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CHAPTER 1: DNA METHYLATION AS A PUTATIVE BIOMARKER FOR 

ENVIRONMENTAL EXPOSURE. 

 

1.1.  Background 

1.1.1. DNA methylation is critical for genomic stability and spatial temporal regulation 

of gene expression. 

 

In recent times, DNA methylation has emerged as one of the most widely studied 

epigenetic modifications. DNA methylation is the addition of a methyl (-CH3) group to 5’ 

position of the DNA base cytosine. This reaction is mediated by a group of enzymes called 

DNA methyltransferases (DNMTs). The mammalian genome encodes for 3 DNMTs; 

DNMT1, DNMT3A, DNMT3B and one regulatory protein called DNMT3L, which lacks the 

catalytic domain. It is generally accepted that DNMT3A and 3B are responsible for the de-

novo methylation or establishment of DNA methylation patterns prior to implantation 

(Okano et al., 1999; Challen et al., 2014). On the other hand, DNMT1 is responsible for 

maintenance of existing DNA methylation pattern in co-ordination with DNMT3A (Okano et 

al., 1999; Gowher et al., 2005). Studies have reported a wide range of function for DNMTs 

including maintenance of genomic stability, regulation of expression and DNA damage 

repair. 

The human genome consists of about 40% of repetitive elements. Expression of these 

repetitive elements can lead to widespread genomic instability by promoting chromosome 

fragility, silencing of genes corresponding to their location or sequestering of factors 

essential for transcription, splicing and translation. Active LINE1 (L1) retro-transposable 

elements have been reported to be involved in 1 out of every 1000 spontaneous disease-

producing insertions in the human genome (Hancks and Kazazian, 2016). Besides 

introduction of disease causing mutation expression of repeats has been reported to play 
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important regulatory role in several biological processes. A study by Coufal et al, 2009 

suggested that expression of L1 elements might be responsible for generation of “somatic 

mosaicism” in the human brain and is important for differentiation of neural cells (Coufal et 

al., 2009; Singer et al., 2010). Regulation of expression of L1 and other repetitive elements 

has been reported to be inversely correlated with their methylation status. For example, 

mouse studies have reported that triple knockdown of DNMTs in mouse ESCs can result in 

loss of methylation and de-repression of in Intracisternal A particles (IAPs) (Matsui et al., 

2010; Karimi et al., 2011). Alongside, suppression of retro-transposable elements DNA 

methylation has been associated with regulation of gene expression. The association between 

DNA methylation and gene expression has been reported to be dependent on the location of 

the methylation sites with respect to gene. Increased methylation in the promoter and 

5’Untranslated region (UTR) of genes has been associated with decrease in expression of 

genes. This association was shown as early as 1979, when J. D. McGhee and G. D. Ginder 

showed that the methylation status of the promoter of the beta-globin gene inversely 

correlated with its expression (McGhee and Ginder, 1979). Later studies demonstrated that 

the methylation of promoters, recruit’s methyl-binding factors such as MECP2. This results 

in the inhibition of binding of cis-acting transcription factors and inhibition of expression 

(Nan et al., 1998). This promoter associated methylation changes, usually occur in regions of 

high frequency of CG dinucleotides called as CpG islands (CGI). It has been estimated that 

approximately ~60% of human genes have CGI near promoter regions. Gene-bodies on the 

other hand have low density of CGIs and are extensively methylated. This has been 

associated in the past as markers for transcribed genes. For example, Shotgun bisulfite 

sequencing, which distinguishes methylated and un-methylated cytosines, suggested positive 
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correlation between active gene transcription and gene-body methylation (Yang et al., 2014). 

Other than regulation of gene and repeat expression, DNA methylation is speculated to be 

associated with other regulatory processes such as alternative splicing. 5mC is known to 

interact with CTCF (CCCTC-binding factor) and MECP2 and been reported to decrease the 

rate of elongation of RNA Polymerase 2 (RNA pol2) (Maunakea et al., 2013; Lev Maor et 

al., 2015). Decreased elongation rate of RNA pol2 has been shown to increase the efficiency 

of splicing specifically the processing of introns (Khodor et al., 2011). Additionally, increase 

in DNA methylation has been reported to be associated with increase in H3K9me3 and 

Heterochromatin Protein 1 (HP1). HP1 can directly interact with splicing factors such as 

serine/arginine-rich splicing factor SRSF1 and hnRNPs and consequently impact regulation 

of alternative splicing (Yearim et al., 2015).   

1.1.2.  DNA hydroxymethylation is a stable epigenetic modification. 

5mC can be further oxidized by Ten eleven translocases (TET) in a α-Ketoglutarate 

and Fe2+ dependent manner to form 5-Hydroxy-Methylcytosine (5hmC). The mammalian 

genome encodes 3 TET proteins; TET1, 2 and 3. TET1 and 2 are mainly expressed in 

embryonic stem cells (ESCs) (Koh et al., 2011; Wu et al., 2011b), whereas, TET3 is highly 

expressed in germ line cells (Shen et al., 2014a). All 3 TET enzymes share a common 

dioxygenase domain and is capable of the 5mC hydroxylase activities. This systemic 

redundancy suggests that TET expression might be necessary for survival. Recent studies 

have reported that knockdown of TET in mice result in compromised development of the 

offspring and in majority of cases perinatal lethality. This suggests that TET is important for 

embryonic developments. Further in-depth investigations have revealed that perinatal 

lethality is mainly caused due to loss of paternal genome oxidation by TET3 expressed by the 
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oocytes. TET expression and consequent oxidation of 5mC is also important in somatic cell 

differentiation and function particularly in the brain (Sun et al., 2014; Wen et al., 2014). 

Studies have shown relatively high expression levels of TET3 in developing brain 

(Szwagierczak et al., 2010). High level of TET3 expression was correlated with relatively 

higher 5hmC levels in developing neurons specifically in the gene bodies of highly 

expressing genes (Santiago et al., 2014). These and several other studies suggest that 5hmC 

is a stable epigenetic modification and might have important role to play in gene regulation. 

Similar to 5mC, effects of change in 5hmC levels on gene expression and other associated 

function is dependent on the genomic location of the modification relative to the genes. 

Considering the 5hmC is directly downstream of 5mC, and is in essence a bulky DNA 

modification, it is expected to have complimentary functions. Interestingly, 5hmC has been 

reported to be specifically enriched near promoters containing chromatin transcription 

permissive; H3K4me3 and repressive; H3K27me3 marks; also known as bivalent promoters 

with high GC content but low CpG density (Yu et al., 2012). Such promoters are categorized 

to be in a “poised” state, ready to be transcribed into mRNA.  5hmC have also been reported 

to be enriched in intergenic cis-regulatory elements, such as active enhancers and insulator-

binding sites (Stroud et al., 2011). Therefore, TET mediated oxidation of 5mC to 5hmC 

seems to be an important genomic modification with gene regulatory function. 

1.1.3. DNA methylation and hydroxymethylation as potential early biomarkers for 

environmental exposure. 

 

The epigenetic profile of the embryo is dynamic and in a state of continuous flux. 

Post-fertilization, the paternal genome undergoes replacement of male protamine with female 

histones and depletion of repressive chromatin modification H3K9me2/me3 and H3K27me3 
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(Jenkins and Carrell, 2012). This permits the active demethylation of the paternal genome by 

the action of TET enzymes. The maternal genome on the other hand undergoes passive loss 

of methylation due to absence of DNMT1; maintenance methyl-transferase. This genome-

wide loss of DNA methylation progress past morula to the blastocyst stage. During the 

Blastocyst stage the DNA methylation profile is re-established and participates in the process 

of differentiation into somatic cells.  

The de-programming and reprogramming of the DNA methylation profile during 

development, is especially susceptible to environmental cues. Environmental exposure to 

toxicant during this process can cause persistent changes in the epigenomic profile and 

contribute to the development of diseases in adult life (DOHaD; Developmental Origins of 

Health and Disease hypothesis) (Wadhwa et al., 2009). In recent years’ mouse models and 

epidemiological studies have provided compelling evidence of the association between 

antenatal exposure and DNA methylation. Kile et al, 2012, reported a small yet significant 

increase in umbilical cord blood (UCB) DNA methylation in LINE1 repetitive regions on 

infants exposed to Arsenic (Kile et al., 2014). Studies in similar target tissue (i.e. UCB) have 

also reported general hypermethylation of CPG loci within CpG islands with increasing 

arsenic exposure (Lu et al., 2014). Studies with other heavy metals such as Lead (Pb) and 

Mercury (Hg) also revealed significant associations with DNA methylation. For example, 

Wright and colleagues have reported inverse correlation between patella bone Pb levels in 

mothers and DNA methylation of LINE1 repeat elements in UCB, suggesting that 

methylation might serve as a marker for past Pb exposure (Wright et al., 2010). Studies of 

global expression patterns and their correlation with DNA methylation in mouse models of 

prenatal exposure to Pb have revealed a significant association between an increase in DNA 
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methylation and transcriptional repression of genes associated with the immune response, 

metal binding, metabolism and transcription (Dosunmu et al., 2012). Hanna et al, 2012 

demonstrated increase in methylation of GSTM1/5 promoter on exposure to mercury (Hg) 

and decrease in methylation in the in COL1A2 promoter, an important component of the 

chorio-amniotic membrane and the uterine cervix, that correlate with high exposure to Pb in 

the whole blood of women undergoing in vitro fertilization (IVF) (Hanna et al., 2012). 

However, prenatal exposure associated changes in the epigenome can be widespread and 

high variable.  It can be influenced by a large number of external factors including diet, 

xenobiotic exposures to other chemical, stress, lifestyle factor, gestattion period and mother’s 

age of conception and internal factors such as tissue type, and sex of the infant to list a few. 

Therefore, in view of the large background variability in DNA methylation profiles, 

definition of a set of genomic sub-features which can be used biomarkers of early 

environment exposure in the new-born is critical.  

One of the major candidates for ideal environmental sensors could be Imprinted 

genes. Imprinting marks are established very early during development and is most likely 

constant in several tissues including easily accessible tissues such as peripheral blood. The 

usefullness of imprinted regions as environmental sensors have been demonstrated by several 

studies. For example, Heijmans et al. 2008 reported hypomethylation of imprinted gene IGF2 

in Dutch famine survivors, who suffered from severe in-utero caloric restriction (Heijmans et 

al., 2008). Genomic imprinting alteration has also been noted in Imprinting Control Regions 

(ICR) of H19 in mouse embryos exposed to ethanol during preimplantation development 

(Haycock and Ramsay, 2009).  
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Figure 1.1.4.1: Hypothesized mechanism of action of Lead (Pb) exposure 

Besides DNA methylation, a few studies have indicated the possible role of DNA 

hydroxymethylation in mediating long-term effect of environmental exposure. Zhang et al, 

2014 reported a marked increase in total 5hmC levels in the heart and spleen of rats exposed to 

physiologically relevant levels of Arsenic (As) through drinking water (Zhang et al., 2014). An 

association between arsenic metabolism and global DNA hydroxymethylation has also been reported 

in humans (Tellez-Plaza et al., 2014).  Therefore, DNA hydroxymethylation might also be a 

possible candidate for early genomic biomarkers of environmental exposure. However, 

depite of the progress made, till date, determining a suitable and robust biomarker remain a 

significant challenge in epigenetic epidemiology.  

1.1.4. Lead(Pb) is potent neurotoxin and mediates its adverse effects on DNA 

methylation profile via generation of reactive oxygen species (ROS). 

 

Pb is generally 

accepted as a potent 

neuro-toxicant. In an 

in-vitro model of 

neuronal 

differentiation, Senut 

et al, 2014, 

demonstrated that 

exposure to Pb during 

formation of neural 

rosettes resulted in loss of expression of neuronal markers PAX6 and MSI1 (Senut et al., 

2014). The resulting Neuronal precursor cells (NPCs) differentiated into neurons with shorter 

neurites and less branching than control non-exposed neurons. However, Pb exposure 
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associated changes in neuronal morphology was only noted at high Pb concentrations 

(>1.9µM). This suggests that effect of Pb exposure on differentiating neurons at low 

exposure is much subtler and may become apparent over a long period of time. We speculate 

that the long term effect of Pb exposure is most likely mediated by continued generation of 

ROS. ROS has been known to cause extensive DNA damage and mitochondrial damage 

which might result in increased susceptibility to adult diseases. Pb in its divalent form is 

known to covalently bind to sulfhydryl groups. This allows Pb to bind to the sulfhydryl group 

of Glutathione (GSH) and reduce its ability to be oxidized to GSSG. Availability of oxidized 

glutathione is essential for the cells ability to cope with hydrogen peroxide (H2O2) generated 

during the cellular processes. Additionally, depletion of cellular stores of GSH causes the cell 

to start making glutathione from cysteine via ϒ-glutamyl cycle which is inefficient and may 

cause several secondary effects. Pb is also a very potent inhibitor of delta-Aminolevulinic 

acid dehydratase (ALAD) and Ferrochelatase. These enzymes are critical in heme synthesis. 

Inhibition of ALAD by Pb can potentially increase the amount of ALA (Aminolevulinic 

acid). Accumulation of ALA can lead to its enolization and consequently auto-oxidation 

leading to generation of superoxide ion.  

The different hypothesized mechanisms of action of Pb are illustrated in Fig 1.1.4.1.  

Therefore, through inhibition of the anti-oxidant defense system and increase superoxide 

level Pb can cause extensive DNA damage and associated epigenetic changes. Several 

studies have suggested a likely association between DNA methylation and generation of 

ROS. ROS are well-known to cause oxidation of DNA generating 8-oxoguanine (8-OxoDG). 

Weitzman et al, 1994 demonstrated using synthesized oligonucleotides that replacing 

guanine with 8-oxoguanine resulted in hypomethylation of surrounding CpG sites by altering 
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the binding of the methylating enzymes (Weitzman et al., 1994). A follow-up study by Turk 

et al, 1995, confirmed these finding using human methyltransferases and suggested that the 

effect of 8-OxoDG on cytosine methylation is variable depending on the relative position of 

the cytosine with respect to CG dinucleotide(Turk et al., 1995). A study by O’Hagan et al, 

2011 reported the recruitment of large protein complex near sites of DNA damage consisting 

of DNMT1, DNMT3b and SIRT1, a histone deacetylase (O'Hagan et al., 2011). Wang et al, 

2008 demonstrated that SIRT1 is involved in DNA repair (Wang et al., 2008). In this study 

Wang and colleagues injected WT and SIRT1 null MEF cells with micro-homologous DNA 

damage repair reporter, pGL2 Luc vector. Then they treated the cells with EcoRI restriction 

enzyme which cut within the coding sequence of the luciferase gene. Following incubation, 

the WT cells were able to re-acquire ~70% of the original luciferase reporter level, compared 

to 42% for SIRT1 null cells. Another study by Fan et al, 2010, demonstrated that SIRT1 is 

responsible for deacetylation of Xeroderma pigmentosum group A (XPA) is a core 

nucleotide excision repair (NER) factor (Fan and Luo, 2010). The deacetylation of XPA was 

also shown improve it interaction with RPA32 and regulate the DNA repair process. 

Therefore, co-occurrence of DNMTs alongside a DNA repair protein SIRT1 suggests a close 

interplay between DNA methylation and DNA damage. In view of the evidence from these 

and other studies, we believe that Pb exposure alters DNA methylation by ROS mediated 

mechanism.  
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CHAPTER 2: THE HUMAN DNA METHYLOME IS RESPONSIVE TO 

ENVIRONMENTAL LEAD (PB) EXPOSURE. 

2.1. Early life Lead exposure causes distinct gender specific changes in the DNA 

methylation profile of DNA extracted from dried blood spots. (Sen et al., 2015b). 

 

2.1.1. Background 

The human epigenome is particularly responsive to environmental cues especially 

during developmental years. Therefore, exposure to environmental toxin in early childhood 

may result is extensive changes in the epigenome which may culminate in increase 

susceptibility to adult diseases. Among epigenetic modification, DNA methylation is perhaps 

the most widely studied and long been proposed to be excellent early biomarkers of 

environmental exposure. These exposure dependent DNA methylation changes have been 

reported to be localized in LINE1 and SINE1 repeat elements, transcription start sites, 

imprinted regions etc. and shown to have varied functional consequences. For example, 

LINE1 repeat elements were shown to be hypo-methylated in Umbilical cord blood (UCB) of 

mothers with high patella bone Lead (Pb) levels (Wright et al., 2010). This can result in 

activation LINE1 retrotransposons and consequently increase genomic instability(Cordaux 

and Batzer, 2009). Occupational and environmental exposure to Arsenic has been shown 

linked to hypermethylation of promoter of Tumor suppressor gene p16 (Hossain et al., 2012; 

Lu et al., 2014). This is expected to recruit methyl-binding proteins such as MECP2 to the 

promoter regions and inhibit assembly of the transcription initiation complex and lead to 

silencing of the gene (Nan et al., 1998).  Li et al, 2016, suggested using DNA methylation 

levels of imprinted genes as early stable biomarkers of Pb exposure(Li et al., 2016). 

Imprinted genes are genes which are expressed in parent of origin specific manner. DNA 

methylation levels in these genes remain relative stable from one generation to the next and 
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alteration due to in-utero exposure is has been associated with susceptibility to heritable 

disorders. 

Another defining characteristic of DNA methylation is that it is dependent upon the 

sex of the individual. A study by Faulk et al, 2013 in mouse models reported 

hypermethylation of the A(vy) locus in male offspring of Viable yellow agouti (A(vy)) 

female mice  exposed to low levels of Pb (2.1ppm) before conception through weaning(Faulk 

et al., 2013). This suggested that male offspring might be more sensitive than females to 

environmental cues. In agreement with this study other mouse models have reported similar 

associations. For examples males were reported to be more susceptible to hypertension in 

intrauterine undernutrition (do Carmo Pinho Franco et al., 2003). In human cohorts, a study 

by Lindburg et al, 2008 reported that female participants showed higher efficiency of arsenic 

metabolism compared to age-matched males providing further evidence of sex-specific 

responses to environmental exposures (Lindberg et al., 2008). Therefore, in view of the 

evidence so far we hypothesize that DNA methylation changes in response to acute Pb 

exposure are sex-specific. 

2.1.2. Methods 

Recruitment/consent procedures: Seventy-five children (3 months to 5 years of 

age) and their biological mothers (75) were enrolled into the study through routine visit at the 

WIC (Women Infant and Children). Clinics chosen for recruitment from Southwest Detroit, 

were selected with guidance from DHWP (Detroit Health and Wellness Department). Note:  

recruitment fliers were placed in each location announcing when the study personnel would 

be at the location to consent for the study. The biological mothers of the children were asked 

if they would like to enroll in the study. All of the following are exclusion criteria: 1) 
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Mothers born before January 1, 1987; 2) Mothers born outside of Michigan; 3) children 6 

years of age and older; 4) Children who are not the biological children of the mothers; 5) 

biological children who were born outside of Michigan; 6) Non-English speaking individuals 

and those who are not fluent in English. 

Approximately half (38) of the children enrolled had BLL at or above the Center for 

Disease and Control blood lead level of concern (equal to or greater than 5 μg/dL). The 

remainder of the children will have lower BLLs. 

A finger stick blood draw was taken from the child and mother to determine BLL by 

placing a sample of the blood in a Lead Care Analyzer. Results were reported to the mother 

within 15 minutes of the blood draw. The child's BLL was reported to the Michigan 

Department of Community Health within a week of the testing. 

The mothers of the children were asked to complete a demographic and 

environmental questionnaire after enrollment in the study. The questionnaire will be self-

administered; staff will be present to assist any participant as needed. 

Samples and sample classification: For the study, we selected 43 dried blood spots 

collected from children from Health Fairs ran in three Detroit communities, Rosa Parks, 

Chene, and Kettering-Butzel, because they have a high prevalence (8-11%) of high BLL in 

children. The study only included mothers born after January 1, 1987 in Michigan with 

biological children ages, 3 month to 5 years also born in Michigan. The final sample used in 

this study consisted of 25 male children and 18 female children. Among males 15 children 

had BLL ≥ 5µg/dl and among females 11 children had BLL ≥ 5µg/dl. The covariate and BLL 

information is available is Table 2.1.1.  
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Lead measurements in dried blood spots: The samples were 3 mm punch-outs of 

blood spots on filter paper.  The samples, control filter paper punch-out blanks without 

blood, blanks without filter paper, and standards were all prepared in parallel at the same 

time in the same way, except that five times as much of the standard solutions were made to 

allow sufficient volume for recalibration every 20 samples.  To each container was added 

ultra-high purity 0.25 ml of 70% HNO3 (0.25 ml) and 30% H2O2 (0.05 ml).  These reagents 

were purified in an in-house sub-boiling still from reagent grade materials.  After reacting 

overnight, samples were diluted with 10 ml of 0.5% HNO3 containing 5 ppb each of Ga and 

Bi as internal standards.  Standards (50 ml) were spiked with 0.1 ml of a solution of Fe, Mg, 

Zn, and Pb, prepared from 1000 ppm single element ICP-MS stock solutions (Inorganic 

Ventures).  The final standard concentrations were Fe, 200 ppb, Mg, 20 ppb, Zn 2 ppb, Pb, 1 

ppb.  All containers were exposed to vacuum (~0.03 bars) for ten minutes to reduce the 

amount of dissolved oxygen from H2O2 dissociation.  Even so, some oxygen bubbles were 

seen during analysis in the sample line to the ICP-MS.  Filter paper fibers settled to the 

container bottoms and did not affect the ICP-MS sample introduction system.  Samples were 

analyzed on a PerkinElmer Elan 6100 DRC ICP-MS instrument at the Geology Department, 

Union College.  25Mg, 66Zn, and 206,207,208Pb were analyzed in normal mode, and 54Fe was 

analyzed in DRC mode using NH3 reaction gas at a flow rate of 0.5 ml/minute. 

Extraction, shearing and denaturation of DNA: DNA was isolated from dried 

blood spots with Qiagen EZ1 Advanced® using the DNA Investigator® reagents and 

protocol card. The “Stains on Fabric” preprocessing and Trace® (tip-dance) instrument 

protocol was used for isolation. The Quantifiler Human DNA Quantification Kit® (Applied 

Biosystems, Inc.) was used to determine the amount of amplifiable DNA. 
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Approximately 3µg genomic DNA was diluted in 130µl of buffer TE (10mM Tris 

(pH 8.0), and 1mM EDTA (pH 8.0)) and sheared into ~200-600 bp fragments using 

microcavitation (Covaris, Inc, setting: Duty Cycle = 5%, Intensity = 3, Cycles/burst = 200, 

Time = 75 seconds run at 6-8°C). 125µl of the sheared DNA samples were mixed with 330µl 

of buffer TE. The sheared DNA was denatured by boiling it in the Thermomixer at 95°C and 

700rpm for ten minutes and left on ice for 10 minutes.   

HM450K bead chip array: For this study we measured the change in DNA 

methylation on environmental exposure to Pb in dried blood spots using the Illumina Human 

Methylation 450K Bead chip array (HM450K). The HM450K assay measures DNA 

methylation at over ~480,000 CpG and non-CpG sites with single-base resolution (Jin and 

Warren, 2003; Sandoval et al., 2011). The results are represented in the form of beta (β) 

values ranging from 0 to 1, and provide a quantitative measure of methylation for each 

queried CG dinucleotide methylation site (CpG site)  (Sandoval et al., 2011). DNA 

methylation changes at CpG sites located close to each other often exhibit common behavior 

in response to environmental stimuli. These regions show highly correlated changes in 

methylation signatures and can be defined as co-regulated regions. The co-regulated regions 

can be assigned to specified clusters and the effect of the exposure on these clusters can be 

tested using the generalized estimating equation (GEE) (Sofer et al., 2013). GEE uses a 

weighted combination of observation to measure the effect of a covariate (in our case Pb 

exposure) while conserving the correlation structure of the data (Petronis and Anthony, 

2003). Consequently, this approach is much less conservative and yields a greater number of 

differentially methylated regions compared to the traditional case-control study with a single 

CpG site β value comparison. Biochemically it makes more sense to study methylation 
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changes as clusters rather than single CG sites because DNA bound DNMT1 and 3a act on 

multiple sites in a small region when they bind to DNA (Jurkowska et al., 2011) . 

Detection of methylated DNA is facilitated by two different probe types (Type 1 and 

Type 2 probes). The Type 1 probes or the Infinium 1 (Inf1) probes consist of the methylated 

bead and an un-methylated bead (Bibikova et al., 2011). If the probe for methylated DNA 

matches the target site, there is a single base extension which results in detection which 

signals into the red channel. Similarly, if an un-methylated probe binds to the DNA it signals 

into the green channel. The type 2 probes or the Infinium 2(Inf2) queries both methylated and 

unmethylated DNA on a single bead, and the ratio of incorporation of two differently-colored 

fluorescent nucleotides (Signals A and B) determines the methylation signal. The results are 

represented in the form of β values, specifically, the average β value (AVG_Beta), 

representative of the average methylation level of the CpG dinucleotide, and a delta β value 

which signifies the difference in methylation levels between the control and the experimental 

group. The Beta or β for the ith interrogated CpG nucleotide is: 

 

 

 

Where yi,methy and yi,unmethy are the intensities measured by the ith methylated and 

unmethylated probes, respectively. Illumina recommends adding a constant offset α (by 

default, α= 100) to the denominator to regularize β value when both methylated and 

unmethylated probe intensities are low. The Beta-value statistic results in a number between 

0 and 1, or 0 and 100% (Du et al., 2010). The raw data was retrieved from Genome Studio 

methylation module version 1.8™ in the form of 2 files; a sample methylation profile and 

Betai or β
i
= 

Max (y
i,methy

,0) 

Max (y
i,unmethy

,0) + Max (y 
i,methy

,0) 



16 

 

control probe profile. Quality control, signal correction and normalization of the data was 

carried out using the HM450K BeadChip data processing pipeline proposed by Teschendorff 

et al, 2013 in R environment (R> 2.13.0) (Teschendorff et al., 2013). Several studies have 

indicated that the Infinium 1 and 2 probes differed in chemistry, henceforth the HM450K are 

two separate experiment combined as one. The Infinium 1 probes were shown to have a more 

stable signal and extended dynamic range compared to the Infinium 2 probes (Touleimat and 

Tost, 2012). Therefore, a 3-state beta mixture model is utilized to assign methylation values 

to specific methylation states. Then the probability of assignment to particular state is divided 

in quantiles and finally a methylation dependent dilation transformation is performed to 

preserve sample monotonicity (Teschendorff et al., 2013).  Prior to analysis the beta values 

were corrected for Batch effect using Combat function in R and potential single nucleotide 

polymorphism (snp)-containing probes were removed from the analysis (>2.15) (Johnson et 

al., 2007). 

The HM450K array is highly reliable for locus specific methylation detection at CpG 

island associated methylation sites which are frequently associated with dynamic regulation 

during development and disease states. Bibikova et al, 2011, conclusively showed using 

human sample (lung tissue) that the HM450K array show 95 to 96% correlation with Whole 

genome bisulfite sequencing (WGBS) results(Bibikova et al., 2011). Since then several 

studies have explored this correlation and found this array to be highly consistent. Therefore 

in view of recent evidence, we believe that HM450K array can “stand on its own” as an 

independent system for differential methylation analysis. That said, to look at the whole 

genome methylation status in an un-biased way sequencing based approaches are still the 
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best methodology. When we have a much larger cohort, then we could use the less expensive 

PCR assay to validate the CpG sites that we identify in this pilot study. 

