., 2012). This modeling 

was performed by Zhanjun Hou (Karmanos Cancer Institute) and Jun Ye (Chinese Academy of 

Sciences). 

3.2.8 Statistical Analysis 

Statistical analyses were performed using GraphPad 6.0 software.  

3.3 Results 

3.3.1 TMDs 3 and 6 Form a Boundary Between Monomeric hPCFT 

A role for Cys229 (in TMD6) in hPCFT oligomerization was previously implied from the 

finding that mutation of Cys229 to serine abolished cross-linking with MTS-1-MTS (Zhao et al., 

2012). Using GlpT as a template (Huang et al., 2003) and based on published studies for hPCFT 

(Lasry et al., 2009; Lasry et al., 2008; Mahadeo et al., 2010; Shin et al., 2010; Shin et al., 2013; 

Unal et al., 2009a; Unal et al., 2009b; Zhao et al., 2011b; Zhao et al., 2012), we generated a 3D 

homology model for monomeric hPCFT in which TMDs 1, 2, 4, 5, 7, 8, 10 and 11 comprise an 
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aqueous transmembrane pathway, flanked by TMDs 3, 6, 9 and 12 (Figures 3.1A and B). With 

MDOCK modelling (Pierce et al., 2014) of this hPCFT monomer structure, a dimeric hPCFT 

structure was predicted (Figure 3.1C) with juxtaposed TMDs 2, 3, 4 and 6 as structural interfaces 

between hPCFT monomers, analogous to other oligomeric MFS proteins (Korkhov et al., 2004; 

Scholze et al., 2002; Sitte et al., 2004).  

To begin to test this model and to extend the published results of Zhao et al. (Zhao et al., 

2012), we inserted cysteine residues into a clhPCFTHA background (see Chapter 2) from 

positions 115–137 spanning TMD3 and from positions 213–236 spanning TMD6. Individual 

cysteine mutant constructs were transfected into R1-11 cells and after 48 h, transfected cells 

were assayed for hPCFT protein levels in crude membranes by SDS/PAGE and Western blotting 

(Figure 3.2A and B, lower panels) and for transport at pH 5.5 with [3H]MTX (0.5µM) (Figure 

3.2A and B, upper panels). Most of the cysteine-insertion mutants preserved substantial transport 

activity and only G123C, V130C, E232C and T233C were functionally inert (<2- fold increased 

over R1-11 cells; noted with asterisks in Figures 3.2A-B) (p < 0.05).  

The active cysteine mutants in TMDs 3 and 6 were cross-linked with MTS-6-MTS cross-

linker and analysed on Western blots. Cys229-hPCFT formed cross-links, as reflected in slowly  
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Figure 3.1 3D homology models for hPCFT. Panels A and B, Using Robetta as a modelling 
platform with GlpT as template (Huang et al., 2003) and based on experimental results and 
bibliographic data mining, we generated a 3D homology model for monomeric hPCFT in which 
TMDs 1, 2, 4, 5, 7, 8, 10 and 11 comprise an aqueous transmembrane pathway, flanked by 
TMDs 3, 6, 9 and 12. Panel C, A molecular model for dimeric hPCFT, predicted with MDOCK 
(Pierce et al., 2014) and based on experimental data in the present study, as described in the text. 
The model predicts that TMDs 2, 3, 4 and 6 in hPCFT form critical structural interfaces between 
hPCFT monomers. Modeling peroformed by Zhanjun Hou and Jun Ye. Figure previously 
published in Wilson et. al. Biochem J. 2015. 
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Figure 3.2 Cysteine scanning of TMD3 and TMD6 mutants in cysteine-less hPCFTHA. 
Panels A and B, To characterize the transport function and protein expression of single-cysteine 
mutants of hPCFT, single-cysteine mutants of TMD3 (Panel A) and TMD6 (Panel B) were 
transiently transfected into hPCFT-null R1-11 cells. Transfected cells were assayed for transport 
at pH 5.5 with [3H]MTX (0.5 µM) for 2 min at 37° C. hPCFT protein expression was measured 
in crude membranes by SDS/PAGE and Western blotting with HA-specific antibodies. β-Actin 
was used as a loading control. The molecular mass markers for SDS/PAGE are noted. Transport 
results are expressed relative to those for clhPCFTHA and are reported as mean values ± 
standard errors from two independent experiments. Figure previously published in Wilson et. al. 
Biochem J. 2015. 
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Figure 3.3 MTS-6-MTS cross-linking of TMD3 and TMD6 cysteine-insertion mutants in 
cysteine-less hPCFTHA. Single cysteine mutants (HA-tagged) of TMD6 (from positions 213–
236) and TMD3 (from positions 115–137) in a clhPCFTHA background were transiently 
transfected into R1-11 cells and 48 h later cells were treated with the MTS-6-MTS cross-linker 
(0.3 mM for 1 h on ice). clhPCFTHA and S229C hPCFTHA with and without cross-linker 
treatment were included as controls. Cells were harvested and membrane proteins were analysed 
on Westerns with anti-HA antibody. The hPCFT monomer migrates at ~45 kDa and cross-linked 
hPCFT migrates at ~90 kDa. The molecular mass markers for SDS/PAGE are noted. Figure 
previously published in Wilson et. al. Biochem J. 2015. 
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migrating high molecular mass (~90 kDa) hPCFT species not seen with clhPCFTHA or non-

cross-linked S229C (Figure 3.3, upper panel). Distinct cross-linked species were also formed for 

the Q136C and L137C mutants in TMD3 (Figure 3.3, middle panel) and for the W213C, L214C, 

L224C, A227C, F228C, F230C and G231C hPCFT mutants in TMD6 (Figure 3.3, lower panel). 

Again, no similar higher molecular mass species were detected in the absence of cross-linker 

(Figures 3.2A-B, lower panels).   

These results establish the proximities between vicinal residues localized in the exofacial 

end of TMD3 and in the exofacial and cytosolic ends of TMD6, consistent with the notion that 

these stretches of amino acids form structural interfaces between hPCFT monomers, as 

suggested by the molecular model in Figure 3.1C.  

3.4 Discussion 

 hPCFT forms homo-oligomers that are functionally important (Hou et al., 2012). In this 

chapter, we systematically interrogated potential structural determinants of hPCFT monomer 

associations in the formation of hPCFT oligomers. Previously published cross-linking results 

implied an important role for TMD6 in forming a critical interface between hPCFT monomers 

(Zhao et al., 2012).  

 Our cross-linking results implicated TMDs 3 and 6 as forming critical monomer 

interfaces in homo-oligomeric hPCFT since homobifunctional cross-linking of cysteine-insertion 

mutants across these stretches established the proximities between these individual TMDs. These 

results directly support molecular modelling results which predict that TMDs 2, 3, 4 and 6 form 

critical interfaces between hPCFT monomers. Based on these results, additional experiments are 

warranted to further define the minimal determinants for hPCFT oligomerization.  
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CHAPTER 4- FUNCTIONAL AND MECHANISTIC ROLES OF THE PROTON- 
             COUPLED FOLATE TRANSPORTER TRANSMEMBRANE DOMAIN  
             6-7 LINKER 
 

4.1 Introduction 

PCFT contains a large loop domain connecting TMDs 6 and 7 (see Figure 1.4), which 

includes a stretch of 30 mostly non-conserved amino acids (positions 236-265) with the 

exception of a conserved stretch of amino acids (RLFXXRH) from positions 241-247, Leu254 

and Arg264 (Figure 4.1). His247 was previously implicated as functionally important, as amino 

acid substitutions (Ala, Arg, Gln, or Glu) at this position were associated with decreased 

transport rates (decreased Vmax) and increased substrate binding affinities (decreased Kt) 

compared to wild-type hPCFT (Unal et al., 2009a). By molecular modeling, His247 was 

predicted to reside at the cytoplasmic end of a solute pathway with hydrogen bonding to Ser172 

where it restricts substrate access to the folate binding pocket (Unal et al., 2009a).  

In this chapter, we systematically explore the functional and mechanistic importance of 

the hPCFT TMD6-7 connecting loop by site-directed, deletion, and insertion mutagenesis. Our 

findings suggest that the PCFT TMD6-7 connecting loop may serve a unique functional role by 

potentially restricting substrate access to the folate translocation pathway in a manner that 

depends principally on secondary structure rather than individual sequence elements. The work 

described in this chapter was previously published in Biochemical Journal (Wilson et al., 2016a). 

4.2 Materials and Methods 

4.2.1 Reagents 

[3’,5’,7-3H]MTX (20 Ci/mmol) was purchased from Moravek Biochemicals (Brea, CA). 

Unlabeled MTX was obtained from the Drug Development Branch, NCI, National Institutes of 

Health (Bethesda, MD). Folic acid, leucovorin (LCV) [(6R,S)5-formyl tetrahydrofolate] and FBS 



 

 

75 

were purchased from Sigma Chemical Co. (St. Louis, MO). Other tissue culture supplies were 

purchased from various vendors.  

4.2.2 hPCFT Mutagenesis.  

Wild-type hPCFT constructs with various epitope tags, including wthPCFTHA and 

wtFLAGhPCFTMyc-His10, and clhPCFTHA were previously described and used as templates for site-

directed, deletion, and insertion mutagenesis (Hou et al., 2012) (see Chapter 2). Mutations were 

generated with the QuikChangeTM Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA). (i) 

Twenty-nine individual alanine insertions from positions 236 to 266 were introduced using 

wthPCFTHA in the pCDNA3 vector as a template. (ii) Eleven Cys residues were introduced from 

positions 241-251 using clhPCFTHA in pCDNA3 as a template. (iii) Additional mutants of 

His247 and His248, including amino acid replacements (Ala, Arg, Gln, Glu) or deletions [ΔH247 

(deletion of His247), ΔH247/ΔH248 (deletions of both His247 and His248), and ΔH247/H248A 

(His247 deletion, Ala248 replacement)], were generated using wthPCFTHA as a template. (iv) 

wthPCFTHA was used as a template for PCR to remove the TMD6-7 loop including amino acids 

236 to 265, generating dlhPCFTHA. With dlhPCFTHA as a template, we reintroduced 30 amino 

acids (positions 236 to 265) from hPCFT (designated pphPCFTHA; as a control) or from 

SLC19A2 (ThTr1; positions 250 to 279) (designated tthPCFTHA), or we replaced hPCFT 

sequence in 15 amino acid segments (positions 236 to 250 or positions 251 to 265) with ThTr1 

sequence (positions 250 to 264 or positions 265 to 279, respectively, from ThTr1), generating 

tphPCFTHA and pthPCFTHA, respectively. (v) Additional mutagenesis generated several new 

replacements at position 247 (Glu, Arg, Ala, His) or position 247 deletions, using tphPCFTHA, 

pthPCFTHA, and tthPCFTHA as templates. 
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 To generate the hPCFT-TMD1-6HA half-molecule construct, we used PCR to introduce a 

HA tag, followed by a stop codon after amino acid 251 of wthPCFTHA in pcDNA3. To create 

FLAGhPCFT-TMD7-12Myc-His10, we introduced EcoR1 cleavage sites following amino acids 24 

and 249 in full length wtFLAGhPCFTMyc-His10 by PCR. The mutant construct was digested with 

EcoR1 (New England Biolabs; Ipswich, MA) and the linearized fragment was gel-purified from 

a 1% agarose gel with a QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The fragment 

was religated (Promega, Fitchburg, WI) to reassemble FLAGhPCFT-TMD7-12Myc-His10 in 

pCDNA3, which contained a FLAG epitope following Met1, followed by amino acids 2-24 and 

252-459 from wild-type hPCFT sequence. We used additional mutagenesis to remove the 

TMD6-7 loop residues from the PCFT half-molecules, generating hPCFT-TMD1-6HA236-251Δ 

(residues 1-235) and FLAGhPCFT-TMD7-12Myc-His10252-265Δ (residues 1-24 and 266-459). 

In all cases, mutagenesis primers were designed with the QuikChangeTM Primer Design 

program and are available upon request. PCR conditions were 95° C for 30 s, 55° C for 1 min, 

and 68° C for 8 min for 16 cycles. All hPCFT mutant constructs were confirmed by DNA 

sequencing (Genewiz, Inc., South Plainfield, NJ). 

4.2.3 Cell Culture 

The human RFC and hPCFT-null R1-11 HeLa cell line was a gift from Dr. I. David 

Goldman (Bronx, NY) (Zhao et al., 2008). R1-11 cells were grown in RPMI 1640 media 

supplemented with 10% FBS, 2 mM L-glutamine, 100 units/ml penicillin/100 µg/ml 

streptomycin, and 600 µg/ml G418 and 500 nM MTX. For transfections with the hPCFT 

constructs, R1-11 cells were seeded in DMEM) supplemented with 10% FBS in 60 mm culture 

dishes at a density of 0.8 million cells per dish. After 24 hours, R1-11 cells were transiently 

transfected with hPCFT constructs (in pCDNA3) (above) at 1 µg DNA/plate using 
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Lipofectamine 2000 (10 µL/plate) in Opti-MEM, per the manufacturer’s instructions (Life 

Technologies, Carlsbad, CA). The transfection medium was replaced with DMEM, containing 

10% FBS, 4 hours after transfection.  

4.2.4 Membrane Transport 

Forty-eight hours after transfection of R1-11 cells, cellular uptake of [3H]MTX (0.5 µM) 

was measured at 37° C over 2 min. Uptake assays were performed in 60 mm dishes using MES-

buffered saline (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 mM glucose; pH 

5.5), as previously described (Hou et al., 2012). Dishes were washed three times with PBS and 

cells were solubilized in 0.5 N NaOH. Intracellular radioactivity was calculated in units of 

pmol/mg protein, based on measurements of radioactivity and protein concentrations of the 

alkaline cell homogenates (Lowry et al., 1951). To measure MTX transport kinetics for R1-11 

cells transfected with wthPCFTHA and hPCFT mutant constructs, [3H]MTX uptake was measured 

over 2 min at 37° C from 0.33 µM to 5 µM [3H]MTX, and results were analyzed using 

Lineweaver-Burke plots to calculate Kt and Vmax values. To determine Ki values for non-

radioactive substrates (folic acid, LCV), transfected cells were incubated with 0.5 µM [3H]MTX 

and unlabeled inhibitors from 0.3 µM to 1.5 µM, with results compared to those without 

inhibitors. Ki values were calculated from Dixon plots. To compare transport pH dependences 

for wthPCFTHA and hPCFT mutants, transport assays were conducted at pHs from 7.2 to 5.5. 

HEPES-buffered saline (20 mM HEPES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 mM 

glucose) was used for pHs 7.2 and 6.8, and MES-buffered saline (20 mM MES, 140 mM NaCl, 5 

mM KCl, 2 mM MgCl2, and 5 mM glucose) was used for pHs 6.5, 6.0, 5.8 and 5.5.  
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4.2.5 Surface Biotinylation with MTSEA-Biotin 

Forty-eight hours after transfection of R1-11 cells with hPCFT Cys mutants in 

clhPCFTHA (above), cells were treated with MTSEA-biotin (Biotium, Hayward, CA) to 

biotinylate aqueous accessible Cys residues exactly as previously described (see Chapter 2). 

4.2.6 Surface Protein Biotinylation with Sulfo-NHS (N-hydroxysuccinimide)-SS-Biotin 

We used the Cell Surface Labeling Accessory Pack (Thermo Scientific) to biotinylate and 

isolate surface membrane proteins. Forty-eight hours after transfection of R1-11 cells with the 

hPCFT constructs, the cells were treated with 0.25 mg/ml sulfo-NHS-SS-biotin in PBS at 4° C 

for 30 min. The cells were treated with lysis buffer, followed by sonication and centrifugation to 

remove the insoluble fraction. The supernatants were incubated with immobilized 

NeutrAvidinTM gel slurry for 1 h at room temperature, and the beads were washed five times 

with wash buffer. Proteins were eluted with 1× Laemmli sample buffer (Lowry et al., 1951) 

containing 50 mM dithiotheitol and analyzed by SDS/polyacrylamide gel electrophoresis 

(PAGE)/Western blotting (see below). All buffers (i.e., lysis, washing, elution) were 

supplemented with a protease inhibitor mixture (Roche Applied Science).  

4.2.7 Western Blotting 

Protocols for plasma membrane preparation, SDS-PAGE, and electrotransfer to 

polyvinylidene difluoride membranes (Pierce; Rockford, IL) were identical to those previously 

described (Hou et al., 2012; Matherly et al., 1991). For fractionation of crude membrane 

fractions, 10% SDS/PAGE gels were used. For fractionation of biotinylated surface membrane 

proteins, NovexTM 4-20% Tris-Glycine mini protein gels were used. Anti-HA antibody 

(Covance; Princeton, NJ), anti-Myc antibody (Covance) and IRDye800-conjugated secondary 

antibody were used with an Odyssey Infrared Imaging System (LI-COR, Lincoln, NE) to 
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identify HA- and Myc-tagged hPCFT proteins. Anti-β-actin (Sigma) or anti-Na+/K+ ATPase 

(Novus Biologicals, Littleton, CO) antibodies were used to establish equal protein loading. 

Densitometry values were calculated using the Odyssey Infrared Imaging System and software 

package. 

4.2.8 Confocal Microscopy  

R1-11 cells were seeded in Lab-Tek II Chamber Slides (Nalge Nunc International, 

Naperville, IL) at a density of 6.9×104 cells/well. After 24 hours, cells were transfected with 

hPCFT constructs in pCDNA3, as described above, using 88.7 ng of DNA and 0.86 µl of 

Lipofectamine 2000 per sample. Forty eight hours post-transfection, cells were fixed with 3.3% 

paraformaldehyde (in PBS) and permeabilized with 0.1% Triton X-100 (in PBS). Chamber slides 

were stained with primary antibodies, followed by incubation with secondary antibodies. The 

primary antibodies used were goat anti-HA polyclonal antibodies (Abcam, Cambridge, MA) and 

mouse anti-FLAG antibody (Sigma). Fluorescent secondary antibodies included Alexa Fluor® 

568 donkey anti-goat IgG (H+L) and Alexa Fluor® 488 donkey anti-mouse IgG (H+L) (Life 

Technologies). Slides were viewed with a Zeiss LSM-510 META NLO microscope, using a 63× 

water immersion lens and the same parameters for all samples. Confocal microscopy was 

performed in the Microscopy, Imaging, and Cytometry Resources Core at Wayne State 

University School of Medicine.  

4.2.9 Molecular Modeling 

We used the crystal structures of members of MFS transporters GlpT (1PW4; for 

pphPCFT) (Huang et al., 2003) and YajR (3WDO; for pt, tp and tthPCFT) (Jiang et al., 2013) as 

templates for homology modeling of hPCFT monomers containing varied 6-7 loop sequence 

replacements with Robetta Server (http://robetta.bakerlab.org). Modeling was based on the 
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notion that all crystal structures from members of MFS members have preserved tertiary 

structural elements during evolution, thus enabling published structures to extrapolate to other 

MFS members (Abramson et al., 2004; Lemieux, 2007; Vardy et al., 2004). The top hPCFT 

homology model retrieved through Robetta for each hPCFT form was superimposed by the 

SALIGN server (http://modbase.compbio.ucsf.edu/salign/). Structures were visualized with 

PyMol. The secondary structure of the 6-7 loop from each form was predicted with GOR4 

(Garnier et al., 1996). This modeling was performed by Zhanjun Hou (Karmanos Cancer 

Institute) and Jun Ye (Chinese Academy of Sciences). 

4.2.10 Statistical Analysis 

GraphPad v.6.0 software was used for plotting and data analysis including descriptive 

statistics.  

