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CHAPTER 1:GENERAL INTRODUCTION 

1.1 Development of 2D materials beyond Graphene 

 Two dimensional(2D) materials have demonstrated a wide range of remarkable properties 

for applications in next generation nano-electronics. Their atomic scale thickness provides higher 

degree of electrostatic control than bulk materials[1], revealing the possibility for low power 

electronics devices[2].To date, the most widely studied 2D material is graphene due to its rich 

physics and potential in device applications including electronics  [3, 4], spintronics[5, 6], 

chemical and biological sensing [7-10], nano-electromechanical systems (NEMS) [11], and 

energy storage [12]. However  graphene does not have a band gap that limits its applications in 

digital logic devices. A band gap in graphene can be generated by applying high transverse 

electric fields in bi-layer graphene or shaping graphene into nano-ribbons. However these efforts 

increase the complexity for device fabrication and also lead to mobility reduction.[13] 

 Alternatively, another class of 2D materials known as, transition metal dichalcogenides -

TMDs (such as MoS2, MoSe2 and WSe2) have not only demonstrated many of the "graphene 

like" properties desirable for electronics applications such as mechanical flexibility, chemical 

and thermal stability and the absence of dangling bonds, but also have a substantial band gap. As 

the most studied TMD material to date, MoS2 has a band gap of  ~ 1.8 eV, which makes it a 

suitable candidate for low power digital logic devices [14]. Just like graphene, TMD materials 

can be exfoliated from its bulk crystals by mechanical exfoliation method due to the weak van 

der Waals interactions between layers. 

 

1.2 Challenges in 2D materials based electronics. 
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1.2.a)  Understanding the main challenge 

 In the early studies of "graphene like" 2D semiconductor, the carrier mobility of few 

layer and monolayer MoS2 FETs fabricated on Si/SiO2 substrates was calculated to be in the 

range of 0.1-10 cm
2
V

-1
S

-1
.This is orders of magnitude lower than the mobility of graphene. 

Moreover, it substantially lower than the phonon-limited mobility in bulk MoS2 crystals (which 

is on the order of 100 cm
2
V

-1
S

-1
) [15-18].In one study byRadisavljevicet al.  the mobility of 

monolayer MoS2 was imprved significantly using HfO2 high -ĸ dielectric top gating. This was 

attributed to the screening of Coulomb scattering and modification of Phonon dispersion[19]. In 

addition to higher mobility, MoS2 FETs have demonstrated high ON-OFF ratio(10
8
), near ideal 

sub threshold swing (74 mV/decade) and outstanding mechanical flexibility , opening up its 

ability to use in low power  and high performance flexible devices [19-21]. Furthermore MoS2 

FET  can be used in novel applications such as as energy harvesting [22, 23] and optoelectronics 

[24, 25] devices. However, it is not completely clear, to what degree the reported charge 

impurity screening and phonon dispersion modificationcontributesto the mobility improvement. 

On the other hand, a studiesbyGhataket al.   and  Lee et al. suggest that the low mobility values 

reported for MoS2 FETs fabricated on Si/SiO2 are largely due to the charge- impurity-induced 

electron localization [16] and Schottky barrier forms at MoS2 /metal contact interface 

respectively [26]. A study by  Lin et al. shows that mobility increase in polymer electrolyte 

covered monolayer MoS2 FETs can be attributed partially to the reduction of contact resistance 

and partially to the enhancement of the channel mobility [27]. 
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1.2.b) Contact engineering as a solution 

 The strength of semiconducting 2D TMDs such as MoS2, MoSe2 and WSe2 as channel 

materials lies in their large bandgap, which results in a very high ON-OFF current-ratio and 

excellent electrostatic integrity [14].  However, large bandgap semiconductors are also  known to 

have difficulties forming Ohmic contacts with metal, while low resistance Ohmic contacts are 

essential in optimizing the device performance of FETs.  

 There are typically two types of low resistance Ohmic contacts that can be made between 

a semiconductor and a metal, (a) very low barrier Schottkycontacts  and(b) tunneling contacts. 

Ideally, an Ohmic contact can be formed if the SB height is zero or negative. For an n-type 

semiconductor such as MoS2 and MoSe2, the work function of the metal must be close to or 

smaller than the electron affinity of the semiconductor to form Ohmic contacts. Bulk MoS2 as a 

n-type semiconductor has an electron affinity of ~ 4 eV, and that of  atomically thin MoS2 is 

expected to be even smaller due to the increased band gap[26, 28]. However, the work function 

of most commonly used electrode metal ranges from slightly over 4 eV for Al andTi to over 5 eV 

for Pd and Ni. 

 In addition, a good electrical contact material also requires high conductivity, chemical, 

thermal, electrical stability. It is extremely difficult to have stable electrical properties if low 

work function metals (such as Ca, which has a work function of 2.9 eV) are used, since low-

work-function metals oxidize easily, which severely degrades their electrical characteristics. 

Therefore, it is challenging to find a suitable metal to form very low barrier Schottky contacts to 

n-type TMDs. For a p-type semiconductor such as WSe2, the work function of the metal must be 

close to or larger than the sum of the electron affinity and the bad gap energy, which is similarly 
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challenging. Although relatively good contacts have been made between the p-doped monolayer 

WSe2 and the high work function Pd, a non-negligible SB still appears to be present [29]. 

Furthermore, the Schottky barrier in reported MoS2 FET devices with various metal contacts 

appears to be quite insensitive to the work-function of the contact metal, suggesting the presence 

of Fermi level pinning (or at least weak pinning) likely due to the metal induced gap states at the 

metal/MoS2 interface [30].  

1.3 Methods to reduce contact resistance 

1.3.1) Metal contacted MoS2 FETs with Ionic liquid gating. 

 Aconvenient way to make low -resistance contacts is to make narrow Schottky junctions, 

where the contact resistance is determined by the tunneling current. As our first approach to 

improve the contacts of MoS2FETs,we used Ionic Liquid (IL) gating which forms an electric 

double layer with high capacitance at MoS2/metal interface. As a result, IL gated MoS2 FETs 

demonstrate high tunneling efficiency and thus low contact resistance due to the strong band 

bending occuring at MoS2/metal interface. We successfully observed mobility enhancement, 

higher ON-OFF ratio for both electrons and holes, near ideal sub-threshold swing and phonon 

limited behavior. 

1.3.2) Highly doped graphene as low-resistance contact material for MoS2 FETs.  

 According to Yu et al.  the work function of graphene can be tuned by electric field effect 

within the range of 4.5 -4.8 eV for single layer and 4.65-4.75 eV for bilayer  graphene using a Si 

back gate with a 300 nm thick SiO2 dielectric layer, making graphene an attractive material for 

low contact barrier electrodes [31]. However, significantly larger range of work function 

tunability will be needed for achieving true Ohmic contacts for both electrons and holes in 
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graphene/TMD junctions due to the large band gap of the TMD materials. To resolve this issue, 

we used ionic liquid gates to more effectively tune the carrier density (thus the work function) of 

graphene. An ionic liquid gate can induce a high carrier density exceeding 10
14

 cm
-2

 in graphene, 

which is more than an order of magnitude higher than using a conventional solid-state gate 

dielectric [32]. Atomically sharp interfaces between graphene and hydrogenated Si as well as 

between graphene and MoS2 have been achieved, and a modulation of SB at the graphene/Si 

junction by a gate voltage has also been demonstrated [33, 34]. The nearly ideal diode ideality 

factor observed in graphene/Si junctions strongly suggests that high quality 

graphene/semiconductor contacts free of interface states are achievable using graphene as a 

contact-electrode material [33]. 

 Furthermore we used Hexagonal Boron Nitride (h-BN) as a bottom dielectric and channel 

passivation material. The main reason of the channel passivation ids to selectively dope graphene 

contacts by protecting the channel. h-BN is used due to its atomically smooth surface, which is 

chemically inert and relatively free of charged impurities and charge traps [35-37].   

1.3.3) 2D/2D contacts with slightly doped channel. 

 For realistic device applications, more permanent, air and thermally stable Ohmic 

contacts with lower contact resistance are needed. In this respect,we used degenerately doped 2D 

electrodes along with lightly doped 2D channel. Nb is used as p-dopent and is bound with  

covalent bond which provides higher air and thermal stability[38].  2D /2D junctions  can be 

formed with atomically smooth surfaces by Van der Waals assembly of 2D crystals[39, 40].In 

this study the .01% Nb  (Nb0.0001 W0.9991Se2)  doped WSe2was used as the channel material and 

.5% (Nb0.005 W0.995Se2 ) degenerately doped samples for contacts. The obtained transport 
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characteristics include a two probe field-effect mobility of ~ 180 cm
2
V

-1
S

-1
 at room temperature, 

which increases up to around 700 cm
2
V

-1
S

-1
 at 10 K. We also observed near 10

8
 ON/OFF ratio, 

intrinsic phonon limited behavior and subthreshold swing of 700 mV/dec at room temperature. 
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CHAPTER 2:EXPERIMENTAL METHODS 

 In order to achieve higher device performance and intrinsic transport properties for 

TMDs based FETs, we employed novel contact engineering strategies. This chapter is describes 

techniques that were used to fabricate devices with each different contact engineering strategies. 

In addition to standard FET fabrication techniques, we have used a home-built transfer stage to 

fabricate TMD FETs with 2D contacts. 

2.1  Substrate cleaning 

 The first of the device fabrication process  is to prepare clean Si/SiO2 substrates.For this 

purpose, degenerately doped Si wafers with 270-290 nm thickSiO2are used as the substrates. 

When mechanically exfoliated TMDs are transferred on to these substrates, the above mentioned 

oxide thickness range provides high visibility for monolayer or few layer samples. To remove 

the particulates on the Si/SiO2 substrates, they were sonicated in Isopropyl Alcohol (IPA)  

andacetone for 10 minuteseac, where the ultra sonic waves are used to loosen the particles 

adhering to the surfaces. 

 Once this is done, thesubstrates are annealed in the annealer at 600
0
C for 10 minutes in 

forming gas(90% Ar and 10% H2) and  cooled down gradually. This helps to eliminate organic 

residues on the substrate surfaces and thus to thoroughly clean the substrate. 

 

2.2  Sample fabrication with mechanical exfoliation 

 Next step is to synthesis TMD materials. Ultimately we measure the intrinsic transport 

properties of TMD channel materials after improvements in contacts. To make sure we get the 

best TMD channel material, it's necessary to produce clean, uniform high quality 
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samples.TMDcrystals are composed of vertically stacked  layers which are interacting weakly 

and held together by Vander Waals interactions.[2] 

 TMDs can be exfoliated into single or few layers by using mechanical exfoliation 

method.[41] First we place a tiny piece of 2D material on the ultralow residue tape (Ultron 

system R1007 tape).Then another piece of  tape is placed on 2D material and press it using an 

eraser or thumb.[41]Keeping the bottom tape fixed, slowly peel off the top tape maintaining an 

angle. Repeat this several times until MoS2 is thinner enough.[41] Once you have thin enough 

flakes on the tape, transfer them onto Si/SiO2 substrates. This will give flakes with wide range of 

thickness distribution.We can look for  samples with desired thickness range under the optical 

microscope.[41] MoS2 mono-layers were transferred to degenerately doped silicon substrates 

covered with 270-nm-thick SiO2 (Fig. 2.1).  

 

 

  

 

To further characterize the MoS2samples , they are scanned with non contact mode AFM (Park 

System XE-70) to understand the quality of the sample surface and measure the sample 

thickness.AFM is a powerful characterization tool that can provide resolution down to sub Ǻ 

scale measurements. Figure 2.2 shows an optical micrograph of MoS2 sample and it's further 

characterized  AFM image with sample height distribution. 

Figure 2.1 :  Mechanical exfoliation of 2D material crystals.  

(a) 
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Figure 2.2: (a) A bilayer MoS2 sample on SiO2 substrate. (b) An AFM image of a sample and 

it's thickness distribution. 
 

 Transferring TMDs directly on to Si /SiO2substrate was used in the early stage of our  

research efforts(Chapter 3).Over the time hexagonal Boron Nitride (h-BN) was used as a bottom 

dielectric to provide  an  atomicallysmooth surface that is chemically inert and relatively free of 

charged impurities and charge traps.[42]Furthermore, h-BN was used  as a channel passivation 

layer to selectively dope graphene contacts that will be discussed in detail in chapter 4.In order to 

transfer h-BN and 2D contacts (will be discussed in chapter 5)  we needed a method that can 

transfer 2D material to a targeted place on the substrate.This challenge was addressed by dry 

transfer method.A home built setup was used for this purpose  and step by step explanation is 

presented below. 

 

2.3 Dry transfer method 

 Dry transfer method is extremely important technique which allows to fabricate devices 

that needed multiple 2D material transfer steps. For instance a typical 2D/2D contacted devices 

(which will be covered in chapter  6), need this method to transfer h-BN bottom dielectric, the 

TMD channel, The top passivation and 2D contacts for both drain and source.To transfer a 2D 

  

(b) 
(a) 
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material on to a substrate, we first have to exfoliate the sample on to a Polydimethylsiloxane 

(PDMS) patch. PDMS is asilicone based polymer, and for this transfer procedure it's used as an 

intermediate material for transferring process. This means 2D materials are exfoliated on to 

PDMS and then transferred on a substrate. 

2.3.1) Preparing PDMS.   

 In-order to make high quality devices it is crucial to use freshly made PDMS. By doing 

so, we make sure that PDMS residue won't be introduced to the samples. PDMs is prepared 

using Sylgard 184 silicone elastomer base and curing agent. 7g of elastomer base is added to a 

freshly chosen plastic cup. Then 0.7 g of curing agent is added and stir using fresh, clean stick 

until they mixed well. This mixture is placed inside the vacuum for 20 minutes until all the 

bubbles are gone from the mixture. 

 Then use a brand new wafer, pour the mixture in to the center and spin coat it with 350 

rpm for 35 seconds. Then the pre-coated PDMS should be backed on a hotplate for 80
0
C for 30 

minutes and another 30 minutes to cool down. 

 

 

 

 

 

 

 

 

Figure 2.3:Sylgard 184 silicone curing agent and elastomer (respectively from left to right) 
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2.3.2) Preparing for the transfer. 

