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CHAPTER 1. INTRODUCTION 

1.1 Nucleosome 

 DNA is the genetic material that stores information in the cell and transfers it from 

one generation to another (1). In eukaryotes, DNA is packaged into nucleosomes, which 

is further condensed into higher order chromatin (Figure 1.1). The nucleosome, which is 

the basic subunit of chromatin, consists of an octamer of histone proteins, two each of 

H2A, H2B, H3 and H4, with 146 bp of DNA wrapped around each unit. Positively charged 

amino acids, such as lysines and arginines, in the histone proteins form tight interactions 

with the negatively charged DNA. Hence, the interaction between DNA and histone 

proteins has a direct impact on the conformation of chromatin. DNA in the context of 

chromatin is involved in multiple processes, such as transcription, replication, DNA repair 

and recombination. Therefore, cells deploy versatile mechanisms to modulate chromatin 

structure to mediate gene expression. 

1.2 Epigenetics 

 The heritable changes in gene expression that occur without changes in DNA 

sequence are referred to as epigenetics (2). Epigenetic regulation of gene expression 

involves chromatin remodeling factors, DNA methylation, and histone modifications 

(Figure 1.1). Multiple enzymes are involved in epigenetic gene regulation. As a 

consequence, mutations or aberrant activity of epigenetic modifiers have been implicated 

in several diseases including cancer (3). Given the involvement of epigenetic enzymes in 

cancer, they are emerging as attractive anti-cancer targets. 
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Figure 1.1 – Chromatin and the nucleosome. DNA is packaged inzato higher order 

chromatin structure, which consists of an array of nucleosomes. DNA and four different 

types of histone proteins form the nucleosome. Writers, readers, and erasers are involved 

in epigenetic gene regulation through modification of the N-terminal tails of the histone 

proteins. Copyright permission was obtained from Nat rev Drug disc. 2012,11 (2). 

1.2.1  Chromatin Remodeling  

 Several chromatin remodeling complexes are involved in dynamically regulating 

chromatin structure (4). These proteins utilize the energy of ATP hydrolysis to alter the 

interaction between DNA and histone proteins. Three major chromatin remodeling 

complexes are known to date: SWI2/SNF2, ISWI and CHD. SWI2/SNF2 was the first 

remodeling complex isolated from yeast. Humans also have homologous complexes 

related to yeast SWI2/SNF2 complex, such as the hBRG1 and hBRM complexes. The 

structural changes mediated by chromatin remodeling complexes include sliding of the 
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histone octamer along the DNA, changing the DNA conformation, and replacement of 

histone proteins.  

1.2.2 DNA methylation 

DNA methylation plays a crucial role in gene repression. DNA methyltransferases 

(DNMTs) catalyzes the transfer of methyl groups from S-adenosyl-L-methionine to 

cytosine bases in DNA (5). Methylation of cytosines in the promoter regions is often linked 

to gene repression. DNMT enzymes are also found in chromatin remodeling complexes 

and other corepressor complexes. Methyl CpG binding proteins in the corepressor 

complexes recruit histone modifying enzymes to further repress transcription through 

histone deacetylation. Aberrant patterns of DNA methylation are also linked to disease 

formation (6). Therefore, DNMT enzymes have emerged as anti-cancer therapeutics. 

1.2.3 Histone modifications 

The N–terminal tails of histone proteins undergo a myriad of post translational 

modifications (PTMs), such as acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation, and ADP ribosylation (Figure 1.2) ; (Scheme 1.1) (7). These PTMs modulate 

chromatin structure and gene expression. Multiple epigenetic enzymes are involved in 

regulating histone modifications, which are categorized into readers, writers and erasers 

(Figure 1.1) (2). Readers assist in recognizing a particular histone mark. For example, 

bromodomains recognize acetylated lysines, whereas chromodomains identify 

methylated lysines. Reader proteins then recruit writers or erasers to carry out their 

function. Writers catalyze the addition of a particular histone mark, such as an acetyl or 

methyl group. Erasers catalyze the removal of a histone mark. Combined, action of all 

these enzymes are critical to regulate gene expression.  
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Figure 1.2 – Covalent post-translational modifications of histone proteins. N-

terminal tails of histone proteins undergo multiple PTMs to regulate gene transcription. 

Acetylation (pink color) and ubiquitination (green color) occur on lysine residues whereas 

methylation (purple color) occurs on both arginines and lysines. Phosphorylation (yellow 

color) occurs on serine and threonine residues.  Copyright permission was obtained from 

Kato. S. et al. IBMS Bonekey. 2010, 7 (8).  
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Scheme 1.1 - Post-translational modification of histone proteins.  A) HATs catalyzes 

the transfer of acetyl group to the lysines of the N-terminal tails of histone proteins, 



6 
 

 
 

whereas HDACs remove acetyl groups from lysines to regulate gene expression. B) and 

D) Histone methylation is regulated by histone methyltransferases (HMT) and 

demethylases (HDM). C) Histone phosphorylation is catalyzed by kinases and 

phosphatases. 

 Expression of a particular gene is modulated by a single or a combination of 

several histone modifications (3). Acetylation and methylation of lysine residues of histone 

tails have a significant impact on transcriptional activity. Acetylation is mediated by the 

interplay between histone acetyl transferases and histone deacetylases, which will be 

discussed in greater detail in the next section (1.4). With an essential role in gene 

expression, epigenetic deregulation is often linked to cancer formation (3). For example, 

aberrant expression of histone demethylases are implicated in many diseases, including 

cancer. As a consequence, the aberrant activities of epigenetic enzymes have been 

targeted by anti-cancer therapeutics. 

1.3 Histone methylation and demethylation 

 Histone methylation of lysines can be either activating or repressing of gene 

expression depending on the residue (9). For example, methylation at lysine 4 and lysine 

36 of histone H3 are linked to transcriptional activation, whereas methylation at lysine 9 

or lysine 27 mediates gene repression (10). Methylation can also occur on arginine 

residues in histones. Histone methyltransferase (HMT) and demethylase (HDM) proteins 

govern histone methylation (scheme 1.1B and D) to regulate transcription (11).  

 Histone demethylases have been classified in two families: the Monoamine 

oxidase family and the Jumonji (JmjC) family. Lysine specific demethylase1 (LSD1) was 

the first identified histone demethylase; it belongs to the monoamine oxidase superfamily, 
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which uses flavin adenine dinucleotide (FAD) as a cofactor during catalysis. LSD1 

catalyzes the demethylation of mono and dimethylated H3K4 and H3K9 to regulate gene 

expression. LSD1 is involved in multiple cellular processes including embryonic 

development, cell proliferation and metastasis. LSD1 is also overexpressed in multiple 

cancers, such as breast, Acute Myeloid Leukemia, prostate, colon, lung and 

neuroblastoma. Genetic knockdown of LSD1 inhibits cell proliferation. Hence, LSD1 has 

emerged as a potential anti-cancer drug target (12,13). LSD1 will be discussed in greater 

detail in Chapter 3. 

1.4 Histone acetylation and deacetylation 

 Acetylation is a well-studied post translational modification that directly affects 

chromatin structure (14). Acetylation is usually associated with euchromatin (relaxed and 

active chromatin) regions, whereas deacetylation is typically found with heterochromatin 

(condensed and silent chromatin). The balance between acetylation and deacetylation is 

governed by the interplay between histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) (scheme 1.1A).  

 The acetylation of lysines on histone proteins reduces the interaction between 

negatively charged DNA and histones, leading to a less compact chromatin structure. 

Hence, acetylation is linked to transcriptional activation (Figure 1.3B). In contrast, histone 

deacetylases (HDACs) catalyze deacetylation to restore the positive charge on the 

lysines, which tightens the interaction between DNA and histones to form condensed or 

more compact chromatin (Figure 1.3A). Thus, deacetylation is usually associated with 

transcriptional repression (15).   
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Figure 1.3 – Acetylation maintains chromatin structure in ON and OFF states. 

Acetylation of lysines on the histone tails produce more relaxed and open chromatin 

structure, which is accessible to the transcription machinery; hence transcription is turned 

ON. Deacetylation, mediated by HDACs, forms more compact and closed chromatin, 

which is inaccessible to transcription factors; hence transcription is turned OFF (picture 

credit – Dr. Mary Kay Hamm Pflum).  

1.5 Histone deacetylases (HDACs)  

1.5.1 Classification of HDACs 

 To date, eighteen human HDAC proteins have been identified and grouped into 

four classes based on catalytic mechanism, size, sub-cellular localization, and similarity 

to yeast enzymes (Figure 1.4) (16). Class I, II and IV proteins require metal ions for 

enzymatic activity. Class I comprises HDAC1, HDAC2, HDAC3 and HDAC8, which are 

homologous to the yeast Rpd3 protein (17-21). Class I HDACs are smaller in size 

compared to class II and have molecular weight ranges from 49-55 kDa. Class I HDAC 

proteins are expressed in all tissues and localize predominantly in the nucleus. Members 

Inaccessible to transcription factors

Accessible to transcription factors

HAT HDAC
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of class II include HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and HDAC10 and are 

similar to yeast HDA1 (22-24). Class II HDACs are large in size in the range from 80-131 

kDa. Among all the HDAC isoforms, HDAC6 and HDAC10 have two deacetylase 

domains, although only HDAC6 has two active domains. Class II members are tissue 

specific and shuttle between the nucleus and the cytoplasm (25). Class IV consists of 

only HDAC11, which is 39 kDa and shares some similarity with both class I and II (26). 

HDAC11 is expressed in a tissue specific manner and is mainly found in the nucleus.  

 

Figure 1.4 – Classification of histone deacetylases (HDACs). HDACs are divided into 

four different classes based on their size, subcellular localization, and similarity to yeast 

proteins. Class I, II and IV require metal for their enzymatic activity. Copyright permission 

was obtained from Lucio-Eterovic, A. K. et al. BMC cancer, 2008, 8.  (27).  

 Class III HDACs are sirtuins that require NAD+ for their catalytic activity. They also 

share sequence similarity to yeast sirt2. There are seven class III members named Sirt 
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1-Sirt7. The focus of this dissertation work is on the Class I, II and IV proteins, which 

require metal ions for enzymatic activity. Therefore, sirtuins will not be discussed in detail.  

1.5.2 Structure of HDACs 

 Crystal structures of HDAC1-4, 6, 7 and 8 have been reported (28-36). The 

structures revealed that HDAC proteins contain a narrow 11Å active site channel with an 

adjacent 14 Å cavity (Figure 1.5). The Zn metal lies at the bottom of the 11 Å channel. 

The hydrophobic linker of HDAC inhibitor; SAHA (Vorinostat, Suberoyl Anilide 

Hydroxamic Acid) or the acetylated substrate interacts with the 11 Å active site and form 

hydrophobic interactions with the enzyme. The carbonyl oxygen of the hydroxamic acid 

of SAHA coordinates to the Zn metal. Polar and charged residues in the 14 Å internal 

cavity stabilize the acetate byproduct and facilitate acetate escape (37). In prior work, 

residues in the 11 Å and 14 Å channels of HDAC1 were mutated to alanine to study 

structure and function (37,38). Almost all mutants displayed reduced enzymatic activity, 

confirming the importance of these structural features for deacetylation reaction. 
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Figure 1.5 – Crystal structure of HDAC1. Vorinostat or SAHA (shown as ball and stick 

in red color) is docked into the crystal structure of HDAC1 (purple mesh; PDB-4BKX). The 

11 Å active site channel and 14 Å internal cavity are labeled, where the Zn metal is shown 

as a grey sphere. Copyright permission was obtained from Wambua. M. K. et al. J Med. 

Chem 2014, 57 (37). 

 The first crystal structure of HDAC1 was resolved in 2013 with a resolution of 3.0 

Å (29). HDAC1 was complexed with MTA1, a subunit of the NuRD corepressor complex. 

The structure revealed that inositol tetraphosphate [Ins-(1,4,5,6)-P4] was sandwiched 

between the HDAC1 and MTA1 proteins. Another crystal structure of HDAC1:MTA1 was 

resolved in 2016 with 3.3 Å resolution (35). In this case, inositol-6-phosphate was 

sandwiched between HDAC1 and MTA1, and a novel peptide-based inhibitor derived 

from histone H4 was bound to the active site (Figure 1.6). The structure shed insights into 

the substrate recognition and allosteric regulation of HDAC activity. For example, the D99 

residue at the surface of the active site undergoes a conformational change upon binding 
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to the inhibitor peptide. Structural information further suggests that inositol phosphates 

are conserved modules that regulate class I HDAC activity. 

 

Figure 1.6 – Crystal structure of HDAC1:MTA bound to the inhibitor peptide 

H4K16Hx and inositol hexaphosphate. HDAC1 surface is shown in gray color and 

MTA1 corepressor is in green color. Inositol hexaphosphate (orange ball and stick) is 

sandwiched between HDAC1 and MTA1. Inhibitor peptide H4K16Hx (pink ball and stick) 

is bound to the 11 Å channel of HDAC1. Copyright permission was obtained from Watson 

P et al. Nature communications, 2016, 7 (35). 