4.3 Results 

4.3.1 Homology Analysis and Cysteine Accessibilities of Positions 241-251 in the hPCFT 
TMD6-7 Loop Region 
  

Based on computer-predicted hydropathy models (Matherly et al., 2014; Zhao et al., 

2010), hPCFT contains twelve TMDs with cytosolic-oriented C- and N- termini and segments 

comprised of TMDs 1-6 and TMDs 7-12, connected by a long cytosolic-facing loop domain (30 

amino acids) between TMDs 6 and 7 (positions 236-265) (Figure 1.4). Portions of this topology 

structure have been confirmed experimentally (Zhao et al., 2010) (also see Chapter 2). We 

compared the amino acid sequences across the TMD6-7 loop in PCFTs from five species from 

Xenopus to humans. Of the 30 amino acids, seven residues were completely conserved among all 

five species, including Arg241, Leu242, Phe243, Arg246, His247, Leu254, and Arg264 

(numbering corresponds to hPCFT; Figure 4.1). His247 was previously implicated from site- 
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Zebrafish   256 PDPQARLFSTRHHQAVCRLYSSDAPPGRRS 285   

   Xenopus   240 DKKPARLFTHRHYQSFFRLFTVQGENNRRR 269   
        Cattle   236 ERTPTRLFTLRHHRSVIQLYVTQAPEKSRK 265   

   Mouse   236 EPKSTRLFTLRHHRSIARLYVVPAPEKSRM 265   

   Human  236 EPKSTRLFTFRHHRSIVQLYVAPAPEKSRK 265 
 
Figure 4.1 Sequence alignment of the PCFT TMD6-7 connecting loop across five species 
including zebrafish, xenopus, cattle, mouse, and human. The color codes are as follows: red, 
residues are conserved across all species; green, residues are conserved across three or four 
species; blue, residues are similar across species; and black, residues are not similar. Figure 
previously published in Wilson et. al. Biochem J. 2016. 
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directed mutagenesis and molecular homology modeling to be important in hPCFT transport by 

virtue of its location at the putative cytoplasmic opening to the membrane translocation pathway 

(Unal et al., 2009a).  

Previous studies used SCAM and MTSEA-biotin reactivity with Cys insertions at Thr240 

and Glu261 in the TMD6-7 loop of clhPCFTHA to establish the likely cytosolic orientations at 

these positions (Zhao et al., 2010). To further establish the aqueous accessibilities (i.e., 

membrane topology) of amino acids comprising the TMD6-7 loop, particularly the conserved 

stretch from positions 241 to 247, we generated 11 Cys replacements from positions 241-251, 

using clhPCFTHA as a template for site-directed mutagenesis. As we previously reported, 

clhPCFTHA exhibits functional characteristics virtually identical to those for wthPCFTHA (see 

Chapter 2). The Cys mutant constructs were transfected into hPCFT-null R1-11 cells and were 

assayed for [3H]MTX transport at pH 5.5 and 37oC (Figure 4.2A) and for hPCFT protein 

expression on Western blots (Figures 4.2B-C). Results were compared to those for clhPCFTHA 

transfected cells and for untransfected R1-11 cells. We found that all hPCFT Cys mutants were 

expressed in crude membrane fractions (as broadly banding glycosylated proteins on 10% gels) 

(~21% to ~54% of clhPCFTHA levels by densitometry; Figure 4.2B) and that most mutants were 

active for [3H]MTX transport [~55%-100% of clhPCFTHA transport (Figure 4.2A); all uptakes 

were significantly greater than for R1-11 cells], although activities for two Cys mutants, L242C 

and H247C, were notably decreased (18.3% and 12.4%, respectively, of clhPCFTHA uptake; p < 

0.0002). These decreases were accompanied by reduced surface protein expression relative to 

clhPCFT (28% for L242C, 29% for H247C) (Figure 4.2C). 

To establish aqueous accessibilities, we treated the 11 Cys mutants with membrane 

impermeable MTSEA-biotin, using G207C in the TMD5-6 external loop and S110C in the  
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Figure 4.2 Scanning Cys-insertion mutagenesis for positions 241-251 in the TMD6-7 
connecting loop. Panel A, hPCFT single-Cys mutants from positions 241-251 in a clhPCFTHA 

background were transiently transfected into hPCFT-null R1-11 cells. Transport activity was 
measured after 48 h with [3H]MTX (0.5 µM) over 2 min at pH 5.5 and at 37oC. Results 
expressed as a percentage of clhPCFTHA activity and reported as mean values ± S.E. (error bars) 
from triplicate experiments. All single-Cys mutants were significantly more active than the non-
transfected R1-11 control (p<0.05). Panel B, Western blots are shown for membrane proteins (10 
µg) from HA-tagged hPCFT Cys mutants, compared clhPCFTHA transfected and untransfected 
R1-11 cells. Densitometry (as relative percentages, noted below each lane) is representative of 
duplicate experiments and was normalized to β-actin expression. Migrations of molecular mass 
standard proteins (in kDa) are shown. Panel C, HA-tagged hPCFT surface membrane proteins 
(40 µg) were labeled with sulfo-NHS-SS-biotin (0.25 mg/ml) and isolated on immobilized 
NeutrAvidinTM gel. Biotinylated proteins were analyzed by SDS/PAGE and Western blotting. 
Relative densitometry is representative of duplicate experiments and is normalized to Na+/K+ 
ATPase expression. Migrations of molecular mass standard proteins (in kDa) are shown. Panel 
D, Substituted Cys accessibility analysis for positions 241-251 in the TMD6-7 connecting loop. 
TMD6-7 loop single-Cys mutants were transiently transfected into R1-11 cells. Cells were 
treated with MTSEA-biotin (0.2 mg/mL) 48 h later. After 30 min, cells were harvested, and 
membranes prepared, solubilized and incubated with streptavidin beads in order to pull-down 
biotinylated proteins. Biotinylated proteins were eluted and analyzed by Western blotting using 
an anti-HA antibody (labeled “Pull-down”). A 25 µl aliquot of the crude membrane fraction prior 
to exposure to streptavidin beads was also analyzed by Western blotting as a control (labeled 
“Membrane”). The S110C and G207C mutants (located in the 1st intracellular (reentrant) loop 
and 3rd extracellular loop, respectively) were used as positive controls and clhPCFTHA was a 
negative control. Figure previously published in Wilson et. al. Biochem J. 2016.  
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TMD2-3 reentrant loop as positive controls (see Chapter 2). Following MTSEA-biotin 

treatments, biotinylated proteins were “pulled down” with streptavidin beads and analyzed on 

Western blots with HA-specific antibody. Whereas G207C and S110C were biotinylated, none of 

the 11 Cys mutants from positions 241-251 were biotinylated (Figure 4.2D). These results 

suggest that residues in the TMD6-7 loop are not accessible to the extracellular aqueous milieu, 

and that the TMD6-7 loop does indeed have a cytosolic orientation, as predicted by the hPCFT 

hydropathy model (Matherly et al., 2014), analogous to other MFS proteins such as RFC (Liu 

and Matherly, 2002). 

4.3.2 Scanning Alanine Mutagenesis Across the hPCFT TMD6-7 Loop Region 

To explore the functional importance of the TMD6-7 loop region in hPCFT membrane 

transport, we used scanning alanine mutagenesis with wthPCFTHA in pCDNA3 to generate 

alanine replacement mutants from positions 236 to 266 (positions 257 and 259 are already 

alanines). Each of the 29 alanine mutant constructs was transfected into R1-11 Hela cells, and 

after 48 hours the transfectants were assayed for [3H]MTX transport (Figure 4.3A), and for 

hPCFT membrane protein expression (Figure 4.3B), compared to wthPCFTHA. All of the hPCFT 

mutants were expressed, although there were some variations (measured by densitometry), 

ranging from ~28% (for S250A) to ~128% (for P260A) of the wthPCFTHA level. Twenty-six of 

the alanine mutants showed high levels of transport (~60-110% of wthPCFTHA). Although three 

mutants (H247A, S250A, I251A) were notably less active (13%, 15%, and 13%, respectively, of 

wthPCFTHA; p < 0.0001), they were nonetheless significantly more active than the non-

transfected negative control (R1-11; p < 0.01) (Figure 4.3A). In each case, loss of transport 

activity and hPCFT expression in crude membranes was related to loss in surface membrane  
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Figure 4.3 Alanine-scanning mutagenesis of residues 236-266 in the TMD6-7connecting 
loop. Panel A, Alanine mutants were generated in wthPCFTHA from positions 236-266 spanning 
the TMD6-7 connecting loop and transfected into hPCFT-null R1-11 cells. Transport activity 
was measured after 48 h with [3H]MTX over 2 min at pH 5.5 and at 37oC. Results are expressed 
as a percentage of wthPCFTHA activity and are reported as mean values ± standard errors (error 
bars) from triplicate experiments. All the alanine mutants were significantly more active than the 
non-transfected control, R1-11 (p<0.05). Panel B, Western blots are shown for membrane 
proteins (10 µg) from HA-tagged hPCFT alanine mutants. Densitometry (as relative percentages, 
noted below each lane) is representative of duplicate experiments and was normalized to β-actin 
expression. Migrations of molecular mass standard proteins (in kDa) are shown. Panel C, HA-
tagged hPCFT surface membrane proteins (40 µg) were labeled with sulfo-NHS-SS-biotin (0.25 
mg/ml) and isolated on immobilized NeutrAvidinTM gel. Biotinylated proteins were analyzed by 
SDS/PAGE and Western blotting. Relative densitometry is representative of duplicate 
experiments and is normalized to Na+/K+ ATPase expression. Migrations of molecular mass 
standard proteins (in kDa) are shown. Figure previously published in Wilson et. al. Biochem J. 
2016. 
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expression (Figure 4.3C; relative surface expression by densitometry of 51% for H247A, 11% 

for S250A, and 63% for I251A, compared to the wthPCFT level). 

Taken with the results of the Cys-scanning mutagenesis (Figure 4.2), these results imply 

that most of the residues comprising the hPCFT TMD6-7 loop region are not essential for 

transport. When comparing results for Cys and alanine substitutions across the TMD6-7 loop, 

His247 in the conserved RLFXXRH motif (positions 241-247; Figure 4.1) was the only amino 

acid for which its replacement consistently caused a significant loss of transport activity. 

4.3.3 Co-expression of hPCFT TMD1-6 and TMD7-12 Half-Molecules 

To further investigate the functional and structural roles of the hPCFT TMD6-7 

connecting loop, we generated hPCFT “half-molecule” constructs. These include hPCFT-TMD1-

6HA, comprised of amino acids 1-251 (TMDs 1-6) with a C-terminal HA epitope, and 

FLAGhPCFT-TMD7-12Myc-His10, comprised of amino acids 252-459 (TMDs 7-12) and an N-

terminal FLAG epitope just after Met1, followed by 23 N-terminal amino acids (residues 2-24) 

and a C-terminal Myc-His10 (see schematic in Figure 4.4A).  

The hPCFT half-molecule constructs were expressed in R1-11 HeLa cells both 

individually and together, which were then assayed for restoration of [3H]MTX transport and 

protein expression. Results were compared to those for wthPCFTHA and wtFLAGhPCFTMyc-His10 

transfectants, and for untransfected R1-11 cells. When transfected separately, individual half-

molecules were detected on Westerns (Figure 4.4D) but were unable to restore transport activity 

above the low residual level in R1-11 cells (Figure 4.4B). The HA signal on the Westerns for 

hPCFT-TMD1-6HA was notably decreased (48%) compared to that for wthPCFTHA (Figure 4.4D, 

left panel); the Myc signal for FLAGhPCFT-TMD7-12Myc-His10 was ~12% compared to 

wtFLAGhPCFTMyc-His10 (Figure 4.4D, right panel). Cotransfection of hPCFT-TMD1-6HA with  
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Figure 4.4 Expression of TMD1-6 and TMD7-12 hPCFT half-molecules. Panel A, A 
schematic is shown of all half-molecule constructs/proteins. Panel B, Half-molecule constructs 
were transiently transfected into R1-11 cells both individually and together. Transport activity 
was measured after 48 h by [3H]MTX uptake assays over 2 min at pH 5.5 and at 37oC. Results 
are expressed as a percentage of wthPCFTHA activity and are reported as mean values ± standard 
errors (error bars) from triplicate experiments. Transport by the individual hPCFT-TMD1-6HA 
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and FLAGhPCFT-TMD7-12Myc-His10 transfectants was not significantly greater than for negative 
control R1-11 cells (p > 0.05). However, when transfected together, hPCFT-TMD1-6HA and 

FLAGhPCFT-TMD7-12Myc-His10 showed significantly increased transport activity, exceeding that 
for R1-11 cells. hPCFT-TMD1-6HA/ FLAGhPCFT-TMD7-12Myc-His10Δ252-265 cotransfection also 
restored transport activity over R1-11 cells (p < 0.05) which was not statistically different from 
that for the hPCFT-TMD1-6HA/FLAGhPCFT-TMD7-12Myc-His10 cotransfected cells (p > 0.05) (* 
indicates an increased level of transport over R1-11; p < 0.05). Panel C, [3H]MTX transport 
activity of wthPCFTHA and hPCFT-TMD1-6HA/FLAGhPCFT-TMD7-12Myc-His10 transfectants at 
pHs from 5.5 to 7.2 is shown. Uptake for each transfectant (wthPCFTHA and hPCFT-TMD1-6HA/ 

FLAGhPCFT-TMD7-12Myc-His10) was normalized to its own uptake at pH 5.5. Panel D, Western 
blots are shown for membrane proteins (10 µg) from HA-tagged or Myc-tagged hPCFT half-
molecules. Densitometry (as relative percentages, noted below each lane) is representative of 
duplicate experiments and was normalized to β-actin. Migrations of molecular mass standard 
proteins (in kDa) are shown. Panel E, HA- and Myc-tagged hPCFT surface membrane proteins 
(40 µg) were labeled with sulfo-NHS-SS-biotin (0.25 mg/ml) and isolated on immobilized 
NeutrAvidinTM gel. Proteins were analyzed by SDS/PAGE and Western blotting. Relative 
densitometry (as relative percentages, noted below each lane) is representative of duplicate 
experiments and was normalized to Na+/K+ ATPase expression. Migrations of molecular mass 
standard proteins (in kDa) are shown. Panel F, Confocal microscopy of hPCFT TMD1-6 and 
TMD7-12 half-molecules. Results are shown for HeLa R1-11 cells transfected with wthPCFTHA 
or co-transfected with hPCFT-TMD1-6HA and FLAGhPCFT-TMD7-12Myc-His10 constructs. 
Transfected cells were fixed with 3.3% paraformaldehyde, permeabilized with 0.1% Triton X-
100, and stained with Alexa Fluor® 488-conjugated (for FLAG-tagged PCFT; green) or Alexa 
Fluor® 568-conjugated (for HA-tagged hPCFT; red) secondary antibodies. Images were 
obtained using a Zeiss LSM-510 META NLO using a 63x water immersion lens. Staining is 
shown for the individual fluors and as a merged image. Figure previously published in Wilson et. 
al. Biochem J. 2016. 
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FLAGhPCFT-TMD7-12Myc-His10 resulted in an increased level of FLAGhPCFT-TMD7-12Myc-His10 

over the individual transfectant, accompanying a modest restoration of transport activity (5.3% 

of wthPCFTHA) that was significantly higher than for the non-transfected R1-11 cells (p < 0.05) 

(Figure 4.4B). By confocal microscopy, hPCFT-TMD1-6HA and FLAGhPCFT-TMD7-12Myc-His10 

were co-expressed and at least a portion co-localized to the cell surface, although significant 

intracellular fluorescence for both hPCFT-TMD1-6HA and FLAGhPCFT-TMD7-12Myc-His10 was 

detected (Figure 4.4F). Surface expression of co-expressed hPCFT-TMD1-6HA and FLAGhPCFT-

TMD7-12Myc-His10 was confirmed by surface biotinylation (Figure 4.4E). Transport activity for 

the hPCFT-TMD1-6HA and FLAGhPCFT-TMD7-12Myc-His10 co-transfected cells showed the 

characteristic pH dependence for PCFT transport that was essentially identical to that for 

wthPCFTHA (Figure 4.4C).  

Since hPCFT-TMD1-6HA and FLAGhPCFT-TMD7-12Myc-His10 included TMD6-7 loop 

sequence (residues 236-251 and 252-265, respectively), we created and expressed two variant 

half-molecule constructs in which segments of the TMD6-7 loop were deleted. These constructs 

are hPCFT-TMD1-6Δ236-251HA (TMD1-6Δ), comprised of PCFT amino acids 1-235, and 

FLAGhPCFT-TMD7-12Δ252-265Myc-His10 (TMD7-12Δ), comprised of PCFT amino acids 1-24 and 

266-459 (Figure 4.4A). Low levels of hPCFT-TMD1-6Δ236-251HA and FLAGhPCFT-TMD7-

12Δ252-265Myc-His10 were detected on Westerns when transfected both singly and in combination 

(Figure 4.4D). Surface biotinylation confirmed surface expression of the co-expressed half-

molecules (Figure 4.4E), paralleling patterns seen in crude membrane fractions (Figure 4.4D). 

Deletion of the residual loop sequence from both half-molecule constructs (hPCFT-TMD1-

6Δ236-251HA and FLAGhPCFT-TMD7-12Δ252-265Myc-His10) abolished the modest transport 

activity recorded for combined hPCFT-TMD1-6Δ236-251HA with FLAGhPCFT-TMD7-12Myc-His10 
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(Figure 4.4B). Whereas hPCFT-TMD1-6HA (including amino acids 236-251) combined with 

FLAGhPCFT-TMD7-12Δ252-265Myc-His10 failed to restore transport above that for R1-11 cells, co-

transfection of hPCFT-TMD1-6Δ236-251HA with FLAGhPCFT-TMD7-12Myc-His10 (including 

amino acids 252-265) restored low level transport activity (4.2% of wthPCFTHA), greater than for 

R1-11 cells (p < 0.05) and equivalent to that for combined hPCFT-TMD1-6HA and FLAGhPCFT-

TMD7-12Myc-His10.  

 Collectively, these results demonstrate that transport function can be partly restored by 

expressing hPCFT as separate TMD1-6 and TMD7-12 half-molecules and suggest that the 252-

265 loop segment (but not amino acids 236-251) is essential for this restored transport activity.  

4.3.4 Expression of hPCFT-ThTr1 TMD6-7 Loop Chimeric Transporters  

The thiamine transporter ThTr1 (SLC19A2) is less than 20% homologous to hPCFT at 

the amino acid level and there is an almost complete loss of amino acid identity across the 

TMD6-7 loop domains for hPCFT and ThTr1 (Figure 4.5A). To further examine the primary 

sequence requirement for the hPCFT TMD6-7 loop (amino acids 236-265), we replaced this 

stretch in hPCFT with structurally analogous but non-homologous sequence from the TMD6-7 

loop of ThTr1 (amino acids 250-279) (Figure 4.5A). 

To achieve this, we first removed the nucleotide sequence encoding amino acids 236-265 

from wthPCFTHA by PCR, generating dlhPCFTHA (Figure 4.5A). Using dlhPCFTHA as a 

template, we then reintroduced hPCFT 236-265 sequence (designated pphPCFTHA; as a control) 

or ThTr1 250-279 sequence (tthPCFTHA). Two additional mutant constructs were generated with 

partial (15 amino acids) TMD6-7 loop replacements. These include pthPCFTHA, with amino 

acids 236-250 from hPCFT, followed by amino acids 265-279 from ThTr1, and tphPCFTHA, 

with amino acids 250-264 from ThTr1, followed by amino acids 251-265 from hPCFT (Figure 



 

 

91 

 
Figure 4.5 Expression of hPCFT-ThTr1 chimeric transporters with replacement of the 
hPCFT TMD6-7 loop with ThTr1 sequence. Panel A, A schematic is shown of the ThTr1 
sequence replacements for pphPCFTHA, pthPCFTHA, tphPCFTHA, and tthPCFTHA. Mutants were 
generated first by removing amino acid residues 236-265 through PCR mutagenesis 
(dlhPCFTHA) and then inserting new sequence. pphPCFTHA serves as a positive control and 
contains an exact replacement of the hPCFT residues 236-265. tthPCFTHA contains ThTr1 
residues 250-279 in place of hPCFT residues 236-265. The TMD6-7 loop of pthPCFTHA 
contains hPCFT residues 236-250, followed by ThTr1 residues 265-279. The TMD6-7 loop of 
tphPCFTHA contains ThTr1 residues 250-264, followed by hPCFT residues 251-265. Panels B, 
hPCFT/ThTr1 chimera mutants were transiently transfected into R1-11 cells. Transport activity 
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was measured after 48 h by [3H]MTX uptake assays over 2 min at pH 5.5 and at 37o C. Results 
are expressed as a percentage of wthPCFTHA activity and are reported as mean values ± standard 
errors (error bars) from triplicate experiments. All hPCFT-ThTr1 chimera proteins were 
significantly more active than for the non-transfected control, R1-11. Transport for dlhPCFTHA 
and tthPCFTHA-E247H was insignificantly different from that for R1-11 cells (* indicates that 
transport activity is not significantly different than R1-11; p > 0.05). Panel C, Western blots are 
shown for membrane proteins (10 µg) from HA-tagged hPCFT chimera mutants. Densitometry 
(as relative percentages, noted below each lane) is representative of duplicate experiments and 
was normalized to β-actin levels. Migrations of molecular mass standard proteins (in kDa) are 
shown. Panel D, HA-tagged hPCFT surface membrane proteins (40 µg) were labeled with sulfo-
NHS-SS-biotin (0.25 mg/ml) and isolated on immobilized NeutrAvidinTM gel. Biotinylated 
proteins were analyzed by SDS/PAGE and Western blotting. Relative densitometry (as relative 
percentages, noted below each lane) is representative of duplicate experiments and was 
normalized to Na+/K+ ATPase expression. Migrations of molecular mass standard proteins (in 
kDa) are shown. Panel E, R1-11 cells expressing hPCFT/ThTr1 chimera mutant proteins were 
tested for [3H]MTX transport activity as in panel B, using MES- and HEPES-buffered saline, as 
appropriate, at different pHs. Uptake for each mutant at the individual pHs was normalized to 
uptake at pH 5.5 (* indicates that mutant PCFT transport showed a greater decrease from pH 5.5 
to pH 6.0 than wthPCFT; p < 0.05). Figure previously published in Wilson et. al. Biochem J. 
2016. 
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4.5A). All hPCFT mutant constructs were transiently expressed in R1-11 HeLa cells and were 

assayed for hPCFT levels on Westerns and for [3H]MTX uptake compared to wthPCFTHA 

(Figures 4.5B and C). 