Statistical analysis: For studying effects of exposure to Pb on the DNA methylation 

profile of UCB in male and female samples we used two independent statistical approaches. 

The first approach known as CpG association analysis (Barfield et al., 2012), which analyzes 

DNA methylation data using a fixed effect model at single CpG site level and adjacent site 

clustering algorithm. The second approach is called A-clustering which detected sets of 

correlated CpG sites and then tested the clusters for multivariate response to environmental 

exposure to Pb using the generalized estimation equation (GEE). The aforementioned 

approach is efficiently implemented using the R-package Aclust (Sofer et al., 2013).  

For determining the differentially methylated clusters (DMCs) we used the 

recommended Aclust parameters; Spearman correlation, for calculating the distance between 

adjacent sites (dist(i,j)= 1- corr(i,j)), average clustering type, which require that mean distance 

between two sites be at least 0.25, 1000 bp distance restriction for merging of clusters, which 

ensures that clusters located far away from each other are not merged together based on 

correlation. The clustering approach is implemented with a 999 bp merge initiation step, 

which clusters all sites wedged between 2 high correlated sites within 999 bp of each other 

together, to reduce the complexity of data and the analysis time for the Aclust step. Finally, 

the data was analyzed using a generalized estimation equation approach and filtered for 

significant DMCs using FDR corrected p-value cutoff = 0.05 and exposure effect size ≥ 

|0.02|. To determine the genomic locations of the probes belonging to individual DMCs, they 

were annotated using the publicly available Illumina Human Methylation 450k annotation 

data in R (>2.15). The target genes mapping to DMCs were individually visualized using 
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Fig. 2.1.2: Lead causes common and gender-specific 

changes in DNA methylation. The Pb-associated 

differentially methylated clusters (Pb-associated DMCs) 

selected for further analysis are screened by FDR corrected 

p-value cut off of 0.05 and effect size ≥ |0.02| or |2%| A) A-

clustering results for conserved region revealed 75 

hypermethylated Pb-associated DMCs and 41 

hypomethylated Pb-associated DMCs mapping to 76 

unique genes associated with Pb exposure as predicted by 

the GEE model. B) For an effect size cutoff of |0.02| or 

|2%|, and FDR corrected p-value ≤ 0.05, we found 94 Pb-

associated hypermethylated and Pb-associated 59 

hypomethylated regions mapping to 124 unique genes for 

males. C) Analysis results for unique regions in females 

revealed 200 hypermethylated and 74 hypomethylated 

regions mapping to 201 unique genes. 

 

UCSC genomic browser. The Delta beta or the beta difference between the median of the 

beta values for each probe for low BLL samples and high BLL samples were mapped by the 

chromosomal location of the probes. If A-clustering is an effective technique for DMR 

identification, we hypothesized that 

the change in methylation status 

visualized using UCSC genome 

browser will correspond to the 

exposure effect (i.e. increase or 

decrease in methylation) predicted by 

GEE in the respective regions and 

might serve as a useful tool for 

visualization. Gene ontology for 

mapped DMCs was carried out using 

Hypergeometric testing implemented 

by the package GOstats in R (>2.15).  

A-clustering takes into 

consideration that adjacent CpG sites 

are probably co-regulated by Pb 

exposure, therefore the differential 

methylation calls are made based on 

multiple probes rather than a single 

CpG site, making it considerably more 
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reliable compared to generalized linear model based differential methylation calling 

algorithm such as limma(Wessely and Emes, 2012). Moreover, the presence of multiple CpG 

sites with altered methylation states, in regions such as transcription start sites (TSS), is more 

likely to cause altered transcription factor binding and affect expression. A significant 

problem associated with clustering based approach is the possible introduction of gene-

specific methylation bias due to varied number of probes mapping to genes. In the A-

clustering based approach, the clusters of probes are based on the base-pair distance between 

adjacent probes, and beta value correlations across samples, but not in the context of the 

genomic features. Therefore, overall the number of probes in each cluster contributes very 

little to the differential methylation calls.   

2.1.3. Results 

Sex specific differences in DNA methylation regardless of Pb exposure 
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Fig. 2.1.1: Methylation profiles of DNA extracted from whole 

blood for male and female children are different from each 

other. A) T-plot of single CpG sites between expected and 

observed methylation differences which showed significant 

association with sex of the infant. B) Volcano plot for 

significant association between methylation and gender. There 

were 456 differentially methylated CpG sites at a FDR 

corrected p-value cutoff of 0.05 and beta difference cutoff ≥ 

|0.02| or |2%|. C) The representative UCSC genome browser 

plot for the Glutathione Peroxidase gene GPX1 showing a ~6% 

increase in DNA methylation around the promoter region. The 

delta beta value was calculated by subtracting the mean of β 

values for cases with high BLL samples (≥5µg/dl) from the 

mean of β values for controls (BLL ≤ 5µg/dl). All analyses were 

controlled for potential confounders such as age of the child, 

gestational age, smoking status of the mothers or immediate 

family and blood lead levels (BLL). 

 

To delineate the sex specific effects in DNA methylation we modelled the β values 

for single CpG dinucleotides as a function of sex of the individual while controlling for 

variations in BLL between 

samples and other factors such as 

age of the children, gestational 

age, age of the mother, and 

smoking status of the mother and 

immediate family (Table 2.1.1). 

We restricted these analyses to the 

autosomes because females have 

one inactive X chromosome with 

increased promoter DNA 

methylation (i.e., the Barr Body 

(Felsenfeld, 2014)). We observed 

456 CpG sites which where 

differentially methylated between 

males and females at a FDR 

corrected P-value cutoff of 0.05 

and effect size cutoff of |0.02| or 

|2%| (Fig. 2.1.1 A). 365 CpG 

regions were hypermethylated and 

91 CpG regions were hypomethylated in females compared to males (Fig 2.1.1 B). GO 

mining based on overrepresentation analysis (hypergeometric testing) showed enrichment of 



21 

 

hypermethylated CpG regions in genes associated with neurogenesis (GO:0022008), 

neuronal differentiation (GO: 0030182) and oxygen and reactive oxygen species metabolic 

process (GO:0072593) (data not shown) such as Glutathione Peroxidase (GPX1) (Table 2.1.2 

and Fig 2.1.1 C), Cytochrome P450 (CYP1A1) (Table 2.1.2), and Superoxide Dismutase 3 

(SOD3) (Table 2.1.2). Hypomethylated CpG regions in females were associated with basic 

regulatory processes such as double-strand break repair (GO:0006302) and aerobic 

respiration (GO:0009060) (data not shown). We hypothesize that these differences in 

methylation might underlie some of the gender specific differences in the sensitivity to Pb 

exposure.  

Pb exposure associated DNA methylation changes in both males and females. 

We detected sex-specific differences in DNA methylation profile. However, there 

might be regions of the genome which respond to Pb-exposure similarly in males and 

females; conserved regions. To define these regions, we aggregated the CpG sites with well 

correlated β-values and located within 1000bps into DNA methylation clusters. Then we 

tested the impact of high BLL (≥5µg/dl) on these clusters using Generalized Estimating 

Equations (GEE) while controlling for covariates such as age of the children, gestational age, 

age of the mother, and smoking status of the mother and immediate family. At FDR 

corrected p-value cut off of 0.05 and effect size ≥ |0.02| or |2%| we found 75 hypermethylated 

Pb-associated DMCs and 38 hypomethylated Pb-associated DMCs mapping to 75 unique 

genes as predicted by the GEE model (Fig. 2.1.2 A).  Gene ontology analysis of the genes 

mapping to Pb-associated DMCs showed overrepresentation of genes associated with 

differentiation of myeloid lineages (data not shown).  
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Fig. 2.1.3: The representative UCSC genome browser plot for 

candidate genes. The delta beta value was calculated by 

subtracting the mean of β values for cases with high BLL 

samples (≥5µg/dl) from the mean of β values for controls (BLL 

≤ 5µg/dl). The resulting delta beta was mapped to genome to 

visualize the estimated changes in methylation in UCSC 

genome browser for regions mapping to differentially 

methylated clusters (DMCs). The position of CpG Island is also 

shown. A) Representative figure for Vamp5 for DMCs 

conserved in both males and females. This DMC shows a ~3% 

increase in DNA methylation in the promoter associated region. 

B) Representative figure for GABRG1 for a male-specific Pb-

associated DMC. This Pb-associated DMC shows an ~8% 

decrease in DNA methylation around the transcription start site 

(TSS) of the gene. C) Representative figure for HPCAL1 for a 

female-specific Pb-associated DMC. This Pb-associated DMC 

shows a ~3.8% decrease in DNA methylation in a promoter 

associated region. 

 

We interrogated the DNA methylation changes in a few representative genes by 

mapping the ∆β values for 

individual CG dinucleotides to 

human genome (hg19) and 

visualized them using genome 

browser. One interesting gene 

which showed an 

hypermethylation in the CpG 

island located near the 

Transcription initiation sites was 

Vesicle-Associated Membrane 

Protein 5 (VAMP5) (Fig 2.1.3A 

and table 2.1.3). We also 

observed significant DNA 

methylation changes in genes 

associated with mitochondrial 

metabolism such as 

hypomethylation in the CpG Island located in the promoter region of the gene encoding the 

alpha subunit of Electron Transfer Flavoprotein (ETFA) (table 2.1.3 and Fig 2.1.4A). These 

DNA methylation changes and their possible functional implications are further discussed in 

later sections. 
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Fig. 2.1.4: DNA methylations at nuclear encoded 

mitochondrial genes are affected by Pb. The delta beta was 

calculated by subtracting the mean of β values for cases with 

high BLL samples (≥5µg/dl) from the mean of β values for 

controls (BLL ≤ 5µg/dl). Highlighted regions correspond to 

the probes mapping to DMCs. The position of the CpG Island 

is also shown.  A) Representative figure for ETFA for a Pb-

associated DMC conserved in both males and females. This 

DMC shows a ~4.6% increase in DNA methylation in a 

promoter associated region. B) Representative figure for 

MRPS25 for a male-specific Pb-associated DMC. This Pb-

associated DMC shows a ~6% decrease in DNA methylation 

in a promoter associated region. C) Representative figure for 

LONP1 for a female-specific Pb-associated DMC. This Pb-

associated DMC shows a ~5% decrease around the 

transcription start site (TSS) of the gene. 

 

Sex-specific effects of Pb exposure on DNA methylation 

The primary objective of our study was to delineate the sex specific Pb-exposure 

changes in DNA methylation profile. Therefore we seperated the male and female samples. 

We reclustered our CpG sites and 

reanalysed our data using GEE 

while controlling for potential 

contributing factors such as age of 

the children, gestational age, age of 

the mother, and smoking status of 

the mother and immediate family. 

For an effect size cutoff of |0.02| or 

|2%|, and FDR corrected p-value ≤ 

0.05, we found 94 Pb-associated 

hypermethylated and 59 

hypomethylated regions in males 

(Fig 2.1.2 B). Gene ontology 

analysis of genes mapping to male-

specific Pb-associated differentially-

methylated regions show an 

enrichment of genes associated with 

leukocyte proliferation and differentiation (GO: 1902107) and calcium ion transport (GO: 

0051924) (data not shown). Examples of males-specific genes that are differentially 

methylated by Pb are Runt-Related Transcription Factor 1 (RUNX1) (Table 3), Gamma-
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Aminobutyric Acid (GABA) A Receptor, Gamma 1 (GABARG1) ) (Table 2.1.3 and Figure 

2.1.3B) and Mitochondrial Ribosomal Protein S25 (MRPS25) (Table 2.1.3 and Figure 

2.1.4B).  

We also see female-specific changes in DNA methylation that are associated with Pb 

exposure.  At p-value of ≤0.05 and exposure effect size of ≥ |0.02| or |2%| we found 200 

hypermethylated and 74 hypomethylated regions in females exposed to Pb (Fig. 2.1.2C). We 

performed gene ontology analysis and found enrichment of hypermethylated genes for 

pathways such as neuron maturation (GO:0042551) and visual learning (GO:0008542) and 

hypomethylated genes for pathways such as regulation of type 2 immune response 

(GO:0002828) (data not shown). Other interesting genes which also showed a Pb-associated 

differential methylation included stress response genes such as Amyloid Beta (A4) Precursor 

Protein (APP) (Table 2.1.3) and Hypoxia inducible factor 3A (HIF3A) (Table 2.1.3), nuclear 

encoded mitochondrial genes such as Lon Peptidase 1, Mitochondrial (Lonp1) (Table 2.1.3 

and Figure 2.1.4C)  and Mitochondrial Transcription Termination Factor 4 (MTERFD2) 

(Table 2.1.3), transcriptional regulators like Runt associated transcription factor 3 (RUNX3) 

(Table 2.1.3), important regulators of signaling pathways such as Mitogen-Activated Protein 

Kinase 6 (MAP3K6) (Table 2.1.3) and neuronal calcium sensors such as Hippocalcin-Like 

1(HPCAL1) (Table 2.1.3 and Fig. 2.1.3C ). 

2.1.4. Discussion 

Sex-specific response of the epigenome to exposure has been described by several 

studies (Pilsner et al., 2012; Faulk et al., 2013). However, few studies have described 

potential gene-specific biomarkers of Acute Pb exposure. In this study we attempt to answer 

this question using blood spots collected from 3 months to 5 years old children. Assessing 
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Pb-dependent DNA methylation in peripheral blood poses several challenges such as impact 

of dietary factors on mothers such as folate deficiency, exposure to other environmental 

toxicants, and cigarette smoking (Hsiung et al., 2007), variability in DNA methylation profile 

introduced due to shift immune cell population during early age among other. We tried to 

control for possible secondary effectors by including covariates such as age of the children, 

gestational age, age of the mother, and smoking status of the mother and immediate family 

during statistical model building. To control for impact of immune cells on DNA methylation 

in the blood we estimated blood cell type proportion using methylation data (Houseman et 

al., 2012). Our analysis predicted that blood cell type only contributed to ≥1% of the total 

variance in methylation profile (data not shown). In our study we observed several sexually 

dimorphic promoters belonging to genes associated with oxidative stress response and 

metabolism such as glutathione peroxidase encoding gene (GPX1) (4 to 5% higher promoter 

methylation in females) and Cytochrome P450 1A1 (CYP1A1) (5% higher methylation 

status around the TSS in females). Interestingly the CYP1A1 promoter methylation has been 

reported to sexually dimorphic in primary cells cultured from embryos of the Swiss Webster 

CWF mouse strain (Penaloza et al., 2014).  

Pb is a potent inducer of oxidative stress. It has been shown to bind to sulfhydryl 

group of Glutathione (GSH) and reduce its ability to be oxidized GSSG. Availability of 

oxidized glutathione is essential for the cells ability to cope with hydrogene peroxide (H2O2) 

generated during the cellular processes. Additionally, depletion of cellular stores of GSH 

causes the cell to start making glutathione from cysteine via ϒ-glutamyl cycle which is 

inefficient and may cause several secondary effects. Pb is also a very potent inhibitor of 

Delta-Aminolevulinic Acid Dehydratase (ALAD) and ferrochelatase. These enzymes are 
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critical in heme synthesis. Inhibition of ALAD by Pb can potentially increase the amount of 

ALA (Aminolevulinic Acid). Accumulation of ALA can lead to it enolization and 

consequently auto-oxidation leading to generation of superoxide ion. Therefore, perhaps not 

surprisingly we saw sex specific Pb –dependent DNA methylation changes in genes 

associated with ALA metabolism. In this study we report an increase in gene body DNA 

methylation of Lon peptidase 1 (LONP1) in females. LONP1 has been implicated in 

breakdown of 5-Aminolevulinic acid synthase enzyme in the mitochondrial outer membrane 

(Tian et al., 2011). Genebody methylation has been demonstrated to be associated with 

increased expression(Ball et al., 2009).  We speculate that this might be an adaptive DNA 

methylation change which helps ameliorate the synthesis of ALA and alleviate the oxidative 

stress burden due to Pb exposure. Consequently, LONP1 genebody methylation on Pb-

exposure might confer reduced susceptibility to oxidative stress in females.  

In our previous epidemiological study using the NHANES cohort we observed a 

negative correlation between BLL and body mass index (BMI) (Padilla et al., 2010). 

Interestingly, in our study we observed sex-independent hypermethylation of the 

Leptin(LEP) promoter. A study by Shen et al, 2014 demonstrated that increase in DNA 

methylation at LEP promoters can recruit Methyl Binding Protein 2 (MBP2) leading to 

decreased recruitment of RNA polymerase 2 and decreased transcription in adipose tissue of 

obese mice (Shen et al., 2014b). Hypermethylation of LEP promoter in sample with high 

BLL is contradictory to the results of our epidemiological survey however does suggest an 

association between exposure and metabolic disorders.  Consistent with the idea of Pb 

effecting the epigenome of metabolic regulator we found male-specific decrease in 

methylation in a CpG island located near the distal transcription start site of a gene encoding 
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an important hematopoiesis controlling transcription factor, RUNX1 and female-specific Pb-

dependent hypermethylation in another member of Runt domain associated transcription 

factor, RUNX3. RUNX3 deficiency is shown to be associated with myeloproliferative 

disorder in mouse (Wang et al., 2013). Wolff et al. reported that the DNA methylation of 

RUNX3 increases with age and the process is further accelerated by smoking (Wolff et al., 

2008). In combination with previous data, our data suggest that epigenetic regulation of 

genes associated with controlling haematopoisis (e.g. RUNX1 and RUNX3) can play a role 

in mediating the effect of Pb exposure on immune response in a sex–specific fashion. 

Finally, as Pb is a potent neurotoxin we expected to see changes in methylation status 

of neuronal associated genes. Previous studies have reported females to be much more 

resistant to neurodegenerative conditions compared to males. If Pb-dependent DNA 

methylation changes are protective females were expected to have a higher number of 

significant Pb-associated DNA methylation clusters. We report hypermethylated CpG 

clusters several genes related to biological processes such as neuronal maturation 

(GO:0042551), visual learning (GO:0008542) and regulation of neurotransmitter levels 

(GO:0001505) in females. In contrast male showed hypomethylation of promoter region of a 

single Gamma-Aminobutyric Acid (GABA) A Receptor, Gamma 1 (GABRG1). Therefore, 

our results suggest that most acute Pb exposure dependent DNA methylation changes are 

protective in nature. 
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Tables 

Table 2.1.1: Sample BLL (µg/dl) and covariates for current blood spots used for the analysis. 

ID 

Normalized Pb 

concentration Gender 

Age (in 

months) 

Mother's 

age (in 

months) 

Gestational 

age (In 

months) Smoking 

001-033-001-2012-B 5.098809195 Male 3 228 225 No 

001-009-001-2012-B 1.609016955 Male 5 240 235 Yes 

001-010-001-2012-B 4.71525216 Male 5 240 235 No 

001-001-001-2012-B 0.579901708 Male 6 204 186 No 

001-113-002-2012-B 4.602492159 Female 8 228 208 No 

001-130-003-2012-B 4.378173778 Male 9 264 243 No 

001-122-002-2011-B 1.972338713 Female 12 240 228 Yes 

001-093-002-2011-B 2.204395525 Female 12 204 192 No 

001-051-001-2011-B 2.27245527 Male 12 216 204 No 

001-058-004-2010-B 2.772809748 Female 12 252 240 No 

001-060-002-2010-B 3.035195443 Female 12 264 252 Yes 

001-084-001-2011-B 5.94181757 Male 12 216 204 No 

001-036-002-2011-B 8.502613523 Female 12 264 252 Yes 

001-095-003-2011-B 10.20218454 Male 12 228 216 No 

001-099-001-2011-B 11.04437582 Male 12 228 216 No 
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001-092-003-2010-B 13.0268562 Male 12 252 240 No 

001-085-002-2011-B 25.59618366 Female 12 240 228 No 

001-027-002-2010-B 0.19009625 Female 24 264 240 No 

001-122-001-2010-B 0.856610711 Male 24 240 216 Yes 

001-082-001-2009-B 0.871991444 Male 24 216 192 No 

001-022-003-2010-B 1.496641473 Male 24 300 276 No 

001-087-002-2010-B 2.938008435 Female 24 252 228 Yes 

001-033-002-2010-B 16.97667656 Female 24 228 204 No 

001-010-002-2009-B 24.20912991 Female 24 240 216 No 

001-079-002-2010-B 32.80080749 Female 24 252 228 No 

001-036-005-2009-B 5.809591329 Male 36 264 228 Yes 

001-015-006-2009-B 6.248038356 Female 36 264 228 No 

001-045-001-2008-B 6.860479927 Male 36 252 216 No 

001-095-001-2009-B 7.04519292 Male 36 228 192 No 

001-092-001-2009-B 8.840076423 Male 36 252 216 No 

001-015-002-2010-B 9.640403264 Female 36 264 228 No 

001-118-002-2009-B 11.83912714 Female 36 252 216 No 

001-022-001-2008-B 2.626116004 Male 48 300 252 No 

001-036-001-2007-B 4.735150984 Male 48 264 216 Yes 

001-130-001-2007-B 7.626344312 Male 48 264 216 No 
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001-036-003-2008-B 9.288905445 Male 48 264 216 Yes 

001-015-004-2008-B 9.665637279 Female 48 264 216 No 

001-130-002-2007-B 10.47605773 Female 48 264 216 No 

001-019-003-2007-B 17.22238377 Male 48 276 228 Yes 

001-025-001-2007-B 6.436692662 Male 60 252 192 No 

001-121-002-2007-B 7.206834813 Female 60 240 180 Yes 

001-099-003-2007-B 7.430384158 Male 60 228 168 No 

001-019-001-2006-B 9.725285685 Male 60 276 216 Yes 

 

Table 2.1.2:   Single nucleotide differences in DNA methylation between females and males 

as estimated by fixed effect model. For the analysis, the females where used as experimental 

group and males as the control group. All analysis was controlled for covariates such as age 

of the child, gestational age of the mother, age of the mother, smoking status of the 

household and Blood Lead Levels. 

 
Cpg Site Gene Promoter 

associated 

CpG Island Effect 

size 

Standard 

error 

P.value Holm.sig FDR 

cg22584138 SLC6A4 No chr17:28562387-

28563186 

0.074 0.012 3.91E-

07 

FALSE 0.001 

cg04555966 GCK No chr7:44185961-

44186184 

0.037 0.007 5.65E-

06 

FALSE 0.0089 

cg09933329 GCK No chr7:44185961-

44186184 

0.056 0.012 4.9E-

05 

FALSE 0.041 

cg03314840 PKLR No chr1:155264318-

155265536 

0.053 0.011 3.93E-

05 

FALSE 0.0357 
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cg12177922 HAX1 Yes chr1:154244710-

154245289 

0.052 0.007 1.06E-

08 

TRUE 5.44E-

05 

cg21763723 GPX1 Yes chr3:49394855-

49395942 

0.042 0.009 2.62E-

05 

FALSE 0.027 

cg25187648 GPX1 Yes chr3:49394855-

49395942 

0.054 0.007 1.38E-

08 

TRUE 6.88E-

05 

cg11924019 CYP1A1 No chr15:75018186-

75019336 

0.053 0.011 5.6E-

05 

FALSE 0.0448 

cg02891686 SOD3 No chr4:24801109-

24801902 

0.045 0.009 8.5E-

06 

FALSE 0.0123 

cg11304734 POLR1E Yes chr9:37485801-

37486099 

0.045 0.009 1.47E-

05 

FALSE 0.0182 

cg14268223 DNAJA1 Yes chr9:33025082-

33025797 

-

0.047 

0.009 2.06E-

05 

FALSE 0.0237 

cg13479204 HOXB3 No chr17:46641534-

46642110 

-

0.082 

0.016 1.2E-

05 

FALSE 0.0159 

cg05323879 HOXB3 No chr17:46641534-

46642110 

0.476 -0.071 2.39E-

05 

FALSE 0.0257 

cg02325951 FOXN3 No chr14:89882421-

89884278 

-

0.062 

0.007 9.55E-

10 

TRUE 7.23E-

06 

cg26355737 TFDP1 No chr13:114292551-

114292886 

-

0.034 

0.006 6.91E-

07 

FALSE 0.00174 

cg19292611 TFDP1 N0 chr13:114292551-

114292886 

-

0.023 

0.004 4.24E-

06 

FALSE 0.00726 
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Table 2.1.3: Representative gene mapping to clusters which show a change in methylation of 

≥ |2%| or |0.02|, at a FDR corrected p-value cutoff of 0.05. 
Region ID Gene CpG Island Promoter 

associated 

Effect 

Size 

Standard 

error 

P-value FDR CpGsites/ 

cluster 

Conserved VAMP5 chr2:85811340-

85811855 

Yes 0.031 0.009 0.000839 0.0410 5 

Conserved CAPN2 chr1:223936342-

223937044 

Yes 0.024 0.005 5.94E-06 0.00174 3 

Conserved PF4 chr4:74847528-

74847830 

No 0.0933 0.0223 2.38E-05 0.00395 4 

Conserved LEP chr7:127880750-

127881375 

No 0.036 0.01 0.00045 0.0280 2 

Conserved ETFA chr15:76603563-

76604026 

Yes -0.046 0.013 0.000387 0.0258 2 

Male 

specific 

RUNX1 chr21:36258952-

36259472 

No -0.084 0.025 0.00082 0.0373 5 

Male 

specific 

GABRG1 Non-CpG No -0.08 0.019 4.24E-05 0.00534 5 

Male-

specifc 

MRPS25 

chr3:15106459-

15106971 

Yes -0.064 0.020 0.00148 0.0497 2 

Female 

specific 

APP Non-CpG No 0.043 0.013 0.00131 0.0366 4 

Female 

specific 

LONP1 chr19:5690127-

5692213 

No 0.038 0.012 0.00143 0.0391 2 

Female 

specific 

MTERFD2 chr2:242041543-

242042026 

Yes 0.021 0.003 8.73E-10 5.43E-07 7 

Female 

specific 

HPCAL1 chr2:10442308-

10444509 

Yes -0.055 0.017 0.00111 0.0323 2 

Female 

specific 

MAP3K6 chr1:27683277-

27683590 

Yes 0.061 0.016 8.8E-05 0.00534 5 

Female 

specific 

HIF3A chr19:46800053-

46800603 

No 0.06 0.019 0.00150 0.0405 2 

Female 

specific 

RUNX3 chr1:25255527-

25259005 

No 0.045 0.012 0.00017 0.00859 2 
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2.2. Multigenerational epigenetic inheritance in humans: DNA methylation changes 

associated with maternal exposure to lead can be transmitted to the grandchildren. (Sen 

et al., 2015c). 

 

2.2.1. Background 

In the previous section we have reported that acute exposure to heavy metal 

neuroxicant Lead (Pb) can cause significant changes in DNA methylation in peripheral blood 

in children aged 3months to 5years. We also suggested that these DNA methylation changes 

can be used as biomarkers of early exposure to Pb.  However, this study was limited to a 

single generation and did not address whether Pb-dependent DNA methylation changes can 

be epigenetically inherited and transmitted to the consequent generations.  