1.5.3 Mechanism of HDACs 

Class I, II and IV HDACs share a similar mechanism and require a metal ion for 

catalytic activity (16) . Among the class I HDACs, the HDAC8 mechanism has been 

studied in the greatest detail (28,39). A general acid-base-mediated deacetylation 
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mechanism was reported in 2016 (40). Two catalytic dyads composed of His-Asp 

residues are involved in the mechanism of HDAC deacetylation. The active site of HDAC8 

contains a Zn metal, a water molecule, Y306, and the two catalytic dyads: H142-D176 

and H143-D183 (Figure 1.7). The Zn metal is coordinated by the oxygen atoms of water, 

D267, and D178 along with the backbone nitrogen from D267. The acetylated lysine in 

the substrate also interacts with the Zn metal and Y306 (Scheme 1.2B). H143 acts as the 

general base and abstracts a proton from the water to increase its nucleophilicity. The 

activated water then attacks the carbonyl carbon of the acetylated lysine in the substrate 

to form a tetrahedral intermediate. The oxyanion of the tetrahedral intermediate is 

stabilized by the Zn ion and Y306. The protonated H143 acts as a general acid and 

donates a proton to the amine of the substrate during hydrolysis of the amide bond, 

yielding lysine and the acetate byproduct. H142 remains protonated throughout the 

deacetylation reaction and serves as an electrostatic catalyst (Scheme 1.2C and D). The 

majority of the active site residues are conserved among HDAC isoforms. Class II 

HDACs, HDAC4, HDAC5 and HDAC7 contain histidine instead of Y306, which is 

consistent with the reduced enzymatic activity of class II HDACs compared to class I. 
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Figure 1.7 – Active site residues of HDAC8 involved in catalysis. Zn2+ and K+ metals 

are shown in orange and gray spheres, respectively. The oxygen atom of the water 

molecule is depicted as a red sphere. The Zn2+ metal is flanked by D267, D178, and H180 

whereas the oxygen of water is stabilized by the two His-Asp catalytic dyads made up of 

H142-D176 and H143-D183. Copyright permission was obtained from Lucy, S.M. et al. 

Biochemistry, 2016, 55 (40).  
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Scheme 1.2 – The proposed catalytic mechanism of HDAC8. A) Active site residues 

are shown prior to the entry of the substrate. B) The carbonyl oxygen of the acetyl lysine 

substrate interacts with the Zn2+ metal and the hydroxyl group of Y306. H143 acts as the 

general base and activates water for the nucleophilic attack. Water attacks the carbonyl 

carbon to form the intermediate. C) The oxyanion intermediate is stabilized by hydrogen 

bonding to Y306 and the Zn2+ metal. H143 acts as a general acid by donating a proton to 

form the acetic acid byproduct and substrate lysine. D) The substrate lysine abstracts a 

proton from the acetic acid to form protonated lysine and acetate byproduct. Upon exit of 

the products, the enzyme is ready for another round of catalysis. Copyright permission 

was obtained from Lucy, S.M. et al. Biochemistry, 2016, 55 (40).  
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1.5.4 HDAC associated complexes 

HDAC proteins do not interact with the nucleosome directly. Instead, interacting 

proteins are required for physiological function and enzymatic activity (41). Previous 

studies have shown that associated proteins augment HDAC enzymatic activity. Class I 

HDAC proteins typically exist in multiprotein complexes (Figure 1.8) (42,43). For instance, 

HDAC1 and 2 are found in the Sin3, NuRD (Nucleosome Remodelling and Deacetylation) 

and CoREST (Corepressor for element 1-silencing transcription factor) complexes, 

whereas HDAC3 is found in the NCOR/SMRT (nuclear receptor co-repressor/silencing 

mediator of retinoid and thyroid receptor) complex. The corepressor complexes contain 

both DNA binding and histone binding subunits, which interact with the nucleosomes of 

the target genes and recruit HDACs to the promoter regions to deacetylate histones. 

These complexes possess different functions. Mi2 in the NuRD complex exhibits helicase 

activity to remodel chromatin and facilitate deacetylation by HDACs. Lysine specific 

demethylase1 (LSD1) in the CoREST complex demethylates histones to further 

condense chromatin. In this case, the combinatorial effect of deacetylation and 

demethylation represses gene transcription.  

 

 

 



17 
 

 
 

 

Figure 1.8 – Multi protein complexes associated with HDAC1 and HDAC2. Each 

complex contains multiple subunits. The function of each subunit is color coded and 

labeled. The subunit involved in binding to HDAC1 and HDAC2 is marked in bold letters- 

Sin3A/B, MTA 1-3, CoREST 1-3. Copyright permission was obtained from Kelly R.D. et 

al., Biochem Society Transactions, 2013, 41 (43). 

1.6 HDAC functions and Cancer 

 HDAC proteins play important roles in a variety of cellular processes, such as 

proliferation, differentiation, cell cycle arrest and apoptosis. (Figure 1.9) (44). HDAC 

proteins repress genes involved in cell cycle progression by deacetylation of histone 

proteins. For example, HDAC decreases the expression of important tumor suppressor 

proteins, such as p53 and p21, which are crucial for cell cycle regulation (45). p53 is a 

transcription factor that mediates cell cycle arrest and apoptosis via binding to the 

promoter region of important cell cycle regulator genes, including p21 and p27. Both p21 
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and p27 block cell proliferation by inhibiting cyclin-dependent kinases (CDKs). HDAC1-

deficient embryonic stem cells show high levels of p21 and p27 expression, suggesting 

HDAC proteins play a key role in cell cycle regulation (46). p21 and p27 expression also 

increased upon HDAC inhibitor treatment, leading to cell cycle arrest, differentiation and 

apoptosis. This topic will be discussed further in section 1.7. 

 The unregulated activities of HDAC proteins are associated with a variety of 

diseases, such as asthma, arthritis, schizophrenia, and cancer (15). HDACs are 

overexpressed in multiple cancer types. Previous studies have reported the 

overexpression of HDAC1, 2 and 3 in gastric, colorectal, and renal cell carcinoma (47). 

HDAC3 and HDAC6 are upregulated in colon and breast cancer (48,49). Overexpression 

of HDAC1-3 and HDAC8 is implicated in prostate cancer (50) . HDAC8 overexpression is 

associated with childhood neuroblastoma and promotes disease progression (51). 

Knockdown of HDAC8 in neuroblastoma cells lead to inhibition of cell growth and 

induction of cell cycle arrest. A truncating mutation of HDAC2 leads to loss of function in 

human epithelial cancers harboring microsatellite instability (52). In a panel of 

mesenchymal tumors, HDAC2 was overexpressed compared to HDAC1 (53). 

Knockdown of HDAC1, 2 and 3 in multiple cancer cell lines resulted in an inhibition of cell 

proliferation (47,54). Knockdown of HDAC1 in liver cancer cells inhibited cell growth, 

induced apoptosis, and increased the expression of p21 and p27 genes (55).  

 Class II HDACs are also upregulated in multiple cancer types (56). For instance, 

HDAC7 and HDAC9 are overexpressed in pancreatic and cervical cancer, respectively. 

Overexpression of HDAC6 is also found in several cancers (57). Given the involvement 
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of HDAC proteins in disease formation, they have emerged as important therapeutic 

targets for drug development. 

1.7 HDAC inhibitors as anti-cancer therapeutics 

 Many HDAC inhibitors are in clinical trials as anti-cancer drugs (44). Currently, four 

HDAC inhibitors have been approved by the FDA as cancer therapeutics (Scheme 1.3). 

Vorinostat (SAHA, Suberoyl Anilide Hydroxamic Acid, Zolinza®) and romidepsin 

(Depsipeptide, FK-228, Istodax®) are approved for the treatment of cutaneous T-cell 

lymphoma, whereas belinostat (PXD101, Beleodaq®) and panabinostat (LBH-589, 

Farydak®) are approved to treat peripheral T-cell lymphoma and multiple myeloma, 

respectively (58-61). Importantly, HDAC inhibitors cause cell cycle progression defects 

and apoptosis in cancer cells (62), suggesting that HDAC activity is critical for cell growth. 

As a consequence, HDAC inhibitor mechanism of action is thought to involve in anti-

cancer drugs. HDAC inhibitor-induced cell cycle arrest has been primarily attributed to 

the expression of the p21 (waf1/cip1) and p27 (kip1) proteins after histone 

hyperacetylation and transcriptional upregulation. All four FDA approved HDAC inhibitors 

are pan HDAC inhibitors.  
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Scheme 1.3 – Chemical structures of the HDAC inhibitors approved by FDA.  

 Pan HDAC inhibitors affect all or most metal-dependent HDAC isoforms due to the 

high similarity between active sites (63). A disadvantage associated with pan inhibitors is 

that they exhibit side effects such as fatigue, nausea and vomiting. But the pan inhibitors 

are useful in studying the function of all HDAC proteins in the cell.  On the other hand, 

selective inhibitors are needed to target specific HDACs deregulated in various types of 

cancer. Highly selective HDAC3, HDAC6, and HDAC8 inhibitors have been reported (64-

66). Unfortunately, a strictly HDAC1 selective inhibitor is not currently available. 

Development of selective inhibitors will assist in deciphering the role of individual HDACs 

in the cell as well as discovering novel substrates of HDAC isoforms.  

1.8 Non-histone substrates of HDACs  

 Identifying novel substrates is an effective way to reveal new functions of any 

enzyme.  Histones are widely considered as predominant substrates of HDACs (67).  The 

role of HDAC1 in transcriptional regulation has been well characterized through changes 

in histone acetylation. As discussed earlier, the anti-cancer activities of HDAC inhibitors 
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are widely thought to result from the altered gene expression due to histone acetylation 

(62).  However, HDAC inhibitor-mediated cell cycle arrest, particularly mitotic arrest, does 

not always correlate with changes in histone acetylation or protein expression (57,68), 

suggesting that non-histone proteins may play a role in HDAC inhibitor anti-cancer 

activity.  

 Beyond histones, the large and growing list of acetylated proteins (69) implicates 

non-histones proteins as substrates of HDAC enzymes. Multiple acetylated proteins are 

present in the cell, including transcription factors, chaperones, structural proteins, DNA 

repair enzymes, and viral proteins  (Figure 1.9) (70). Given that acetylation can regulate 

protein activity, stability, and interactions (70), identifying novel substrates will reveal the 

full spectrum of HDAC functions in the cell.  In fact several non-histone substrates have 

been identified for HDAC6 and HDAC8 (Table 1.1) (44,71-73). 
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Figure 1.9 – Key processes regulated by HDACs. HDACs mediate multiple key 

processes by deacetylating both histone and non-histone substrates. Apart from histones, 

HDAC deacetylates several non-histone substrates such as tubulin, HSP90 and p53. As 

a consequence, HDAC mediates key processes including apoptosis, differentiation and 

cell cycle arrest. Copyright permission was obtained from West, A. et al. J of Clini. Invest., 

2014,124, (44). 
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Table 1.1 – Non-histone substrates of HDAC1, HDAC6 and HDAC8. 

 

 

 

 

 

 

 

 

 

 

 

 HDAC6 is a cytoplasmic deacetylase, suggesting the nucleosomal histones 

located in the nucleus are not their main substrate. Multiple non-histone substrates have 

been identified for HDAC6. α-Tubulin is a cytoskeletal protein that exists in stable or 

dynamic microtubule states (74). Dynamic microtubules contain low levels of acetylation 

compared to stable microtubules. HDAC6 deacetylates α-tubulin and promotes 

depolymerization of microtubules to augment cell motility. Hsp-90 is another known 

substrate of HDAC6 (75,76). Hsp-90 is a molecular chaperone involved in protein folding. 

Acetylation of Hsp90 inhibits its chaperone function, hence affect correct folding of 

proteins. For instance, HDAC6 deacetylates Hsp90 and promotes its chaperone function. 

HDAC1 HDAC6 HDAC8 

p53 (73) α-tubulin (74) p53 (75) 

E2F1 (76) HSP90 (77,78) SMC3 (79) 

 Cortactin (80) ERRα (81) 

 Tat (82) ARID1A (69) 

 Ku70 (83) Cortactin (84) 

 β-catenin (85) Inv(16) fusion protein (86) 

 Peroxiredoxins (87) RAI1 (69) 

 Survivin (88) THRAP3 (69) 

 p38 (MAPK) (89) ZRANB2 (69) 

 MSH2 (90) NCOA3 (69) 

 HSPA5 (91)  

 GRP78 (92)  

 MST1 (93)  

 RIG1 (94)  

 HMGN2 (95)  



24 
 

 
 

Identifying α-tubulin and Hsp90 as non-histone substrates of HDAC6 revealed new 

functions for HDAC6 in cell migration and protein folding. 

However, only a few validated substrates of HDAC1 have been reported, including 

p53 and E2F1 (77,78). Acetylation of p53 enhances its stability and DNA binding ability. 

HDAC1-mediated deacetylation reduces the stability and activity of p53.  Overexpression 

of HDAC1 is implicated in many diseases, which could be partly explained by the 

inactivation of the impotant tumor suppresor p53 by HDAC1-mediated deacetylation. The 

second known non-histone substrate of HDAC1 is E2F1. E2F1 is a transcription factor 

involved in cell cycle regulation. E2F1 undergoes acetylation upon dissociation from 

retinoblastoma (Rb) protein. Acetylation enhances its activity and DNA binding ability. Rb 

bound HDAC1 was responsible for E2F1 deacetylation. Substrate identification is an 

effective tool to fully understand the function of HDAC1 in normal and disease settings. 

New methods are needed to discover non-histone substrates to broaden our 

understanding of HDAC function and assist in deciphering the HDAC inhibitor mechanism 

of action. 

1.9 Available methods for substrate identification 

Few methods are available for HDAC substrate identification. For example, 

proteomic analysis after treatment with isoform-selective HDAC inhibitors has been 

effective to identify possible substrates of HDAC6 and HDAC8 (44,71). In the case of 

HDAC8, MCF7 cells were treated with or without HDAC8 selective inhibitor-PCI-34051 

for 24h in media containing stable isotope labeled amino acids (Figure 1.10). After lysis 

and trypsin digestion, acetylated proteins were immunoprecipitated and subjected to 

quantitative LC-MS/MS analysis to compare global changes in acetylation. Five hits were 
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identified (SMC3, RAI1, ZRANB2, NCOA3 and THRAP3) as possible substrates of 

HDAC8. These five candidate proteins were validated as substrates using peptide 

deacetylation assays. Selective inhibitor treatment combined with MS analysis served as 

a versatile method to identify substrates of HDAC8. 