The re-engineered full-length hPCFT (pphPCFTHA) showed a modest decrease in 

transport activity (~85% of wthPCFTHA; Figure 4.5B), accompanying slightly decreased hPCFT 

protein expression (Figures 4.5C), including surface hPCFT (Figure 4.5D). Complete removal of 

the hPCFT TMD6-7 loop sequence (residues 236-265) in dlhPCFTHA abolished [3H]MTX 

transport (< 2% of wthPCFTHA), reflecting a significant loss of membrane (Figure 4.5C) and 

surface (Figure 4.5D) hPCFT protein. Complete replacement of the 236-265 hPCFT sequence 

with amino acids 265-279 from ThTr1 (tthPCFTHA) likewise resulted in low expression and 

activity (~2% of wthPCFTHA, although this was significantly higher than R1-11 transport; p < 

0.0001) (Figures 4.5B-D). Replacement of either the C-terminal TMD6-7 loop fragment (amino 

acids 251-265) in pthPCFTHA or the N-terminal fragment (amino acids 236-250) in tphPCFTHA 

with ThTr1 sequence preserved significant transport (23% and 11%, respectively; Figure 4.5B). 

Compared to wthPCFTHA, pthPCFTHA and tphPCFTHA showed insignificant differences in 

binding affinities for assorted transport substrates (as reflected in Kt and Ki values; Table 4.1) 

and only minor differences in pH dependence for transport (Figure 4.5E). The reduced transport 

activity relative to wthPCFTHA appeared to be entirely due to decreased Vmax values (measured 

with [3H]MTX; Table 4.1) and was reflected in levels of membrane (Figure 4.5C) and surface 

(Figure 4.5D) hPCFTHA proteins on Western blots.  

To better understand functional differences between wild-type hPCFT and the hPCFT-

ThTr1 chimeric transporters with various TMD6-7 loop sequence replacements in relation to 

structure, we used molecular homology modeling. Superimposition of structural models for the  
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Table 4.1 

Kinetic Analysis of wthPCFTHA, His247 hPCFT Substitution and Deletion Mutants, and 
hPCFT/ThTr1 Chimera Proteins. 

Constant Kt (µM) Vmax 
(pmol/mg/min) 

Vmax/Kt Ki (µM) Ki (µM) 

hPCFT variant  MTX FA LCV 
wthPCFTHA 0.75 ± 0.10 261.5 ± 28.3 414.3 ± 80.1 0.59 ± 0.08 0.38 ± 0.08 
wt-H247A 0.18 ± 0.01* 10.8 ± 1.06* 60.8 ± 10.7* 0.12 ± 0.03* 0.13 ± 0.02 
wt-ΔH247 0.54 ± 0.05 67.6 ± 12.2* 122.8 ± 24.8 0.27 ± 0.07 0.25 ± 0.06 

wt-ΔH247/ΔH248 0.82 ± 0.07 101.6 ± 7.7* 125.8 ± 15.3 0.46 ± 0.12 0.46 ± 0.13 
tphPCFT 0.99 ± 0.21 63.0 ± 10.1* 73.6 ± 20.9* 0.71 ± 0.16 0.29 ± 0.06 
tp-E247H 1.00 ± 0.10 141.6 ± 20.0*# 150.2 ± 31.1 0.47 ± 0.06 0.72 ± 0.11# 

tp-E247R 1.50 ± 0.17* 276.8 ± 30.5# 194.5 ± 30.1# 0.60 ± 0.12 0.53 ± 0.18 
pthPCFT 0.77 ± 0.07 68.0 ± 10.9* 92.0 ± 20.0* 0.55 ± 0.13 0.17 ± 0.06 

 
wthPCFTHA and hPCFTHA mutants were transiently transfected into R1-11 cells, and 48 h later, 
[3H]MTX uptake was assayed at pH 5.5 over 2 min at 37oC. To determine Kt and Vmax values, 
cells were treated with [3H]MTX with concentrations between 0.33 µM and 5 µM, and results 
were analyzed by Lineweaver-Burke plots. To determine Ki values, cells were incubated with 0.5 
µM [3H]MTX with folic acid (FA) and LCV as competitors from 0.3 µM to 1.5 µM, with results 
analyzed by Dixon plots. Data are presented as mean values ± standard errors from four 
independent experiments. Values significantly different from those for wthPCFTHA (p < 0.05) are 
marked with *. Values significantly different from tphPCFTHA (p < 0.05) are marked with # (only 
tp-E247H and tp-E247R were compared to tphPCFT). Table previously published in Wilson et. 
al. Biochem J. 2016.  
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wt-, pt-, tp-, and tthPCFT proteins gave a composite RMSD value of 1.2 Å for 234 Cα atoms 

from 10 transmembrane helices (TMDs 1-10), implying that the overall structures of these 

various hPCFT forms were almost identical (Figure 4.6A). This suggests that the sequence 

composition of the TMD6-7 loop has minimal impact on overall folding of the hPCFT protein. 

We also considered isolated conformational changes involving the TMD6-7 loop domain that 

may impact transport activity for the individual hPCFT insertion mutants compared to wild-type 

PCFT. We explored the secondary structure changes in the hPCFT TMD6-7 loop domain for the 

hPCFT-ThTr1 chimeric proteins, using the secondary structure prediction tool GOR4 (Garnier et 

al., 1996). Whereas wild-type hPCFT showed significant α-helix (16.7%) for this region, this 

was lost for the insertion mutants (tphPCFTHA, pthPCFTHA, and tthPCFTHA). This loss of α-

helical structure for the TMD6-7 mutant proteins was accompanied by progressively increased 

random coil structures, as reflected in major conformational changes (Figure 4.6B), from 60% 

for wtPCFT to 70% for pthPCFT, 80% for tphPCFT and 87% for tthPCFT. Thus, there is an 

inverse relationship between the extent of random coil for the TMD6-7 loop region and hPCFT 

transport activity.  

These results establish that the TMD6-7 loop is important for hPCFT transport activity. 

However, this functional role likely depends on preservation of secondary structure rather than 

particular sequence motifs.  

4.3.5 Characterization of His247 Substitution and Deletion Mutants in Wild-Type hPCFT 

and hPCFT-ThTr1 Chimera Transporters  

 While the above studies imply a relative independence of the TMD6-7 loop primary 

sequence for transport activity, scanning alanine and cysteine mutagenesis (Figures 4.2 and 4.3)  
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Figure 4.6 Protein modeling of PCFT/ThTr1 chimera mutants. Panels A and B, hPCFT 
protein modeling using Robetta and SALIGN software, as described in Materials and Methods. 
hPCFT TMDs 1-12 only, (including TMDs 1, 2, 4 5, 7, 8, 10, and 11, predicted to form the 
transmembrane translocation pathway), as a composite structure from pphPCFTHA (green), 
pthPCFTHA (pink), tphPCFTHA (cyan), and tthPCFTHA (yellow). In Panel B, the TMD6-7 loop is 
highlighted and can be distinguished from TMDs1-12 (grey) including pphPCFTHA (green), 
pthPCFTHA (pink), tphPCFTHA (cyan), and tthPCFTHA (yellow). Modeling done in collaboration 
with Zhanjun Hou and Jun Ye. Figure previously published in Wilson et. al. Biochem J. 2016. 
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nonetheless identified His247 as a residue for which its replacement consistently caused a 

significant loss of transport activity. Unal et al. previously showed that amino acid substitutions 

(Ala, Arg, Gln, Glu) at position 247 had various effects on hPCFT transport activity (Unal et al., 

2009a). All of these mutants were expressed (Figure 4.7B) and relative to wild-type hPCFT 

(wthPCFTHA), activity ranged from ~5% for wt-H247R to ~13% for wt-H247A, and ~26% and 

~28% for wt-H247E and wt-H247Q, respectively (Figure 4.7A).   

Interestingly, the impact of position 247 replacements was much different for the hPCFT-

ThTr1 chimeric transporters. For the partially active tphPCFTHA mutant with a glutamate at 

position 247, substitution with alanine (tp-E247A) resulted in decreased transport (3% of 

wthPCFT), while re-introduction of histidine (tp-E247H) or replacement with glutamine (tp-

E247Q) subtly increased transport over tphPCFTHA (~19% and ~22.4% of wthPCFT, 

respectively) (Figure 4.7A). Arginine insertion at position 247 of tphPCFT restored transport 

activity at ~50% of the wthPCFT level. These effects on activity for tp-E247H and tp-E247R 

were accompanied by disproportionately elevated Vmax values compared to tphPCFT (Table 4.1), 

even when normalized to surface expression levels on Western blots (Figure 4.5D). While the Ki 

for LCV was increased for tp-E247H compared to tphPCFT, for both tp-E247H and tp-E247R, 

there were minor differences in pH dependences for transport compared to tphPCFT (Figure 

4.7F).  

For pthPCFT, the effects of alanine, arginine, glutamine and glutamic acid substitutions 

for His247 on transport activity (Figure 4.7A) and expression (Figure 4.7B) were nominal. 

Histidine insertion at position 247 in tthPCFT resulted in a subtle but significant decrease in 

activity (from 2% of wthPCFTHA for tthPCFT to 1% for tt-E247H) (p < 0.05) (Figure 4.7A).  
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Figure 4.7 Analysis of 247/248 substitution and deletion mutants. Panels A and C, Amino 
acid substitution and deletion mutants were generated from wthPCFTHA, pthPCFTHA , 
tphPCFTHA , and tthPCFTHA, as described in the text, and were transfected into R1-11 cells. 
Transport activity was measured after 48 h with [3H]MTX (0.5 µM) over 2 min at pH 5.5 and at 
37oC. Results are expressed as a percentage of wthPCFTHA activity and are reported as mean 
values ± standard errors (error bars) from triplicate experiments. With the exception of tt-E247H, 
all mutants were significantly more active than the non-transfected control, R1-11 (p<0.05) [* 
indicates where transport activity is significantly different from parent wt-, pt-, tp-, or tthPCFTHA, 
as appropriate; p < 0.05]. Panels B and D, Western blots are shown for membrane proteins (10 
µg) from HA-tagged hPCFT 247/248 substitution and deletion mutants. Densitometry (as 
relative percentages, noted below each lane) is representative of duplicate experiments and was 
normalized to β-actin expression. Migrations of molecular mass standard proteins (in kDa) are 
shown. Panel E, HA-tagged hPCFT surface membrane proteins (40 µg) were labeled with sulfo-
NHS-SS-biotin (0.25 mg/ml) and isolated on immobilized NeutrAvidinTM gel. Biotinylated 
proteins were analyzed by SDS/PAGE and Western blotting. Relative densitometry (as relative 
percentages, noted below each lane) is representative of duplicate experiments and results for 
hPCFT were normalized to Na+/K+ ATPase expression. Migrations of molecular mass standard 
proteins (in kDa) are shown. Panel F, R1-11 cells expressing hPCFT His247 mutant proteins 
were tested for [3H]MTX transport activity as in panel A, using MES- and HEPES- buffered 
saline, as appropriate, at various pHs. Uptake for each mutant at the individual pHs was 
normalized to uptake at pH 5.5 (* indicates that mutant PCFT transport showed a greater 
decrease from pH 5.5 to pH 6.0 than wthPCFT; p < 0.05). Figure previously published in Wilson 
et. al. Biochem J. 2016. 
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To further characterize the functional importance of His247 to hPCFT transport, we 

deleted this residue entirely, using wthPCFTHA as a template, generating wt-ΔH247. Since 

His247 in hPCFT is followed by His248 (thus, effectively replacing His247 in the wt-ΔH247 

mutant), we also created three additional mutants in the wthPCFTHA background. These include 

wt-H247A/H248A, in which both His247 and His248 are mutated to alanine, wt-ΔH247/ΔH248, 

in which both histidines are deleted, and wt-ΔH247/H248A, in which His247 is deleted and 

His248 is replaced by alanine. ΔH247 and ΔE247 deletion mutants were also prepared for 

pthPCFTHA and tphPCFTHA, respectively.   

All of the wild-type hPCFT His deletion mutants showed similar, albeit slightly 

decreased, levels of PCFTHA protein from that for wthPCFTHA (Figure 4.7D). Interestingly, for 

wt-ΔH247, wt-ΔH247/ΔH248 and wt-ΔH247/H248A, transport activity was significantly 

increased over that for wt-H247A (p < 0.05) (Figure 4.7C); for wt-ΔH247 and wt-ΔH247/ΔH248 

transport approximated ~46% and ~64%, respectively, of wthPCFTHA levels. Increased activity 

for wt-ΔH247 and wt-ΔH247/ΔH248 compared to wt-H247A hPCFT was accompanied by 

slightly increased surface protein (Figure 4.7E). When transport was normalized to surface 

hPCFT levels, this gave ~75% and ~93% of that of wthPCFTHA for wt-ΔH247 and wt-

ΔH247/ΔH248, respectively. While position 247 deletion in tphPCFT (tp-ΔE247) also increased 

transport activity compared to tpE247A (23% of wthPCFT), position 247 deletion in pthPCFT 

(pt-ΔH247) resulted in a subtle decrease in transport activity (14% of wthPCFTHA for pt-ΔH247 

compared to 23% for pthPCFT) (p < 0.05) (Figure 4.7A).  

We examined transport characteristics for the restored transport activity of the wt-ΔH247, 

and wt-ΔH247/ΔH248 mutants compared to H247A and wthPCFTHA, including pH dependences 

and transport kinetics. There were no differences in the pH profiles between mutant and wild-
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type PCFTs, as maximal transport activity was measured at pH 5.5 and decreased with increasing 

pH (Figure 4.7F). By kinetic analysis, wt-H247A showed decreases in both Kt (4.2-fold) and 

Vmax (26.7-fold) for MTX compared to wthPCFTHA (Table 4.1), similar to published results by 

Unal et al (Unal et al., 2009a). Interestingly, for the deletion mutants (wt-ΔH247 and wt-

ΔH247/ΔH248), the MTX Kts were restored to approximate the wild-type values, accompanying 

increased Vmax values, compared to H247A (Table 4.1). The latter reflect increased surface 

hPCFT, as noted above (Figure 4.7E). Analogous patterns were seen in the Kis for both folic acid 

and LCV for the wt-H247A, wt-ΔH247, and wt-ΔH247/ΔH248 mutants, determined by Dixon 

analysis from the inhibition of [3H]MTX uptake.  

Overall, our results suggest that neither His247 nor His248 is absolutely essential for 

hPCFT transport. Whereas wt-H247A resulted in increased affinity for transport substrates, 

His247 deletion had no impact on substrate binding (as reflected in the Kt and Ki values for 

various substrates). The decreased Vmax values for wt-H247A, wt-ΔH247, and wt-ΔH247/ΔH248 

mutants were all accompanied by reduced surface hPCFT levels, suggesting decreased stability 

(and intracellular trafficking) for these mutant transporters compared to wild-type hPCFT.  

4.4 Discussion 

 hPCFT is predicted to be formed from distinct TMD1-6 and TMD7-12 segments, with 

the longest of its 11 connecting loop domains linking TMDs 6 and 7 comprised of amino acids 

236-265. In this chapter, we explored the structure and transport function of the TMD6-7 

connecting loop using a range of complementary approaches.  

(i) Ala and Cys substitutions mutagenesis across the TMD6-7 loop identified His247 as 

the only amino acid residue in this stretch for which its replacement consistently and 

substantially suppressed transport activity. However, deletion of His247 significantly restored 
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transport activity compared to wt-H247A. This implies that His247 is not in itself essential to 

high levels of transport. (ii) Further studies established that large (15 amino acid) segments of the 

hPCFT TMD6-7 loop including His247 could be replaced with non-homologous sequence from 

ThTr1 (in pthPCFTHA and tphPCFTHA), resulting in significant preservation of transport, 

although complete deletion of the loop (in dlhPCFTHA) or its replacement with non-homologous 

sequence from ThTr1 (in tthPCFTHA) abolished transport activity. These differences in transport 

activity between the pthPCFTHA and tphPCFTHA compared to wthPCFTHA were independent of 

substrate binding but were associated with a pronounced impact on transport Vmax, likely due to 

impaired trafficking to the cell surface and loss of stability, resulting in decreased hPCFT protein 

expression. (iii) While His247 replacements with Ala, Arg, Gln and Glu in wthPCFT replicated 

previous findings of Unal et al. (Unal et al., 2009a), substitutions of Glu247 in tphPCFT 

followed a distinctly different pattern. The same His247 replacements in pthPCFT showed no 

obvious impact on transport activity. Analogous results were obtained for the His247 deletion 

mutants (wt-ΔH247 and tp-ΔE247 versus pt-ΔH247). Thus, the impact of position 247 alterations 

is context-dependent and varies with flanking sequence and secondary structure. Indeed, the role 

of the TMD6-7 loop domain in hPCFT function appears to be largely unrelated to specific 

primary sequence elements, as long as sufficient secondary structure is preserved and proper 

spacing between the TMD1-6 and TMD7-12 segments is ensured to facilitate optimal membrane 

transport. (iv) Consistent with the latter notion, hPCFT could be expressed as TMD1-6 and 

TMD7-12 half-molecules to restore transport activity, albeit in low levels. 

Collectively, our results demonstrate that the TMD6-7 loop structure is critical to 

intracellular trafficking and protein stability essential to transport function. Our biochemical and 

molecular modeling results further suggest that while absolute primary sequence elements of the 
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TMD6-7 loop is not essential to transport function, as long as sufficient secondary structure is 

preserved, the loop may nonetheless serve a unique functional role, even possibly restricting 

substrate access to the folate binding site and membrane translocation pathway, as previously 

suggested (Unal et al., 2009a). While our results imply that His247 can play a role in hPCFT 

transport, this is subtle, as loss of His247 can be compensated by other primary sequence 

elements as indicated by our results with pthPCFT His-replacement muttants. Characterization of 

key structural features of hPCFT is important for understanding the transport mechanism, 

including identifying critical determinants of substrate binding and membrane translocation. 
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CHAPTER 5- TARGETING NON-SQUAMOUS NON-SMALL CELL LUNG CANCER 
VIA PCFT-MEDIATED UPTAKE OF 6-SUBSTITUTED PYRROLO[2,3-d]PYRIMIDINE 
THEINOYL ANTIFOLATES 
 
5.1 Introduction 

 NSCLC is the leading cause of cancer-related deaths in the United States, accounting for 

85% of all diagnosed lung cancers and resulting in over 100,000 deaths per year (American 

Cancer Society, 2015). PMX is a 5-substituted pyrrolo[2,3-d]pyrimidine antifolate (Figure 1.2) 

(Chattopadhyay et al., 2007) and is an important first-line and maintenance therapy in the 

treatment of nonsquamous (NS)-NSCLC, although patient responses are variable (Esteban et al., 

2009; Genova et al., 2013; Gerber and Schiller, 2013; Tomasini et al., 2013). Cellular uptake of 

folates and classic antifolates is primarily via the facilitative folate transporters, RFC and PCFT 

(Matherly et al., 2014). FRα is expressed in some malignancies including NSCLC (Christoph et 

al., 2013; Nunez et al., 2012; O'Shannessy et al., 2012) and is being exploited for targeted drug 

delivery (Assaraf et al., 2014; Xia and Low, 2010). However, FRα levels in NS-NSCLC can be 

variable (Christoph et al., 2013; Nunez et al., 2012; O'Shannessy et al., 2012), at least in part 

reflecting epidermal growth factor receptor (EGFR) mutation status (Nunez et al., 2012) or stage 

of disease (O'Shannessy et al., 2012), with the highest levels in a subset of specimens. RFC is a 

ubiquitously expressed folate/anion antiporter, and is widely considered to be the major tissue 

transporter of folate cofactors and antifolates such as MTX and PMX (Matherly et al., 2007). 