Epigenetic inheritance of DNA methylation has been previously reported by several 

mouse models. For examples, feeding pregnant Agoutiviable yellow (Avy) mice a diet rich in 

methyl donors causes hyper-methylation of the Intracisternal-A-Particle (IAP) transposable 

element in offspring. This causes the agouti/black mottling in offsprings in the direction of 

the pseudoagouti phenotype (Wolff et al., 1998).  Exposure to fungicide Vincozolin in F0 

female rats has been shown to correlate with changes in DNA methylation status of genes 

involved in testis formation in F3 males (Skinner et al., 2013). Prenatal exposure to alcohol 

(PAE) has been demonstrated to cause a complex disease called fetal alcohol spectrum 

disorder (FASD). Adult mice born to mothers exposed to PAE have been reported to show 

enhanced activity of the hypothalamic-pituitary-adrenal (HPA) when exposed to stress (Lee 

et al., 2008). Studies in human cohort with 3-6 year of children diagnosed with FASD 

showed significant DNA methylation changes in Protocadherin genes (Laufer et al., 2015).  

Therefore, in view of the evidence from several studies we hypothesized that Pb exposure 

dependent DNA methylation changes are stable and can be inherited by later generations.  
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During embryonic development, the maternal and paternal genome has been show to 

undergo extensive DNA demethylation. Consequently, the DNA methylation patterns are re-

established during the post – blastocyst stage and continue throughout post-implantation. We 

hypothesized the exposure to Pb during this stage may cause stable changes in the 

methylome of the germ cells. As the germ cells remain relatively undifferentiated during 

development and are only activated during consequent pregnancy, the impact of Pb exposure 

on DNA methylation may also skip a generation and be transmitted from the grandmother to 

the grandchildren through the mother.  To test this hypothesis, we selected 35 dried blood 

spots (DBS) collected from mother-infant pairs in Detroit. For these samples we also 

collected the neonatal DBS and mother neonatal DBS from the Michigan Neonatal Biobank. 

The expectation was that if our hypothesis is correct, then the Blood Pb levels (BLL) of the 

mother’s neonatal DBS (representative of the grandmother’s BLL during pregnancy) would 

be correlated with significant changes in DNA methylation in the grandchildren’s neonatal 

DBS and the current DBS irrespective of the their BLL and their mother’s BLL (Figure 2A).  

2.2.2. Methods 

Cell culture and treatment: The human ESC line WA09 (H9) was obtained from 

the WiCell Research Institute (Madison, WI, USA) and maintained in a humidified incubator 

at 37oC with 5% CO2, as previously described(Senut et al., 2014). Briefly, undifferentiated 

hESCs (passages 26-39) were cultured in DMEM/F12 supplemented with knockout serum 

replacement, nonessential amino acids, penicillin/streptomycin, L-Glutamine, 2-

mercaptoethanol, and human basic fibroblast growth factor (Life Technologies) on a feeder 

layer of irradiated mouse embryonic fibroblasts (GlobalStem). hESCs were passaged by 

mechanical dissociation every 4-6 days and their pluripotency frequently tested by 
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immunofluorescence staining for specific markers including Oct4 and Lin28 Stock solutions 

(100-fold concentrated) of Pb acetate (Pb(C2H3O2)2) (Sigma-Aldrich) were prepared in 

sterile distilled water. Physiologically relevant concentrations of Pb acetate chosen on the 

basis of our previous work (Senut et al., 2014) were tested in this study: 1.5μM (32 μg/dL). 

Distilled water was used as a vehicle control. Undifferentiated hESCs were acutely exposed 

to the different concentrations of Pb or vehicle for 24 hours, at which time the hESC colonies 

were dissected and their DNA was isolated. 

Samples and sample classification: Methods were carried out in accordance with 

guidelines that were approved by the Wayne State University (WSU) Institutional Review 

Board (IRB), the Michigan Department of Community Health (MDCH) IRB, and the 

Michigan Neonatal Biobank (MNB) IRB.  Informed consent was obtained from all subjects 

enrolled for the study. For the study, we selected 35 dried blood spots (DBS) collected from 

mother-infant pairs from Health Fairs ran in three Detroit communities, Rosa Parks, Chene, 

and Kettering-Butzel, because they have a high prevalence (8-11%) of high BLL in children. 

The study only included mothers born after January 1, 1987 in Michigan with biological 

children ages, 3 months to 5 years also born in Michigan. The final sample sets consisted of 

25 male children and 18 female children. We also collected the neonatal DBS and mother 

neonatal DBS for these mother-infant pairs from the Michigan Neonatal Biobank.  Blood Pb 

measurement from 3mm punches using Atomic absorption spectroscopy. The corresponding 

Pb measurement and covariate information is listed in Table 2.2.3.  

Extraction, shearing and denaturation of DNA: DNA was isolated from dried 

blood spots with Qiagen EZ1 Advanced® using the DNA Investigator® reagents and 

protocol card. The “Stains on Fabric” preprocessing and Trace® (tip-dance) instrument 
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protocol was used for isolation. The Quantifiler Human DNA Quantification Kit® (Applied 

Biosystems, Inc.) was used to determine the amount of amplifiable DNA. 

Approximately 3µg genomic DNA was diluted in 130µl of buffer TE (10mM Tris 

(pH 8.0), and 1mM EDTA (pH 8.0)) and sheared into ~200-600bp fragment using 

microcavitation (Covaris, Inc, setting: Duty Cycle = 5%, Intensity = 3, Cycles/burst = 200, 

Time = 75 seconds run at 6-8°C). 125µl of the sheared DNA samples were mixed with 330µl 

of buffer TE. The sheared DNA was denatured by boiling it in the Thermomixer at 95°C and 

700rpm for ten minutes and left on ice for 10min.   

HM450K bead chip array: For this study we measure the DNA methylation at 

>450,000 sites using the Human methylation 450K array. For more detail please refer to 

Methods 2.1.2; sub-heading HM450K bead chip array. 

Statistical analysis: For studying the gender specific effects we CpG association 

analysis (Barfield et al., 2012), which analyzes DNA methylation data using a mixed effect 

model at single CpG site level. For determining the Pb-dependent changes in DNA 

methylation we used adjacent site clustering algorithm, A-clustering to detect sets of 

correlated CpG sites and then tested the clusters for multivariate response to environmental 

exposure to Pb using the generalized estimation (GEE) equation approach. The 

aforementioned approach is efficiently implemented using the R-package Aclust (Sofer et al., 

2013). For determining the differentially methylated clusters we used the recommended 

Aclust parameters; Spearman correlation, for calculating the distance between adjacent sites 

(dist(i,j)= 1 corr(i,j)), average clustering type, which require that mean distance between two 

sites be at least 0.25, 1000 bp distance restriction for merging of clusters, which ensures that 

clusters located far away from each other are not merged together based on correlation. The 
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clustering approach is implemented with a 999bp merge initiation step, which clusters all 

sites wedged between 2 high correlated sites within 999 bps of each other together, to reduce 

the complexity of data and the analysis time for the Aclust step. Finally, the data was 

analyzed using a generalized estimation equation approach and filtered for significant DMCs 

using FDR corrected p-value cutoff = 0.05 and exposure effect size ≥ |0.02|. To determine the 

genomic locations of the probes belonging to individual DMCs, they were annotated using 

the publicly available Illumina Human Methylation 450k annotation data in R (>2.15). The 

target genes mapping to DMCs were individually visualized using UCSC genomic browser. 

The Delta beta or the beta difference between the median of the beta values for each probe 

for low BLL samples and high BLL samples were mapped by the chromosomal location of 

the probes. If A-clustering is an effective technique for differentially methylated 

identification, we hypothesized that the change in methylation status visualized using UCSC 

genome browser and Integrative genome viewer (IGV)will correspond to the exposure effect 

(i.e. increase or decrease in methylation) predicted by GEE in the respective regions and 

might serve as a useful tool for visualization. Single value decomposition (SVD) was 

implemented using the package ChAMP and estimation of cell distribution was implemented 

using the package minfi. All statistical analysis was implemented in R. The enhancer regions 

where downloaded as .bed files from Andersson et al, 2014(Andersson et al., 2014), and the 

distance from the middle of the robust enhancer sites to the middle of the cluster was 

calculated using R package ChIPpeakAnno. Then the clusters where subsetted by Maximum 

distance < 301 and exposure effect size ≥ |0.05|. 
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Figure 2.2.1: Control analysis to account for the effect of covariates such as gender and blood cell 

distribution. A. P‐value associated with each Principle component from a Single value decomposition 

analysis using ChAMP to determine the effect of each denoted covariate on methylation profile. B. T‐plot 

representation of result from the mixed effect model to determine single CpG methylation differences by 

gender in CNBS by controlling for sample BLL, MNBS BLL, mother’s age, gestational age and mother’s 

smoking status. We found 179 CpG sites significantly different by gender at an FDR p‐val ≤ 0.05. C. T‐plot 

representation of result from mixed effect model to determine single nucleotide differences by gender in 

CCBS by controlling for sample BLL, MNBS BLL, mother’s age, gestational age and mother’s smoking 

status. We found 144 CpG sites significantly different by gender at an FDR p‐val ≤ 0.05. D. Significant 

variation in estimated granulocyte population across CNBS samples at predicted by estimatecellcount 

function in minfi. However, generalized linear model analysis showed no significant differences when 

sample where grouped by mother’s smoking status or mother’s neonatal BLL. 

 

 

 

Analysis of BS-Seq data: The bisulfite sequencing data was aligned to the BS genome 

using bismark (Krueger and Andrews, 2011). The *.sam files from bismark was used to call 
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Figure 2.2.2: Maternal prenatal exposure to lead (Pb) and its effect on the child’s neonatal and current blood. (A) 

Illustration depicting the plan of study. The F1 represents the maternal grandmother, F2 the mother in this study when 

she was a fetus, and F3 the child born when the mother matured. (B) A-clustering followed by differential methylation 

analysis by generalized estimating equation (GEE) revealed 115 CpG clusters mapping to 346 CpG sites differentially 

methylated in child’s neonatal blood spots (CNBS) with high BLL in mother’s neonatal blood spot (MNBS) compared 

to CNBS with low BLL in MNBS. We observed more hyper-methylated CpG clusters (n = 98) compared to hypo-

methylated CpG clusters (n = 17) at an exposure effect cut-off of 0.05 (5%) and an FDR p-value ≤ 0.05. (C) Differential 

methylation analysis revealed no association between DNA methylation levels in a child’s current blood spot (CCBS) 

and mother’s neonatal BLL (n = 14). (D) Overlap between the 320 CpG sites mapping to 116 clusters identified in a 

previous study3, and the 564 CpG sites mapping to 183 clusters identified in this study. The 320 CpG sites (CCBS 

postnatal) correspond to the effects of BLL in CNBS on CCBS DNA methylation that we reported earlier. The 564 CpG 

sites (CNBS prenatal) correspond to the effects of BLL in MNBS on CNBS DNA methylation that we report in this 

study (Fig. 1B). Note children recruited for the previous study are the same as in this study. 

 

5mC in CPG context for non-treated and control samples using R package methylKit(Akalin 

et al., 2012). The methylation calls were further filtered by coverage (min = 10) and possible 

PCR duplicates were removed by discarding the bases with coverage more than 99.9th 

percentile of coverage distribution. Then the number of C’s and T’s were calculated for the 

given HM450K co-regulated clusters. Finally, percent (%) methylation for calculated for the 

clusters to determine the sample  
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2.2.3. Results 

Measurement of Lead (Pb) concentration in dried blood spots (DBS) 

Blood lead levels (BLL) was measured in 3mm punches from mother’s and children’s 

neonatal and current dried blood spots by Atomic absorption mass spectrometry (Table 

2.2.1). For future reference, we will refer to the child’s neonatal blood spots as CNBS, the 

mother’s neonatal blood spots as MNBS, and the child’s current blood spots as CCBS (Fig. 

2.2.2A). 

Contribution of covariates to detectable changes in DNA methylation in dried blood 

spot (DBS). 

DNA 

methylation 

measured in 

peripheral 

blood can be 

influenced by 

several 

factors. 

Variation in 

DNA 

methylation 

measurement 

related to 

 

Figure 2.2.3: UCSC genome browser pictures of differentially methylated region 

detected in CNBS with high BLL in MNBS. The Delta beta or the difference between the 

mean of the β values for each probe for low BLL samples and high BLL samples were 

mapped by the chromosomal location of the probes for representative genes A. NDRG4, 

B. NINJ2, C. DOK3, D. Enhancer identified by Andersson et al, 2014. 
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secondary factors needs to be controlled and accounted for before differential testing. We 

attempted to understand the influence of some of these covariates using Single value 

decomposition (SVD). Our analysis demonstrated that among all the covariates tested (except 

experimental variations) smoking was by far the strongest predictor of changes in DNA 

methylation in peripheral blood (Fig 2.2.1A) in CCBS and CNBS.  Interestingly the sample 

BLL also seemed to contribute the significant variations in methylation profile. Our previous 

studies have demonstrated that the impact on DNA methylation is sex-specific is small but 

presents. As SVD was unable to tease out the impact of sex on the DNA methylation profile 

of peripheral blood we used mixed effect model to estimate single CpG differences. In 

CNBS, we found 179 autosomal CpG sites with sex-dependent DNA methylation effects at 

an FDR corrected P-value ≤ 0.05. For CCBS we found relatively similar amounts of 

differentially methylated CpG sites (N=144) suggesting that DNA methylation changes are 

probably not established early in development. Finally using a statistical framework proposed 

by Housemann et al, 2012 we looked at the relationship between blood-cell-type proportion 

and by mother’s smoking status or mother’s neonatal BLL in CNBS samples.  We chose to 

study the CNBS samples because the impact of smoking or neonatal high BLL in mother’s 

will perhaps be more pronounce and detectable in a relatively under developed immune 

system. We did observe large variability in granulocyte population across CNBS samples 

however; environmental exposure did not impact granulocyte distribution. Therefore, using 

these control and quality control analysis we were able to define the covariates to use for 

differential testing. 

Grandmothers’ BLL during gestation correlates with gene specific changes in 

grandchild’s DNA methylation levels. 
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We hypothesized that DNA methylation changes caused in germ cells due to Pb 

exposure in grandmothers during gestation will be preserved in the CNBS and CCBS of the 

grandchild (Fig 2.2.2A). To test this hypothesis, we modelled DNA methylation in 

CNBS/CCBS as function of BLL in MNBS, surrogates for grandmother’s BLL during 

gestation. The BLL in MNBS was converted to discrete measurements high BLL (≥ 5µg/dl) 

or low BLL (≤ 5µg/dl) for ease of calculation. We used sample BLLs, age of the mother, 

gender of the child, smoking status and gestational age of the mother as covariates for the 

model. At a significance level (FDR corrected p-value ≤ 0.05), we found 183 CpG clusters 

which were differentially methylated in CNBS with high BLLs in MNBS compared to low 

BLL in MNBS. We observed more hyper-methylated CpG clusters (n = 151) compared to 

hypo-methylated CpG clusters (n= 32) at an exposure effect cut-off of 0.02 (i.e., a 2% change 

in DNA methylation). Further increasing the cut-off for differential methylation calls to 0.05 

or 5% resulted in significant reduction in identified 5mC clusters (n=115). However, the 

trend in DNA methylation patterns was preserved, with a greater number of hyper-

methylated regions (n =98) compared to hypo-methylated regions (n=17) (Fig. 2.2.2B). 

Interestingly, similar analysis in CCBS reported limited DNA methylation changes; 14 CpG 

clusters mapping to 37 CpG sites at exposure effect size cut-off of 0.05/5% or 0.02/2% (Fig 

2.2.2C). Some striking examples of these changes are shown in Fig 2.2.3 and are discussed in 

details in later sections. 
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Figure 2.2.4: Validation of hM450K using in‐vitro studies. The Pb –dependent change in 5mC for hESCs 

exposed to 32 μg/dl of Pb was calculated within co‐regulated clusters. Then the number of C’s and T’s were 

estimated from BS‐Seq data and percent methylation was calculated for the HM450K cluster. The percent 

methylation for controls (lane1), percent methylation for Pb‐exposed hESCs (lane2), single nucleotide 

difference in 5mC from HM450K (Delta beta, lane3) and cluster effect size from A‐clustering analysis of 

HM450K (Lane4) is illustrated using Integrative genome viewer (IGV) for 4 validated regions listed as 

follows; A) chr12:130335340‐130336270, B) chr21:47832880‐47833452, C) chr6:112041450‐112042446, 

D) chr7:86413438‐86414302. 

Validation of HM450K array using in-vitro Pb-exposure model. 

HM450K array can detect a ~20% changes in DNA methylation status with a 

confidence of >95%. We modelled our differentially methylated regions as clusters of co-

regulated CpG sites located within 1kb of each other (A-clustering). Consequently, this 

allowed us to call subtle differences in DNA methylation profile (±10%≥x≤ ±20%). To 

validate that A-clustering can detect Pb dependent changes as low as ±10%, we treated H9 

embryonic stem cells (hESCs) with 32µg/dl or 1.5 µM Pb for 24 hours. Then we extracted 

the DNA and we measured the DNA methylation with HM450K array. 279 clusters 

significant at a FDR corrected p-value cut-off of 0.05 and exposure effect size cutoff of 

±10% was selected for validation using Whole Genome Bisulfite Sequencing (WBGS). We 
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mapped the sequences in context of CpG and calculated the % methylation within the 

HM450K cluster windows (n=279) for Pb-treated samples and non-treated controls. We were 

able to get significant coverage (min=10 reads/CpG) for 10 out of 279 CpG clusters. 4 out of 

10 clusters showed positive association between exposure effect size from HM450K and 

percent difference in methylation from WBGS (Fig 2.2.4).  

2.2.4. Discussion 

In this study we present in-direct evidence that Pb-exposure during gestation in 

grandmothers is correlated with DNA methylation changes in the peripheral neonatal blood 

in their grandchildren. However, these changes are “normalized” during the course of early 

development and cannot be detected in child’s current blood. This suggests that DNA 

methylation is relatively stable during prenatal stages however most likely undergo 

replication dependent dilution during early post-natal years.  We observed limited overlap 

between the DNA methylation changes in CpG clusters detected on acute exposure to Pb in 

the CCBS (Sen et al., 2015b) and CpG clusters detected in CNBS in this study. Therefore, 

this demonstrates that epigenetic effect of Pb exposure is dependent on the stage of 

development during which the exposure occurs and the duration of the exposure. In an earlier 

study from our lab, we reported that acute and chronic exposures to Pb during differentiation 

into neurons have significantly divergent effects on the morphology and DNA methylation 

status of the developing neurons compared to direct Pb-exposure in differentiated neurons 

(Senut et al., 2014).  Our results in an in-vitro model further emphasizes the impact of 

exposure time and developmental stage on DNA methylation status. 

In this study we detected Pb-dependent changes within ~1kb regions containing co-

regulated CpG sites (See methods). This allowed us to detect methylation difference at a cut-
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off of ±10%. To further justify using a lower methylation difference cut-off we validated few 

of the CpG clusters detected using HM450K using WBGS in a stem cell model of Pb-

exposure (Senut et al., 2014). Based on this limited, very expensive and data-intensive 

WGBS study, we demonstrate that the lower DNA methylation difference detection limit 

with the HM450K assay can be achieved if multiple CpG sites are modelled into CpG 

regions using A-clustering. 

We observed several interesting DNA methylation clusters in CNBS which seemed to 

be associated with BLL of grandmother’s during gestation. We reported a 14% increase in 

DNA methylation in cluster of 5 CpG sites near the TSS of Brain Development-Related 

Molecule 1 or N-Myc Downstream-Regulated Gene (NDRG4) for CNBS with high BLL in 

MNBS (Fig 2.2.3A). We speculate that this may lead to their down-regulation during 

development and contribute to cognitive deficits reported in Pb-exposure studies in other 

human cohorts. In support of our hypothesis studies in mouse models demonstrated that 

ablation of NDRG4 lead to reduced levels of Brain Derived Neurotrophic Factor (BDNF). 

This was consequently shown to cause impaired spatial learning and memory (Yamamoto et 

al., 2011). We also report ~ 24% decrease in the promoter of Nerve Injury Induced Protein 2 

(NINJ2) in a small cluster of 2 CpG sites (Fig 2.2.3B). We propose that down-regulation of 

promoter methylation of NINJ2 might lead to upregulation of its expression. This is 

consistent with the observation that NINJ2 has been shown to upregulated in Schwann cells 

surrounding the distal segment of injured sensory neurons and has been shown to promote 

extensive neurite growth during neurodevelopment (Araki and Milbrandt, 2000) . In a human 

cohort NINJ2 has been shown to undergo hypermethylation in peripheral blood of patients 

with Borderline personality disorders (BPD) (Teschler et al., 2013). Therefore, in view of the 
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evidence from our study, we speculate that NINJ2 might be one of the primary responders to 

in-utero exposure to Pb and might be involved in neuro-protection. NINJ2 and NDRG4 are 

the strongest candidates for potential transgenerational biomarkers of Pb exposure for studies 

in larger cohorts and will be the subject of future studies. We also observed differentially 

methylated CpG clusters in genes associated with the immune system such as TRPV2 (Zhang 

et al., 2012), and shared promoter of Docking Protein 3 (DOK3) and DEAD (Asp-Glu-Ala-

Asp) Box Polypeptide 41(DDX41) (Peng et al., 2013) (Table 2.2.2). This suggested that in-

utero Pb exposure might have widespread impact on the immune system (Table 2.2.2) 

(Youssef et al., 1996; Dyatlov and Lawrence, 2002). 

In conclusion, our pilot study provides indirect evidence that Pb-exposure in women 

during childbirth can affect the locus-specific DNA methylation status of her grandchildren. 

However, the altered DNA methylation profiles of the grandchildren’s blood are apparently 

“normalized” during post-natal development. Also, fetal germ-line exposure to Pb apparently 

has different epigenetic consequences than acute childhood exposure. It remains to be 

determined whether Pb-exposure dependent epigenetic changes are observed in larger and 

more diverse cohorts, and whether they affect neurodevelopment or other phenotypes 

associated with high BLL. 
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Table 2.2.1: Covariate and Blood Lead Level (BLL) information used for DNA methylation 

analysis for 35 samples. Sample names ending with A (Child’s Neonatal blood spots), and 

with B (Child’s current blood spots). 

Sample sample bll mother's bll Gender 

Age 

(month) 

Mother's 

age 

(month) 

Gestational 

age 

(month) 

Smoking 

001-027-002-2010-B 0.19009625 6.148736497 F 24 264 240 No 

001-001-001-2012-B 0.579901708 2.745941529 M 6 204 186 No 

001-122-001-2010-B 0.856610711 7.29056368 M 24 240 216 Yes 

001-082-001-2009-B 0.871991444 1.378498216 M 24 216 192 No 

001-122-002-2011-B 1.972338713 7.29056368 F 12 240 228 Yes 

001-051-001-2011-B 2.27245527 0.28218839 M 12 216 204 No 

001-087-002-2010-B 2.938008435 4.252003701 F 24 252 228 Yes 

001-060-002-2010-B 3.035195443 36.17606133 F 12 264 252 Yes 

001-130-003-2012-B 4.378173778 3.376888045 M 9 264 243 No 

001-113-002-2012-B 4.602492159 3.011403372 F 8 228 208 No 

001-010-001-2012-B 4.71525216 56.64450079 M 5 240 235 No 

001-036-001-2007-B 4.735150984 11.26302255 M 48 264 216 Yes 

001-033-001-2012-B 5.098809195 2.244241237 M 3 228 225 No 

001-036-005-2009-B 5.809591329 11.26302255 M 36 264 228 Yes 

001-084-001-2011-B 5.94181757 1.768640127 M 12 216 204 No 

001-015-006-2009-B 6.248038356 6.413477367 F 36 264 228 No 

001-025-001-2007-B 6.436692662 5.171338965 M 60 252 192 No 

001-045-001-2008-B 6.860479927 5.987767511 M 36 252 216 No 

001-095-001-2009-B 7.04519292 5.636077432 M 36 228 192 No 

001-121-002-2007-B 7.206834813 6.614628519 F 60 240 180 Yes 

001-099-003-2007-B 7.430384158 7.507768472 M 60 228 168 No 

001-130-001-2007-B 7.626344312 3.376888045 M 48 264 216 No 



48 

 

001-036-002-2011-B 8.502613523 11.26302255 F 12 264 252 Yes 

001-036-003-2008-B 9.288905445 11.26302255 M 48 264 216 Yes 

001-015-002-2010-B 9.640403264 6.413477367 F 36 264 228 No 

001-015-004-2008-B 9.665637279 6.413477367 F 48 264 216 No 

001-019-001-2006-B 9.725285685 6.999675563 M 60 276 216 Yes 

001-095-003-2011-B 10.20218454 5.636077432 M 12 228 216 No 

001-130-002-2007-B 10.47605773 3.376888045 F 48 264 216 No 

001-099-001-2011-B 11.04437582 7.507768472 M 12 228 216 No 

001-118-002-2009-B 11.83912714 2.722341717 F 36 252 216 No 

001-033-002-2010-B 16.97667656 2.244241237 F 24 228 204 No 

001-019-003-2007-B 17.22238377 6.999675563 M 48 276 228 Yes 

001-010-002-2009-B 24.20912991 56.64450079 F 24 240 216 No 

001-079-002-2010-B 32.80080749 2.671777556 F 24 252 228 No 

001-051-001-2011-A 1.241657755 0.28218839 M NA 216 204 No 

001-082-001-2009-A -0.559041588 1.378498216 M NA 216 192 No 

001-084-001-2011-A 1.627906418 1.768640127 M NA 216 204 No 

001-033-001-2012-A 2.675718869 2.244241237 M NA 228 225 No 

001-033-002-2010-A 4.48833828 2.244241237 F NA 228 204 No 

001-079-002-2010-A 4.078826258 2.671777556 F NA 252 228 No 

001-118-002-2009-A 1.368164285 2.722341717 F NA 252 216 No 

001-001-001-2012-A 0.132033982 2.745941529 M NA 204 186 No 

001-113-002-2012-A 0.526838178 3.011403372 F NA 228 208 No 

001-130-003-2012-A 1.559798609 3.376888045 M NA 264 243 No 

001-130-001-2007-A 1.67457733 3.376888045 M NA 264 216 No 

001-130-002-2007-A 4.367599524 3.376888045 F NA 264 216 No 

001-087-002-2010-A 1.054781846 4.252003701 F NA 252 228 Yes 

001-025-001-2007-A 8.759664027 5.171338965 M NA 252 192 No 
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001-095-003-2011-A -0.002739693 5.636077432 M NA 228 216 No 

001-095-001-2009-A 1.616803451 5.636077432 M NA 228 192 No 

001-045-001-2008-A -3.885461602 5.987767511 M NA 252 216 No 

001-027-002-2010-A 0.497807044 6.148736497 F NA 264 240 No 

001-015-002-2010-A 0.667523822 6.413477367 F NA 264 228 No 

001-015-006-2009-A 1.383208565 6.413477367 F NA 264 228 No 

001-015-004-2008-A 1.728121508 6.413477367 F NA 264 216 No 

001-121-002-2007-A -4.3374629 6.614628519 F NA 240 180 Yes 

001-019-003-2007-A 1.497650833 6.999675563 M NA 276 228 Yes 

001-019-001-2006-A 3.819612838 6.999675563 M NA 276 216 Yes 

001-122-001-2010-A -7.576020476 7.29056368 M NA 240 216 Yes 

001-122-002-2011-A -0.034270196 7.29056368 F NA 240 228 Yes 

001-099-003-2007-A 2.376179089 7.507768472 M NA 228 168 No 

001-099-001-2011-A 9.40974033 7.507768472 M NA 228 216 No 

001-036-003-2008-A -0.214657358 11.26302255 M NA 264 216 Yes 

001-036-005-2009-A 0.233450692 11.26302255 M NA 264 228 Yes 

001-036-002-2011-A 1.617716682 11.26302255 F NA 264 252 Yes 

001-036-001-2007-A 2.896384326 11.26302255 M NA 264 216 Yes 

001-060-002-2010-A 2.494466541 36.17606133 F NA 264 252 Yes 

001-010-002-2009-A 0.587111426 56.64450079 F NA 240 216 No 

001-010-001-2012-A 1.04007402 56.64450079 M NA 240 235 No 
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Table 2.2.2: Table showing a list of 6 genes/CpG clusters which show Pb dependent change 

in DNA methylation status in CNBS exposed in-utero to high BLL (high BLL MNBS). CpG 

sites, chromosome and location of CpG island, Location relative to the Promoter of the gene 

(i.e. CpG sites located at the promoter (Yes) or transcription start site (TSS)), Effect size, the 

average change in DNA methylation at the CpG island (e.g., 0.05 is a 5% increase in average 

DNA methylation), CpG sites/cluster (the number of CpG sites with significant changes in 

the cluster) is illustrated in the following table.  