 

Figure 1.10 – Work flow for the HDAC8 substrate identification strategy. Cell were 

grown in heavy, medium and light isotope containing media and treated with or without 

HDAC8 selective inhibitor for 24 h. Cells were lysed, digested with trypsin and 

immunoprecipitated  with acetyl lysine antibody to enrich acetylated peptides, which was 

then analysed by MS. Copyright permission was obtained from Olson D.E et al. ACS 

Chem Biol, 2014, 9. (44).  

Multiple HDAC inhibitors have been used in a large scale quantitative proteomic 

study to study acetylation site specificity in cellulo (71). HeLa cells were treated with pan 

HDAC inhibitors, Class I selective HDAC inhibitors, sirtuin inhibitors, and HDAC6 and 

HDAC8 selective inhibitors; and the global changes in acetylation were analysed using 

SILAC based LC-MS/MS. More than 8000 acetylation sites were dynamically changed 

upon inhibitor treatment. Most of the HDAC inhibitors affected only a small fraction of the 

targets suggesting they have distinct set of substrates. Selective inhibitor treatment 

coupled to MS is a high throughput method to study lysine acetylation regulated by 
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multiple HDACs in the cell. The method also proves the value of developing selective 

inhibitors to understand the function of individual HDAC in the cell. 

 

Figure 1.11 – Workflow for the HDAC6 substrate identification method. Copyright 

permission was obtained from Zhang L. et al. Protein & cell, 2015, 6 (72).  

HDAC6 knockout mice have also been used to identify novel substrates of HDAC6 

(72). The acetylated proteins of wild type or HDAC6 knockout mice cells from liver tissue 

were immunoprecipitated with a pan acetyl-lysine antibody, digested with trypsin, followed 

by dimethyl labeling and quantitative mass spectrometry to identify HDAC6 substrates 
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(Figure 1.11). The method identified 107 acetylated proteins in the HDAC6 knockout mice 

compared to wild type. Among these, three hits (MYH9, Hsc70 and DNAJA1) were 

thorougly validated as cellular substrates of HDAC6.  

Unfortunately, HDAC1 substrate identification has been hampered by limitations 

in these available methods. For example, genetic and pharmacological methods have 

been ineffective with HDAC1. One reason is the ability of HDAC2 to compensate in the 

absence of HDAC1, which makes genetic knockdown methods unreliable. The second 

reason is the lack of HDAC1-selective inhibitors, which makes the mass spectrometric 

based methods unavailable. Given the steadily growing list of acetylated proteins, HDAC1 

is likely to have multiple non-histone substrates. New strategies to identify HDAC1 

substrates are needed to characterize the full biological activiites of HDAC1 in 

physiological as well as pathological conditions.  

1.10 Prior work in the Pflum lab 

To develop a new method to identify HDAC1 substrates, we took advantage of the 

many mutants generated in the Pflum lab. Previous work in the Pflum lab focused on 

characterizing the residues in both the 11 Å and 14 Å cavity in HDAC1 (37,38). Acetylated 

substrates or HDAC inhibitors were known to bind through the 11 Å active site channel 

(Figure 1.12). Alanine scanning mutagenesis of H28, P29, D99, G149, F150, Y204, F205 

and L271 located in the 11 Å active site channel, showed significant reduction in 

deacetylase activity (Figure 1.13) (38). Reduced activity of the mutants suggests that the 

residues are important for maintaining enzymatic activity. Among these residues, F150 

and F205 were shown to be critical for maintaining the 11 Å active site conformation. The 

data also showed that F150, which is highly conserved among all the HDAC isoforms 
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(Figure 1.12B), is critical to maintain HDAC activity. Kinetic characterization of the F150A 

mutant indicated that the reduced activity of F150A was not due to loss of substrate 

binding. These studies shed insight towards the role of 11 Å residues in substrate and 

inhibitor binding.  

 

 

Figure 1.12 – Residues in the 11 Å active site of HDAC1. A) Amino acids lining the 

substrate binding cavity of HDAC1 homology model. Zn metal is shown as a gray sphere. 

B) Sequence alignment of metal dependent HDACs. Less conserved residues are 

highlighted in red. Copyright permission was obtained from Weerasinghe, S.V. et al, J. 

Med. Chem., 2008, 51. (38).  



29 
 

 
 

 

Figure 1.13 – Residues in the 11 Å active site channel are important for HDAC1 

deacetylase activity. A) Wild type or mutant HDAC proteins were expressed in Jurkat 

cells, immunoprecipitated using anti-FLAG agarose beads and tested in deacetylation 

assay  and SDS-PAGE analysis. B) Association of immunoprecipitated HDAC1 with 

mSin3A and RbAp48 was also analyzed. Copyright permission was obtained from 

Weerasinghe, S.V. et al, J. Med. Chem., 2008, 51 (38).  

Previous work also focused on studying the role of residues lining the 14 Å internal 

cavity using alanine scan mutagenesis (Figure 1.14) (37). Based on speculations from 

computational and biochemical studies, the acetate byproduct of deacetylation was 

believed to exit through the 14 Å cavity. The, polar and charged residues Y23, Y24, R36 

and C151 were mutated to study their effects on enzymatic activity and acetate binding 

(Figure 1.15). All four mutants displayed reduced activity and affected acetate binding. 

The data is consistent with the hypothesis that the 14 Å internal cavity residues are 
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involved in stabilizing the acetate byproduct. Both the F150A and C151A mutants will be 

discussed in great detail in Chapter 2 section 2.2. 

 

Figure 1.14 – Residues in the 14 Å internal cavity of HDAC1. A) Amino acids lining 

the internal cavity of HDAC1 crystal structure (4BKX). The Zn metal is shown as a gray 

sphere. B) Sequence alignment of metal dependent HDACs. Less conserved residues 

are highlighted in red. Copyright permission was obtained from Wambua, M. K. et al. J. 

Med. Chem., 2014, 57. (37). 
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Figure 1.15 – Residues in the 14 Å internal cavity affect HDAC1 deacetylase activity. 

A) Wild type or mutant HDAC proteins were expressed in Jurkat cells, immunoprecipitated 

using anti-FLAG agarose beads and subjected to deacetylation assays and SDS-PAGE 

analysis. B) Association of immunoprecipitated HDAC1 with mSin3A and RbAp48 was 

also analyzed. Copyright permission was obtained from Wambua, M. K. et al. J. Med. 

Chem.,  2014, 57 (37). 

1.11 Dissertation work 

To fully characterize the function of HDAC1, new methods are needed to identify 

cellular substrates. While some non-histone substrates have been identified (Table 1.1), 

the list of verified HDAC substrates remains considerably shorter than the long list of 

acetylated proteins. Understanding the biological function of individual HDAC proteins 

has been hampered by the lack of systemic tools for substrate discovery. The long term 
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goal of this project is to develop a simple tool to discover and validate substrates 

of HDAC proteins, which will lead to a detailed understanding of HDAC related 

biology in normal and disease settings.  

We employed a substrate trapping strategy to identify novel substrates of HDAC1. 

In the trapping strategy, catalytically active wild type enzyme binds to substrates 

transiently, whereas inactive mutants bind more stably. In prior work, more than seventy 

inactive mutants were generated to study the structure and function of HDAC1 (37,38). 

The majority of these mutants were inactive, making them possible substrate traps. We 

selected few conserved residues from three different regions for trapping studies. Studies 

showed that these mutants act as potential substrate traps by identifying Eg5/Kinesin5 as 

a HDAC substrate from Jurkat cells (Chapter 2). Eg5 also colocalized with HDAC1 during 

the prophase of mitosis, which reveals a previously unknown role for HDAC1 in cell cycle 

regulation. 

We next successfully extended the trapping strategy to the HEK293 cell line 

(Chapter 3) and established that trapping is applicable to other cell lines as well. A few 

new substrates were identified, and LSD1 was further characterized as a HDAC1 

substrate using secondary experiments. HDAC1 regulated the acetylation of LSD1, 

altered histone H3 substrate binding, and affected gene repression by LSD1. This study 

uncovered a novel mechanism of HDAC inhibitor-mediated derepression of target genes 

through LSD1. This work highlights the importance of identifying non-histone substrates 

to understand the full activity of HDAC1 in physiological and pathological conditions, 

which will assist in deciphering the HDAC inhibitor mechanism of action.  
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The fourth chapter of this dissertation describes a study related to the effect of 

HDAC1 single nucleotide polymorphisms (SNP) on expression, activity, and post 

translational regulation. Although the aberrant activities of HDACs are implicated in many 

cancers, the mechanism leading to HDAC deregulation is not very well studied. The goal 

of this project was to understand the link between SNPs and HDAC associated 

carcinogenesis. The unregulated expression of multiple genes related to cancer are 

linked to the presence of a SNP. Cancer-related HDAC SNPs have been used as 

biomarkers to predict disease susceptibility and drug sensitivity. Based on the 

involvement of HDAC1 in cancer, we hypothesized that an exonic SNP of HDAC1 

identified in collaboration with the Cisneros lab could affect expression, activity, and post-

translational modifications. We performed a mutational analysis of non-synonymous 

HDAC1 exonic SNP-F437C to understand the HDAC1-related carcinogenesis. These 

studies shed light on the molecular mechanism leading to HDAC deregulation and cancer 

onset, which may enable the creation of new diagnostics and cancer treatment options. 
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CHAPTER 2. IDENTIFICATION OF EG5 AS A HDAC1 SUBSTRATE USING 

TRAPPING MUTANTS 

 (Portions of the text in this chapter are adapted from Nalawansha, D. A. et al. 2016, 

Cell Chemical Biology, in revision) 

2.1 INTRODUCTION 

Substrate identification is an effective means of uncovering the functions of any 

enzyme. In the case of HDAC1, histones are widely considered its predominant 

substrates (67). By studying histone acetylation, the role of HDAC1 in transcriptional 

regulation has been characterized. In fact, the anti-cancer activities of HDAC inhibitors 

are widely thought to result from the altered gene expression due to histone acetylation 

(62). However, HDAC inhibitor-mediated cell cycle arrest, particularly mitotic arrest, does 

not always correlate with changes in histone acetylation or protein expression (57,68), 

suggesting that non-histone proteins may play a role in HDAC inhibitor anti-cancer 

activity. Outside of histones, only a few additional validated substrates of HDAC1 have 

been reported, including p53 and E2F1 (20,79).  Yet, a wide variety of acetylated proteins 

have been identified in proteomic analyses (69,80), suggesting that many acetylated non-

histone substrates are present in the cell.  

Unfortunately, identification of non-histone substrates of HDAC1 has been largely 

serendipitous because facile methods to systematically discover cellular targets are 

lacking. For example, proteomic analysis after treatement with isoform-selective  HDAC 

inhibitors has been effective to identify possible substrates of HDAC6 and HDAC8 

(44,71). However, no strictly HDAC1-selective inhibitor is known, making HDAC1 

substrate identification challenging.  To fully characterize the function of HDAC1 and the 
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anti-cancer activities of drugs targeting HDAC1, new methods are needed to identify 

cellular substrates. 

Substrate trapping is a method used widely to identify the substrates of protein 

tyrosine phosphatases using catalytically inactive mutants (20,41,81-84). Two commonly 

used trapping mutants of protein tyrosine phosphatase 1B (PTP1B) were created by 

mutating a nucleophilic residue in the active site (C215S) or a residue that acts as a 

general acid (D181A) during catalysis (41). These mutants were characterized as 

substrate trapping mutants because they displayed a 500 to 100,000-fold reduction in 

catalytic efficiency, while exhibiting similar substrate binding properties as the wild type 

enzyme. The C/S and D/A double mutant also displayed efficient substrate trapping 

properties (85).  Mutation of these catalytic amino acids produced inactive enzymes that 

were used to purify novel substrates. Given the success with phosphatases, we extended 

the trapping strategy to HDAC1 with the aim of identifying physiological substrates.  

2.2 RESULTS 

2.2.1 HDAC1 substrate trapping strategy 

Inactive mutants can bind substrates more stably than the wild type protein, 

allowing the purification of typically transiently bound substrates (Figure 2.1A and 2.1B). 

The crystal structure of HDAC1 revealed that the active site has a deep, narrow 11 Å 

channel and a 14 Å internal cavity (Figure 2.1C) (29). Previously, residues in the 11 Å 

and 14 Å channels of HDAC1 were mutated to alanine to study structure and function 

(37,38). The majority of these mutants were catalytically inactive, making them potential 

substrate traps. Among these mutants, we chose three (H141A, F150A and C151A) 

where the mutated residues are located in the various active site regions (Figure 2.1C) 
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and conserved among the HDAC family. H141 acts as a general base during catalysis 

(67). F150 lies within the 11 Å channel active site near the substrate binding region 

(86,87). C151 is present in the 14 Å internal cavity and is involved in acetate byproduct 

escape during deacetylation (37). Thus, these three mutants are inactive by different 

mechanisms and may offer differing abilities to trap substrates. 