PCFT was identified in 2006 as a folate/proton symporter with an acidic pH optimum and was 

localized to the upper gastrointestinal tract where it transports dietary folates across the apical 

brush border of the small intestine (Qiu et al., 2006). Although other tissues such as liver and 

kidney also express PCFT (Desmoulin et al., 2012a), in these tissues its biologic role is less 

certain since the neutral pH microenvironment is not conducive to high levels of PCFT transport 
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(Zhao et al., 2009a). PCFT is commonly expressed in human tumor cells including NS-NSCLC 

cell lines (Kugel Desmoulin et al., 2011), and likely facilitates PMX uptake and contributes to 

antitumor efficacy with this disease since the acidic microenvironment of tumors greatly favors 

transport by PCFT over RFC (Desmoulin et al., 2012a; Zhao and Goldman, 2007).  

 Once internalized, PMX is metabolized to polyglutamates by FPGS, resulting in drug 

forms with enhanced cellular retention over nonpolyglutamyl PMX and increased binding 

affinities for intracellular enzyme targets (Chattopadhyay et al., 2007). TS is the primary 

intracellular enzyme target for PMX (Chattopadhyay et al., 2007) and TS levels have been 

implicated in some studies as an important determinant of PMX clinical response, such that 

tumors with highly elevated TS would be expected to show PMX resistance (Christoph et al., 

2013; Liu et al., 2013). At least some of the variable responses to PMX seen clinically may 

reflect an impact of coadministering dexamethasone with PMX to alleviate possible side effects 

since dexamethasone attenuates PMX cytotoxicity in NS-NSCLC cells by reversibly blocking 

cell cycle progression, secondary to the presence of high levels of the glucocorticoid receptor a 

(Patki et al., 2014). Interestingly, dexamethasone treatment of NS-NSCLC cells in vitro also 

resulted in reduced expression of RFC and PCFT (Patki et al., 2014). PMX can inhibit folate-

dependent enzymes other than TS, including GARFTase and AICARFTase in de novo purine 

nucleotide biosynthesis (Racanelli et al., 2009).  

 Given variable patient responses to PMX, another promising strategy is to develop 

analogs with increased selectivity for membrane transport by PCFT over RFC, thus increasing 

specificity toward tumors, while decreasing toxicity toward normal tissues (Desmoulin et al., 

2012a). Ideally, these agents would target intracellular enzymes other than TS, thus potentially 

circumventing PMX resistance due to TS alterations.  
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 The synthesis and biologic activities of a novel series of 2’,4’ and 2’,5’ thienoyl 6-

substituted pyrrolo[2,3-d]pyrimidine antifolates, typified by AGF94 and AGF154 (Figure 1.2), 

have been previously described (Cherian et al., 2013; Desmoulin et al., 2012b; Wang et al., 

2011; Wang et al., 2015). AGF94 and AGF154 exhibit transport specificity for PCFT over RFC 

and deplete purine nucleotides due to inhibition of de novo biosynthesis at GARFTase, the first 

folate-dependent step. Although GARFTase inhibitors have been previously described (i.e., 

LMX, AG2034) (Boritzki et al., 1996; Mendelsohn et al., 1999a) and have shown potent 

antitumor effects, this was accompanied by unacceptable levels of toxicity in patients, possibly 

reflecting significant RFC-driven transport of these compounds (Budman et al., 2001; Ray et al., 

1993). This problem may be overcome by combining GARFTase targeting and PCFT transport 

selectivity, which characterizes antifolates such as AGF94 and AGF154. In this chapter, we 

explore the therapeutic potential of these novel tumor-targeted 6-substituted pyrrolo[2,3-

d]pyrimidine antifolates with selective membrane transport by PCFT over RFC in NS-NSCLC. 

The work described in this chapter was previously published in Molecular Pharmacology 

(Wilson et al., 2016b). 

5.2 Materials and Methods 

5.2.1 Reagents 

 The 6-substituted pyrrolo[2,3-d]pyrimidine antifolates AGF94 [(S)-2-((5-[3-(2-amino-4-

oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)-propyl]-thiophene-2-carbonyl)-amino)-

pentanedioic acid] and AGF154 [(S)-2-((5-[3-(2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-

pyrimidin-6-yl)-propyl]-thiophene-3-carbonyl)-amino)-pentanedioic acid] were synthesized as 

previously described (Wang et al., 2011; Wang et al., 2015). PMX [N-(4-[2-(2-amino-3,4-

dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl)-L-glutamic acid] (Alimta) was 
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obtained from Eli Lilly and Co. (Indianapolis, IN). PT523 [Na-(4-amino-4-deoxypteroyl)-Nd- 

hemiphthaloyl-L-ornithine) (Rosowsky et al., 1994) was a gift of Dr. A. Rosowsky (Boston, 

MA). LCV was obtained from the Drug Development Branch, National Cancer Institute, 

Bethesda, MD. [3H]PMX (87 Ci/mmol), [3H]AGF154 (12.3 Ci/mmol), and [14C(U)]glycine 

(87mCi/mmol) were purchased from Moravek Biochemicals (Brea, CA). Other chemicals were 

obtained from commercial sources in the highest available purity.  

5.2.2 Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR) Analysis of 
Folate-Related Transcripts 
 
 Patient cDNAs were purchased from Origene (Rockville, MD), including 26 NS-NSCLC 

specimens (8, stage I; 5, stage II; 7, stage III; and 6, stage IV) and eight unmatched normal lung 

specimens. RNAs were isolated from the NS-NSCLC cell lines using TRIzol reagent (Invitrogen, 

Carlsbad, CA). cDNAs were synthesized with random hexamers and MuLV reverse transcriptase 

(including RNase inhibitor) (Applied Biosystems, Waltham, MA) and were purified using a 

QIAquick PCR Purification Kit (QIAGEN, Valen- cia, CA). Quantitative real-time RT-PCR was 

performed using a Roche LightCycler 480 (Roche Diagnostics, Indianapolis, IN) with gene-

specific primers and FastStart DNA Master SYBR Green I Reaction Mix (Roche Diagnostics). 

Primer sequences are available upon request. Transcript levels were normalized to transcript 

levels of β-actin.  

5.2.3 Immunohistochemistry (IHC) 

 The tissue microarray (BC041115b) and IHC services were purchased from US Biomax, 

Inc. (Rockville, MD). The array included 61 NS-NSCLC specimens (25, stage I; 19, stage II; 16, 

stage III; and 1, stage IV) and 10 unmatched normal lung tissues. The tissues were formalin-

fixed and paraffin-embedded. The tissue microarrays were deparafinized, rinsed, microwaved, 

and incubated with polyclonal antibody to human PCFT raised in rabbits (Hou et al., 2012). The 
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serum was purified using a peptide affinity column synthesized from Affi-Gel 10 (BioRad, 

Richmond, CA). The slides were developed with ImmPRESS anti-Rabbit IgG (peroxidase) 

(Vector Laboratories, Burlingam, CA) and peroxidase substrate 3,3’-diaminobenzidine 

tetrahydrochloride, and then rinsed, counterstained with Hematoxylin QS (Vector Laboratories), 

cleared, and mounted with permanent mounting medium (C0487; Sigma-Aldrich, St. Louis, MO). 

The slides were manually scored by two independent pathologists with the intensities scored as 

negative (0), weak (11), moderate (21), or strong (31), and then scanned by an Aperio Image 

Scanner (Aperio Technologies, Inc., Vista, CA) for microarray image scanning. The total 

positive cell numbers and intensity of antibody staining of each tissue core were computed.  

5.2.4 Cell Culture Conditions 

 NS-NSCLC cell lines, including A549, H1437, H460, H1299, H1650, and H2030, were 

obtained from the American Type Culture Collection (Manassas, VA). The identities of the NS-

NSCLC cell lines were verified by Genetica DNA Laboratories (Burlington, NC). HeLa cells 

were gifts from Dr. I. David Goldman (Bronx, NY). Prior to experiments, all cell lines were 

grown in folate-free RPMI 1640 supplemented with 10% dialyzed FBS (Sigma- Aldrich), 1% 

penicillin/streptomycin, 2 mM L-glutamine, and 25 nM LCV for at least 2 weeks.  

 For growth inhibition assays, the NS-NSCLC cell lines were plated in 96-well culture 

dishes (1500–4000 cells/well; 200 ml/well) in the aforementioned medium with drug 

concentrations from 1 to 1000 nM PMX, AGF94, or AGF154. Cells were incubated from 96 to 

120 hours (depending on the cell line) at 37° C in a CO2 incubator. Cell viabilities were 

measured with a fluorescence-based viability assay (CellTiter Blue; Promega, Madison, WI) and 

a fluorescence plate reader (emission at 590 nm; excitation at 560 nm) to determine drug 

concentrations that inhibit growth by 50% (IC50). To confirm the targeted pathways and enzymes, 
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proliferation assays were performed with H460 cells treated with PMX, AGF94, or AGF154 in 

the presence of adenosine (60 mM), thymidine (10 mM), or AICA (320 mM) (Wang et al., 2011, 

2015).  

 For colony-forming assays, H460 cells (100–150 cells) in log phase were plated into 60-

mm dishes in folate-free RPMI 1640 medium (pH 7.2), supplemented with 25 nM LCV, 10% 

dialyzed fetal bovine serum, 1% penicillin/streptomycin, and 2 mM L-glutamine, and then 

allowed to adhere for 24 hours. Cells were then treated with drugs in the aforementioned media 

at pH 6.8 or 7.2. For treatments at pH 6.8, 25 mM 1,4-piperazinediethanesulfonic acid/25 mM 

HEPES was added (Kugel Desmoulin et al., 2011). After 24 hours, cells were rinsed with PBS, 

and then incubated in drug-free, folate-free RPMI 1640 medium (pH 7.2) plus dialyzed fetal 

bovine serum and antibiotics, supplemented with 25 nM LCV. After 9 days, the dishes were 

washed with PBS, 5% trichloroacetic acid, and then with borate buffer (10 mM, pH 8.8), 

followed by 1% methylene blue (in borate buffer). Dishes were again rinsed with borate buffer, 

and colonies were counted in order to calculate the percent colony formation relative to the 

vehicle (e.g., dimethylsulfoxide) control.  

5.2.5 Development of H460 PCFT Knockdown (KD) Cell Line  

 H460 cells were seeded at 2x105 cells per well in 24-well plates containing RPMI 1640 

(pH 7.2), supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, and 2 mM L-

glutamine, with the addition of 4 mg/ml polybrene and 105 transducing units of MISSION 

Lentiviral particles (Sigma-Aldrich) containing shRNA targeting PCFT or a nontargeted control 

(NTC) shRNA sequence. After 24 hours, fresh medium including 2 mg/ml puromycin as a 

selection marker was added. Confluent cultures were trypsinized and passaged 3 to 4 times in the 

presence of 2 mg/ml puromycin, and then plated in 60-mm dishes in complete medium with 2 
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mg/ml puromycin at a density of 100 cells/dish to isolate single clones. Clones were picked and 

expanded and RNAs were isolated to determine the extent of PCFT knockdown by real-time RT-

PCR (described previously). Two PCFT KD clones were isolated, designated as KD-3 and KD- 4. 

Altogether, five shRNAs were tested, of which only one (TRCN0000437092) gave .50% 

knockdown for PCFT.  

5.2.6 Gel Electrophoresis and Western Blotting  

 The NS-NSCLC cell lines were cultured, as described previously. The cells were 

disrupted by sonication, cell debris was removed by centrifugation (1800 rpm, 5 minutes), and a 

particulate membrane fraction was prepared by centrifugation at 37,000g. The membrane pellet 

was solubilized with 1% SDS in 10 mM Tris-HCl (pH 7), containing protease inhibitors (Roche 

Diagnostics). Membrane proteins (30 mg) were electrophoresed on 7.5% polyacrylamide gels 

with SDS (Laemmli, 1970) and transferred to polyvinylidene difluoride membranes (Thermo 

Fisher Scientific, Waltham, MA) (Matsudaira, 1987). To detect PCFT, human PCFT-specific 

polyclonal antibody raised in rabbits to a carboxyl termini peptide (Hou et al., 2012) was used, 

with IRDye800CW-conjugated goat anti-rabbit IgG secondary antibody (LICOR Biosciences, 

Omaha, NE). Membranes were scanned and densitometry was performed with an Odyssey 

infrared imaging system (LICOR Biosciences). Protein loading was normalized to levels of β -

actin using anti-β-actin mouse antibody (Sigma-Aldrich).  

5.2.7 Antifolate Transport Assays 

 Transport assays were performed essentially as described previously (Desmoulin et al., 

2012b; Kugel Desmoulin et al., 2011; Kugel Desmoulin et al., 2010). For transport assays, the 

NS-NSCLC cell lines were plated at 30%–40% confluence into 60-mm dishes containing 

complete folate-free RPMI 1640 supplemented with 25 nM LCV. After 48 hours, cellular 
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uptakes of [3H]PMX and [3H]AGF154 (both at 0.5 mM) were measured over 5 minutes (NS-

NSCLC cell lines) or 2 minutes (PCFT KD cell lines) at 37°C in 60-mm dishes in MES-buffered 

saline (20 mM MES, 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, and 5 mM glucose; pH 5.5). The 

dishes were washed three times with PBS and cells were solubilized in 0.5 N NaOH. 

Intracellular radioactivity was calculated as pmol/mg of protein, based on measurements of 

radioactivity and protein concentrations of the alkaline cell homogenates. To confirm PCFT-

mediated transport activity, 10 µM nonradioactive AGF94 was added to the transport incubations 

to block uptake.  

5.2.8 In Situ GARFTase Enzyme Inhibition Assay  

 Incorporation of [14C(U)]glycine into [14C]formyl glycinamide ribonucleotide, as an in 

situ measure of intracellular GARFTase activity in folate-depleted H460 cells at pH 6.8, was 

performed exactly as previously described (Kugel Desmoulin et al., 2010; Wang et al., 2011). 

For these experiments, H460 cells were plated in folate-free RPMI 1640 plus 25 nM LCV, 10% 

dFBS, 2 mM L-glutamine, and penicillin-streptomycin in 60 mm dishes at 20% confluency. 

After 48 h, the media was replaced folate-free, L-glutamine-free RPMI 1640 plus 

penicillin/streptomycin, 10% dFBS, 0.46 g/L NaHCO3 and 1.21 g/L NaCl medium, which had 

been adjusted to pH 6.8, with antifolates at various concentrations (or DMSO). After 15h, cells 

were washed twice with DPBS and the pH 6.8 media was replaced, containing antifolates and 4 

µM azaserine and incubated for 30 min. Then, 2 mM L-glutamine and 0.1 mCi/L [14C]glycine 

were added, followed by an 8h incubation at 37°C, after which cells were trypsinized and 

washed twice with ice-cold DPBS. Cell pellets were treated with 2 ml of 5% trichloroacetic acid 

at 0°C for 10 min. Cell debris was removed by centrifugation, and cell debris pellets were 

solubilized in 0.5 N NaOH and protein concentrations were determined (Lowry et al., 1951). To 
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remove trichloroacetic acid from supernatants, ice-cold ether was used to extract trichloroacetic 

acid. The aqueous layer passed through a 1-cm column of AG1x8 (chloride form), 100 to 200 

mesh (Bio-Rad Laboratories) washed twice with 0.5 N formic acid and then twice with 4 N 

formic acid, and eluted as eight 1-mL fractions with 1 N HCl. Fractions were used to determine 

radioactivity. Results were expressed as pmol/mg protein. Drug-treated samples were normalized 

to untreated controls to calculate the IC50 values.  

5.2.9 In Vivo Antitumor Efficacy of AGF94 Toward H460 Xenografts in SCID Mice  

 Cultured H460 cells were implanted subcutaneously (107 cells/flank) into female ICR 

SCID mice (National Institutes of Health DCT/DTP Animal Production Program, Frederick, 

MD) to develop a solid tumor xenograft model (passage 0). Mice were supplied water and food 

ad libitum. Study mice were maintained on a folate-deficient diet (TD.00434; Harlan Teklad, 

Madison, WI) starting 14 days prior to tumor implant to ensure that serum folate levels 

approximated those of humans before the start of therapy (Cherian et al., 2013; Wang et al., 

2010; Wang et al., 2011). Serum folate assays (Varela-Moreiras and Selhub, 1992) were 

performed just prior to tumor engraftment and were repeated at the conclusion of the drug 

treatments. This design is analogous to those previously published (Alati et al., 1996; Gibbs et al., 

2005).  

 To test drug efficacy, experimental mice were pooled, divided into groups (five 

mice/group), and bilaterally implanted subcutaneously with 30–60 mg H460 tumor fragments, 

using a 12-gauge trocar (day 0). Chemotherapy began on day 1 after tumor implantation, when 

the number of cells was between 107 and 108 cells (below the limit of palpation). Organic 

solvent (ethanol, 5% v/v), carrier (Tween 80, 1% v/v), and sodium bicarbonate (0.5% v/v) were 

used to effect solubilization of AGF94, while cisplatin and gemcitabine were dissolved in sterile 
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saline. All drugs were administered intravenously using an injection volume of 0.2 ml. Mice 

were weighed daily and tumor measurements were determined using a caliper two-to-three times 

weekly. Mice were sacrificed when their individual tumor burdens reached 1500 mg 

(asymptomatic). Mice were necropsied and tissue was harvested to evaluate potential organ-

related toxicities (by H&E staining).  

 Methods for protocol design, drug treatments, toxicity evaluation, and data analysis were 

previously described (Corbett et al., 1998; Corbett et al., 1997; Polin et al., 2011; Polin et al., 

1997). Experimental parameters as qualitative and quantitative end points to assess antitumor 

activities include: T/C (as a percentage) and T–C (tumor growth delay) [where T is the median 

time (days) required for the treatment group tumors to reach a predetermined size (e.g., 1000 mg) 

and C is the median time (days) for the control tumors to reach the same size; tumor-free 

survivors are excluded from these calculations]; and tumor cell kill [log10 cell kill total (gross) 5 

(T–C)/(3.32)(Td), where (T–C) is the tumor growth delay, as described previously, and Td is the 

tumor volume doubling time (days), estimated from the best-fit straight line from a log-linear 

growth plot of control group tumors in exponential growth (100–800 mg)]. For comparisons of 

antitumor activities with standard agents or between tumors, log10 kill values were converted to 

an arbitrary activity rating (Corbett et al., 1997). With the exception of the H460 xenograft cell 

line and the drugs used in treatment, these methods are identical to those described previously 

(Cherian et al., 2013; Wang et al., 2010; Wang et al., 2011; Wang et al., 2015).  

5.2.10 Statistical Analysis   

 Descriptive statistical tests (e.g., t tests) were conducted using GraphPad 6.0 software (La 

Jolla, CA).  
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5.3 Results 

5.3.1 Expression Profiles for Folate Transport and Metabolism Genes in NS-NSCLC 
Patient Specimens 
 
 To begin to identify key determinants of antitumor efficacy of the 2’,4’, and 2’,5’ 

thienoyl pyrrolo[2,3-d]pyrimidine antifolates AGF94 and AGF154 (Figure 1.2) toward NS-

NSCLC, we measured PCFT transcripts (by real-time RT-PCR) and proteins (by IHC) in NS-

NSCLC and unmatched (i.e., from different patients) normal lung specimens (Figure 5.1). 

Clinical specimens were obtained from different commercial sources such that PCFT gene 

expression and protein levels could not be directly compared for individual samples.  

 PCFT transcripts were similarly expressed (based on median values) in 26 NS-NSCLC 

and 8 normal lung specimens, although the range was much broader in the former (16- versus 3-

fold, respectively) (Figure 5.1A). By IHC, PCFT proteins were substantially increased (3.8-fold) 

in NS-NSCLC specimens (n = 61) over normal lung (n = 10) (P < 0.001) and again showed a 

broad expression pattern (~150-fold for NS- NSCLC and ~4-fold for normal lung, respectively) 

(Figure 5.1G-H). Representative IHC sections for NS-NSCLC specimens expressing low, 

intermediate, and high PCFT levels are shown in Figure 5.2C. For both RT-PCR and IHC 

analyses, there were no significant changes in PCFT levels with tumor stage.  

