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CHAPTER 1-INTRODUCTION 

1.1 Crossed beam dc slice imaging on differential cross sections 
 
Differential cross sections (DCSs) obtained in crossed molecular beam experiments provide a 

comprehensive picture of the intimate dynamics of molecular collisions. Reactive scattering 

distributions in particular provide extraordinary insight into reaction mechanisms and reveal how 

molecular forces influence the dynamics during the approach and separation from the transition-

state (TS) region. Reactions of atomic chlorine with alkanes represent a rich and well-studied 

class of reactions where such complex interactions may be studied in exquisite detail. Dynamical 

studies on this family of reactions, as well as on chlorine reactions involving functionalized 

hydrocarbons, were comprehensively reviewed by Murray and Orr-Ewing[1], with a particular 

emphasis on insights provided by rotational state-selective detection of the HCl product. 

State-to-state angular distributions obtained for reactions of atomic chlorine with methane 

and ethane enabled Zare and coworkers to “picture” the Cl-H-C TS region and the impact of 

vibrational excitation of the target reactant.[2-7] The measured rotational state distribution of the 

HCl (v’ = 0) product was found cold and strongly backscattered for the ground state reaction, 

both behaviors being consistent with a narrow cone of acceptance and a collinear TS geometry. 

The angular distribution was however dramatically affected by vibrational enhancement of 

methane, suggesting an opening of the potential energy landscape: a broader cone of acceptance 

and the possibility for the TS geometry to be bent. These results were obtained with the 

PHOTOLOC technique, a single beam apparatus where reactions are initiated by the 

photodissociation of Cl2 at 355 nm and angular distributions determined through product speed 

distribution measurements using the core extraction technique.[8, 9] In PHOTOLOC studies on 

Cl+alkane reactions involving larger hydrocarbons, for which the abstraction reactions become 
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more favorable and slightly exoergic, HCl (or DCl) (v’ = 0) rotational distributions were also 

found cold and backscattered, expanding the Cl+methane/ethane ground state reaction picture to 

a more general agreement for Cl+alkane reactions.[10-13] 

Crossed-beam experiments have the capability of allowing experimentalists to control the 

initial state (e.g. energize the reagents’ mode independently) and reactants direction. Besides, 

radical and target molecules could be confined in separate supersonic beams, ensuring reactions 

at specified collision energies. [14, 15]And crossed-beam studies allow the measurements of 

angular and translational energy distributions, the so-called double DCSs, giving access to the 

coupling between scattering angles and the energy partitioning into translational and internal 

degrees of freedom of the co-products. While in the past it was necessary to extrapolate the full 

distributions in the scattering plane by convolution fits from time-of-flight measurements at 

selected angles, the combination of crossed beam experiments with ion imaging provides the 

possibility to measure the full angular and translational energy (ET) distributions at once. In 

particular, the DC slice imaging technique allows for direct inversion of the experimental data 

with no assumptions about the associated dynamics, revealing the coupling of energy and 

angular distributions to appear in full detail. Crossed-beam imaging also allows for detection of 

any product mass and recoil energy combination without the kinematic constraints associated 

with measuring laboratory time-of-flight spectra to obtain the velocity-flux distributions. A 

related advantage is that the center of mass distributions are simply a linear offset of the 

laboratory distributions, with no associated transformation Jacobian. The slice images 

themselves embody the velocity-flux contour maps that directly reflect the underlying collision 

dynamics. In other words, ion imaging turns the spotlight directly on the molecular forces acting 

at the moment of chemical reactions. 
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1.2	Roaming	Reaction	Mechanisms	
	

For a very long time the dissociation of isolated molecules was supposed to have two 

decomposition pathways. One is to form a pair of smaller molecules described by a tight saddle 

point transition state, the other is simply bond stretching before breaking and gives out highly 

reactive radical products. In 2004 the term ‘roaming’ was coined which described a third, 

complex decomposition pathway forming products distinctly different from the one described by 

a tight saddle point transition state; additionally it can generate another set of products by simple 

bond fission, which means it entangled with the conventional pathway.[16]  

The reaction that motivated the roaming pathway and best illustrated it is the formaldehyde 

dissociation. Generally theoretical and experimental results were in good agreement in finding 

vibrationally ground state CO and H2 while the rotational distribution maximum of CO is within 

40-50 range and H2 is moderately rotationally excited.[17-21] In 1993 Moore and coworkers 

performed experimental reaction dynamics study of formaldehyde dissociation and when they 

excited H2CO with higher energy than the H + HCO radical threshold, they observed a small 

shoulder toward lower rotational levels in the CO rotationally distribution as well as the well 

understood major peak.[22] They proposed one reason for this anomaly to be some unknown 

interaction between radical pathway and molecular pathway; another explanation is the 

anharmonicity of the transition state. This issue was addressed by a combined experimental and 

theoretical investigation of H2 and CO formation in H2CO dissociation at energies just above the 

radical threshold.[16] Two distinct mechanisms were found with high-resolution state-resolved 

imaging measurement of CO velocity distributions. One involves the well-characterized 

transition state and produced rotationally excited CO and vibrationally cold H2, as the 

conventional dissociation pathway; the other mechanism produced rotationally cold CO and 
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vibrationally excited H2. Quasi-classical trajectory calculations ascribed the second one to be an 

intramolecular H abstraction, which is the so-called roaming mechanism.  

The second reported experimental roaming system was acetaldehyde dissociation to CH4 and 

CO.[23, 24] Further theoretical work on CH3CHO dissociation confirmed the roaming 

mechanism and now it is clear roaming is the dominant pathway.[24-26] Molecular beam 

experiments on NO3 and a variety of alkanes characterized roaming.[27-31] And roaming has 

been reported in numerous other systems such as propene, acetone, formic acid, ethyl radical, 

large aliphatic aldehydes etc.[32-36] Roaming is widely recognized as an important and long-

overlooked mechanism of unimoleculer dissociation.[37, 38] 

1.3 Halogen reactions with hydrocarbons 
	

Reactions of chlorine atoms with polyatomic hydrocarbons represent a vast body of 

important chemical events in atmospheric chemistry, notably as a source to form complex and 

highly reactive hydrocarbon radicals via metathesis reactions.[39, 40] Chlorine atom is indeed a 

powerful oxydizing agent involved in some major environmental issues such as the ozone-

destruction cycle,[41-43] the oxidation of volatile organic compounds in marine boundary 

layers[44, 45] and Polar regions,[46, 47] the burning of hazardous waste,[48, 49] and possibly 

the aging of organic aerosols by heterogeneous processes.[50-52] Numerous kinetics studies 

have shown evidence for the high efficiency of hydrocarbon decomposition by Cl atoms.[53, 54] 

These reactions are faster than those with the hydroxyl radical OH by at least one order of 

magnitude,[55] although OH is the primary daytime oxidant in the atmosphere. Interestingly, 

recent observations show evidence for an active chlorine chemistry in the interstellar medium, 

but its potential role in space has so far hardly been explored.[56, 57] Studying Cl + RH 

reactions is also useful to gain a detailed understanding of combustion chemistry as exemplars of 
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the free radical abstraction of hydrogen atoms in saturated hydrocarbons.[58, 59] The high 

dimensionality and complexity of the potential energy surfaces (PESs), combined with 

experimental feasibility, is finally a central motivation to undertake detailed dynamics studies for 

of Cl + RH reactions.[1, 60, 61] 

Cl atom reactions with alkanes are prototypical direct H abstractions, with nearly no barrier 

from reactants to products. They lie in the intermediate regime, i.e., these reactions are close to 

isoergicity. Considerable effort has been devoted to understanding the dynamics of this family of 

reactions, especially in the case of methane, CH4, and its isotopologues. [2-4, 8, 62, 

63]Experimental outcomes with theoretical confirmation showed a cold vibrational and 

rotational state distribution in the nascent HCl/DCl (v’,j’) ascribed to a collinear C–H(D)–Cl 

transition state (TS), which turned out to be a universal signature of these reactions.[10, 11, 64] 

In contrast, reactions with alkenes leading to the formation of HCl are strongly exoergic owing to 

the formation of resonantly stabilized radical products. Overall, the potential energy landscape is 

strongly affected by the presence of the CC double bond with pronounced differences in reactive 

behavior for alkylic, allylic, or vinylic sites. The production of vibrationally excited HCl(v’=1) 

has been detected with 2,3-dimethyl-but-2-ene in chlorinated solvents.[65] Furthermore, the 

dynamics of these reactions is considerably obscured by the competition between direct and 

indirect reactions. HCl + CnH2n-1 products can indeed be formed via a Cl addition – HCl 

elimination mechanism involving a long-lived CnH2nCl intermediate.[66, 67] The formation of 

HCl(v’=1) products has been attributed to direct reactions, whereas addition-elimination was 

assumed to give low vibrational excitation due to energy randomization in the long-lived 

adduct.[68] 

The high reactivity of fluorine atoms with a range of species arises owing to the very strong 
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bonds it forms, which place it in a class by itself even in comparison to other halogens. This 

extraordinary reactivity along with its size, which permits high-level theoretical calculations, 

makes it a very interesting target for dynamical investigations. The F + H2 reaction has long been 

a benchmark system for exploring the dynamics of reaction resonances. In 1984, Neumark et al. 

reported a groundbreaking crossed-molecular-beam experiment on the F + H2 reaction. The 

intense forward scattering peaking the HF (ν’ = 3) product was attributed to the important role of 

a quantum dynamical resonance phenomenon. [69, 70] They also reported F + D2/HD reactions, 

where DF (ν’ = 4) from F + D2 reaction and HF (ν’ = 3) from F + HD reaction have strong 

forward scattering. [71, 72] Theoretical analysis based on the Start-Werner potential energy 

surface explains this step as a result of a reactive resonance. Measured differential cross sections 

for this reaction over a range of collision energies also display a resonance signature. [73, 74] 

Based on the excitation functions for F + p-H2 and F + n-H2, they conjured the existence of 

resonance in F + H2 reaction. [75] Yang and co-workers studied the F + H2 and F + HD reactions 

via the H Rydberg tagging TOF technique in a crossed beam apparatus combined with quantum 

dynamics calculations. At low collision energies two Feshbach resonances are important in F + 

H2 reaction; at higher collision energies the HF (ν’ = 3) forward scattering is attributed to a slow-

down mechanism over the exit barrier. [76] More recent work shows that at low collision energy, 

a dynamical resonance trapped in the HF (ν’ = 3)-D adiabatic potential well is prominent in the 

pathway of F + HD (ν = 0) reaction. [76-78] In the study of F + HD (ν’ = 1) → D + HF, broad 

peaks for backward-scattered HF (ν’ = 2 and 3) products at EC = 0.21 kcal.mol-1 and 0.62 

kcal.mol-1 were observed, attributed to excited Feshbach resonances trapped in the HF (ν’ = 4) –

D vibrationally adiabatic potential in the post barrier region. Quantum dynamics calculations 

show that these resonance states can only be accessed by the vibrationally excited HD reagent. 
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[79] 

In this article, I would like to give a comprehensive overview on the reaction dynamics of 

halogen atoms with selected hydrocarbons and alcohol. The target systems are Cl + 1,1,1,3,3,3-

propane-d6, Cl + 2,2-propane-d2, Cl + n-butane, Cl + 1-butene, Cl + trans-2-butene, Cl + cis-2-

butene, Cl + isobutene, F + n-propane, F + n-butane, F + n-pentane, F + 1-propanol, F + 1-

butene, F + 1-hexene. We use a unique experimental set-up based on the combination of crossed 

molecular beams and ion imaging techniques, with an emphasis on product radical detection. 

The reactive scattering raw images were recorded and after background subtraction and density-

to-flux correction the product translational energy distributions, as well as the center of mass 

angular distributions were presented and discussed with related theoretical calculations. 
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CHAPTER 2-EXPERIMENTAL SETUP 

2.1 General overview 
	

The experimental apparatus is shown in Fig.2.1.[80] The machine is consisting of a reaction 

chamber and two perpendicular source chambers. The reaction chamber is evacuated to ~10-7 

Torr to ensure single-collision requirements while the source chambers are differentially pumped 

to ~10-7 Torr base and ~10-5 Torr operational pressures by turbomolecular pumps. Piezoelectric 

valves and piezo stack valves pulsed at 10 Hz generate molecular beams and after supersonic 

expansions beams are skimmed upstream to enter the main chamber. Hydrocarbons and radical 

precursors are diluted in various carrier gases (He/Ne/Ar, based on the vapor pressure of the 

liquids the concentration varies, but maximum dilution percentage is 5%) to vary beam speed, 

thus changing the collision energy. The product radicals are ionized by a VUV excimer laser (F2, 

7.9 eV) after collision as soon as they exit the interaction region. The ions are then accelerated 

up via a set of four direct current slice ion optics, through a 70cm flight tube vertical to the 

reaction plane to impact on a dual microchannel plate (MCP) detector coupled to a P-47 

phosphor screen. For Cl reaction with C3-C4 hydrocarbons, the front plate of the MCP assembly 

is held at constant potential while a negative high-voltage pulse is given to the back plate to 

‘gate’ the central slice of the products at a certain m/z ratio; the condition for Cl reaction with 

cycloalkenes and F reactions is opposite, i.e. the voltage of MCP back plate is held constant 

while the front plate is pulsed. A CCD camera is used to record the raw images and the data 

acquisition program is NUACQ-2 with event-counting and centroiding. After background 

subtraction and density-to-flux correction, the experimental data is directly inverted to the 

uncoupled center-of-mass angular and translational energy distributions. 
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Figure 2.1: Schematic view of the crossed-molecular beam apparatus. 
	

Ground electronic state Cl atoms are produced by the dissociation of Cl2 from a piezoelectric 

disk valve and then photolyzed by the third harmonic at 355nm of a Nd:YAG laser (20mJ 

/pulse). The highlight of my sample preparation is the significant improvement of Cl beam 

density through overlapping photolysis region with an abalation plume.[81] We attached a 

cylindrical aluminum tube, 2 mm inner diameter; 5 cm length attached to the end of the valve 

nozzle and confined the molecular beam. On the side of the aluminum extension tube there is a 

conical aperture allowing focus the 355 nm laser beam just at the tip of the nozzle. The ratios 

between effective Cl populations for reaction versus the photochemical component were 
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enhanced greatly and would be shown in Chapter 3. 

For F reaction with alkanes, we use a piezo stack valve (described in appendix) to generate 

5% F2 mixture in Helium and F atom was produced by a single state pulsed discharge. Two 

electrode plates were mounted in front of the nozzle to create the discharge. An insulation layer 

was placed between the first electrode and the ferrule to prevent unwanted discharge. The first 

electrode plate is held at ground while the other one is given a pulsed high voltage (+800 V); the 

pulse is 2 µs long and was set to discharge at the gas pulse’s peak.[82]  

These intense atom beams allow us to operate the VUV probe beam unfocused and our 

detection is highly selective with regards to the ionization energies (IEs) of the probed products. 

The radicals produced by photodissociation of parent hydrocarbon and alcohols can also 

participate in the reactive scattering signals, as a 157 nm photon can also generate signal from 

photodissociation of parents. We get rid of this by recording images with the 355 nm Nd-YAG 

laser off for chlorine reactions, discharge off for fluorine reactions and 157nm probe laser on. 

The integrated intensity of the background photochemistry signal is around 20% of the total in 

magnitude; thus it is straightforward to subtract the background reliably. Additionally, even if 

the background counts occur in different pixels for laser-off and laser-on images, a region 

containing only background could integrate to zero after correction because our subtracted 

images are signed values. 