 First the 2D material that we want to transfer has to be exfoliated on to blue tape. Once it 

was exfoliated up to desired thickness, we look it under the optical microscope and choose a 

better area. Then we cut PDMS into small patches and place couple of patches on the area of the 

blue tape that already selected. Then put back the backing of the blue tape and press gently 

.Transfer the PDMS patches on to a glass slide and search for better samples under the 

microscope. 

 Once you find the patch with desired sample, it should be placed on a glass slide(Figure 

2.4) along it's shorter edge. This will help to land the sample easily on the targeted position. The 

farthest end of the PDMS edge from the sample is mount to the glass slide with a scotch tape. 

 

 

 

 

Figure 2.4: A PDMS patch mount on a glass slide and ready to transfer. 

2.3.3) Transferring the samples onto substrate. 

 For transferring we use a transfer stage with a micromanipulator. The transfer stage 

contains the microscope , a sample stage  and a micromanipulator. The slide with the sample 

patch should be mount on to the micromanipulator as facing the sample towards the sample 

stage. The substrate should be mount on the stage. Then the glass slide brings on top of the 

substrate and lower towards the substrate looking from the microscope. When the sample on 

PDMS is so close to the substrate then we should lower the sample on PDMS patch slowly until 

(a) 
(b) 
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it completely land on the desired target. Finally we lift the glass slide very slowly until it 

completely off from the substrate. Now we can have a look under the microscope the sample that 

we have transferred.  

 

 

 

 

 

 

Figure 2.5:(a) A real image of the transfer stage set up.(b) A schematic diagram of the ready to 

use transfer stage. 

 

 The following figure elaborates the transfer of each 2D material components in 

fabricating a 2D/2D contacted device. 

 

Figure 2.6: The steps of fabricating 2D/2D contacted device. (a) Bottom h-BN dielectric 

transferred on SiO2 substrate. (b) Nb0.0001 W0.9991Se2 transferred on h-BN (c) Top h-BN 
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passivation for the channel (d) Transferring degenerately doped contacts (Nb0.005 W0.995Se2) as 

drain and source electrodes (e) Fabricating metal electrodes for the 2D/2D contacted device. 

 

2.7  Electron beam lithography and metal deposition 

 Electron beam (e- beam) lithography is a widely used, simple and reliable  technique to 

fabricate nanodevices. A mask (resist) is used to cover the substrate which contains the sample 

and electron beam is used to pattern customized electrodes. Exposing the resist to electron beam 

changes the solubility of the resist in the exposed area. 

 Bilayer resist system is used in our standard e-beam lithography procedure. Two PMMA 

layers we use are 495 A4 and 950 A2, which have different molecular weights (represented by 

495 /950) and concentrations (A4/A2).As the top layer, 950 A2 is used. This is mainly due to its 

less sensitivity to electron beam since it has higher molecular weight.This creates an undercut 

profile. PMMA is coated on the substrate using spin coating. A program with 4000 rpm for 45 

seconds was used for this purpose. The first PMMA layer to coat is 495 A4which gives around 

220 nm of thickness while 950 A2 gives around 80 nm.After each coating step, the substrate is 

baked in 180
o
C for 5 minutes.Then silver paint is applied close to the sample area, to fine focus 

the system before writing the pattern. NPGS (Nano Pattern Generating System) software is used 

to design and customize the pattern that we need to write. The written patterns have to be 

developed afterwards. This means the resist will be removed only from the area that was exposed 

to electron beam, following the designed customized pattern. After writing the pattern using e 

beam lithography, the very next step is developing, which removes the  resist from area that was 

exposed to e-beam. Developing involves soaking the e-beam patterned sample in  1:3 mixture of 

MIBK:MEK. Finally the sample is observed under the microscope and take images in different 

magnifications. 
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 Then we deposit Ti/Au combination on the exposed area using standard metal deposition 

process. Finally we remove the remaining resist by soaking the sample in Acetone which is 

called lifting off, and end up with having metal electrodes as we designed.The whole purpose of 

this procedure is to create electrodes on the TMD samples which are on the Si substrate and 

construct FETs. 

 

Figure 2.7:(a) Schematic diagram of PMMA resist on SiO2 /Si substrate. (b) E beam lithography 

to create patterns on the resist.[43] 

 

2.7.1)The main steps of E-beam lithography process  

Film preparation 

1. Substrate cleaning example procedure (for Silicon substrate): 

 (a) Sonicate in Acetone for 20 min; 

(b) Sonicate in IPA for 10 min; 

(c) Annealing at 600
0
C for 10 minutes. (Add Ar gas for 2 minutes during this 

time) 

2. Substrate bake: 150
o
 C for 30 minutes on hotplate 

3. PMMA spin: refer to the specific PMMA data sheet (e.g., 495 PMMA A4 3000 rpm film 

thickness ~ 200 nm) 
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4. Film bake: refer to the specific PMMA data sheet (e.g., 180
o
C for 1~1.5 min on hotplate for 

495 PMMA) 

5. Make a scratch on the sample surface as a reference mark for e-beam adjustment and 

patterning. 

Specimen and SEM Setup 

1. Load the sample into the SEM. 

2. Optimize sem. 

3. Focus on gold particles. 

4. Move to appropriate area. 

5. Focus on silver particle for fine tuning. 

6. Using appropriate program write the pattern on the substrate. 

 

2.7.2) Pattern Development 

1. Check the PMMA Data sheet for proper development conditions. Below are several 

sample procedures for your references. Developer Time Conditions 

MIBK:IPA 1:3 70 seconds for more sensitive features 

MIBK:IPA 1:1 70 seconds for larger features (stronger developer) 

IPA 20seconds 

2. Dip the sample into the proper developer solution and swirl constantly for a desired 

period of time (e.g., 70 seconds). 

3. Dip the sample into pure IPA solution or DI water and swirl for 20 seconds to stop the 

reaction. 
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4. Quickly wash the substrate with water and dry with Nitrogen gas. Decrease the flow of 

Nitrogen gas if necessary (for sensitive features). 

5. Pour the developer and IPA into proper waste storage containers under the hood. 

6. Check the pattern under the optical microscope. 

2.8) Metal Deposition 

 The metal deposition allows to form metal electrodes on the patterns we wrote using 

lithography. We need to make sure that metals we are using have smaller work functions in order 

to get good n channel contacts with MoS2 sample since it forms smaller Schootky barrier. 

For metal deposition,Termescal model BJD-1800 E-beam evaporator was used. This includes 

high vacuum chamber, pumping system (mechanical pump, diffusion pump and automated 

interlocks) and sources to be targeted by E-beam.[44] In this particular equipment we have 6 

pockets to hold sources. The samples should be loaded in to the system and have to wait round 2 

hours until the system reaches the pressure lower than 2 X 10
-6 

torr to start the deposition. For 

out samples we usually use 10nm Ti and 40nm Au as deposition metals. The rate of deposition is 

used as 1 Ǻ/s for both materials. 

 

 

 

 

 

 

 

 

Figure 2.8: BJD 1800 E-beam evaporation system for metal deposition[44] 
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 The source metal is evaporated in vacuum and vapor particles move towards the target, 

condensed back and deposit.[45]Following figure shows the schematic diagrams to illustrate the 

processes with respect to electron beam lithography and metal deposition.  In the next image, the 

electrodes are shown in  after lift-off process using acetone. 

                                                          

(a)                                                                   (b) 

Figure 2.9: The schematic diagrams show the integrated processes with electron beam 

lithography and metal deposition. (a) Starting the coating of PMMA to lift-off process. (b) The 

actual electrodes picture ready for electric measurement. 

 

2.8.a) Annealing process 

 To remove any absorbed impurities from the 2D materials and improve the qulaity of 

performance, thermal annealing is used. In device fabrication, this helps to reveal the true 

electrical transport properties of the channel and improve the contacts. In our fabrication process, 

we used two types of annealing procedures. To clean the Si substrates, the maximum temperature 

of 600
o
C for 10 minutes with purging gas (10% Ar and 90% H2) were used. For this purpose 

(Ulvac Mila 5000 equipment )was loaded with the Si substrates , turn on the vacuum pump and 

purge with purging gas for three times. When the annealer starts running ,it reaches the 

maximum temperature of 600
o
C and stays there for  10 minutes. During this window, we let 
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purging gas in for 2 minutes. After staying 10 minutes, the annealer starts to drop its temperature 

gradually and reach the room temperature. This completes the annealing process for Si 

substrates. We usually perform this prior to use the Si substrates. 

 When it comes to anneal fabricated TMD FETs, we make sure to use the maximum 

temperature of 250
o
C for 30 minutes. In this case we don't let the purging gas in when it reaches 

the maximum temperature. 

 

 

 

 

 

     Figure 2.12:Ulvac Mila 5000 annealer 

2.9) Doping methods. 

After devices are fabricated ,different doping methods are used as contact engineering approach 

to improve device performance and achieve intrinsic transport properties. 

2.9.1) Ionic Liquid (IL) doping. 

Ionic liquid is binary organic salts that can foam an electric double layer at IL/Channel 

interface[46]. This acts like a parallel plate capacitor. Once the devices are fabricated, small 

droplet of DEME-TFSI IL (Supplied from Sigma Aldrich 727679) is applied using micro-

manipulator. In order to apply IL gating efficiently we make sure that the IL drop covers the ing 

area (The contact area generally) with minimum spreading and the gate electrode with the 

maximum spreading. In the below we have a schematic diagram and a real image to demonstrate 

how it looks like after IL gating is applied. 
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Figure 2.11:An optical micrograph of a metal contacted MoS2device after application of IL 

gating at 10X and 50 X magnification. 

 

 

 

 

2.9.2) Benzyl Vioilogen doping method 

 

 Air stable doping of 2D materials is really important for electronic and optoelectronic 

applications as well as to understand the intrinsic channel bahvior by improving the contacts.[47] 

Benzyl Viologen (B.V) is a surface charge transfer donor which can be used to dope graphene or 

other TMDs. In our study we use B.V to highly dope the electrodes of  grapehe contacted MoS2 

FETs. According to the literature MoS2 can be doped up to the degenerate doping level using 

B.V doping method.[47]This method is even attractive since the B.V can easily spin coat on the 

device and can be reversibly removed using Toluene.[48] 

 The B.V solution is prepared as follows. First 8 mg of Benzyl Violgen dichloride 

(powder) is measured and put in to a clean small bottle. Then 2.5 ml of De-ionized water (D.I 

(b) 
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Water) is added in to the same bottle. Then the mixture of B.V powder and D.I water is shaked 

gently until they mixed properly. Once the B.V powder is dissolved completely the final solution 

looks colorless(Figure 2.10 (a)).Then 2.5ml of Toluene is added to the prepared B.V solution 

using a pipette. Toluene doesn't dissolve with the prepared B.V mixture, so it forms as a layer on 

Top.(Figure 2.10(b)).Then 50 mg of Sodium Borohydride (NaBH4) is added to the solution 

(Figure 2.10(c)).This first enters to the Toluene layer and start to react with the B.V solution in 

the bottom. This is kept for a day and the top Toluene layer is extracted by a pipette and put in a 

clean container.(Figure 2.10 (d)).For a B.V solution prepared with above mentioned recipe, we 

will get a B.V solution with 60mM concentration.   

 

 

 

 

 

 

 

 

Figure 2.10: The step by step preparation process of B.V solution.(a) B.V powder is mixed with 

D.I water (b) After Toluene is added (c) Right after NaBH4 is added (d)After extracting Toluene 

layer with B.V which is ready to use for doping 

 

 

 

 

 

 

 

 

 
 

(a) (b) 

 

(d) 
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2.10) The summary of devices types that are fabricated for each project 

 

 

 

 

 

 

 

Figure 2.13 :The type of contact engineering approaches used to improve device performances. 

(a) Metal contacted MoS2 FET with IL gating (b) The highly doped graphene contacted MoS2 

FET with h-BN passivation (c) 2D/2D contacted WSe2 FET with h-BN passivation. 

 

 

 

 

 

 

 

 

 

 

 

 

   

(a) (b) (c) 
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CHAPTER 3 : IMPROVED PERFORMANCE IN FEW LAYER 

MOS2 FETs VIA IONIC LIQUID GATING. 

 
3.1 Introduction 

 In the quest for flexible electronics in the “post-silicon” era, graphene has attracted much 

attention due to unsurpassed carrier mobility and high thermal conductivity,[49-52] combined 

with excellent chemical and thermal stability down to the nanometer scale.[53] The major 

drawback is the absence of fundamental band gap, which makes semimetallic graphene 

unsuitable for conventional digital logic applications. Sustained efforts to engineer a band gap in 

graphene have either caused severe mobility degradation or require prohibitively high bias 

voltages.[54-57] 

Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide (TMD), has 

emerged as a viable alternative to graphene, as it combines a semiconducting gap with 

mechanical flexibility, chemical and thermal stability and absence of dangling bonds. The single-

layer MoS2 consists of a molybdenum monolayer sandwiched between two sulfur monolayers. 