 

Figure 2.1 - The Substrate Trapping Strategy. (A) Catalytically active wild type (WT) 

HDAC enzyme binds substrates transiently. (B) Inactive HDAC mutant enzyme binds 

substrates more stably, which allows trapped substrates to be isolated by 

immunoprecipitation. (C) Amino acid residues that were mutated in this study are shown 

as ball and stick structures in the HDAC1 crystal structure (shown as purple mesh, PBD: 

4BKX). The metal ion required for catalysis is shown as a gray sphere. D) Workflow for 

the substrate trapping study with initial gel analysis of wild type and mutant HDAC1 

immunoprecipitates to identify candidate protein bands. An HDAC inhibitor (Inh) was 

included in a control immunoprecipitate to distinguish associated proteins from substrates 

by competing for active site binding. Candidate proteins present in only the mutant 

immunoprecipitate were excised from the gel and identified by liquid chromatography-

tandem mass spectrometry (LC-MS/MS). Substrates were then confirmed using a series 

of secondary experiments.   
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2.2.2 Substrate trapping with inactive HDAC1 mutants to identify candidate 

substrates 

Substrate trapping was performed with three inactive mutants of HDAC1 (H141A, 

F150A and C151A) to identify new substrates.  Wild type or mutant HDAC1-FLAG 

proteins were overexpressed and immunoprecipitated in the absence or presence of 

competitive active site inhibitor, SAHA.  This active site inhibitor provided a helpful control 

by distinguishing substrates bound to the active site from associated proteins bound to 

HDAC1 via interactions outside of the active site.  Bound proteins were separated by 

SDS-PAGE and visualized with Sypro ruby total protein stain.  Proteins present in the 

mutant but not wild type or SAHA treated immunoprecipitates were putative new 

substrates (Figure 2.1D), which were identified using liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) analysis.   

All mutants were able to immunoprecipitate histones (Figure 2.2B, lanes 2-4 or 

Figure A2.1B) and other proteins (Figure 2.2A and B, lanes 2-4 or Figure A2.1A, p45, p95 

and p130), consistent with their substrate trapping abilities.  The immunoprecipitation of 

histones and several protein bands (p45, p95 and p130) were decreased upon SAHA 

treatment (Figure 2.2A and  2.2B or Figure A2.1A and A2.1B, compare lanes 2-4 to lanes 

6-8), suggesting that these new proteins interact directly with the active site of HDAC1 

and could be substrates. The data further confirm that inactive HDAC1 mutants display 

substrate trapping abilities appropriate for substrate identification. 
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Figure 2.2 - Substrate trapping by HDAC1 mutants.  Wild type (WT) and mutant 

HDAC1 (indicated below each lane) were expressed as Flag-tagged proteins in T-Ag 

Jurkat cells, immunoprecipitated with anti-Flag agarose, separated by 12% (A) or 16 % 

(B) SDS-PAGE, and visualized with SyproRuby total protein stain. Arrows indicate 

immunoprecipitated HDAC1 or possible substrates (p130, p95, p45, or histones) 

observed in the absence but not presence of competitive active site inhibitor SAHA (0.8 

mM). Repetitive trials are shown in Figure A2.1. 

To identify the proteins interacting with the HDAC1 trapping mutants in a SAHA-

dependent manner, gel bands were excised, trypsin digested, and subjected to LC-

MS/MS analysis. With high confidence, p45 and p130 were identified as γ-actin and Eg5 

(also known as Kinesin like protein 11, KIF11), respectively (Table 2.1 and Figures A.2.2-

p130

p95

HDAC1

p45

130

70

55

43

SAHA

histones

70

43

36

25

17

55

W
T

H
1

4
1

A

F
1

5
0

A

C
1

5
1

A

W
T

H
1

4
1

A

F
1

5
0

A

C
1

5
1

A

1      2     3    4     5     6      7    8

95

p45

A

B



39 
 

 
 

A.2.5). The protein corresponding to p95 was not identified with high confidence by MS 

analysis. Prior work reported that HDAC1 interacts with filamentous actin (F-actin), which 

comprises γ-actin, during mitosis (88).  However, a connection between Eg5 and HDAC1 

had not been documented previously.  Peptides corresponding to Eg5 were observed in 

all three mutant pull downs, but not in wild type (Table 2.1).  Eg5 plays an important role 

in protein transport and formation of the bipolar spindle during the prophase of mitosis 

(89). Mitotic defects leading to apoptosis are associated with the anti-cancer activities of 

HDAC inhibitor drugs (57,68,90-92), although the mechanism accounting for mitotic arrest 

is poorly understood. To possibly gain insight into HDAC inhibitor drug action, Eg5 was 

further studied as an HDAC1 substrate. 
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Table 2.1 - Proteins identified after trapping by mass spectrometry (MS) 

 

a Unique Peptide count - Number of different amino acid sequences that are associated 

with a protein.  b Unique Spectral count – Number of unique spectra that identified each 

unique peptide including modifications. c% Coverage – the percentage of the protein 

amino acid sequence that was identified. d ND- Not Detected (No peptide ID observed by 

MS analysis after immunoprecipitation with the indicated HDAC1 protein). The data are 

shown from one trial. 

2.2.3 Co-immunoprecipitation of HDAC1 and Eg5 

To confirm that p130 is Eg5 in the trapping experiment, immunoblotting was 

performed with an Eg5 antibody after trapping. Wild type and C151A mutant HDAC1 

immunoprecipitated Eg5 in a SAHA-dependent manner (Figure 2.3A, top gel, compare 

lanes 2 and 3 to lane 4, Figure A2.6A), consistent with the MS characterization of p130 

as Eg5. In addition, Eg5 acetylation was elevated in immunoprecipitates with the inactive 

C151A mutant compared to wild type (Figure 2.3A, middle gel, compare lane 3 to 2), 

Protein

band  

Protein name 

(Accession)

MW 

(kDa)

Sample Unique 

peptide 

counta

Unique 

spectral

Countb

% Coveragec

p130 Kinesin like 

protein 

11(KIF11)/Eg5 

(KIF11_HUMA

N)

120 HDAC1

(WT)

NDd NDd NDd

H141A 1 1 1

F150A 2 2 3

C151A 2 2 2

p45 Actin 

cytoplasmic 2

(ACTG_HUMA

N)

42 HDAC1

(WT)

8 11 32

H141A 11 15 49

F150A 5 7 29

C151A NDd NDd NDd
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suggesting that Eg5 is a cellular substrate of HDAC1. The elevated levels of acetylation 

with the mutant also indicate stable binding between acetylated Eg5 and C151A HDAC1, 

consistent with earlier substrate trapping studies (Figure 2.2).   

To further confirm the association of HDAC1 with Eg5 in cellulo, a co-

immunoprecipitation experiment was performed. Endogenous Eg5 and HDAC1 were 

immunoprecipitated separately from T-Ag Jurkat cells and probed for the presence of the 

interaction by Western blot. Eg5 was immunoprecipitated with HDAC1 (Figure 2.3B, lane 

2), and vice versa (Figure 2.3B, lane 3). The data confirm that HDAC1 and Eg5 interact 

in cellulo.  However, the quantities of co-immunoprecipitated proteins were low, which 

suggests that the interaction between wild type HDAC1 and Eg5 is of low affinity or occurs 

transiently under cellular conditions. 

To determine whether the Eg5–HDAC1 interaction is cell type specific, HDAC1-

FLAG and Eg5-myc were cotransfected into HEK293 cells and immunoprecipitated using 

FLAG and myc antibodies. The Eg5–HDAC1 interaction was also observed in HEK293 

cells (Figure 2.3C, lanes 2 and 3), confirming that the interaction extends beyond Jurkat 

cells. Similar to the T-Ag Jurkat study, the low quantities of coimmunoprecipitated proteins 

suggest that the HDAC1–Eg5 interaction is transient or occurring under specific cellular 

conditions.   
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Figure 2.3 - Eg5 interacts with HDAC1. A) Wild type (WT) or C151A HDAC1 were 

expressed as FLAG-tagged proteins in T-Ag Jurkat cells, immunoprecipitated (IP) with 

anti-Flag agarose in the absence (lanes 2 and 3) or presence (lane 4) of SAHA (3 mM), 

separated by SDS-PAGE, and Western blotted with Eg5 (top), acetyl-lysine (AcLys, 

middle), or Flag (bottom) antibodies. Repetitive trials are shown in Figure A2.6A. B) 

Endogenous HD1 and Eg5 were immunoprecipitated (IP) separately from T-Ag Jurkat 

cells, separated by SDS-PAGE, and Western blotted with Eg5 (top) or HDAC1 (bottom) 

antibodies. Repetitive trials are shown in Figure A2.6B. C) HDAC1-Flag and Eg5-myc 

were coexpressed in HEK293 cells, immunoprecipitated (IP) separately with either Flag 

or myc antibodies, separated by SDS-PAGE, and Western blotted with myc (top) or Flag 
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(bottom) antibodies. Agarose beads without bound antibodies were used as an 

immunoprecipitation controls (lane 1).  Repetitive trials are shown in Figure A2.6C. For 

all gels, arrows indicate the position of Eg5 and HDAC1 in the gels. 

2.2.4 Eg5 is a substrate of HDAC1 

To validate that Eg5 is a substrate of HDAC1 in cellulo, we performed in vitro 

deacetylation assays.  First, experiments were performed using recombinant Eg5 and 

HDAC1. Eg5 was expressed and purified from bacteria (Figure 2.4, lane 6-10). Purified 

bacterial Eg5 was chemically acetylated by varying concentrations of acetic anhydride 

and incubation time (Figure 2.5, lanes 2-4 and 6-8). Based on the optimal results, Eg5 

was acetylated by incubating with 0.2 mM acetic anhydride for 1h (Figure 2.5, lane 6) for 

use in in vitro deacetylation assays. Acetylated Eg5 was incubated with or without 

recombinant HDAC1. Eg5 acetylation was significantly reduced in the presence of 

HDAC1 (Figure 2.6A, top gel, compare lanes 2 and 1). In the presence of the HDAC 

inhibitor SAHA, acetylation of Eg5 remained (Figure 2.6A, top gel, compare lanes 2 and 

3), confirming that deacetylation is HDAC dependent. Quantification also confirmed that 

HDAC1 deacetylated Eg5 (Figure 2.6B and Figure A.2.7, Figure A.2.8, Table A.2.1 and 

Table A.2.2). 

 



44 
 

 
 

 

Figure 2.4 – SDS-PAGE analysis of bacterial expressed Eg5. His-tagged Eg5 was 

expressed in bacteria and purified using Ni-NTA beads. Different fractions (CL– crude 

lysate, FT– flowthrough, W– washing, E– elutions) were separated by SDS-PAGE and 

subjected to coommassie staining.  

 

 

Figure 2.5 – Optimization of in vitro acetylation of recombinant Eg5. Eg5 (0.5 μg) 

was incubated with varying concentrations of acetic anhydride for 30min or 1h. Then the 

reaction was concentrated using a speedvac concentrator and separated by 10% SDS-

PAGE, and analysed by Sypro Ruby stain (for total Eg5) or acetyl lysine antibody. 

To further validate that HDAC1 can deacetylate Eg5, we performed in vitro 

deacetylation assays using cellular Eg5 and HDAC1.  Eg5 was immunoprecipitated from 

T-Ag Jurkat cells and incubated with immunoprecipitated HDAC1 in the absence or 

presence of SAHA. Similar to results with recombinant proteins, Eg5 acetylation was 
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significantly reduced in the presence of HDAC1 (Figure 2.6C, top gel, compare lanes 2 

and 1), indicating that HDAC1 is able to deacetylate Eg5. SAHA inhibited HDAC1-

mediated deacetylation of Eg5 (Figure 2.6C, top gel, compare lanes 2 and 3).  

Quantification confirmed reproducible HDAC1-dependent Eg5 deacetylation (Figure 

2.6D, Figure A.2.9, Table A.2.4, Table A.2.5 and Figure A.2.10). Combined with the fact 

that Eg5 acetylation was elevated in immunoprecipitates with the inactive C151A mutant 

compared to wild type (Figure 2.3A), these studies substantiate that Eg5 is a substrate of 

HDAC1.  

 

Figure 2.6 - Eg5 is deacetylated by HDAC1. A) Bacterially-expressed and chemically 

acetylated Eg5 was incubated in the absence or presence of recombinant HDAC1 and 

SAHA for 2h at 37 °C and analyzed by SDS-PAGE and western blotting with acetyl lysine 

(top) and a combination of Eg5 and HDAC1 (bottom) antibodies. B) Quantification of the 

Ac-Lys western blot from part A.  Mean and standard error of three independent trials are 

shown (Figure A.2.7 and Table A2.1).  Quantification of the Eg5 blot as a load control is 
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shown in Figure A.2.8 and Table A2.2. One way ANOVA test: *p<0.05, ***p<0.0005 C) In 

vitro deacetylase assay: Eg5 was immunoprecipitated from T-Ag Jurkat cells (lane 1) and 

incubated with immunoprecipitated HDAC1 in the presence (lane 3) or absence of 3 mM 

SAHA (lane 2) for 1 h at 30°C, followed by SDS-PAGE separation and immunoblotting 

with acetyl lysine (top), Eg5 (middle), and HDAC1 (bottom) antibodies. D) Quantification 

of the Ac-Lys western blot from part C.  Mean and standard error of three independent 

trials are shown (Figure A.2.9 and Table A2.3).  Quantification of the Eg5 blot as a load 

control is shown in Figure A.2.10 and Table A2.4. One way ANOVA test; *p<0.05, 

***p<0.0002 

2.2.5 HDAC1 deacetylates K890 of Eg5 

To date only one Eg5 acetylation site (K146) has been identified in a global 

proteomics study (80). To understand if acetylated K146 is the predominant site for 

HDAC1 mediated deacetylation, we created a K146A mutant using the full length myc-

tagged Eg5 construct (89).  First, we studied the acetylation state of K146A to assess if 

K146 is a dominant acetylated lysine in Eg5. Wild type Eg5 and K146A were transfected 

into HEK293 cells, followed by immunoprecipitation and immunoblotting with an acetyl 

lysine antibody to detect acetylation. The level of acetylation of the K146A mutant was 

comparable to that of wild type Eg5 (Figure 2.7A), suggesting that other acetylation sites 

are present in Eg5.  In addition, immunoprecipitation of the wild type or K146A mutant 

Eg5 by HDAC1 was similar (Figure 2.7B), indicating that K146 is not the dominant 

acetylation site for HDAC1.  Taken together, the data indicate that a site other than K146 

is the predominant site for HDAC1-mediated deacetylation on Eg5.   
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Figure 2.7 – K146 is not a predominant Eg5 acetylation site regulated by HDAC1.  