2.2 Direct current slice imaging 
	

In many molecular reaction dynamics studies, a particle’s speed and angular direction require 

simultaneous measurement. Molecular reaction studies, energy transfer processes and 

photodissociation can be fully understood only after specification of the velocities and internal 

energies of all products.[83] Product imaging, first performed by Chandler and Houston in 1987 
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on the photodissociation dynamics of methyl iodide, addresses the problem of simultaneous 

measurement by projecting the distribution of expanding photofragment onto a two-dimensional 

position sensitive detector and the original three-dimensional distributions were reconstructed by 

Abel inversion or other related techniques.[84] A major improvement of ion imaging was 

achieved by Eppink and Parker with the high resolution velocity map imaging based on the use 

of an electrostatic lens.[85] Since then this technique has become standard methods in molecular 

photodissociation and reactive scattering studies. However, it has two inherent shortcomings: 

introduction of artificial noise from inversion method and a requirement of cylindrical axis 

symmetry.[86] In 2001 Kitsopoulos and co-workers invoked a pulsed electric field to the 

expanding ionic fragment cloud followed by field free expansion. [87]Only the central ‘slice’ 

was allowed to be imaged directly, thus inverse Abel transformation can be eliminated and more 

polarization geometries and/or photofragment orientation become possible. Yet the introduction 

of a mesh grid blurred the observed image and caused a compromise with the imaging resolution. 

Suits et al. published the direct current slice imaging method, imaging the central slice of the 

photofragment distribution directly without grids or pulsed electric fields.[86] The ion lens 

assembly is consist of a repeller plate and an extractor lens. Once the ratio of the voltage applied 

to the electrodes is decided particles of a certain mass with any velocity would be focused onto 

the same position on the detector for a given electrode system, thus reducing the image blur from 

molecular beam spatial spread and reaching good image resolution. Besides sharp velocity 

focusing, the velocity mapping apparatus also allows the spread in the arrival time at the detector 

of the expanding photofragment sphere to the order of several hundred nano-seconds. And a 

pulsed gate to the detector assembly with a 20-40ns width is quite feasible to record the 

distribution central slice independently.  
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2.3 Piezo Stack Valve 

 

 

Figure 2.2: Schematic view of the valve assembly. The Piezostack actuator is mounted and 
aligned outside of a stainless steel valve body in a half-cylinder. The valve is scaled by Kalrez o-
rings both at the tip and at half-length of the plunger. Other o-rings are shown in red. 
	

 In 1980s valves based on piezoelectric transducers were developed as molecular beam 

sources. Proch and Trickl’s design is widely used and their design introduced a piezoelectric disk 

actuator.[88, 89] The requirements on fast opening times, high repetition rates and short 

durations calls for many improvements on the valve design, and valves based on a cantilever 

piezoactuator and magnetic or electromagnetic actuators were developed to address some 

limitations on the disk actuator acceleration force and gas throughput etc.[90-92] Recently there 

is a new, robust valve employing high-force piezoelectric stack actuators (Physik Instrumente, P-

212.40) designed in our lab. Molecular beam characterization of dimers of 2,5-dimethylfuran 

(DMF2) presents great improvements than disk translators both in pulse duration and molecular 

densities. [93] 
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Fig.2.2 is a schematic view of the valve assembly. Since any torques on the plunger can 

damage the piezo stack actuator (PSA), it must be mounted solely by the back; A thin-walled 

stainless steel cylinder, which is half open along its length, supports the PSA and one end of it is 

connected to the micrometer while the other to the valve base. The stack has a Teflon ring placed 

around it to form a snug fit with the inside of the cylinder, thus restrict all lateral movement and 

prevent any torque. Through a custom made adapter, the stack is connected to a fine micrometer 

head with a non-rotating spindle (Mitutoyo 110-102); the gas volume delivered through the 

nozzle orifice can be regulated through fine adjustments. The valve base is consists of a 

cylindrical stagnation chamber with 2.5 cm3 volume, enclosing the plunger attached to the PSA. 

On the chamber cap there is a ferrule compressing an o-ring onto the plunger to seal the 

stagnation chamber; when the valve is closed there is another o-ring at the tip of the ferrule 

sealing the nozzle. As different PSAs from PI have different lengths but with the same diameter, 

switching to a PSA with higher force or farther travel distance only requires modify the length of 

the half-cylinder or the adapter. Additionally, this design protects the actuator from any contact 

with the corrosive gases that may reduce its lifetime. The segmented design of valve construction 

makes it easy to switch between different PSAs, plungers and nozzle plates, thus versatile for 

applications in various studies. 

The valve is operated under the application of high-voltage pulse to the actuator. A voltage of 

+800 V is given to the PSA from a HV power supply (Kepco BHK 1000-0.2MG) via a LEMO 

connector to maintain the closed position. To open the valve, the actuator would be grounded by 

changing the actuator voltage to 0 V by a fast HV transistor switch (Behlke HTS 61-03 GSM) in 

a high capacitance RC circuit (R = 1Ω, C = 20 µF. In the valve paper we present the gas 

expanding through a 1 mm orifice in the nozzle plate. There is a rotary motion feedthrough 
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connected to the micrometer head to externally adjust the plunger after putting the valve into 

vacuum.  
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CHAPTER 3-REACTION DYNAMICS OF CHLORINE 
REACTION WITH PROPANE AND BUTANE ISOMERS 
	
3.1 Introduction 
	

Among alkanes, propane is the smallest one for which different and competing H abstraction 

sites exist. Primary abstraction to yield n-propyl and HCl is 2.0 kcal.mol-1 exoergic; secondary 

abstraction to yield isopropyl and HCl is 5.0 kcal.mol-1 exoergic ([94], reaction enthalpies 

measured at 298 K). Site-specific kinetics experiments with partially deuterated propane have 

revealed the “equal effectiveness” of both pathways, while primary abstraction has 3 times more 

H atom to occur.[10, 95] The C4H10 system owns two isomers, namely n-butane 

(CH3CH2CH2CH3) and isobutane ((CH3)3CH). N-butane exhibits two primary and two secondary 

sites in a ratio of 3 to 2, and for isobutane three primary sites exist for only one tertiary site, with 

an H atom ratio of 9 to 1. Varley and Dagdigian measured a ratio of 3:1 for the cross sections of 

HCl(v’ = 0) and DCl(v’ = 0) products in the reaction of Cl atoms with labeled isobutane 

(CH3)3CD despite the greater number of primary vs. tertiary hydrogens.[11] Dynamical insights 

on the Cl+propane abstraction reactions have been obtained using the crossed molecular beam 

technique in conjunction with a VUV synchrotron probe to ionize the propyl products (hν = 

9.5eV).[96] Laboratory TOF spectra and angular distributions were measured for a wide range of 

collision energies and, as mentioned above, the center-of-mass flux maps were interpolated from 

forward convolution fits to the laboratory distributions. The authors concluded on the existence 

of two distinct direct reaction mechanisms: a stripping mechanism characterized by a forward 

scattered distribution that they assigned to secondary abstraction, and a mechanism involving 

both primary and secondary abstractions, characterized by an impulsive product recoil that leads 

to the observed sideways/backward scattered components. The directions are here given with 



	

	

16	

respect to the hydrocarbon direction, as in the present study. The only existing direct 

measurement of DCSs associated to primary and secondary abstraction dynamics was 

undertaken in our group on selectively deuterated n-butane.[97] No significant differences were 

however observed in that study. 

This chapter aims at revisiting Cl+alkane reactions for a set of intermediate C3 and C4 

saturated hydrocarbons, propane and butane, using crossed beams combined with a universal 

detection scheme, DC slice imaging, and a high-density photolysis/ablation radical source. First 

I’ll talk the improvements in experimental protocol, emphasizing the radical source development 

and its practical consequences on the data acquisition. Reactive scattering images and their 

derived double DCSs are presented later for a number of Cl+alkane abstraction reactions 

involving propane and its two partially deuterated isotopologues, namely 1,1,1,3,3,3-propane-d6 

(CD3CH2CD3, hereafter D1) and 2,2-propane-d2 (CH3CD2CH3, D2), as well as n-butane and 

isobutene, followed by a discussion on the dynamical implications of these new results, in light 

of presented ab initio thermochemical data and previous work.  

3.2 Experimental Setup 
	

Experiments were conducted on our crossed molecular beam described in details in Chapter 

2. Standard atomic radical sources such as photolysis or discharge usually suffer from poor 

densities and/or poor speed ratios. Here, atomic chlorine is generated by the 355 nm photolysis 

of a beam of 2% of Cl2 seeded in He at a pulsed-valve pressure of 5 bar with a pulse duration of 

100 µs. A significant improvement of the Cl beam density is achieved by overlapping the 

photolysis region located at the tip of the nozzle with an ablation plume. An aluminum extension 

tube of 2mm inner diameter and 5cm length along the propagation axis is mounted for this 

purpose, also confining the beam before it is skimmed. In this design, the focused laser beam (f = 
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350mm) is guided towards the tip of the nozzle of a pulsed piezoelectric valve by a conical 

aperture drilled in the extension tube. As photolysis and ablation are generated by a unique 

355nm laser pulse, the Nd:YAG Q-switch is optimized to be fired 10µs earlier than for a 

standard photolysis. The speed ratios are equal to 9 and 6 with and without ablation, respectively 

(cf. Fig.3.1). Ablation drastically enhances the dissociation of Cl2: the ratios between the 

effective Cl population in the interaction region and the photochemical component (cf. Fig.3.1a) 

due to the remaining Cl2 population dissociated by the probe laser is changed from 1:1 to 5:1 

with ablation at 20 mJ per pulse. Although the formation of spin-orbit excited state Cl(2P1/2) with 

ablation is a likely process its quenching to the ground state Cl(2P3/2) along the adiabatic 

expansion is believed to be as efficient as in the case of a conventional 355nm photolysis radical 

source. In any case, we intend to characterize this contribution in the future. 

The resulting Cl beam is crossed at 90° by a 5% alkane pulsed beam seeded in He. 

Hydrocarbons were obtained from Sigma-Aldrich, with a stated isotopic purity of 98 atom % D 

for the two partially deuterated isotopologues of propane. To make certain that the ablated 

material does not imply any interfering reactions, we acquired data in similar conditions with the 

carrier gas only passing through the new radical source set-up: no scattering signal was observed. 

Radical products are detected by single photon ionization with a VUV beam at 157nm 

generated by a F2 excimer laser (GAM EX-10). The beam path is purged with N2 and the power 

attenuated to ~0.5 mJ per pulse (except when probing the chlorine beam itself). The ionized 

cloud is accelerated and stretched by a set of four ion optics lenses and flies field-free along a 

70cm flight tube oriented perpendicularly to the plane formed by the supersonic beams. It is 

detected on a 120mm diameter dual multi-channel plate coupled to a P-47 phosphor screen with 

a narrow (70 ns) gate pulse. Raw images are recorded using a CCD camera and our new 
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acquisition program NuAcq-2 at 768x768 pixels but centroided to 1536x1536 pixels. Direct 

inversion of the experimental data is then achieved after density-to-flux correction. 

To be noticed is the gain in data accumulation that allows the improved Cl source: while 

more than an hour was necessary to reach satisfactory signal-to-noise ratio in previous similar 

experimental conditions, the present images were accumulated for 10 min with the probe laser 

unfocused. Only little density-to-flux correction was necessary. Moreover, the signal-to-noise 

levels with propane were too low to obtain adequate scattering images at all. The control of the 

experimental conditions is thus subsequently enhanced, and the interaction region is widely and 

softly illuminated. This avoids multiple photon ionizations to occur and, as we will see hereafter, 

to properly select the radical products with regard to their ionization energies.  

 

Figure 3.1: (a and b) Raw images at m/z = 35 without and with ablation, respectively, with signal 
intensity multiplied by 4 in image a. Chlorine speeds are 1680 m.s-1(a) and 1980 m.s-1(b). (c) 
Corresponding chlorine beam profiles.  
	
3.3 Results 
	

Reactive scattering images of the Cl+alkane reactions overlaid with their Newton diagrams 

are presented in Fig.3.2. The collision energies are equal to 11.6, 11.8, 12.1 kcal.mol-1 for 

propane, D1, and D2 respectively, and 13.4 and 13.6 kcal.mol-1 for n-butane and isobutane. 

Scattering is seen broadly in all regions, with a tendency for peaking in the backward and 

forward directions. Propane images appear to show strong background interferences although the 
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integrations are done with signed data after subtraction. The photochemical propyl radical 

product scatters into a large region following 157nm dissociation, so that only data for angles 

larger than 30° will be analyzed. For butane, background is readily subtracted and the full 

scattering distributions can be analyzed. 

Table 3.1: Bond dissociation energies (BDEs) and reaction enthalpies at 0K (ΔH(0K)) for all the 
possible H/D abstractions, and adiabatic and vertical energies of the corresponding products. 
Values calculated at the CBS-QB3 level of theory. 

	

 

Table 3.2: Collision energies EC and available energies Etot for secondary and tertiary H/D 
abstractions, and average translational energy release. The latter is given along with the fractions 

 
Reactant Product BDE 

kcal.mol-1 
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kcal.mol-1 

Vertical IE 
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eV 
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100.6 

-2.8 
-1.5 
-2.8 

8.40 
8.41 
8.42 
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fC and ftot of collision energy EC and available energy Etot for indicated center-of-mass 
scattering regions, respectively. 

 EC  

kcal/mol 

Etot 

kcal/mol 

Total Forward 

 〈ET〉 fC ftot 〈ET〉 fC ftot 

propane 11.6 17.9 7.8 0.67 0.43 7.9 0.68 0.44 

D1 11.8 17.9 6.2 0.53 0.35 7.1 0.60 0.40 

D2 12.1 17.4 7.9 0.65 0.45 8.6 0.71 0.49 

n-butane 13.4 19.6 7.9 0.58 0.40 8.8 0.65 0.45 

isobutane 13.6 21.6 7.6 0.56 0.35 8.6 0.64 0.40 

 

 EC  

kcal/mol 

Etot 

kcal/mol 

Sideways Backward 

 〈ET〉 fC ftot 〈ET〉 fC ftot 

propane 11.6 17.9 7.9 0.68 0.44 7.5 0.65 0.42 

D1 11.8 17.9 5.8 0.49 0.33 5.6 0.48 0.31 

D2 12.1 17.4 7.6 0.62 0.44 7.4 0.61 0.43 

n-butane 13.4 19.6 7.2 0.53 0.37 7.7 0.57 0.39 

isobutane 13.6 21.6 6.9 0.51 0.32 7.2 0.53 0.33 
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Figure 3.2. DC sliced raw images of reactive scattering and nominal Newton diagrams for the 
reactions of chlorine with propane and butane: a) propane, EC = 11.6 kcal.mol-1 b) propane D1, 
probe at m/z=49 (CD3CHCD3) EC = 11.8 kcal.mol-1, c) propane D2, probe at m/z=46, 
(CH3CDCH3) EC = 12.1 kcal.mol-1, d) n-butane, probe at m/z=57, EC = 13.4 kcal.mol-1, and e) 
isobutane, probe at m/z=57, EC = 13.6 kcal.mol-1. All images are shown after background 
subtraction and density-to-flux correction. 
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Figure 3.3: Reduced translational energy distributions for forward (30-60°), sideways (60-120°), 
and backward (120-180°) scattered products and the center-of-mass angular distributions. Top 
panel corresponds to propane reactions with propane in blue, D1 in purple and D2 in red. Bottom 
panel corresponds to butane reactions with n-butane in black and isobutane in gold. Each 
distribution is normalized to its backward component that dominates the translational energy 
distributions of all the systems in this range of integrated angles. 
	