The fundamental band gap changes from an ≈1.2 eV wide indirect gap in the bulk to a direct gap 

of ≈1.8 eV in single-layer MoS2.[14, 58]  Similar to graphene, single MoS2 layers can be 

extracted from bulk crystals by a mechanical cleavage technique due to relatively weak 

interlayer interaction with an important van der Waals character.[15] Besides conventional field 

effect transistors (FETs), the use of MoS2 has been proposed for applications such as energy 

harvesting[22, 23] and optoelectronics.[24, 25] Recently, integrated circuits based on MoS2 

transistors have also been demonstrated, which is a significant step toward the application of 

MoS2 in high-performance low-power nanoelectronics.[59] However, the room temperature 
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carrier mobility in single- and few-layer MoS2 FETs fabricated on Si/SiO2 substrates was found 

to be very low, typically in the range of 0.1 -10 cm
2
V

-1
s

-1
.
12, 17, 21

 This mobility is not only orders 

of magnitude lower than that of graphene, but also substantially lower than the phonon-limited 

mobility in the bulk system,[15-18, 30] which is of the order of 100 cm
2
V

-1
s

-1
. The interface 

between the MoS2 channel  and the SiO2 gate dielectric has been  considered as one of the 

primary factors limiting carrier mobility.[16] A substantial mobility enhancement to over 200 

cm
2
V

-1
s

-1 
 and  500 cm

2
V

-1
s

-1 
has been reported for HfO2 and Al2O3 capped monolayer and 

multilayer MoS2 FETs, respectively, which was attributed to high-κ dielectric screening of 

charged impurities that reduces scattering at the channel/dielectric interface.[60, 61]  There are 

also rising concerns that the mobility in these devices might have been substantially 

overestimated.[62] 

 For large band-gap semiconductors such as MoS2,a significant Schottky barrier may form 

at the metal/semiconductor contact, yielding a high contact resistance.[14]
,[63]

 Lee et al. showed 

in their study of MoS2 flakes produced by liquid exfoliation that the mobility in MoS2 FETs 

could be largely underestimated due to the Schottky barriers at the MoS2/metal contacts.[64] In 

the presence of a substantial Schottky barrier, the extrinsic mobility is also expected to degrade 

with decreasing temperature due to the reduced thermionic emission current and thermally 

assisted tunneling current, as was recently observed by Ghataket al in atomically thin MoS2 

FETs.[16] In agreement with recent predictions,
24

 Das et al. has demonstrated a significant 

mobility enhancement by reducing the Schottky barrier height  using a low work function contact 

metal, which further indicates that the performance of MoS2 FETs can be strongly influenced by 

the metal/semiconductor contacts.
26
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In order to optimize the performance of MoS2 FETs, it is crucial to use low resistance 

Ohmic contacts. There are typically two types of low resistance contacts that can be made 

between a semiconductor and a metal: (a) Schottky contacts with a very low barrier height and 

(b) highly transparent tunneling contacts. Ideally, an Ohmic contact can be formed if the 

Schottky barrier height is zero (or negative). Contacts with low Schottky barrier height 

(≈30 meV) have been achieved in multilayer MoS2 by using Scandium as a low work function 

contact metal.[65] However,  the tunability of the Schottky barrier height may be reduced by 

Fermi level pinning.[30] Alternatively, highly transparent tunneling contacts can be fabricated by 

heavily doping the semiconductor in the contact region. This approach fails for MoS2, since 

ionized impurity doping would substantially damage the structural integrity of the atomically 

thin channel. As an alternative, surface doping with strongly oxidizing NO2 molecules has been 

used to narrow the Schottky barrier thickness for hole injection and thus reduce the contact 

resistance of WSe2 FETs.[66] 

 In this article, we report electrostatic doping using an ionic-liquid (IL) gate as a viable 

approach to achieve low resistance MoS2/metal tunneling contacts. We demonstrate(i) significant 

improvement in the performance of few-layer MoS2 FETsand (ii) high carrier mobility in the 

MoS2 channel that is limited by phonons. Ionic liquids are binary organic salts that can form 

electric double layers at the ionic-liquid/solid interface and thus act as nano-gap capacitors with 

extremely large capacitance. As we show in the following, the Schottky barrier can be drastically 

reduced in ionic-liquid-gated FETs (IL-FETs) of MoS2. We observe a significant increase of the 

tunneling efficiency that can be attributed to strong band bending at the MoS2/metal interface, 

provided by the thin electrical double layer with a high capacitance. As a result, our nanometer-
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thick MoS2 IL-FETs exhibit a significantly enhanced extrinsic mobility that exceeds 60 cm
2
V

-1
s

-1 

at 250 K, in contrast to μ<5 cm
2
V

-1
s

-1 
measured in the Si-back-gate configuration without ionic 

liquid. The MoS2 IL-FETs further exhibit ambipolar behavior with a high current ON/OFF ratio 

exceeding 10
7
 for electrons and 10

4 
for holes,  and a near ideal subthreshold swing (SS) of ~50 

mV/decade at 250 K.  More significantly, the mobility in few-layer MoS2 IL-FETs increases 

from ~100 cm
2
V

-1
s

-1 
to ~220 cm

2
V

-1
s

-1 
as the temperature decreases from 180 K to 77 K, which 

is in good agreement with the true channel mobility derived from our four-terminal 

measurements. The temperature dependence of the mobility behaves as µ ~T
-γ

 with γ ≈ 1, 

indicating that the mobility is predominantly limited by phonon scattering in this case. 

3.2 Results and discussion  

 Atomically thin MoS2 flakes were produced from a bulk crystal by a mechanical cleavage 

method and subsequently transferred onto degenerately doped silicon substrates covered with a 

290 nm-thick thermal oxide layer.[15, 67] An optical microscope was used to identify thin 

flakes, which were further characterized by non-contact mode atomic force microscopy (AFM). 

In the present study, we focus on bilayer and few-layer (2-7 layers corresponding to 1.3-5 nm 

thickness) samples, since the yield of bilayer and few-layer flakes was found to be much higher 

than that of single-layer MoS2. Moreover, few-layer MoS2 also tends to form lower Schottky 

barriers (thus smaller contact resistance) than single-layer samples.[30, 65]MoS2 IL-FET devices 

were fabricated by first patterning the source, drain and gate electrodes, consisting of 5 nm of Ti 

covered by 50 nm of Au, using standard electron beam lithography and electron beam 

deposition.[56] A small droplet of the DEME-TFSI ionic liquid (Sigma Aldrich 727679) was 

then carefully applied onto the devices using a micromanipulator under an optical microscope, 
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covering the MoS2 layer and the source, drain and gate electrodes.[68] The ionic liquid gate 

forms by self-assembly. DEME-TFSI has been chosen for its large electrochemical stability 

window (>3 V at room temperature). 

 

 

 

 

 

 

 

Figure 3.1.(a) Optical micrograph of a typical ionic-liquid-gated MoS2 FET. The contour of the 

ionic liquid drop covering the MoS2 channel and the in-plane gate-electrode are marked by white 

dotted lines. The scale bar is 20 µm.  (b) Schematic illustration of the working principle of an 

ionic-liquid-gated MoS2 FET. 

 

Figure 3.1a shows a micrograph and figure 3.1b the schematic of a typical ionic-liquid-

gated MoS2 device. Electrical properties of the devices were measured by a Keithley 4200 

semiconductor parameter analyzer in a Lakeshore Cryogenic probe station after dehydrating the 

ionic liquid under high vacuum (~1×10
-6

Torr) for 48 hours. This thorough removal of the 

remaining moisture turned out to be important to preventing the formation of chemically reactive 

protons and hydroxyls through the electrolysis of water.[69] Most measurements on ionic-liquid-

gated devices were carried out at 250 K or below to further reduce the possibility of any 

chemical reactions between the ionic liquid and MoS2.[70] As shown schematically in figure 

1.1b, negative ions in the ionic liquid accumulate near the gate electrode and positive ions 

accumulate near the MoS2 channel when a positive voltage is applied to an ionic-liquid-gate-

electrode near the device channel. The scenario reverses when a negative voltage is applied to 
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the gate. In both cases, electric double layers form at the interfaces between the ionic liquid and 

solid surfaces.[71]  To ensure that nearly all of the gate voltage appears as potential drop across 

the ionic-liquid/channel interface, the surface area of the gate electrode is 1-2 orders of 

magnitude larger than the total area of the transport channel plus parts of the drain/source 

electrodes, which are immersed in the ionic liquid.[72] Downscaling of the ionic liquid gated 

devices can be achieved by simultaneously reducing the surface area of the gate electrode and 

covering a large part of  the drain/source electrodes with an insulating overlayer.[73] 

 

Figure 3.2. Transfer characteristics of representative bilayer and trilayer MoS2 ionic-liquid-gated 

FETs measured at the drain-source bias Vds = 1 V.  

 

 We have measured several ionic-liquid-gated bilayer and few-layer MoS2 FETs and 

observed consistent results. Fig. 3.2 shows the transfer characteristics of two representative 

devices measured at a drain-source voltage of 1 V. Both the bilayer and trilayer devices exhibit 

ambipolar behavior, with the current ON/OFF  ratio exceeding 10
7
 for electrons in both devices. 

The observed ON/OFF ratio for holes was 10
6
 in the bilayer and 10

4
 in the trilayer device.  

Ambipolar behavior has been previously observed in ion-liquid-gated thicker MoS2 flakes 
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(>10 nm) by Zhang et. al.[70] However, their ON/OFF ratio was less than 10
3 

for both electrons 

and holes, presumably due to the relatively large "OFF" state current passing through the interior 

of the crystal beneath the channel surface. This current ON/OFF ratio is much lower than the 

typical values between 10
4
 and 10

7
, which are desired for digital logic devices.[60] It is worth 

pointing out that our observation of hole conduction in bilayer and few-layer MoS2 is rather 

surprising in view of the large Schottky barrier height ( ~1 eV) for the hole-channel.[30] Our 

results suggest that holes are injected into the MoS2 channel primarily by thermally assisted 

tunneling rather than by thermionic emission.[74]The tunneling rate is increased significantly for 

both electrons and holes in presence of the extremely thin (~1 nm) dielectric layer formed by the 

ionic-liquid gate, which significantly reduces the thickness of Schottky barrier through strong 

band bending near the contacts at high gate voltages. Since the formation of an electrical double 

layer on the MoS2 contacts near the edge of the metal electrodesis conformal, the thickness of the 

contact Schottky barrier can be reduced very effectively by the ionic liquid gate down to the 

electrostatic screening length in the ionic liquid (~1 nm).[75] The asymmetry between electron 

and hole transport can be attributed to  

1)a larger Schottky barrier height for the hole channel that reduces thermally assisted tunneling, 

2) a slight preference for the adsorption of positive ions on MoS2, as discussed later, and 

3)intrinsicn-doping of the transport channel.  

All of these effects tend to favor electron vs.hole transport, shifting the transfer curves toward the 

negative gate-voltage direction. The lower asymmetry between electron and hole transport 

(observed when the gate voltage was swept from positive to negative), causing a more balanced 

ambipolar character of the bilayer MoS2 device, may be attributed to a slightly lower degree of 
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intrinsic n-doping in the bilayer flake.[72] The hysteresis in the transfer characteristics could be 

attributed to the charge injection at the interfaces between the channel and the substrate as well 

as the slow motion of the ions at low temperature.[70, 76] 

 

Figure 3.3. Comparison of the output characteristics of the trilayer MoS2 device used in Fig. 2, 

measured in the ionic-liquid-gate and back-gate (without ionic liquid) configurations. (a) Drain-

source current Ids as a function of the drain-source bias Vds at ionic-liquid-gate voltages between 

-0.5 and 1 V. (b)Ids as a function of Vds at selected back-gate voltages between 0 and 60 V before 

the ionic liquid was deposited. The inset in (b) shows the magnified low-bias region in this 

panel.  

 

 Low contact resistance is an important prerequisite to realize the full potential of MoS2 as 

a channel material for FETs. Since the Schottky barrier for holes is larger than for electrons, the 

contact resistance in the hole channel is higher than in the electron channel. To optimize the 
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device performance, we next focus on the electron channel only and study the impact of ionic-

liquid-induced Schottky barrier thinning on its electrical characteristics.  Fig. 3.3 shows the 

output characteristics of a trilayer MoS2 device that was measured both with an ionic-liquid-gate 

and a back-gate with no ionic liquid present. As shown in Fig. 3.3a, the drain current in the ionic-

liquid gate voltage range of  0<VILg< 1 V exhibits linear dependence at low drain-source voltages 

and starts to saturate at higher Vds. The current saturation at high Vds can be attributed to the 

channel pinch-off of the FET. In sharp contrast to these data, the same device, when measured in 

the back-gate configuration without ionic liquid, exhibits strongly non-linear (upward turning) 

Ids–Vdsbehavior, suggesting the presence of a significant Schottky barrier at the contacts (Fig. 

3.3b). Furthermore, the total resistance calculated from the slope of the Ids - Vds characteristics in 

the low-bias region is over two orders of magnitude larger for the Si back-gate configuration 

(2×10
6
 Ω at Vbg = 60 V, see the inset of Fig. 3.3b) than for the ionic-liquid-gate configuration 

(1×10
4
 Ω at VILg = 1 V), providing further evidence that ionic-liquid gating significantly reduces 

the contact resistance by thinning the Schottky barrier. Note that linear Ids-Vds dependence at 

small bias voltages (Vds< 0.1 V, shown in the inset of Fig. 3b) is only a necessary, but not a 

sufficient condition for a low-resistance Ohmic contact. Linear current-voltage behavior may 

also be  due to the thermally assisted tunneling current, especially at small drain-source 

voltages.[65] 
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Figure 3.4.(a) Transfer characteristics of the identical trilayer MoS2 device in two separate runs, 

where the ionic-liquid-gate voltage was swept at Vds = 100 mV, Vbg = 0 V and T = 250 K.  (b) 

Transfer curves of the identical ionic-liquid-gate device measured at various back-gate voltages 

between 0 and 30 V. The inset in (b) shows the back-gate voltage vs. the threshold voltage of the 

transfer curves.  

 

 The observed drastic reduction of the contact resistance by ionic-liquid gating opens up 

the possibility of investigating channel-limited device parameters in nanometer-thick MoS2 

devices.  Fig. 3.4a shows the transfer characteristics from two separate measurements of the 

same trilayer MoS2 device at T= 250 K, for Vds= 0.1 V and Vbg = 0 V. The high reproducibility of 

the transfer curves indicate that charged ions in the ionic liquid are electrostatically accumulated 

at the gate/electrolyte and MoS2/electrolyte interfaces without any noticeable chemical reactions. 

The transfer characteristics also remain essentially unchanged at different gate voltage sweeping 

rates. Furthermore, the subthreshold swing (SS) reaches the theoretical limit of  kT/e ln (10) = 
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50 meV/decade at T = 250 K corresponding to a gate efficiency of ~1. Such a high gate 

efficiency can be attributed to the large electric-double-layer capacitance of the ionic-liquid gate. 