 Transcript levels for other genes relevant to antitumor efficacy of this series of 

compounds were also measured in the clinical specimens, including folate transporters (RFC, 

FRα) and metabolism enzymes (TS, GARFTase, and FPGS) (Figure 5.1B-F). Transcripts for all 

these genes were detected. Transcript levels were increased in NS-NSCLC (n = 26) compared 

with normal lung (n = 8) for TS (median 2.25-fold increased; P < 0.015) and GARFTase (median 

~2-fold increased; P < 0.0001). Slightly decreased median RFC transcript levels (2.64-fold; P < 

0.016) were measured in the NS-NSCLC specimens. Although median FRα and FPGS levels 
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Figure 5.1 PCFT expression in primary NS-NSCLC and normal lung specimens. Panels A-
F, Results for quantitative real-time RT-PCR are shown for 26 NS-NSCLC and 8 normal lung 
specimens (Origene). Gene transcript levels were normalized to transcript levels for β-actin. The 
median value for the normal lung specimens was assigned a value of 1. Panels G and H, IHC 
results are shown for 61 NS-NSCLC and 10 normal lung tissues from a tissue microarray (TMA) 
(US Biomax, Inc.). The TMA was incubated with affinity-purified PCFT-specific antibody or 
rabbit IgG, and the slides were developed, counterstained, and mounted, as described in 
Materials and Methods. Representative images are shown in (Panel H) for IgG and for three NS- 
NSCLC specimens with low-, intermediate-, and high-level staining (left to right). The slides 
were scanned by an Aperio Image Scanner (Aperio Technologies, Inc.) for microarray image 
scanning. The total positive cell numbers and intensity of antibody staining of each tissue core 
were computed and are shown in Panel G. The median value for the normal lung specimens was 
assigned a value of 1. Statistical significance between the groups was analyzed by the student’s t 
test. An asterisk indicates a statistically significant difference between the median NS-NSCLC 
value and the median value for the normal lung specimens (p < 0.001). Figure previously 
published in Wilson et. al. Mol Pharmacol. 2016.  
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Figure 5.2 PCFT expression and function in NS-NSCLC cell lines. Panels A-F, Results are 
shown for gene transcript levels measured by real-time RT-PCR in NS- NSCLC cell lines (A549, 
H1437, H460, H1299, H1650, and H2030). Gene transcript levels were normalized to transcript 
levels for β-actin. The gene transcript level for the HeLa cell line was assigned a value of 1. 
Results are shown as mean ± S.E. values from triplicate experiments. Panel G, Particulate 
membrane fractions were prepared as described in Materials and Methods. Membrane proteins 
(30 mg) from human tumor cell lines were electrophoresed on a 7.5% polyacrylamide gel and 
immunoblotted with human PCFT polyclonal antibody. β-actin levels were used as loading 
controls. Densitometry was performed using Odyssey software, and PCFT protein expression 
was normalized to β-actin. Normalized densitometry results (as an average from three 
experiments) are shown. Panels H and G, NS-NSCLC cells (in 60-mm dishes) were treated with 
0.5 mM [3H]PMX or [3H]AGF154 at pH 5.5 and 37°C for 5 minutes (black bars). 
Nonradioactive AGF94 (10 mM) was added to competitively block PCFT-mediated uptake as a 
negative control for PCFT transport (white bars). Internalized pmol values of [3H]PMX or 
[3H]AGF154 were normalized to total cell proteins and expressed as pmol/mg. Histograms show 
mean 6 S.E. values from triplicate experiments. Figure previously published in Wilson et. al. 
Mol Pharmacol. 2016.  
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were unchanged between NS-NSCLC and normal lung specimens, the range was much broader 

for the tumors (from 13-fold for FPGS and ~2000-fold for FRα, compared with 2- to 3-fold for 

normal lung for both FPGS and FRα). Collectively, these results establish high-level expression 

of PCFT in NS-NSCLC, along with appreciable expression of other folate-related genes. 

Although FRα is expressed in NS-NSCLC, its levels were highly variable.  

5.3.2 Expression Profiles for Folate Transport and Metabolism Genes in NS-NSCLC Cell 
Lines 
 
 We extended our gene expression analysis to NS-NSCLC cell lines, including A549, 

H1437, H460, H1299, H1650, and H2030. For these experiments, HeLa cells were used as a 

positive control since HeLa cells express abundant RFC and PCFT accompanying low levels of 

FRα (Kugel Desmoulin et al., 2011). PCFT was expressed in the six NS-NSCLC cell lines over a 

~13-fold range, with the highest transcript levels in A549 cells and a very low level in H1299 

cells (Figure 5.2A). Correlations between levels of PCFT transcripts by real-time RT-PCR and 

PCFT proteins on western blots probed with PCFT antibody (Figure 5.2G) were inexact. For 

H1299 cells, PCFT protein was undetectable. FRα was undetectable in five out of six of the NS-

NSCLC cell lines, the only exception being the H1437 cell line (expresses ~9% of the FRα levels 

in HeLa cells) (Figure 5.3A). RFC, TS, GARFTase and FPGS transcripts were expressed at 

similar levels among the various NS-NSCLC cell lines (Figure 5.2B-F).  

5.3.3 PMX and AGF154 Transport by PCFT in NS-NSCLC Cell Lines 

 The 5-substituted pyrrolo[2,3-d]pyrimidine antifolate PMX is a transport substrate for 

both RFC and PCFT (Matherly et al., 2014). Unlike PMX, the 6-pyrrolo[2,3-d] pyrimidine 

thienoyl analogs AGF94 and AGF154 are highly selective transport substrates for PCFT over   
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Figure 5.3 In vitro characterization of PMX, AGF94 and AGF154 of NS-NSCLC cell lines. 
Panel A, NS-NSCLC cells were seeded in 96-well plates at 1500–4000 cells/ well in complete 
folate-free RPMI 1640 (pH ~7.2), 10% dialyzed fetal bovine serum, and 25 nM LCV. Cells were 
incubated with varying concentrations of PMX, AGF94, or AGF154 from 1 to 1000 nM for 4 to 
5 days, depending on the cell line. Cell viabilities were determined with a fluorescence-based 
assay (Cell Titer Blue). Mean IC50 6 S.E. values from triplicate experiments were determined 
graphically for each drug. Asterisks designate statistically greater sensi- tivity for AGF94 
compared with PMX (P , 0.01). Panels B-D, H460 cells were seeded in the presence of 0-1000 
nM PMX, C1 or C2, with or without additions of 60 µM adenosine, 320 µM 5-aminoimidazole-
4-carboxamide (AICA), 10 µM thymidine, or adenosine plus thymidine. Cell viabilities were 
determined with a fluorescence-based assay (Cell Titer BlueTM). Panel E, Incorporation of 
[14C(U)]glycine into [14C]formyl glycinamide ribonucleotide (GAR) as an in situ measure of 
endogenous GARFTase was determined. For the GARFTase assays, IC50 values were 78.9 nM 
and 27.1 nM for C1 and C2, respectively. For PMX, the IC50 value was >1000 nM. Experimental 
details are described in Materials and Methods. For Panels A-E, the plots show mean values ± 
standard errors and represent triplicate experiments. Panels F and G, H460 cells (100–150 cells) 
were plated in 60-mm dishes in complete folate-free RPMI 1640 (pH 7.2), 10% dialyzed fetal 
bovine serum, and 25 nM LCV. After 24 hours, cells were then treated with PMX, AGF94, or 
AGF154 at varying concentrations in complete folate-free RPMI 1640 (at pH 7.2 or 6.8) 
supplemented with 25 nM LCV. After an additional 24 hours, cells were rinsed with PBS, and 
then incubated in complete folate-free RPMI 1640 supplemented with 25 nM LCV (pH 7.2) for 9 
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days. Colonies were stained with methylene blue and counted, and colony numbers were 
normalized to the controls. Plots show mean ± S.E. values, representative of triplicate 
experiments. Figure previously published in Wilson et. al. Mol Pharmacol. 2016. 
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RFC, although both are also FRα substrates (Cherian et al., 2013; Desmoulin et al., 2012b; Wang 

et al., 2011; Wang et al., 2015). To demonstrate that the PCFT proteins detected on western blots 

in A549, H1437, H460, H1650, and H2030 NS-NSCLC cell lines could transport [3H] PMX and 

[3H]AGF154, we measured cellular uptake of these compounds (both at 0.5 µM; 5 minutes; 

37°C) at pH 5.5, the PCFT pH optimum. An excess (10 µM) of unlabeled AGF94 was added as a 

competitive inhibitor of PCFT to confirm the PCFT- specific uptake component.  

 The NS-NSCLC cell lines accumulated [3H]PMX and [3H]AGF154 over 5 minutes to 

generally similar extents (Figure 5.2H-I), but only partially reflected levels of PCFT proteins 

(Figure 5.2G). For instance, PCFT proteins were generally proportional to transport of both 

[3H]PMX and [3H]AGF154 for the H1437, H460, H1299, H1650, and H2030 cell lines; however, 

transport was disproportionately low for A549 cells. For both [3H]PMX and [3H]AGF154, 

uptake was blocked (~80%–95%) by nonradioactive AGF94. For PCFT-selective [3H]AGF154, 

uptake for five of the NS-NSCLC cell lines far exceeded the low residual level measured in the 

H1299 cells (P < 0.05).  

5.3.4 Antiproliferative and Cytotoxic Activities of AGF94 and AGF154 Toward NS-NSCLC 
Sublines Reflect Inhibition of GARFTase in De Novo Purine Nucleotide Biosynthesis 
 
 To evaluate the antiproliferative potencies of the 6-substituted pyrrolo[2,3-d]pyrimidine 

thienoyl antifolates AGF94 and AGF154 compared with PMX toward the NS-NSCLC cell lines, 

we performed cell outgrowth assays. Cells were treated in the presence of the drugs for 4 to 5 

days and cell proliferation was assayed with a fluorescence-based assay (i.e., CellTiter Blue) to 

calculate the IC50 values corresponding to drug concentrations that inhibit growth by 50%. Under 

these conditions, the pH of the culture medium decreased to ~pH 6.7–6.8 (Kugel Desmoulin et 

al., 2010). The NS-NSCLC cell lines were sensitive to AGF94 and AGF154 (Figure 5.3A), with 

AGF94 IC50 values ranging from 45 nM (H1437) to 230 nM (H1299), and AGF154 IC50s 
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ranging from 79 nM (H1437) to 288 nM (H1299). The PMX IC50 values ranged from 43 nM 

(H1437) to 163 nM (H2030). Interestingly, the A549, H460, and H2030 cell lines were all more 

sensitive to AGF94 than to PMX (p < 0.05). Resistance of the H1299 cell line to AGF94 and 

AGF154 likely reflects the lack of detectable PCFT protein (Figure 5.2G) and limited PCFT 

transport (Figure 5.2H-I). Although [3H]PMX uptake by PCFT was also low in H1299 cells 

(Figure 5.2H), this was not manifested as PMX resistance (Figure 5.3A), likely reflecting RFC 

transport of PMX (Matherly et al., 2014).  

 For additional experiments, we used H460 NS-NSCLC cells, reflecting their moderate 

and proportional level of PCFT protein and transport (Figure 5.2G-I). In H460 cells, AGF94 and 

AGF154 inhibited de novo purine nucleotide biosynthesis at the step catalyzed by GARFTase, as 

reflected in protection from growth inhibition by adenosine (60 µM) and AICA (320 µM), but 

not by thymidine (10 µM) (Figure 5.3C-D). GARFTase inhibition in H460 cells was confirmed 

with a cell-based in situ assay that measures [14C(U)]glycine incorporation into the GARFTase 

product, [14C]formyl glycinamide ribonucleotide (Figure 5.3E) (Kugel Desmoulin et al., 2010; 

Wang et al., 2011; Wang et al., 2015). IC50 values for in situ GARFTase inhibition of 78.9 and 

27.1 nM were measured for AGF94 and AGF154, respectively. AGF94 and AGF154 have been 

previously described as GARFTase inhibitors in other tumor models (Wang et al., 2011; Wang et 

al., 2015). By in vitro assays with isolated GARFTase, Ki values of 68 nM for AGF94 and 11 

nM for AGF154 have been previously reported (Wang et al., 2015), paralleling IC50 values from 

the in situ GARFTase assays in H460 cells.  

 We assessed cytotoxicity resulting from exposure of H460 cells to AGF94, AGF154, or 

PMX, following treatment with drugs (0.1–10 µM) for 24 hours at pH 6.8 or 7.2 (approximating 

the microenvironment pH of many solid tumors and normal tissues, respectively) (Gallagher et 
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al., 2008; Gillies et al., 2002; Webb et al., 2011). Cells were then washed with PBS and 

incubated in drug-free medium for 9 days (at neutral pH), at which time colonies were stained 

with methylene blue and counted. Both AGF94 and AGF154 showed a steep concentration-

dependent decrease in colony formation following drug treatments at pH 6.8, with a complete 

loss of clonogenicity at 10 µM (Figure 5.3F). Conversely, while PMX was more active than 

AGF94 or AGF154 at 0.1 µM, the dose-response relationship for PMX at pH 6.8 was shallow 

and incomplete (~10%), even at 10 µM drug. However, following treatment at pH 7.2, PMX 

showed a dramatically enhanced dose-responsive decrease in colony formation, whereas AGF94 

and AGF154 showed progressively impaired responses (Figure 5.3G). These results demonstrate 

selective antitumor efficacy of the novel 6-substituted pyrrolo [2,3-d]pyrimidine antifolates 

AGF94 and AGF154 compared with PMX at a pH characterizing the tumor microenvironment 

versus neutral pH typical of most normal tissues. Collectively, these studies establish that 

AGF94 and AGF154 are cytotoxic toward H460 NS-NSCLC cells associated with inhibition of 

GARFTase and de novo purine nucleotide biosynthesis.  

5.3.5 Impact of Knockdown of PCFT on PMX and AGF154 Transport and Antitumor 

Drug Efficacy  

 The results shown in Figure 5.2H and I demonstrate that both [3H]PMX and [3H]AGF154 

are transported by PCFT into the NS-NSCLC cell lines. However, PMX (unlike AGF154) is also 

transported by RFC (Matherly et al., 2014). To directly examine the impact of this apparent 

transport redundancy by PCFT and RFC on PMX cellular uptake and antitumor efficacy 

compared with AGF94 and AGF154, we tested five lentiviral shRNAs for knockdown of PCFT 

in H460 NS-NSCLC cells. For the shRNA construct with the greatest knockdown, two clonal 

PCFT KD cell lines, KD-3 and KD-4, were developed, both of which showed significant loss of 
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PCFT gene expression (~2.7- and ~3.3-fold decreases, respectively), compared with NTC cells 

or wild-type (i.e., nontransduced) H460 cells (Figure 5.4A). PCFT protein levels were also 

reduced in KD-3 and KD-4 sublines (29% and 19% of the NTC level by densitometry) (Figure 

5.4B). There were no significant differences in transcript levels for RFC, TS, GARFTase, and 

FPGS between KD and NTC cells (data not shown), suggesting no significant off-target effects. 

Furthermore, there were no significant differences in rates of cell proliferation between KD and 

NTC cells (data not shown).  

 We also measured PCFT-specific transport activity for KD-3 and KD-4 cells with 

[3H]PMX and [3H]AGF154 (both at 0.5 mM) over 2 minutes at 37°C and pH 5.5 in the presence 

and absence of 10 mM nonradioactive AGF94 (Figure 5.4C and D, respectively). PCFT- 

selective uptake for both substrates decreased in KD-3 and KD-4 cells compared with the NTC 

(~70% and ~80% for [3H] AGF154 and [3H]PMX, respectively, calculated from the difference 

with and without AGF94 competitor), paralleling changes in PCFT transcripts and proteins.  

 To extend these studies to analyses of drug sensitivities, we assessed in vitro antitumor 

efficacies of PMX, AGF94, and AGF154 toward KD-3 and KD-4, compared with NTC and 

wild-type H460 cells. Results were compared with those for PT523, a RFC-selective antifolate 
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Figure 5.4 Characterization of H460 PCFT KD cells. Panel A, Real-time RT-PCR was used to 
measure transcript levels for PCFT in H460 wild-type (WT), NTC, KD-3, and KD4 cells. 
Transcript levels were normalized to β-actin and results are presented relative to those for WT 
H460 cells (assigned a value of 1). Results are expressed as mean ± S.E. values and represent 
triplicate experiments. The asterisks indicate a statistically significant difference between the 
PCFT KD gene expression and that for the NTC cells (p < 0.05). Panel B, H460 particulate 
membrane fractions were isolated as described in Materials and Methods. Membrane proteins 
(30 mg) from WT, NTC, KD-3, and KD4 H460 cell lines were electrophoresed on a 7.5% 
polyacrylamide gel and immunoblotted with PCFT antibody. β-actin protein levels were used as 
loading controls. Densitometry was measured using Odyssey software, and PCFT protein 
expression was normalized to β-actin. Normalized densitometry results (average from four 
experiments) are noted below each lane. Panels C and D, WT, NTC, KD-3, and KD-4 H460 
cells (in 60-mm dishes) were incubated with 0.5 mM [3H]PMX and [3H]AGF154 at pH 5.5 and 
37°C, with or without 10 mM nonradioactive AGF94 for 2 minutes. Internalized [3H]PMX or 
[3H]AGF154 was normalized to total cell protein and results calculated as pmol/mg. Uptake 
results are presented as relative uptake with WT H460 cells assigned a value of 100%. Results 
are expressed as mean ± S.E. values, representative of triplicate experiments. The asterisks 
indicate a statistically significant difference between the PCFT transport activity in the KD (KD- 
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3 and KD-4) cells and that of the NTC cells (p < 0.05). Panel E, The H460 sublines including 
WT, NTC, KD-3, and KD-4 H460 cells were cultured in complete folate-free RPMI 1640 with 
25 nM LCV in 96-well plates at 1500 cells/well with varying concentrations of PMX, AGF94, 
AGF154 (left panel), or PT523 (right panel) for 4 days. Viable cells were measured by a 
fluorescence-based assay (Cell Titer Blue) and IC50 values were determined graphically. Results 
are expressed as mean IC50 ± S.E. values from triplicate experiments (the asterisk indicates 
where IC50 values for PCFT KD cells are significantly greater than for NTC; p < 0.05). Figure 
previously published in Wilson et. al. Mol Pharmacol. 2016.  
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 with no PCFT transport activity (Rosowsky et al., 1994; Wang et al., 2010). Both KD and NTC 

cells were highly sensitive to the growth inhibitory effects of PT523 (Figure 5.4E, right panel). 

In contrast, the IC50 values in the KD cells were significantly increased for both AGF94 (2.7- and 

3.0-fold increases for KD-3 and KC-4, respectively) and AGF154 (1.7- and 2.3-fold increases for 

KD-3 and KC-4, respectively) (Figure 5.4, left panel). This further establishes the reliance on 

PCFT membrane transport for AGF94 and AGF154 drug efficacy. For PMX, a similar, albeit 

lesser, impact on drug sensitivity was observed for KD-3 and KD-4 cells (1.2- and 1.8-fold 

decreases, respectively) (Figure 5.4E, left panel), suggesting a reduced dependence on PCFT 

transport for PMX antitumor efficacy, likely reflecting its RFC substrate activity.  

5.3.6 Effects of AGF94 on NS-NSCLC Tumor Growth In Vivo 

 To assess antitumor effects of AGF94 in the context of NS-NSCLC in vivo, we 

performed antitumor efficacy studies with 8-week-old female ICR SCID mice implanted 

subcutaneously with H460 tumor fragments. Mice were maintained ad libitum on a folate-

deficient diet in order to decrease serum folates to levels approximating those seen in humans 

(Alati et al., 1996; Wang et al., 2010; Wang et al., 2011; Wang et al., 2015). Control and drug 

treatment groups were nonselectively randomized (five mice/group), and AGF94 (32 mg/kg), 

gemcitabine (125 mg/kg), or cisplatin (2.4 mg/kg) was administered intravenously on days 1, 5, 

9, and 13 after tumor implantation. Treatment regimens were based on the efficacious dose range 

for each of the drugs (i.e., the highest nontoxic total dose range), as tolerated by SCID mice on 

an every fourth day for four times schedule [the in-house highest nontoxic total dose ranges were 

as follows: AGF94 (96–160 mg/kg); gemcitabine (450–750 mg/kg), and cisplatin (8–12 mg/kg)].  