In the present study, no primary abstraction products were detected for selectively deuterated 

propane, whether labeled at the primary or secondary site.  This is interpreted on the basis of the 

ionization energies (IEs) summarized in Table 3.1, which presents the adiabatic/vertical 

ionization energies (IEs) of the products of abstractions on the different sites along with the 

associated bond dissociation energies (BDEs) and enthalpies at 0K calculated at the CBS-QB3 

level of theory.[98] As mentioned above, it is important to address the question of detection 

efficiency depending on the different radical products for each reaction. While the vertical IEs of 

the propyl and butyl products of secondary and tertiary abstractions lie below our detection limit 

of 7.9 eV, all the vertical IEs of the primary abstraction products for all systems lie above. One 

could expect to detect the latter, those undertaking important nuclear relaxation after ionization, 

if they were “hot” enough once the reaction occurred. However, experiments with partially 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
CH3CH2CH3
CD3CH2CD3
CH3CD2CH3

0 60 120 180
0

0.5

1

1.5

P(
E T

)

T(
Θ

)

ET / EC

Forward Sideways Backward

0 60 120 180
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
CH3CH2CH2CH3

(CH3)3CH

ET / ECET / EC c.o.m. angle / deg.

P(
E T

)

T(
Θ

)



	

	

23	

deuterated hydrocarbon are the opportunity to make a clear disentanglement here: the VUV 

probe does not ionize these products when its beam is unfocused. That is, no primary abstraction 

product is detected for the selectively deuterated propane systems. This is an indirect 

consequence of the radical source improvement that makes possible the use of an unfocused 

probe laser beam: although we could have access to primary abstraction products as already 

shown by multiphoton ionization with a focused VUV probe, [97, 99] we believe our results here 

are site-selective even in the case of non-labeled butanes, given the similarity in the vertical IEs 

of propane and butane. We will therefore discuss all velocity-flux maps as measured for 

secondary H(D) abstractions in propane and n-butane, and solely tertiary H abstraction in 

isobutane. 

Fig.3.3 shows the reduced translational energy distributions for the forward (FW), sideways 

(SW) and backward (BW) scattering regions, along with the center-of-mass angular distributions 

for all systems. We choose to plot the ET distributions reduced by ET
* = ET/EC to highlight the 

deviation from the kinematic dynamical picture of heavy-light-heavy reactive systems, for which 

the acute skew angle of the TS geometry implies the conservation of translational energy. Table 

3.2 compiles the average translational energy release and fraction of the collision energy 

appearing in translation and of the available energy (fC and ftot, respectively), obtained from the 

translational energy distributions shown in Fig.3-3. We emphasize that the narrower angular 

window over which the FW component is integrated underestimates the strength of this region, 

but we do not attempt to renormalize this. As mentioned previously, the integration over the 

entire angular distribution is however possible for the butane isomer data. Smoothed reduced 

translational energy distributions of 10° steps are thus plotted in Fig.3.4, along with the 

corresponding average translational energy distributions. 
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Figure 3.4: (Left) Reduced translational energy distributions for 10° steps of the angular 
distributions of reactions of chlorine with n-butane and isobutane. (Right) Fractions fC and ftot 
of collision energy EC and available energy Etot, respectively. 
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reaction mechanism with little exit channel interactions, as inferred in general for these reactions 

based on the HCl rotational distributions. Furthermore, the increase in translational energy for 

FW scattered products compared to SW/BW products, also observed by Blank et al.,[96] gives 

credence to a spectator-stripping mechanism in the forward direction in which reactant to 

product momentum transfers are only marginal. This mechanism indicates a large impact 

parameter and weak interactions at the transition state. For SW/BW scattering components, 

translational energy distributions are consistent with collisions at smaller impact parameters that 

lead to a more effective partitioning of the available energy into internal degrees of freedom of 

the hydrocarbon radical product. State-resolved experiments have shown that HCl is rotationally 

cold, and this whatever the scattering angle.[10] This indicates that most of the available energy 

(app. 98%) that is not partitioned into translation is channeled into internal excitation of the 

propyl product. By referring to the line-of-centers model which helped the understanding of the 

dynamics of Cl+methane and Cl+ethane reactive scattering experiments,[2-5] Blank et al. 

suggested that a significant portion of the SW/BW components could be attributed to primary 

abstractions which are more sensitive to the effective reaction barrier. The remarkable similarity 

of our results however suggests that either primary abstraction only weakly contributed to the 

scattering signal probed with photons of higher energies or dynamics at primary and secondary 

sites are very similar.  

We now consider the reactions of atomic chlorine with the two partially deuterated propane 

systems D1 and D2. Although D abstraction is slightly less favorable than H abstraction (by 1 

kcal.mol-1), we believe that energetics criteria should not affect the comparison. Overall, the 

distributions show the same features as for the reaction with normal propane: the scattering 

signal is dominant in the FW region, a minimum is observed around 90° in the SW region, and 
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the scattering signal rises steadily over 180°. Significant differences can however be observed. 

Concerning translational energy recoil, FW and SW D1 distributions peak at lower ET
* than 

regular propane and D2, while all FW distributions peak at similar ET
*. This reflects a more 

effective energy disposal into the CD3CHCD3 propyl degrees of freedom for the “rebound-like” 

mechanism. Also, the angular distribution of D2 is affected by the deuteration. As the relative 

scaling of the angular curves is arbitrary, this could come from changes in the TS potential 

energy region that could modify the FW/BW balance or be a dynamical signature of the kinetic 

isotope effect described elsewhere.[100, 101] Interestingly, Estillore et al. also observed a slight 

increase of the BW component associated to D abstraction on primary site compared to H 

abstraction on secondary site in reaction of Cl with labeled 1,1,1,4,4,4-n-butane.  

To gain insight into the origin of the differences in translational energy of the labeled 

isopropyl radicals, we invoke the impulsive model as used by Nesbitt and coworkers[102] to 

interpret the translational energy release of the ethyl product in the reaction of atomic fluorine 

with ethane. This simple model focuses on exit impact parameter solely, thus neglecting the 

initial angular momentum. This hypothesis is relevant for more exoergic reactions than 

Cl+alkane reactions, nevertheless it provides a guide to the trends we should expect in terms of 

coupling between translational and rotational degrees of freedom. This model is based on 

conservation of angular momentum and total energy and considers the radical product as a rigid 

body. The rotational excitation of the radical product is estimated to be: 

𝐸!"# ≈ 𝐿!/2𝐼 ≈ 𝑀!"#!$%𝑏! sin! 𝜃 𝛦! 

where L is the angular momentum and I the moment of inertia of the propyl radical. Moment arm 

b and angle θ for delivering torque are estimated to be 0.6 Å and 129° for non-labeled and 

labeled propyl structures at the CBS-QB3 level of theory, respectively. This gives 0.18 ET for 
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reactions involving normal propane and D2, and 0.16 ET for the reaction with D1. As one could 

expect by just considering the lower rotational constant of D1 compared to those of propane and 

D2, the impulsive model predicts less energy to be channeled into the rotational degrees of 

freedom of the D1 propyl product. This is an opposite trend to that of the scattering distributions 

presented here. The observed changes thus suggest that deuteration on the terminal carbons, 

which produces a more significant increase in the vibrational density-of-states than deuteration 

on the central carbon, could favor the overlap between the vibrational wave functions of the TS 

and the isopropyl products, promoting coupling of the collision energy into vibration, with the 

rotational energy distributions substantial but largely unchanged. 

N-butane distributions are in good agreement with previous work on labeled n-butane[97], 

albeit the average translational energy is here slightly lower (fC is  between 0.5 and 0.6 for 

SW/BW components, while it is between 0.6 and 0.7 for secondary abstractions in labeled n-

butane[97]). On Fig.3.3, n-butane and isobutane lead to BW distributions peaking at similar ET
*, 

while n-butane distributions peak a higher ET* in the FW and SW directions despite a greater 

exoergicity for tertiary abstraction in isobutane (by 2 kcal.mol-1). In addition, we notice a higher 

integrated scattering signal for n-butane than for isobutane in FW/SW directions, in line with the 

greater number of H atoms to be abstracted on secondary sites in n-butane. While Fig.3.3 does 

not show the contribution of the 0-30° region, striking effects are observed when comparing n-

butane and isobutane distributions in this region in Fig.3.4. Isobutane distributions exhibit a more 

sharply peaked angular distribution with a broader translational energy distribution in the FW 

direction, even possibly a bimodal distribution. There are two significant differences that could 

explain these changes: the greater exoergicity of abstraction on a tertiary site which might lead to 

a significant amount of HCl(v’=1), or a steric hindrance effect which could somehow result in 
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multiple collisions. State-resolved measurements on the HCl product will be helpful to 

disentangle these mechanisms. 

As already mentioned elsewhere[1],  a discrepancy is seen between crossed beam studies and 

PHOTOLOC studies concerning the fraction of the energy that is effectively channeled into the 

radical product. Bass et al. found 30% of available energy transferred to internal excitation of the 

butyl product (at Ec=7.4 kcal.mol-1), while we find here about 60% when integrating the whole 

angular distribution. However, our data exhibit important changes depending on the scattering 

angle: from 40% at 0° to 60-65% between 60° and 180°. As mentioned by the authors 

themselves, results obtained in the latter scattering region with the PHOTOLOC technique have 

to be taken with caution due to strong background interferences. Indeed their inferred angular 

distributions show much less backward scattering than seen here and in the selectively deuterated 

butane study earlier. Universal crossed-beam studies on chlorine atom reactions with pentane 

isomers have revealed important changes in kinetic energy release depending on the collision 

energy, which may be another factor contributing to the differences seen in the crossed beam 

imaging compared with PHOTOLOC.[99] 

Comparing the translational energy distributions of the propane and butane systems in 

Fig.3.3 finally strengthens our comments on the vibrational excitation of the propyl product. 

Among the systems studied here, the most similar distributions are those of propane D1 and 

isobutane. These systems have a unique H abstraction site, and D1 is the propane system with the 

highest vibrational density-of-states. The observed progression of translational energy release 

with hydrocarbon mass seems to indicate that C3 and C4 hydrocarbons are the last steps before 

convergence toward the internal energy transfer seen for larger saturated systems.  
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3.5 Conclusion 
	

By taking advantage of an improved atomic chlorine source, we have measured velocity-

contour flux maps of H/D abstractions in the reactions of chlorine with selected alkanes at an 

unprecedented level of detail. Angular and reduced translational energy distributions for the set 

of studied alkanes, namely propane, its two selectively labeled isotopologues D1 (CD3CH2CD3) 

and D2 (CH3CD2CH3), and butane isomers n-butane and isobutane for which none or only 

interpolated DCSs were measured in the past, show distinct differences that allow us to revisit 

the “reaction picture” of this family of reactions: 

i. The role of vibrational excitation of the radical product has been invoked to explain the 

changes in recoil for the different reactive scattering distributions of the propane systems. 

ii. The kinetic isotope effect has been proposed to account for the modification of the angular 

distribution associated to D abstraction in the CH3CD2CH3 system, even if changes in the TS 

region cannot be excluded. 

iii. The peculiar forward scattered distribution measured in the case of isobutane could be 

explained either by the formation of vibrationally excited HCl or a steric hindrance effect. 

These results call for further investigations. Experiments at lower collision energies, with 

state-resolved detection to probe HCl/DCl, as well as dynamical calculations, should be helpful 

to shed light on the subtle energy partitioning in the radical products. 
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CHAPTER 4-REACTION DYNAMICS OF CHLORINE 
REACTION WITH BUTENE ISOMERS 
	
4.1 Introduction 
	

Reactions of chlorine atoms with hydrocarbons have become an important benchmark in the 

study of polyatomic reaction dynamics.[1] This is because these reactions are relatively fast, 

barrierless or nearly so, and because they afford the opportunity to explore distinct dynamics for 

different reactive sites [10, 11, 64, 95] and isomers, or to examine the influence of initial 

vibrational excitation[3, 6, 62] on the dynamics. Dynamical studies have ranged from state-

resolved PHOTOLOC studies,[9, 103] to crossed-beam imaging with both universal [96, 99] and 

state-resolved detection,[104] to PHOTOLOC imaging[105] augmented by dynamical 

calculations. All of these studies have been interpreted with various simple models of the 

dynamics.  

Although extensively investigated for their kinetics,[54, 106] reactions of Cl atoms with 

alkenes have been much less frequently reported in dynamical studies, yet they provide a 

fascinating opportunity to explore the influence of large variations in exoergicity for different 

target sites, and the possible influence of a strongly bound adduct (~1 eV) mediating the 

dynamics under some conditions. We recently reported a crossed-beam study of Cl reactions 

with 1-pentene and a number of hexene isomers at 4 and 7 kcal.mol-1 collision energies.[107] 

The chief findings in that study were that the reactions were dominated by complex formation at 

low collision energy while the high collision energy reactions began to show evidence of a 

stripping mechanism in the forward direction ascribed to direct abstraction of the alkylic H atom 

sites.  
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In this chapter we focus on the reaction dynamics for atomic chlorine with a series of butene 

isomers shown in Fig.4.1, with energetics referred to the reactants. The H abstraction and 

addition energetics have been calculated at the CBS-QB3 level of theory.[108, 109] In all cases, 

Cl addition to the double bond contributes about 20 kcal.mol-1 stabilization energy, with reaction 

at remote alkylic sites exoergic by 3-4 kcal.mol-1, reaction at vinylic sites endoergic by 3-5 

kcal.mol-1, and reaction at allylic sites exoergic by 15-20 kcal.mol-1. These are largely consistent 

with those we reported earlier for 1-pentene. 

4.2 Experimental setup 
	

The experiments were conducted in a crossed-beam imaging apparatus described in details in 

Chapter 2. Owing to intense photochemistry signal within 30° of the butene beams, reliable 

subtractions could not be obtained there and data in that region is not reported. 

4.3 Results 
	

DC sliced images of the C4H7 products for reactions of each of the four isomers are shown in 

Fig. 4.2, with the Newton diagrams superimposed. The collision energies were 12.5, 13.3, 13.8, 

and 13.5 kcal.mol-1 for 1-butene, trans-2-butene, cis-2-butene, and isobutene, respectively. The 

images are presented after background subtraction and density-to-flux correction. We emphasize 

that for visualization we show data with the threshold at zero, but the pixel counts are not 

necessarily positive after subtraction and the integrations over angle or velocity are thus reliable 

even in regions of substantial background. 

Also shown in Fig. 4.2 are the total center-of-mass translational energy distributions, P(ET), 

for each image derived from the analysis. The thick solid lines are simply smoothed fits to the 

integrated data, while the fine lines are the integrated raw data. There is no deconvolution of the 

beam velocity spreads, but these contributions are relatively small and we would not expect to 
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resolve any underlying features owing to the high density of states in the products. 

Slice imaging methods allow for direct inversion of the experimental data, allowing one to 

investigate the coupling of angular and translational energy release with no assumptions about 

the associated dynamics.[110] We have found it useful to show the translational energy release 

separately for forward, sideways and backscattered distributions, and these are presented in Fig. 