The near ideal subthreshold swing also further indicates that the ionic-liquid gate creates highly 

transparent tunneling contacts.[77] 

 To extract the carrier mobility, we first estimated the ionic-liquid gate capacitance by 

measuring IdsversusVILg of the same trilayer device at various fixed back-gate voltages, as shown 

in Fig. 4b. As the back-gate voltage is stepped up from the 0  to  30 V, the threshold voltage Vth 

of the Ids-VILg curves systematically shifts in the negative VILg direction, while the slope of the 

Ids-VILg curves remains nearly constant in the linear region. The small crossover between the Ids-

VILg curve measured at Vbg = 30 V and corresponding measurements at lower back-gate voltages 

may be due to the hysteretic effect. The ionic-liquid gate capacitance per unit area is estimated to 

be CILg ~ 1.55×10
-6

 Fcm.
-2

 This estimate is based on the observed change of the threshold 

voltage ∆Vth in response to the change of the back-gate voltage ∆Vbg using the relationship 

CILg/Cbg =∆Vbg/∆Vth. We used Cbg = 1.2×10
-8

 Fcm
-2

 for the capacitance per unit area between the 

channel and the back gate and the value ∆Vbg/∆Vth = 129,  determined from the linear fit shown 

in the inset of Fig. 4b. Using the expression µ = L/W×dIds/dVILg/(CILgVds), we estimated the low-

field field-effect mobility of ~293 cm
2
V

-1
s

-1 
 using L= 3.3 µm for the channel length and W = 1.0 

µm for the channel width, dIds/dVtg for the slope of Ids-VILg curve in the linear region at Vbg = 0 V, 

and CILg ~1.55×10
-6

 F/cm
-2

. Note that the value CILg ~ 1.55×10
-6

 F/cm
-2

 is about 4-5 times 

smaller than the CILg value determined by Hall measurements (CILg,H ~ 7.2 ×10
-6

 Fcm
-2

) on much 

thicker MoS2 flakes[70]. The discrepancy may arise from the dependence of the quantum 

capacitance on the carrier density. The total capacitance CILg, consisting of the electrostatic 
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capacitance Ce of the electric double layer and the quantum capacitance Cq of the MoS2 channel, 

which are connected in series (1/CILg= 1/Ce+1/Cq). CILg, is likely dominated by Cq due to the 

extremely large electrostatic capacitance of the DEME-TFSI ionic liquid gate,[69] which can be 

as high as 100 µF/cm
2
. Since Cq is a measure of the average density of states (DOS) at the Fermi 

level, whichincreases with increasing carrier density, the value of Cq may also increase with the 

carrier density.[14] As a result, the Cq is expected to be smaller in the low carrier density region 

near the threshold voltage than in the higher carrier density region [above n2D~1×10
13

 cm
2 

as 

determined from n2D =CILg,H(VILg,H -Vth)], where the field-effect mobility is determined. This may 

lead to a possible underestimate of the total capacitance and thus an overestimate of the mobility. 

Using the capacitance CILg,H = 7.2 µFcm
-2 

determined by Hall measurement in multilayer flakes ( 

> 10 nm) at high carrier densities, the low limit of the field-effect mobility in our ionic-liquid-

gated trilayer MoS2 device is determined to be 63 cm
2
V

-1
s

-1
, consistent with the Hall mobility 

measured in ionic-liquid-gated MoS2 multiplayer flakes and with the mobility of multiplayer 

MoS2 on SiO2 measured in a four-probe configuration.[70, 78]  We conclude that the actual 

extrinsic field-effect mobility lies likely between 63 cm
2
V

-1
s

-1 
and 293 cm

2
V

-1
s

-1
, which is 1-2 

orders of magnitude higher than the mobility observed in typical Si-back-gated monolayer and 

few-layer MoS2 FETs. This indicates the reported mobility ranging between 0.1–10 cm
2
V

-1
s

-1 
in 

monolayer and few-layer MoS2 FETs has been largely limited by the contact resistance. [15, 16, 

60] 

 It is also worth noting that our ionic-liquid-gated MoS2 channel is in a highly electron-

doped state with a threshold voltage of Vth ≈ 0.5 V at VILg= 0 V, which may be  attributed to a 

higher concentration of positive than negative ions adsorbed in the vicinity of MoS2. A large 
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negative threshold voltage shift was also observed in high-κ dielectric passivated monolayer and 

multiplayer MoS2 FETs, which could be attributed to the presence of a large amount of fixed 

positive charges in the dielectric layer, which have likely accumulated during the low 

temperature atomic layer deposition process.[60, 61] Similar to the molecular ions adsorbed on 

the MoS2 surface in ionic-liquid gated devices, these fixed charges in the thin high-κ dielectric 

layer could also reduce the Schottky barrier thickness, and thus contribute to the reported 

mobility enhancement.  Also in carbon nanotube FETs, modest surface molecular doping has 

been shown to significantly reduce the Schottky barrier thickness, leading to a substantially 

enhanced tunneling current.[79] 

 To elucidate the transport mechanisms in the few-layer MoS2 channel that was 

electrostatically doped by the ionic liquid, we measured the Ids-Vbg relationship in a different  

MoS2 device (3.3 nm or 5 layers thick) between 77 and 180K, after the device had been quickly 

cooled from 250 K to 77 K at a fixed VILg = 0 V. Below the freezing point of the ionic liquid 

(≈200 K), the carrier charge density induced by the presence of positive ions, which  

preferentially enriched the vicinity of MoS2, remained practically constant. The carefully chosen 

value VILg = 0 V of the ionic-liquid gate voltage allowed the creation of highly transparent 

tunneling contacts due to the adsorption of positive ions (implying  n-doping),  while the carrier 

density in the MoS2 channel was kept low enough to allow an efficient reduction to zero by the 

back gate (see Fig. 3.5a). As shown in the inset of Fig. 3.5a, the Ids-Vds characteristics are highly 

linear in the entire Vds and Vbgrange even at 77 K, indicating highly transparent contacts with thin 

Schottky barriers. To confirm that it is the electrostatic surface doping that is responsible for the 

drastic reduction of the contact resistance, we compared the device characteristics before the 
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ionic liquid was added and after it was removed, following the completion of all electrical 

measurements. We observed nearly identical output characteristics in both cases (data not 

shown). Consequently, we may exclude the possibility of electrochemical doping or any other 

type of irreversible electrochemically induced degradation of the MoS2 channel.  

 To avoid possible complications arising from the interplay between the ionic-liquid gate 

and the back gate, we performed Ids -Vbg measurements only at temperatures below the freezing 

temperature of the ionic liquid in order to suppress changes in the capacitance between the back-

gate and the MoS2 channel. In our previous study of polymer-electrolyte-gated monolayer-thick 

MoS2 FETs, we attributed the beneficial influence of the polymer-electrolyte gate on the Ids-Vbg 

curves to a significant improvement of the carrier mobility.[80] However, the extent of mobility 

enhancement was overestimated by neglecting the additional ionic-liquid capacitance that was 

induced by the back-gate voltage. In addition, capacitive coupling between the back and top 

gates through the large top-gate bonding pad may also lead to a significant underestimate of the 

back-gate capacitance in conventional dual-gated FET devices,[62] thus causing a nominal 

overestimate of the mobility.  Unlike in conventional top-gated (or dual-gated) devices, where 

the top-gate electrode is directly on top of the channel, inducing capacitive coupling, the metal 

gate electrode used in the ionic-liquid gate, shown in Fig. 3.1a, is located within the plane of the 

device and separated by several tens of micrometers, causing no change in the capacitance. As a 

result, the ionic-liquid gate electrode in our devices is capacitively decoupled from the transport 

channel and the back-gate in the temperature range between 77 and 180 K, ruling out the 

possibility of any stray capacitance arising from the gate electrode that may inadvertently cause a 

nominal increase in the back-gate capacitance. Our Ids-Vbg measurements with a floating and 
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grounded ionic-liquid gate, shown in Fig. 3.5a, yield identical results, indicating that the ionic-

liquid gate electrode has no effect on the back-gate capacitance when the ionic liquid is frozen.  

                         

Figure 3.5.(a) Transfer curves of a 3.3 nm thick (5 layer) MoS2 FET measured in the back-gate 

configuration with the drain-source bias Vds = 100 mV and the ionic-liquid-gate voltage kept at 

0 V.  The observations in the temperature range between 77 and 180 K were performed after the 

device had been cooled down from 250 to 77 K. The inset in(a) shows the output characteristics 

of the device measured at back-gate voltages between -60 and 60 V at T = 77 K.  (b) 
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Temperature dependence of the field-effect mobility extracted from the transfer characteristics in 

(a). (c) Temperature dependence of the field-effect mobility of the same device before the ionic 

liquid was added. 

 

 Figures 3.5(b-c) show the temperature dependence of the low-field field-effect mobility 

extracted from the Ids-Vbg curves in Fig. 3.5a. These data are compared to the expected mobility 

in the same device with no ionic liquid present using the expression µ = L/W× dIds/dVbg/(CbgVds). 

For this estimate, we used L= 4.5 µm, W = 0.7 µm, and Cbg = 1.2 × 10
-8

 Fcm
-2

 for the back-gate 

capacitance. The field-effect mobility with no ionic liquid present was observed to decrease from 

5 cm
2
V

-1
s

-1 
 to 0.3 cm

2
V

-1
s

-1 
as the temperature decreased from 295 K to 140 K, following a 

simple activation temperature dependence depicted in Fig. 5c. In this case, the mobility decreases 

much more rapidly than if it were limited by scattering from charged impurities.[81] This 

suggests that the charge transport behavior is largely limited by the Schottky barriers at the 

contacts and does not reflect the intrinsic behavior of the carrier mobility.  We can extract an 

effective Schottky barrier height of Φ ~ 66 meV from the temperature dependence of the 

extrinsic mobility µ ~ exp (-Φ/kBT) in Fig. 5c. This is lower than published theoretical estimates 

for an ideal interface,
25

 possibly due to band bending induced by an applied gate voltage.  In 

sharp contrast to this behavior, the mobility in presence of the ionic-liquid gate increases from 

~100 cm
2
V

-1
s

-1 
 to ~ 220 cm

2
V

-1
s

-1 
as the temperature decreases from 180 K to 77 K at a carrier 

concentration  between 7 × 10
12

 and  < 9 × 10
12

 cm
-2

 [determined from n2D =Cbg(Vbg -Vth)], 

following a μ ~ T
-γ

 dependence with γ ≈ 1. We conclude that in this case, the mobility is limited 

by the intrinsic behavior of the channel. Of course, dielectric screening in the ionic-liquid gate 

could nominally increase the capacitive coupling.[81] Still, the observed qualitative change from 

thermally activated to "metallic" behavior caused by an ionic liquid gate, which acts as a top 
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dielectric layer below the melting temperature, cannot be simply attributed to a possible 

underestimation of the back-gate capacitance. Extrapolating the μ ~ T
-γ

 fit with γ ≈ 1 to the 

temperature T=250 K yields a mobility value of μ ≈ 70 cm
2
V

-1
s

-1 
, in good agreement with the 

mobility measured in the ionic liquid gate configuration at 250 K. This provides further evidence 

that the mobility measured in the back gate configuration is unlikely an artifact due to the 

underestimation of back gate capacitance.  Moreover, as discussed in more detail below, our 

four-terminal measurements on a similar MoS2 device show that the  presence of the frozen ionic 

liquid, which forms an additional dielectric layer on top of the devices, does not substantially 

change the capacitance of the back-gate measurements. 

 Low-field field-effect channel mobility in this temperature range is affected by various 

scattering mechanisms, including scattering by acoustic phonons, optical phonons, as well as 

long range and short range disorder that is present both in the bulk and near the surfaces of the 

channel. Kaasbjerget al. showed theoretically that the mobility due to acoustic and optical 

phonon scattering in monolayer MoS2 increases with decreasing temperature following a μ ~ T
-γ

 

dependence, where the exponent γ depends on the dominant scattering mechanism.[82] At 

relatively low temperatures ( < 100 K) , acoustic phonon scattering dominates,  resulting in γ = 1. 

At higher temperatures, optical phonon scattering starts to dominate, and the exponent γ > 1 

should cause a stronger temperature dependence of the mobility. On the other hand, the disorder-

limited mobility decreases with decreasing temperature.[82, 83] In our few-layer devices, the 

observed exponent (γ ≈ 1) in the expression μ ~ T
-γ

 for the temperature dependence of the 

mobility coincides with that of transport dominated by acoustic-phonon scattering. In this case, 

however, the mobility values are substantially lower than what would be expected from acoustic-
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phonon-limited mobility, and the temperature was high enough to excite not only acoustic, but 

also optical phonons.  This behavior can be understood in a likely scenario, where the top ionic-

liquid dielectric quenches phonon modes and thus reduces the γ value. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.  Four-terminal electron transport in a back-gated 8 nm thick MoS2 FET with and 

without ionic liquid. (a) Conductance as a function of back-gate voltage measured at different 

temperatures with no ionic liquid present. The inset shows an AFM image of the four-terminal 

device. (b) Temperature dependence of the true channel mobility derived from the four-terminal 

measurements in presence and absence of the ionic liquid.  

 

 In order to verify that the extrinsic mobility of our ionic liquid gated MoS2 FETs 

approaches the true channel mobility, we also performed four-terminal measurements. An AFM 

image of the four-terminal device is shown in the inset of Fig. 3.6a. We measured the 

conductance G = Ids/Vinner, where Vinner is the potential difference across the voltage probes, at a 

fixed drain-source bias while sweeping the back-gate voltage. Vinneris kept below 70 mV during 

the measurement. Fig. 3.6a shows the conductance versus back-gate voltage of an 8 nm thick 

MoS2 flake measured at various temperatures, with a back-gate voltage of up to Vbg = 70 V. 