A) Myc-tagged wild type or K146A mutant Eg5 were transfected into HEK293 cells, 

treated with SAHA for 24h, and immunoprecipitated with a myc antibody. SDS-PAGE 

separation and immunoblotting was performed with acetyl lysine (top) or myc (bottom) 

antibodies. No change in the acetylation levels of the wild type and mutant proteins were 

observed (top gel), which indicates that K146 is not a predominant acetylation site on 

Eg5. Repetitive trials are shown in Figure A2.11A. B) FLAG-tagged wild type (WT) or 

C151A mutant HDAC1 were cotransfected with myc-tagged wild type or K146A mutant 

Eg5 into HEK293 cells. The wild type and C151A mutant HDAC1 were 

immunoprecipitated using anti-FLAG agarose beads, separated by SDS-PAGE, and 

immunoblotted with myc (top) or FLAG (bottom) antibodies. No changes in the levels of 

immunoprecipitated Eg5 were observed with either wild type or mutant proteins (top gel), 

which indicates that K146 is not a site bound and regulated by HDAC1. Repetitive trials 

are shown in Figure A2.11B. 

We used a mass spectrometry-based approach to identify the putative acetylation 

sites in Eg5 regulated by HDAC1. Myc-tagged Eg5 was transfected into HEK293 cells in 

the absence or presence of wild type HDAC1. After 48h, cells were treated with or without 

HDAC inhibitors for 24h. The broad spectrum inhibitor SAHA was used, in addition to the 

HDAC1/2 selective inhibitor SHI-1:2. After harvesting, immunoprecipitation, and SDS-
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PAGE separation, protein bands corresponding to Eg5 were excised from the gel, trypsin 

digested, and subjected to LC-MS/MS analysis. The HDAC 1/2 selective inhibitor SHI-1:2 

enhanced acetylation of Eg5 at K890 compared to untreated sample (Table 2.2 and 

Figure A.2.12). The site was not acetylated when Eg5 was cotransfected with HDAC1, 

suggesting that K890 is the target site for HDAC1-mediated deacetylation (Figure 

A.2.12G-H).  

To probe the acetylation status of Eg5 at K890, we created a K890R mutant using 

the full length myc-tagged Eg5 construct. Following transfection of wild type and K890R 

Eg5 into HEK293 cells, Eg5 was immunoprecipitated and immunoblotted with an acetyl 

lysine antibody to detect acetylation. Interestingly, the level of acetylation of K890R was 

significantly reduced compared that of wild type Eg5 (Figure 2.8A, compare lanes 2 and 

3, top gel). Quantification of the acetylated Eg5 signal clearly showed that mutation of 

K890 leads to a significant reduction of acetylation of Eg5 (Figure 2.8B, Figure A.2.13, 

Table A.2.5, Table A.2.6). These data further suggest that K890 is a major acetylation 

site on Eg5. 
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Table 2.2 – MS analysis of K890 in Eg5

 

Unique # of acetylated Peptides- Number of different amino acid sequences containing 

an acetylated lysine residue that are associated with a protein.  % Coverage – the 

percentage of the protein amino acid sequence that was identified. 

To further determine whether K890 is involved in the interaction between Eg5 and 

HDAC1, wild type or K890R mutant myc-tagged Eg5 were cotransfected with either wild 

type or C151A mutant Flag-tagged HDAC1 into HEK293 cells, followed by 

immunoprecipitation of HDAC1 using a Flag antibody. The amount of K890R mutant 

coimmunoprecipitated with wild type or C151A mutant HDAC1 was significantly reduced 

compared to that of wild type Eg5 (Figure 2.8C, compare lanes 4 and 5 to 2 and 3, top 

gel), indicating that K890 is essential for the binding of Eg5 to HDAC1. The data again 

support that Eg5 is acetylated predominantly at K890, and K890 is a target site for 

HDAC1.  

 

 

 

Protein name/ 

Accession

Trials Sample % Coverage Unique # of 

acetylated 

peptides

Kinesin like protein 

11(KIF11)/Eg5 

(KIF11_HUMAN)

1 Eg5+DMSO 71 0

Eg5+SHI-1:2 72 1

Eg5+SAHA 82 0

Eg5+HDAC1 73 0

2 Eg5+DMSO 80 0

Eg5+SHI-1:2 69 1

Eg5+SAHA 75 0

Eg5+HDAC1 83 0
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2.2.6 Acetylation at K890 affects ATPase activity of Eg5 

We next study the effect of acetylation on ATPase activity of Eg5. Myc-tagged wild 

type or K890R mutant Eg5 were transfected into HEK293 cells, treated with HDAC1/2 

selective inhibitor (SHI-1:2) for 24h, and immunoprecipitated with a myc antibody. 

Following immunoprecipitation, Eg5 protein was eluted and subjected to ATPase 

reaction. The ATPase activity of wild type is significantly reduced compared to K890R 

mutant (Figure 2.8E, histogram compare column 2 and 3). The data indicate that HDAC1 

mediated deacetylation is critical for Eg5 motor activity. 
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Figure 2.8 - Eg5 is deacetylated by HDAC1 at K890. A) Myc-tagged wild type or K890R 

mutant Eg5 were transfected into HEK293 cells, treated with HDAC1/2 selective inhibitor 

(SHI-1:2) for 24h, and immunoprecipitated with a myc antibody. SDS-PAGE separation 

and immunoblotting was performed with acetyl lysine (top) and myc (bottom) antibodies. 

Repetitive trials are shown in Figure A2.13A. B) Quantification of the Ac-Lys western blot 

from part A. Mean and standard error of four independent trials are shown (Figure A.2.13, 

Table A2.5). Quantification of the myc blot as a load control is shown in Figure A.2.14 

and Table A2.6 Student t–test, *p<0.05, ***p<0.0001. C) FLAG-tagged wild type (WT) or 

C151A mutant HDAC1 were cotransfected with myc-tagged wild type or K890R mutant 

Eg5 into HEK293 cells. Wild type and C151A mutant HDAC1 were immunoprecipitated 

using anti-FLAG agarose beads, separated by SDS-PAGE, and immunoblotted with myc 

(top) and FLAG (bottom) antibodies. Repetitive trials are shown in Figure A2.15. . E) Myc-

tagged wild type or K890R mutant Eg5 were transfected into HEK293 cells, treated with 

HDAC1/2 selective inhibitor (SHI-1:2) for 24h, and immunoprecipitated with a myc 

antibody. Half of the immunoprecipitate was used for ATPase assay and other half was 

was separated by SDS-PAGE and immunoblotted with myc antibody. Mean and standard 

error is shown from at least three independent trials (Table S3). NT – non transfected. 

***p<0.0001. 

2.2.7 Eg5 colocalized with HDAC1 during mitosis  

For HDAC1 to deacetylate Eg5 in vivo, both proteins must colocalize together in 

cellulo. HDAC1 is predominantly present in the nucleus (93), whereas Eg5 is in the 

cytoplasm (94). We first analyzed the HDAC1-Flag fusion protein by microscopy to 

confirm that the Flag tag does not affect HDAC1 localization to the nucleus. HEK293 cells 
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expressing Flag-tagged wild type HDAC1 were grown on glass cover slips, fixed, and 

blocked with bovine serum albumin (BSA), followed by visualization of the Flag tag. As 

expected (93,94), HDAC1-Flag was predominantly nuclear, whereas Eg5 was 

cytoplasmic in interphase cells (Figure 2.9 or Figure A2.16). These data indicate that the 

HDAC1-FLAG fusion protein maintains the same nuclear localization as endogenous 

HDAC1.  

 

Figure 2.9 – Endogenous and overexpressed HDAC1 localizes to the nucleus. 

HEK293 cells expressing FLAG tagged HDAC1 (A) or HEK293 cells alone (B) were fixed 

and stained with FLAG (A) or HDAC1 (B) antibodies (red). Cells were counterstained with 

DAPI (blue) and visualized using fluorescence microscopy.  Both endogenous and 

overexpressed HDAC1 were predominantly nuclear. The data suggests that the FLAG 

tag does not affect the localization of HDAC1-FLAG. Repetitive trials are shown in Figure 

A2.16. 

Eg5 plays a critical role in bipolar spindle formation during mitosis (89). Given that 

nuclear envelope breakdown occurs during mitosis, we hypothesized that HDAC1 

interacts with Eg5 after the initiation of mitosis. To determine the subcellular localization 
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of endogenous HDAC1 and Eg5 under mitotic conditions, HEK293 cells were seeded 

onto glass cover slips, fixed, and blocked with BSA, followed by visualization of HDAC1 

and Eg5 in cells undergoing mitosis. In prophase, the first stage of mitosis, Eg5 was 

localized to the separating centromeres (Figure 2.10B), consistent with its role in spindle 

formation.  While HDAC1 was localized with DNA in prophase, the merged image showed 

that a population of HDAC1 colocalized with Eg5 (Figure 2.10B). In contrast, Eg5 and 

HDAC1 did not colocalize during metaphase, anaphase, or telophase; in these cases, 

HDAC1 was associated with the DNA, which was located between the Eg5-bound spindle 

poles (Figure 2.10C-E). In interphase cells, HDAC1 was predominantly nuclear, whereas 

Eg5 was in the cytoplasm (Figure 2.10A), as expected (93,94). These results indicate that 

HDAC1 colocalized with Eg5 specifically during prophase, which suggests that HDAC1-

mediated deacetylation of Eg5 occurs at the earliest stages of mitosis.   
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Figure 2.10 - Eg5 colocalized with HDAC1 during prophase. HEK293 cells were fixed 

and stained with HDAC1 (red) and Eg5 (green) antibodies. Cells were counterstained 

with DAPI (blue). Fluorescence microscopy was used to visualize HDAC1 and Eg5 in 

each cell. Cells in interphase (A), prophase (B), metaphase (C), anaphase (D), and  

telophase (E) are shown. HDAC1 (red) and Eg5 (green) images were used to generate 

merged images (yellow). Yellow indicates colocalization. Repetitive trials are shown in 

Figure A2.17. 
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2.2.8 HDAC inhibitors promote monopolar spindle formation 

Previous studies have shown that HDAC inhibitors arrests cell cycle at G1/G0 and 

G2/M phases (95,96). To understand the role of HDAC1 in cell cycle progression, 

HEK293 cells were treated with Eg5 inhibitor or HDAC1 and 2 selective inhibitor (SHI-

1:2) for 48h, before analyzing by flow cytometer. The data clearly showed that both Eg5 

inhibitor and SHI-1:2 inhibitor arrested cells at mitosis (Figure 2.11A, Table S3). The data 

indicate that HDAC1 and 2 play a key role in mitotic progression. Prior work has shown 

that S-trityl-L-cysteine (STLC) is a specific and potent inhibitor of Eg5 (97). STLC arrests 

cells specifically at mitotic phase by affecting Eg5 function, which leads to the formation 

of monopolar spindles. Therefore, we looked at the spindle formation after treating the 

HEK293 cells with STLC or SHI-1:2 for 48h. Interestingly, monopolar spindles were 

observed with both STLC and SHI-1:2 treated cells (Figure 2.11B and 2.11C, Table S4). 

In the DMSO treated cells, monopolar spindles were not visible. This is also consistent 

with prior work showing the effect of HDAC1 and HDAC2 in mitosis (98). Mitotic defects 

including monopolar spindles were observed in the embryonic stem cells with double 

conditional knockout of HDAC1 and HDAC2. Here, we show that HDAC mediated 

deacetylation of Eg5 affects bipolar spindle formation, causing mitotic arrest. The 

interaction between Eg5 and HDAC1 during mitosis could be a key mechanism that 

regulates cell cycle progression. Given that HDAC1 and 2 selective inhibitor produces 

less monopolar spindles (53%) compared to Eg5 inhibitor (100%), suggests that HDAC1 

and 2 act on more than one target in the cell to cause cell cycle arrest. This could also be 

rationalized by the involvement of another HDAC, such as HDAC3 to fully inhibit the 

function of Eg5 during cell cycle arrest. 
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Figure 2.11 – Acetylation of Eg5 partially contributes to HDAC1 and 2 selective 

inhibitor induced mitotic arrest. A) HEK293 cells were treated with DMSO, STLC (10 

μM) or SHI-1:2 (10 μM) for 48h followed by fixing and staining with Alexa fluoro®488 

conjugated phospho-histone H3 (Ser10) antibody and DAPI.  Samples were analyzed by 
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flow cytometry and percent mitotic cells were plotted. ***p<0.0001. B) HEK293 cells were 

treated with DMSO, STLC (10 μM) or SHI-1:2 (10 μM) for 48h followed by fixing and 

staining with α-tubulin (green) and DAPI (blue). Fluorescence microscopy was used to 

visualize tubulin and DAPI in each cell.  C) Quantitative analysis of monopolar spindles 

present in STLC and SHI-1:2 treated cells. Monopolar spindles were counted from at least 

100 mitotic cells from four independent experiments. ***p<0.002. Scale bar – 10 μM. D) 

Flow cytometry analysis of cells transfected with wild type and mutant Eg5. Myc-tagged 

wild type or K890R mutant Eg5 were transfected into HEK293 cells, treated with HDAC1/2 

selective inhibitor (SHI-1:2) for 48h and subjected to staining with Alexa fluoro®488 

conjugated phospho-histone H3 (Ser10) antibody and DAPI prior to flow cytometric 

analysis. Percent cells in the mitosis (M) is shown near the square containing mitotic cells. 