 

Gene CpG island Promoter 

Effect 

size 

Standard 

error 

P-value FDR 

CpG 

sites/cluster 

NDRG4 

chr16:58535040-

58535596 

No (TSS) 0.14 0.04 0.000729 0.028 5 

NINJ2 non CpG Yes -0.24 0.06 0.000168 0.013 2 

TRPV2 non-CpG Yes -0.11 0.02 1.29E-06 0.0005 2 

DOK3 non-CpG No (TSS) -0.08 0.02 4.46E-07 0.00030 4 

APOA5 

chr11:116661034-

116661410 

No 0.05 0.01 0.00077 0.029 3 

Enhancer 

chr2:8596907-

8597573 

NA 0.090329 0.028656 0.00162 0.0427 2 
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CHAPTER 3: LEAD (PB) EXPOSURE INDUCES CHANGES IN 5-

HYDROXYMETHYLCYTOSINE CLUSTERS IN CPG ISLANDS IN HUMAN 

EMBRYONIC STEM CELLS AND UMBILICAL CORD BLOOD; HMEDIP-450K 

ARRAY. (SEN ET AL., 2015A) 

 

3.1. Background 

In the previous sections we have demonstrated that DNA methylation can be used as 

important biomarkers for acute and chronic exposure to Pb. Furthermore, we have shown the 

DNA methylation changes due to Pb exposure can be transmitted from grandmother to 

grandchildren most likely via the mother’s germ cells. Even though DNA methylation is a 

stable epigenetic modification it can be removed from the genome by either replication 

dependent passive dilution or active demethylation. Active demethylation require oxidation 

of 5 methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by a family of dioxygenases 

called ten-eleven-translocation enzymes (TET). 5hmC has been specifically been shown to 

be enriched in the mature brain. This suggests that they play a crucial role in brain 

development (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009).  Furthermore, 5hmC has 

also been shown to be localized in promoter regions of actively transcribed genes suggesting 

they might have a regulatory role to play in transcription (Stroud et al., 2011; Szulwach et al., 

2011). Studies exploring the relationship between 5hmC and heavy metal exposure have 

been limited. Zhang et al., 2014 reported a marked increase in total 5hmC levels in the heart 

and spleen of rats exposed to physiologically relevant levels of Arsenic (As) through 

drinking water (Zhang et al., 2014). Tellez-Plaza et a, 2014 reported significant correlation 

between Arsenic metabolism (Urinary Arsenic concentration) and %5hmC in the peripheral 

blood of 48 volunteers (Tellez-Plaza et al., 2014). These studies presented compelling 

evidence suggesting that 5hmC might be better biomarker for Pb exposure. 
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Detection of 5hmC usually requires enrichment of 5hmC containing DNA using 

antibody based enrichments. The isolated DNA fragments are then individually tested using 

PCR based reaction or Next Generation Sequencing (NGS). While both the methods are 

effective, PCR based methods are time consuming and NGS is expensive. Therefore, the 

main objective for this study was to develop a cost-effective method to enrich and 

quantitatively measure 5hmC in human cohort. For enrichment of high density regions of 

5hmC modification, we generated randomly-sheared DNA fragments and 

immunoprecipitated (IP) them with 5hmC specific antibodies. Due to the limited sensitivity 

of the antibodies, only fragments with large number of 5hmC sites were expected to be 

precipitated. Then we used the high-throughput Infinium™ Human Methylation 450K 

(HM450K) array (Illumina, Inc.) to determine the 5hmC profile of the IP’ed fragments. We 

named this novel modification of the HM450K array the HMeDIP-450K array. 

3.2. Methods 

hESC culture and Pb exposure: The human ESC line WA09 (H9) (Thomson et al. 

1998) was obtained from the WiCell Research Institute (Madison, WI, USA) and maintained 

in a humidified incubator at 37oC with 5% CO2, as previously described (Senut et al., 2014). 

Briefly, undifferentiated hESCs (passages 26-39) were cultured in DMEM/F12 supplemented 

with knockout serum replacement, nonessential amino acids, penicillin/streptomycin, L-

Glutamine, 2-mercaptoethanol, and human basic fibroblast growth factor (Life Technologies) 

on a feeder layer of irradiated mouse embryonic fibroblasts (Globalstem). hESCs were 

passaged by mechanical dissociation every 4-6 days and their pluripotency frequently tested 

by immunofluorescence staining for specific markers including Oct4 and Lin28 Stock 

solutions (100-fold concentrated) of Pb acetate (Pb(C2H3O2)2) (Sigma-Aldrich) were 
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prepared in sterile distilled water. Two physiologically relevant concentrations of Pb acetate 

chosen on the basis of our previous work (Senut et al., 2014) were tested in this study: 0.8μM 

(16 μg/dL) and 1.5μM (32 μg/dL). Distilled water was used as a vehicle control. 

Undifferentiated hESCs were acutely exposed to the different concentrations of Pb or vehicle 

for 24 hours, at which time the hESC colonies were dissected and DNA was isolated(Sen et 

al., 2015a).  

Extracting genomic DNA from hESCs: DNA was isolated from ~1 million cells 

with Qiagen EZ1 Advanced® using the DNA Investigator® reagents and protocol. DNA 

concentrations were quantified by UV spectrophotometry using the DropSense96® 

Microplate Spectrophotometer (Trinean), and the purity was assessed based on the 

A260/A280 and A260/A230 ratios (Sen et al., 2015a). 

Samples and sample classification: The Early Life Exposure in Mexico to 

Environmental Toxicants (ELEMENT) cohort consists of over 4000 mother-infant pairs, 

belonging to a low income population recruited from 1994 onwards from three hospitals in 

Mexico City (Mexican Social Security Institute, Manuel Gea Gonzalez Hospital, and 

National Institute of Perinatology) (Pilsner et al., 2009; Sen et al., 2015a). We used umbilical 

cord blood (UCB) from the fourth wave of the ELEMENT study (Each of the four waves had 

approximately 1000 children participants). The blood lead concentrations of umbilical cord 

blood were determined using atomic absorption spectroscopy (Model 3000; PerkinElmer, 

Chelmsford, MA, USA) at the metals laboratory of the American British Cowdray Hospital 

in Mexico City (Pilsner et al., 2009; Sen et al., 2015a). Out of the initial pool of samples, 412 

samples were randomly selected for DNA extraction. DNA extraction was carried out at the 

Harvard-Partners Center for Genetics and Genomics. Unfortunately, RNA was not extracted 
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so it is not possible to follow up these findings with gene expression analyses. For our study, 

we randomly selected UCB from 24 males and 24 female children from the 1st and 4th 

quartiles of Pb levels. The UCB for male children had a minimum blood lead level (BLL) of 

0.59 µg/dl and highest BLL of 7.21µg/dl. The UCB for female children had a minimum BLL 

of 0.68µg/dl and highest BLL of 10.53 µg/dl. Five male children and seven female children 

had BLL in UCB ≥ 5µg/dl and classified as high BLL group. Details on the 48 sample 

mother-infant cohort samples can be found in previous studies (Sen et al., 2015a). 

Shearing and denaturation of DNA: A similar protocol was used for shearing and 

denaturation of DNA for hESCs and UCB.  Approximately 3µg genomic DNA was diluted in 

130µl of buffer TE (10mM Tris (pH 8.0), and 1mM EDTA (pH 8.0)) and sheared into ~200-

600bp fragment using micro cavitation (Covaris, Inc, setting: Duty Cycle = 5%, Intensity = 

3, Cycles/burst = 200, Time = 75 seconds run at 6-8°C). 125µl of the sheared DNA samples 

were mixed with 330µl of buffer TE. The sheared DNA was denatured by boiling it in the 

Thermomixer at 95°C and 700rpm for ten minutes and left on ice for 10min.  

Immunoprecipitation and extraction of DNA: A similar protocol was used for 

DNA extracted from hESCs and UCB. 51 µl of 10x immunoprecipitation buffers and 3µl of 

5mC or 5hmC specific antibodies at a concentration of 1µg/µl was added to the denatured 

DNA sample and incubated for ≥ 2hours at 4°C with tipping. Then, 25µl Dynabeads™ 

protein G magnetic beads was added to the samples and incubated overnight at 4°C with 

tipping. The residual beads were collected with a magnetic rack and washed 3 times with 

700µl 1xIP buffer. The bead was then re-suspended in 20mg/ml Proteinase K solution and 

incubated for 3hours at 50°C and 800rpm. The residual beads where pelleted using a 

magnetic rack. The supernatant was collected for phenol/chloroform extraction. For 
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extraction, the supernatant was treated with 250µl phenol: chloroform: isoamyl alcohol at a 

ratio of 25:24:1, vortexed and then spun down for 2 minutes at 14,000rpm. Then, the 

supernatant was treated with 250µl chloroform, vortexed and spun down for 2 minutes. 

Finally, DNA was precipitated by adding 20µl 5M NaCl, 1µl glycogen and 500µl 100% 

ethanol and incubated at -20°C for 30 minutes. The samples were then pelleted at 4°C and 

14,000rpm for 20 minutes and allowed to dry at room temperature for 10 minutes. The dried 

out samples are re-suspended in 25-50µl water and readied for the HM450K bead chip array 

for methylation analysis. 

HM450K bead chip array: For this study, we coupled Immunoprecipitation with 

5hmC antibodies with the Human methylation 450K array. For more details, refer to the 

2.1.2. Methods; sub-heading HM450K bead chip array. 

DNA digestion with PvuRst1I and DNA sequencing: PvuRts1I (Pvu) restriction 

enzyme can directly cleave hydroxymethylated DNA 12-14 bps away from the 5hmC site 

(Szwagierczak et al., 2011). We developed a new technique that we call Pvu-seq which 

allows direct detection of 5hmC without chemical modification of 5hmC or bisulfite 

conversion. A paper describing this technique was published in BMC Genomics (Cingolani et 

al., 2013). Briefly, the whole genomic DNA extracted from control and Pb-treated hESCs, 

was digested with PvuRts1I and sequenced using 50 bps paired end sequencing reads in 

Illumina™ HiSeq 2500. 

Statistical analysis for HMeDIP- 450K data: For studying effects of exposure to Pb 

on the 5hmC profile for in-vitro Pb-hESCs and UCB DNA, we used the Adjacent site 

clustering algorithm (A-clustering) proposed by Sofer et al, 2013(Sofer et al., 2013; Sen et 

al., 2015a). We used A-clustering to detect sets of correlated CpG sites and then tested the 
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clusters for multivariate response to environmental exposure to Pb using the generalized 

estimation equation approach. The aforementioned approach is efficiently implemented using 

the R-package Aclust (Sofer et al., 2013). For determining the differentially 

hydroxymethylated regions (DhMRs) we used modified Aclust parameters; Spearman 

correlation, for calculating the distance between adjacent sites (dist(i,j)= 1 corr(i,j)), average 

clustering type, which require that mean distance between two sites be at least 0.25, 300 bps 

distance restriction for merging of clusters, which ensures that clusters located far away from 

each other are not merged together based on correlation. The clustering approach is 

implemented with a 299 bps merge initiation step, which clusters all sites wedged between 2 

high correlated sites within 299 bps of each other together, to reduce the complexity of data 

and the analysis time for the A-clustering step. The minimum fragment length pulled down 

by 5hmC antibody was 300bps, therefore to increase the probability of detecting high density 

5hmC clusters only the distance restriction for clustering was restricted to 300 bps. Finally, 

the data was analyzed using a generalized estimation equation approach and filtered for 

significant DhMRs using FDR corrected p-value cutoff = 0.05, exposure effect size ≥ |0.02| 

and number of CpG sites per cluster ≥ 5. These regions are can be defined as Pb-dependent 

high density 5hmC clusters. To determine the genomic locations of the probes belonging to 

individual DhMCs, they were annotated using the publicly available Illumina Human 

Methylation 450k annotation data in R (>2.15). The target genes mapping to DhMRs were 

individually visualized using UCSC genomic browser(Sen et al., 2015a). The Delta beta or 

the beta difference between the median of the beta values for each probe for low BLL 

samples and high BLL samples were mapped by the chromosomal location of the probes.  
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Statistical analysis of the effect of sex in HMeDIP-450K array for UCB DNA: 

The single nucleotide differences 5hmC and association with the sex of the infant was 

determined using a mixed effect model which was implemented using the package CpGassoc 

in R(R>2.15)(Barfield et al., 2012). All analysis was conducted controlling for covariates 

such as BLL, socioeconomic status, gestational age and smoking status of the mothers and 

birth weight of the infant. After determination of single nucleotide differences the sample 

was either separated into males and females and analyzed separately using the A-clustering 

approach described previously to determine the male-specfic and female-specific 5hmC 

changes in co-regulated hMRs. Alternatively, the sex of the infant was used as a covariate 

which enabled us to determine the Pb-dependent changes in hMRs conserved between male 

and female infant. All analysis was conducted while controlling for socioeconomic status, 

gestational age and smoking status of the mothers and birth weight of the infant.  

Cell type estimation: Cell type estimation was done using the estimateCellCount 

function in Minfi (R>2.15)(Aryee et al., 2014). The raw dataset directly read from the .idat 

files where used to estimate cell count based on the HM450K data generated for flow sorted 

blood cells from 6 adult males available in Bioconductor. 

Statistical analysis of HM450K for UCB DNA: All CpG sites mapping to putative 

5hmC clusters are removed from the beta matrix. The single nucleotide differences 5hmC 

and association with the sex of the infant was determined using a mixed effect model which 

was implemented using the package CpGassoc in R(R>2.15) [26]. All analyses were 

conducted controlling for covariates such as BLL, socioeconomic status, gestational age and 

smoking status of the mothers and birth weight of the infant. For determining the 

differentially methylated regions (DMRs) we used the modified Aclust parameters; 
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Spearman correlation, for calculating the distance between adjacent sites (dist(i,j)= 1- 

corr(i,j)), average clustering type, which require that mean distance between two sites be at 

least 0.25, 300 bps distance restriction for merging of clusters. The clustering approach is 

implemented with a 299 bps merge initiation step. Finally, the data was analyzed using a 

generalized estimation equation approach and filtered for significant DhMCs using FDR 

corrected p-value cutoff = 0.05 and exposure effect size ≥ |0.02|. To determine the genomic 

locations of the probes belonging to individual DMCs, they were annotated using the 

publicly available Illumina™ Human Methylation 450k annotation data in R (>2.15). 

Statistical analysis for Pvu-Seq data: Pvu-Seq was used to confirm the presence of 

5hmC in the predicted Pb-dependent high density 5hmC clusters (Cingolani et al., 2013). 

Using the approach implemented in the chipseq package in R/Bioconductor, peaks 

significantly above the noise distribution was estimated and visualized in using Integrative 

genome viewer (IGV)(Sen et al., 2015a). Briefly, the peak calling for pvu-seq is based on the 

presumption that the number of times a genomic position is sequenced (coverage where 

coverage = Read Length (nt) * Total Reads Number * / *Genome Length (nt)) follows a 

Poisson distribution. Therefore, from this information we can estimate a coverage cut-off for 

which the FDR corrected p-value ≤ 0.05.  For our study the estimated coverage cutoff was 

4.5. PvuRts1I (Pvu) restriction enzyme can directly cleave hydroxymethylated DNA 12-14 

bps away from the 5hmC site(Szwagierczak et al., 2011) sites. Therefore, we extended our 

peak region to ±20 on either side. Then using GenomicRanges package in R we determined 

HMeDIP-450K 5hmC regions were overlapped with the predicted Pvu-Seq peak to confirm 

the presence of 5hmC. Validation was only done for the Pb non-treated hESCs. For 

visualization of the data, we converted the sorted Pvu-Seq, .bam files into .bed file using 
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Figure 3.1: Beta value distribution of HMeDIP-450K data. A) Before normalization, B) after 

normalization. Exp1 = Control, Exp2= 0.08µM Lead (Pb) exposure, and Exp3= 1.5µM Lead (Pb) exposure. 

bedtools and calculated the median count in 25bps windows along the genome and plotted 

them as histograms using Integrative genome viewer (IGV). The location of the CpG 

sites/probes mapping to high density 5hmC regions (hMRs) where obtained from the 

Illumina Human Methylation 450k annotation data in R and plotted as a separate track in 

IGV. The overlapped regions where queried on IGV to generate region-specific 5hmC 

overlap. HMeDIP-Seq data was downloaded from GEO (GSM1008199) and overlapped 

HMeDIP-450K using Genomic Ranges package in R. 

Gene ontology analysis: Gene ontology analysis was done using GOstats in 

R/Bioconductor. Briefly, for a gene ontology (GO)  class a hypergeometric  probability is 

calculated, denoting whether the number of gene belong to the GO term is larger than 

expected(Falcon and Gentleman, 2007). We use this method to look at the suggestive 

association of our gene list with gene – ontological categories. As the gene list is short, this 

assists in manual curation of the dataset rather than providing the exact biological targets. 

3.3. Results 

Normalization and analysis of HMeDIP-450K array on the stem-cell model of 

environmental exposure. 
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The β-values from HM450K array have a bimodal distribution with the right peak 

representing un-methylated probes and left peak representing methylated probes (Fig 3.1A). 

The HMeDIP-450K array has a prototypical distribution characterized by a central peak (Fig 

3.1A). We speculate that this central peak is most likely due to accumulation of HM450K 

probes which did not hybridize to the IP’ed DNA. Normalization and background correction 

using well established HM450K normalization pipelines (see methods) effectively gets rid of 

these peaks (Fig 3.1B). 

5hmC antibodies are most likely to bind to regions of high 5hmC density. Based on 

this assumption we pre-clustered our CpG sites into co-regulated regions (see methods) and 

then tested the impact of exposure on these co-regulated clusters. One caveat of this analysis 

is that some of these clusters will contain 5mC sites which lie in close proximity to high 

density 5hmC clusters. We tested our modified array on a stem-cell model of environmental 

exposure (see methods)(Senut et al., 2014). At a correlation distance (d) cut-off of 0.25, 

maximum cluster size ≤300 bps and minimum number of mapped CpG probes ≥5 we 

detected 1909 putative high density CpG clusters consisting of 12929 unique CpG sites. We 

defined these clusters/regions as co-regulated high density 5hmC regions (hMRs). 
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Figure 3.2:  Characterization of CpG sites in putative 5hmC clusters. A) 

Heatmap representation of Euclidean distance matrix between control hESCs 

and hESCs exposed to Pb (0.8µM and 1.5µM for 12929 CpG sites mapping to 

1909 hMRs. B) Distribution of CpG sites with beta values ≥ 0.60 or 60% within 

1500 bps on either side of transcription start sites. C) Distribution of CpG sites 

with beta values ≥ 0.20 or 20% and ≤ 0.60 or 60% within 1500 bps on either 

side of transcription start sites. D)  Distribution of CpG sites with beta values ≤ 

0.20 or 20% within 1500 bps on either side of transcription start sites. 

5hmC has been shown to localize around the transcription start sites of active 

transcribing genes (Stroud et al., 2011; Szulwach et al., 2011).  We found that 41% of the 

CpG sites belonging to hMRs mapped near TSS (±1500bps). Irrespective of β values, the 

density distribution of these hydroxymethylated CpG sites gradually decreased when moving 

away from the TSS (Fig. 3.2B-D). 

Next, we investigated the impact of Pb-exposure on DNA hydroxymethylation of the 

pre-defined hMRs using GEE (see methods). We found that exposure to 0.8 µM Pb caused a 

≥ +2% increase in 5hmCs in 36 DhMRs and a ≤ -2% decrease in 70 DhMRs at a FDR 

corrected 

significance cut-off 

of 0.05 (Fig. 3.3A). 

Similarly, exposure 

to 1.5 µM Pb 

concentrations 

caused a ≥ 2% 

increase in 5hmC in 

38 DhMRs and a ≤ 

2% decrease in 162 

DhMRs at a FDR 

corrected 

significance cut-off 

of 0.05 (Fig. 3.3B). The DhMRs for hESCs exposed to 0.8 µM Pb were associated with 

genes implicated in processing of mRNA such as RNA phosphodiester bond hydrolysis, 
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Figure 3.3:  Number of differentially hydroxymethylated clusters (DhMRs) 

detected at a FDR corrected p-value cut-off ≤ 0.05, effect size ≥ |0.02| or 

|2%| and number of CpG site per cluster ≥ 5 for hESCs  exposed to A) 

0.8µM or B) 1.5 µM Pb. Exposure to 0.8 µM Pb caused ≥ 2% increase in 

5hmC in 36 hMRs and ≤ 2% decrease in 70 hMRs. Exposure to 1.5 µM Pb 

concentrations caused ≥ 2% increase in 5hmC in 38 hMRs and ≤ 2% 

decrease in 162 hMRs. 

 

endonucleolytic (GO: 0090502, p-value= 0.000396921) and pyrimidine deoxyribonucleotide 

metabolic process (GO: 0009219, p-value=0.002472255) (data not shown).  For hESCs 

exposed to 1.5µM Pb, gene ontology categories were associated with cellular proliferation 

associated processes such as cell division (GO: 0051301, p-value= 1.16E-05), mitosis 

(GO:0007067, p-value= 0.00013) (data not shown).  

Validation of HMeDIP-450K array using PVU-Sequencing. 

We wanted to validate the DhMRs detected by using a bisulfite independent 

technique called PVU-

Seq (see methods). The 

PvuRts1i enzyme cuts 

12-15 nucleotides away 

from the 5hmC sites 

(Szwagierczak et al., 

2011). Therefore, 

regions which show 

significantly higher coverage compared to the surrounding noise levels (peaks) are indicative 

of the presence of 5hmC within ± 12-15 nucleotides from the genomic location of the 

peaks(Cingolani et al., 2013). We found that Pvu-Seq can only validate the presence or 

absence of 5hmC site (s) and cannot be used quantitatively at the sequencing depth that we 

used in this paper (Sen et al., 2015a).  We mapped the significant PVU-Seq peaks for DNA 

isolated from control un-treated H9 stem cells and filtered them by FDR corrected p-value 

≤0.05. Finally, we overlapped the significant peaks with the 12929 probe positions for 1909 

hMRs. We observed that 5661/12929 (44%) CpG probes contained significant PVU-Seq 
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Figure 3.4:  Validation of putative 5hmC clusters. Visualization 

of overlap between representative putative hMRs detected by 

HMeDIP-450K array and putative Pvu-Seq peaks for  hESCs not 

exposed to Pb, A) BOD-1 (Biorientation Of Chromosomes In 

Cell Division 1) promoter region. B) ATPAF1 (ATP Synthase 

Mitochondrial F1 Complex Assembly Factor 1) promoter region. 

 

peaks (see methods for peak calling method) located within ±20bps around the CpG probe 

position.  Examples of an overlapped region are indicated (Fig 3.4A and B).  

We further validated our findings from PVU-Seq using meta-analysis of HMeDIP-

Seq data from H9-hESCs 

(GEO accession, 

GSM1008199) (Gao et al., 

2013). This study was focused 

on determining the 5hmC 

distribution on pluripotent 

hESCs. Fortuitously the cell 

line used, the culture protocol 

and the IP protocol for this 

study were almost identical to 

our non-treated hESCs.   6807/12929 (52%) CpG probes mapping to our target hMRs 

contained at-least 1 significant HMeDIP-Seq peak located ±20bps around the probe sites. 

Furthermore, we report a positive correlation between (r2=0.36 or 36%) overlapping 

HMeDIP-450K sites and number of enriched fragments from the HMeDIP-Seq dataset (Fig 

3.6A). Examples of overlapping region are illustrated in Fig 3.5A and B.  Finally, 

3160/12929 CpG sites were detected in both HMeDIP-Seq data from Gao et al, 2013 and our 

PVU-Seq data (Fig 3.6B).  Our validation experiments clearly indicate that HMeDIP-

HM450K is able to interrogate well represented 5hmC regions in the genome. 
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Figure 3.5: Examples of CpG sites mapping to high density 5hmC region (hMRs) 

regions which overlapped with HMeDIP-Seq dataset (GEO accession: GSM1008199). 

~ 52% (n=6807 /12929) CpG sites were overlapped in total. Lane titled “HMeDIP-

450K” represents the genomic location of the CpG sites. Lane titled 

“GSM1008199(HMeDIP-seq) indicate the histogram of enriched probe fragments per 

100 bps window. Red indicates the regions of interest or location of putative 5hmC 

CpG sites for the CpG clusters. Final lane corresponds to refseq genes (TBPL2 and 

TINAGL1). 

Pb-exposure associated changes in co-responding high density 5hmC clusters in 

umbilical cord blood samples. 

In the previous section, we demonstrated that our modified version of the HM450K 

array is capable of detection and quantification of densely populated 5hmC regions. 

Therefore, we used the HMeDIP-450K array to look for Pb-dependent changes in 5hmC in 

UCB DNA isolated from the ELEMENT cohort (see methods). In our earlier studies we have 

reported Pb-exposure causes sex-specific changes in DNA methylation in peripheral blood of 

children aged 3months to 5 years (Sen et al., 2015b). Therefore, we hypothesized that the 

5hmC profile of the genome might also be sex-specific and contribute to sex-specific 

susceptibility 

to adult 

diseases caused 

due to prenatal 

Pb exposure. 