4.3 along with the center-of-mass angular distributions.  Owing to the background interference 

from C4H8 photodissociation by the probe laser, we omit the contribution within 30° of the 

butene beam for the forward distributions. The angular distributions are shown as insets in the 

translational energy distribution plots, color-coded for the different regions to match the 

appropriate P(ET) segments. Another useful aspect for interpreting the translational energy 

distribution plots is featured in Fig.4.3: Rather than giving the distributions in terms of total 

translational energy, we plot in terms of reduced translational energy, ET
*=ET/Ecoll. This is useful 

because for heavy-light-heavy systems, the acute skew angle implies that conservation of 

translational energy is expected.[99] This is true both for near-collinear collisions, for which the 

light H atom is kinematically disfavored for coupling exoergicity into product recoil, or for large 

impact parameter collisions, for which the small momentum transfer also precludes product 

energy release appearing in translation. By plotting these distributions against ET
*, we can see at 

a glance the nature of the deviation from the limiting cases. 
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Figure 4.1:  Energy diagram for Cl reaction with the indicated butene isomers. On the left are 
reaction enthalpies (0 K) for H abstraction at the indicated site. On the right are energy minima 
for Cl addition at the indicated site.  
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Figure 4.2:  DC sliced images for the C4H7 product of reaction for the indicated target isomer 
with most probable Newton diagram superimposed (left) and global translational energy 
distributions obtained from the images. 
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Figure 4.3.  Reduced translational energy distributions for forward (black), sideways (blue), and 
backscattered (purple) reaction products, with the center-of-mass angular distributions inset in 
each plot.  
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The average translational energy release and fraction of the collision energy appearing in 

translation is compiled in Table 4.1, consistent with the translational energy distributions plotted 

in Fig. 4.2 and 4.3. We also show the total available energy assuming abstraction at the allylic 

site, and the corresponding fraction of the available energy appearing in translation. Owing to the 

large exoergicity, this fraction is substantially smaller than the fraction of collision energy that is 

conserved. 

Table 4.1:  Collision energy, available energy for allylic H abstraction, and average translational 
energy release (kcal/mol). The latter is given along with the fraction of collision energy or 
maximum available energy for indicated center-of-mass scattering regions.  

 Ecoll  Eavail 

Total (30°-180°) Fwd (30°-60°) 

〈ET〉 fT, fT 〈ET〉 fT, fT 

gauche-1-but 12.5 33.3 7.7 0.61 0.23 8.4 0.67 0.25 

trans-2-but 13.3 31.3 6.2 0.46 0.20 7.4 0.55 0.23 

cis-2-but 13.8 32.4 6.9 0.50 0.21 7.6 0.55 0.23 

isobut 13.5 30.3 7.7 0.61 0.22 5.6 0.53 0.24 

 

 Ecoll  Eavail Side (60°-120°) Back(120°-180°) 

〈ET〉 fT, fT 
〈ET〉 fT, fT 

gauche-1-but 12.5 33.3 7.7 0.61 0.23 7.0 0.56 0.21 

trans-2-but 13.3 31.3 5.6 0.42 0.18 5.6 0.42 0.18 

cis-2-but 13.8 32.4 6.4 0.46 0.20 6.7 0.48 0.21 

isobut 13.5 30.3 6.0 0.44 0.20 6.9 0.51 0.23 
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4.4 Discussion 
	

In the reactions of chlorine atoms with alkenes, there are several principal reactive processes 

that may occur[54, 68] falling into two categories: Electrophilic addition to the double bond 

followed by collisional stabilization or HCl elimination, or direct H abstraction without access to 

the adduct potential well. These two broad dynamical categories may be further subdivided, 

depending on target isomer, into addition at the more or the less substituted carbon of the double 

bond, and H abstraction at an allylic site (e.g., C1 or C2 in 1-butene), an alkyl site (C3 in 1-

butene) or even at a vinylic site (C4 in 1-butene). All of these processes are energetically 

accessible at our collision energy, but reactions of the vinylic H atoms are so unfavorable that we 

can safely neglect them, and the products would not be detected by the 7.9 eV probe photons in 

any case. For abstraction at the alkyl sites, again the vertical ionization energy exceeds our 

photon energy, so although this is somewhat more feasible on energetic grounds (exoergic by 2 

kcal.mol-1and probably barrierless), the product is likely not detected in our study so we will also 

neglect this channel. We suspect this to be a minor channel but will examine this question more 

closely in future work described below. 

Under single-collision conditions, the addition complex cannot be stabilized so it must 

decompose. Typically in a radical addition to an alkene, we have “anti-Markovnikov” behavior 

and the radical will add to the most energetically favored unsaturated carbon, which in general 

will be the least substituted site.[54] The biggest effect here is seen in isobutene, for which the 

C1 site is strongly favored (see Fig. 4.1). The addition complex may then decompose by H loss, 

which is endoergic by a few kcal.mol-1, by Cl elimination returning to reactants, or by HCl 

elimination. For the latter reaction, the allylic site is strongly favored and the large exoergicity 

might suggest formation of vibrationally excited HCl. In fact, substantial vibrational excitation in 
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the HCl product has been used in kinetics studies as a marker for direct reaction, as this exoergic 

process would be characterized by an early transition state (TS).[68] The addition/elimination 

was assumed to give lower vibrational excitation owing to energy randomization in the long-

lived adduct. On this basis, a large fraction of the direct component was inferred. This approach 

was developed by Setser and coworkers[68] and further considered by Taatjes and 

coworkers[54]. 

In our previous study with C5 and C6 monoalkenes under single-collision conditions, we 

inferred almost exclusive reaction via addition/elimination.[107] This was based on angular 

distributions that were nearly isotropic and translational energy distributions that peaked near 

zero. The highest collision energy studied in that work was 7 kcal.mol-1, however, significantly 

less than what we employ here. Nevertheless, here we see significant variations in the behavior 

with different isomers, while in the earlier study even distinct molecules were largely 

indistinguishable from each other in their product distributions. 

By examining the global translational energy distributions in Fig. 4.2, we see that 1-butene 

peaks farthest from zero at 6-7 kcal.mol-1, the two 2-butene isomers are intermediate, peaking at 

4-5 kcal.mol-1, and isobutene shows the lowest energy peak at 2-3 kcal.mol-1. If we assume that 

the lower translational energy peak is associated with a greater fraction of the indirect reaction, 

then the importance of adduct formation increases in the same order and is most important for 

isobutene. This is further supported by the angle-dependent translational energy distributions 

shown in Fig. 4.3 along with the angular distributions. Here, a distinction between the forward 

scattering and the backward and sideways scattering clearly indicates a direct component to the 

reaction.  Again, this distinction is greatest for 1-butene, intermediate for the two 2-butenes, and 

absent for isobutene. 
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These trends are also reflected in the average translational energy release summarized in 

Table 4.I, and consistent with the relative stabilities of the adducts and abstraction reactions 

shown in Fig. 4.1. 1-butene (we consider only the gauche conformer[111]) has the shallowest 

well and the most exoergic abstraction channel, suggesting that the indirect reaction would be 

least important for this molecule. Isobutene has both the deepest well (for addition at the C1 site) 

and the lowest exoergicity for abstraction. On this basis alone we would anticipate the greater 

role for a long-lived intermediate for isobutene, which is consistent with the translational energy 

distributions in Figs. 4.2 and 4.3.  

A crucial underlying question, and one that is implicit in the interpretation of Setser and 

raised by Taatjes et al., is the nature of the TS for HCl elimination from the adduct, both its 

height and its geometry. One would expect low vibrational excitation in the HCl product from 

adduct decomposition if one assumes product-like or intermediate geometry for the TS. A 

preliminary survey in 1-butene has failed to identify a TS for HCl elimination from the 

adduct.[112] One possible explanation for this is that the decomposition occurs primarily via a 

Cl atom roaming reaction.[26, 113] This picture is supported by earlier theoretical examination 

of H2 addition to radicals.[114-116] For H2 addition to vinyl radical, electron density must be 

donated from the singly occupied p orbital of σ character in the radical plane to the σu orbital in 

H2, the most favorable interaction being in the collinear abstraction geometry.  Mebel and 

coworkers argued that this is a general feature of H2 addition to σ radicals, and similar arguments 

would apply to the reverse reactions. If we extend this picture to HCl as well as H2, and allylic 

radicals as well as vinyl, then we infer that the favored C-H-Cl abstraction geometry would be 

accessed most readily by a roaming event. In this case, the vibrational excitation in HCl for the 

direct and indirect reactions at the allylic site could be very similar (and likely quite substantial). 
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This is analogous to the H2 vibrational excitation seen in the roaming channel and the direct 

component of the H+HCO reaction reported by Bowman and coworkers.[117] If most adduct 

decomposition occurs via roaming, then the HCl vibrational excitation may be largely 

uncorrelated with the lifetime of the intermediate and low vibrational excitation may reflect 

reactions at alkyl sites or other aspects of the dynamics. Furthermore, the kinetic isotope effects 

(KIE) in these reactions[100, 101] examined by Finlayson-Pitts and coworkers will be 

complicated: The addition step would be characterized by an inverse KIE (the higher density-of-

states in the deuterated molecule stabilizes the adduct compared to the undeuterated molecule), 

while the roaming-abstraction step would show a normal KIE owing to the difference in zero 

point energies. It is not clear how these opposing effects would manifest themselves in the 

observed KIE, but it is an interesting subject for investigation. 

4.5	Conclusion	
	

We have studied the reactions of chlorine atoms with a variety of butene isomers, namely 1-

butene, trans-2-butene, cis-2-butene, and isobutene, using DC sliced imaging in a crossed-beam 

apparatus at collision energies of  ~13 kcal.mol-1. The reactions showed distinct behavior for the 

various isomers that is interpreted as largely reflecting the relative importance of 

addition/elimination (complex formation) vs. direct reaction. The VUV probe at 157nm is 

sensitive only to reaction at the allylic site, which is likely to be the dominant reaction site for all 

isomers considered. A key question is raised concerning the decomposition of the complex, and 

whether it occurs via a roaming radical mechanism. If this is the case, then the HCl product 

vibrational distributions may not be a sensitive measure of direct vs. indirect reaction. We plan 

detailed energy-dependent crossed-beam studies and more extensive theoretical investigations to 

address these questions. 
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CHAPTER 5-ROAMING DYNAMICS IN RADICAL ADDITION-
ELIMINATION REACTIONS 
	
5.1 Introduction 
	

Chlorine atom reactions with alkenes are an important prototype for the broad class of radical 

addition-elimination reactions: chlorine sources literally cover the Earth with both oceanic and 

anthropogenic origins and alkenes are among the most abundant atmospheric hydrocarbons 

[118]. These reactions play an important role in the oxidation of volatile organic compounds in 

marine boundary layers and Polar regions, [40, 44, 46]the burning of hazardous waste, [48]and 

possibly the aging of organic aerosols by heterogeneous processes.[50] In these bimolecular 

reactions that have become key in studying polyatomic reaction dynamics both in the gas phase 

[62] and in solution, [65] HCl formation is a major pathway for which addition-elimination 

competes with direct abstraction: 

Cl + CnH2n →  (CnH2nCl)* → CnH2n-1· + HCl (1) 

Cl + CnH2n → CnH2n-1· + HCl    (2) 

Direct abstraction and addition-elimination exhibit identical exoergicity (15-30 kcal·mol−1) 

and their decomposition is a long-standing challenge in both kinetics and dynamics studies for 

the obvious reason that they give rise to the same products. Nowadays, the kinetics of numerous 

Cl + alkene reactions seem to be well understood, with the gas-phase reactions exhibiting rate 

constants close to the gas kinetic limit, while evidence has been shown for addition-elimination 

involving a long-lived CnH2nCl intermediate. [53, 54, 67, 119] However, the details of the 

reaction mechanism and dynamics remain unknown. State-selected HCl measurements have not 

shown a distinct feature of addition-elimination in the product distributions.[68] Quantum 
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chemical calculations of reaction potential energy surfaces (PESs) have been enable to 

corroborate the addition-elimination mechanism [120, 121]. 

Recently, we have investigated the reactions of chlorine atoms with various alkenes such as 

butene isomers, 1-pentene, and various hexene isomers using a crossed-beam apparatus coupled 

to DC slice ion imaging [122, 123] We have found that the scattering distributions reflect the 

competition between direct H abstraction and Cl addition – HCl elimination. Our earlier 

preliminary theoretical calculations did not locate any typical transition states for HCl 

elimination, e.g., 3-center or 4-center transition states such as are generally seen for HCl 

elimination from closed-shell halides.  This suggested the possibility that the decomposition of 

the C4H8Cl complexes might occur via a roaming radical mechanism.[16] Roaming dynamics are 

now widely recognized as an important pathway in unimolecular reactions [26, 28, 113, 124] but 

their role in bimolecular reactions remains an open question. In this work we show specifically 

for the case of Cl with isobutene that addition-elimination occurs by a mechanism involving Cl 

atom roaming. 

5.2 Methods 
	
5.2.1 Crossed-beam slice imaging experiment 

The original crossed-beam imaging set-up has been described elsewhere.[123] In the 

following, we focus on the adopted experimental procedure, along with experimental 

modifications and improvements relevant for the present study. The two molecular beams were 

pulsed at 10 Hz with duration of 100 µs by using piezoelectric disk valves and backing pressures 

of 5 bar. The collision energy was varied by seeding the reactants in H2, He, or Ne with less than 

5% of percentage dilution. We note the present results for the highest collision energy were 

found to give improved collision energy definition compared to our earlier study. We used a 
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high-density chlorine radical source that consists in combining Cl2 photolysis to ablation. 

[81]For this purpose, the third harmonic of an Nd:YAG laser (355 nm) is focused at the tip of the 

nozzle, which is embedded in an aluminum extension tube. The same laser pulse generates both 

photolysis and ablation. The speed ratios, directly measured by imaging the parent beams, are 

equal to 5 and 8 for Cl2/Ne and Cl2/He mixtures, respectively. In the reaction chamber, the 

isobutyl radical products are ionized at 157 nm with an unfocused excimer laser beam. Along the 

time-of-flight axis, the resulting ion cloud was stretched and accelerated via a four-electrode d.c. 

slice ion optics assembly to impact on a dual microchannel plate (MCP) detector coupled to a 

fast phosphor screen. The front plate of the MCP was held at constant potential, while the back 

plate “gates” the central slice of the reaction products at a specific m/z ratio by application of a 

high-voltage pulse. The images were recorded using a charged-coupled device (CCD) camera, 

and the megapixel acquisition program NuAcq was used to accumulate the raw images 

containing centroided data [125]. The data presented here are shown after background 

subtraction and density-to-flux corrections. Background substraction is performed by 

substracting the velocity-flux maps obtained with the Cl2 photolysis laser off. These background 

images show a strong signal at m/z = 57 peaking in the forward directions at θ = 0° due to the 

photodissociaton of isobutene by the probe laser that cannot be substracted in the [0-30]° range 

at EC = 14 and 8 kcal.mol-1 and in the  [0-60]° range at EC = 4 kcal.mol-1. Finally, a small 

density-to-flux correction was performed by scaling the pixel intensity by the lab velocity at each 

point.  

5.2.2 Computational methods 

Ab initio calculations were performed using the CBS-QB3 method [108] implemented in the 

Gaussian09 quantum chemistry software package,[109] which involves geometry optimization 
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and evaluation of vibrational frequencies at the density functional B3LYP/6-311(2d,d,p) level of 

theory followed by a series of CCSD(T) and MP2 single-point calculations with various basis 

sets to extrapolate to the complete basis set limit. Connections between the transition state and 

local minima were verified by IRC calculations at the B3LYP/6-311(2d,d,p) level. The lifetimes 

of the H2CClC(CH3)2 and H2CCCl(CH3)2 radical complexes were estimated with Rice-

Ramsperger-Kassel-Marcus (RRKM) calculations of energy-dependent rate constants for 

dissociation toward the reactants in single-collision conditions. The lifetimes of the HCl 

elimination process from the complexes at collision energies of EC = 4, 8, and 14 kcal·mol−1 

were estimated to be 5, 0.8, and 0.1 ns for H2CCCl(CH3)2, to be compared to 72, 10, 2 ns for 

H2CClC(CH3)2. 