E) Quantification of the mitotic cells is shown as a histogram. *p<0.05. 

2.2.9 Acetylation at K890 partially contributes to cell cycle arrest caused by HDAC 

inhibitors 

To further gain insights into the mechanistic link between Eg5 and HDAC1, we 

looked at the cell cycle arrest caused by wild type Eg5 and K890R mutant Eg5. HEK293 

cells were transfected with wild type and K890R mutant Eg5 and cells were treated with 

SHI-1:2 for 48h to induce acetylation, before analyzing by flow cytometer. K890R mutant 

transfected cells showed reduction in cell cycle arrest compared to wild type Eg5 

transfected cells (Figure 2.11D and 2.11E). The partial effect of K890R mutant could also 

be due to the dominant function of endogenous Eg5. In line with these data, we speculate 

that Eg5 deacetylation is one of many mechanisms that leads to HDAC inhibitor-mediated 

cell cycle arrest.  
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2.3 Discussion 

Aberrant expression of HDAC1 is implicated in multiple diseases, including cancer. 

Currently, four HDAC inhibitors are approved as anti-cancer therapies, and multiple 

HDAC inhibitors are in the clinic. HDAC inhibitors influence proliferation due to perturbed 

cell cycle progression, which ultimately leads to apoptosis.  The model that has emerged 

to account for HDAC inhibitor-mediated cell death centers on altered histone acetylation 

and gene expression (62).  However, several studies have found that mitotic arrest in the 

presence of HDAC inhibitors does not correlate with changes in histone acetylation or 

protein expression (57,68), which suggests that non-histone targets may be influenced 

by HDAC inhibitors. Identifying non-histone substrates that play a role in HDAC inhibitor-

mediated cell death is critical to guide the development of more effective and selective 

anti-cancer drugs.   

Here, we explored use of inactive HDAC1 mutants as tools to trap and identify 

unknown substrates.  Using the trapping strategy, we provide the first evidence that Eg5 

is an HDAC1 substrate. HDAC1 deacetylated Eg5 in vitro using both recombinant and 

cell-derived proteins (Figure 2.6), which confirm that Eg5 is a substrate for HDAC1. Mass 

spectrometric analysis identified a new acetylation site on Eg5, K890. Studies with the 

K890R mutant indicated that K890 is a major Eg5 acetylation site regulated by HDAC1 

and is critical for binding to HDAC1 (Figure 2.8). Further, we show that deacetylation at 

K890 is critical for maintaining ATPase activity of Eg5. Eg5 interacted with HDAC1 in both 

T-Ag Jurkat and HEK293 cells, although the low levels of coimmunoprecipitated protein 

implicated that the interaction is cell condition dependent. Importantly, Eg5 colocalized 

with HDAC1 only during the prophase stage of mitosis. The mitosis-specific interaction is 



59 
 

 
 

consistent with the low level of coimmunopreciptiation observed in asynchronous cells 

(Figure 2.3B and 2.3C) and the need for nuclear envelope breakdown to allow HDAC1 

and Eg5 to exist in the same cellular location. Further, HDAC1 and 2 selective inhibitor 

caused mitotic arrest and promoted monopolar spindle formation (Figure 2.11A and B). 

Acetylation of Eg5 at K890 partially contributed to the HDAC inhibitor-mediated cell cycle 

arrest (Figure 2.11D). From these data, we hypothesize that HDAC1-mediated 

deacetylation of Eg5 during prophase is an essential step in mitotic progression. The 

model that emerges suggests that Eg5 is acetylated prior to mitosis (Figure 2.12A).  Upon 

entering the prophase of mitosis, the nuclear envelope breaks down to allow HDAC1 to 

colocalize with Eg5 and catalyze deacetylation (Figure 2.12B). Then, deacetylated Eg5 

completes centromere separation and formation of the bipolar spindle to promote the cells 

into the later stages of mitosis (Figure 2.12C). 

 

Figure 2.12 - Model of the role of HDAC1 in Eg5-mediated mitotic progression.  A) 

Eg5 (blue) is acetylated (Ac) prior to entry into mitosis.  B) Upon entering the prophase of 

mitosis, HDAC1 (magenta) interacts with Eg5 after nuclear envelope breakdown, which 

results in Eg5 deacetylation.  Associated proteins (yellow and green) may be involved in 

the interaction. HDAC inhibitors would prevent deacetylation and cell progression, 

resulting in mitotic arrest. C)  Eg5 deacetylation promotes centromere separation and 

bipolar spindle formation, leading to metaphase progression and complete cell division. 
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HDAC1 is recruited to gene-specific histone targets to regulate transcription 

through multiprotein complexes, such as Sin3, NuRD and CoREST (43).  Based on this 

prior work, we speculate further that associated proteins are required for HDAC1-

mediated Eg5 interaction and deacetylation during prophase (Figure 2.12B).  A recent 

study showed that HDAC1 is displaced from chromatin during mitosis to interact with 

filamentous actin (F-actin)(88), which also localizes to the mitotic spindles (99).  

Consistent with this prior data, the trapping mutants studied here also bound γ-actin, a 

component of F-actin.  Given the role of Eg5 in bipolar spindle formation, we hypothesize 

that HDAC1 interacts with F-actin to facilitate Eg5 deacetylation during mitosis.  Eg5 also 

interacts with NCOR1 (nuclear receptor corepressor 1) (100) and NCOR1 is known to 

associate with HDAC1 via the mSin3a complex (88). We speculate that Eg5 deacetylation 

may also be mediated by the mSin3a/NCOR complex.  Given the key role of associated 

proteins in regulating HDAC activity in gene expression, the proposed model also 

includes associated proteins as players in mediating Eg5 deacetylation (Figure 2.12B).   

Previous work reported that HDAC inhibitors block mitotic progression beyond 

prometaphase (57,68,90-92).  Maximal mitotic arrest was observed when HDAC 

inhibitors were present prior to the start of mitosis (90). These earlier results with HDAC 

inhibitors are consistent with the proposed model (Figure 2.12) where Eg5 deacetylation 

occurs in the earliest stage of mitosis, before complete centromere separation.  Prior work 

also reported that HDAC inhibitor-treated cells failed to progress to metaphase partially 

due to inefficient localization of various centromeric proteins (90,92).  However, HDAC 

inhibitor treatment did not influence the quantities of centromeric proteins, although Eg5 

was not tested (90-92). The influence of HDAC inhibitors on centromeric protein 
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localization is consistent with the proposed model where HDAC1-mediated Eg5 

deacetylation is critical for mitotic progression (Figure 2.12). Moreover, the model 

provides a compelling mechanistic hypothesis proposing that HDAC inhibitors induce 

mitotic arrest through disruption of Eg5 acetylation and bipolar spindle formation (Figure 

2.12B).  

An embryonic stem cell line harboring double conditional knockoout of HDAC1 and 

HDAC2 led to increased monopolar spindles and chromosomal segregation defects, 

clearly suggesting that HDAC1 and 2 plays an essential role during mitotic progression 

(98). Here, we show for the first time that HDAC1 and 2 selective inhibitor causes mitotic 

arrest and promotes monopolar spindle formation, confirming that HDAC affects Eg5 

function similar to an Eg5 inhibitor. Moreover, the model provides a compelling 

mechanistic hypothesis proposing that HDAC inhibitors induce mitotic arrest through 

disruption of Eg5 acetylation, reduction of ATPase activity and monopolar spindle 

formation (Figure 2.8E and Figure 2.11B).  

HDAC inhibitor-induced cell cycle arrest has been primarily attributed to the 

expression of the p21 (waf1/cip1) and p27 (kip1) proteins after histone hyperacetylation 

and transcriptional upregulation (101).  However, arrest due to mitotic defects were 

observed rapidly after inhibitor treatment and in the absence of transcription (68,102), 

suggesting a histone acetylation independent mechanism. Previous studies implicated 

HDAC3 in mitotic defects (57,68). HDAC3 knockdown reproduced the mitotic defects 

observed with HDAC inhibitor treatment, with spindle instability and prometaphase arrest 

(68).  Like HDAC1, a population of HDAC3 localized to the mitotic spindle during prophase 

(57). HDAC3 was associated with stable corepressor complex containing NCOR1 
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throughout mitosis, suggesting it is in an activated form during mitosis (57).  HDAC3 

deacetylates NudC (nuclear distribution protein C) (103), which is critical for kinetochore-

microtubulin attachment via dynein/dynactin.  Taken together, HDAC1 and HDAC3 may 

function together during mitosis to regulate proper centromere separation and spindle 

formation.   

Prior work documented a clear role for post-translational modifications in regulating 

Eg5 activity in mitosis.  Phosphorylation at T937 promotes Eg5 localization to the spindle 

(94). Eg5 is also phosphorylated at T927 to enhance binding to centrosomes during 

bipolar spindle formation (89). Based on this earlier work on phosphorylation, acetylation 

may also have an impact on Eg5 activity and/or binding during mitosis. With only a single 

acetylated site on Eg5 (K146) previously identified in a large proteomic study (80), the 

effect of acetylation on Eg5 function during mitosis has not yet been fully characterized.  

Here, we identified K890 as a predominant acetylated site on Eg5 and the target site for 

HDAC1-mediated deacetylation. The acetylation of K890 also regulates the affinity of Eg5 

to HDAC1. The work here with HDAC1 suggest that Eg5 acetylation at K890 is dynamic 

and may play an important role in mitotic progression.   

Since HDAC1 substrate identification suffers from a lack of discovery tools, the 

substrate trapping strategy developed here will assist in identifying physiological 

substrates of HDAC1. In this work, we discovered that several HDAC1 mutants (HDAC1 

F150A and C151A) act as efficient subtrate traps. The F150 and C151 residues are 

conserved among all HDAC isoforms (37,38), suggesting that the method can be applied 

to identify cellular substrates of other HDAC isoforms. Given the role of HDAC proteins in 

cancer formation and use of HDAC inhibitor drugs in anti-cancer therapy, these studies 
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will have a direct impact on cancer biology studies and drug design efforts by revealing 

new functional roles of HDAC proteins in cellular events. 

2.4 Expermental procedure 

2.4.1 Antibodies and reagents 

HDAC1 (catalog number – H3284), FLAG (catalog number – F3165), and myc 

(catalog number – C3956) antibodies, as well as anti-FLAG agarose beads (catalog 

number – A2220 ), were purchased from Sigma. The polyclonal Eg5 antibody (catalog 

number – NB500-181) was purchased from Novus. Monoclonal HDAC1 (for 

immunofluorescence; catalog number -  5356P), acetyl histone H3 (catalog number – 

9649P) and polyclonal acetyl lysine (catalog number – 9681S) antibodies were purchased 

from Cell signaling. Protein A/G plus agarose beads were purchased from Santa Cruz. 

ProLong gold antifade mounting solution was purchased from Life Technologies. 

Secondary rabbit (Alexa fluoro 488; catalog number – A11008) and mouse (Alexa Fluoro 

647; catalog number – A21235) antibodies were obtained from Molecular Probes. 

Recombinant HDAC1 (catalog number - 50051) was purchased from BPS biosciences. 

2.4.2 Expression plasmids and mutagenesis 

HDAC1 single point mutants were created using the pBJ5HDAC1-FLAG 

expression plasmid, as previously described (38). Myc-tagged pRcCMV-Eg5 was a 

generous gift from Dr. Anne Blangy (Centre de Recherche de Biochimie 

Macromoléculaire) (89). The Eg5-K146A and K890R mutants were constructed by 

Quickchange site directed mutagenesis (Agilent) using pRcCMV-Eg5 (K146A Forward 

primer- 5’ CCA CGT ACC CTT CAT CAA ATT TTT GAG GCA CTT ACT GAT AAT GGT 

ACT G 3’ and K146A Reverse primer- 5’ C AGT ACC ATT ATC AGT AAG TGC CTC AAA 
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AAT TTG ATG AAG GGT ACG TGG 3’, K890R Forward primer- 5’ CTT GAT CAG ATG 

ACT ATT GAT GAA GAT AGA TTG ATA GCA CAA AAT CTA GAA C 3’ and K890R 

Reverse primer 5’ G TTC TAG ATT TTG TGC TAT CAA TCT ATC TTC ATC AAT AGT 

CAT CTG ATC AAG 3’). The mutagenesis was performed as described by the 

manufacturer. Then, mutation was confirmed by DNA sequencing.  

2.4.3 Cell culture and transient transfections  

Human T-Ag Jurkat cells were grown in RPMI 1640 (Life technologies) 

supplemented with 10% fetal bovine serum (FBS; Life Technologies) and 1% 

antibiotic/anti-mycotic (Hyclone) at 37 °C in a 5% CO2 environment. HEK293 cells were 

maintained in Dulbecco's modified Eagle's medium (Life technologies) supplemented with 

10% FBS and 1% antibiotic/anti-mycotic at 37 °C in a 5% CO2 environment. 

2.4.4 Starting a new cell culture 

Pre-warmed media supplemented with 10% FBS (Life Technologies) and 1% 

antibiotic/anti-mycotic (Hyclone)  (10 mL) were added to a T75 flask (Biolite) and placed 

in a CO2 incubator for 10 min. A vial containing banked cells (1 mL, 10X106 cells) was 

taken from the liquid nitrogen tank and placed in a floater and thawed quickly in a 37 °C 

incubator. The contents were transferred to  a 15 mL centrifuge tube, and complete media 

(5 mL: media containing 10% FBS and 1% antibiotic/anti-mycotic) was added before 

centrifugation. Cells were collected by centrifugation at 1000 rpm for 5 min. The 

supernatant was removed by aspiration, and cells were resuspended in complete media 

(1 mL) and transferred to the T75 flask containing pre-warmed media. Cells were 

maintained at 37 °C in a 5% CO2 environment. 
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2.4.5 Long term storage of mammalian cells 

Cells (10 X 106  in 1 mL) were stored in a liquid nitrogen tank for future use. 