Under these conditions, we expect a charge carrier concentration of n2D =Cbg(Vbg -Vth) ~ 6.8 × 

10
12

 cm
-2

 at Vbg = 70 V, where the threshold voltage Vth≈ -20 V. The field-effect mobility can be 
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extracted from the Gvs.Vbg curves in the 60 <Vbg< 70 V range using the expression µ = 

Linner/W×(1/Cbg)×dG/dVbg, where L= 3.0 µm is the distance between the two voltage probes, W = 

5.0 µm, and Cbg = 1.2 × 10
-8

 Fcm
-2

 is the back-gate capacitance. The steps in the conductance 

may be caused by the back-gate tuning of the voltage contacts. The voltage electrodes are very 

wide in our geometry, and their separation is only about twice their width. In this case, the 

effective distance between them may change with applied gate-voltage.  Fig. 6b shows the 

temperature dependence of the true channel mobility with and without the frozen ionic liquid as 

a dielectric capping layer. Before the ionic liquid was added, we observed a mobility increase 

from ≈ 40 cm
2
V

-1
s

-1
 at 300 K to ≈ 390 cm

2
V

-1
s

-1
 at 77 K following a μ ~ T

-γ
dependence with 

γ≈1.7 in the entire temperature range, in good agreement with theoretical predictions for an 

MoS2 monolayer.[82] Although our 8 nm thick sample is much thicker than a monolayer, back-

gating has the strongest effect on the bottom MoS2 layers. Moreover, charge screening also 

reduces the number of charge carriers in the top layers, especially at high back-gate voltages.[65, 

84] The relatively low overall mobility values in this device may be attributed to additional 

extrinsic scattering mechanisms such as impurity scattering and scattering off surface polar 

optical phonons of the SiO2 gate dielectric.[82] Interestingly, the overall mobility  of the device 

with the ionic liquid is similar to that without the ionic liquid in the temperature range  between 

77  and 180 K, indicating that the ionic liquid as a capping top dielectric does not substantially 

impact the back gate capacitive coupling when it is frozen.  On the other hand, the temperature 

dependence of the mobility weakens upon adding the ionic liquid, following a μ ~ T
-γ

dependence 

with γ≈1.2 for 77 < T < 180 K. This weaker temperature dependence of the channel mobility μ in 

presence of  ionic liquid dielectric capping is consistent with that of the extrinsic mobility shown 
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in fig. 5b,  which can be attributed to phonon mode quenching caused by the ionic-liquid 

dielectric.[81] Note that the extrinsic mobility values in fig. 3.5b, which include the contact 

resistance, are in good agreement with the true channel mobility values in fig. 3.6b. This is a 

further demonstration that ionic liquid gating effectively creates highly transparent electrical 

contacts and reveals the intrinsic channel-limited device properties of MoS2 FETs. This finding 

shows that the previously reported low mobility of Si-back-gated MoS2 FETs, ranging typically 

between 0.1 – 10 cm
2
V

-1
s

-1
, may not represent the intrinsic channel property, but was rather 

limited by non-ideal contacts, as pointed out by Popov et al.[63] It also demonstrates that 

phonon-limited mobility can be achieved without substantially reducing the disorder near the 

channel/dielectric interface. 
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Figure 3.7:(a) Transfer characteristics of a back-gated 5 nm thick MoS2 FET measured at the 

drain-source bias Vds = 100 mV, for various temperatures. The inset of (a) shows an AFM image 

of the device with its electrical contacts covered by HSQ while large portion of the channel is 

bare. (b) Field-effect mobility of the device as a function of temperature.  

 

 Since the carriers induced by the ionic-liquid gate are close to the top surface of the MoS2 

channel, the interface properties in these devices may be different from back-gated devices with 

no ionic liquid, where the carriers are closer to the bottom surface. To rule out the possibility that 

the drastic difference in mobility between MoS2 devices with and without an ionic liquid gate 

arises from differences at the channel/dielectric interface, we measured  another few-nanometer 

thick (5 nm or ~7 layers) back-gated MoS2 with patterned n-doping. As shown in the inset of 

Fig. 3.7a, both the electrical contacts and a small section of the channel near each electrode are 

covered by a 50 nm thick layer of positive resist (hydrogen silsesquioxane, HSQ), defined by 

standard electron beam lithography at a dose of 200 µC/cm
2
, while the large portion of the 

channel is not covered by HSQ. At low degrees of cross-linking obtained at low electron beam 

dosages, Si-H bonds in HSQ are readily broken and release hydrogen, increasing electron density 

in MoS2 near the contacts.[85] Consequently, HSQ covered contact regions are n-doped, while 

the bare channel region remains undoped. Fig. 3.7a shows selected transfer curves of the back-

gated device at temperatures between 77 and 295 K, from which the field-effect mobility can be 

extracted. As shown in Fig. 3.7b, the mobility increases from ~ 75 cm
2
V

-1
s

-1
 to ~ 180 cm

2
V

-1
s

-1
 

as the temperature drops from 295 K to 140 K, suggesting that mobility in this temperature range 

is largely limited by phonon scattering. Below 140 K, the mobility starts decreasing with 

decreasing temperature, which can be attributed to the reduction of the thermally assisted 

tunneling current through a Schottky barrier. Since the main difference between this device and 

other back-gated, few-nanometer-thick MoS2 FETs is the n-doping of the contacts, the observed 
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high mobility at room temperature and its phonon-limited temperature dependence above 140 K 

can be attributed to the Schottky barrier thinning by the surface doping in the contact regions, 

which is albeit not as effective as ionic-liquid gating. The slightly lower mobility in the ionic-

liquid gated device (Fig. 5b) than in the HSQ contact-doped device (Fig. 7b) above 140 K may 

be attributed to the presence of added charge impurities from the ionic liquid.[86] This finding 

unambiguously demonstrates that the observed mobility enhancement in ionic-liquid-gated MoS2 

FETs is not an interface effect and cannot be simply attributed to the reduction of charge 

scattering in the transport channel.  

3.3) Conclusions 

 In conclusion, we report the fabrication of ionic-liquid-gated MoS2-based field-effect 

transistors with significantly higher mobilities than reported in comparable back-gated devices. 

We attribute the observed mobility enhancement to the ionic liquid, which acts as an ultrathin 

dielectric that effectively reduces the Schottky barrier thickness at the MoS2/metal contacts by 

strong band-bending. The substantially reduced contact resistance in ionic-liquid-gated bilayer 

and few-layer MoS2 FETs results in an ambipolar behavior with high ON/OFF ratios, a near-

ideal subthreshold swing, and significantly improved field-effect mobility. Remarkably, the 

mobility of a 3-nm-thick MoS2 FET with ionic-liquid-gating was found to increase from ~ 100 

cm
2
V

-1
s

-1
 to ~ 220 cm

2
V

-1
s

-1
 as the temperature decreased from 180 K to 77 K. This finding is in 

quantitative agreement with the true channel mobility measured by four-terminal measurement, 

suggesting that the mobility is predominantly limited by phonon-scattering. It is remarkable that 

the high mobility has not been degraded by the presence of both long range disorder (e.g. from 

charged impurities) and short range disorder (e.g. interface roughness scattering) at the 
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MoS2/SiO2 and MoS2/ionic-liquid interface. The effect of Schottky barrier thinning on the 

performance of MoS2 FETs was further verified by patterned n-doping of the contact regions 

using HSQ. More detailed studies of MoS2 FETs with HSQ doped contacts are underway. Our 

study of ionic-liquid-gated MoS2 FETs clearly demonstrates that previously observed low 

mobility values in monolayer and few-layer MoS2 devices were largely caused by the large 

contact resistance. We found that phonon-limited mobility can be recovered through Schottky 

barrier thinning even in the presence of non-ideal channel/dielectric interfaces. We also surmise 

that the reported drastic mobility improvement in high-κ dielectric-capped MoS2 FETs may be 

partially attributed to the Schottky barrier thinning caused by the doping of the fixed charges in 

the thin dielectric layer in addition to dielectric screening.  
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CHAPTER 4: IMPROVED PERFORMANCE IN H-BN 

ENCAPSULATED MOS2 FETs CONTACTED BY HIGHLY 

DOPED GRAPHENE ELECTRODES. 
 

4.1 Introduction 

 In the previous chapter, we have reported significant improvement of  electrical contacts 

in few-layer MoS2 devices by drastically reducing the SB thickness using an ionic liquid (IL) 

gate.[87] However, the improved charge injection efficiency using this method is still 

fundamentally limited by the height of the Schottky barrier. For example, the contact resistance 

of our IL-gated MoS2 is still significantly higher for the hole channel than for the electron 

channel due to the relatively large SB height for the valence band. As mentioned earlier, the 

Schottky barrier height may be reduced by selecting metal electrodes with a low work function 

(for n-type semiconductors) or a high work function (for p-type semiconductors). Yet it has 

proven to be  extremely challenging to find metals with a proper high or low work function that 

also exhibit a high conductivity and a high chemical, thermal and electrical stability. 

Furthermore, the expected benefit of the proper work function for lowering the SB may be 

drastically reduced by Fermi level pinning.[30, 88] In particular, a recent theoretical study shows 

that partial Fermi level pinning is present at the metal/TMD contacts for a variety of metals with 

the work functions spanning a wide range.[89] 

 In this work, we use graphene as electrode material with a tunable work function to 

overcome the above limitations of metal electrodes to contact few-layer MoS2 FETs. For one, 

graphene is mechanically strong, flexible and thermally stable, which is desirable for flexible 

electronics applications. Even more importantly, the work function of graphene can also be tuned 
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by chemical or electrostatic doping to minimize the SB height at the graphene/semiconductor 

interface.[31, 33] By using the extremely large electric double layer (EDL) capacitance of an IL 

gate, the work function of graphene at the graphene/WSe2 interface can be modulated within an 

enormously large range. By using Ionic liquid (IL) as an electrostatic dopen we were able to tune 

the graphene Fermi level in a wide range to achieve both n (towards conduction band minimum) 

and p (towards valance band maximum) of MoS2 channel. In addition to electrostatic doping 

with IL gating ,an air stable, surface charge transfer electron donor Benzyl Viologen (B.V) was 

used to achieve n-type behavior for the entire temperature range from 77K to room temperature. 

These graphene contacted MoS2 FETs showed remarkable stability in both air and the 

vacuum.[47] Unlike conventional chemical doping methods, B.V dopant molecules can be 

reversibly removed using toluene[47]. Even though devices based on graphene-TMD 

heterostructures have been reported previously,[34, 90, 91] the operation principle of our MoS2 

FETs with lateral graphene contacts is qualitatively different from the previously reported 

graphene-based field-effect tunneling transistors (FETTs) and vertical field-effect transistors 

(VFETs). Whereas transport in FETTs and VFETs based on graphene/TMD heterostructures is 

modulated by the vertical transport barrier at the graphene/TMD junctions, the graphene/TMD 

junctions in our devices serve as optimum drain and source contacts to lateral MoS2 FETs. We 

also emphasize that high n (p) doping is crucial to achieve a sufficiently low (high)  graphene 

work function that is needed for making low resistance contacts to the conduction (valence) band 

of MoS2. Although back-gated MoS2 FETs with graphene contacts have also been reported 

recently, achieving such a large modulation of the work function is not possible with a back gate 

alone.[92-95] 
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 The electrical transport measurements carried out for the Graphene contacted MoS2 FETs 

demonstrate that when the temperature decreases from 160K to 77K , extrinsic field effect 

mobility for IL gated devices( with VILg = -3V) increases from ~ 150 cm
2
V

-1
S

-1
 to ~ 350 cm

2
V

-

1
S

-1
 for electron channel. Following a similar behavior, the same device with B.V doping 

(Concentration of 60 mM)measured in the same temperature range the mobility increases from ~ 

125 cm
2
V

-1
S

-1 
to  ~260 cm

2
V

-1
S

-1
.With both doping methods the two probe extrinsic transport  

shows phonon limited behavior. Four probe measurements were carried out to understand the 

intrinsic transport behavior  and scattering mechanism. These devices were measured with and 

without doping and results clearly concludethat ,the doping doesn't affect the  intrinsic transport 

properties for the graphene contacted MoS2 FETs with h-BN encapsulation. 

4.2 Experimental details, results and discussions 

4.2.1 Fabrication of graphene contacted MoS2 FETs encapsulated my h-BN 

 To fabricate graphene contacted MoS2 FETs, atomically thin MoS2 flakes were produced 

from a bulk crystal by a mechanical cleavage method and subsequently transferred onto 

degenerately doped silicon substrates covered with a 290 nm thick thermal oxide layer.[67, 80, 

87, 96] An optical microscope was used to identify thin flakes, which were further characterized 

by non-contact-mode atomic force microscopy (AFM). In the present study, we focus on few-

layer samples with 4-12 layers corresponding to 3-8 nm thickness. Samples containing only few 

layers can be produced more easily and sustain larger drive currents than MoS2 monolayers, 

while at the same time maintaining a relatively large ON/OFF ratio and a small c-axis interlayer 

resistance in comparison to thicker samples.
31, 

[83, 97] Next, we deposited a thin hexagonal 

boron nitride (h-BN) crystal (10–50 nm thick; mechanically exfoliated from commercially 
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available h-BN crystals) onto a few layer MoS2 flake to cover its middle section. While 

performing the deposition using a home-built precision transfer stage, we made sure that the two 

ends of the MoS2 remained exposed to form electrical contacts. Passivating the MoS2 channel by 

h-BN enables us to tune separately the SB height at the graphene drain/source contacts using the 

IL gate and the chemical potential of the channel using the Si back gate.  We chose h-BN as the 

MoS2 channel passivation layer, because of its atomically smooth surface that is chemically inert 

and relatively free of charged impurities and charge traps.[35-37]To form drain and source 

contacts, we transferred patterned CVD grown monolayer graphene on top of the h-BN covered 

MoS2 flake. Subsequently, we fabricated metal electrodes, consisting of 5 nm of Ti covered by 

50 nm of Au, as electrical contacts to the graphene electrodes using standard electron beam 

lithography (EBL) and electron beam deposition.[56]  During the same fabrication step, a large 

metal electrode was fabricated to serve as an IL gate electrode. Finally, we removed selectively 

graphene on top of the h-BN covered MoS2 channel by EBL patterning and oxygen plasma 

etching.  