5.3 Results 
	
5.3.1 Imaging Cl + isobutene dynamics in crossed-beams 

The choice of isobutene as a target system should be noted before going into details of the 

reactive scattering distributions. There are two different sites that can lead to the formation of 

HCl and the alkenyl radical: The first one, the vinylic site, is directly located on the less 

substituted sp2 carbon atom; the second one, the allylic site, is located on the two methyl groups 

adjacent to the double bond. Reactions at the allylic sites are thermodynamically very favorable 

with enthalpies of reaction ΔrH(0 K) ~ -16 kcal.mol-1, while H removal by Cl at the vinylic site 

is an endoergic process with ΔrH(0 K) ~ 7 kcal.mol-1.[123] The latter reaction is therefore 

unlikely to occur under our experimental conditions, although the highest collision energy could 

permit this reaction. Indeed, we use an unfocused probe laser in our present experimental 

configuration that avoids any non-resonant multiple photon ionization of the products. Given the 

ionization energies (IEs) of the two possible product radicals (IEs of allylic and vinylic C4H7 
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radicals are ~ 7.9[126] and 8.4 eV, respectively, with the latter value calculated at the CBS-QB3 

level of theory), and the fact that H migration cannot occur in the energized radical product as 

established for similar systems (propene and isoprene)[121], we can confidently rule out the 

possible detection of radical products stemming from the abstraction directly at the double bond: 

The distributions presented here, and their changes with collision energies, correspond to 

reaction at the allylic sites only. 

5.3.2 Direct vs. Addition/Elimination Pathways 

Direct and indirect pathways for HCl production will appear very differently in the scattering 

distributions as illustrated in Fig.5.1. The product direction is taken as zero for the case of no 

momentum transfer, which corresponds in our case to the hydrocarbon beam direction. On this 

basis, we define for the radical product three different angular components in the center-of-mass 

frame, namely forward (FW, 0-60°), sideways (SW, 60–120°), and backward (BW, 120–180°). 

For direct H abstraction, the mechanistic picture is similar to the one in Cl + alkane reactions.[4, 

64] The rebound component, associated to modest rotational and vibrational excitation, gives 

reactive scattering in the backward-sideways (BW-SW) directions; the stripping component 

involves little energy and momentum transfer and appears in the forward (FW) scattering 

direction. In all cases the direct reaction will tend to show translational energy release similar to 

the initial collision energy owing to the kinematics of H atom transfer. Moreover, for the direct 

reactions, the forward scattered distribution is sharply peaked and its intensity typically grows 

with collision energy as the fraction of the stripping component grows. Formation of a long-lived 

adduct shows very distinct scattering distributions: randomization of the internal energy over the 

vibrational degrees of freedom in the complex leads to product translational energy distributions 

that peak at low energy.  Moreover, if the complex lifetime is significantly longer than its 
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rotational period, the system loses reference to the initial approach direction: the angular 

distributions show scattering that is symmetric in the FW and BW directions and the translational 

energy distributions in all directions will be identical. For systems in which the scattering is non-

planar (such as often the case in more complex polyatomic systems) this symmetric scattering 

becomes fully isotropic. 
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Figure 5.1: Cartoon illustrating the reaction dynamics Cl + alkene reactions. Direct H abstraction 
and addition-elimination are represented with the isobutene molecule. The reactive scattering 
components measured in the crossed-beam imaging set-up, namely forward, sideways, and 
backward, are highlighted. 
	

The center-of-mass angular and translational energy distributions for reaction of Cl (2P3/2) 

with isobutene for collision energies of 14, 8, and 4 kcal·mol−1 are shown in Fig.5.2. In this case 

we see evidence of both characteristic distributions. At EC = 14 kcal·mol−1, the translational 

energy distribution in the FW direction peaks at substantially higher energy than in the SW and 

BW distributions, and the angular distribution shows a minimum around 90° and a modest 

enhancement of the FW scattering. This immediately indicates some direct component in the 

reaction, showing features reminiscent of the distributions observed for Cl + alkane reactions in 

this collision energy range. At the intermediate collision energy the angular distribution is 

slightly flattened, showing an evolution toward a more isotropic reactive scattering with 

decreasing collision energy. The distinction between the FW and SW/BW distributions is less 

pronounced and the BW translational energy release peaks at ~20% of the collision energy. At 

EC = 4 kcal·mol−1, the translational energy release peaks near 0 kcal·mol−1, and the angular 

distribution is fully isotropic, although the center-of-mass is brought closer to the photochemical 

background and reliable data in the FW direction cannot be obtained. Nevertheless, these 

distributions tell a clear story: The complex-mediated mechanism plays a prominent role in these 

reactions, although it is not possible to decompose the precise relative contributions of direct vs 

indirect reactions from these experiments. 
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Figure 5.2: Center-of-mass distributions of the C4H7 radical for different collision energies. 
Translational energy distributions P(ET) and angular distributions T(Θ) are plotted for forward 
(30–60°, black), sideways (60–120°, blue), and backward (120–180°, purple) scattered products. 
The velocity-flux contour maps are shown with the photochemical background masked in the 
forward direction. Error bars were estimated each 10° via standard deviation. 
	

The question now is the pathway for the decomposition of the adduct. Here, the translational 

energy distributions can provide insight. If the HCl elimination involved a conventional 3-center 

or 4-center transition state (TS), we would expect to see the translational energy distribution 

peak away from zero as the strained TS geometry relaxes to products. Instead we find, at the 

lowest collision energy, only 10% of the available energy appears in translation. This implies no 

experimental evidence for a conventional TS mediating the elimination, and this is strongly 

supported by the theoretical calculations below. We can also ask where the missing energy might 

be found. Pilgrim and Taatjes measured the HCl vibrational energy disposal in the Cl + propene 

reaction and found that significant amount of reaction exothermicity (28 ± 3%) was channeled 
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into HCl vibration with half of the population in vibrationally excited levels[119]. We expect a 

similar result here, and little total energy in rotation, implying that the greatest fraction of the 

unaccounted energy is retained in the internal energy of the hydrocarbon radical itself, holding 

more than 60% of the energy available for addition-elimination reactions. Again, this is the 

anticipated result for decomposition of a complex given the large number of internal degrees of 

freedom of the radical product. 

5.3.3 Properties of the Addition Complex 
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Figure 5.3: Key points on the potential energy surface of the Cl + isobutene reaction. Direct H 
abstraction is a barrierless pathway with a van der Waals complex in the exit channel. The two 
addition complexes undergo near dissociation to reach a unique roaming-type transition state 
(TS-C3roam) before eliminating HCl. The diagram has been calculated at the CBS-QB3 level of 
theory. Relative energies are shown in kcal·mol−1. 
	

We now turn the discussion on the potential energy surface. Ab initio calculations were 

performed using the CBS-QB3 method [98], which provides a thermochemical accuracy of ~ 2 

kcal·mol−1. The key stationary points (minima and transition states) for the Cl + isobutene 

reaction are shown in Fig.5.3. Direct H abstraction is exoergic by 16.2 kcal·mol−1 at the allylic 

sites, and endoergic by 7.3 kcal·mol−1 at the vinylic site. Our calculations show that when Cl 

approaches isobutene from the side of the methyl groups, HCl elimination proceeds without any 

barrier. We also find there exist van der Waals C4H7…HCl complexes, which are bound by 2.6 

kcal·mol−1. The absence of barriers was confirmed via a careful scan of the minimal energy 

reaction path through partial geometry optimization with the critical H-Cl and C-H distances 

being frozen for the entrance channel and the exit channel, respectively. For reaction at the 

vinylic site, no transition state has been located.  

5.3.4 The Roaming Transition State 

The reaction can also proceed by barrierless addition of the Cl atom to C1 or C2 carbons 

leading to H2CClC(CH3)2 or H2CCCl(CH3)2 radicals, residing in deep potential wells of 20-22 

kcal·mol−1. Similar to the previous theoretical studies of Cl reactions with propene11 and 

isoprene12, we could not locate ‘conventional’, tight transition states for HCl elimination from 

the chlorobutenyl complexes. The reason for this is likely the same as for the absence of tight 

transition states for H2 addition to radicals [115, 116] and may be understood on the basis of 

simple orbital symmetry arguments. For example, when H2 adds to vinyl radical, electron density 

must be donated from the singly occupied p orbital to the antibonding σu orbital in H2, the most 
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favorable interaction being in the collinear abstraction geometry. It was proposed that this may 

be a general feature of H2 addition to radicals with an unpaired p-electron, and similar arguments 

would apply to the reverse reactions of H2 elimination or HCl elimination considered here. 

Although no tight transition states were found, we were able to find pathways connecting these 

strongly bound C4H8Cl intermediates with the allylic C4H7 + HCl product channel. The structure 

of the transition state along the addition-elimination pathway, shown in Fig.5.3, is peculiar. The 

Cl-H distance for the forming H-Cl bond is 2.366 Å with the corresponding attacked C-H bond 

stretched only to 1.111 Å. The Cl atom is 3.468 and 3.941 Å away from C2 and C1 carbons, 

respectively. According to intrinsic reaction coordinate (IRC) calculations (cf. Fig.5.4), the 

transition state is connected to the van der Waals H2CCCH3CH2…HCl product complex. In the 

reverse direction, IRC calculations return back to the C2 addition complex. However, since the 

Cl atom is located far from both C1 and C2, the downhill pathway from the transition state may 

also bifurcate to the C1 addition complex. Therefore, the Cl addition – HCl elimination transition 

state is both early, because the H-Cl bond barely starts to form and the breaking C-H bond is 

only slightly stretched, and late, because the C-Cl bond is already broken. Based upon its 

structure and the IRC path, this transition state is typical for a roaming radical mechanism, in 

which the Cl atom unlinks from the CC double bond, is about to be eliminated (returning to 

reactants), but wanders in the direction of the allylic site and picks up a hydrogen from a methyl 

group to form HCl. This observation is corroborated by vibrational frequencies computed for the 

transition state, which include a low imaginary frequency (317i cm-1), two very low bound 

frequencies corresponding to motions of the Cl atom relative to the isobutene fragment (45 and 

78 cm-1) with the remaining frequencies being very similar to those of isobutene. The only 

exception is one C-H stretching frequency, which is reduced to 2706 cm-1 because this bond is 
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slightly elongated and thus begins to break in the transition state as the H atom is being 

abstracted by the roaming Cl radical. We have performed similar calculations for Cl reaction 

with all other butene isomers. Only roaming-type transition states for addition-elimination were 

found, although the PESs were complicated by additional H abstraction sites. 

	
Figure 5.4: Lowest energy pathway linking the C1 addition complex and HCl elimination. 
Potential energy is plotted as a function of the intrinsic reaction coordinate with respect to the 
dissociation asymptote. Calculations are carried out at the B3LYP/6-311G(2d,d,p) level of theory. 
Relative energies are shown in kcal·mol−1. 
	
5.4 Discussion 
 

Based upon the TS structure shown in Fig.5.3, both addition-elimination and abstraction 

mechanisms should be expected to produce HCl with similar vibrational excitation. The HCl 
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product vibrational distributions may therefore not be helpful for distinguishing between the 

direct and indirect reaction pathways. The statistical lifetimes of the Cl-complexes upon 

dissociation, estimated from energy-dependent rate constant calculations based on the Rice-

Ramsperger-Kassel-Marcus theory[127], are too long at both low and high energies (72 and 2 ns, 

respectively) to account for the onset of the forward component when compared to the rotational 

period (~ 30 ps) of the complex. This observation, combined with the observed shift in the 

translational energy distribution in the forward direction, suggests that it is the appearance of the 

direct reaction at higher collision energy, bypassing the deep well, rather than an “osculating 

complex” that gives rise to the additional forward component. 

We note that we make a distinction between the direct reaction that avoids the deep potential 

well, or other cases in which the reaction simply deviates from the minimum energy path [128, 

129] and roaming dynamics that take place following adduct formation. The former dynamics 

are not unusual in bimolecular reactions: indeed they were seen in some of the earliest trajectory 

calculations [126] . Roaming dynamics as shown here and in many unimolecular reactions 

represent a distinct subset of those reactions that deviate significantly from the minimum energy 

path. They involve near-dissociation, in this case back to reactants, and a transition state located 

at a total potential energy and with vibrational frequencies near those of the reactants or 

products. This TS then leads to a configuration at which an intramolecular reaction may take 

place.  These are precisely the conditions of the TS seen here, which is analogous to the roaming 

component in the H+HCO reaction[117] and in many other systems. A comparison of Cl-

isobutene to that system, which has been studied using quasiclassical trajectories, is very 

instructive.  For the H+HCO reaction, three outcomes were seen: a direct reaction and complex 

formation with two decomposition paths: either through a conventional 3-center transition state, 
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or by roaming. Both the direct reaction and the roaming reaction give rise to similar high 

vibrational excitation in the H2 product. These two pathways are analogous to the direct and 

indirect reactions seen here, with the exception that in Cl-isobutene there is no 3-center TS for 

the indirect reaction. In fact, a key difference is that the present system involves a radical and a 

closed shell molecule exchanging the radical center along the reaction pathway, giving radical + 

closed shell products while the H+HCO reaction involves a radical pair giving a pair of closed 

shell molecules as products. We have recently learned of related work in the Orr-Ewing group at 

Bristol combining state-resolved velocity map imaging of the HCl product with direct dynamics 

calculations for this and related systems. Their results clearly support this roaming mechanism as 

the sole pathway from adduct to products, although they find greater branching for the direct 

reaction in their experiments than we see here. [130] 

5.5 Conclusion 
	

In summary, our experimental results show evidence for the important role played by indirect 

reactions in the total reaction cross-section of HCl formation in the reaction of Cl with isobutene 

i-C4H8. Addition-elimination proceeds through a long-lived complex in which the Cl addition to 

the double bond is followed by HCl elimination from the adjacent methyl groups. No evidence 

for a 3-center or 4-center transition state is seen in the experimental results, nor in a careful 

analysis of the ground-state potential energy surface. Instead we find a roaming-type transition 

state located 1-2 kcal·mol−1 below the energy of the reactant asymptote with greatly extended C-

Cl and Cl-H bond distances and vibrational frequencies very similar to the reactants. The picture 

is therefore analogous to the roaming mechanism observed previously in unimolecular reactions. 

In this case the roaming dynamics are central to the addition-elimination reaction mechanism: 

Although abstraction is the only pathway to products, an indirect reaction can occur mediated by 
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the strong electrophilic interaction of the Cl atom with the alkene π cloud. The reactions remain 

fast and HCl elimination can compete with the Cl loss because of the loose roaming transition 

state combined with the slight enthalpic advantage. 
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CHAPTER 6-REACTION DYNAMICS OF FLUORINE 
REACTION WITH LINEAR ALKANES 
	
6.1 Introduction 
	

Polanyi’s rules for atom + diatom reactions are core principles in reaction dynamics. If the 

barrier of an atom + diatom reaction is located in the entrance valley (the transition state 

structure is more like reactants than products), reactant translation is more effective than 

vibrational excitation in overcoming the barrier; alternatively, in late-barrier reactions, 

vibrational energy is more effective for reactivity.[131] For polyatomic species, with increased 

degrees of freedom and many vibrational modes, the extension of Polanyi’s rule is complicated 

and calls for numerous experimental and theoretical investigations. Reaction dynamics studies 

replace the diatom with polyatoms, and much work has been done to investigate atom + methane 

(CH4, CHD3) reactions. [132-135] Experiments and theoretical work have explored whether we 

can simply extend Polanyi’s rule to polyatomic targets and whether different vibrational modes 

have same impact on the reaction mechanism. X + CH4 hydrogen abstraction reactions have been 

touchstone targets in these studies.  