Confluent cells (50 mL;1 X 106  cells per mL) were spun down at 1000 rpm for 5 min and 

media was removed by aspiration. A cell pellet was resuspended in complete media 

containing 10% FBS, 1% antibiotic/anti-mycotic, and 5% DMSO (5 mL) and transferred 

into five labeled cryo tubes (1 mL, Cell line,date banked, 10 X 106 cells, person’s name). 

The cryo tubes were wrapped in styrofoam and first stored at -20 0C for a day, then -80 

0C for a second day, and transferred to a liquid nitrogen tank for long term storage. 

2.4.6 Long term storage of bacterial cells 

Bacterial cells (DH5α; a single colony) transformed with plasmids (wid type or 

mutants) were grown overnight (12-16h) in LB medium (5 mL; 1% bacto tryptone, 0.5% 

yeast extract, 1% NaCl) at 37 0C with rocking at 250 rpm in a bacterial incubator to a cell 

density of 3-4 X 109/mL. Without harvesting, the overnight grown cultures (750 µL) were 

tranferred to 1.5 mL eppendorf tubes and mixed with 60% glycerol (250 µL). The culture 

and glycerol were mixed by vortexing and stored in -80 0C for future use. 

2.4.7 Bacterial transformations 

DH5α competent cells (Chapter 4, section 4.4.7) were used for transformation. 

DH5α competent cells (100 µL) were thawed on ice and mixed with wild type or mutant 

HDAC1 DNA (100-500 ng), and incubated on ice for 20 min. Then, a heat shock was 

applied to the cells by incubating at 42 0C for 45-60s followed by incubation on ice for 2 

min. LB medium (500 µL) was then added to the cells and incubated at 37 0C for 1.5 h 

with shaking at 250 rpm. Cells were collected by centrifuging at 13.2 X 103 rpm for 10 min. 

After centrifugation, the soluble fraction (400 µL) was removed and the cell pellet was 
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resuspended in the remaining medium and plated on LB-agar plates (1% bacto tryptone, 

0.5% yeast extract, 1% NaCl, 2% agar) containing ampicillin (100 µg/mL). Plates were 

inverted and incubated at 37 0C overnight. 

2.4.8 Plasmid isolation (Miniprep and Midiprep)  

A single colony from a bacterial transformation or a small clump of a glycerol stock 

containing plasmid DNA was inoculated in 5 mL (for miniprep) or 200 mL (for midiprep) 

LB medium containing ampicillin (100 µg/mL) and grown at 37 0C overnight with shaking 

at 250 rpm. For a miniprep, cells were harvested by spining at 4000 rpm for 10 min at 4 

0C and resuspended in cold P1 buffer (300 µL ; 50 mM Tris-Cl, pH 8.0, 10 mM EDTA, 

100 μg/mL RNAse A).  After resuspension, P2 buffer (300 µL; 200 mM sodium hydroxide, 

1% SDS) was added, mixed by inverting tube gently, incubated at room temperature for 

5 min, and neutralized by adding cold P3 buffer (300 µL; 3.0 M potassium acetate, pH 

5.5). The contents were transferred to an eppendorf tube and incubated on ice for 10 min, 

followed by centrifugation at 13.2 X 103 rpm for 10 min. The soluble fraction was 

transferred to a new tube and re-centrifuged to get rid of any particles left from the first 

spin. The cleared fraction was mixed with isopropanol (540 µL), and plasmid DNA was 

collected by centrifugation at 13.2 X 103 rpm for 10 min. The pellet was air dried and 

dissolved in deionized water (20 µL) and stored at -20 0C until further use. Midipreps were 

performed by using the Qiagen tip-100 kit, according to the Qiagen plasmid midiprep 

procedure. Midiprep DNA was used in mammalian cell transfection. 
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2.4.9 Transfection of DNA into T-Ag Jurkat cells 

T-Ag Jurkat cells (40 X 106 cells; 1 X 106 /mL) were harvested by centrifugation at 

1000 rpm for 5 min. The medium was removed by aspiration and cells were resuspended 

in phenol red-free RPMI media containing no FBS or antibiotics (20 mL). Cells were then 

centrifuged again at 1000 rpm for 5 min, the medium was removed, and the cell pellet 

was resuspended in RPMI medium without phenol red (800 µL). The resuspended 

solution was then transferred to a 1.5 mL microcentrifuge tube, mixed with plasmid DNA 

(20 µg; from midiprep) and incubated at room temperature for 10 min. The contents were 

transferred to a BTX 4 mm electroporation cuvette (Fisher Biotech) and transfection of 

DNA into T-Ag Jurkat cells (40 X 106) was performed by electroporation using a BTX 

electro cell manipulator (For 10 X 106 cells S= 250 V, T = 500V/capacitance and 

resistance, C = 800 µF and R= 129 Ohms). After electroporation, cuvettes were incubated 

at room temperature for 10 min. Meanwhile, RPMI medium with 10% FBS and 1% 

antibiotic/antimycotic (40 mL) was added to T75 flasks and maintained at 37 0C in an 

incubator. After the 10 min incubation period, the transfected cells were added to the T75 

flasks containing warm medium (40 mL) and maintained for 48 h in a CO2 incubator. Cells 

were collected by spinning at 1000 rpm for 5 min at 4 0C. The cell pellet was washed with 

ice cold DPBS (1 mL; HyClone; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM 

KH2PO4, pH = 7.4), centrifuged, and the DPBS was removed by aspiration. The cell pellet 

was immediately subjected to lysis or stored at -80 0C until further use.  

2.4.10 Transfection of DNA into HEK293 cells 

Transfection of DNA into HEK293 cells (at 60% confluency, 20 X 106) was 

performed with Jetprime transfection reagent (VWR) according to the manufacturer's 
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instructions. Briefly, cells were seeded to achieve 60% confluency after 24 h. The 

following day, Jetprime buffer (500 µL) was mixed with plasmid DNA (5 µg from a 

midiprep), vortexed, centrifuged briefly, and then mixed with Jetprime transfection reagent 

(10 µL per 5 µg transfection). The mixture was vortexed, centrifuged briefly, and incubated 

at room temperature for 10 min. The DNA:jetprime mixture was added to the growth 

media of the cells and incubated in a 37 °C incubator with a 5% CO2 environment. After 

4h, the transfection mixure containing medium was replaced with fresh medium 

containing 10% FBS and 1% antibiotic/antimycotic and grown for 48 h. After a 48 h growth 

period, the transfected cells were trypsinized, harvested by centrifugation at 1000 rpm, 

washed once with DPBS (Hyclone), and either used immediately or stored at -80 0C as a 

pellet.  

2.4.11 Cell lysis 

A microcentrifuge tube containing the cell pellet was taken from the -80 0C freezer 

or used fresh, and put on ice prior to lysis. Protease inhibitor cocktail (GenDepot-P3100-

005; 5 µL of 100X) was added to the cell pellet to a final concentration of 1X and the cell 

pellet was resuspended in ice cold Jurkat Lysis Buffer (500 µL; JLB; 50 mM Tris pH 8, 

150 mM NaCl, 10% (v/v) glycerol, 0.5 % (v/v) Triton X-100). Cell lysis was performed by 

incubating at 4 0C for 30 min with rotation and the cell debris was removed by 

centrifugation at 13.2 X 103 rpm for 14 min at 4 0C. The supernatant was tranferred to a 

new eppendorf tube and used immediately or stored at -80 0C until further use. 

2.4.12 Immunoprecipitation 

Cell lysates were taken from -80 0C and thawed on ice. Anti-FLAG agarose beads 

(20 µL of bead slurry; Sigma) were used to pull down overexpressed wild type or mutant 
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HDAC1 proteins from cell lysates. Beads were washed two times with cold TBS (500 µL; 

Tris buffered saline; 50 mM Tris-Cl, 150 mM NaCl) by spinning at 5 rcf for 1min. Lysates 

(2 mg) were mixed with the pre-washed anti-FLAG agarose beads and incubated 

overnight with rotation at 4 0C. After incubation, beads were washed three times with JLB 

(1 mL) by spining at 5 rcf for 1 min. The bound proteins were eluted by adding 2X SDS 

loading dye (25 µL; 100 mM Tris-Cl pH 6.8, 4% SDS, 20% glycerol, 0.008% bromophenol 

blue) and boiling for 5 min at 95 0C. After a short spin, β-mercaptoethanol  (10% v/v) was 

added, heated at 95 0C for 1 min, and cooled on ice  prior to SDS-PAGE. For 

immunoprecipitation of endogenous proteins, protein A/G plus agarose beads (Santa 

Cruz; 20 µL bead slurry) were used. Beads were washed similar to anti-FLAG agarose 

beads. First, lysates were incuabted with the respective antibody for 1 h at 4 0C with 

rotation. After 1 h, the antibody:lysate mixture was incubated with the pre-washed 

agarose beads overnight at 4 0C with rotation. The washing and elution was performed 

similar to FLAG immunoprecipitation. 

2.4.13 Co-Immunoprecipitation 

T-Ag Jurkat lysates (2 mg) were incubated with either HDAC1 (1 µL; 1 µg/µL) or 

Eg5 (1 µL; dilution-1:300) antibodies at 4 °C for 1 h and then further incubated with 

prewashed protein A/G plus agarose beads (20 µL bead slurry) overnight at 4 °C to 

immunoprecipitate each protein. For co-immunoprecipitation of overexpressed proteins, 

HDAC1-FLAG and Eg5-myc DNA were cotransfected into HEK293 cells, as described, 

and the myc-tagged Eg5 proteins were immunoprecipitated by incubating lysates (2 mg) 

with myc antibody (2 µL; dilution-1:150) for 1 h at 4°C. Then, the immunocomplex was 

further incubated with prewashed protein A/G plus agarose beads (20 µL bead slurry) at 
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4 °C overnight. FLAG-tagged HDAC1 protein in the lysate (2 mg) was immunoprecipitated 

using prewashed anti-FLAG agarose beads (20 µL bead slurry; Sigma) by incubating at 

4 °C overnight with rocking. Bound beads were washed three times with JLB (1 mL). 

Bound proteins were eluted by adding 2X SDS loading dye (25 µL), separated by 10% 

SDS-PAGE, transferred to PVDF membrane (Immobilon P), and immunoblotted with their 

respective antibodies. 

2.4.14 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Prior to pouring the gel, gel plates (1.5 mm; BioRad) were washed well with distilled 

water and dried using a paper towel. Gel plates were assembled into the gel set up 

(BioRad) and checked for any leakage using water. If the set up was not leaking, water 

was removed and dried well using a Kimwipe (KIMTECH). To pour the separating layer 

of a 10% gel, 2 mL of 4X Tris/SDS separating buffer (0.4% SDS, 1.5 M Tris, 0.24 M HCl; 

pH 8.8), 2 mL of 40% acrylamide (Omnipur; 37:1), 3.92 mL of double distilled water, 80 

µL of 10% (w/v) ammonium persulfate (freshly prepared APS) and 8 µL of  N, N, N’, N’-

tetramethylthylenediamine (TEMED; ACROS) were mixed well, and poured in between 

glass plates up to ¾ height. Methanol was slowly added on top of the separating layer to 

create a smooth surface and the gel was allowed to set for 2 h. After 2 h, the methanol 

was removed and the gel surface was dried well using a Kimwipe. A 5% stacking layer 

was prepared by  mixing 1 mL of 4X Tris/SDS buffer (0.4% SDS, 1.5 M Tris, 0.24 M HCl; 

pH 6.8), 0.5 mL 40% acrylamide, 2.48 mL double distilled water, 20 µL 10% (w/v)  

ammonium persulfate, and 4 µL TEMED. The stacking layer was poured on top of the 

separating layer and a 10 well comb was placed slowly without forming any air bubbles. 

The gel was allowed to polymerize for 2 h and then immersed in a tank (Biorad) filled with 
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SDS-running buffer (1X; 0.5% SDS; 0.025 M Tris; 0.05 M glycine). Samples were slowly 

loaded into the wells along with the pre-stained molecular weight marker (Fisher) as a 

standard. The gel was first run for 10 min at 120V and then run at 200V for 1 h. After 

electrophoresis, the gel was subjected to Sypro Ruby staining or western blotting. 

2.4.15 Sypro Ruby staining 

After SDS-PAGE, the gel was removed from the gel plates, rinsed with water, and 

incubated with fixing solution (40 mL, 50% methanol and 7% acetic acid) at room 

temperature for 30 min in a rocking platform. Then, the fixing solution was removed and 

Sypro Ruby total protein stain (Invitrogen) was added. The gel chamber was covered with 

a foil, and incubated overnight at room temperature on a rocking platform. After removing 

the staining solution, the gel was immersed in destaining solution (40 mL; 10% methanol 

and 7% acetic acid) for 30 min at room temperature while rocking. Then, the destaining 

solution was removed and the gel was washed with distilled water three times (25 mL) to 

remove remaining acid. The stained gel was scanned using a Typhoon 9210 variable 

mode imager (Excitation – 450 nm, Emission – 610 nm). 

2.4.16 Western blotting 

Proteins in the gel were transferred to a PVDF membrane (Immobilin P). First, the 

gel was washed with water (25 mL) and then transfer buffer (1X; 3-[Cyclohexylamino]-1-

propanesulfonic acid (CAPS); 900 mL of 1X CAPS and 10% methanol, pH=10.6). 