4.2.2 Characterization of highly doped graphene 

contact 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

-80 -60 -40 -20 0 20 40 60 80

Vgs-Id#4_294K_01_10mV@-70_60V_L2_S_L3_D_Dfac_pt1_graphene

Ids(uA)

bare

V
bg

Graphene

T=297K V
ds

=10mV

 

1.8

2

2.2

2.4

2.6

2.8

3

3.2

-80 -60 -40 -20 0 20 40 60 80

Vgs-Id#1_294K_01_10mV@-60_60V_L2_S_L3_D_Dfac_pt1_plot

Ids(uA)

V
bg

 with B.V doped

Graphene

T=297K

V
ds

=10mV

b(i) b(ii) 

a(i) a(ii) 

 



49 

 

 

 

Figure 4.1: Graphene transfer outputs and corresponding schematic diagramme at 

graphene/MoS2 heterostuture.   (a) -(i)The schemetic band diagramme of the graphene/ 

MoS2heterostructure before doping. (a)-(ii) The transfer curve measured at 297K and Vds = .01 

V without doping.b-(i) The band giagramme after B.V doping is applied (b)-(ii) The Transfer 

curve after graphenen is doped with B.V 

 

 

 Figure 4.1(a) (ii)  shows the transfer curve of graphene without any doping method. For 

this case the Dirac point of graphene is close to -5V of back gate voltage with Vds = 0.01V. After 

B.V doping  the Dirac point is shifted extremely towards the negative gate voltage indicating that 

the B.V doping highly doped the graphene contacts. In this particular case the B.V solution with 

concentration of 60 mM was used. 

4.2.3  Output characteristics with and without doping.  
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Figure 4.2: (a-c) Output characteristics of the device without any doping, with B.V doping and 

IL gating of 3V.Each graph shows the I-V curves from -0.8 V to 0.8V .(d) Ids as a function of  

Vbg at Vds= .01V and T=77K for without doping and with VILg 3V in logarithmic scale. The inset 

shows linear curves of the same graph. 

 

 Figure 4.2 (a-c) show the output characteristics of two terminal graphene contacted MoS2 

FET with channel thickness of 9 nm and length to the width ratio of channel (L/W)= 2.5/4.1.This 

device was fabricated on h-BN to provide high quality bottom gate dielectric. Top of the channel 

is covered with another piece of h-BN to make sure that both electrostatic and chemical doping 

won't dope the channel. Doping the channel could degrade  the mobility due to the scattering of 

carriers. This scattering originates from the disorder which introduced by dopant molecules/Ions. 

The output and transfer characteristics of this device was measured for the entire temperature 

range, from 77K to 297K for the cases of without doping, with Ionic liquid gating and with B.V 

doping. In Figure 4.2 (a) the device output characteristics were shown as Ids Vs Vds for fixed 

backgate voltages at 77K without doping. This reveals the quality of the contact at graphene-

MoS2 hetero-structure. The strong non-linear behavior  (turning upward), suggesting the 

presence of a significant Schottky barrier at the contacts. In sharp contrast to this, the same 

device measured with ionic liquid gating with VILg = 3V and B.V doping (Figure 4.2 b-c) show 

linear behavior for every fixed back gate voltage. The maximum  current recorded to be 

20µA/µm for the device without doping and it increased up to 40 uA/um while with VILg  = 3V, 

it was increased to  60uA/um at Vds = 1V for Vbg = 60V. Both n doping methods improved the 

contacts at 77K for electron channel  by reducing the contact resistance, mainly lowering the 

Schottky barrier height. The Figure 4.2 (a-c) clearly demonstrate how the device without doping 

initially showed non -linear behavior and with each doping level the contacts were improved  
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even at low temperature as 77K.When the graphene contacts are doped with appropriate doping, 

the contact resistance can be reduced. The Fermi level of graphene is below the conduction band 

minimum and the n doping helps to tune the graphene Fermi level towards the conduction band 

minimum. This reduced the SB height significantly and leads to achieve low resistance Ohmic 

contacts. Even at Vds = 1V and Vbg =60V, we don't see any sign of saturation, indicating that 

expanding Vds can provide higher ON- current. 

 Figure 4.2 (d) shows the transfer characteristics of the same device measured at 77K with 

Vds = 0.01V with and without IL gating. The device without doping shows very low Ids current at 

high back gate voltage which indicates the existence of significant SB height. In this case the 

achieved current is mainly due to the carriers thermally excited over the SB or tunneled at the 

band edge or by the thermally assisted tunneling current which is the combination of  first two 

mechanisms. When a high back gate voltage is applied, then the electrons tunneled in to the 

conduction band due to the band bending occur at graphene/MoS2 interface due to the thinning 

of SB. In addition, the back gate voltage introduce higher carrier density to graphene electrodes. 

This allows the Fermi level of graphene to shift towards the conduction band minimum and 

lower the SB height at high positive gate voltage. It's imperative to reduce Schootky barrier 

height further which leaves behind a significant contact resistance that hinders the intrinsic 

properties of MoS2 device. To reduce the contact resistance, high positive IL gating (VILg = 3V) 

was applied to the work function tunable graphene electrodes. This significantly increased the Ids 

current and slightly lower  the threshold voltage which indicates that we successfully lower the 

schotkby barrier height. The maximum current was increased from .04 to 0.8 µA/µm after IL 

gating and the ON/OFF ratio of the device reaches 10
7
. The figure 4.2 (e) clearly demonstrates 
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the increment of Ids since it represent the both curves in linear region. The reduction of threshold 

voltage can be explained as the drop of activation energy that the carriers needed to inject in to 

the conduction band. These observations associate with the changing of SB height with IL gate 

modulation. The higher electron density introduced by positive IL gate voltage changes the 

Fermi level of graphene level towards the conduction band minimum making the SB height 

smaller. The graphene electrodes are selectively doped due the top h-BN passivation which 

eliminates the doping of channel. The reduction of SB height at drain and source contacts 

provide low resistance Ohmic contacts for the device. This can be also attributedby the mobility 

incensement of each case. The device without doping shows 42.23 cm
2
V

-!
S

-1
  and after IL gating 

the mobility increased up to 350 cm
2
V

-1
S

-1
 at 77. 

 4.2.4 The transfer characteristics with and without doping. 
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Figure 4.3: (a-c)Two terminal conductivity as a function of back gate voltage, at each 

temperature for cases of without doping, with B.V doping and IL gating of 3V. (d)The 

temperature dependence of two  terminal field effect mobility for each case of doping and 

without doping. 

 

 The obtained low resistance contacts with highly n doped graphene electrodes opened up 

the possibility to investigate the intrinsic channel properties of MoS2 FETs. Figure 4.3 (a-c) show 

the two probe conductivity curves of the device, characterized in figure 4.3 , as a function of  

back gate voltage. These curves were measured for a wider temperature range of 295 K to 77K 

for the cases of without doping and B.V doping. For IL gating the devices were measured below 

160 K to make sure IL is frozen and the electric double layer capacitance remain the same for the  

entire temperature range when we sweep the back gate voltage.  The definition of the 

conductivity is given by 𝜎 =  
𝐼𝑑𝑠

𝑉𝑑𝑠
×

𝐿

𝑊
 where L and W are channel length and width 

respectively.The conductivity of the device without any doping method with increasing 

temperature, increases up to 180K, and start to drop for the rest of the temperature range. This 

can be explained as the clear existence of a  Schootky barrier below 180 K and  the transport 

mechanism is dominated by thermally assisted tunneling current. For the temperature range from 

180K and above the conductivity is mainly limited by phonons. However this does not necessary 

mean the carrier transport is not limited by Schootky barrier. This may also include the thermally 

assisted tunneling current especially at higher temperature range. The linear region of the 

conductivity curves were used to extract the two probe mobility. The mobility was plotted as a 

function of temperature as shown  in figure 4.3 (d).With both IL and BV doping the temperature 

dependence of conductivity curves are in metallic region. At 77K with Vds = 10mV the 

maximum current at Vbg60 V with BV doping , increased up to 3.5 µA/µm from  0.3 µA/µm. 
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With IL gating the maximum current under the same conditions as earlier , recorded as 5.125 

µA/µm. In short the maximum Ids current increase more than 10 times with both BV and VlLg = 

3V, which clearly indicated that the contacts resistance becomes significantly smaller with 

highly doped graphene contacts even at a very low temperature. Figure 4.3 (d) shows the two 

probe mobility as a function of temperature for each case. The mobility was extracted by using 

the linear region of transfer curves and using the expression 𝜇 =  
1

𝐶𝑏𝑔
 × (

𝑑𝜎

𝑑𝑉𝑏𝑔
). For the case 

without doping the mobility remains pretty much same, close to 50 cm
2
V

-1
S

-1 
. If we observe 

closely it can be seen that the mobility increases slightly up to 180K and start to decrease for the 

higher temperatures. This is a similar trend that we observed in the transfer curves. For the cases 

with both B.V and IL gating the mobility decreases with increasing temperature with higher 

values , strongly suggest that we successfully achieved low resistance contacts which reveals 

intrinsic channel properties limited by phonon scattering. It's important to mention that the 

selectively doping only the contacts and providing high quality atomically thin dielectric surface 

with h-BN passivation are crucial in order to achieve high mobilities with lower threshold 

voltage by reducing charge impurity scattering and interface traps. 
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 4.2.5) Four terminal measurements 

 

 

 

 

 

 

Figure 4.4: (a)The optical micrograph image of a four terminal graphene contacted MoS2 FET, 

using h-BN as bottom and top passivation dielectric. The scale bar is 10um.(b)4- probe 

conductivity as a function of Vbgfor fixed temperatures without doping. (C) The four probe 

conductivity as a function of temperature. The blue data points correspond to device without 

doping and red data points mean device with Ionic liquid gating 3V. 

 

 4 probe measurements were carried out  for the graphene contacted MoS2 FETs to 

understand the intrinsic channel properties and scattering mechanism. The figure 4.4 (a) shows 

the optical micrograph image of the device that used in this study. The  4 probe device consist of 

Drain (D), Source (S)  and two inner electrodes ,V1 and V2.The inner probes V1 and V2 were 

used to measure the voltage Vds while D and S were used to measure the Ids. For the calculations 

, the separation of V1 and V2 is taken as the channel length. The average width of the channel 

running from D to S, considered as the channel width. The 4 probe conductivity  was measured 

as a function of back gate voltage (Vbg) for fixed temperatures for the range of 90K to 297K. 

When the temperature decreases the maximum conductivity (at Vbg = 50 V ) increases as 

expected in true channel behavior. The linear region of the curves were used to extract the 

mobility. 
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 4.2.6) Important of h-BN passivation for better device performance. 

 The phonon limited mobility decreases with increasing temperature following  a power 

law dependence, similar to MoS2 devices fabricated on SiO2 and Al2O3 substrates as reported in 

the literature. However, the gamma is much large than on oxide substrate, but it is consistent 

with a recently work on h-BN encapsulated MoS2. The large gamma indicates reduced interface 

and substrate scatterings due to charged impurities. Further improving the contacts such as using 

ionic liquid gating does not affect the intrinsic channel  mobility  of h-BN encapsulated devices 

measured in a 4-probe configuration. 

4.3 Conclusions 

 In summary we have used graphene as a work function tunable electrode material to 

achieve low resistance Ohmic contacts for MoS2 FETs for n-channel. Using this approach we 

can lower the Schootky barrier height and achieve intrinsic channel behavior . The contacts are 

good for a wide range of temperature from 77K to 300K.We successfully achieved 10
7
 high 

ON/OFF ratio nearly ideal sub threshold swing .We used both electrostatic doping (DEME-

TFSI) and more air stable molecular doping (Benzyl viologen) to dope the graphene electrodes. 

Ultra clean h-BN was used as a bottom dielectric and top passivation layer to provide atomically 

smooth high quality dielectric media , eliminate charge impurity scattering and to protect the 

channel. The four probe measurements (with devices covered with hBN) reveal that the doping 

use to improve for contact engineering, doesn't affect the intrinsic transport properties. 
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CHAPTER 5: WSe2 FETs WITH DIFFERENT CHANNEL 

DOPING LEVELS 

 
5.1 Introduction 

 While low resistance contacts have been achieved using IL gating and highly doped 

graphene as the contact material, more air and thermally stable contacts with even lower contact 

resistance will be needed for practical applications. In conventional Si-based electronic devices, 

low-resistance Ohmic contacts are achieved by selective ion implantation of the source/drain 

regions before making metal contacts. This is an effective method since the barrier width 

between semiconductor and metal decreases with the carrier density. Unfortunately, this method 

cannot be implemented for 2D layered semiconductor channels due to their ultrathin bodies. 

Various alternative doping methods such as surface charge transfer [47, 98, 99] and substitution 

[38, 100]doping have been used to reduce the contact resistance of TMD devices. However, most 

of these doping methods suffer from air, thermal or long term instability. 

 In this chapter, we investigate the charge transport in FETs with WSe2 channel that is 

substitutionally doped by Nb at different concentrations ranging from 0.01% to 0.5%, where the 

substitution of W by Nb introduces holes to the WSe2channel. While heavy doping is needed for  

drain and source contacts, light n- and p-doping is desired for n-type and p-type transistors, 

respectively. On the one hand, doping the channel can lead to highly transparent 

metal/semiconductor contacts. On the other hand, the carrier mobility is reduced due to the 

impurity scattering introduced by dopants. We have systematically studied how the contact 

resistance and channel mobility are affected by the doping concentration. WSe2 samples with 
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three different levels of Nb doping are prepared: 0.5%, 0.05% and 0.01% (Nb0.005W0.995Se2 , 

Nb0.0005 W0.9995Se2  and  Nb0.0001 W0.9999Se2 ) for this study.  

5.2 Transport properties of WSe2 samples with different doping levels. 

5.2.1. Fabricating metal contacted WSe2 FETs with heavily p-doped channel 

 The electrical transport properties of WSe2 channels with 0.5% and 0.05% Nb doping are 

studied by fabricating FETs with metal contacts, where the doping level is sufficiently high to 

make highly transparent tunneling contacts with metal electrodes. First, Nb doped WSe2 ultrathin 

flakes were produced by mechanical exfoliation and subsequently transferred onto degenerately 

doped Si substrate with 290 nm thick SiO2. High quality thin samples were identified under an 

optical microscope. These selected samples are further characterized by Park System atomic 

force microscopy (AFM). Metal electrodes, consisting of 10 nm of Ti and 50 nm of Au, were 

fabricated to contact the doped WSe2 samples using standard electron beam lithography (EBL) 

and electron-beam deposition.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1:Optical micrograph of a metal contacted 0.05% Nb doped WSe2 device. 
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5.2.2Electrical transport properties of degenerately (0.5% Nb) doped WSe2 (Nb0.005 

W0.995Se2) samples 

 

 

 

 

Figure 5.2.Ids(V) Vs VdsofNb0.005 W0.995Se2 measured at Vbg= -60 and 60V at (a) 300K 

and(b)10K. 