We modelled 

the association 

between Pb-

exposure and 

5hmC levels at 

single CpG-

sites using a 

mixed-effect 



65 

 

 

Figure 3.6: A) Smoothened scatter plot with Lowess smooth 

curve showing positive correlation between Beta values of CpG 

sites mapping to high density 5hmC region (hMRs) regions  

which overlapped with HMeDIP-Seq dataset (GEO accession: 

GSM1008199). B) Overlap between the HM450K probes 

validated by Pvu-Seq and HMeDIP-Seq dataset (GEO accession: 

GSM1008199) show found 3160 CpG sites /probes in common 

i.e. validated by both datasets. Additionally, 3647 CpG sites not 

validated by Pvu-Seq were overlapped with the HMeDIP-Seq 

dataset. Therefore, using a combination of 2 datasets we were 

able to validate ~72% (n= 9308/12929) of the CpG sites 

mapping to hMRs. 

 

 

Figure 3.7:  Sex-dependent difference in 5hmC and 5mC clusters. T-

plot representation of association analysis based on mixed effect model 

for single nucleotide difference in A) 5hmC and B) 5mC status between 

males and females in UCB DNA while controlling for blood lead levels 

(BLL), Socioeconomic score (SES), birth weight, gestational age and 

smoking status.  The results show that a larger number of 5mC sites in 

UCB DNA is associated with sex rather than putative 5hmC sites. 

 

model.  Our analysis revealed only 9 CpG probes which were significantly different between 

males and females (Fig 3.7A), suggesting that sex has a minimal effect on the 5hmC profile 

of the genome.  

Nevertheless, we performed differential hydroxymethylation analysis using sex as a 

covariate in our model (see methods). These regions we define as sex-independent/conserved 

regions. At a FDR corrected p-value ≤ 0.05, we found 4 DhMRs which showed at-least ≥ 

+2% Pb-associated increase in hydroxymethylation and 12 DhMRs which showed ≤ -2% Pb-

associated decrease in 5hmC in conserved DhMRs. Some important examples of conserved 

regions are shown in Table 

3.2. For example, we 

observed 13 ± 3 % Pb-

exposure dependent 

decrease in a DhMR of 5 

probes mapping to CpG 

island (chr1:110230238-

110230614) near the TSS 
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Figure 3.8: Representative Pb-dependent 5hmC clusters for UCB DNA from 

infants prenatally exposed to Pb.  The Delta beta was calculated by subtracting 

the mean of β values for cases with high BLL samples (≥5µg/dl) and the mean 

of β values for controls (BLL ≤ 5µg/dl). The resulting Delta beta was mapped to 

the genome to visualize the estimated changes in hydroxymethylation in UCSC 

genome browser for regions mapping to DHMRs. The significant clusters are 

highlighted in light blue. A) 13 ± 3 % Pb-exposure dependent decrease in a 

DhMR of 5 probes mapping to CpG Island near the TSS of GSTM1 for 

conserved regions. B) 11 ± 3% increase in 5hmC in a cluster of 7 CpG sites in 

the promoter CpG island mapping to imprinted gene cluster SCGE/PEG10 for 

male-specific regions. C) 11 ± 3 % decrease around the TSS of mesoderm 

specific transcript (MEST) in a cluster of 7 CpG sites for female-specific 

regions. 

 

 

of the Glutathione-S-transferase subunit mu 1 gene GSTM1 (Fig. 3.8A).  

Though the impact of Pb-exposure of 5hmC was limited, we believed that it was still 

worthwhile to investigate the male and female samples separately. At an FDR corrected p-

value ≤ 0.05 and ∆β or 

β difference ≥±2% we 

found 8 DhMRs 

which showed an 

increase and 14 

DhMRs which showed 

a decrease in 

hydroxymethylation in 

UCB DNA for Pb-

exposed male children 

(Fig 3.9A). We 

defined these as male 

specific DhMRs. For 

example, male specific DhMRs mapped to genes such as shared promoter CpG island (chr7: 

94284858-94286527) paternally expressed imprinted gene PEG10 and Sarcoglycan (SGCA) 

(11 ± 3 % decrease) (Fig. 3.8B). Similarly, we detected 9 DhMRs which showed an increase 

and 12 DhMRs which showed a decrease only in female; female specific DhMRs. For 

examples, Female specific DhMRs mapped to genes such as CpG Island (chr7-130130739-

130133111) of paternally imprinted mesoderm specific transcript (MEST) (11 ± 3 % 

decrease) (Fig. 3.8C).   
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Figure 3.9: Number of differentiallly hydroxymethylated (DhMRs) and 

methylated (DMRs) detected for UCB DNA samples in conserved, male-specific 

and female-specfic regions. A) At a FDR corrected p-value ≤ 0.05, we found 4 

DhMRs which showed ≥ 2% Pb-associated increase in hydroxymethylation and 

12 DhMRs which showed ≤ 2% Pb-associated decrease in hydroxymethylation 

in conserved DhMRs, 8 DhMRs which showed an Pb-dependent increase in 

hydroxymethylation and 14 DhMRs showed Pb-dependent decrease in 

hydroxymethylation in UCB DNA for male infants, 9 DhMRs which showed a 

Pb-dependent increase in 5hmC and 12 DhMRs which showed a Pb-dependent 

decrease in 5hmC for female infants. B) For conserved regions at an exposure 

effect size cut-off ≥ |0.02| or |2%| and FDR corrected p-value ≤ 0.05, we found 4 

Pb-associated DMRs which were hypermethylated and 1 DMR which was 

hypomethylated. Out of 44 DMRs consisting of 122 CpG sites in females, 25 

DMRs were hypermethylated, while 19 DMRs were hypomethylated in UCB of 

female infants. For males, using the same criteria for filtering we found 96 

DMRs mapping to 390 probes or CpG sites. 19 DMRs were hypermethylated 

and 77 DMRs were hypomethylated in UCB for male infants. 

Lead exposure associated changes in co-regulated high density 5mC clusters in 

umbilical cord blood samples. 

 

In the earlier section using the HMeDIP-450K array we demonstrated that Pb-

exposure has limited 

sex-specific impact 

on DNA 

hydroxymethylation 

profile of UCB 

DNA. Therefore, we 

wanted to explore if 

limited sex-

specificity was also 

shared characteristic 

of the DNA 

methylation profile 

of the UCB DNA. We used the HM450K array to determine the association between 5mC 

profile of UCB DNA and sex of the children. We filtered the HM450K dataset and excluded 

all probes mapping to hMRs from the Hm450K probe list (see methods). Then we used a 

mixed effect model (see methods) to determine the CpG sites which were differentially 

methylated in UCB DNA depending on the sex of the infants. Our analysis revealed that 300 

CpG sites were significantly different between males and females (Fig. 3.7B), suggesting 

that, contrary to our findings for 5hmC, sex has a large effect on the 5mC profile of UCB 

DNA. To further understand this association at a regional level we modelled CpG sites as co-
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regulated 5mC clusters using sex as a covariate. For conserved regions at an exposure effect 

size cut-off ≥ ±2% and FDR corrected p-value ≤ 0.05, we found 4 Pb-associated 

differentially methylated regions (DMRs). This result further demonstrated that 5mC profile 

of the genome is highly sex-specific.  

Therefore, we separated out the male and female samples and re-ran our regional 

differential methylation analysis. At an FDR corrected p-value ≤ 0.05 and ∆β or β difference 

≥±2% we identified 44 DMRs consisting of 122 CpG sites in females. Out of these 44 

DMRs, 25 were hypermethylated, and 19 DMRs were hypomethylated in females (Fig 3.9B). 

For males, using the same criteria for filtering, we found 96 DMRs mapping to 390 CpG 

sites. Of these 96 DMRs, 19 were hypermethylated and 77 DMRs were hypomethylated in 

males (Fig. 3.9B). Our finding suggests that the 5mC profile for UCB DNA from male 

infants is more sensitive to Pb exposure compared to females. Furthermore, male-specific 

DMRs were enriched for functional categories such as telencephalon development (GO: 

0021537, p-value= 4.24783E-05) and glial cell differentiation (GO: 0010001, p-value= 

0.000151812) (data not shown). These genes were not affected by Pb-exposure in females. 

3.4. Discussion 

In this study we present an efficient and inexpensive method to study the 5hmC 

profile of the DNA called as the HMeDIP-450K array. This method is only restricted to 

regions of high 5hmC density which can be efficiently IP’ed using commercially available 

5hmC antibody. Using this method, we have demonstrated that 5hmC profile of UCB DNA 

shows limited sex specific changes in response to prenatal Pb exposure. In contrast, 5mC was 

highly sex-dependent. Furthermore, 5mC in UCB DNA from male infants was much more 

susceptible prenatal exposure to Pb compared to the females.  Sex-specific susceptibility to 
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exposure has been reported by several studies in animal models and human cohorts. For 

example, low BLL has been shown to have much more profound impact on cognitive 

performance of boys compared to girls (Koller et al., 2004). This is consistent with the 

observation that childhood Pb exposure is correlated with much reduced gray matter volume 

in males compared to females (Cecil et al., 2008). Some of these sex-biased susceptibility has 

been attributed to down-regulation of expression of genes required for learning and behavior 

like Arc, and transcription factors such as Stat1 (Schneider et al., 2012). Epigenetically, 

studies by Pilsner and colleagues have demonstrated that prenatal exposure to Pb is 

associated with global changes in 5mC dependent on sex of the individual. Furthermore, over 

580 autosomal CpG sites have been shown to have sex-specific differences in DNA from 

buccal swabs from heathy adult subject. Therefore, our study provides further additional 

evidence 5mC profile of the genome is indeed largely dependent on sex and may underlie 

increased susceptibility of males to environmental insults.  

Interestingly, though we observed limited impact of prenatal Pb-exposure on DNA 

methylation profile of UCB DNA, we observed significant 5hmC decrease near transcription 

start sites (TSS) of GSTM1 and GSTM5.  GST or Glutathione-S-Transferases are a group of 

phase 2 metabolic enzymes responsible for conjugation of reduced form of glutathione to 

xenobiotic substrates. Genetically, GSTM1 class of enzymes has been shown to highly 

polymorphic and has been implicated in development of bladder cancer (Engel et al., 2002). 

Interestingly, polymorphisms in the GSTM1 gene have also been associated with lead-

induced inflammatory response in human cohorts (Sirivarasai et al., 2015). This suggests that 

GSTM1 is an important regulator of stress response. Therefore, it’s perhaps not surprising to 

observe 5hmC changes near the TSS of GSTM1 and M5. We speculate that Pb-dependent 
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decrease in 5hmC might be responsible for activating transcription (Wu et al., 2011a) of GST 

genes and may be protective in nature. 

Additionally, we did observe a limited number of 5hmC clusters which showed sex-

specific response Pb-exposure. Interestingly these clusters were restricted to genes associated 

with paternal and maternal imprinting. Imprinted genes are expressed in a parent-of-origin 

specific fashion. DNA methylation of imprinted genes has long been hypothesized as 

biomarker of exposure. In this study we report, Male-specific DhMRs mapped to promoter 

region of a paternally expressed imprinted gene locus consisting of 2 genes; paternally 

expressed 10 (PEG10) and sarcolycan epsilon gene (SGCE). Yamaguchi et al, 2013 

demonstrated that imprinted SGCE/PEG10 locus was completely methylated in TET1 

paternal KO embryos which lead to early embryonic lethality in mouse model (Yamaguchi et 

al., 2013). We predict that a decrease in 5hmC levels in this region will overtime lead to the 

accumulation of methylation marks and consequently increase susceptibility to 

developmental disorder. Similarly, in females, we saw a decrease in 5hmC in the CpG 

islands located in the TSS of the Mesoderm specific transcript (MEST), also known as PEG1. 

Significant decrease in DNA methylation of PEG1 locus was observed in mothers diagnosed 

with diabetes mellitus compared to healthy controls (El Hajj et al., 2013). This result 

suggests aberrant changes in methylation in PEG1 locus might be associated with metabolic 

disorders.  

To determine the ability of the HMeDIP-450K array to detect 5hmC we tried to 

validate some of the differential methylated sites detected in un-treated H9 Human 

embryonic stem cells (hESCs) using 2 independent methods. In the first method, we used the 

PvuRts1I (Pvu) restriction enzyme to digest the DNA from H9 hESCs and sequenced the 
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products. This method is significantly different from the HM450K array as it does not rely on 

sodium bisulfite treatment of DNA. Sodium bisulfite treatment is a critical step in preparation 

of samples for HM450K array as it is required for the cytosine(C) to thymine(T) (C>T) 

conversion of un-methylated C. This facilitates the differentiation of methylated-C from the 

unmethylated-C which allows detection of 5mC and 5hmC. PVU-Seq is at best qualitative in 

nature and can be utilized to detect the presence or absence of 5hmC.  

We performed secondary validation using a HMeDIP-Seq meta-dataset generated 

from H9 hESCs. The method of preparation of DNA prior to detection using the HMeDIP-

450K array and HMeDIP-Seq is exactly the same. However, HMeDIP-450K array 

interrogates pre-selected CpG sites while the HMeDIP-Seq is unbiased and whole genome. 

Furthermore, HMeDIP-Seq is limited by the sequencing depth i.e. increasing the sequencing 

depth will lead to detection of larger number of 5hmC sites. Therefore, for this set we 

expected higher number of HMeDIP-450K probes to be located near HMeDIP-Seq peak 

regions. 

Given the difference in method of preparation of DNA, detection capabilities and 

limitation of the corresponding techniques, we expected to see low (~25%) to moderate 

(~60%) overlap between the HMeDIP-450K CpG probes and the PVU-Seq and HMeDIP-

Seq peaks. Correspondingly we observed only 44% of the HMeDIP-450K was located near 

PVU-peaks and 52% located near HMeDIP-Seq peaks. Therefore, in this study we decided to 

annotate all the HMeDIP-450K probes validated by either the PVU-Seq or the HMeDIP-Seq 

dataset as our high confidence 5hmC probe sets (N= 9308/12929).  

In conclusion, in this study we present a novel modification of the HM450K array 

which is capable of detecting subtle changes in densely populated 5hmC clusters. We show 
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that 5hmC modification are less impacted by sex of the individual compared to 5mC and 

might be better suited as early biomarkers of Pb exposure especially in Umbilical cord blood. 

Table 

Table 3.1: Differentially hydroxymethylated (5hmC) regions (DhMRs) for representative 

genes in hESCs exposed to either 0.8µM Pb or 1.5µM Pb. These clusters can be used as 

potential early 5hmC biomarkers of Pb exposure. 

Pb 

exposur

e (µM) Gene CpG Island 

Promoter 

associate

d 

Effec

t size 

Standar

d error P-value FDR 

Numbe

r of 

sites 

per 

cluster 

0.8 ATP5G1 

chr17:46969695

-46970125 yes 

-

0.078 0.023 

0.00063

1 

0.01504

2 7 

0.8 ATPAF1 

chr1:47133674-

47134395 yes 0.028 0.004 1.50E-11 3.59E-09 7 

0.8 ETHE1 

chr19:44031127

-44031504 yes 

-

0.063 0.011 2.21E-08 2.63E-06 6 

0.8 

HSD17B

4 

chr5:118788125

-118788428 yes 

-

0.074 0.021 

0.00045

9 

0.01186

2 6 

0.8 AGO2 

chr8:141646075

-141646514 yes 

-

0.073 0.014 9.40E-08 9.27E-06 5 

1.5 CCND1 

chr11:69451136

-69458596 yes 

-

0.034 0.010 

0.00091

2 

0.01333

7 11 

1.5 NUF2 

chr1:163291479

-163292021 yes 

-

0.148 0.043 

0.00053

9 

0.00925

1 5 

1.5 RAD51 

chr15:40986871

-40987772 yes 

-

0.074 0.025 0.00306 

0.03123

8 6 

1.5 GOLPH3 

chr5:32173598-

32174837 yes 

-

0.066 0.022 

0.00335

4 

0.03324

5 7 

1.5 SOD1 

chr21:33031734

-33032657 yes 

-

0.064 0.021 

0.00290

5 

0.03022

5 6 

 

 

Table 3.2: Differentially hydroxymethylated (5hmC) regions (DhMRs) for representative 

genes for male-specific, female-specific and conserved regions in umbilical cord blood DNA 

with blood lead levels (BLL) ≥ 5µg/dl. These clusters can be used as potential early 5hmC 

biomarkers of Pb exposure. 
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Group Gene CpG island 

around 

TSS 

Imprint

ed gene 

Effect 

size 

Standar

d error 

P-

value FDR 

Numbe

r of 

sites 

per 

cluster 

Conser

ved 

GST

M1 

chr1:11023023

8-110230614 yes no -0.139 0.035 6.1E-05 

0.000

777 5 

Conser

ved 

GST

M5 Non-CpG yes no -0.212 0.033 

9.82E-

11 

3.8E-

08 8 

Conser

ved H19 

chr11:2019565

-2019863 yes 

maternal

ly 

expresse

d -0.106 0.025 

1.59E-

05 

0.000

307 5 

Conser

ved 

DNA

H6 

chr2:84743463

-84743685 yes no 0.044 0.008 

4.57E-

08 

4.82E-

06 6 

Male-

specific 

GOLP

H3 

chr5:32173598

-32174837 

yes 

(promot

er) no 0.038 0.013 

0.0028

85 

0.018

132 7 

Male-

specific 

SGCA

/PEG1

0 

chr7:94284858

-94286527 

yes 

(promot

er) 

paternall

y 

expresse

d -0.113 0.032 

0.0003

64 

0.005

345 9 

Female-

specific MEST 

chr7:13013073

9-130133111 yes 

paternall

y 

expresse

d -0.112 0.031 

0.0002

91 

0.002

521 7 

Female-

specific 

DDA

H2 

chr6:31695894

-31698245 

yes 

(promot

er) no 0.034 0.011 

0.0015

35 

0.008

076 5 

 

 

Table 3.3: Differentially methylated (5mC) regions (DMRs) for representative genes for 

male-specific, female-specific and conserved regions umbilical cord blood DNA with blood 

lead levels (BLL) ≥ 5µg/dl. These clusters can be used as potential early 5mC biomarkers of 

Pb exposure. 

Group Gene CpG Island 

around 

TSS 

Effect 

size 

Standar

d error P-value FDR 

Numbe

r of 

sites 

per 

cluster 

Conserve

d PIK3R1 

chr5:67584213-

67584451 

yes 

(promoter) 0.030 0.006 

1.67E-

06 0.00912 2 
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Male-

specific GLI2 

chr2:121624827

-121625209 no -0.040 0.010 

4.57E-

05 0.00536 2 

Male-

specific FGF20 

chr8:16859044-

16859452 yes -0.036 0.008 

1.99E-

06 

0.00077

4 3 

Male-

specific 

SLITRK

5 

chr13:88329394

-88329885 yes 0.042 0.012 

0.00077

2 

0.04035

7 3 

Male-

specific 

TOP1M

T 

chr8:144416712

-144417054 

yes(promote

r) -0.024 0.007 

0.00083

1 

0.04269

1 2 

Female-

specific MBP 

chr18:74843360

-74845426 

yes(promote

r) -0.059 0.015 

0.00012

1 

0.03294

8 2 

Female-

specific SLC2A1 

chr1:43423467-

43424768 yes 0.036 0.010 

0.00023

7 

0.03997

9 3 

Female-

specific GJB3 

chr1:35246876-

35247599 yes 0.043 0.010 

5.85E-

06 

0.00754

1 2 
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CHAPTER 4: TRAUMATIC BRAIN INJURY CAUSES RETENTION OF LONG 

INTRONS VIA REGULATION OF LOCAL HISTONE 3 LYSINE 36 

METHYLATION PROFILE IN THE SUB-ACUTE PHASE OF INJURY.  

 

4.1. Background 

4.1.1. Drosophila model of traumatic brain injury 

Traumatic brain injury (TBI) is one of the leading causes of death in the world. TBI is 

typically characterized by primary damage due to physical trauma leading to neuronal cell 

death followed by secondary long-term damage mediated by a cascade of complex events. 

The primary damage encompasses physical damage such as contusion, damage to blood 

vessels (haemorrhage) and axonal shearing (Langlois et al., 2006; Maas et al., 2008). Profile 

for secondary damage can vary from tissue atrophy (Bramlett and Dietrich, 2007), glutamate 

exotoxicity, inflammation, mitochondrial damage and ROS generation leading to DNA 

damage among others (Povlishock and Christman, 1995). Till date, mouse is the most 

common organism used to study TBI. Mouse models of TBI are mainly divided in 3 types; 

fluid percussion injury (FPI) (Dixon et al., 1987), controlled cortical impact (CCI) injury 

(Lighthall, 1988; Dixon et al., 1991), weight drop–impact acceleration injury (Marmarou et 

al., 1994), and blast injury (Cernak et al., 1996). Briefly the FPI utilizes a pendulum striking 

the piston of a reservoir of fluid to generate a fluid pressure pulse to the intact dura through a 

craniotomy. This model can closely simulate a Closed Head Trauma (CHI), i.e. trauma 

without skull fracture. It has been generally observed to cause focal lesions and secondary 

neuronal damage in thalamus and hippocampus. The second model, CCI, utilizes a rigid 

surface (e.g. Piston) to cause injury to exposed, intact dura. CCI generally causes more 

diffuse injury, causing Blood Brain Barrier dysfunction, deformation of the cortex and long 

term progressive hypoxia in the brain. The weight drop-impact acceleration model, uses a 
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Figure 4.1.1: Drosophila brain is bilaterally 

symmetrical. Figure from (Keene and 

Waddell, 2007) 

guided free falling weight to impact an exposed (Feeney’s weight drop model) or protected 

(Marmarou’s weight drop model) dura. This usually causes cortical contusion progressing 

from a white matter hemorrhage and necrosis 

within 24 hours of the injury. If using protection 

(metal helmet on the skull midline between 

lambda and bregma) bilateral damage of 

vasculature alongside the midline in most 

commonly noted. The CCI usually produce 

neuronal damage most commonly observed car 

accidents.  Finally, the last model i.e. Blast injury 

model is meant to simulate the effect of blast 

waves on the CNS. This type of injury is commonly seen in military personnel subjected to 

explosive detonations. They commonly cause axonal injury in peripheral nervous system and 

diffuse systemic injury such as myelinated axonopathy, microvasculopathy, chronic 

neuroinflammation and neurodegeneration. Despite the wide range of TBI models available 

in mice, these experiments can be expensive. Moreover phenotypic and molecular outcomes 

can be high variable due to complex structure and wiring of the mammalian brain. 

Interestingly, the macroscopic structure of the Drosophila brain is very similar in 

many respects to the mammalian brain (Fig 4.1.1). For example, Drosophila brain is 

bilaterally symmetrical and divided into 3 regions; protocerebrum, deutocerebrum and 

tritocerebrum homologous to forebrain, midbrain and hindbrain in human. Moreover, it 

covered by a cuticle, separated from the brain by a fluid haemolymph making the structure 

very similar to human cranium. In lieu of the structural similarities between human and 
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Figure 4.1.2: Schematic diagram of the mTBI (modified TBI) 

device. It is designed to ameliorate the effect of TBI 

Drososphila brain, the Wassarman lab developed an inexpensive and reproducible model to 

simulate TBI in Drosophila melanogaster (Fruit Fly) using an in-house device known as the 

high impact trauma (HIT) device (Katzenberger et al., 2013). Using the HIT device, they 

demonstrated that that it is possible to reproduce defining characteristics typical to closed 

head trauma (CHI) in humans such as temporary incapacitation, ataxia, and 

neurodegeneration in Drosophila (Fig 4.1.2). For example, the Drosophila showed a 

reduction in lifespan, dependent upon the number of strikes, similar to reports from 

epidemiological studies in humans. The authors also demonstrated an increase in 

neurodegeneration (i.e. formation 

of vacuolar structures) dependent 

upon the age and the number of 

primary TBI incidences, similar 

to that observed in mouse models. 

The HIT device can simulate a 

TBI caused by rapid acceleration-

deceleration coupled by physical 

trauma and might be reminiscent of a car crash.  We modified the HIT device to ameliorate 

the effect of the TBI, by erecting an obstructive canopy at an approximate angle of 45o (Fig 

4.1.2). This helped us mitigate the variability in draw between biological replicates. Using 

this model, we investigated the effect of TBI on the transcriptome at 2 time points; early 

period/acute phase (4 hours), and late period/sub-acute phase (24 hours) in 0 to 5 days old 

flies. We hypothesized that the diversity of the transcriptome and expression profile will be 

different between the early and late period. Secondly, we speculated that the changes in the 
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Figure 4.1.3: Graphical representation of the process of alternative 

splicing process. 

transcriptome between early and late period will be correlated with local epigenetic features 

such as chromatin accessibility (e.g. heterochromatin vs. euchromatin). 

4.1.2. Regulation of alternative splicing by epigenetic modifications in neuronal damage. 

 

Alternative splicing is tightly regulated process which allows for a single gene to 

encode for a large number of proteins. Briefly, this process begins by demarcation of the 

exon boundaries by U1 and U2 small nuclear RNAs and protein complex. These small 

nuclear RNA recognize the 5’ Splice Sites and 3’ Splice Sites by directly base pairing with 

unprocessed mRNA and form an exon definition complex. The exon definition complex 

undergoes structural re-

arrangement into an intron 

spanning complex. This is 

followed by the recruitment 

of the tri-snRNP U4–U6•U5 

complex which allows the 

transition of the intron 

spanning complex into a 

catalytically active state. The 

main purpose of this reaction 

is to facilitate the spatial proximity between the 5’SS, branch site and 3’SS. This is followed 

by a transesterification reaction which results joining of the 5’SS with the branch point 

(usually Adenine) and formation of a Lariat intermediate. This is followed by a second 

transesterification reaction that joins together the adjacent exons and release the Lariat as a 

by-product of the splicing process (Fig 4.1.3).  
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The process of splicing is further regulated by interaction of the splicing machinery 

with other accessory proteins which bind to exonic and intronic sequences. For example, 

Serine/Arginine rich splicing factors (SR) proteins have been shown to bind to exonic 

sequences and allow differential processing of exons. One of the best studied examples is the 

sex-dependent exon inclusion/exclusion of doublesex (dsx) gene in Drosophila (Steinmann-

Zwicky, 1994). Exon 4 of dsx contains a 13nt repeat sequence (or dsxRE) which function as 

a splicing enhancer (Chandler et al., 2003). This enhancer sequence is recognized by SR 

protein RBP1 and splicing regulator TRA2. However, binding of RBP1 and TRA2 to dsxRE 

is dependent on presence of TRA. TRA is only expressed in female therefore exon 4 is 

included in females and excluded in males. Functions of SR proteins are antagonized by 

Heterogeneous nuclear ribonucleoproteins (hnRNP) (Han et al., 2010). As the name implies, 

hnRNP group of nuclear proteins can participate in regulation of diverse alternative splicing 

events. For example, hnRNP-A1 has been hypothesized to antagonize the function of SR 

protein Splicing Factor 2 (SF2) (Mayeda et al., 1993), hnRNP-L has been shown to bind to 

intronic sequences and prevent inclusion of cassette exon (Hung et al., 2008), hnRNP-H 

regulates switching between long and short isoform of A-raf protein (Rauch et al., 2010). 