In 2002, Crim et al. reported that symmetric C-H stretching vibration drive the reaction CH4  

+ Cl→CH3 + HCl more efficiently than antisymmetric stretch. [134] Later Crim et al. observed 

excited symmetric C-H stretching mode increases Cl + CH3D reactivity seven times while 

antisymmetric mode does not.[136] Liu and co-workers performed state-resolved pair-correlated 

differential cross section measurements of F, Cl, and O(3P) + methane reactions in the past few 

years. In 2007 they found that the C-H stretching is no more efficient than an equivalent amount 

of translational energy in Cl + CHD3→HCl + CD3 reactivity, contrary to the extended Polanyi’s 

rules. [137]In 2009 they observed C-H stretching excitation inhibits the CH bond cleavage in the 
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F + CHD3 reaction. [138] The conclusion was confirmed by quasi-classical trajectory 

calculations.[139] In 2010 they published an experimental and theoretical study of the effects of 

CH bending in the F + CHD3 reaction. Both experiment and theory show at low collision energy 

bending excitation promotes the reaction while at higher collision energy it diminishes. QCTs 

predict that ν6(e) and ν5(e) bending modes promote DF and HF channels respectively and ν5(e) is 

most efficient in increasing the reactivity.  Experimental cross sections of F + CHD3 (νb = 1) 

show peak features for HF (ν’ = 3)+CD3 (ν2 = 0,1), indicating possible reactive resonances. [140] 

In 2005 Nesbitt et al. detected state-resolved HF(ν,J) product states with IR laser absorption 

method to investigate the reaction dynamics of F + C2H6→HF(ν,J) + C2H5.  The results indicate 

a high-efficiency vibrational excitation with relatively modest rotational excitation, consistent 

with Polanyi’s rules for early-barrier dynamics and in agreement with ab initio calculations. 

Their Doppler study of translational energy release into product quantum states revealed a linear 

correlation between HF (ν,J) translational recoil and the available energy, which is the remaining 

energy that could be distributed into the translational energies of HF and ethyl fragment, as well 

as the rovibrational degrees freedom of ethyl fragment. A simple impulsive model based on 

conservation of energy and linear/angular momentum predicts a good agreement with 

experiment and the deviations are attributed to a Franck-Condon-like excitation of the CH2 

moiety.[102]  

Layfield et al. published a theoretical study of the dynamics of F+CH4, C2H6, C3H8 and i-

C4H10 reactions in 2009.[141] They derived a reparameterized Hamiltonian from ab initio 

information of the potential energy surfaces of all reactions studied to calculate direct 

quasiclassical trajectories. The accuracy of this Hamiltonian was tested by comparing the 

calculated dynamical properties with experimental results of fluorine + methane and ethane 
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reactions. Calculations on propane and isobutane reactions focused more on the differences at 

various abstraction sites. They found, as expected, energy distributed into HF vibration increases 

along primary, secondary and tertiary reaction sequence while tertiary abstraction reactions are 

more backward scattered than primary sites. Increasing sizes of the alkanes increase the energy 

partitioned into internal alkyl degrees of freedom. This work is very relevant to our study and 

will be discussed further below. 

In the past few years, our group has conducted a series of crossed beam studies of Cl atom 

reaction with saturated and unsaturated C3 to C6 hydrocarbons reactions using DC slice imaging 

in a manner quite analogous to the reactions studied here.[80, 81, 97, 99] Here we present the 

latest results of our crossed-beam study on the reaction dynamics of F atom with saturated 

hydrocarbons targets, i.e. propane, n-butane and n-pentane. This is the first experimental F atom 

dynamics study of C3 and higher systems, where primary and secondary H sites are present. Raw 

scattering images of the abstraction products are collected with DC slice imaging in a universal 

crossed-beam apparatus via single photon ionization. After background subtraction and density-

to-flux correction, the coupled differential cross section distributions, the translational energy 

distributions and center of mass angular distributions, are derived directly from the images 

without any convolution or assumptions. 

6.2 Experimental method 
	

Our apparatus is a crossed-beam machine[80] consisting of a main chamber and two source 

chambers fixed at 90° to each other. Both source beams are diluted in helium and expanded into 

the main chamber to react. The 5% fluorine mixture was pulsed into chamber through a 

piezoelectric stack valve [93] with a 120µm translation actuator pulsed for 50 µs. A pulsed 

discharge was fired in front of the valve body prior to the skimmer to generate F atoms. We 
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mount two electrode plates in front of the nozzle to create the discharge. An insulator plate is 

placed to prevent discharge between the first electrode and the nozzle plate. The first electrode 

plate is held at ground while the other one is given a pulsed high voltage (+800V). The pulse of 

the discharge is 2µs long and was set to discharge when the gas pulse is at its peak. The 

expanding F atom beam was skimmed through a 2mm diameter skimmer. Although it is not 

possible to visualize directly the F beam via our current DC slice imaging set-up, we have 

monitored a beam of N2 in similar conditions showing a speed of ~ 1950 m/s with a speed ratio 

of 18. Hydrocarbon target beams were produced by seeding 2-10% alkanes in helium and 

expanding into the main chamber through a piezoelectric disk pulsed valve after a 2mm orifice 

diameter skimmer. In the present study, the beam speeds were measured at ~ 1600 m.s-1 for 

propane, 1450 m.s-1 for n-butane, and ~ 1320 m.s-1  for n-pentane, with speed ratios of, 6, 5, and 

4, respectively. The resulting collision energies EC were equal to 10 ± 2 kcal.mol-1. 

The product radical was ionized by a VUV 157nm excimer laser in the interaction region, on 

the axis of a DC slice imaging [86] apparatus described previously, and then accelerated up via a 

set of four DC slice ion optics, through a 70cm flight tube perpendicular to the reaction plane to 

impact on a 75mm diameter dual mircochannel plate (MCP) detector coupled to a P-47 phosphor 

screen. The back plate of the MCP assembly is held at constant potential while a negative high-

voltage pulse is given to the front plate to ‘gate’ the central slice of the products at a certain m/z 

ratio. 

A CCD camera is used to record the raw images and data acquisition program is our own 

NUACQ-2 with event-counting and centroiding. We recorded images with F discharge on and 

off to obtain the photochemical background associated with the hydrocarbon targets. After 

background subtraction and density-to-flux correction, the experimental data is directly inverted 
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to the uncoupled center-of-mass angular and translational energy distributions. 

6.3 Results 
	

For reactions of hydrocarbons with VUV probe of the radical products, one needs to consider 

the detection efficiency for various product radicals (i.e., for particular abstraction sites.) In this 

paper, all the target alkanes contain primary and secondary hydrogens. We address this question 

by taking into account of product radicals’ ionization energies. The enthalpies at 0 K and 

ionization energies of different H abstraction sites are shown in Fig.6.1, calculated at the CBS-

QB3 level of theory. For propane and n-butane, the ionization energy of primary abstraction 

product is higher than our detection probe of 7.9 eV, while the secondary abstraction product is 

lower. It is possible both products are detected if these would possess some vibrational 

excitation. Experiments of F with partially deuterated propane and butane, which we do not 

present here, showed no primary abstraction product with our single photo ionization VUV 

probe. Thus, results here contain only secondary abstraction products of propane and n-butane. 

For pentane, we detect both primary and secondary abstraction products. Although secondary 

abstraction can give 2-pentyl or 3-pentyl radical, a previous study[142] of heptane isomer 

photodissociation at 157nm relative ionization efficiency shows less than 20% variation in 

various radical products detection efficiency; in the pentane case our detection likely does not 

favor 2-pentyl or 3-pentyl radicals. 
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Figure 6.1: Lowest energy structures of propane, n-butane and n-pentane. Reaction enthalpies at 
0 K (bold / kcal.mol-1) and ionization energies of the radical products (italic / eV) at different 
abstraction sites are calculated at the CBS-QB3 level of theory. 
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Figure 6.2: (Left) DC sliced raw images of reactive scattering after background subtraction and 
density-to-flux correction with newton diagrams superimposed. The collision energies of 
propane, n-butane and n-pentane are 10.2, 10.1, and 10.3 kcal.mol-1, respectively. (Right) 
Corresponding translational energy distributions for 20° angular steps. 
	

Fig.6.2 presents the DC sliced raw images of reactive scattering of the F + alkane reactions 

after background subtraction and density to flux correction, with nominal Newton diagrams 

superimposed. Owing to the newly designed stack valve and the discharge, the F atom beam is 

stronger than the previous Cl beam we used for analogous studies; in addition, the pulse duration 
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of both F and alkane beams can be lowered to 50 µs, which helps to decrease the photochemistry 

of alkane background and allows us to present the full scattering distributions of the alkyl 

products. The translational energy distributions are integrated every 20°, shown in the right part 

of Fig.6.2. All the reactions have the same trends: (i) the scattering signal is maximal at low 

angles, (ii) the distribution peaks at higher translational energy (~ 5-7 kcal.mol-1) for both 0° and 

180° scattered angles, while it peaks at lower values (~ 1-3 kcal.mol-1) near 90°, (iii) the high 

angle distribution is broader and thus extends to higher recoil. 
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Figure 6.3: Reduced translational energy distributions of forward (FW), sideways (SW) and 
backward (BW) scattering regions of the alkyl products and their center-of-mass angular 
distributions. 
	

Fig.6.3 shows the reduced translational energy distributions for forward (FW), sideways 
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(SW) and backward (BW) scattering of each target radical with their center-of-mass angular 

distributions on the bottom, which are all directly integrated from the raw data. The translational 

energy is reduced by collision energy, ET* = ET/EC. We plot ET* instead of ET to give at a glance 

the deviation from the limiting cases for heavy-light-heavy systems: the acute skew angle favors 

the conservation of translational energy. The average translational energy release and the fraction 

of the collision energy in translation (fc) and of available energy (ftot) are shown in Table 6.1.  

The translational energy distributions of propane and n-butane are quite similar while n-pentane 

is different from the others, i.e. closer to zero than the other two. The BW scattering of all 

systems peak farthest from zero. The angular distributions have a strong forward component. As 

the size of the molecule increases, the backward scattering component increases. 

Table 6.1: Most probable collision energies EC and available energies Etot = EC + ΔrH(0K) for 
primary and secondary H abstractions, along with the average energy release and the fractions of 
translational energy in collision energy (fc) and available energy (ftot) measured for the different 
scattering regions. For n-pentane, primary results are shown with an asterisk (*). Values are in 
kcal.mol-1. 

   Total Forward 
 EC Etot 𝐸!  𝑓!  𝑓!"! 𝐸!  𝑓!  𝑓!"! 
C3H8 10.2 50.3 8.3 0.81 0.16 8.4 0.82 0.17 
n-C4H10 10.1 49.9 7.6 0.76 0.15 7.1 0.71 0.14 
n-C5H12 10.3 50.1 

47.2* 
6.6 0.64 0.13 

0.14 
6.1 0.60 0.12 

0.13 
	

   Sideways Backward 
 EC Etot 𝐸!  𝑓!  𝑓!"! 𝐸!  𝑓!  𝑓!"! 
C3H8 10.2 50.3 7.4 0.72 0.15 8.8 0.86 0.18 
n-C4H10 10.1 49.9 7.2 0.71 0.14 8.7 0.86 0.17 
n-C5H12 10.3 50.1 

47.2* 
6.3 0.61 0.13 

0.13 
7.3 0.71 0.15 

0.15 
	
6.4 Discussion 
	

As shown in Fig.6.2, the translational energy distributions of the three target molecules share 

the same features: the scattering signal peaks at a higher translational energy release around 0° 
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and 180° while it shows a minimum around 90°. Comparing these results with a dynamics study 

published earlier in our group for Cl atom reactions with the corresponding alkanes, the Cl 

reactions showed a much stronger forward scattered than the present F atom results, suggesting 

for the latter, the stripping mechanism is less favored than the rebound mechanism despite the 

much greater exoergicity.[80]  

The reduced translational energy distributions tell us more about the dynamics of these 

reactions. In Fig. 6.3, the translational energy release for the BW scattering peaks at 0.6 to 0.8 

but extends significantly higher than do the FW/SW distributions. This is likely owing to the fact 

that for the close collisions leading to rebound scattering, there is an enhanced possibility for 

coupling of the substantial exoergicity into recoil. The FW scattering ET* also peaks at 0.6-0.8 

but shows much less extension to ET
* >1 than the BW component. The SW scattering peaks at 

the smallest ET
*. 

The ET
* of n-pentane is smaller than the other two in all directions, indicating that collision 

energy is more effectively partitioned into internal degrees of freedom of the pentyl radical. One 

possible reason for this difference is that the reaction enthalpies of propane and n-butane are 

almost the same and we do not detect the primary radicals, while for n-pentane two abstraction 

sites were probed here, and for primary, the exoergicity is about 3 kcal.mol-1 lower than 

secondary abstraction sites.  

One rather puzzling feature is that all of our observed angular distributions show a sharp 

forward scattered feature that is not present in the direct dynamics trajectories of Layfield et al. 

However, the fractional translational energy release is in fair agreement. We believe the most 

likely explanation for this is that the trajectories were performed at a much lower collision 

energy (3.2 vs. ~10 kcal.mol-1) than our experiment. The higher collision energy would certainly 
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enhance the contribution of a stripping component. A related aspect of the experimental result is 

that the relative yield of the backscattered component increases with the mass of the collision 

partner, regardless of whether results include only secondary abstraction (propane, butane) or 

both primary and secondary (pentane). This is contrary to what might be expected strictly based 

on expected impact parameter. It may be that this forward stripping component, not seen at the 

lower collision energy in the theoretical calculations, begins to appear and grows with the 

velocity, or with the “local” F-H-C collision energy, rather than the overall collision energy. 

Although we have normalized the angular distributions in Fig.6.3 to have the same maximum (in 

the forward direction) we could similarly scale them in the backward direction and note the 

relative decrease in the forward component with mass. We are planning future studies at a range 

of collision energies to probe these questions. 

In addition, although we think of these as linear systems, there are additional conformers for 

butane and pentane that are somewhat populated at room temperature, and it is likely that they 

are, to some extent, frozen in the expansion and not fully relaxed to the linear minima. As 

discussed above, back-scattered products arise from small impact parameter collisions, which 

would allow more effective partitioning of available energy into internal degrees of freedom of 

alkyl radicals than FW/SW scattering, i.e. the energy channeled into alkyl internal energies 

increases with larger alkane molecules, in good agreement with the quasiclassical trajectories 

calculations in Layfield’s paper.[141]  

We find the fraction of available energy appearing in translation is about 0.13~0.18, while 

most of the available energy is likely partitioned into the vibrational excitation of HF; 

experiments for ethane and the trajectory calculations all suggest a maximum probability for HF 

(v=2). fC is slightly smaller than in the work of Layfield et al., in which the fractions of available 
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energy into recoil is about 0.20~0.25 for F reactions with C1 to C4 systems. In Layfield’s work, 

abstraction sites have no relative sensitivity in the distributions of alkyl internal energy. 