 

 Figure 5.2 shows Ids-Vds characteristics of a degenerately p-doped WSe2 

(Nb0.005W0.995Se2) device with Ti/Au contacts measured at 300K and 10 K. The linearity of the 

Ids-Vds characteristics down to 10 K indicates Ohmic behavior, which is ascribed to the highly 

transparent contacts between heavily doped WSe2 and Ti/Au metal electrode. The Ids only 

slightly increases as the gate voltage changes from 60 V to -60 V, indicating heavy p-doping.  

The Ids-Vds characteristics also show weak temperature dependence, indicating absence of carrier 

freeze-out, which is consistent with degenerate doping. 

 

 

 

 

 

(a) (b) 
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Figure 5.3: The transfer curve of the Nb0.005W0.995Se2 FET at 300K and Vds = 10mV. 

 

 To further understand the gate dependanc and extract the field effect mobility, the 

transfer curve of the device was measured at Vds = -10 mV  at room temperate as shown in 

Figure 5.3. From the slope of the transfer curve in the high Vbg region, the two probe field-effect 

mobility for the Nb0.005W0.995Se2 device is estimated to be ~ 4 cm
2
V

-1
S

-1 
at 300K. 

 The relatively low mobility of the Nb0.005W0.995Se2 device can be attributed to increased 

charge impurity scattering in the channel caused by the Nb dopants. In such highly doped 

devices, the contact resistance is rather small. In our previous study, a very low contact 

resistance of ~0.20 kΩμm is obtained in Nb0.005W0.995Se2 devices with Ti/Au contacts, which is 

nearly temperature independent.[101] Therefore, the low mobility in our Nb0.005W0.995Se2 device 

is limited by the charged impurity scatting in the channel rather than by the contacts. The low 

mobility and weak gate dependence in Nb0.005W0.995Se2 devices severely limit the device 

performance. Therefore, WSe2 with lower doping concentration is needed as the channel 

material.  
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5.3.Characterizing 0.05% Nb doped WSe2 (Nb0.0005W0.9995Se2 ) samples. 

5.3.1.Electrical transport properties of Nb0.0005 W0.9995Se2  samples. 

 

 

Figure 5.4: (a)The optical micrograph of Hall bar device (b) The AFM image of the Hall bar 

device and its thickness variation across the channel. 

 

 Figure 5.4 shows an optical micrograph and an AFM image of a Hall bar device 

consisting of a 7.7 nm thick Nb0.0005 W0.9995Se2 channel. In the micrograph, the drain and source 

are labeled as T1 and T5; and T2-T4 are inner electrodes used for four-terminal and Hall effect 

measurements. 

.  

 

 

 

 

 

 

 

  

 

(a) (b) 

Figure 5.5:(a) The  output curves at 300K for the Two probe field effect mobility for T67 electrode 

pair.(b) Two probe transfer curve for different bias voltages at 300K. 
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 Figure 5.5 shows the output and transfer characteristics of the Nb0.0005W0.9995Se2  device 

in Figure 5.4. measured at room temperature. The output curves are linear for a wide range of 

back gate voltages from 20V to -70V, indicating near Ohmic contacts. In contrast to our 0.5% 

Nb doped WSe2 devices which display weak gate dependence, our 0.05% Nb doped WSe2 

devices show a significantly higher ON/OFF ratio of 10
6 

for Vds = -1V. Two-probe field-effect 

mobility in our 0.05% Nb doped WSe2 devices falls the range of ~ 20 - 23 cm
2
V

-1
S

-1
 at 300K , 

which is also substantially higher than that in 0.5% Nb doped WSe2 devices. 

5.3.2 Transmission line measurements (TLM) for Nb0.0005 W0.9995Se2 samples. 

 

Figure 5.6: (a) Optical micrograph of a device structure for TLM measurement consisting of a ~ 

15nm thick Nb0.0005 W0.9995Se2 with Ti/Au metal contacts. (b)AFM image of the Nb0.0005 

W0.9995Se2sample in (a). 

 

To quantify the contact resistance in ourNb0.0005 W0.9995Se2 device, transmission line method 

was used with Ti/Au metal electrodes at room temperature. Figure 5.6 (a) shows an optical 

micrograph of the device structure that was used to calculate the metal/P- doped WSe2 contact 

resistance RMC,where the channel length is defined as the spacing between adjacent Ti/Au metal 

electrodes. The total resistance measured between any adjacent pair of electrodes is the sum of 

contact resistance RMC and channel res 
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istance. By plotting the total resistance (multiplied by the channel width) as a function of channel 

length, both contact resistance and channel resistance can be separately determined for a uniform 

channel with consistent contacts. 

 

 

 

 

 

 

 

Figure 5.6: Normalized total resistance as a function of channel length measured at room 

temperature. 

 

 Figure 5.6 shows the normalized total resistance as a function of channel length for the 

device measured at room temperature. From the intercept of the linear fit to the total resistance, 

we extract the contact resistance RMC ~ 11 kΩμm for room temperature. This contact resistance 

value is higher with respect to what we have observed for Nb0.005W0.995Se2  (~ 0.2KΩµm). This 

difference can be attributed to the dependence of Schottky barrier thickness on the doping level: 

higher hoping concentration leads to thinner Schottky barriers.  

 

5.3.3. Hall Effect measurements for Nb0.0005 W0.9995Se2 samples 

 To accurately determine the mobility,we performed Hall-effect measurements on Nb0.0005 

W0.9995Se2devices.The transverse Hall resistancedefined as  𝑅𝑥𝑦 =  
𝑉𝑥𝑦

𝐼𝑑𝑠
 was measured at different 
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magnetic fields between -2T to 2Tfor different gate voltages.Extracted values of Rxy were plot 

against magnetic field B as shown in figure 5.8.The Hall coefficient RH was calculated using the 

equation: 

      𝑅𝐻 =  
𝑑𝑅𝑥𝑦

𝑑𝐵
 . 

 

 

 

 

 

 

 

 

 

Figure 5.8:Rxy Vs B(T) was plot to calculate the RH value from the slope at 240K for Vbg = -

70V.Similar graphs were plot for Vbg ranging from -50V to -70 V and at temperatures between 

300K to 180K. 

 

FromRH,we can calculate the carrier densityn by using the expression: 

𝑛 =
1

(𝑒𝑅𝐻)
, where e is the charge of an electron.Finally the Hall mobility 𝜇𝐻is calculated using 

four probe conductivity and carrier density as 𝜎 =  𝑛𝑒 𝜇𝐻 , where σ is the four probe 

conductivity. 
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Figure 5.9 (a) shows the carrier (Hole) density determined by Hall measurement as a function of 

back gatevoltage at 300 K. The slope of the gate dependence of hole density yields a back gate 

capacitance of Cbg-Hall = 5.7 nFcm
-2

.The temperature dependence of hole mobility for hole 

concentrations of 2.5 e-7 and 3.5 e-7  (correspond to Vbg = -70V and -80V respectively) are 

shown in Figure 5.9 (b).With decreasing temperature the mobility is decreasing , indicating that 

the carrier transport scattering is dominated by ionized impurities introduced by dopants. The 

calculated two probe field effect mobility values (22-24 cm
2
V

-1
S

-1
) are consistent with the 

obtained Hall mobility value, indicating that contact resistance does not limit the device 

performance.  

5.4) Fabrication of 2D/2D contacted WSe2 FETs for lightly doped channel. 

 The metal contacted Nb0.0005W0.9995Se2 FETs showhighly transparent low resistance 

contacts, but the mobility is rather low due to the charged impurity scattering introduced by 

dopants. In order to improve the mobility, WSe2FETs with lower channel doping concentration 
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is necessary. However, if we further lower the channel doping level, it becomes a major 

challenge to achieve highly transparent metal contacts. To further investigate how the channel 

doping effect the transport properties, new contact engineering approaches are needed. Here we 

report fabrication of 2D/2D contacted FETs with degenerately doped WSe2 (Nb0.0005W0.9995Se2  ) 

as electrodes and 0.01% doped WSe2 (Nb0.0001 W0.9999Se2  ) as channel material 

 Figure 5.10 shows an optical micrograph of a two probe 2D/2D contacted WSe2 FET 

with 0.01% Nbdoped channel. To provide high quality atomically smooth dielectric surface with 

reduced interface traps and charge impurity scattering, h-BN is used as the bottom dielectric. In 

order to protect the channel from the residues that could beintroduced from the dry transfer 

method and standard e-beam lithography process, the channel is passivated by top h-BN piece. 

The length of the channel is defined by the width of the h-BN on top of the WSe2 channel. . 

 

Figure 5.10: Optical micrograph of 2D/2D contacted device. 

 Thin h-BN crystals (10 - 40 nm thick) were produced from bulk h-BN crystals by a 

mechanical cleavage method and subsequently transferred onto degenerately doped silicon 

substrate covered with a 270 - 290 nm-thick thermal oxide layer. Atomically thin flakes of 

slightly doped TMDs were exfoliated from bulk crystals onto a PDMS stamp. Using a home-

built precision transfer stage, undoped few-layer TMD flakes used as the channel were 
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subsequently transferred onto selected thin h-BN crystals on the SiO2/Si substrate. To passivate 

the TMD channel, a second thin h-BN crystal is exfoliated to a PDMS stamp and subsequently 

transferred onto the few-layer WSe2 flake to cover its middle section while exposing its two ends 

for electrical contacts. 

 Thin flakes of degenerately doped TMDs were exfoliated onto PDMS stamps and 

transferred to the two exposed ends of the TMD channel as drain/source contacts. To improve 

the interface quality between the h-BN and TMD channel as well as between the doped TMD 

drain/source contacts and TMD channel, a mild annealing step was carried out after each transfer 

step at 250
o
C for 30 minutes in a vacuum chamber purged by 10% H2 and 90 Ar. The 

dimensions (e.g. the sample thickness) and the surface quality (e.g. the cleanness and 

smoothness) of the h-BN substrate and TMD channel were characterized by Park Systems 

atomic force microscopy (AFM) in the non-contact mode after each annealing step. Metal 

electrodes, consisting of 5 nm of Ti covered by 50 nm of Au, were fabricated to electrically wire 

up the degenerately doped TMD drain/source electrodes using standard electron beam 

lithography (EBL) and electron beam deposition. 
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Figure 5.11: The step by step transfer process to fabricate the 2D/2D contactedWSe2 

FET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: The AFM scanned images of the .01% Nb doped WSe2  samples.(a)The 

AFM image with the scale bar that represents the thickness of the sample which is 

around 5.6 nm in this case.(b) shows the 1.5 X 1.5 um
2
 close analysis of the channel. 

The roughness of the channel can be estimated by the "Line profile red", graph which is 

in-between -200pm  to 200pm.This means sample is pretty clean. The observed white 

spots represent the bubbles happen to be in the interface between bottom h -BN dielectric 

and the Nb0.0001 W0.9991Se2 channel. 

 

 The Nb0.005 W0.995Se2 samples were used to exfoliate on to the PDMS patches. The 

appropriate samples were used to cover the contact area with dry transfer method. The 

thickness range for these contact electrodes  are around 15-30 nm is used to make sure 

a 

b 

 

(a) 

(b) 
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that both contacts are homogeneously and equally doped. After each transfer step the 

samples were annealed at 250
0
C for 30 minutes. It's important to point out that with the 

annealing, sometimes the transferred components may shift. As a precaution we heat the 

fabricating device at 80
0
C for 5 minutes before annealing. Once the fabrication is done 

we used standard electron beam lithography and metal deposition method to form 

electrodes. 

5.3.2.C) Stable 2D/2D contacted  .01% doped WSe2 channel for excellent performance 
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Figure 5.13 :The transport properties of .5% Nb doped contacted (two probe) WSe2 FET with 

.01% channel doping.(a)The schematic band diagramme to explain how 2D/2D contacts work.                                                                       

(b)Ids Vs Vbg at 300K for fixed Vbg from -20V to -100V. (c) The linear version of the coductivity 

transfer curves of the device at 300K for both Vds = -50V and -1V.  (d) The logarithmi version of 

the same transfer curves. 

 

 Figure 5.13 (a) shows the schematic digaramme which explains the operation of low 

resistance 2D/2D junctions. When the highly Nb doped electrodes are at contact with  

slightlydoped WSe2 channel, the system is at equilibrium. So the band diagrams are formed such 

a way that the Fermi levels are aligned. This leads to a relatively larger band offset between 

Valance band maximums (Conduction band minimums) between contact and channel materials. 

For highly p doped (Nb0.005 W0.995Se2) contact electrodes, the Fermi level is inside the valance 

band. But for slightly dope channel, the Fermi level is around at the middle of the band gap but 

little bit lean in to the valance band maximum. This position leads to existence of an energy band 

offset  at the junction. When the negative back gate voltage is applied , the Fermi level of the 

channel shifts  towards to the valance band maximum forming smaller band offset in between 

slightly doped channel and degenerately doped contacts . Due to the fact that the interlayer 

interaction  between2D  TMDs and the junctions are weaker, the back gate voltage is higher 

enough to tune the Fermi level of channel.[39, 40] This interesting principal is used to achieve 

low resistance, tunable,  Ohmic contacts for TMD based FETs. A typical 2D/2D contacted TMD 

device shows no significant amount of free carriers in  the valance band of the channel below the 

threshold voltage( |Vbg| < |VTH| ).This corresponds to the OFF state of the device. When the Vbg 

is larger than VTH  (| Vbg| > |VTH|), the device will be ON state since the band off set becomes 
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smaller at channel contact region and the carrier injection from contact to channel  is significant 

which leads to low contact resistance. 

 Figure 5.13 (b-d) represent  the transport and output properties of  2D/2D contacted 

0.01% channel doped  WSe2 (Nb0.0001 W0.9991Se2 )FET with h-BN dielectric and encapsulation. 