Besides regulation of alternative splicing hnRNPs proteins are also responsible for nuclear-

cytoplasmic transport of mRNAs, mRNA stability and transcriptional regulation. hnRNP-A2 

has been shown to provide the cytoplasmic localization signal of myelin basic protein and 

control its localization in oligodendrocytes (Muller et al., 2013), hnRNP-K has been shown 

to regulate expression of c-myc by associating directly with the elongating polymerase 

(Michelotti et al., 1996) . Due to complex nature of the interaction between splicing factors, 

much of the alternative splicing regulatory process is yet to be well-understood. 
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Originally, it was believed that alternative splicing occurs post-transcriptionally. 

However early evidence from studies conducted by Kim et al,1997 and Hirose et al, 1999 

demonstrated the direct interaction between splicing factors and the nascent RNA template 

(Kim et al., 1997; Hirose et al., 1999), suggesting the role of Transcriptional machinery is 

regulation of alternate splicing events. These observations were further corroborated by 

Rosbash lab, who demonstrated that Drosophila S2 cells with a Slow Polymerase mutant 

(RPII215C4) mutant processed intron with a greater efficiency compared to WT flies (Khodor 

et al., 2011). Therefore, in view of the current evidence, we can conclude that splicing and 

transcription are not mutually independent processes.  

Interactions between the splicing machinery and the elongating polymerase also 

suggest that histone modifications might a regulatory role of alternative splicing. In 

particular, H3K36me3 has been hypothesized to be associated with alternative splicing in 

several studies. Yoh et al, 2008 demonstrated that SETD2 is recruited to the C-terminal 

domain of elongating Polymerase by SPT6 and is associated with its locus specific methyl 

transferase activity (Yoh et al., 2008). Studies by the Ahringer lab demonstrated that 

alternative exons are marked by lower levels of H3k36me3 modification compared to 

flanking constitutive exons suggesting a probable association between this histone mark and 

Alternative Splicing (Kolasinska-Zwierz et al., 2009). H3k36me3 has also been shown to 

directly interact with the splicing machinery. A study by Luco et al, 2010 reported that 

H3K36me3 can indirectly recruit Poly-pyrimidine binding protein (PTB) through MORF-

related gene 15 (MRG15) protein and cause exclusion of exons (Luco et al., 2010; Pradeepa 

et al., 2012; Zhou et al., 2014). Interestingly, H3K36me3 can also indirectly interact with SR 

proteins such as SRSF1 through accessory proteins PSIP1 and cause exon inclusion in genes, 
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such as exon 5 of DIAP2 and exon7 of VCAN (Luco et al., 2010; Pradeepa et al., 2012; Zhou 

et al., 2014). However, studies looking at genome-wide association between H3K36me3 and 

alternative splicing are limited.   

4.2. Methods 

Sample for survival estimation and exploratory RNA sequencing: Sample 

consisted of 0 to 5days old w1118 flies. These flies were collected in sturdy plastic vials and 

subjected to Traumatic brain injury using the High Impact trauma (HIT) device. For the 

survival assay, the male and female flies were separated and 25 flies per vial were used for 

each condition (control, 1 strike, 2 strike). The flies were subjected to TBI, at a spring 

deflection of approx. 45o to ameliorate the impact of trauma. The 2nd strike was performed 

after a recovery time of 5mins. These flies were maintained till ~98% of the flies in the 

control vial were deceased. Survival estimations and standard error calculation was done 

using R/Bioconductor. For RNA sequencing analysis heads from 50 males and 50 female 

flies for control, 1 strike and 2 strikes were pulled off manually one at a time and 

immediately transferred to RNA-later (500µl). Fly head collection was done at 2 time-points 

4 hours and 24 hours. The male and female were used as biological replicates. More 

explanation of study design for RNA-Sequencing studies is provided in later sections. 

Bulk preparation of fly heads: 0-5days old w1118 flies were transferred to 50 ml 

tubes on ice. Approximately 3 ml of flies was collected per tube. These flies were snap 

frozen by dipping them in liquid nitrogen and vortexed vigorously to detach the head (for 

3mins; 15 secs per turn). The vial was dipped in liquid nitrogen between consecutive turns to 

prevent them from thawing. The vortexed flies were passed through a sieve 720µm pore size. 

This allowed the separation of the bodies from the detached heads. The detached heads were 
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collected on another sieve 410µm pore size. This sieve allowed the separation of heads from 

other detached body parts. The fly heads were transferred to 2ml Eppendorf tubes and stored 

in -80oC this further use. 

Sample for Sub-cellular fractionation: 0-5days old w1118 flies were collected in 

bulk and separated into 2 batches. Batch 1 was used as control and prepared for subcellular 

fractionation. The fly heads were collected in RNAlater (500µl) to prevent RNA degradation. 

Batch 2 was transferred to plastic vial and subjected to 1 strike and collected after 24 hours in 

RNA-later (500µl). Samples were stored in -20oC prior to fractionation. Approximately, 

500µg of heads were collected per condition in 2ml Eppendorf tubes. 

Sample for ChIP-sequencing: 0-5days old w1118 flies were collected in bulk and 

separated into 2 batches. Batch 1 was used as control and prepared for tissue homogenization 

and DNA isolation. The fly heads were collected in 1XPBS (phosphate buffer saline) 

containing Protease halt cocktail (10µl per ml of PBS). Batch 2 was transferred to plastic vial 

and subjected to 1 strike and collected after 24 hours in 1XPBS (+halt cocktail). 

Approximately, 500µg of heads were collected per condition in 2ml Eppendorf tubes. 

Sample for RNA-sequencing of 3rd instar larvae and SM-mutant flies: Most of 

the gene knockdowns were performed by crossing da-Gal4 flies, which have ubiquitous 

expression, to UAS-RNAi flies using the following stocks from the Bloomington, Indiana 

stock center: y[1] sc[*] v[1]; Py[+t7.7] v[+t1.8]=TRiP.HMS01304 attP2 (expresses dsRNA 

for RNAi of Kdm4A (FBgn0033233) under UAS control); y[1] v[1]; Py[+t7.7] 

v[+t1.8]=TRiP.HMS02273 attP40 (expresses dsRNA for RNAi of Idh (FBgn0001248) under 

UAS control); P{GAL4-da.G32), which expresses Gal4 in all cells; y[1] v[1]; Py[+t7.7] 

v[+t1.8]=TRiP.JF01320 attP2 (Expresses dsRNA for RNAi of Kdm2 (FBgn0037659) under 



83 

 

UAS control); y[1] sc[*] v[1]; Py[+t7.7] v[+t1.8]=TRiP.HMS00488 attP2 (Expresses dsRNA 

for RNAi of CG7200 (FBgn0032671) under UAS control); y[1] sc[*] v[1]; Py[+t7.7] 

v[+t1.8]=TRiP.HMS00775 attP2 (Expresses dsRNA for RNAi of CG8165 (FBgn0037703) 

under UAS control); and y[1] sc[*] v[1]; Py[+t7.7] v[+t1.8]=TRiP.HMS00575 attP2 

(Expresses dsRNA for RNAi of Utx (FBgn0260749) under UAS control). The smooth-RNAi 

lines were not viable when crossed to da-Gal4, so instead we used a hypomorphic allele over 

a deficiency in a hemizygous combination;  cn[1] P{PZ} sm[05338]/CyO; ry[506] (aka. sm 

[4]) and w[1118]; Df(2R)BSC820, P+PBac w[+mC]=XP3.WH3 BSC820/SM6a.. 

Tissue homogenization: For tissue homogenization 4 stainless steel 3.2mm beads 

(Qiagen cat no. 69990) was added to 2ml Eppendorf tubes. The samples were subjected to 

homogenization using TissuelyserLT (Qiagen) using the following setting; 50 oscillations 

(1/s) for 2min. The homogenized samples were centrifuged using a low-speed bench top 

centrifuge and supernatant containing cells were collected for downstream processing.  

Subcellular fractionation: The RNAlater has a specific gravity greater than cells 

therefore it is difficult to recover the complete homogenate for prepared samples. To 

optimize the recovery, the RNAlater was diluted using 1XPBS (1:2). Subcellular 

fractionation was carried out using RNA Subcellular Isolation Kit (Active motif; 25501). The 

nuclear fraction was further treated with DNase to degrade contaminating DNA using DNase 

treatment kit (Active motif, 25503). The isolated RNA was measured using NanoDrop™ 

1000 Spectrophotometer. 

RNA isolation: RNA was isolated from heads or 3rd instar larvae using the Qiagen 

EZ1 RNA tissue minikit (Cat No./ID: 959034) and the isolated RNA was measured using 

NanoDrop™ 1000 Spectrophotometer. 
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Chromatin immunoprecipitation: The homogenized tissue collected was fixed by 

incubating with 16% Formaldehyde (final concentration 1%) for 10 min at RT. Then 

10XGlycine (final concentration 1X) was added and samples were incubated at RT for 5 

mins, to quench the activity of Formaldehyde. After incubation the samples were centrifuged 

at 3000g for 5min and supernatant was removed to obtain cell pellets. The formaldehyde 

fixed cell pellets were washed 2 times with PBS (1X) + HC (3000g for 5min) and then 

reconstituted in Membrane extraction buffer + HC (Pierce Chromatin Prep module, 26158). 

Cell pellets were broken up by pipetting with a p200 and vortexing for 15 secs and incubated 

on ice for 15 min. The lysed cells were recovered by centrifugation (9000g for 3min at 4oC) 

and reconstituted in 200 or 300µl of Nuclease free water (depending upon the size of the 

pellet, decided arbitrarily). Sonication was carried out using Covaris S2 Series 2 Focused 

Ultra-sonicator at intensity=5, duty cycle: 10%, 200cycle/burst, for 5-8 mins (depending 

upon size of the pellet and presence of debris). The sonicated nuclei were recovered using 

centrifugation (10000g for 5min) and reconstituted in Nuclear extraction buffer + HC (Pierce 

Chromatin Prep module, 26158). The nuclei were incubated on ice for 15 min which 15sec of 

vortexing every 5 min. The nuclei were centrifuged at 9000g for 5 min and supernatant 

containing cleaved chromatin was collect for downstream analyses. The DNA concentrations 

were measured using Qbit. Chromatin bound DNA was collected from mass preps (N=4) of 

control and TBI heads (24 hours post-TBI) and pooled and redistributed for 

immunoprecipitation using Anti-Histone H3 (tri methyl K36) antibody - ChIP Grade 

(ab9050). We used total of 0.5µg/reaction of DNA for control and TBI heads. The efficiency 

of the sonication and quality of IP was assessed using 2200 TapeStation System. The IP’ed 
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DNA was sequenced using 100bps paired-end reads in technical replicates. Quality control 

metric from sequencing runs were estimated using HOMER (http://homer.salk.edu/homer). 

RNA sequencing and ChIP sequencing: Libraries were prepared using the 

IlluminaTM TruSeq Stranded Total RNA. All sequencing was done using 100 bps paired-ends 

on Hi-Seq2500. 

Statistical analysis 

RNA sequencing dataset used for meta-analysis: For the first study i.e. RNA 

sequencing of spinal cord tissue from mouse subjected to spinal contusion 2days or 7days 

post-injury, the data was directly downloaded from Gene Expression Omnibus (GEO 

accession number: GSE45376). For the second study i.e. RNA sequencing of hippocampal 

and cortical tissue from mice subjected to MTBI, the raw .fastq files were obtained from the 

authors.  

For the first mouse dataset the authors performed contusive spinal cord injury in 24 

female C57BI/6J mice and collected the RNA from spinal tissue 2days (Acute) and 7days 

(Sub-acute) post-SCI. The RNA was sequenced using 100bps paired end reads. This model 

was very similar to our experimental design. The second dataset consisted of sham and TBI 

cortical and hippocampal samples collected from Male C57BL/6J mice in biological 

triplicates. The RNA isolated from these samples was sequenced using 50 bps paired-end 

sequencing. 

RNA-Sequencing alignments: Prior to alignment the sequencing adaptors were 

trimmed using FASTQ Toolkit v1.0 in Illumina Basespace. FastQC was used to generate 

quality metrics for assessment of .fastq files. RNA sequencing alignment was done using 

TopHat v2.1.0 or HISAT 0.1.6-beta using default alignment parameters. After alignment the 
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mapped reads was further filtered by mappability score (MAPQ≥ 10). The quality controlled 

.bam files were sorted by genomic position of the reads using samtools-0.1.19. PCR 

duplicate reads were processed and removed using rmdup function (options -S) in samtools. 

The sorted duplicate removed .bam files were further assessed and visualized using 

Integrative Genome Viewer (https://www.broadinstitute.org/igv/v1.4). The Mouse and 

Drosophila dataset were both processed using this pipeline. For Drosophila Melanogaster 

UCSC genomic build dm3 was used for read alignments. For Mus Musculus UCSC genomic 

build mm10 was used for read alignment.  

ChIP-Sequencing alignments: All ChIP sequencing alignments were done using 

Bowtie2 using the dm3 build of the Drosophila genome as reference. After alignment the 

mapped reads was further filtered by mappability score (MAPQ≥ 10). The quality controlled 

.bam files were sorted by genomic position of the reads using samtools. PCR duplicate reads 

were processed and removed using rmdup function (options -S) in samtools. The sorted 

duplicate removed .bam files were further assessed and visualized using Integrative Genome 

Viewer (https://www.broadinstitute.org/igv/v1.4). The tag density and Quality metrics such 

as GC content and genomic nucleotide frequencies relative (-50, 50) to the 5’ end of ChIP-

fragment were calculated using HOMER (http://homer.salk.edu/homer). (Suppl. figure 8) 

Gene expression analysis: Reads from the processed .bam files were overlapped 

with ENSEMBL exon annotation extracted from UCSC in R/Bioconductor (Packages; 

GenomicAlignments, GenomicFeatures). The dm3 genomic-build was used for Drosophila 

datasets and mm10 genomic-build was used for the Mouse dataset. The read count per exon 

was computed using the preset “Union” mode. (Refer to summarizeoverlaps). The exon 

counts were next combined to give the gene read counts. Differential gene expression 

https://www.broadinstitute.org/igv/v1.4
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analysis from computed read counts was carried out using DESEQ2 in R/Bioconductor. The 

read count and DESEQ2 parameters used were identical between the Drosophila and mouse 

dataset. 

For Drosophila model of TBI RNA were prepared in bulk for 50 males and 50 

females for 3 separate conditions; control, 1 strike and 2 strikes at 2 time points; 4 hours and 

24 hours. This meant that for the exploratory analysis we had a total of 12 samples. The 

negative binomial distribution (see DESEQ2 vignette) (Love et al., 2014) was fitted using 

treatment conditions; control, 1 strike and 2 strikes as classifiers and sex of the flies and time 

of collection as categorical covariates (read distribution ~ conditions + sex + time of 

collection). This enabled us to control for any potential sources of gene expression variations 

which may arise due to the sex of the flies. Additionally, this allowed us to use the male and 

the female w1118 flies were used as biological replicates. Male and female w1118 non-TBI flies 

collected at 4 hours and 24 hours were used as controls for all differential expression 

estimations. The differentially expressed genes were further filtered using FDR and logFC 

cut-off which are further discussed in the results section. 

Exon usage analysis: Number of aligned reads was counted within disjoint exonic 

bins rather than exons using the “Union” mode of read-counting in summarizeoverlaps. Then 

DEXSEQ was used to determine relative exon-usage while controlling for overall gene 

expression. Relative exon usage can be defined as follows; 

Exon usage= # transcripts from the gene that contain target exon/# all transcripts from 

the gene 

The read counting and DEXSEQ parameters used were identical between the 

Drosophila and mouse dataset. 
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For Drosophila TBI the negative binomial distribution for modelling read counts (see 

DEXSEQ vignette) was fitted using treatment conditions; control, 1 strike and 2 strikes as 

classifiers and sex of the flies and time of collection as categorical covariates. For each target 

gene DEXSEQ models read distribution as a function of ~conditions + exon + sex:exon+ 

time:exon + conditions:exon, where “:” indicate existence of possible interaction/correlations  

between covariates. Then this complete model is compared against a null model; ~conditions 

+ exon + sex:exon+ time:exon, to determine the effect of treatment conditions of exon usage. 

For the mouse SCI dataset DEXSEQ analysis was performed using ~ conditions + exon + 

conditions:exon as the complete model and ~conditions + exons as the partial/null model. 

Further details on DEXSEQ can be found in the package vignette and the paper(Anders et al., 

2012). 

Mixture of Isoforms (MISO) analysis: Exon usage exclusively relies on reads 

mapping to exons. However, much more accurate estimation of alternative splicing changes 

can be inferred from intronic and junction reads. For this purpose, we used Mixture of 

isoform (MISO) to estimate the Percent Spliced in (PSI) value for each annotated splicing 

feature. Annotations for splicing features were provided by modENCODE consortium and 

classified into 5 representative classes; Alternative 3’SS, Alternative 5’SS, Skipped exons, 

mutually exclusive exons, and Retained introns. The difference in PSI value (∆PSI) between 

control and treatment (TBI) samples were estimated using Bayesian factor analysis. The 

comparisons were further filtered using a ∆PSI cut-off of 0.05 or 5%, Bayesian factor ≥ 10 

and number of exclusion and inclusion reads ≥ 10 (see MISO documentation). The significant 

events common between males and females were selected and correlated to give the final list 

of sex-independent splicing changes. As majority of the significant events were retained 
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introns downstream annotation and visualization was done only with retained intron genes. 

The retained introns were overlapped with maximum overhang length of 10 bps with introns 

annotation obtained from the ENSEMBL genes UCSC dm3 build of the genome and 

annotated with respective gene and transcript annotation. Visualization of MISO results was 

done using 2 independent approaches. In the first approach, the log10(RPKM) (reads per 

kilobase per million) for respective splicing features were plotted using sashimi plot 

(https://miso.readthedocs.io/en/fastmiso/). In the second approach, the normalized coverage 

was for exonic and intronic regions was calculated using HOMER 

(http://homer.salk.edu/homer). 

Characterization of introns: Introns and their respective lengths in base-pairs were 

obtained for ENSEMBL genes from UCSC dm3 build of the Drosophila genome. The 

lengths were log transformed (log2) and their density distribution was determined. Then the 

density distribution was modelled as a mixture of N=2 normal distribution using Gaussian 

mixture model. This allowed us to determine the natural cut-off for long introns. The 

distributions inferred from the model were plotted using R/Bioconductor. The GC content 

was determined directly from the. fasta sequence corresponding to the dm3 build of the 

Drosophila genome and plotted using ggplot2 in R/Bioconductor. Maximum entropy scores 

(MaxEntScores), was used to discriminate between weak and strong splice sites flanking the 

retained introns. Briefly, short sequence motif around 5’SS and 3’SS for retained introns was 

collected depending upon the strand for the gene. MaxEntScores was calculated using the 

score5 and score3 functions in R/Bioconductor (Package spliceSites) and was confirmed 

using the online version (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html). 

Intron characterization for retained introns in mouse dataset was carried out using exactly the 

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
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same pipeline. We used mouse ENSEMBL genome UCSC build mm10 for the mouse 

datasets. 

Calculating Transcripts per million (TPM): For determining relationship between 

transcript abundance and RI we calculated the Transcript Per Million (TPM) for all 

transcripts containing retained introns for all samples. 

TPM = (Rg* 106) / (Tn * Lg) 

Where Rg is total read counts for the transcript, Tn is the sum of all length 

normalized total transcript read counts, and length is the length of the transcript in bps.  

Following TPM calculations, we tested from significant differences in TPM between 

representative sample groups using Fisher Exact Test (Package; edgeR) and filtered the 

transcripts by FDR corrected p-value of 0.05 and ∆TPM ≥ ±20. The ∆TPM were plotted 

against –log10(FDR) in R/Bioconductor. The same method for TPM calculation was used for 

Drosophila and mouse datasets. 

Calculating Splicing rate (SR): Co-transcriptional splicing rate or Splicing rate (SR) 

was calculated following the same principle proposed by Wickramasinghe et al, 

2015(Wickramasinghe et al., 2015). The splicing rate is defined as the normalized read 

counts of the first intron versus the last intron of each transcript. Calculations in equation 

form are as follows; 

fi= Ci/Li where Ci is the read count for last introns and Li is the length of last intron 

fk= Ck/Lk where Ck is the read count for first introns and Lk is the length of first intron 

fi-1= Ci-1/Li-1 where Ci-1 is the read count for last but one exon and Li-1 is the length of last but 

one exon 

fk+1= Ck+1/Lk+1 where Ck+1 is the read count for 2nd exon and Lk+1 is the length of 2nd exon 
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Fi= fi/( fi-1X N) where N= library size of the sample 

Fk= fk/( fk+1X N) where N= library size of the sample 

SR= Fk/Fi where SR= splicing rate 

Transcripts selected for SR calculation was selected based on following criteria; belongs to a 

single transcript gene, number of exon for the transcript/gene ≥ 4.  

Meta-analysis of ChIP sequencing datasets: Exon-trio analysis (ETA) for ChIP 

sequencing data was adapted from Kolasinska-Zwierz, et al, 2009(Kolasinska-Zwierz et al., 

2009). Briefly, we used ENSEMBL gene model annotation from BioMart to create random 

sets of Constitutive and Alternative exon trios. The constitutive trio (CE trios) consisted of 3 

adjacent CE. The alternative trio (AE trios) consisted of 1 AE flanked by 2 CE in a 

constitutive-alternative-constitutive configuration. We selected an average of unique 1-3 trios 

per candidate gene. Then we counted the number of reads mapping to exon belonging to pre-

defined trios using MEDIPS package from R/Bioconductor. We compared each ChIP set to 

their inputs within 200bps sliding windows and selected exons which showed at least +2fold 

enrichment of ChIP peaks over input at an FDR corrected p-value ≤ 0.05. For the list of 

enriched exons, we filtered them such that all 3 members of the trio are present and 

significantly enriched. We labelled these member as 1= exon1, 2=exon2, 3=exon3 based on 

their genomic organization and position. Finally, we compared the tag counts (read counts) 

for each member of the constitutive or alternative trio to each other using ANOVA followed 

by Tukey-HSD test in R/Bioconductor.  

The relative enrichment of H3K36me3 peaks in exons and introns where done using 

the MEDIPS package from R/Bioconductor. Briefly, the differential tag densities within 200 

bp regions were estimated using MEDIPS. Regions which showed a ≥ + 2-fold enrichment at 
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an FDR corrected p-value ≤ 0.05 over input, was considered as significant peaks. The target 

peaks were overlapped with regions of interest (ROIs). Criteria for selecting ROIs are as 

follows; introns and exons containing significant peaks were ≥200 bps in length, all introns 

and exons of the transcripts had significant peaks in them (N=3752). Reads Per Kilobase per 

Million (RPKM) for respective ROIs were plotted with ggplo2 in R/Bioconductor.   

Analysis of ChIP-sequencing data: We used 0.5µg DNA per ChIP reaction. This is 

a relatively small amount compared to recommended 50 to 100µg. Therefore, we expected 

relatively less enrichment of H3k36me3 peaks with large background signal. We tried 

multiple peak calling strategies including the more commonly used peak caller such as 

MACS1.4.2. We found that combination of MEDIPS in R/Bioconductor and HOMER was 

more suited for low enrichment high background data. We sequenced our sample using 

100bps paired-end reads for more accurate estimation of fragment length and used technical 

replicates to control for sequencing biases. 

We estimated 2 important quality metrics GC% bias and Genomic Nucleotide 

Frequency relative to read positions using HOMER. These are illustrated in Supplemental 

Figure 9. These quality metrics were well within expected values. Following the quality 

control for our H3K36me3 ChIP-seq datasets we determined significant peaks within 200bps 

regions using MEDIPS. We implemented 2 additional controls in peak calls; firstly, replaced 

all reads which map to exactly the same start and end positions by only one representative 

read. Secondly, we specified that the ChIP-seq data used for peak calling was paired end, for 

more accurate estimation of fragment length. Significant peak calls were made against input 

controls for TBI and Control samples and filtered by an FDR corrected P-value ≤ 0.1 or 10%. 

Additionally, significant peaks were called for H3K36me3 modENCODE data using an FDR 
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corrected P-value ≤ 0.05 and logFC ≥ +2fold. The significant peaks called for w1118 control, 

TBI, and H3k36me3 modENCODE samples where aggregated and averaged across all 

differential RIs detected in TBI samples. The RIs with significant peaks was overlapped 

between the w1118 control, TBI, and H3k36me3 modENCODE samples using Vennerable in 

R/Bioconductor. For the common RIs the RPKM (Reads per Kilo-base per Million) were 

compared between w1118 control and TBI using Welch 2sample t-test. 

For determining the H3K36me3 levels around the CA-rich motifs we reanalyzed our 

H3k36me3 data for w1118 control and TBI using HOMER. We called peaks against their 

respective input control using the following parameters; “-fdr 0.1 -P 0.1 -F 0 -L 0 -LP 0.1 -

style factor”. The peaks detected were overlapped with MEDIPS peaks detected with 

intronic region for w1118 control and TBI (only peaks with minimum overlap 10 bases were 

kept). We re-centered these peaks around CA-rich motifs (ACACACA allowing 1 mismatch) 

and estimated the read coverage ±1000 bps around the CA-rich regions. The results were 

plotted using ggplot2 in R/Bioconductor. 

Splicing factor discovery: The median intron size of retained introns was ~3000bps 

(min=115, max= 36560). Therefore, only retained introns with size ≥600 bps (421/458) was 

considered for motif analysis. For potential splicing factor binding motifs, 300bp regions 

were collected from the intronic side of the 5’SS and 3’SS. Sequences for these target regions 

were obtained and Motif enrichment analysis was carried out using DREME (Discriminative 

Regular Expression Motif Elicitation). DREME uses reshuffled input sequences as control to 

calculate motif enrichment. There are wide varieties of motif enrichment analysis software 

available publicly, which use varied mathematical models for enrichment test. Therefore we 

wanted to confirm our finding in DREME using different analysis strategy; MotifRG 
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(R/Bioconductor). We searched for enrichment of motifs against the randomly selected 

control sets of ~300bps windows from the dm3 build of the Drosophila genome. The 

enrichment analysis was run with 5 bootstrapping test to estimate score variance and filtered 

by bootstrap P-value ≤ 0.1 (MotifRG default parameters). Only the Top 10 results from 

MotifRG were considered. 

Calculating RI in mammalian datasets: For mouse SCI and MTBI, the Percent RI 

(PIR) calculations were adapted from Braunschweig et al, 2015.  

PIR= (Number of inclusion reads X 100)/ (Number of exclusion reads + Number of inclusion 

reads) 

For calculating the number of inclusion reads, the first step was to define a list of 

target regions for read counting. We selected all annotated introns per transcripts from 

ENSMEBL (UCSC mm10 build) as our target regions. For this pre-defined set of targets, we 

counted the reads using summarizeoverlaps function in “Union” mode. Inclusion reads is 

comprised of 2 types of reads; mid-intron reads i.e. reads which lie within the intron and 

exon-intron junction reads which span the edges of the intron. “Union” mode of read 

counting accounts for the position of the read with respect to the target regions and any 

overlapping feature. Therefore, it is efficiently able to assign mid-intron and exon-intron 

junction reads to the respective targets. A better illustration of “Union” mode of counting 

reads can be found in Figure 4.2.12. 