Although n-pentane was not included in the calculations, we can also speculate that the 

contribution from primary and secondary abstraction products will not change the energy 

partitioned into the internal freedom of alkyl fragments since the exoergicity of these three target 

alkanes at the same abstraction site is almost the same. The fraction decreases as the size of the 

reagent alkane molecules increases, consistent with the theoretical study. Their calculations show 

that the energy channeled into HF vibration, rotation and translation decreases for reactions from 

C1 to C4, with some of the energy going into alkyl internal degrees of freedom as the systems 

become larger. They plausibly attribute this to larger alkyl products have greater number of 

vibrational modes and a greater density of states; these modes effectively couple to the reaction 

coordinate and absorb more energy released in the reaction. For all target molecules, the 

fractions of BW scattering are larger than FW/SW scattering, in agreement with the translational 

energy distributions discussed above. 

Qualitatively speaking, the result of high vibrational excitation in the products agrees with 

Polanyi rules for early-barrier dynamics in an atom+diatom systems.[143] Now we consider the 

distributions in a quantitative way by using the kinematic model of Evans et al.[144] While β is 

the reaction’s skew angle, ER is reaction exogercity, and EC is the collision energy, the average 

translational energy release for backward scattering (collinear reaction) is given by 

𝐸! = 𝑠𝑖𝑛!𝛽𝐸! +  𝑐𝑜𝑠!𝛽𝐸!  

For F + alkane reactions, as a heavy-light-heavy system, they produce very small skew angles 

around 10 to 20°, so 𝑠𝑖𝑛!𝛽 is less than 0.10.[145] For all target molecules, the BW scattering 

fractions fC is clearly smaller than 0.90, which means the translational energy release observed in 
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our experiment is lower than the values predicted by Evans’ model. This is not surprising as our 

systems are atom + polyatom reactions with large numbers of degrees of freedom, while this 

model works well for three-atom reactions. Energy is converted from the F-H-C moiety into 

alkyl fragments via intramolecular vibrational redistribution, in addition to direct impulsive 

release of energy into product recoil which was also shown in the results of F + ethane by Nesbitt 

and coworkers. Alkyl radical products are likely to have significant rotational excitation. For FW 

scattered products, similar reduced translational energy release fractions lower than the model 

predictions are observed. Again, the large impact parameter collisions induce small momentum 

transfer, resulting in lower rotational excitation. 

6.5 Conclusion 
	

The reaction dynamics of F atom with propane, n-butane and n-pentane have been studied 

using a newly designed pulsed stack valve with single photon ionization via crossed beam DC 

slice imaging methods. Translational energy distributions of all the reactions have similar 

features, FW/BW scattering peaks at higher energy than does SW scattering. The center of mass 

angular distributions have a forward-scattered component that decreases with the size of the 

hydrocarbon target, possibly suggesting a velocity-dependent effect. The fraction of available 

energy into recoil falls with the size of molecule as a result of the large vibrational modes 

coupled to reaction coordinate and more effectively absorbing energy release. 
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CHAPTER	 7-H	 ABSTRACTION	 CHANNELS	 IN	 THE	 CROSSED-BEAM	
REACTION	OF	F	+	1-PROPANOL,	1-BUTENE	AND	1-HEXENE	BY	DC	SLICE	
IMAGING	
	
7.1	Introduction	
	

In recent years, there has been an increasing interest in oxidation of alcohols as renewable 

biofuels.[146-148] With a higher energy density and larger octane number, as well as fewer 

pollutants from combustion compared with gasoline, some are used specifically as transportation 

fuels. Moreover, the oxygenated hydrocarbon systems offer special dynamical interest to both 

theoretical and experimental research. Oxidation (i.e., hydrogen atom abstraction) from these 

molecules by ground state fluorine atoms offers a means of investigating aspect of these 

dynamics in detail.[149] As a result of the nonequivalent hydrogen atoms in C-H and O-H 

groups, abstraction can proceed through hydroxyl hydrogen removal and/or alkyl hydrogen 

removal. In addition, it is possible that the highly reactive product radicals initiate different 

subsequent reactions such as the chain reaction of CH2OH with additional F2 as well as 

interference with each other.[150] It is very important to understand the relative efficiency of 

these competing reaction channels and numerous studies were focused on the branching ratios of 

these parallel pathways. For many of the same reasons, F atom reactions with unsaturated 

hydrocarbons are of dynamical interest as an illuminating contrast to the analogous Cl or O atom 

reactions that have been studied in considerable detail. We describe our initial investigations into 

both of these systems in this report. 

The CH3OH + F reaction system was previsously studied by means of HF or radical emission 

spectra. [150-159] 

F + CH3OH → HF + CH3O          ΔH = - 32 kcal/mol     (1) 

                    → HF + CH2OH       ΔH = - 41 kcal/mol  [160] (2) 
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Hydroxymethyl radical formation is about 10 kcal.mol-1 more exoergic than methoxy radical 

formation, indicating pathway (2) to be energetically favored. Furthermore, the 3:1 ratio of 

methyl to hydroxyl hydrogens suggests a statistically favored hydroxymethyl yield. Thus the 

prediction on the product branching fraction of methoxy radicals can be expected to be less than 

or equal to 0.25. However, although the reported branching ratios differ from one study to 

another, almost all the experimental results show a greater than 50% or at least larger than 25% 

methoxy yield fraction. Khatoon et al. reported the branching ratios of hydroxymethyl to 

methoxy radical pathways as 0.4 to 0.6 by studying fluorine atom reactions with normal and 

deuterated methanols using a fast discharge flow reactor with samples analyzed by a mass-

spectrometer. [157]  Durant’s work also shows a 0.6 ± 0.2 methoxy branching ratio at room 

temperature which they ascribed to the fact that the hydroxyl-hydrogen potential energy surface 

is more attractive (although less exothermic) relative to the methyl-hydrogen abstraction 

surface.[159] Yet although experimental results of hydrogen abstraction from methanol with 

chlorine, bromine and hydroxyl and methyl radicals reported a dominance of the hydroxymethyl 

pathway; it is evident that fluorine reactions follow different mechanisms.[161-165] Jodkowski 

and co-workers explained this difference as the fluorine reaction branching ratios are determined 

by the activation entropy differences rather than activation energies for different channels.[166] 

For hydrogen abstraction in higher alcohols the preferential attack was also found at the OH 

group. Several measurements on the alkoxy yield from reactions of F with normal and deuterated 

ethanols and propanols presented similar alkoxy product fractions.[160, 167, 168] The fraction 

yielding ethoxy radical is reported to be 0.5 although alkyl hydrogen abstraction is also 

energetically favored. The probability of attack on the C-H group was found to be five times less 

than attack on the O-H group for the reactions of F atoms with alcohols. (This ratio was also 
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observed in F + CH3OD and F + CD3OH reactions). Wagner et al. summarized that the low 

exothermicity Cl atom reaction channels happened following the order of exothermicity while 

the highly exothermic F atom reactions more controlled by steric factors.[167]  

On the other hand, fluorine reaction with alkenes provides rich chemistry as a result of their 

large variations in exoergicity for different abstraction sites, as well as the presence of strongly 

bound adducts. Fluorine is the most electronegative element in the periodic table. It is possible 

for fluorine to replace hydrogen in organic compounds without grossly distorting the system 

geometry.[169, 170] Carbon-fluorine bond study has become a very important area of research in 

organic chemistry. [171] It is very interesting to take a detailed look at the reaction dynamics of 

F atom with unsaturated hydrocarbons, where both direct abstraction and long-lived complex 

formation with or without unimolecular decomposition mechanisms are possible. 

Lee and co-workers conducted a comprehensive crossed molecular beam study on F atom 

reactions with a series of olefins.[172-176] For F + C2H4, C2D4 reactions, C2H3F (C2D3F) 

formation (H elimination) proceeded via a long-lived complex although the products’ recoil 

energy distribution peaked about half of the available energy. Highly vibrationally excited DF 

suggested small internal excitation of the co-product, C2D3.[172] The symmetric angular 

distributions of C2H3F product indicated the lifetime of C2H4F was longer than the rotational 

period while the C2H3F product energy distribution was nonstatistical.[174] The complex formed 

in F + C4H8 reaction study showed, at least for complex configurations near the transition state, 

the internal energy randomization assumption broke down.[173] For reaction of F with propene, 

three reaction pathways were observed: H + C3H5F, CH3 + C2H3F and HF + C3H5, and the 

relative branching ratios are estimated as 0.15:0.65:0.19.[175] The H pathway was inferred as 

proceeding through a direct reaction mechanism superimposed on a long-lived complex 
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formation as a result of the noticeable backward angular distribution; the forward-backward 

symmetric angular distribution suggested CH3 formation mainly occurs via a long-lived complex 

formation mechanism. The clearly forward scattering angular distribution indicated a strong 

direct reaction channel for HF formation. This F + propene result was confirmed and further 

investigated by a theoretical study, where the doublet potential energy surfaces of fluorine atom 

reaction with propene were calculated at the UMP2 and CCSD(T) level of theory.[177] The most 

favorable reaction pathway was found to be CH3 formation while at high temperature the H 

formation pathway is less favorable than CH2F formation. On the potential energy surface no 

addition-elimination mechanism was seen, although the authors appeared to be looking 

exlusively for a cyclic 5-membered TS for HF elimination. This will be considered further 

below. 

There are also various other experimental and theoretical studies for fluorine atom reactions 

with small alkenes[178-182] but few results have been reported for C4 or larger linear alkenes. 

Similarly, detailed experimental investigations on the kinetics of F + CH3OH and ethanol, 

propanol reactions have been reported while little dynamical information is available for larger 

alcohols. Here we present a preliminary reaction dynamics study of H-abstraction reactions of F 

atom with 1-propanol, 1-butene and 1-hexene via crossed-beam dc slice imaging, focusing on 

minor pathways detected by single photon ionization at 157 nm. Scattering images of 

hydroxyalkyl and alkyl radicals were recorded and the results analyzed after density-flux 

correction and background subtraction. We also compare the fluorine atom results with 

analogous systems in which chlorine is the radical reagent. 

7.2	Experimental	
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The experiments were conducted on a crossed beam imaging apparatus described in detail 

before.[123] Our machine consists of one main reaction chamber and two source chambers, 

perpendicular to each other. Both molecular beams were diluted in helium and were skimmed 

into the main chamber after supersonic expansion. A 5% fluorine mixture was pulsed from a 

piezoelectric stack valve with a 120 µm translation actuator and 50 µs pulse duration. F atoms 

were generated by a pulsed discharge fired just after the nozzle. Two electrode plates were 

mounted in front of the nozzle plate, as well as an insulator plate placed between electrodes to 

prevent unwanted discharge between first electrode and the nozzle. We created the discharge by 

giving a pulsed high voltage (+800 V) to the second electrode plate and keeping the first 

electrode at ground. A piezoelectric disk valve generated the target beams with helium as carrier 

gas. The product radical following reaction was ionized with a VUV beam at 157 nm from a F2 

excimer laser (7.9 ev) in the interaction region and then accelerated and stretched through a set 

of four DC slice ion optics lenses. After flying field-free along a 70 cm flight tube 90 degrees to 

the reaction plane, the ions would impact on a dual microchannel plate (MCP) detector coupled 

to a P-47 phosphor screen. A negative high-voltage pulse was given to the front plate to while 

the back plate of the MCP assembly was held at constant positive potential to gate only the 

central slice of the products at a certain m/z ratio.  

Raw images were recorded using a CCD camera with F discharge on and off to discriminate 

the photochemical background associated with target molecules. Our home-built NUACQ-2 

program is used to acquire the data with event-counting and centroiding.  The intense F atom 

beam allow us to operate the VUV probe beam unfocused, and direct inversion of the 

experimental data is then achieved; only little density-to-flux correction was needed. 
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7.3	Computational	Methods	
	

CBS-QB3 method implemented in the Gaussian09 quantum chemistry software package was 

used to perform ab initio calculations on the reaction enthalpies and the transition states for HF 

loss following adduct formation for the F + butene reaction via the vinylic and allylic site.[183] 

The geometry optimization and vibrational frequencies were evaluated using density functional 

theory with B3LYP and M062X functionals using an 6-31+G(d,p) basis set.  IRC calculations to 

verify the connections between TS and the local minima were conducted at both B3LYP/6-

31+G(d,p) and M062X/6-31+G(d,p) level. The CBS-QB3 composite method was also used to 

gain a higher level of accuracy.  Similar calculations were also performed for the reaction of F + 

propene and included in the supplementary information. 

7.4	Results	
	

Fig. 7.1 gives the reaction enthalpies (0 K) for H abstraction (black) and F addition (blue) at 

the indicated sites calculated at CBS-QB3 level of theory, as well as the vertical ionization 

energies (eV) of corresponding product radicals (in parentheses). As expected for the highly 

reactive F atom, the exoergicities are much higher compared to Cl atom reactions with the same 

targets.[80] All direct abstraction and addition sites are energetically accessible, and α hydrogen 

abstraction is the most energetically favored one.  Based on our single photon ionization probe at 

7.9 eV, according to the vertical ionization energies, we have high selectivity on the product 

radicals detected as will be discussed below. 
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Figure 7.1:  Lowest energy structures of 1-propanol, 1-butene and 1-hexene. Reaction enthalpies 
at 0 K (kcal.mol-1) at different abstraction sites are calculated at the CBS-QB3 level of theory. 
Numbers in blue are reaction energy release of complex formatting pathways; numbers in 
parenthesis are vertical ionization energies of corresponding product ions (eV). 
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The reactively scattered hydroxyalkyl radical from F atom reaction with 1-propanol is shown 

in the left side of Fig. 7.2 for a collision energy of 10.2 kcal.mol-1. These raw images are 

background subtracted and density-to-flux corrected with Newton diagrams superimposed. 1-

propanol has two types of abstraction sites: the primary and secondary C-H groups and the O-H 

site. The bond dissociation energy (at 298 K) is 104.7 kcal/mol for HO elimination, about 89.6 

kcal/mol for Hα elimination, 94.4 kcal/mol for Hβ elimination and 97.0 kcal/mol for Hγ 

elimination, consistent with the theoretical trends given in Fig. 1.[184] Previous experimental 

results of F + propanol reactions found evidence for the existence of all possible abstraction 

channels by determining the relative amount of HF and DF. [167] This kinetic study also 

reported that the possibility of alkyl H atom being attacked was 5 times less than hydroxyl H 

atom site.  

 
Figure 7.2: (Left) DC sliced image for the C3H7O product after background subtraction and 
density-to-flux correction at a collision energy of 10.2 kcal.mol-1, with Newton diagrams 
superimposed. (Center) Translational energy distributions for forward, sideways and backward 
scattered distributions of fluorine + 1-propanol. (Right) Center-of-mass angular distribution of F 
+ 1-propanol reaction. 
	

Fig.7.2 also shows the translational energy distributions integrated for forward, sideways and 

backward scattering regions and center-of-mass angular distributions for F reaction with 1-

propanol. Despite the strong photochemistry background surrounding the alcohol parent beam, 
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we are able in this case to make reliable subtraction of the background signal, and are able to 

report results for the full scattering distribution. The sideways translational energy distribution 

peaks closer to 0 than the backward distributions and there is a strong forward component in the 

angular distributions.  

Raw images for F atom reactions with 1-butene and 1-hexene are shown in Fig. 7.3 at 

collision energies of 10.4 kcal.mol-1 and 9.1 kcal.mol-1, respectively. The corresponding 

translational energy distributions for alkene reactions are presented in the right part of Fig.7.3. 