Mice were observed and weighed daily; tumors were measured two-to-three times per week.  
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Figure 5.5 Analysis of in vivo efficacy of AGF94. An in vivo efficacy trial of AGF94 in H460 
xenografts was performed. Female ICR SCID mice were maintained on a folate-deficient diet ad 
libitum. Human H460 tumors were implanted bilaterally and subcutaneously, and mice were 
nonselectively randomized into five mice per group. AGF94 [32 mg/kg injection, dissolved in 
5% ethanol (v/v), 1% Tween 80 (v/v), and 0.5% NaHCO3], gemcitabine (125 mg/kg injection, 
dissolved in 0.9% saline), and cisplatin (2.4 mg/kg injection, dissolved in 0.9% saline) were 
administered on a schedule of every 4 days for four intravenous treatments on days 1, 5, 9, and 
13 (indicated by arrows). Mice were observed and weighed daily; tumors were measured 2 to 3 
times per week. On day 16, T/C values equaled 11%, 26%, and 28% for AGF94, gemcitabine, 
and cisplatin, respectively. Antitumor activities were recorded for AGF94 (T–C = 9 days; 1.9 
gross log10 kill), gemcitabine (T–C = 7 days; 1.5 gross log10 kill), and cisplatin (T–C = 8 days, 
1.7 gross log10 kill). Data are shown for the median tumor burdens of each treatment group. 
Figure previously published in Wilson et. al. Mol Pharmacol. 2016. 
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AGF94 showed greater efficacy toward H460 xenografts (T/C 5 11%; T–C 5 9 days; 1.9 

gross log10 kill) than either cisplatin (T/C 5 28%; T–C 5 8 days; 1.7 gross log10 kill) or 

gemcitabine (T/C 5 26%; T–C 5 7 days; 1.5 gross log10 kill) (Figure 5.5). The drugs appeared to 

be well tolerated and there was no drug-related lethality. Minimal adverse toxicities occurred and 

there was no evidence of organ-related toxicities. The only dose-limiting symptom was weight 

loss. For cisplatin and gemcitabine, mice sustained weight losses of 19.8% with a nadir on days 

20–22, and 5.9% with a nadir on day 15, respectively. Full recovery did not occur prior to 

sacrifice due to the mice reaching the tumor burden limit [94% weight recovery for cisplatin 

within 4 days postnadir (day 26) and 99% weight recovery for gemcitabine 9 days postnadir (day 

24)]. For AGF94, 14% maximal weight loss was measured on day 7 post-treatment, with full 

weight recovery by day 16. These results demonstrate potent in vivo efficacy of AGF94 toward 

H460 lung cancer xenografts.  

5.4 Discussion  

 The potential utility of the 2’,4’, and 2’,5’ thienoyl pyrrolo [2,3-d]pyrimidine antifolates, 

AGF94 and AGF154, for selective targeting of ovarian cancer and malignant mesothelioma via 

FRα and/or PCFT over RFC, has been previously reported (Cherian et al., 2013; Wang et al., 

2011; Wang et al., 2015). In this chapter, we extended this work to NS-NSCLC, a disease for 

which PMX is heavily used in both first-line and maintenance therapies (Genova et al., 2013; 

Gerber and Schiller, 2013; Tomasini et al., 2013). However, only about one-third of patients with 

NS-NSCLC respond to PMX, such that the median progression-free survival is only ~6 months 

in the front-line setting, when combined with platinum, and ~4 months as a single agent in 

patients with recurrent NS-NSCLC (Esteban et al., 2009).  
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 Our investigation of NS-NSCLC clinical specimens and cell lines established that PCFT 

transcripts and proteins are significantly expressed in NS-NSCLC, along with RFC and FRα. 

PCFT protein levels were increased in primary NS-NSCLC over normal lung specimens, 

although there was no association of PCFT levels with tumor stage. In our analysis, FRα 

transcripts were variably expressed in primary NS-NSCLC, and FRα was detected in only one of 

the NS-NSCLC cell lines (H1437). A wide range of FRα expression in NSCLC has been 

previously reported (Christoph et al., 2013; Nunez et al., 2012; O'Shannessy et al., 2012) 

suggesting that a subset of these patients might be amenable to FR-targeted therapies (Assaraf et 

al., 2014; Vergote and Leamon, 2015), whereas patients with lower FRα levels might be better 

treated with other therapies.  

 We demonstrated high levels of PCFT transport in five out of six NS-NSCLC cell lines, 

using radiolabeled PMX and AGF154 as surrogate substrates, accompanying detection of PCFT 

transcripts and proteins. Correlations between levels of PCFT transcripts and proteins, or 

between PCFT proteins and transport activity, were inconsistent for the NS-NSCLC cell lines, 

suggesting involvement of post-transcriptional and post-translational regulatory mechanisms. 

Similar results were previously reported for PCFT (Kugel Desmoulin et al., 2011) in a disparate 

panel of human tumor cell lines, implying a post-translational regulation of PCFT. For H1299 

NS-NSCLC cells, a lack of detectable PCFT protein was accompanied by very low levels of 

transport activity. PCFT transport of PMX and AGF154 in H460 cells was further confirmed by 

PCFT knockdowns. Although in vitro AGF94 and AGF154 antitumor efficacies were 

significantly decreased in the PCFT KD cells, this effect was reduced for PMX, likely reflecting 

transport promiscuity for PMX with both PCFT and RFC.  
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 PCFT transport of AGF94 and AGF154 into H460 cells was accompanied by inhibition 

of cellular GARFTase in de novo purine nucleotide biosynthesis, and resulted in inhibition of 

cell proliferation, even at comparatively neutral pH levels. Growth inhibition, as reflected in IC50 

values, was generally on par with that for PMX, although increased sensitivity was measured for 

AGF94 toward A549, H460, and H2030 NS-NSCLC cells. The basis for this is unclear. In vivo 

AGF94 efficacy against an H460 tumor xenograft was also demonstrated, with T/C, T–C, and 

log10 cell kill values modestly superior to those for cisplatin and gemcitabine. These results 

provide proof-of-principle validation of our in vitro findings that antitumor effects of targeted 

AGF94 may be equally potent, if not more potent, than standard chemotherapies used to treat 

NS-NSCLC. Unfortunately, direct in vivo comparisons of AGF94 efficacy with PMX were not 

possible due to elevated serum thymidine in mice, which circumvents antitumor efficacy of TS 

inhibitors in the presence of thymidine kinase (van der Wilt et al., 2001).  

 The results of colony-forming assays with H460 cells treated with AGF94 and AGF154 

at pH 6.8, conditions that approximate the pH of the tumor microenvironment (Gallagher et al., 

2008; Gillies et al., 2002; Webb et al., 2011)and favor PCFT over RFC transport, were of 

particular interest. At pH 6.8, cytotoxicity for the 6-pyrrolo[2,3-d]pyrimidines AGF94 and 

AGF154 was clearly evident, whereas for PMX cytotoxicity was modest and incomplete up to 10 

mM drug. Conversely, PMX treatment at pH 7.2 potently inhibited clonogenicity, with 

progressively reduced effects for AGF94, followed by AGF154. Thus, our results document 

selective antitumor efficacies of the novel 6-substituted pyrrolo [2,3-d]pyrimidine antifolates 

AGF94 and AGF154 compared with PMX at a pH characterizing the tumor microenvironment 

versus a neutral pH characteristic of most normal tissues. Accordingly, transport specificities of 

AGF94 and AGF154 for PCFT over RFC should confer selectivity for tumors including NS-
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NSCLC cells that express PCFT, which would be augmented by increased transport activity in 

the acidic microenvironment typical of many tumors. By this reasoning, PMX might be expected 

to show greater cytotoxicity than AGF94 or AGF154 toward normal tissues, where RFC 

transport prevails over PCFT and neutral pH favors RFC transport. As previously noted, since a 

subset of NS-NSCLC specimens also express significant FRα (Christoph et al., 2013; Nunez et 

al., 2012; O'Shannessy et al., 2012), increased tumor targeting of AGF94 and AGF154 via FRα 

in addition to PCFT (Wang et al., 2015; Webb et al., 2011) may also occur. The net effect of 

these targeted therapies would be increased killing of tumors, while decreasing toxicity toward 

normal tissues.   
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CHAPTER 6- EFFECTS OF FLUORINATION ON ANTI-TUMOR EFFICACY OF 
NOVEL 6-SUBSTITUTED PYRROLO[2,3-d]PYRIMIDINE ANTIFOLATES 
 
6.1 Introduction 

In recent years, there has been in interest in treating ovarian cancer with folate receptor-

targeted agents (see Chapter 1.6.6) (Lorusso et al., 2012; Naumann et al., 2013; Siegel et al., 

2003). FRα has been shown to be overexpressed in ovarian cancers, with the expression level 

correlating with histological grade (Buist et al., 1995; Garin-Chesa et al., 1993; Siu et al., 2012; 

Toffoli et al., 1997; Veggian et al., 1989). Ovarian cancer is the most lethal of gynecological 

cancers, with an estimated 22,280 new cases and 14,240 deaths resulting from ovarian cancer in 

the United States in 2016 (Siegel et al., 2016). The 5-year survival rate is only 10-25% for 

epithelial ovarian cancer patients, and this disease often recurs after initial treatment (Siegel et 

al., 2016). Beyond platinum-based therapies, against which many tumors can develop resistance, 

clinicians have few treatment options at their disposal (Temkin et al., 2016).  

Recently, there has been an interest in the development of FRα-targeted therapies for the 

treatment of ovarian cancer (see Chapter 1.6.6). FRα shows an increased expression in a subset 

of ovarian cancer patients (Elnakat and Ratnam, 2004; Leamon et al., 2013; Toffoli et al., 1997; 

Vergote et al., 2015). While FRα is only expressed on the apical membrane of normal ovarian 

epithelial cells, in ovarian tumor cells FRα is exposed to the circulation, creating an opportunity 

for tumor targeting via FRα uptake (Assaraf et al., 2014; Vergote et al., 2015). Additionally, our 

laboratory recently described a substantial expression of PCFT protein in ovarian cancer patients 

(Z. Hou and L. H. Matherly, manuscript submitted), suggesting a potential for PCFT-targeted 

therapies for ovarian cancer.  

Progress has been made in the development of tumor-targeted antifolate molecules based 

on their selective transport by FRs and PCFT over RFC. Previously, we described the 6-
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substituted pyrrolo[2,3-d]pyrimidine benzoyl L-glutamate antifolates AGF17 and AGF23 (Figure 

6.1) as GARFTase inhibitors which are transported by PCFT and FRα more favorably than RFC 

(see Chapter 1.6.7) (Deng et al., 2008; Gangjee et al., 2005; Gangjee et al., 2004; Kugel 

Desmoulin et al., 2010). Replacements of the side-chain benzoyl group with a thiophene resulted 

in novel compounds AGF150 and AGF117, respectively (Figure 6.1) (Wang et al., 2012; Wang 

et al., 2015), related to our lead compound AGF94 (see Chapter 5), while replacement of the 

benzoyl moiety of AGF23 by a pyridine resulted in AGF107 (Figure 6.1) (C. George and L. H. 

Matherly, unpublished). We previously described potent antitumor efficacy by our lead 

compound AGF94 (see Chapter 5) toward ovarian cancer cell lines in vitro as well as in vivo 

(Wang et al., 2011; Wang et al., 2015) (Z. Hou and L. H. Matherly, manuscript submitted). 

AGF117, AGF150, and AGF107, like AGF17, AGF23, and AGF94 are all selective for PCFT 

and FR cellular uptake over RFC. 

In this chapter, we describe further modifications to these novel antifolate compounds 

through the addition of fluorine to the side-chain benzoyl and thionyl groups. Fluorine 

modifications of drugs have ample precedent and can improve potency and impact selectivity of 

drugs by altering pKa, lipophilicity and hydrophobic interactions, modifying conformation, or 

any combination of these possibilities (Gillis et al., 2015). Additionally, fluorine-labeled 

antifolates have potential clinical applications as theranostic agents, as PET imaging using 18F-

labeled drugs can provide valuable tumor imaging data, as well as providing a measurement of 

drug uptake for individual patients (Basu and Alavi, 2016). In this chapter, we describe five 

novel antifolates containing fluorine ring substitutions and studies of their specificities for RFC,  
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Figure 6.1 Structures of novel fluorinated antifolates. Structures are shown for both 
previously established parent compounds (AGF17, AGF23, AGF107, AGF117 and AGF150) 
and novel fluorinated compounds (AGF264, AGF270, AGF277, AGF278, AGF283). All 
compounds were synthesized by Dr. Aleem Gangjee of Duquesne University in collaboration 
with Dr. Larry Matherly. 
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PCFT and FRα/β targeting compared to the corresponding parent compounds AGF17, AGF23, 

AGF107, AGF117 and AGF150 (Figure 6.1). Among the new molecules, AGF278 emerged as 

an antifolate with high potency and great specificity for PCFT and FRα activity over RFC. This 

compound may prove to be an effective treatment for ovarian cancer patients, reflecting its 

potency and dual targeting via FRα and PCFT. 

6.2 Materials and Methods 

6.2.1 Reagents 

[3’,5’,7-3H]MTX (20 Ci/mmol) [3’, 5’, 7, 9-3H], folic acid (25 Ci/mmol), and [14C(U)]-

glycine (87 mCi/mmol) were purchased from Moravek Biochemicals (Brea, CA). Unlabeled 

folic acid was purchased from Sigma-Aldrich (St. Louis, MO). LCV [(6R,S)5-formyl 

tetrahydrofolate] was provided by the Drug Development Branch, National Cancer Institute 

(Bethesda, MD). MTX was supplied by the Drug Development Branch, National Cancer 

Institute. PMX [N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-

yl)ethyl]benzoyl]-L-glutamic acid] (Alimta) was provided by Eli Lilly and Co. (Indianapolis, 

IN). PT523 [N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine] was a gift 

from A. Rosowsky (Boston, MA). The 6-substituted pyrrolo[2,3-d]pyrimidine antifolates, 

including AGF17, AGF23, AGF94, AGF107, AGF117, AGF150, AGF264, AGF270, AGF277, 

AGF278 and AGF283, were all synthesized by Dr. Aleem Gangjee and colleagues at Duquesne 

University (Pittsburgh, PA) (Figure 6.1). Other chemicals were obtained from commercial 

sources in the highest available purities.  

6.2.2 Cell Lines 

The engineered CHO sublines including RFC-, PCFT- and FRα-null MTXRIIOuaR2-4 

(R2), and RFC- (pC43-10), PCFT- (R2/PCFT4), or FRα- (RT16) and FRβ- (D4) expressing 
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CHO sublines were previously described (Deng et al., 2008; Deng et al., 2009; Flintoff et al., 

1976; Flintoff and Nagainis, 1983; Wong et al., 1995). The CHO cells were grown in α-minimal 

essential medium (MEM) supplemented with 10% bovine calf serum (Invitrogen, Carlsbad, CA), 

L-glutamine (2 mM), penicillin (1000 U/ml), and streptomycin (1000 µg/ml) at 37° C with 5% 

CO2. R2 transfected cells (PC43-10, RT16, R2/hPCFT4) were cultured in complete α-MEM 

media plus G418 (1 mg/ml). Prior to the proliferation assays, RT16 and D4 cells were cultured in 

complete folate-free RPMI 1640 (without added folate), plus 10% dialyzed fetal bovine serum 

(FBS) (Sigma-Aldrich) and penicillin/streptomycin for 3 days. HeLa R1-11-FR2 and R1-11-

PCFT4 cells were derived from RFC- and PCFT-null R1-11 cells by stable transfection with 

FRα-pcDNA3.1 and pZeoSV2(+)-PCFT constructs, respectively (Zhao et al., 2009b; Zhao et al., 

2008). These HeLa sublines, along with R1-11 cells, were gifts from Dr. I. David Goldman 

(Albert Einstein School of Medicine, Bronx, NY). The R1-11-RFC2 cell line was developed in 

our laboratory by transfection with the pZeoSV2-RFC vector and clonal selection, as previously 

described (Wang et al., 2015). R1-11-RFC2, -PCFT4 and -FR2 sublines were routinely cultured 

in folate-free RPMI 1640 medium, supplemented with 10% FBS (Sigma-Aldrich), L-glutamine, 

penicillin-streptomycin solution, and 100 µg/ml Zeocin.   

 IGROV1 (Benard et al., 1985) and A2780 (Johnson et al., 1994) ovarian carcinoma cells 

were a gift of Dr. Manohar Ratnam (Karmanos Cancer Institute) and Dr. Thomas Hamilton (Fox 

Chase Cancer Center). SKOV3 (Morimoto et al., 1993) cells were purchased from the American 

Type Culture Collection (Manassas, VA). IGROV1, SKOV3 and A2780 cells were routinely 

cultured in folate-free RPMI 1640 medium, supplemented with 10% FBS (Sigma-Aldrich), L-

glutamine, and penicillin-streptomycin solution. IGROV1 NTC and FRα knockdown cells (#4, 

#10) were developed using MISSION® Lentiviral particles (Sigma-Aldrich) containing shRNA 
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targeting FRα or a non-targeted control (NTC) shRNA sequence as previously described (Z. Hou 

and L. H. Matherly, manuscript submitted). 

6.2.3 Cell Proliferation Assays 

For growth inhibition studies, cells (CHO, R1-11 and ovarian cancer cell lines) were 

plated in 96 well dishes (~2000 cells/well, total volume of 200 µl) and treated with a range of 

antifolate concentrations (0-1000 nM) in folate-free RPMI 1640 medium with 10% dialyzed 

FBS, L-glutamine and penicillin/streptomycin, and supplemented with 2 nM (RT16, D4 CHO 

cells) or 25 nM (all others) LCV, as previously described (Wang et al., 2015). To confirm FR-

mediated drug uptake, 200 nM folic acid was added to parallel incubations for RT16 and D4 

cells. After 96 h, viable cells were assayed with Cell-Titer BlueTM reagent (Promega, Madison, 

WI), with fluorescence measured with a fluorescence plate reader. Fluorescence measurements 

were used for calculations of IC50s, corresponding to the drug concentrations at which cells 

showed 50% loss of proliferation (Wang et al., 2011; Wang et al., 2015).    

To confirm the targeted pathway/enzyme target, in vitro growth inhibition of IGROV1 

tumor cells was measured in the presence of thymidine (10 µM) or adenosine (60 µM). For de 

novo purine biosynthesis, additional protection experiments used AICA (320 µM) to distinguish 

inhibitory effects at GARFTase from those at AICARFTase. Folic acid (200 nM) was used as an 

inhibitor of FR-mediated anti-proliferative effects, as previously described (Deng et al., 2008; 

Wang et al., 2011; Wang et al., 2015) (also see Chapter 5).  

6.2.4 Folate Receptor Binding Assay 

To determine antifolate relative binding affinities, RT16 and D4 CHO cells were plated 

in 60 mm dishes at 7.5x105 cell/plate and grown for two days (~80% confluency) (Wang et al., 

2015). Cells were sequentially washed with Dulbecco’s phosphate-buffered saline (PBS) at 4° C 
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(3x), followed by acidic buffer (10 mM sodium acetate, 150 mM NaCl, pH 3.5) (2x) to remove 

FR-bound folates, and finally HEPES-buffered saline (20 mM HEPES, 140 mM NaCl, 5 mM 

KCl, 2 mM MgCl2, 5 mM glucose, pH7.4) (HBS). Cells were treated with [3H]folic acid (50 nM, 

specific activity, 0.5 Ci/mmol) in HBS in the presence and absence of unlabeled folic acid, MTX 

(negative control), or the 6-substituted pyrrolo[2,3-d]pyrimidine antifolates (10 nM to 1000 nM) 

for 15 min at 4° C. Dishes were washed with HBS at 4°C (3x), cells were solubilized with 0.5 N 

NaOH (3 h, 37°C), and aliquots were measured for radioactivity and protein contents. Protein 

concentrations were measured using Folin-phenol reagent (Lowry et al., 1951). FR-bound 

[3H]folic acid was calculated as pmol/mg protein, and binding affinities were calculated as the 

inverse molar ratios of unlabeled ligands required to inhibit [3H]folic acid binding by 50%. The 

relative binding affinity of unlabeled folic acid was assigned a value of 1 (Deng et al., 2008; 

Deng et al., 2009; Wang et al., 2012; Wang et al., 2010; Wang et al., 2011; Wang et al., 2015). 

6.2.5 Transport Assays 

R2 and R2/hPCFT4 CHO sublines and R1-11 and R1-11-RFC2 HeLa sublines were 

grown in suspension as spinner cultures at densities of 2-5 x 105 cells/mL (Kugel Desmoulin et 

al., 2010; Wang et al., 2015). Cells were isolated by centrifugation, washed with PBS (3x), and 

the cell pellets (~1 x 107 cells) were suspended in transport buffer (2 ml) for cellular uptake 

assays (Wang et al., 2015). PCFT-dependent uptake of 0.5 µM [3H]MTX was assayed in cell 

suspension over 2 min at 37° C in MES-buffered saline (20 mM MES, 140 mM NaCl, 5 mM 

KCl, 2 mM MgCl2, and 5 mM glucose) at pH 5.5 or in HBS at pH 6.8 in the presence or 1 or 10 

µM inhibitor, while RFC-dependent uptake was measured over 2 min at 37° C in pH 7.2 HBS. 