This device channel is 5.6 nm thick and contacted with degenerately p-doped WSe2 

(Nb0.005W0.995Se2).This device shows superior p- channel behavior  with exceeding 10
9
 ON/OFF 

ratio and 700mV/dec sub threshold swing at 300K with Vds = -1V.The sub threshold swing can 

be improved further by using top h-BN gating[101] and the range of Vds can be further reduced 

by high- ĸ dielectric gating.[102]According to Figure 5.13 (b) the output characteristics were 

measured for the device in the Vbg  range from -20V to -100V. According to the linear plot of the 

transfer curve, the threshold voltage (VTH) at 300K for this device is close to -20V.Taking this 

into account the output curves were measured from -20V to -100V. Figure 5.13 (c) shows the 

conductivity transfer curves at room temperature for both Vds = -1V and Vds = -50mV.Both 

curves overlap perfectly indicating that even at low bias the contacts are already improved. The 

same graph was plot in logarithmic scale. 

 
 

a 
b 
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Figure 5.14: The observed intrinsic transfer properties of 2D/2D contacted slightly doped WSe2 

FETs (a) The temperature dependence of two probe conductivity at Vds = -1V (b) The output 

characteristic for the range of Vds = -0.04V to 0.04V.  

 

 The successfully achieved low resistance 2D/2D contacts, open up the possibility to 

further investigate the intrinsic channel properties. Figure 5.14 (a) shows the temperature 

dependence of two probe conductivity of the same device. The conductivity is defined as  

𝜎 =  
𝐼𝑑𝑠

𝑉𝑑𝑠
 ×  

𝐿

𝑊
where L is the length of the channel and W is the width. At higher Vbg ranges 

when the temperature increases the conductivity decreases indicating the channel transport is 

predominantly limited by intrinsic  phonon limited behavior (metallic region). However for 

lower Vbg range the device shows insulating behavior,where the conductivity increases with 

increasing temperature. According to the output characteristic curves measured at 10K (Figure 

5.14 (b),  the curves remain linear for all the Vbg values , indicating that  even at low 

temperaturesthe 2D/2D contacts are barrier free. This is also reflected in the ON state 

conductivity as it increases by nearly 3 times as the temperature is dropped from 300K to 10K. 

                     

Figure 5.14: The two terminal field effect hole mobility as a function of temperature. 
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 The linear regions of the conductivity curves were used to extract the two probe hole 

mobility for each temperature. The expression   𝜇𝐹𝐸 =  
1

𝐶𝑏𝑔
  × (

𝑑𝜎

𝑑𝑣𝑏𝑔
)  was used to extract the 

two probe mobility, where Cbg is the back gate capacitance, σ is the conductivity and Vbg is the 

back gate voltage. Cbg is taken as the geometric capacitance of the device where contribution 

coming from 290 nm SiO2 plus the thickness of the h-BN bottom dielectric. The value of the 

calculated geometric capacitance is consistent with the calculated capacitance with Hall bar 

measurements. As the temperature dropped to 10K from room temperature, the mobility 

increased from 175  cm
2
V

-1
S

-1
 to 654 cm

2
V

-1
S

-1
.This trend of temperature dependence of the 

mobility clearly indicates that the hole transport is largely limited by intrinsic phonons.  

 

Conclusions 

 We have systematically studied the electrical transport properties of FETs consisting of 

WSe2 channels with different Nb dopant concentrations. To construct FETs for 0.5% and 0.05% 

Nb doped channel materials, metal electrodes were used. Forrelatively low doped (0.01% 

Nbdoped) channels, a novel low resistance 2D/2D contact engineering method was used. For 

higher doping channels, it is relatively easy to make low resistance transparent contacts with 

metal electrodes.  However higher channel doping reduces the mobility due to increased dopant 

ion scattering. Metal electrodes can make low resistance Ohmic contacts for 0.5% Nb doped 

WSe2 channel. However, the low mobility and weak gate dependence of 0.5% Nb doped WSe2 

severely its application as a FET channel material. On the other hand, 0.5% Nb doped WSe2is 

suitable as the drain and source contacts for p-type WSe2 FETs. The transport characteristics of 

0.05% Nb doped WSe2 demonstrate better gate dependence and higher mobility than 0.5% doped 
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channel. Even higher mobility and better performance are achieved inWSe2 channels with low 

Nb concentration (0.01% Nb doped WSe2). Due to the low channel doping level of 0.01% Nb 

doped WSe2, anovel 2D/2D contact engineering technique is employed to achieve low resistance 

contacts. As the temperature drops form room temperature to 10K, the mobility increases from 

175  cm
2
V

-1
S

-1
 to 654 cm

2
V

-1
S

-1
.This trend of temperature dependence of the mobility clearly 

indicates that the hole transport is largely limited by intrinsic phonons.This device shows 

superior p- channel behavior  with high ON/OFF ratio of10
9
and  a substhreshold swing of 

700mV/decat 300K andVds = -1V. 
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CHAPTER 6:  SUMMARY AND FUTURE WORK 

 The  focus of this work is to improve the performance of TMD based FETs by contact 

engineering to open up its potential for applications in next generation nano electronics. TMDs 

got attraction due to finite band gap, chemical and thermal stability, optical properties, flexibility 

and transparency. When these TMD materials were used to fabricate devices, there's a barrier 

formed at metal/semiconductor interface due to the energy mismatch. This hinders device 

performances as well as ability to observe intrinsic  physics phenomena . The first attempts of 

developing contacts were done by using different metal contacts with different  work function to 

form lower Schootky barrier height at metal - semiconductor interface. Metals with lower work 

function were used to achieve lower Schootky barrier and higher carrier injection for n channel 

MoS2FETs.Ti can be used as the metal contact to achieve lower Schootky barrier height. 

However generally there will be a tunneling barrier at metal- semiconductor interface . In this 

study, Ionic liquid gating (DEME-TFSI)  was used to eletro-statically doped and achieve highly 

transparent tunneling contacts. The high capacitance introduced by thin electric double layer, 

causes strong band bending at metal- semiconductor interface which eventually leads to better 

device performance through higher tunneling efficiency. The mobility for IL gated MoS2 FET is 

high as 60 cm
2
V

-1
s

-1
 at 250K in contrast to 5 cm

2
V

-1
s

-1
,  what we observed with conventional Si 

back gate configuration. This is a clear indication that the contacts were dramatically improved 

with IL gating. The performance enhancement also reflected with 10
7
 high current ON/OFF 

ratio, near ideal sub threshold swing of 50 mV/decade at 250K.The IL gated two probe data is in 

a good agreement with the true channel measurements. The temperature dependence of IL gated 
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data follows the relationship μ ~ T
-γ

 where γ ≈ 1 indicating that the carrier transport is 

predominantly limited by phonons.  

 In order to take the contact engineering to the next level, we tried to achieve low 

resistance Ohmic contacts by using graphene as a work function tunable electrodes. Using 

appropriate doping, the Fermi level of graphene was able to tune towards the conduction band 

minimum (for n channel) or valance band maximum (for p channel) of the 2D semiconductor to 

lower the Schottky barrier height. As mentioned earlier, efforts to achieve lower Schottky barrier 

were carried out using different work function metals. But this have limitations due to the Fermi 

level pinning. Hence using graphene electrodes standouts as an attractive approach especially 

this method can be used to achieve both n and p channel behavior simultaneously for the same 

device. We fabricated graphene contacted MoS2 FETs using h-BN as a bottom gate dielectric 

and top passivation layer. Both ionic liquid and more air stable Benzyl Viologen were used to 

dope the graphene electrodes. The room temperature mobility for graphene contacted n channel 

Mos2 is as high as 50cm
2
V

-1
S

-1
. At low temperature regime the un-doped device does not show 

the phonon limited behavior, mainly due to the non ideal contacts. So both IL gating and BV 

doping were used to dope the Fermi level towards the conduction band minimum and achieve  

low resistance Ohmic contacts. We successfully observed phonon limited behavior with these 

two doping methods separately, which reflects the importance of doping to achieve better 

contacts. In order to understand the intrinsic transport properties and the scattering mechanism, 

four probe graphene contacted devices were fabricated. Moreover the four probe measurements 

were measured using different doping methods. We obtained almost identical data for the four 
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probe measurements with and without doping, which indicates that using doping to improve 

contacts, doesn't affect the intrinsic transport properties.     

 When it comes to the real world applications, we need more permanent, air-stable Ohmic 

contacts. To overcome this challenge we used doped 2D contacts as electrodes for 2D 

semiconductors. In this particular study we used Nb0.005 W0.995Se2 (.5% Nb doped WSe2 ) as 

contact material and Nb0.0001 W0.9991Se2 (.01% Nb doped WSe2) as channel material. This 

method can be used for wide range of 2D materials. In order to provide atomically smooth 

surface , and reduce long range and short range disorder, interface traps and to protect the 

channel, these devices were fabricated on h-BN dielectric layer and passivated by another piece 

of h-BN. For this study we achieved room temperature p channel mobility for slightly doped 

WSe2 of 175 cm
2
V

-1
S

-1 
which increases up to 654 cm

2
V

-1
S

-1
 at cryogenic temperature. This 

method successfully demonstrate the intrinsic channel behavior with 10
9
 ON/OFF ratio and 100 

mV/Dec subthreshold swing. The slightly doped feature of the channel offers lower threshold 

voltage, still preserving the high carrier mobility.
 

 The mobility of WSe2 FETs with different channel doping was studied using three 

different Nb doping levels,( .01% , .05% and .5%.). Metal electrodes are good enough to make 

good contacts for the channels with .5% and .05% doping levels. Higher doping levels make the 

Schootky barrier thinner and make highly transparent contacts. The .5% Nb doping channel 

doesn't show any gate dependency. However it shows higher ON current with low resistance 

even at cryogenic temperature, indicating it's potential for contact electrodes. .05% .On the other 

hand .05% Nb doped channel demonstrates clear gate dependency, near ideal sub threshold 

swing, 10
6
 ON/OFF rato. However due to the impurity scattering introduced by dopants, It's 
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room temperature mobility is in the range of 20- 22 cm
2
V

-1
S

-1
.Considering all the facts, .01% Nb 

doped channel can be considered as a better option for the device performance. 

 As future work, I'm eager to understand the performance enhancement by using the 

modulation doping method, on TMD based FETs.This method is expected to use by combining  

highly doped and non doped TMD materials  as a heterostruture.The charge carriers are spatially 

separated by the dopant material so the scattering of carriers are expected to be low.Another 

interesting way to enhance the performance is by using cut patterns in TMD/ metal 

junction.Designed patterns on sample area of MoS2  will increase the serface area that overlaps 

with the metal electrodes.This will increase the charge injection from metal to channel which 

ultimately results in low contact resistance.  

 Isolation of graphene opens up the possibility to explore 2D materials. Currently, 2D 

material research going well beyond the graphene studies. Growing  and stacking of 2D 

materials with different stockings variety of homo or hetero structures of atomically thick layers 

open up a new direction of science that can lead to fascinating technological 

breakthrough.[103]The thickness dependant properties of 2D materials becoming so exciting and 

it's expected to offer unlimited research and technological opportunities.[103] Already 

understood properties of 2D materials have contributed to new frontiers of science such as spin 

and valley-tronics.[104] As Richard P. Feynman inspired generations to explore the layered 

materials during his lecture "There's plenty of room at the bottom" emphasizing that we can 

control the properties of materials if we can arrange the atoms the way we want them. 
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ABSTRACT 

OPTIMIZATION OF TRANSITION METAL DICHALCOGENIDES(TMDS) BASED 

FIELD EFFECT TRANSISTORS(FETS) VIA CONTACT ENGINEERING 

 

by 

MEEGHAGE MADUSANKA PERERA 

December 2016 

Advisor : Dr. Zhixian Zhou 

Major: Physics (Condensed mater physics/nano-electronics) 

Degree: Doctor of Philosophy 

 Layered transition Metal Dichalcogenides (TMDs) have demonstrated a wide range of 

remarkable properties for applications in next generation nano-electronics. These systems have 

demonstrated many “graphene-like” properties including a relatively high carrier mobility, 

mechanical flexibility, chemical and thermal stability, and moreover offer the significant 

advantage of a substantial band gap. However, fabricating a high performance Field Effect 

Transistors (FETs) is challenging for these TMDs mainly due to the formation of significant 

Schootky barrier height at metal/TMD interface in most cases. The main goal of this study is to 

use novel contact engineering approaches to achieve highly transparent tunneling contacts by 

thinning the Schottky barrier width or  low resistance Ohmic contacts by making the Schootky 

barrier height smaller. 

 The first approach is to use Ionic Liquid (IL) gating for metal contacted MoS2 FETs 

which make highly transparent tunneling contacts due to the strong band banding at metal/MoS2 

interface. The substantially reduced contact resistance in ionic-liquid-gated bilayer and few-layer 

MoS2 FETs results in an ambipolar behavior with high ON/OFF ratios, a near-ideal subthreshold 
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swing, and significantly improved field-effect mobility. Remarkably, the mobility of a 3-nm-

thick MoS2 FET with ionic-liquid-gating was found to increase from ~ 100 cm
2
V

-1
s

-1
 to ~ 220 

cm
2
V

-1
s

-1
 as the temperature decreased from 180 K to 77 K. This finding is in quantitative 

agreement with the true channel mobility measured by four-terminal measurement, suggesting 

that the mobility is predominantly limited by phonon-scattering. In order to make the Schootky 

barrier height smaller and achieve low resistance Ohmic contact, work function tunable 

electrodes (graphene)  were used with MoS2 channel. Both electrostatic ( IL)  and surface charge 

transfer (Benzyl Viologen-B.V) dopants were used to tune the work function of graphene 

electrodes. With both doping methods the graphene contacted MoS2 device demonstrates phonon 

limited behavior. On the other hand the same device without doping, mobility remains pretty 

much the same value for a wide range of temperature. Furthermore four probe garphene 

contacted devices with hBN passivation demonstrate that the doping used to improve the 

contacts don't affect the intrinsic transport properties of MoS2 devices.  

 Finally 2D/2D contact engineering method was utilized as more attractive contact 

engineering strategy since it provides more air and thermal stable doping for both channel and 

contacts. With this method room temperature p channel mobility for .01% Nb doped WSe2 of 

175 cm
2
V

-1
S

-1 
which increases up to 654 cm

2
V

-1
S

-1
 at cryogenic temperature. This method 

successfully demonstrates the intrinsic channel behavior with 10
9
 ON/OFF ratio and 100 

mV/Dec subthreshold swing. The performance limitation of WSe2 FETs with their channel 

doping level was also studied.  
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