Exclusion reads on the other hand are equivalent to junction reads i.e. reads which 

maps across exon-exon junctions. Using the utilities provided in the spliceSites package in 

R/Bioconductor we mapped the gap-sites corresponding to the junction reads for each 



95 

 

sample. These gap-sites are representative of introns. For each gap-sites aka introns we 

counted the total number of junction read alignment and calculate RPGM values. 

RPGM= (Number of aligns per splice site X 10^6)/Number of gapped aligns per 

probe. 

Then we filtered our gap-sites such that they have an RPGM ≥ 5 and are well 

correlated (~95% CI) across replicated RNA-Sequencing samples. The final list consisted of 

a set of novel and pre-annotated introns/gap-sites. We further filtered our curated intron sets 

and only considered gap-sites (introns) which overlapped with the targets used for counting 

the inclusion reads (maximum overhang length ≤ 3bps), i.e. pre-annotated introns. The 

number of reads corresponding to these final set of gap sites are defined as exclusion reads. 

Finally, for each intron/sample we calculated the PIR values as described before, and 

compared the PIR values between respective groups of samples using Fisher Exact Test. The 

results were further filtered using ∆PIR ≥ ±10% and FDR corrected p-value≤ 0.05. For 

visualization of intron exclusion/retention the Normalized coverage was estimated using 

HOMER and plotted using Genome Browser. 

Modelling of intron retention in Drosophila and SCI datasets: For modelling 

intron retention, we selected all the intron retention and exclusion events irrespective of the 

∆PSI and Bayes factor values and converted them in categorical variables (∆PSI > 0 ~ 

TRUE, ∆PSI < 0 ~ FALSE). For determining the frequency of ACACACA motif we divided 

the introns in equal halves and counted the number of ACACACA motif allowing 1 

mismatch at any base position. The frequency was calculated as follows.  

ACACACA frequency= ACACACA count *2/intron length 
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Then we modelled categorical ∆PSI as a function of GC frequency, intron length 

(width), Log-fold change in mean RPKM of H3k36me3 peaks mapping to RI in 24 hours 

post-TBI samples compared to controls and frequency of ACACACA motif (1 mismatch) 

near the 3’SS or 5’SS. 

Cat(∆PSI) ~ GC frequency + width(Kb)*logFC*ACACACA frequency 

To determine the best model, we used step function to select a formula-based model 

by AIC. Following the selection of the best model the coefficients were extracted and plots 

were made using ggplot2. 

For modelling intron retention and exclusion in mouse SCI datasets we selected all 

RI/exclusion events (N=30460) irrespective of their FDR corrected p-value. For these events 

we divided the introns in equal halves and counted the number of ACACACA motif allowing 

1 mismatch at any base position. Only sequences near 3’SS was chosen for further study as 

motif analysis placed the ACACACA motif near the 3’SS in mouse model of SCI. The 

frequency was calculated as follows.  

ACACACA frequency= ACACACA count *2/intron length 

Then we modelled ∆PIR (continuous) as a linear function of GC frequency, intron 

length (width) and frequency of ACACACA motif (1 mismatch) near the 3’SS. We selected 

the best model based on AIC using the step function in R/Bioconductor. The best model was 

as follows: 

∆PIR~ GC frequency + width(Kb)* ACACACA frequency 

Gene ontology analysis: Gene ontology (GO) analysis was performed using DAVID 

bioinformatics resources (https://david-d.ncifcrf.gov). The background gene set for GO 

analysis were selected as follows;  
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1. gene expression; 5923 genes which were expressed in both controls and 24 hours 

post-TBI samples were used as background,  

2. exon-usage; 9056 genes containing well represented exons (counts/exon ≥ 2) was 

used as background,  

3. RI, Drosophila, dm3; 4209 genes containing RI events detected both in males and 

females were used as controls  

PIR 7 days post-SCI, mm10; 6378 genes which were used for differential PIR test were used 

as background. If no, GO categories were found to be enriched than the all ENSEMBL genes 

(dm3 or mm10) were used as background. The Fold enrichment (over background) was 

plotted against the -log10(FDR) for visualization of significant GO categories in ggplot2. The 

GO categories with FDR ≤ 0.1 was labelled in red. 

4.3. Results 

Characterization of the transcriptome of Drosophila heads post-TBI. 

We simulated closed head TBI is Drosophila using a similar experimental set-up, as 

described by the Wassarman lab (Katzenberger et al. 2013). Briefly, 0-5 days-old w1118 flies 

were collected in sturdy vials and TBI was inflicted using an in-house HIT (high impact 

trauma) device. Instead using a 90o spring deflection, we used a 45o spring deflection to 

attenuate the impact. Estimation of long term survival reported decrease in long term survival 

of TBI-flies. Furthermore, we also observed decrease in survival with increase in the number 

of strikes (see methods) (Fig 4.2.1A).  
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Figure 4.2.1: Exploratory analysis of RNA-sequencing profile: A) Long term survival of 

flies post-trauma. Survival curve (mean ± standard error) of Drosophila subjected to either 1 

strike or 2 strike. We used using 20 w1118 flies per vial and repeated the experiment 5 

times for male and female flies. B) Spearman correlation between mean normalized count 

for each gene for all sample used for this study. C) Principle component analysis (PCA) of 

normalized counts for reads mapping to genes for control heads collected at either 4 hours 

or 24 hours and TBI heads collected at 4 hours post-TBI. D) Principle component analysis 

(PCA) of normalized counts for reads mapping to genes for control heads collected at either 

4 hours or 24 hours and TBI heads collected at 24 hours post-TBI. E) and G) MA plots 

differentially expressed genes for TBI heads collected  4 hours post-TBI and  24 hours post-

TBI. Red dots indicate the genes associated with FDR corrected p-value ≤ 0.1 or 10%. 

Green horizontal line indicate a logFC ≥ ±2 and blue horizontal line indicate a logFC ≥ 

±1.F) and H) qqplot for p-values from differential expression analysis for for TBI heads 

collected  4 hours post-TBI and  24 hours post-TBI. Green line represents the –log10 

Bonferroni corrected p-value ≤ 0.1 or 10%. 

We collected heads at 2 time-points; 4 hours’ post-trauma and 24 hours’ post-trauma 

and characterized the transcriptomic profile using RNA sequencing. We observed that the 

expression profile of the heads post-trauma was very similar to control heads (Fig 4.2.1B). 

Principal 

component 

analysis 

(PCA) of 

the 

expression 

profile 

revealed 

that 

majority of 

the sample-

specific 

variability 

(approx. 

40%) at 

4hours 

post-

trauma was due to the sex of the flies (Fig 4.2.1C). Interestingly, 24 hours post-TBI, the 

expression profile showed observation separation dependent on the TBI (Fig 4.2.1D). The 

number of differentially expressed (DE) genes at an FDR corrected p-value cut-off of 
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0.1/10% was much greater at 24 hours (N= 1698) (Fig 4.2.1E) compared to 4 hours (N=145) 

(Fig 4.2.1G). Further filtering the DE genes by logFC ≥±1fold, restricted the list to 222 DE 

genes in heads collected 24 hours after TBI and 17 DE genes in heads collected 4hrs after 

TBI. Our result suggests that attenuated traumatic brain injury causes only mild change in 

steady state mRNA expression of genes and most of these changes are induced at 24 hours 

post-TBI. Therefore, change in expression of genes does not explain the decrease in fitness of 

the TBI flies.  

RNA sequencing data can be used to interrogate the alternative splicing. Using exon 

centric analysis (see methods) we estimated the changes in alternative splicing 4hours and 

24hours post-trauma separately for male and female flies. Then we only considered the sex-

independent changes i.e. common between males and females for further study. 
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Figure 4.2.2: Characterization of alternative splicing events in Drosophila model of 

TBI: A) Overlaps between statistically significant differential alternative splicing 

events detected using MISO for heads collected 24 hours post-TBI for males and 

females. B) Linear regression between ∆PSI or deltaPSI for differential splicing 

events detected for heads collected 24 hours post-TBI for males and females. C) 

Graphical representation of Gaussian mixture model to determine the natural cut-off 

for calling long introns. Black dotted line represents the log2(intron length) for all 

introns in the genome. Blue dotted line represents the intron length of retained introns 

detected for heads collected 24 hours post-TBI for males and females. The red and 

green line represents the normal distributions fitted using Gaussian mixture model. E) 

Distribution of GC-content for retained introns (RI), long introns and exons. Dotted 

lines are the median GC-content. Distribution of Maximum entropy scores 

(MaxEntScores) for E) 3’SS and F) 5’SS for constitutive introns, retained introns (+ 

strand) (RI_+), and retained introns (- strand) (RI_-). 

 

At 4 

hours for a 

∆PSI 

(difference in 

Percent Spliced 

In) ≥ ±0.05 or 

±5% and Bayes 

Factor ≥ 10, we 

observed very 

few changes. 

Interestingly, at 

24 hours we 

observed a 

widespread 

induction of 

sex-

independent 

splicing 

changes (N=578) (Fig 4.2.2A). Furthermore, annotation of splicing events demonstrated that 

approx. 79% (N=458) of these changes were classified as intron retention (RI) (Fig 4.2.2B). 

These RI was enriched for genes involved in processes such as GO:0048489~synaptic vesicle 

transport, GO:0005811~lipid particles and GO:0005829~cytosol (data not shown). Examples 

of intron retention events in long intron of Isocitrate dehydrogenase (IDH) and synaptic 



101 

 

A B

 

Figure 4.2.3: sashimi plot showing intron retention event in Isocitrate dehydrogenase (IDH)(A) and stoned 

A/B (STNA/B)(B). The data is represented as Reads Per Kilo-base per Million. 

transport associated protein Stoned A/B (STNA/B) are illustrated in figure 4.2.3A and 

4.2.3B. 

Characterization of intron retention events 24 hours’ post-trauma in Drosophila heads.   

RI has been shown to be associated with specific defining characteristics of introns 

including GC content, intron length and flanking splice site strength. To estimate the intron 

length cut-off for classifying intron we modelled the log-transformed length of all introns in 

the Drosophila genome (dm3) as a mixture of 2 normal distributions (Gaussian mixture 

model). Using this model, we estimated the natural cut-off for calling long introns to be 

81bps. We observed that all log2-transformed length of RIs was >81bps i.e. long introns (Fig 

4.2.2C). The GC frequency of the RIs was very similar to other long introns in the dm3 

genome and slightly lower than exons (Fig 4.2.2D). Studies have demonstrated that it is 

possible to differentiate between true and decoy splice sites using Maximum entropy scores 



102 

 

(MaxEntScore). Using the model proposed by Yeo et al, 2004 (Yeo and Burge, 2004) we 

calculated the MaxEntScore of 5’SS and 3’SS short sequence motifs for constitutive introns 

and retained introns. We defined constitutively spliced introns (constitutive) as introns which 

are efficiently processed and is not covered by even a single read in any sample. The 

maximum entropy scores at the 5’SS and 3’SS for retained introns were not significantly 

different from constitutive introns (Fig 4.2.2E and 4.2.2F). This suggested that the RI events 

are not caused due to activation of decoy splice sites during TBI (Fig 4.2.2E and 4.2.2F).  
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Figure 4.2.4: Intron retention causes degradation or nuclear retention of transcripts: A) Difference in 

Transcript abundances (∆TPM) was plotted against –log10 (FDR) for 24 hours post-TBI samples. Red dots 

indicate introns showing significant change in PIR at a FDR corrected p-value ≤ 0.05. Green horizontal line 

indicates a ∆TPM ≥ ±20. 138 transcripts showed decrease in TPM and 85 showed increase B) GO analysis 

was performed in DAVID using 59 genes. 4209 genes which contained introns detected in both male and 

female heads were used as control. The fold enrichment and –log10 (FDR) was calculated and plotted. Red 

dots indicate the GO categories significant at FDR ≤ 0.1 C) Normalized coverage in exons and introns for 

Isocitrate dehydrogenase (IDH) across control and TBI (24 hours post-TBI) samples (panel 1). Normalized 

coverage in exons and introns for Stoned A and B(STN A  and B) across control and TBI (24 hours post-TBI) 

samples (panel 2). TBI result in RI of the highlighted introns in figure C panel 1 and 2. D) Normalized read 

coverage was calculated for Nuclear and Cytoplasmic mRNA fraction for control and 24 hours post-TBI 

samples for genes (N=32) showing increase in transcript abundance on RI post-trauma. Ratio of 

Nuclear/Cytoplasmic normalized read coverage is plotted on Y axis. Differential testing was done using 

Welch 2 sample t.test. 

Consequence of intron retention. 

Inefficient processing of long introns has been demonstrated to introduce Pre-Mature 

Termination codons (PTC) and target the transcript to Nonsense Mediated Decay (NMD) 

(Chang et al., 2007; Isken and Maquat, 2007). Therefore, we hypothesized that transcripts 

showing RI will most likely show an appreciable decrease in transcript abundance or 

transcripts per million (TPM) (see methods). At an FDR corrected p-value ≤0.05 and ∆TPM 
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≥ ±20 we observed 138 transcripts which showed a decrease and 85 transcripts which 

showed an increase in transcript abundance (Fig 4.2.4A). The 138 transcripts which showed 

reduced transcript abundance on RI, belonged to 59 genes. GO enrichment analysis (see 

methods) revealed significant enrichment of genes belonging to GO:0005811~lipid particles, 

GO: 0006091~generation of precursor metabolites and energy and GO:0051231~spindle 

elongation (Fig 4.2.4B). Examples are illustrated in figure 4.2.4C. The 85 transcripts which 

showed increased expression on RI showed significantly higher coverage in the nuclear 

fraction compared to cytoplasm fraction in TBI samples compared to WT controls. This 

suggested that these transcripts were getting accumulated inside the nucleus post-TBI (Fig 

4.2.4D). 
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Figure 4.2.5: Association between H3K36me3 and Alternative splicing in modEncode data.  Histogram of 

mean normalized counts from ModENCODE chip-seq data on introns and exons for  A) 3rd instar larvae B) 

Adult fly heads. The differential tag densities within 200 bp regions were estimated using MEDIPS. Regions 

which showed a ≥ + 2 fold enrichment at an FDR corrected p-value ≤ 0.05 over input, was considered as 

significant peaks. The target peaks was overlapped with regions of interest (ROIs). Criteria for selecting ROIs 

are as follows; introns and exons containing significant peaks was ≥200 bps in length. Reads Per Kilobase per 

Million (RPKM) for respective ROIs were plotted in R/Bioconductor. Alternative and constitutive trios defined 

using ENSEMBL annotations. Briefly, we used the available exon annotation from ENSEMBL to classify 

constitutive and alternative exons into groups of 3. The constitutive trio (CE trios) consisted of 3 consecutive 

CE (top panel). The alternative trio (AE trios) consisted of 1 AE flanked by 2 CE in a constitutive-alternative-

constitutive configuration (bottom panel). C) Difference in tag counts (read counts) of H3K36me3 ChIP-seq 

peaks for 3rd instar larvae  between 1= 1st exon, 2= 2nd exon and 3= 3rd exons of constitutive or alternative 

exon trios. Please see the Supplemental Table 1 for statistical test. D) Difference in tag counts (read counts) of 

H3K36me3 ChIP-seq peaks for adult heads between 1= 1st exon, 2= 2nd exon and 3= 3rd exons of constitutive 

or alternative exon trios. Please see the Table 1 for statistical test. 

H3K36me3 may play a regulatory role in splicing 

A study by Ahringer’s lab had previously reported association between histone 

modifications specifically H3k36me3 and splicing in model systems such as C.elegans and 

mice (Kolasinska-Zwierz et al., 2009). We wanted to determine if this association in 

conserved in Drosophila. To understand this association, we obtained ChIP-seq data for 

H3k36me3 in 3rd instar larvae (GSE47248) and fly-heads (GSE47280) from modEncode 
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consortium. For these we called significant peaks within 200 bps target regions against the 

input controls at an FDR corrected p-value ≤ 0.05 and log2FC≥ 2 (see methods). For the 

significant peaks we estimated the Reads Per Kilobase per Million (RPKM) within exonic 

and intronic regions. Density distribution of RPKM reported lower levels of H3k36me3 in 

introns compared to exons in both 3rd instar larvae and adult heads (Fig 4.2.5A and B). To 

further understand the association between alternative splicing and H3k36me3 we used the 

available exon annotation from ENSEMBL to classify constitutive and alternative exons into 

groups of 3 or trios. The constitutive trio (CE trios) consisted of 3 adjacent CE. The 

alternative trio (AE trios) consisted of 1 AE flanked by 2 CE in a constitutive-alternative-

constitutive configuration (see methods). We observed that the H3K36me3 was depleted 

from the AE relative to the flanking CE in both 3rd instar larvae and adult heads (Fig 4.2.5C 

and D).  One-sided ANOVA reported significant difference between the alternative and 

constitutive exons for the alternative trio (Table 4.2.1) for one of the replicates (P-adjusted 

≤0.1) in 3rd instar larvae but the pattern was well conserved from the 3rd instar larvae to adult 

heads. 
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Figure 4.2.6: RNAi of KDM4A causes RI.A) Reads Per Kilo-base per Million (RPKM) in exons for control 

and KDM$A-RNAi 3rd instar larvae show complete of KD of expression of dmutantM4A / (Lysine (K)-

Specific Demethylase B) MA plots differentially expressed genes for control and dmutantM4A 3rd instar 

larvae. Red dots indicate the genes associated with FDR corrected p-value ≤ 0.1 or 10%. Green horizontal line 

indicates a logFC ≥ ±2 and blue horizontal line indicate a logFC ≥ ±1. C) Linear regression between ∆PSI or 

deltaPSI for differential splicing events detected for KDM44A-RNAi samples across biological replicates 

(A,B). D) Overlaps between statistically significant differential alternative splicing events detected using 

MISO for heads collected 24 hours post-TBI for males and females and KDM4A-RNAi in 3rd instar larvae. 

E) Positive control experiment showing that KDM$A-RNAi show the biggest changes in alternative splicing 

compared of other histone demethylases; dUTX(H3K27 demethylase), CG8165 (H3K9me2/me3 

demethylase), CG7200 (prospective demethylase containing jmjC domain), KDM4B (H3K9 and H3K36 

demethylase, bind with lower affinity compared to KDM4A) 

 

RNAi of H3k36me3 demethylase causes intron retention in IDH.  

H3K36me3 is removed from the genome by Jumanji-C (JmjC) domain containing 

histone demethylase specifically; KDM4A (Lin et al., 2012; Crona et al., 2013). Therefore, 

we hypothesized that RNAi of KDM4A will cause significant changes in RI.  Homozygous 

loss of function mutations of KDM4A in Drosophila has been shown to cause developmental 

arrest (Tsurumi et al., 2013). Therefore, we attempted to conditionally knockdown KDM4A 

in adult heads. We were unable to get an appreciable and stable knockdown of the gene. 

KDM4A has been shown to be well expressed in 3rd instar larvae (Lorbeck et al., 2010). As 
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Figure 4.2.7: sashimi plot showing intron retention event in Isocitrate dehydrogenase (IDH) (A) and 

Stoned A (STNA) (B). The data is represented as Reads Per Kilo-base per Million. 

 this was proof of concept experiment and we were trying to define the impact KDM4A on 

splicing regulation irrespective of physical trauma we decided to continue our study with 3rd 

instar larvae. We knocked down KDM4A in 3rd instar larvae using the UAS/GAL4 RNAi 

system (see methods) (Fig. 4.2.6A) and performed RNA-sequencing using 100bps paired-end 

reads. KDM4A activity has been reported to be associated with transcriptional repression in 

mammalian cells (Zhang et al., 2005; Huang and Dixit, 2011). Consistent with this 

observation, differential expression analysis comparing dKDM4A-RNAi to controls showed 

much larger number of genes which show increase in expression at an FDR corrected p-value 

≤ 0.1/10% and log-fold change ≥ ±2fold on KDM4A knockdown, as illustrated in Figure 

4.2.6B. Therefore, in conclusion the KDM4A-RNAi in 3rd instar larvae were efficient and 

cause expected gene expression changes.  

We compared the alternative splicing profile of KDM4A-RNAi 3rd instar larvae to 

wild-type w1118 3rd instar larvae. At a ∆PSI ≥ |0.05| or |5%| and Bayes Factor ≥ 10, we found 
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98 differential splicing changes. 70/98 events were RI and showed a significant ~52% 

correlation between biological replicates (Fig 4.2.6C). Notably, 29/70 RI events detected in 

KDM4A-RNAi were also detected 24 hours post trauma (Fig 4.2.6D). These common events 

included metabolic regulators such as IDH and PYK, and synaptic transport proteins such as 

STNA/B (Fig 4.2.7A and B). As additional controls we also performed KD of other histone 

demethylases such as H3K27me3 histone demethylase, UTX (Copur and Muller, 2013), 

H3K9me3 demethylase dKDM3A (CG8165) (Herz et al., 2014), KDM4B and JmjC-domain 

containing uncharacterized protein CG7200 in Drosophila pupae/ 3rd instar larvae. These 

histone demethylases showed limited number of splicing changes suggesting that KDM4A is 

a major regulator of splicing events (Fig 4.2.6E). Our RNAi study and the previous meta-

analysis of H3K36me3 in 3rd instar larvae and adult heads demonstrate an association 

between H3k36me3 and splicing.  
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Figure 4.2.8: H3K36me3 is involved is regulating splicing changes in the 24 hours post-TBI.   A) The RI 

contained significant H3K36me3 peaks for Control, TBI and modENCODE H3k36me3 ChIP data were 

overlapped. We found 40 RI in common. B) For these 40 RI Average RPKM for all ChIP peaks were 

estimated for Control and TBI samples. These 40 intron showed a significant increase in H3K36me3 in TBI 

samples (pval = 6.855e-09, Welch 2 sample T-test). The RI in C) STNA and D) RpS4 shows a general 

increase in H3K36me3 in TBI compared to w1118 control. STNA contained peaks only in the TBI and 

control samples but not in modENCODE H3k36me3 heads. Lowering the modENCODE peak call cut-off to 

logFC≥±1 fold allowed its detection in modENCODE samples. We remapped our significant peaks and 

centered it on CA-rich motifs (ACACACA with 1 mismatch). The bars at the bottom of each track show the 

location of the CA-centered significant peaks. 

H3K36me3 is involved is regulating splicing changes in the 24 hours post-TBI. 

In view of the evidence from our KDM4A-RNAi studies in 3rd instar larvae we 

hypothesized that TBI results in increase in H3K36me3 within introns. To confirm this 

hypothesis, we performed ChIP for H3K36me3 in w1118 control and TBI heads 24 hours’ 

post-trauma and sequenced them using 100bps paired end reads. We called peaks against 

respective input control using 200 bps sliding windows. These peaks were further filtered by 

an FDR corrected p-value ≤ 0.1 or 10%. For the significantly enriched peaks we estimated 

the mean RPKM within RI. Only RIs with minimum of 8 reads were considered as well-



111 

 

represented in our dataset. We detected 48/458 RIs which contained significant peaks in the 

w1118 control and 24 hours post-TBI heads. To provide an independent validation of our 

H3k36me3 ChIP, we also calculated the mean RPKM of significant peaks for modENCODE 

H3k36me3 heads (GSE47280) within RIs (see methods).  40/458 RIs were represented in 

w1118 control, 24 hours post-TBI heads and modENCODE H3k36me3 ChIP-seq datasets 

(Fig 4.2.8A). For 40 RIs, the mean RPKM of H3K36me3 peaks for 24 hours post-TBI heads 

were significantly higher compared to the w1118 heads (Fig 4.2.8B). Normalized coverage 

plots for H3K36me3 for the long intron of STNA/B and RpS4 are illustrated in Fig 4.2.8C 

and 4.2.8D. In STNA we observed higher level of H3K36me3 in introns compared to exons. 

This is in agreement between basal levels of intron retention in the STNA long intron. On 

TBI, the H3k36me3 is significantly increased, which corresponds to increased inclusion of 

the long intron (Fig 4.2.8C).   
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Figure 4.2.9: Mutation of SM result is complete loss of RI post-TBI A) Developmental expression of 

Drosophila RRM and K(H) RNA binding domain containing proteins. Scaled normalized counts of 

Drosophila RNA binding protein with known consensus motif from Ray et al, 2013. In blue are the RNA 

binding proteins for which a similar DNA consensus motif was found in retained introns. B) ACACACA 

motif is significantly more enriched in long intron (≥81bps) compared to short introns. C) Overlap between 

differential RI events (∆PSI) detected in TBI and SM-mutant+TBI samples. D) Overlap between 

differential RI events (∆PSI) detected in SM-mutant and SM-mutant+TBI samples. E) Pairwise correlation 

(Spearman’s) between differential RI events (∆PSI) detected SM-mutant and SM-mutant+TBI samples 

(N=50). All events were compared to Control w1118 samples. 

Discovery of splicing factor binding motifs.  

We searched for splicing factor binding motifs 300bps near either the 3’ or 5’SS for 

RI ≥600bps in length (421/458) (see methods). We found enrichment of CA rich motif 

(ACACACA) motifs near both the 3’SS and 5’SS (Table 4.2.1 and 4.2.2). The CA rich motif 

has been shown to bind to Smooth (SM) splicing factor (Ray et al., 2013). SM share approx. 

42% identity with hnRNPL class of splicing regulator in humans (data not shown) and has 

been reported to be involved in regulation of splicing. We also found other motif for RNA 

binding proteins such as SHEP (AT-rich motif), ARET (GT-rich motif), RBP9 (T rich motif) 
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Figure 4.2.10: sashimi plot for RI events which are reversed in SM-mutants. A) RI events detected in TBI 

samples revert back to the non-TBI w1118 controls in SM-mutant and SM-mutant+TBI samples for Stoned 

A and B. B) RI events detected in TBI samples in IDH revert back to the non-TBI w1118 controls in SM-

mutant and SM-mutant+TBI samples for Isocitrate dehydrogenase (IDH). All samples were run as technical 

replicates. 

near the 5’SS (Table 4.2.2) and SHEP (AT-rich motif), SF1 near the 3’SS. These splicing 

factors are highly expression in adult heads and did not show any change in expression in 24 

hours’ post-trauma (Fig 4.2.9A). As the CA-rich binding motif is found near both the 5’SS 

and 3’SS of the retained introns with DREME we considered SM to be our strongest 

candidate. Furthermore, the frequency of ACACACA motif allowing 1 mismatch was 

significantly higher in long intron (≥81 bps) compared to short introns (Fig 4.2.9B). Presence 

of CA-rich motifs in long introns might be defining characteristic of Drosophila long introns 

allowing its recognition and efficient processing. 