The translational energy distributions are integrated every 20° and forward scattering is also 

omitted owing to background interference. Both 1-butene and 1-hexene scattered products show 

an increasing translational energy release with increasing angles, although 1-butene has a 

broader distribution than 1-hexene. The sideways and backward scattering reduced translational 

energy distributions are shown in Fig 7.4, as well as the angular distributions. The backward 

distributions peak farther from zero for both alkenes and 1-butene has broader peaks, in good 

agreement with the 20 degrees integrated results. The backward component dominates in the 

angular distributions. 
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Figure 7.3: DC sliced images for C4H7 and C6H11 products with newton diagrams superimposed 
(left) and translational energy distributions integrated every 20 ° (right). 

 
Figure 7.4: Sideways and backward translational energy distributions of F + 1-butene and F + 1-
hexene reaction (left); right is the center-of-mass angular distributions of the targets. 

Table 7.1: Most probable collision energies and average energy release for fluorine reaction with 
1-propanol, 1-butene and 1-hexene; the latter is given along with the fraction of collision energy 
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appearing in translation for the indicated center-of-mass scattering regions. Values are in 
kcal.mol-1. 

 Ec <ET>sdw <ET>bwd <ET>*sdw <ET>*bwd 
1-propanol 10.2 9.1 12.4 0.89 1.22 

1-butene 10.4 8.2 10.1 0.79 0.97 
1-hexene 9.1 8.4 10.6 0.92 1.16 

 
The average translational energy release and the fraction of the collision energy in translation 

are shown in Table 7.1. Here we also show the reduced translational energy release, P(ET *), 

where ET *= ET/EC  to shed some light on the deviation from the heavy-light-heavy limiting 

cases, as the acute skew angle for H atom transfer favors translational energy conservation. The 

average reduced energy, <ET *> of 1-butene is somewhat than the other two. The backward 

energy release is slightly higher than sideways for all target systems and the 1-propanol reaction 

shows higher translational energy release than the alkenes.  

7.5	Discussion	
	

A very interesting result here is the similarity of the distributions of F + 1-propanol with our 

previous results of F + 1-butane. Both backward translational energy distributions peak farther 

from 0 than sideways distributions and the center-of-mass angular distributions have a strong 

forward component, and are decreasing with increasing scattering angle. It is likely that C – H 

abstraction plays an important role in the F + alcohol process, as previous kinetic studies show 

the existence of all possible channels. On one hand, the kinematics and corresponding C-H 

abstraction reaction enthalpies lead to the speculation that the distributions of 1-propanol 

reaction results would show similar trends to that of 1-butane. On the other hand, according to 

the ionization energies, we only detect the H loss product on α and β hydrogen sites, not H loss 

on the hydroxyl site. This also helps to explain the similarity to results of F+1-butane, where 

only C-H sites exist. However, given multiple reactive sites, the substantial dipole moment in 1-
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propanol (1.68 D), the strong hydrogen bonding interaction and the associated anisotropy of the 

potential energy surface,  a simple interpretation of the results may not be forthcoming.   

Let us now look at the portion of collision energy release in translation. Due to various 

attacking positions and corresponding variations in energy release we do not show the fraction of 

the total available energy appearing in translation. Instead we examine the fraction of the 

collision energy appearing as final translational energy (ET*). Although most of the exoergicity 

would be disposed into the internal energy of HF, we find for sideways scattering  <ET*> = 0.89 

and backwards 1.22, much higher than the corresponding fractions for F + n-butane, 0.71 and 

0.86 respectively. One thing to mention is that both reactions have similar collision energies 

about 10 kcal.mol-1, and in both systems only secondary abstraction products were detected.[82] 

As for alkane reactions the different collision energies can tell the relative importance of the 

stripping mechanism, it is very likely that the  <ET*>  difference between n-butane and 1-

propanol come from C-O and O-H interference, which is in consistent with the results of the 

kinetic studies.[160, 167] The energy release of α H abstraction is 5 kcal.mol-1 more than β H 

abstraction, while their H numbers are 1:2; these two factors may compete with each other to 

determine the final branching.  According to the kinetic studies on the branching ratios of F with 

alcohols, the O-H group abstraction is more favored over the attack on C-H groups, even though 

for propanol these H sites are in the ratio is 1:7. It may be that, because of the dominance of 

reaction at the OH site (which we do not detect) we are probing a subset of the reactive flux that 

excludes some geometries and impact parameters in comparison with the butane reaction. We 

find the appearance of O-H group causes a backward energy release factor exceeding 1.0, much 

higher than the factors in Cl + butanol isomers reactions. [185] 
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Khatoon et al. found that compared with abstraction from the OH group, the alkyl group H 

abstraction is less favored, and this preference is ascribed to steric factors rather than 

exothermicity differences to decide the reaction routes for F + alcohols.[167] Further theoretical 

characterization of the potential energy surfaces of fluorine reaction with propanol isomers will 

be important to understand the details of these reactions’ dynamics. 

In the reactions of fluorine atoms with 1-butene (we consider only the gauche conformer) and 

1-hexene, the existence of the π system  suggests addition to the double bond followed by 

unimolecular decomposition as a possible pathway in addition to direct abstraction.[111] 

Fluorine has both higher ionization energy and lower electron affinity than chlorine, and with the 

small and highly electronegative fluorine atom, the energy released during the reaction is much 

higher than chlorine atom reactions with corresponding alkenes. All abstraction sites and 

addition positions are easily energetically accessible while for chlorine, reaction at the vinylic 

sites is endothermic and highly disfavored. According to the anti-Markovnikov rule, we expect 

the radical to add to the least substituted unsaturated carbon. This effect can be seen in Cl + 

butene isomers, yet it is not the case with F reactions: the reaction enthalpies shown in Fig. 1 do 

not follow that the energetically favored sites are the more substituted ones.[123] The same was 

found by Li et al. for F addition to propene.[177] For unsaturated systems a dichotomy appears 

in the behavior of fluorine;  in addition to inductive field effects, which leads to electron 

withdrawal to fluorine, Pauli repulsion occurs between electron pairs on π–electrons and fluorine 

leading to electron density return from fluorine.[171] In any case, with our selectivity on 

ionization energies, we only detect allylic H loss products, which are also the most favored on 

the basis of exoergicity. However, we show below that vinylic H abstraction may in fact 

dominate the addition/elimination channel. 
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For the F+ alkene reactions, both backward translational energy distributions showed higher 

energy release than sideways distributions, which is opposite to the results of chlorine.[107, 123] 

For chlorine reactions with C5-C6 monoalkenes, different targets showed indistinguishable 

distributions and the results were interpreted mainly as addition/elimination dominated 

mechanisms due to nearly isotropic angular distributions and nearly zero-peaked translational 

energy distributions, while for F + 1-butene and 1-hexene we see different behaviors. In Fig. 4 

we can see the translational energy distributions for 1-hexene peaks near 0 while sideways 

distributions of 1-butene peaks around 5-7 kcal.mol-1, backwards 7-9 kcal.mol-1, and it is even 

clearer in Fig. 7.3 where the distributions are integrated every 20°. As a consequence, it is likely 

that adduct formation is more important for 1-hexene. However, reaction enthalpy variations 

between the corresponding pathways of 1-butene and 1-hexene are not substantial. A likely 

reason for the difference is the greatly increased density of states for the F-hexene adduct as well 

as greater conformational heterogeneity in hexene. 

In the work of Ran et al. on F + propene, the HF channel clearly followed a direct abstraction 

reaction mechanism, although interestingly, the methyl loss channel clearly proceeded via a 

complex.[175] Huang and coworkers performed a detailed theoretical study of the F + propene 

reaction, determining geometries for minima and transition states at the UMP2(FULL)/6-

311++G(d,p) level of theory. This was followed by CCSD(T)/cc-VTZ energy 

determinations.[177] While Ran et al. did not provide information on the site-specificity for the 

three chemically different hydrogen sites, Huang’s calculations show that among various 

considered possible reaction paths including direct H abstraction and addition-isomerization-

elimination reactions, F (2F) attacking on the double bond to form a barrierless weakly bound 

complex, followed by F addition to the C=C forming a low-lying intermediate isomer 
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barrierlessly is the dominant channel. After this intermediate isomer the most competitive 

reaction pathway leads to CH3 + CHF=CH2. In the direct H abstraction channels, the dominant 

pathway was believed to be the F atom radical picking up the allylic hydrogen while the terminal 

vinyl hydrogen abstraction was less competitive, although these arguments were largely based on 

energetic considerations. Additionally, after F addition to the vinyl inner carbon (C2), the most 

favorable hydrogen atom elimination also is the vinyl inner hydrogen.  

Li et al. argued that there was no pathway for HF elimination from the strongly bound F-

propene addition complex. Apparently they were looking for a cyclic TS in that case from the C-

1 adduct. However, based on the discovery of a roaming-type transition state in the Cl-butene 

system, we pursued a search for analogous features of the F+ propene and 1-butene potential 

energy surfaces, first using the CBS-QB3 composite method.  The result is shown in Fig 7.5 for 

the 1-butene system; results for propene, which are very similar, are included as Fig.7.6. From 

the addition complex, which is bound by over 2 eV, the F atom may proceed over transition 

states in which both the C-F distance is very large (i.e., the old bond is broken) and the C-H 

distance is large (new bond is not yet formed). The system thus exhibits characteristics 

reminiscent of the Cl-butene system: In a sense, the F atom “redissociates” to permit H 

abstraction and HF elimination, although in contrast to the Cl case, the bond distances are not as 

large. One other remarkable feature of HF elimination from the adduct is seen both in Fig. 7.5 

and Fig. 7.6: the TS leading to abstraction of the vinylic H from C2 is 5.5  kcal/mol lower than 

that for abstraction of the allylic H despite the much greater exoergicity for the latter channel. 

After zero point correction, the barrier for allylic HF elimination is 0.7 kcal/mol above the 

reactant asymptote, while the vinylic HF elimination pathway is nearly 4 kcal/mol below. We 

believe this suggests the C2 adduct as a likely intermediate that may lead via (2,2) HF 
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elimination to the much higher energy H2CCCH3 isomer. We find the IRC of the transition state 

structure optimized with B3LYP/6-31+G(d,p) for the allylic elimination does connect to the C2 

adduct. The low TSs found at the CBS-QB3 level suggested to us, however, that the associated 

B3LYP geometries might be leading to an underestimation of the barrier heights. We ran further 

calculations using the M062X functional at the 6-31+G(d,p) level, and the results are also given 

in Fig. 7.5. After zero point correction, the allylic elimination is found to be much lower, but still 

1.3 kcal above the vinylic pathway.  Interestingly, the IRC at the M062X/6-31+G(d,p) level it 

leads to the C1 adduct with a structure very similar to that examined by Li et al. with CCSD(T). 

It appears that this barrier rises above the reactants at the higher level of theory; however, the 

vinylic HF elimination TS is much lower and very likely persists. In fact our observation of 

addition/elimination despite the selective allylic probe appears to indicate that this channel is 

operative despite the possible absence of a reaction path from the C-1 adduct. It may be that the 

C-2 adduct can follow either path as suggested by the CBS-QB3 results, although based on the 

barrier heights we expect the (2,2) vinylic elimination to dominate.  



	

	

86	

 
Figure 7.5: Key stationary points on the potential energy surface of the fluorine + 1-butene 
reaction. Numbers are relative energies at the CBS-QB3 level with zero point correction.  Results 
at the M062X /6-31+G(d,p) level, also zero point corrected, are shown in parentheses. Results at 
the B3LYP /6-31+G(d,p) level zero point corrected are shown in blue. Structures are from CBS-
QB3. 
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Figure 7.6: Key stationary points on the potential energy surface of the fluorine + propene 
reaction. Numbers are relative energies at the CBS-QB3 level with zero point correction.  Results 
at the M062X /6-31+G(d,p) level, also zero point corrected, are shown in parentheses. Results at 
the B3LYP /6-31+G(d,p) level zero point corrected are shown in blue. Structures are from CBS-
QB3. 
	

This HF pathway will also be in competition with ethyl radical elimination (or butyl 

elimination in hexane). By analogy with methyl elimination in propene, we expect the latter to be 

a favored, lower energy pathway. Li et al. found this 10 kcal/mol below the reactants, and it is 

likely similar for the larger systems. However, as mentioned above, our present probe is not 

sensitive to the vinylic H abstraction nor to the ethyl elimination. In any case, the theoretical 

evidence for Markovnikov radical addition and the likely formation of the vinylic radical product 

despite the presence of an alternative pathway to a resonantly stabilized radical 1 eV lower in 

energy are two of the surprises that the fluorine atom brings. Future experiments that can probe 

these pathways directly will be very interesting to pursue. 
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7.6	Conclusion	
	

The reaction dynamics of fluorine atom with 1-propanol, 1-butene and 1-hexene were studied 

by crossed beam DC slice imaging via single photon ionization. The distributions of F+ 1-

propanol are quite similar to the previous F + 1-butane results: backscattered translational energy 

distributions peak at higher energy than does sideways scattering and the center-of-mass angular 

distribution has a strong forward component. The distributions of F + 1-butene and 1-hexene 

have higher backward translational energy distributions than SW scattering, opposite to Cl 

reactions and this is explained with distinct associated reaction mechanisms. The angular 

distributions show adduct formation is more important for F + 1-hexene than direct abstraction. 

The fraction of collision energy in product translation for all target systems are much higher than 

corresponding target reactions with chlorine.  The theoretical calculations of stationary points on 

the potential surface for the butene system find a pathway for (2,2) HF elimination from the 

more stable C-2 adduct that leads to the vinylic isomer, CH3CH2CCH2 far less stable compared 

to the resonantly stabilized allylic isomer. Our selective detection of the allylic product suggests, 

however, that that channel is present as well, and may also come from the C-2 adduct. 
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This dissertation presents results of applying dc slice imaging in crossed molecular beams to 

probe the dynamics of the reactions of halogen atoms (chlorine and fluorine) with polyatomic 

hydrocarbons and alcohols such as deuterated propanes, butane isomers, pentane, alkenes and 

propanol. The full velocity-flux contour maps of the radical products were measured with 157nm 

single photon ionization at various collision eneriges. Secondary and tertiary abstractions were 

found in Cl with normal and deuterated propanes and butane isomers and show distinct 

differences. The differences were explained in terms of the nature of abstraction sites, energy 

disposal of the radical product, and kinetic isotope effects.  For Cl reaction with butene isomers, 

the coupling of translational energy and center of mass angular distributions reflect the 

energetics of competition between direct abstraction and addition/elimination pathways in 

accordance with ab initio thermochemical data. A possible Cl atom roaming mediating the 
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indirect mechanism is suggested and further addressed with investigations of Cl + isobutene 

reactions at various collision energies. For reaction of chlorine atoms with butenes, the combined 

experimental theoretical calculations result shows that Cl addition-HCl elimination occurs from 

an abstraction-like Cl-H-C geometry, rather than a conventional three-center or four-center 

transition state. This geometry is accessed exclusively by Cl atom roaming from the initial 

adduct. 

For fluorine atom reaction with linear alkanes, i.e. propane, n-butane and n-pentane, little 

effect of reaction exoergicity appears in the reduced translational energy distributions. The 

fraction of available energy in translation for pentane is smaller than the other two. Sharp 

forward scattering were found in the center of mass angular distributions of all targets and the 

backscattering decreases in with the size of the molecule increasing. The analyzed data were 

compared with corresponding theoretical studies. 

For fluorine atom reaction with 1-propanol, the translational energy distribution and center of 

mass angular distributions is quite similar to the results of F + n-butane; it is possible that the 

greater fraction of collision energy in translation comes from the existence of O-H group. The 

product scattering distributions of fluorine reaction with 1-butene and 1-hexene provide  

evidence of a long-lived complex mediated mechanism. 
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