Transport was quenched with ice-cold PBS after 2 min and cells were washed three times with 

ice-cold PBS. Cellular proteins were solubilized with 0.5 N NaOH (3 h, 37° C). Transport levels 
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were expressed as pmol/mg protein, calculated using direct measurements of radioactivity and 

protein contents of the cell homogenates. Protein concentrations were measured using Folin-

phenol reagent (Lowry et al., 1951). Transport levels were normalized to levels in untreated 

(R2/PCFT4 or R1-11-RFC2) controls. To determine Ki values for 6-pyrrolo[2,3-d]pyrimidine 

antifolates, transport was measured over 2 min with 0.5 µM [3H]MTX and 0.05-1 µM of 

unlabeled antifolate (Kugel Desmoulin et al., 2010). Dixon plots were used to analyze data. 

6.2.6 In Situ GARFTase Inhibition Assay 

In situ measure of intracellular GARFTase activity, via incorporation of [14C(U)]glycine 

into [14C]formyl glycinamide ribonucleotide, in IGROV1 cells at pH 6.8, was performed exactly 

as previously described (Kugel Desmoulin et al., 2010; Wang et al., 2011) (also see Chapter 5). 

Antifolates were used over a concentration range of 0.3 nM to 100 nM. Results were normalized 

to cell proteins. To calculate the IC50 values, drug-treated samples were normalized to untreated 

controls. 

6.2.7 Statistical Analysis  

 Descriptive statistical tests (e.g., t tests) were conducted using GraphPad 6.0 software (La 

Jolla, CA).  

6.3 Results 

6.3.1 Cytotoxic Activity in Engineered Models 

 In this chapter, our goal was to explore the antiproliferative effects of novel fluorinated 6-

substituted pyrrolo[2,3-d]pyrimidines (Figure 6.1) on tumor cells, and identify whether these 

modifications to previously established antifolates may enhance potency or transporter 

specificity. In order to determine the selectivity of each compound between RFC, PCFT, and 

FRs, we utilized isogenic CHO sublines that were engineered to express RFC (PC43-10), PCFT 
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(R2/hPCFT4), FRα (RT16), or FRβ (D4), all derived from the transporter-null CHO cell line 

MTXRIIOuaR2-4 (R2) (Deng et al., 2008; Deng et al., 2009; Flintoff et al., 1976; Flintoff and 

Nagainis, 1983; Wong et al., 1995). Cells were continuously treated with the novel 6-substituted 

pyrrolo[2,3-d]pyrimidine antifolates for 4 days and proliferation measured with a fluorescence-

based assay. IC50 values were determined for each drug in each cell line, and the novel 

fluorinated antifolates were directly compared to their corresponding parent compounds. 

AGF264 and AGF270 displayed an enhanced inhibition of proliferation toward R2/hPCFT4 cells 

compared to parent compounds AGF23 and AGF17 (~3.5-fold and ~2.9-fold decrease in IC50, 

respectively) (Table 6.1). Conversely, AGF277 had a decreased anti-proliferative effect on 

R2/hPCFT4 cells relative to the parent AGF107 (~2.2-fold increase in IC50) (Table 6.1). AGF278, 

in comparison to parent AGF117, had dramatically increased (~6.9-fold) in vitro efficacy in 

RT16 cells (Table 6.1). AGF283, structurally homologous to AGF278 but with 3 rather than 4 

bridge carbons, also displayed significantly enhanced in vitro efficacy in PC43, R2/hPCFT4 and 

RT16 cells compared to its parent compound AGF150, although this increased activity was 

accompanied by a dramatically increased non-specific activity in R2 cells (20.5 nM for AGF283 

compared to 271 nM for AGF150). This suggests a high affinity for another transporter other 

than RFC, PCFT or FRα/β. Collectively, these results suggest that fluorination of antifolate 

compounds can have dramatic effects on anti-proliferative efficacy towards cells which express a 

single folate uptake protein. 

 In order to extend the analysis from the CHO cell line models, we performed additional 

ploriferation assays in engineered human cancer cells. We tested the drug efficacies toward 

several HeLa sublines which were engineered from the RFC- PCFT- and FR-null R1-11 HeLa 

cell line, including the R1-11-RFC2 (expresses RFC), R1-11-PCFT4 (PCFT) and R1-11-FR2  
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Table 6.1 

IC50 Values (nM) for Inhibition of CHO Sublines 
  

R2 
(null) 

 
PC43-10 
(RFC) 

R2/hPCFT4 
(PCFT) 

RT16 
(FRα) 

D4 
(FRβ) 

PMX 138(13) 26.2(5.5) 8.3(2.7) 42(9) 60(8) 
AGF94 249(25) 106(17) 3.3(0.5) 0.31(0.15) 0.16(0.02) 
AGF23 >1000 >1000 83.1(20.1) 0.84(0.07) 2.0(0.3) 
AGF264 >1000 >1000 23.5(1.5) 0.49(0.18) 1.6(0.44) 
AGF17 >1000 424(116) 10.9(1.9) 0.68(0.22) 0.41(0.08) 
AGF270 140(27) 61.6(11.5)* 3.8(0.3)* 1.1(0.4) 3.9(0.1)* 
AGF107 >1000 >1000 30.4(10.7) 1.3(0.1) 0.52(0.09) 
AGF277 >1000 467(142) 66.9(25.0) 0.69(0.39) 0.44(0.13) 
AGF117 >1000 >1000 32.0(11.6) 2.5(0.5) 0.43(0.14) 
AGF278 >1000 >1000 6.0(0.9) 0.36(0.12)* 0.75(0.42) 
AGF150 271(52) 157(36) 9.7(1.8) 0.71(0.20) 0.32(0.03) 
AGF283 20.5(1.6)* 20.1(6.1)* 1.5(0.4)* 0.14(0.03)* 0.19(0.02)* 

Growth inhibition assays were performed using CHO sublines derived from RFC- PCFT-and 
FR-null MTXRIIOuaR2-4 CHO cells (R2) and engineered to overexpress human RFC (PC43-
10), PCFT (R2/hPCFT4), FRα (RT16) or FRβ (D4). Results are shown as a mean of five 
experiments (± standard error in parentheses) and are described as calculated IC50 values 
representing the concentration at which growth of 50% of cells was inhibited relative to 
untreated cells. Fluorinated compounds which displayed statistically different IC50 values from 
parent compounds (directly above) within each cell line are marked with * (p < 0.05). 
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Table 6.2 
IC50 Values (nM) for Inhibition of HeLa R1-11 Sublines 
 

 R1-11-
RFC2 

R1-11-
PCFT4 

R1-11- 
FR2 

PMX 23.8(1.5) 66.8(4.8) 863(81) 
AGF94 444(5) 53.1(15.5) 30.2(5.6) 
AGF23 >1000 5.21(1.33) 11.6(2.7) 
AGF264 >1000 21.6(17.1) 7.78(1.89) 
AGF17 >1000 9.71(2.78) 12.2(4.4) 
AGF270 507(76) 5.54(3.35) 5.22(1.32) 
AGF107 634(43.9) 8.98(3.64) 6.54(1.29) 
AGF277 >1000 37.6(16.3) 21.7(3.9)* 
AGF117 >1000 72.6(18.1) 35.3(6.2) 
AGF278 213(9) 5.01(2.12)* 2.84(0.67)* 
AGF150 62.9(3.8) 40.0(9.8) 7.57(1.16) 
AGF283 66.2(6.2) 20.4(4.7) 3.11(0.69)* 

Growth inhibition assays were performed using HeLa sublines derived from R1-11 RFC- and 
PCFT-null cells and engineered to overexpress human RFC (R1-11-RFC2), PCFT (R1-11-
PCFT4), or FRα (R1-11-FR2). Results are shown as a mean of five experiments (± standard error 
in parentheses) and are described as calculated IC50 values representing the concentration at 
which growth of 50% of cells was inhibited relative to untreated cells. Fluorinated compounds 
which displayed statistically different IC50 values from parent compounds (directly above) within 
each cell line are marked with * (p < 0.05).  
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(FRα) cell lines (Wang et al., 2015; Zhao et al., 2009b; Zhao et al., 2008). Results generally 

reflected growth inhibitions seen in the CHO cell lines (i.e., compare results in Table 6.1 with 

those in Table 6.2). Notably, in this conext, AGF278 displayed a significantly enhanced efficacy 

toward both R1-11-PCFT4 and R1-11-FR2 cells compared to AGF117, suggesting an increased 

activity for both PCFT and FRα uptake (~14.5-fold and ~12.4-fold decrease in IC50, respectively) 

(Table 6.2). AGF283 displayed an increased efficacy for R1-11-FR2 cells compared to AGF150 

(~2.4-fold increase in IC50), as seen with RT16 CHO cells. However, unlike RT16 CHO cells, 

AGF277 was significantly less potent than AGF107 in these cells (~3.3-fold decrease in IC50) 

(Table 6.2). While AGF264 and AGF270 were selective toward PCFT4-expressing R1-11-

PCFT4 over the R1-11-RFC2 HeLa cells, this was not significantly enhanced compared to 

respective parent compounds AGF23 and AGF17 (Table 6.2). 

In order to more specifically describe the PCFT and FRα selectivies of these compounds, 

RFC/PCFT and RFC/FR IC50 ratios were calculated (Table 6.3). For these selectivity ratios, a 

larger number is indicative of increased selectivity for tumor specific (FR and/or PCFT) 

transporters compared to ubiquitously expressed RFC. In this case, PMX, widely considered to 

be an excellent substrate for both PCFT an RFC, displayed only a RFC/PCFT selectivity ratio of 

only 0.36 (Table 6.3), a clear reflection of limited transporter selectivity. AGF94, considered to 

be among the best PCFT substrates (Cherian et al., 2013; Desmoulin et al., 2012b; Wang et al., 

2011) (also see Chapter 5), showed an RFC2/PCFT4 IC50 ratio of 8.36 (~23.2-fold increase over 

PMX) while also displaying an RFC2/FR2 IC50 ratio of 14.7 (~490-fold increase over PMX) 

(Table 6.3). AGF283, as expected, did not display a high level of specificity for PCFT (3.25 

RFC2/PCFT4 IC50 ratio), although there was substantial FRα selectivity (21.3 RFC2/FR2 IC50 

ratio) (Table 6.3). We did observe over 90-fold specificity for PCFT (91.5 RFC2/PCFT4 IC50   
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Table 6.3 
Ratios of Transporter Selectivity over RFC 

 
 

RFC2 IC50 
PCFT4 IC50 

RFC2 IC50 
FR2 IC50 

PMX 0.36 0.03 
AGF94 8.36 14.7 
AGF270 91.5 97.1 
AGF278 42.5 75 
AGF283 3.25 21.3 

Selectivity ratios determined by IC50 values in R1-11-RFC2, R1-11-PCFT4 and R1-11-FR2 cell 
lines (Table 6.2). By this metric, higher values represent an increased selectivity for PCFT or 
FRα-mediated uptake compared to RFC. Compounds with >1000 nM IC50 values in the R1-11-
RFC2 cell line were excluded from comparison. 
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ratio) and FRα (97.1 RFC2/FR2 IC50 ratio) for AGF270, somewhat greater than the specificity 

seen for AGF278 with PCFT (42.5 RFC2/PCFT4 IC50 ratio) and FRα (75.0 RFC2/FR2 IC50 

ratio) (Table 6.3). The levels of specificity for AGF270 and AGF278 are unprecedented, as these 

selectivity ratios are much higher than that of our previous lead compound AGF94. Compared to 

AGF94, AGF278 has a ~5-fold increase in selectivity for both PCFT and FRα over RFC, while 

AGF270 had an ~11-fold increase for PCFT selectivity and a ~6-fold increase for FRα selectivity, 

establishing AGF270 and AGF278 as the most selective PCFT- and FRα-targeted antifolates to 

date (Table 6.3), establishing AGF270 and AGF278 as the most selective PCFT- and FRα-

targeted antifolates to date (Table 6.3).  

6.3.2 Transport Binding Specificity of 6-Substituted Pyrrolo[2,3-d]pyrimidine Antifolates 
for the Major Folate Transporters 
 
 In order to further examine the level of specificity for each compound in the context of 

RFC and PCFT uptake, we determined the binding affinity for each compound as a competitor to 

[3H]MTX. To determine the binding specificity of each antifolate for PCFT, we tested the 

capability of each compound to inhibit 0.5 µM [3H]MTX uptake in PCFT-expressing R2/PCFT4 

CHO cells at pH 5.5. All inhibitors were tested at 1 µM and 10 µM, and results were normalized 

to those for the non-treated control R2/PCFT4 cells. PCFT-null R2 cells were used as a negative 

control for membrane transport, while the RFC-specific antifolate PT523 was used as a negative 

control for PCFT inhibition and PMX was used as a positive control for inhibition. All 

compounds displayed some level of transport inhibition at both 1 µM and 10 µM. For AGF264, 

inhibition was significantly greater than parent AGF23 at both 1 µM (80% compared to 66% 

inhibition, respectively) and 10 µM (92% compared to 95%, respectively), suggesting an 

enhanced PCFT selectivity (Figure 6.2A). AGF270 also displayed significantly greater inhibition  
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Figure 6.2 PCFT and RFC transport inhibition by the fluorinated antifolates compared to 
parent compounds. Panels A and B, Inhibition of PCFT [3H] MTX transport by unlabeled 6-
substituted pyrrolo[2,3-d]pyrimidine analogues in R2/PCFT4 CHO cells. Relative PCFT 
inhibition for assorted antifolate substrates were measured at pH 5.5 (A) and pH 6.8 (B) over 2 
min in the presence [3H] MTX (0.5 µM), with 1 or 10 µM of inhibitor. Results are presented as 
mean values ± standard errors for three experiments. Results are normalized to transport in the 
absence of any additions. Panel C, Inhibition of RFC [3H] MTX transport by unlabeled 6-
substituted pyrrolo[2,3-d]pyrimidine analogues in R1-11-RFC2 cells. Experiments were 
performed as in A at pH 7.2. For all experiments, bars noted with asterisks were statistically 
different from the corresponding parent compound (to the right) at the same concentration (p < 
0.05) by paired t-test analysis. 
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than parent AGF17 at 1 µM (74% compared to 61%, respectively), while AGF277 displayed 

poorer inhibition than parent AGF107 at 1 µM (59% compared to 74%, respectively) (Figure 

6.2A). These experiments were repeated at pH 6.8 and results were largely the same, albeit with 

reduced transport inhibition (Figure 6.2B). While the results for AGF278 were similar at pH 5.5 

and pH 6.8, at pH 6.8 with 10 µM AGF278, transport inhibition was significantly increased over 

that for the parent AGF117 at 10 µM (51% compared to 66%, respectively). In order to 

determine, Ki values, a quantititative measure of substrate binding affinities, for PCFT, we used 

a range of inhibitor concentrations (0.05 µM to 1 µM) with a constant (1 µM) concentration of 

[3H]MTX. Kis were calculated using Dixon analysis. Based on this parameter, all novel 

fluorinated antifolates displayed differential PCFT specificities compared to parent antifolates 

which were statistically significant. With the exception of AGF277, which had a higher Ki value 

than parent AGF107 (~1.9-fold increase), all fluorinated antifolates had decreased Kis compared 

to parent antifolates, suggesting an increased PCFT transport capability (Table 6.4). Notably, 

AGF283 showed a ~4-fold decrease in Ki compared to parent AGF150. 

 Analogous experiments were performed to assess binding to RFC. For these experiments, 

we measured [3H]MTX uptake (at 0.5 µM) in RFC-expressing R1-11-RFC2 HeLa cells at pH 7.2 

in the presence of 1 µM and 10 µM inhibitor. Transporter-null R1-11 cells were used as a 

negative control. Although some minor inhibition of RFC transport was observed at 10 µM 

inhibitor, particularly for AGF150 and AGF283, these levels were modest and above 30% 

inhibition (Figure 6.2C). In all cases, RFC inhibition by fluorinated antifolates was not 

significantly different from the corresponding parent antifolate (Figure 6.2C). Together, these 

data suggest that all 6-substituted pyrrolopyrimidines are potent PCFT inhibitors and poor RFC  
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Table 6.4 
Kinetic Inhibition Analysis of Antifolates Competing with MTX in R2/PCFT4 cells. 

 Ki 
PMX 0.12 (0.03) 
AGF94 0.14 (0.02) 
AGF23 0.46 (0.05) 
AGF264 0.17 (0.01)* 
AGF17 0.63 (0.13) 
AGF270 0.26 (0.01)* 
AGF107 0.24 (0.02) 
AGF277 0.46 (0.06)* 
AGF117 0.36 (0.03) 
AGF278 0.25 (0.01)* 
AGF150 0.28 (0.07) 
AGF283 0.07 (0.04)* 

 
[3H]MTX uptake was assayed at using R2/PCFT4 cells at pH 5.5 over 2 min at 37oC. To 
determine Ki values, cells were incubated with 0.5 µM [3H]MTX with antifolates as competitors 
from 0.05 µM to 0.5 µM, with results analyzed by Dixon plots. Data are presented as mean 
values ± standard errors from four independent experiments. For fluorinated antifolates, values 
significantly different from those of parent antifolate (p < 0.05) are marked with *.  
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inhibitors, paralleling inhibitions of proliferation (Table 6.2). Fluorination of compounds 

appeared to enhance PCFT binding in several cases. 

6.3.3 Folate Receptor Binding Affinity of 6-Substituted Pyrrolo[2,3-d]pyrimidine 
Antifolates 
 

As suggested by the antiproliferative effects in RT16, D4, and R1-11-FR2 cells, the 

fluorinated 6-substituted pyrrolo[2,3-d]pyrimidine antifolates appeared to target FRs although 

there were somewhat divergent specificities for FRα-expressing cells over FRβ-expressing cells. 

As a direct metric for FR specificity, we measured the binding of each compound in competition 

with 50 nM [3H]folic acid. A range of concentrations (10 nM to 1000 nM) was used to determine 

IC50 values, corresponding to the concentration that inhibited [3H]folic acid binding. IC50 values 

for the antifolate inhibitors were further normalized to that for non-radioactive folic acid, giving 

a measure of relative binding affinities. Both RT16 (FRα) and D4 (FRβ) CHO cells were used in 

order to test for relative affinity to both FR isoforms. Generally, results observed in D4 cells 

were reflective of results in RT16, although binding affinities for FRβ tended to be lower, 

suggesting an increased targeting for FRα over FRβ (assuming that the affinity for folic acid in 

each isoform is equal). An exceptional difference was observed with AGF283, which appeared 

to have a much stronger binding affinity for FRα (binding affinity 0.83) than for FRβ (binding 

affinity 0.12), a ~7-fold difference in binding affinity. This difference was not observed between 

RT16 and D4 anti-proliferative effects, likely due to the non-specific uptake of AGF283 (as 

reflected by the low IC50 in R2 cells) (Table 6.1). 

For both FRα and FRβ, the fluorinated antifolate AGF278 appeared to have an enhanced 

specificity for FRs in comparison to its parent compound AGF117 (Figure 6.3A-B). Particularly 

for FRα, AGF278 displayed a binding affinity approximating that of folic acid (1.0 binding  
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Figure 6.3 FRα and FRβ binding affinities. Panels A and B, Binding of 6-substituted 
pyrrolo[2,3-d]pyrimidine analogues to FRα (A) in RT16 cells and FRβ (B) in D4 relative to FA. 
Relative binding affinities for assorted folate/antifolate substrates were determined over a range 
of ligand concentrations from 10nM to 1000 nM and were calculated as the inverse molar ratios 
of unlabeled compounds required to inhibit [3H] folic acid binding by 50% (the relative affinity 
of folic acid being 1). Results are presented as mean values ± standard errors from three 
experiments. The bars noted with asterisks were statistically different from the corresponding 
parent compound (to the right) (p < 0.05) by paired t-test analysis. 
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affinity for AGF278 compared to 0.42 for AGF117) (Figure 6.3A). While fluorinated analogs 

AGF270 and AGF283 appeared to have no change in binding affinities compared to their 

respective parent compounds AGF17 and AGF150, AGF264 and AGF277 showed lower binding 

affinities than respective parent compounds AGF23 and AGF107, respectively. For AGF270, a 

FRα binding affinity comparable to that for folic acid was measured, establishing potent FRα 

binding. Thus, in general, fluorination of the targeted antifolates did not enhance antifolate 

binding affinities to FR, as only AGF278 of the five novel fluorinated compounds displayed 

significantly enhanced FR binding affinity compared to the parent compound AGF117.  