To further understand the role of SM in regulation of splicing especially RI, we 

obtained a SM-mutant line (sm4). The sm4 mutant is semi-lethal over a deficiency (Df) 

(Karpen and Spradling, 1992). The resultant sm4/Df flies survive to adulthood but are short 
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Figure 4.2.11: Enrichment of H3K36me3 

centered (±1000) around CA-rich motifs for 

detected using HOMER (and overlapped with 

MEDIPS peaks) demonstrate higher 

normalized coverage for intronic peaks around 

CA-rich motifs for TBI samples compared to 

w1118 controls. 

lived with a median age of about ~30 days 

(Layalle et al., 2005). The short lived phenotype 

of sm4/Df mutants is mainly due to reduced 

arborization in the chemosensory neurons which 

culminates into a feeding defect (Layalle et al., 

2005). After confirming the phenotypic 

characteristic of the sm4 mutant (data not 

shown) we subjected them to a single strike and 

collected the heads 24 hours after the TBI. We 

estimated the ∆PSI using the MISO compared to the w1118 controls separately for males and 

females. We only considered the events which were overlapped between males and females 

for further analysis. We observed that sm4/Df mutation rendered the flies insensitive to TBI 

i.e. RI events observed 24 hours post-TBI were not detected in sm4/Df mutants subjected to 

TBI (Fig 4.2.9C). To further confirm this association, we performed RNA-sequencing of 

sm4/Df mutant flies without trauma and found that the RI detected were well overlapped (Fig 

4.2.9D) and well-correlated with sm4/Df +TBI (Fig 4.2.9E). Examples of RI in sm4/Df and 

sm4/Df +TBI are illustrated in Figure 4.2.10 A and B. 

H3k36me3 pattern around SM-binding ISS. 

To understand the relationship between SM and H3K36me3 we centered our 

H3k36me3 intronic peaks on the CA-rich motif (ACACACA) (see methods). We observed 

that the heads collected 24hours post-TBI showed higher levels of H3K36me3 compared to 

the controls (Fig 4.2.11). The ACACACA motif positions (100bps centered regions) 

surrounded by significant H3K36me3 peaks (±1000 bps) is indicated in figure 8C and D. 



115 

 

 

B

 

Figure 4.2.12: Pictorial depiction of Percent Intron Retention 

(PIR) calculation using R/Bioconductor. For more details, refer 

to the Methods sections. 

A B

 

Figure 4.2.13: Percent change in RI  2 days and 7days post-SCI. A) % change in Percent Intron 

Retention(PIR) was plotted against –log10 (FDR) for 2days post-SCI. Red dots indicate introns showing 

significant change in PIR at a FDR corrected p-value ≤ 0.05. Green horizontal line indicates a % change ≥ 

±20 and blue horizontal line indicate a % change≥ ±10. B) % change in Percent Intron Retention(PIR) was 

plotted against –log10 (FDR) for 7days post-SCI. Red dots indicate introns showing significant change in PIR 

at a FDR corrected p-value ≤ 0.05. Green horizontal line indicates a % change ≥ ±20 and blue horizontal line 

indicate a % change ≥ ±10. 

Paired with the observation from 

RNA-Sequencing sm4/DF mutants 

(Fig 4.2.9) we speculate that 

increased H3K36me3 level recruit 

SM (hnRNPL) splicing factors to 

introns and regulate RI. 

Intron retention in mouse model 

of spinal cord injury and 

traumatic brain injury. 

In this study using a modified version of Drosophila model of TBI we report 

widespread RI 24 hours post-TBI. To verify if the RI plays an important role in 

transcriptomic stability post-trauma in mammals we performed meta-analysis of 2 datasets. 

The first dataset consisted of 24 female C57BI/6J mice subjected to contusive spinal cord 
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Figure 4.2.14: Characterization of RI/exclusion events detected 7days post-SCI. A) Graphical representation 

of Gaussian mixture model to determine the natural cut-off for calling long introns. Black dotted line 

represents the log2(intron length) for all introns in the genome. Blue dotted line represents the intron length of 

retained introns detected for heads collected 7days post-SCI for males and females. Orange dotted line 

represents the intron length excluded introns detected for heads collected 7days post-SCI for males and 

females. The red and green line represents the normal distributions fitted using Gaussian mixture model. B) 

Distribution of GC-content for retained introns + excluded introns (RI), long introns and exons. Dotted lines 

are the median GC-content. Distribution of Maximum entropy scores (MaxEntScores) for C) 3’SS and D) 

5’SS for constitutive introns (+), retained introns (+) (RI+), and retained introns (-) (RI-). E) GO analysis 

using all ENSEMBL annotated genes for mm10 as background gene set. Red dots indicate the GO categories 

significant at FDR ≤ 0.1   

injury (Chen et al., 2013). Post-injury the RNA was extracted from tissues at 2days and 

7days and sequenced using 100 bps paired-end libraries. This experimental design was quite 

similar to our model. Contrary to the consensus in the field, Braunschweig et al, 2014, 

reported widespread RI in mammalian systems. The authors demonstrated the RI functions as 

a quality control signal to remove incorrectly spliced transcripts either by nuclear retention 
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Figure 4.2.15: Model for intron retention in mouse SCI dataset. 

∆PIR was modelled as a linear function of GC content + 

width(Kb): Frequency ACACACA motif (allowing 1 mismatch). 

“:” indicates an interaction. Coefficients of the model along with 

respective p-values are illustrated in the figure. All ∆PIR 

measurements was used irrespective of the FDR corrected p-

value.    

or/and by Nonsense mediated decay (Braunschweig et al., 2014). For purposes of detecting 

RI in mammalian systems we adapted the approach used by this study. Briefly, we used 

control and SCI RNA-sequencing data to detect alignment gaps/ gap-sites. These gap-sites 

are representative of exon-exon junction. For quantification of the number of reads aligned to 

the gap sites, we calculated the Reads Per Million Gapped (RPGM) for all detected gap-sites 

per sample. Then we selected the 

gap sites for which the RPGM 

were well correlated (~95% CI) 

between biological replicates and 

had a RPGM ≥ 5 (data not 

shown). The resulting output 

consisted of a list of putative 

introns (pre-annotated + novel 

introns) and the number of reads 

mapping to each respective gap-

sites. These reads were classified 

as “Intron Exclusion Reads”. 

Among the putative introns, only pre-annotated introns were considered for analysis. The 

final list included approx. 50,000 introns. For these introns, we counted the number of reads 

which fell within the introns and spanning the intron-exon boundary. These we defined as 

“Intron Inclusion Reads”. Then we calculated Percent RI (PIR) as a ratio of inclusion reads 

and summation of inclusion and exclusion reads. Finally, to test for significant differences 

between conditions we performed a Fisher Exact test (Fig 4.2.12). 
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At an FDR corrected p-value ≤ 0.05 and ∆PIR ≥ ±10% we observed 189 at 2days and 

413 differential events at 7days (Fig. 4.2.13A and B). We characterized the intron length, 

GC-content and Splice site strength for 413 RI/exclusion events detected 7days post-SCI. 

Using the strategy described earlier, we calculated the natural cut-off for long introns to be 

approximately >128 bps. The 

RI/excluded introns detected to be 

differentially spliced 7days post-SCI 

were >128bps in length (Fig 4.2.14A). 

The average GC content of spliced 

introns was not different from the 

average GC-content of all long introns 

in the mouse genome and slightly 

lower than that of exons (Fig 4.2.14B). 

Similarly, the splice site strength 

represented as maximum entropy 

scores (MaxEntScore) for 5’SS and 

3’SS for spliced introns was not 

statistically different from constitutive 

introns (Fig 4.2.14C and D). These 

observations indicate similar characteristics of RI/excluded introns post-SCI in mouse and 

post-TBI in Drosophila. However, only a limited number of genes showing RI/exclusion 

showed significant changes in transcript abundance (at an FDR corrected p-value cut-off of 

0.05 and ∆TPM≥ ±20) (data not shown). GO analysis using all ENSEMBL genes as 

 

Figure 4.2.16: Homology between Smooth(SM), isoform 

U and human hnRNPL splicing factor. We utilize the 

NCBI homologene 

(http://www.ncbi.nlm.nih.gov/homologene/) database to 

search for homologues of the hnRNPL splicing factors 

across species. Then we performed Pairwise alignments 

generated using BLAST to determine the % identity 

between the Drosophila and human hnRNPL protein 
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background revealed enrichment (FDR≤0.1) of processes such as GO:0048471~perinuclear 

region of cytoplasm, and GO:0000166~nucleotide binding and GO:0005524~ATP binding 

(Fig 14E). This included lysosomal genes implicated in neurodegeneration such as Cathepsin 

D (CTSD) (Fig 4.2.15 top panel) (Cataldo et al. 1995; Koike et al. 2000), and Vacuole 

protein sorting 18 (VPS18) (Peng et al. 2012a; Peng et al. 2012b) (Fig 4.2.15 bottom panel). 

Motif analysis using DREME using the same parameter as Drosophila dataset revealed 

enrichment of CA-rich motif near the 3’SS of the differential RI/exclusion events suggesting 

that the functional association between hnRNPL binding and intron processing might be 

conserved across species (Table 4.2.4 and 4.2.5).  To further understand this relationship 

between CA-rich motif and RI/exclusion events in mouse model of SCI, we modelled ∆PIR 

as a linear function of GC content, ACACACA frequency with one mismatch near the 3’SS 

and width of the introns (Kb) (see methods). Our analysis revealed that demonstrated that 

high frequency of ACACACA motif near 3’SS of long intron is associated with RI not 

exclusion (Fig 4.2.15). 

4.4. Discussion 

The role of intron retention in regulating transcript abundance under 

neurodegenerative disease conditions remain poorly understood. In this study using a 

modified version of Drosophila model of TBI, we provide preliminary evidence that, 

retention of long introns (>81bps) functionally tunes the transcriptome in response to 

neuronal damage. We observed increased intron retention coupled with decreased transcript 

abundance in genes associated with the citric acid cycle such as Isocitrate dehydrogenase 

(IDH), Enolase (ENO), Pyruvate Kinase (PYK) and Aconitase (ACON) 24 hours’ post-

trauma. ACON catalyzes the conversion of cis-Aconitate to D-isocitrate (Beinert et al., 1996) 
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Figure 4.2.17: Modelling RI and effect of covariate in 24 hours post-TBI samples. A) Contribution of 

factors in regulation of intron retention. GC frequency= GC frequency, width(Kb)= intron length (Kb), 

logFC= RPKM(TBI)/RPKM(Control) and ACACACA frequency= Frequency of ACACACA motif near the 

3’SS allowing for 1 mismatch. Width(Kb): logFC: ACACACA frequency show synergistic effect on intron 

retention (RI). B) Contribution of factors in regulation of intron retention. GC frequency= GC frequency, 

width(Kb)= intron length (Kb), logFC= RPKM(TBI)/RPKM(Control) and ACACACA frequency= 

Frequency of ACACACA motif near the 5’SS allowing for 1 mismatch. 

and IDH catalyzes the conversion of D-isocitrate to α-Ketoglurate(Gabriel et al., 1986; Yen 

and Schenkein, 2012).   Therefore, we speculate that downregulation of expression of TCA 

cycle genes are a consequence of oxidative stress caused by TBI and will result in 

downregulation of mitochondrial metabolism.  

Downregulation of mitochondrial metabolism is neuroprotective.  Restoration of 

mitochondrial function using creatinine in Down syndrome patient-derived astrocytic cells, 

resulted in increased ROS production and consequently loss of cell viability (Helguera et al., 

2013). Our data indicates that TCA cycle genes such as IDH, ACON, PYK and ENO might 

be critical regulators of the neuroprotection. Dysregulation of expression of genes such as 

IDH and ACON can significantly impact the production of a critical metabolite; α-

Ketoglutarate(α-KG).  α-Ketoglutarate is an important co-factor in regulating all dioxygenase 

reactions in the cell including H3k36me3 demethylation (Klose and Zhang, 2007). In a recent 

study by Carry et al, 2015, direct perturbation of α-KG/succinate levels was shown to be 

sufficient to cause changes in H3K27me3 and DNA hydroxymethylation in mouse 
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Figure 4.2.18: Model for regulation of alternative splicing 24 

hours post-TBI. Top panel: Under normal conditions the introns 

are marked by lower levels of H3K36me3 compared to the 

flanking exons. This allows the elongating polymerase and the 

associated splicing machinery to recognize it as an intron. The 

binding of hnRNP-L/Smooth to intronic splicing suppressor sites 

under normal conditions is limited and cause only a basal level of 

intron retention. Bottom panel: Post-TBI the level of H3K36me3 in 

introns increases and now it resembles an exon therefore is spliced 

in by the splicing machinery. This is a direct result in recruitment 

of hnRNP-L/Smooth and SET2 complex to intronic splicing 

suppressor sites. 

embryonic stem cells suggesting α-KG is an important metabolic effector of epigenetic 

modification (Carey et al., 2015). We hypothesized, that decrease in total α-KG reserve due 

to downregulation of expression of TCA cell cycle might lead to decreased activity of 

KDM4A; H3K36me3 demethylase. Increased levels of H3K36me3 might interact with 

splicing suppressor to their 

Intronic splicing suppressor 

sites (ISS) and result in intron 

retention. The potential link 

between metabolism and 

splicing especially RI is 

strongly suggestive. 

We observed 

enrichment of CA-rich motifs 

near the 5’SS and 3’SS of RI 

detected 24 hours’ post-trauma. 

CA-rich motif has been shown 

to bind to hnRNPL and LL 

class of splicing factor (Hung et 

al., 2008; Ray et al., 2013). 

Functionally the binding of these splicing factors has been implicated in the regulation of a 

wide range of alternative splicing events such as exon skipping, and suppression of variable 

exons. Interestingly, RNAi mediated KD of hnRNPL /LL has been shown to cause intron 

retention in CD55 and STRA6 genes in HeLa cell lines (Hung et al., 2008). This suggested 
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that binding to hnRNPL /LL might be required for efficient processing of introns. Drosophila 

genome encode for a homologue of the hnRNPL protein, known as Smooth(SM). SM 

contains 3 ranges corresponding to RRM (RNA binding) domains which share approximately 

42%, 25% and 42% identity with human hnRNPL protein (Fig 4.2.16).  To investigate the 

relationship between SM protein and intron retention in our TBI model, we used a SM-

mutant (sm4) line (Karpen and Spradling, 1992; Layalle et al., 2005). We used the sm4/DF 

mutant instead of RNAi lines because these flies have a well characterized and easily 

observable phenotype. The SM-mutants have an average life–span of ~30days due to 

defective feeding behavior. This phenotype has been attributed to the lack of chemosensory 

axon arborization in the leg neuromere (Layalle et al., 2005). Subjecting the sm4/DF mutants 

to TBI resulted in loss of RI events observed 24 hours’ post-trauma in w1118 flies. In some 

cases, for example in STNA/B 1st intron, even the basal level of RI was reversed. This result 

provided strong evidence that SM binding to Intronic splicing suppressor (ISS) sites is 

necessary for RI 24 hours post-TBI. This result was contrary to our expectations. However, it 

is worth noting that Splicing Factors have multiple binding sites along the genes. Their 

impact on RNA splicing may vary depending upon their binding to Intronic or exonic sites. 

In this study, we hypothesize that SM (hnRNPL) is most likely being recruited to ISS which 

result in RI. As the sm4/DF is short lived it also suggests that TBI-associated increase in RI 

might be protective in nature. 

Alternative splicing in eukaryotic organism has been shown to occur co-

transcriptionally. Therefore, the splicing machinery is in close proximity with surrounding 

histone modification which may interact directly or indirectly with splicing factors and 

regulate splicing. One of the modifications that has been implicated in regulation of splicing 
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is H3K36me3. As mentioned before, H3K36me3 has been shown to be depleted from 

alternative exons compared to flanking constitutive exons in C.Elegans and Mice. This 

seemingly functional relationship seems to well conserved in Drosophila.  Furthermore, 

consistent with our hypothesis we observed increase in H3K36me3 modification within RI in 

24 hours post-TBI heads. This result was further substantiated by our KDM4A-RNAi studies 

in 3rd instar larvae. We were able to recreate some of the major RI found 24 hours post-TBI 

in KDM4A-RNAi 3rd instar larvae including genes associated with mitochondrial 

metabolism (IDH and PYK) and neuronal transport protein STNA/B. Re-mapping all intronic 

reads 1000bps around the SM motif (ACACACA) also showed an enrichment of H3k36me3 

in 24 hours post-TBI heads compared to controls within introns. Therefore, multiple lines of 

evidence suggest possible relationship between splicing and H3k36me3. We tried to model 

all intron retention (∆PSI>0) and exclusion events (∆PSI<0) in our TBI samples as a linear 

function of log fold-change in H3k36me3 peaks in TBI compared to control samples, GC 

frequency, intron length and frequency of ACACACA motif (1 mismatch) near the 3’SS or 

5’SS (see methods). At a p-value cut-off ≤ 0.001 we found that the interaction between the 

intron length, log fold-change in H3k36me3 peaks and frequency of ACACACA motif near 

3’SS was predictive of intron retention (∆PSI>0) and showed synergistic affects (Table 4.2.6, 

Fig 4.2.17A and B).  

A study by Yuan et al, 2009 reported hnRNPL to be an integral part of the lysine 

trimethylase 3A (KTM3A) complex (Yuan et al. 2009). KMT3A (also known as HYPB or 

hSET2) is a histone methyltransferase specifically shown to increase H3K36me3 levels in 

mammals and Drosophila (Bell et al. 2007; Edmunds et al. 2008). The authors demonstrated 

that RNA interference against KMT3A or hnRNPL down-regulates exclusively the 
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H3K36me3 mark in HeLa cells. This suggests that hnRNPL might be required for hSET2 

methyltransferase activity. Therefore, based on the results from this study and our results we 

propose that 24 hours’ post-trauma, there is an increase in recruitment of SM (hnRNPL) 

binding proteins to the 3’SS of long introns. This leads to recruitment of SET2 HMT to the 

ACACACA sites and increases the levels of H3K36me3 within these introns (Fig 18). 

Simultaneously, an increase in mitochondrial stress post-TBI reduces the availability of α-

KG, and, thereby, causes a decrease in KDM4A histone demethylase activity. Therefore, the 

disruption of balance between the SETD2 histone methyltransferase and KDM4A histone 

demethylase activities contribute to an increase in H3K36me3 within long introns. 
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Tables 

Table 4.1: ANOVA followed by TukeyHSD for difference in tag counts (read counts) of 

H3K36me3 ChIP-Seq peaks between 1= 1st exon, 2= 2nd exon and 3= 3rd exons of 

constitutive or alternative exon trios for 3rd instar larvae(GSE47248) and adult 

heads(GSE47280).   

diff lwr upr p.adj Comparison type group 

13.37804 10.06118 16.6949 0 2-1 CT adult heads, A 

5.506706 2.189848 8.823565 0.000295 3-1 CT adult heads, A 

-7.87134 -11.1882 -4.55448 8.09E-08 3-2 CT adult heads, A 

14.6052 11.06998 18.14042 0 2-1 CT adult heads, B 

6.123988 2.588766 9.65921 0.000146 3-1 CT adult heads, B 

-8.48122 -12.0164 -4.94599 5.69E-08 3-2 CT adult heads, B 

-18.7569 -35.3136 -2.20013 0.021761 2-1 AT adult heads, A 

-2.88908 -19.4458 13.66766 0.911434 3-1 AT adult heads, A 

15.86778 -0.68896 32.42452 0.063595 3-2 AT adult heads, A 

-21.0012 -38.3085 -3.69388 0.012544 2-1 AT adult heads, B 

-1.7153 -19.0226 15.592 0.970517 3-1 AT adult heads, B 

19.28587 1.978582 36.59317 0.024585 3-2 AT adult heads, B 

20.6737 15.60103 25.74637 0 2-1 CT Larvae, A 

12.37894 7.306264 17.45161 3.25E-08 3-1 CT Larvae, A 

-8.29477 -13.3674 -3.22209 0.000375 3-2 CT Larvae, A 

23.28809 18.5096 28.06659 0 2-1 CT Larvae,B 

13.39256 8.614069 18.17106 0 3-1 CT Larvae,B 

-9.89553 -14.674 -5.11704 3.67E-06 3-2 CT Larvae,B 

-17.427 -39.9339 5.079979 0.163815 2-1 AT Larvae,A 

2.851521 -19.6554 25.35846 0.952205 3-1 AT Larvae,A 

20.27848 -2.22846 42.78542 0.087159 3-2 AT Larvae,A 

-26.9479 -47.575 -6.32084 0.006393 2-1 AT Larvae,B 

0.275923 -20.3512 20.90302 0.999454 3-1 AT Larvae,B 

27.22387 6.596766 47.85097 0.005779 3-2 AT Larvae,B 

 

Table 4.2: Motif enrichment analysis for 5’SS. 299 bps sequences were collected from 

intronic side of 5’SS for retained intron of length ≥ 600 (N= 421/458). Motif enrichment 

analysis was run using reshuffled sequences as background (Parameters; . Strand 

Handling=Only the given strand is processed, E-value Threshold=0.05, Max Motif Count= 

10). 
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Table 4.3: Motif enrichment analysis for 3’SS. 299 bps sequences were collected from 

intronic side of 5’SS for retained intron of length ≥ 600 (N= 421/458). Motif enrichment 

analysis was run using reshuffled sequences as background (Parameters; . Strand 

Handling=Only the given strand is processed, E-value Threshold=0.05, Max Motif Count= 

10). 



127 

 

 

Table 4.4: Motif enrichment analysis for 5’SS. 299 bps sequences were collected from 

intronic side of 5’SS for retained intron of length ≥ 600 (N= 345/413). Motif enrichment 

analysis was run using reshuffled sequences as background (Parameters; . Strand 

Handling=Only the given strand is processed, E-value Threshold=0.05, Max Motif Count= 

10).  
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Table 4.5: Motif enrichment analysis for 3’SS. 299 bps sequences were collected from 

intronic side of 5’SS for retained intron of length ≥ 600 (N=345/413). Motif enrichment 

analysis was run using reshuffled sequences as background (Parameters; . Strand 

Handling=Only the given strand is processed, E-value Threshold=0.05, Max Motif Count= 

10).  
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Table 4.6: Contribution of factors in regulation of intron retention. GC frequency= GC 

frequency, width(Kb)= intron length (Kb), logFC= RPKM(TBI)/RPKM(Control) and 

ACACACA frequency= Frequency of ACACACA motif near the 5’SS and 3’SS allowing 

for 1 mismatch. 

Parameters Estimate Std. Error z value Pr(>|z|) 
ACACACA 

loc 

(Intercept) 0.828783 0.046809 17.70578 3.78E-70 3'SS 

GC frequency 2.804937 0.975779 2.874563 0.004046 3'SS 

Width(Kb) 0.245127 0.020074 12.21138 2.70E-34 3'SS 

logFC 0.40754 0.164387 2.479145 0.01317 3'SS 

ACACACA frequency 9.868323 1.998088 4.938884 7.86E-07 3'SS 

Width(Kb): logFC -0.34452 0.04238 -8.12926 4.32E-16 3'SS 

Width (Kb): ACACACA frequency -2.87142 1.960563 -1.46459 0.143033 3'SS 

logFC: ACACACA frequency 57.4091 26.96022 2.1294 0.033221 3'SS 

Width (Kb): logFC: ACACACA 

frequency 
20.7102 5.408959 3.828871 0.000129 3'SS 

(Intercept) 0.828428 0.046727 17.72924 2.49E-70 5'SS 

GC 2.967163 0.975796 3.040762 0.00236 5'SS 

Width(Kb) 0.21057 0.014196 14.8332 8.94E-50 5'SS 

logFC 0.558975 0.150455 3.715239 0.000203 5'SS 

CA_freq_ss5 10.27271 1.675534 6.131004 8.73E-10 5'SS 

Width(Kb): logFC -0.18084 0.025237 -7.1657 7.74E-13 5'SS 
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Prenatal and postnatal exposure to pervasive neuro-toxicants such as Lead (Pb) has 

been reported to causes extensive and diverse changes in the epigenetic profile. Among 

epigenetic modification, DNA methylation (5mC) is perhaps the most widely studied and has 

been proposed to be potential early biomarkers for Pb toxicity. Several studies have 

demonstrated the association between Pb-exposure and 5mC. However most of these studies 

are restricted to looking at a specific set of target genes or repetitive elements. Therefore, one 

of the main objectives of our study was to use an unbiased genome-wide approach to look at 

Pb-exposure associated changes in 5mC. To this end, we used the Human methylation 450K 

(HM450K) high density array to quantitatively measure the Pb-associated 5mC changes. The 

sample for this study consisted of DNA extracted from neonatal and current blood spots from 

a mother-infant cohort in Detroit, USA and Umbilical cord blood DNA from a mother-infant 

cohort from Mexico City, Mexico. We observed that Pb-exposure associated 5mC changes in 

whole blood and UCB are sex-specific. Furthermore, some of these 5mC changes are 

heritable and can be transmitted from the grandmother to the grandchildren. To further our 
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understanding of the relationship between Pb-exposure and 5mC, we wanted to look at the 

impact of Pb-exposure on DNA demethylation, specifically the dynamic changes in 5-

hydroxymethylcytosine (5hmC) profile. To study these changes in the 5hmC profile, we used 

a novel modification of the HM450K, which we named HMeDIP-450K array. Using the 

HMeDIP-450K array we demonstrated that 5hmC showed a much larger number of sex-

independent changes.  Interestingly, a vast majority Pb-dependent 5mC and 5hmC clusters 

mapped to either gene implicated in neurodegeneration and regulation of mitochondrial 

processes such as NINJ2, VAMP5, GSTM1, GSTM5 etc. 5mC and 5hmC are potent 

regulators of gene expression and their dysregulation can cause widespread changes in the 

transcriptome and may contribute to neurodegenerative phenotype. Besides 5mC and 5hmC, 

transcriptomic changes can also be regulated by dynamic changes in histone methylation 

profile and alternative splicing. To study these changes, especially in context of 

neurodegeneration we used a Drosophila model of traumatic brain injury (TBI). Using a 

modified version of this model, we subjected w1118 fruit flies to mild closed head trauma. To 

determine the transcriptomic changes which contribute to survival post TBI, we collected fly 

heads from the survivors at 2 time points; 4 hours and 24 hours’ post-trauma. Mild TBI using 

our modified TBI protocol had limited impact on the expression profile of genes but showed 

large perturbations in alternative splicing (AS) regulation 24 hours’ post-trauma. 

Classification of these AS changes showed selective retention of long introns (>81bps). 

Some of these genes also showed a significant reduction in transcript abundance and were 

specifically involved in mitochondrial metabolism. The retained introns were enriched for 

CA-rich motifs known to bind to Smooth (SM), an hnRNPL class of splicing factor. 

Mutating SM (sm4/DF) resulted in reversal of intron retention observed 24 hours’ post-
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trauma. This observation suggested that SM is critical regulator of Intron retention in fly 

heads. Interestingly, ChIP-sequencing for H3K36me3 revealed increased levels in retained 

introns post-trauma. Additionally, higher H3k36me3 was also observed around intronic SM-

binding motifs post-trauma which suggested that increased level of H3k36me3 might be 

recruiting SM to their Intronic Splicing Suppressor sites and cause RI in the Drosophila 

model of TBI. Together our studies in human cohort and Drosophila sheds some light on the 

complex multi-layered mechanism regulating gene-expression especially under neurotoxic 

and neurodegenerative conditions. 
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