6.3.4 Cytotoxicity of of 6-Substituted Pyrrolo[2,3-d]pyrimidine Antifolates in Ovarian 
Cancer Cell Lines 
 
 We extended our studies of these novel fluorinated pyrrolopyrimine antifolates to 

clinically relevant ovarian cancer cells. We determined the antiproliferative efficacies toward 

IGROV1, SKOV3, and A2780 cells. These three cell lines were previously shown to express 

both PCFT and FRα transcripts, and while IGROV1 displayed the highest levels of FRα 

transcripts and binding (~4-fold increase in binding over SKOV3, ~11-fold increase over A2780), 

PCFT transcripts and binding were nearly identical between all three cell lines (<2-fold 

difference) (Wang et al., 2015) (Z. Hou and L. H. Matherly, submitted). In two of three cell lines, 

A2780 and IGROV1, we observed significant increases in in vitro efficacies for both AGF278 

and AGF283 (from 2-fold to 29-fold increases), in comparison to respective parent compounds 

AGF117 and AGF150 (Table 6.5). Furthermore, AGF278 and AGF283 were significantly more 

potent than AGF94 toward both IGROV1 and A2780 cells (p < 0.02). These results suggest that 

compounds with increased specificity for PCFT and FRα may also be more potent inhibitors of 

proliferation in some ovarian cancer cell lines.  
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Table 6.5 
IC50 Values (nM) for Inhibition of Ovarian Cancer Cell Lines and FRα Knockdown Sublines 
 
  

SKOV3 
 

A2780 
IGROV1 

WT NTC FR KD-4 FR KD-10 
PMX 24.1(2.1) 39.4(9.2) 104(11) 71.0(8.5) 46.6(10.4) 22.2(6.6) 
AGF94 38.7(4.9) 27.4(3.4) 16.7(3.4) 10.1(1.5) 190(99) 74.6(33.9) 
AGF23 868(32) 14.2(3.6) 4.37(0.95) 5.21(1.59) >1000 >1000 
AGF264 224(75)* 13.6(4.2) 5.44(0.81) 6.89(1.13) >1000 >1000 
AGF17 273(47) 2.72(0.53) 2.01(0.14) 1.97(0.69) 453(262) 190(48) 
AGF270 27.9(2.5)* 2.14(0.18) 1.67(0.30) 1.14(0.25) 41.0(12.7) 19.2(4.3)* 
AGF107 90.5(16.4) 5.42(1.39) 1.87(0.19) 1.55(0.18) 64.1(6.5) 30.5(0.5) 
AGF277 59.2(12.4) 15.7(3.6)* 6.36(1.04)* 5.17(1.34)* >1000 >1000 
AGF117 114(34) 28.8(1.4) 54.3(4.8) 40.7(5.8) >1000 >1000 
AGF278 37.8(10.1) 3.11(0.14)* 1.90(0.15)* 1.79(0.19)* 138(6.8) 66.9(28.3) 
AGF150 25.1(2.6) 21.7(1.5) 12.1(1.6) 12.8(1.4) 80.5(24.2) 30.3(2.1) 
AGF283 30.2(7.1) 7.6(1.0)* 6.92(1.03)* 5.61(1.20)* 85.6(3.9) 42.2(11.2) 

Growth inhibition assays were performed using ovarian cancer cell lines SKOV3, A780 and 
IGROV1, as well as FRα-knockdown sublines (KD-4, KD-10) derived from IGROV1 as well as 
non-targeted control (NTC) as previously described. Results are shown as a mean of five 
experiments (± standard error in parentheses) and are described as calculated IC50 values 
representing the concentration at which growth of 50% of cells was inhibited relative to 
untreated cells. Fluorinated compounds which displayed statistically different IC50 values from 
parent compounds (directly above) within each cell line are marked with * (p < 0.05). 
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Interestingly, in the SKOV3 cells, we observed a significant increase in efficacy for 

AGF264 (224 nM IC50) in comparison to AGF23 (868 nM IC50), and an increased efficacy for 

AGF270 (27.9 nM IC50) compared to AGF17 (273 nM IC50). Differences between AGF278 (37.8 

nM IC50) and AGF117 (114 nM IC50) also suggested an increased efficacy, although this 

difference was not statistically significant (Table 6.5). However, contradictory to the enhanced 

efficacy observed in IGROV1 and A2780, AGF278 and AGF283 did not have IC50 values in 

SKOV3 which were significantly lower than AGF94 (p > 0.05). Because SKOV3 has roughly 

equivalent PCFT expression to both IGROV1 and A2780, with FRα expression higher than 

A2780 but lower than IGROV1 (Hou and Matherly, manuscript submitted), the differential 

effects observed in the SKOV3 cell line are likely due to factors other than antifolate uptake. 

Additionally, we tested the antiproliferative effects of the novel compounds in IGROV1 

FRα knockdowns (KD-4, KD-10) and non-targeted control (NTC) (Hou and Matherly, 

manuscript submitted). These knockdown cell lines each display >90% knockdown of FRα, as 

reflected in gene expression (measured by real-time RT-PCFT) and levels of FRα protein 

(measured by direct binding of [3H]folic acid). Knockdown of FRα was accompanied by modest 

decreases in PCFT gene and protein expression (decreases of 28% for KD-4 and 40% for KD-10 

compared to NTC) and PCFT membrane transport. Under these conditions, PMX efficacy was 

increased ~2-fold by FRα knockdown, suggesting that decreased FR-driven LCV uptake (and a 

reduction of folate pools) had a greater impact on PMX efficacy than on the decreased FR-driven 

PMX uptake, as FRα-mediated uptake of PMX into solid tumor cell lines has been shown to be 

of minor importance (Chattopadhyay et al., 2004). However, for other 6-substituted pyrollo[2,3-

d]pyrimidine antifolates, FR knockdown in IGROV1 cells greatly reduced drug efficacy. The 

fold change in efficacy with FR knockdown varied between drugs. For instance, for some  
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Figure 6.4 Cytotoxicity via colony formation assay. IGROV1 cells (400 cells) were plated in 
6-well plates in complete folate-free RPMI 1640 (pH 7.2), 10% dialyzed fetal bovine serum, and 
25 nM LCV. After 24 hours, cells were then treated with PMX, AGF17, AGF270, AGF117 or 
AGF278 at varying concentrations (0.1 to 10 µM) in complete folate-free RPMI 1640 adjusted to 
pH 6.8 and supplemented with 25 nM LCV. After an additional 24 hours, cells were rinsed with 
PBS, and then incubated in complete folate-free RPMI 1640 supplemented with 25 nM LCV (pH 
7.2) for 9 days. Colonies were stained with methylene blue and counted, and colony numbers 
were normalized to the controls. Plots show mean ± S.E. values, representative of triplicate 
experiments. IC50 (mean and S.E.) values (µM) were as follows PMX: 7.4 (1.0); AGF17: 1.7 
(0.5); AGF270: 0.7 (0.1); AGF117: >10 (0); AGF278: 0.5 (0.1). 
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compounds, including AGF283, we saw a subtle increase in IC50 (~11-fold,) compared to NTC, 

while other drugs, such as AGF278, we saw a dramatic increase in drug efficacy (~57-fold 

increase in IC50), likely reflecting differences in the specificities for PCFT and FRα over RFC  

 (Table 6.3). Some drugs, such as AGF264 and AGF277, were completely ineffective in 

IGROV1 FR knockdowns, possibly reflecting the decreased PCFT expression in these cells in 

conjunction with FR knockdown.  

 As an additional method to evaluate antitumor efficacy in vitro using IGROV1 cells, we 

used a colony formation assay to measure cytotoxicity under conditions more representative of 

those characterizing the tumor microenvironment (i.e., pH 6.8) (see Chapter 5). Cells were 

seeded in 6-well plates at a density of 400 cells/well, and one day later were treated with drugs 

for 24 hours in pH 6.8 media, followed by nine days of growth in the absence of drug. Here, we 

observed that AGF17, AGF270 and AGF278 were all significantly more potent than PMX (IC50 

values of 1.7, 0.7, 0.5 and 7.4 µM, respectively) (Figure 6.4), paralleling the PCFT-specificity 

observed in engineered models (Tables 6.1-6.3, Figure 6.2). Interestingly, AGF117 was 

completely ineffective in clonogenic assays, and the potency of AGF278 far exceeded that for 

AGF117 at 1 µM and above (p < 0.05) (Figure 6.4). These experiments establish that these drugs 

are cytotoxic rather than simply cytostatic. 

6.3.5 Metabolic Activity of of 6-Substituted Pyrrolo[2,3-d]pyrimidine Antifolates 

 We next determined the metabolic target for each compound. It has been well established 

that AGF17, AGF23, AGF117 and AGF150 are all potent inhibitors of GARFTase, the first 

folate dependent reaction in de novo purine nucleotide biosynthesis (Figure 1.6), with little to no 

activity towards TS, DHFR, or AICARFTase (Deng et al., 2008; Deng et al., 2009; Wang et al., 

2012; Wang et al., 2015) (also see Chapter 5). By testing growth inhibition in the presence of  
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Figure 6.5 Protection assay in IGROV1 cells. Growth inhibition of IGROV1 cells and 
protection by excess folic acid, nucleosides, AICA. IGROV1 cells were plated (2000 cells/well) 
in folate-free RPMI 1640 medium with 10% FBS, antibiotics, L-glutamine, and 25 nM LCV with 
a range of concentrations antifolates in the presence of folic acid (200 nM), adenosine (60 µM), 
and/or thymidine (10 µM) or AICA (320 µM). Cell proliferation was assayed with Cell Titer 
Blue using a fluorescence plate reader. Data are representative of at least triplicate experiments. 
Error bars represent standard error for each replicate. IC50 values for IGROV1 cells without 
additions are detailed in Table 6.4. 
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Figure 6.6 In situ GARFTase activity by the fluorinated antifolates compared to parent 
compounds. Incorporation of [14C(U)]glycine into [14C]formyl glycinamide ribonucleotide 
(GAR) as an in situ measure of endogenous GARFTase activity in IGROV1 cells. Cells were 
treated with a range of concentrations of antifolates in media which was adjusted to pH 6.8 IC50 
values (nM) are listed with S.E. values. Data are representative of  triplicate experiments. IC50 
values for fluorinated antifolates which are statistically different from parent antifolates are 
marked with * (p < 0.05). 
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thymidine (10 nM), adenosine (60 nM) or AICA (320 nM) in IGROV1 cells, we determined that 

antiproliferative activities of these compounds were completely protected by the addition of 

either adenosine or AICA, suggesting de novo purine nucleotide biosynthesis as the targeted 

pathway with inhibition of GARFTase as the principal cellular target (Figure 6.5). Compounds 

were also tested in the presence of 200 nM folic acid, and we observed that some compounds 

displayed incomplete protection under this condition, particularly AGF278, AGF150 and 

AGF283, suggesting an alternative uptake mechanism to folate receptor, most likely  PCFT, 

consistant with the results observed in the PCFT-expressing CHO and HeLa sublines (Tables 

6.1-6.3).  

 In order to determine the potency of GARFTase inhibition, we utilized an in situ 

GARFTase assay to measure the accumulation of [14C]formyl GAR (the GARFTase product in 

de novo purine biosynthesis) in IGROV1 cells. Cells were treated with [14C]glycine, which 

allowed for incorporation of [14C] into formyl GAR, and azaserine, which allowed for formyl-

GAR accumulation, in the presence of absence of the targeted antifolates.  PMX was included as 

a negative control, as it displays weak GARFTase activity (Racanelli et al., 2009), while AGF94, 

an established potent GARFTase inhibitor, was included as a positive control (Wang et al., 2011). 

In this case, we observed that all the 6-substituted pyrrolo[2,3-d]pyrimidine compounds were 

potent GARFTase inhibitors, with nearly all IC50 values below 3 nM (Figure 6.6), a paralleling 

the range at which these compounds inhibit IGROV1 cell proliferation (Table 6.5). However, in 

most cases, GARFTase activity of the fluorinated antifolates was not significantly different than 

for parent antifolates (Figure 6.6). The exception to this is AGF270, which displayed a 

significantly lower IC50 value than AGF17 (1.0 nM compared to 2.5 nM, respectively), 

suggesting an increased GARFTase inhibition (p < 0.05) (Figure 6.5). 
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6.4 Discussion 

 Our previous studies have demonstrated the potential therapeutic utility of novel 6-

substituted pyrollo[2,3-d]pyrimidine antifolates for the targeted treatment of ovarian cancer, lung 

cancer, and malignant mesothelioma (Cherian et al., 2013; Wang et al., 2012; Wang et al., 2015) 

(Z. Hou and L. H. Matherly, manuscript submitted) (also see Chapter 5). In this chapter, we 

expanded our studies to include several novel fluorinated antifolate molecules (Figure 6.1) 

derived from previously studied PCFT- and FR-targeted inhibitors with established patterns of 

transporter specificity and limited transport by the ubiquitous RFC (Wang et al., 2012; Wang et 

al., 2010; Wang et al., 2011; Wang et al., 2015). Fluorination of drugs is a common strategy to 

enhance efficacy and specificity of small molecule therapeutics (Gillis et al., 2015). In this case, 

fluorination of antifolates played a substantial albeit variable role in drug efficacy via changes to 

transporter specificity.  

 We observed that AGF278 in particular displayed enhanced PCFT transport, as well as 

increased FR-binding, which led to increased efficacy toward PCFT- and FR- expressing CHO 

and HeLa cells, in comparison to parent drug AGF117. In engineered CHO cells, AGF278 

displayed inhibition toward transporter-null (R2) and RFC-expressing cells (PC43-10) up to 

1000 nM, while showing very potent in PCFT- (R2/PCFT4) and FR-expressing (RT16/D4) cells 

(Table 6.1). In engineered HeLa cells, AGF278 also displayed a high level of PCFT and FRα 

specificity (Table 6.3). Similarly, AGF278 showed an increased potency toward ovarian cancer 

cell lines with both high (IGROV1) and low (A2780) FRα expression, accompanied by similar 

levels of PCFT, and this potency was dramatically reduced by FR knockdown in IGROV1 cells 

(Table 6.4). AGF278 was  specifically targeted to both PCFT and FRα (Table 6.3) and showed 

enhanced potency toward certain ovarian cancer cells lines (Table 6.4) than the previous lead 
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compound AGF94 (Wang et al., 2011).  Finally, AGF278 was a highly effective inhibitor of 

IGROV1 colony formation, while parent compound AGF117 failed to inhibit colony formation 

in conditions representing the acidic tumor microenvironment (Figure 6.4).  These results 

establish that AGF278 is cytotoxic rather than cytostatic.  

 The notion of PCFT- and FRα-targeted treatments for cancer is not unprescedented. PMX, 

an excellent PCFT substrate, is used for the treatment of several cancer types (e.g., non-small 

cell lung cancer, malignant pleural mesothelioma), while several novel therapeutics have been 

developed to target ovarian cancer using FRα as the primary mechanism of delivery. Here, we 

describe compounds which display high affinities for both FRs and PCFT, with minimal off-

target (RFC) uptake, typified by AGF278. Additionally, these compounds may have an 

additional therapeutic applications, as the addition of fluorine could allow these molecules to be 

used as PET imaging agents. As a theranostic tool, 18F-labeled antifolates could used to detect  

tumors and to measure drug uptake in patients to directly determine tumor targeting. Certainly, 

these novel antifolates will be the subject of future studies. 
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CHAPTER 7- CONCLUSIONS 

 The goal of this dissertation work was to characterize key domains of PCFT protein 

structure, as well as to characterize novel PCFT-targeted antifolate compounds. Using SCAM, a 

reentrant loop structure was identified in the TMD2-3 loop domain via accessibility of single-

cysteine mutants in this region to the membrane-impermeable MTSEA-biotin (Chapter 2). The 

interface for PCFT oligomerization was characterized using cysteine-scanning and MTS-6-MTS 

crosslinking (Chapter 3). Through the development of PCFT half molecules and PCFT/ThTr1 

chimera proteins, the functional significance of the TMD6-7 loop region of PCFT was 

determined (Chapter 4). In a continuation of the ongoing effort to identify novel PCFT-targeted 

antifolate drugs, AGF94 and AGF154 were characterized in the context of NS-NSCLC and their 

increased specificity under conditions approximinating those in the acidic tumor 

microenvironment was demonstrated (Chapter 5). Previously established PCFT- and FRα-

targeted antifolates were modified through fluorine substitution, resulting in very targeted 

compounds including AGF278 (Chapter 6). 

 Structural information about PCFT will contribute to our understanding of both nutrition 

and HFM, given the important role that PCFT plays in the uptake of dietary folates. These 

studies will provide insights into future crystal structures of PCFT when they become available. 

Additionally, the work presented here is significant in its contribution toward the development of 

novel cancer therapies. As protein modeling technologies become increasingly advanced, PCFT 

structural information will become increasingly important in the development of PCFT-targeted 

antifolates. Likewise, the continued characterization of antifolate molecules will lead to the 

development of structure/activity relationships for PCFT, allowing for comprehensive data 

analysis of each antifolate compound and its relationship to PCFT structural elements.  
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 The development of PCFT-targeted antifolates will provide a useful tool for clinicians in 

a wide variety of tumor types, reflecting broad expression of PCFT in tumors and high level 

activity under conditions approximating those in the tumor microenvironment. As previously 

described (see Chapter 1), classical antifolate molecules are used to treat a wide variety of tumor 

types, despite off-target effects. PCFT-targeted antifolates may provide a method by which 

chemotherapy can become more targeted. As tumor profiling becomes cheaper and more 

universal, PCFT may be a useful biomarker for clinicians to use to identify proper treatments for 

patients. Accordingly, PCFT-targeted antifolate molecules may become an increasingly valuable 

tool to clinicians as the field of oncology moves away from conventional chemotherapy in favor 

of more targeted treatments. 
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APPENDIX- Copyrights 
 

Wilson et. al. 2016 reprinted with permission of the American Society for 

Pharmacology and Experimental Therapeutics. All rights reserved. Copyright © 2016 by 

The American Society for Pharmacology and Experimental Therapeutics. 
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Folate is a B9 vitamin essential to DNA synthesis. The proton-coupled folate transporter 

(PCFT) is a newly discovered proton/folate symporter with an acidic pH optimum and broad 

expression across a variety of solid tumor types, with limited expression in normal tissues. 

Several antifolate molecules have been developed as cancer therapeutics, although these classical 

antifolates display numerous off-target effects due to transport by the ubiquitous reduced folate 

carrier (RFC). In this dissertation, we determine the roles of multiple PCFT structure/function 

domains, and develop PCFT-specific antifolates to target solid tumors. We utilize substituted 

cysteine accessibility methods (SCAM) to identify a novel reentrant loop structure between the 

second and third transmembrane domains (TMDs), which is critical to PCFT function, using 

membrane-impermeable thiol-reactive reagent MTSEA-biotin. We also utilize SCAM to identify 

and characterize the PCFT oligomerization interface at TMDs 3 and 6 via crosslinking reagent 

MTS-6-MTS. By the development of PCFT and ThTr1 chimera molecules, creation of PCFT 

half molecules, and cysteine- and alanine-scanning mutagenesis, we determined the purely 

structural role of the TMD6-7 connecting loop region. We studied novel 6-substituted 

pyrrolo[2,3-d]pyrimidine thienoyl regioisomers related to pemetrexed (PMX), a standard NS-
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NSCLC treatment. [AGF94 (2’,5’) and AGF154 (2’,4’)], which showed potencies comparable to 

PMX toward six NS-NSCLC cell lines. Uptake of [3H]AGF154 was comparable to that of 

[3H]PMX at acidic pH. De novo purine biosynthesis inhibition by AGF94/154 was confirmed by 

an in situ assay which measures incorporation of [14C]glycine into formyl GAR. In vivo efficacy 

of AGF94 was seen toward H460 tumor xenografts in severe-combined immunodeficient mice. 

Additonal antifolates were synthesized through the addition of fluorine to existing molecules and 

studied for their transport specifiticies correlating with anti-proliferative effects. In particular, 

AGF278 displayed increased specificity to PCFT, while also being very potent toward ovarian 

cancer cell lines. In conclusion, we established the role of three key structural domains of PCFT 

while also developing several novel PCFT-targeted antifolates for use as cancer therapeutics for 

NS-NSCLC and ovarian cancer. These novel antifolates are targeted to the acidic tumor 

microenvironment via selective transport by PCFT. 
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