Separately, the PVDF membrane was soaked in methanol and then soaked in transfer 

buffer. Sponges and filter papers were also soaked in the transfer buffer. The gel and 

membrane were sandwiched between filter papers, and then covered with sponges from 

two sides. The complete set was immersed in the western blot apparatus (Biorad) 
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containing transfer buffer and then electrotransferred at 90 V for 2 h. An ice block was 

inserted from one side to avoid melting of the gel. The whole apparatus was covered with 

ice to make the transfer efficient. Following electrotransfer, the PVDF membrane was 

removed, allowed to air dry for a few minutes, wet with methanol briefly, and then soaked 

in  PBST (1X phosphate buffered saline with tween-20; 8 mM Na2HPO4, 150 mM NaCl, 2 

mM KH2PO4, 3 mM KCl,  0.1% Tween-20). The membrane was blocked with blocking 

solution overnight at room temperature (10 mL; 5% w/v milk  in PBST). Then, the blocking 

solution was removed, the membrane was washed briefly with PBST, and the membrane 

was incubated with primary antibody (10 mL; 5% w/v BSA in PBST containing FLAG 

(1:10000 dilution) or Eg5 (1:1000 dilution), or HDAC1 (1:10000 dilution), or Acetyl lysine 

(1:1000 dilution), or myc (1:1000 dilution) for 2 h at room temperature or overnight at 4 

0C on a rocking platform. The antibody solution was removed and the membrane was 

washed three times 5 min each with PBST (10 mL). The seconday antibody solution was 

added, which contained 5% w/v milk in PBST and Alexa fluoro 488 anti-rabbit (1:1000), 

or Alexa Fluoro 647 anti-mouse (1:1000), or HRP-conjugated anti-rabbit (1:2000), and 

incubated for 1 h at room temperature on a rocking platform. The solution was removed 

and the membrane was washed three times 5 min each with PBST (10 mL). The 

fluorescent signal was observed using a Typhoon 9210 variable mode imager (excitation 

- 650 nm and emission – 670 nm). The HRP-mediated chemiluminiscence was visualized 

using a Fluorochem Imager (Alpha Innotech) using the HRP substrate (Pierce; 400 µL). 

2.4.17 Bacterial expression and purification of Eg5 

The bacterial expression plasmid (pRSET) for Eg5 was a generous gift from Dr. 

Susan Gilbert (104). The bacterial expression construct (pRSET) for Eg5-His was 
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transformed into E. coli BL21 (DE3) (Chapter 2; section 2.4.7). Transformed cells were 

grown in LB media (5 mL) containing 100 µg/mL ampicillin overnight at 37 0C, diluted 

200X into fresh LB medium (500 mL) containing 100 µg/mL ampicillin, and incubated at 

37 0C until the OD600nm  reached 0.6.  Protein expression was then induced with 0.5 mM 

isopropyl-1-thio-β-D-galactopyranoside (IPTG) at 30 °C. After 20h of protein production 

at 30 °C with 250 rpm shaking, cells were harvested by centrifugation at 4000 rpm for 20 

min at 4 0C. Cells were resuspended in lysis buffer (20 mL; 50 mM Tris-HCl pH 8.3, 300 

mM NaCl and 10 mM imidazole) and lysed by double passage through a chilled French 

press at 1,000 psi.  Cell  debris was removed by centrifugation at 14,000 rpm for 30 min 

at 4 0C. Ni-NTA beads (Pierce; 2 mL bead slurry) were washed two times with cold TBS 

(5 mL; Tris buffered saline; 50 mM Tris-Cl, pH 7.4, 150 mM NaCl,) by spining at 5000 rcf 

for 1 min. The cleared lysate was incubated with prewashed Ni-NTA beads for 2 h at 4 

°C. The loaded Ni-NTA beads were washed three times (10 mL) with wash buffer (50 mM 

Tris-HCl, pH 8.3, 300 mM NaCl, and 25 mM imidazole).  His-tagged Eg5 protein was 

eluted using elution buffer (1 mL each repeated seven times (E1-E7); 50 mM Tris-HCl pH 

8.3, 300 mM NaCl, and 300 mM imidazole). Fractions (E1-E7) containing Eg5 were 

collected and dialyzed overnight against dialysis buffer (50 mM Tris buffer pH 7.4, 10% 

glycerol and 1 mM DTT). Then, the protein was concentrated using a 10 kDa molecular 

weight cutoff centrifugal filter device (Millipore). A bradford assay (Bio-Rad) was used to 

quantify protein concentration using bovine serum albumin as the standard. All the 

fractions (crude lysate, flowthrough, washes and elutions) were analysed by SDS-PAGE 

(Figure 2.4).   
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2.4.18 Acetylation of bacterial Eg5 using acetic anhydride 

In vitro acetylation of Eg5 was first optimized to find the appropriate concentration 

of acetic anhydride and incubation time. Eg5 (0.5 µg) was incubated with varying amounts 

of acetic anhydride (0.2 mM, 0.5 mM and 2 mM) in ammonium bicarbonate buffer and 

0.002% methanol (50 mM, pH 7) for 30 min or 1 h at room temperature in a volume of 

100 µL and analysed by acetyl lysine antibody (Figure 2.5). Incubation of Eg5 with 0.2 

mM acetic anhydride for 1 h was selected as the best condition for acetylation. For in vitro 

deacetylation assays, bacterially expressed Eg5 (20 µg) was acetylated by incubating 

with acetic anhydride (0.2 mM) in ammonium bicarbonate buffer and 0.002% methanol 

(50 mM, pH 7) for 1 h at room temperature in a volume of 100 µL. Excess acetic anhydride 

was removed using a 3 kDa molecular weight cutoff centriprep column (Sigma Aldrich 

Amicon Ultra). Acetylated Eg5 was aliquoted and stored at -80 0C until further use. 

2.4.19 Gel image quantification 

Gel bands were quantified using ImageQuant version 5.1. Squares with similar 

area were drawn around gel bands and the bands in each lane were separately 

background corrected. The raw value for the control reaction (Ex: Eg5 acetylation without 

HDAC1) was set to 100% and the percentage signal for other lanes was calculated 

compared to the control. The percentages of the acetyl lysine signal were divided by the 

percentage of the total immunoprecipitated protein to get the final percentage value. The 

average percentages from at least three independent trials are shown in Figures 2.6 and 

2.8, with mean and standard error shown in Tables A.2.1, A.2.3 and A.2.5.  

 

 



75 
 

 
 

2.4.20 Substrate trapping and SAHA competition experiments 

Following transfection and harvesting as described earlier (Chapter 2; section 

2.4.9), cells were lysed as described (section 2.4.11). Immunoprecipitation of HDAC1-

FLAG wild type or mutant proteins was performed as described earlier (Chapter 2; section 

2.4.12). For SAHA competition reactions, SAHA (final concentration of 0.8 mM) was 

added during immunoprecipitation. After immunoprecipitation, more stringent washing 

condtions were used to reduce non-specific binding partners. Bound proteins were 

washed three times with high salt JLB (1 mL; 50 mM Tris pH 8, 500 mM NaCl, 10% (v/v) 

glycerol, 0.5 % (v/v) Triton X-100). Bound proteins were separated by SDS-PAGE 

(Section 2.4.14) and visualized with Sypro Ruby total protein stain (Section 2.4.15)  

2.4.21 Mass spectrometry analysis 

Gel slices containing protein bands were excised from the Sypro Ruby stained gel, 

washed with destaining buffer (50 µL; 1:1 (v/v) acetonitrile: 50 mM ammonium 

bicarbonate) for 15 min at room temperature, and dehydrated in acetonitrile (50 µL). The 

gel pieces were rehydrated with 50 mM ammonium bicarbonate (50 µL) for 5 min and 

then an equal volume of acetonitrile was added. After incubating at room temperature for 

15 min, the gel slices were dehydrated again in acetonitrile (50 µL). After removal of the 

acetonitrile, the gel slices were dried using a speedvac concentrator (ThermoSavant). Gel 

slices were swelled with reducing buffer (100 µL; 50 mM TCEP in 25 mM ammonium 

bicarbonate) for 10 min at 37 °C, followed by incubation with alkylation buffer (100 µL; 55 

mM iodoacetamide in 25 mM ammonium bicarbonate) for 1 h at room temperature in the 

dark while shaking. Then, gel pieces were washed 2 times with destaining buffer (50 µL) 

for 5 min at room temperature, dehydrated with acetonitrile (50 µL), and dried. To digest 
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the gel-bound proteins, gel slices were incubated with digestion buffer (50 µL; 20 ng/µL 

trypsin in 40 mM ammonium bicarbonate and 9% acetonitrile) overnight at 37 °C. The 

resultant digest solution was collected and the gel pieces were extracted using extraction 

buffer (50 µL; 50% acetonitrile and 0.2% formic acid (ProteoChem).  The combined 

digestion and extraction solutions were dried and stored at -20 °C in preparation for MS 

analysis at the Wayne State University and Karmanos Cancer Center Proteomics Core 

facility.  

For MS analysis, dried peptide digests were resuspended in a solution of 5% 

acetonitrile, 0.1% formic acid, and 0.005% trifluoroacetic acid. Samples were separated 

by ultra high pressure reverse phase chromatography using an Acclaim PepMap RSLC 

column and an Easy nLC 1000 UHPLC system (Thermo).  Peptides were analyzed with 

a Q-Exactive mass spectrometer (Thermo) with a 70,000 resolution MS1 scan over 375-

1600 m/z, followed by 17,500 resolution MS2 scans using a 1.6 m/z window and 30% 

normalized collision energy for HCD. Peak lists were generated with Proteome Discoverer 

(ver 1.4; Thermo), and peptides scored using Mascot (ver 2.4; Matrix Science). The 

search parameters included parent and fragment ion tolerances of 15 ppm and 0.02 Da, 

respectively, fixed modification of +57 on C (carbamidomethylation), variable 

modifications of +16 on M (oxidation), +42 on K and N-termini (acetylation), +80 on STY 

(phosphorylation), and a tryptic digest with up to 1 missed cleavage. MS2 spectra were 

searched against a consensus human protein database from SwissProt, and 

simultaneously against a scrambled database to calculate the false discovery rate (FDR). 

Results were imported into Scaffold (ver 4.3; Proteome Software) and a subset database 

search was performed with X!Tandem using slightly wider search parameters (up to 2 
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missed cleavages; additional variable modifications of -18 and -17 on N-termini (ammonia 

loss or conversion to pyro-glutamic acid). Protein identification was considered to be 

positive if at least 1 unique peptide was scored as ≤1% FDR, and the protein threshold 

was ≤1% FDR (Table 2.1).   

2.4.22 In vitro deacetylation assays 

Endogenous HDAC1 and Eg5 were immunoprecipitated separately from T-Ag 

Jurkat cells using their respective antibodies. Briefly, HDAC1 (1 µL; 1 µg/µL) or Eg5 (1 

µL; dilution-1:300) were incubated separately with lysates (2 mg) at 4 °C for 1 h. Then, 

each lysate was separately added to prewashed Protein A/G agarose beads (20 µL bead 

slurry, Santa Cruz), incubated overnight at 4 °C, and washed three times with JLB (1 mL). 

Immunoprecipitated HDAC1 on the beads was resuspended in HDAC assay buffer (100 

µL; 50 mM Tris-Cl, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2) and preincubated in 

the absence (1.2 % DMSO) or presence of SAHA (3 mM in 1.2% DMSO) for 15 min at 30 

°C while shaking at 750 rpm. Immunoprecipitated Eg5 on the beads was resuspended in 

HDAC assay buffer (50 µL), mixed with the preincubated HDAC1 immunoprecipitate, and 

then incubated at 30 °C for 1 h while shaking at 750 rpm. After incubation, beads were 

collected by centrifugation and bound proteins were eluted from the beads using SDS 

loading dye (25 µL; 100 mM Tris-Cl pH 6.8, 4% SDS, 20% glycerol, 0.008% bromophenol 

blue), resolved by 10% SDS-PAGE (Section 2.4.14), transferred to PVDF membrane 

(Immobilon P), and immunoblotted with acetyl lysine, HDAC1, or Eg5 antibodies (section 

2.4.16).  

For the in vitro deacetylation assay, recombinant HDAC1 (4 µg, BPS Biosciences) 

was resuspended in HDAC assay buffer (50 µL; 50 mM Tris-Cl, pH 8.0, 137 mM NaCl, 
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2.7 mM KCl, 1 mM MgCl2) and preincubated in the absence (2% DMSO) or presence of 

SAHA (2 mM in 2% DMSO) for 30 min at 37 °C while shaking at 750 rpm. Acetylated Eg5 

(1 µg) (Section 2.4.18) was then added and the reaction was incubated at 37 °C for 2 h 

while shaking at 750 rpm. After incubation, the reaction was stopped by adding 5X SDS 

loading dye (10 µL; 100 mM Tris-Cl pH 6.8, 4% SDS, 20% glycerol, 0.008% bromophenol 

blue).  The protein products were resolved by SDS-PAGE (10%) (Section 2.4.14), 

transferred to PVDF membrane (Immobilon P), and immunoblotted with acetyllysine, 

HDAC1, or Eg5 antibodies (Section 2.4.16). 

2.4.23 Identification of acetylated lysines in Eg5 

To identify the target site of Eg5 regulated by HDAC1, HEK293 cells (at 60% 

confluency) were transfected with myc-tagged Eg5 plasmid alone or cotransfected with 

FLAG-tagged wild type HDAC1  and allowed to recover under normal growth conditions 

for 48 h (section 2.4.10). After the 48 h recovery period, cells were treated without (2% 

DMSO in growth medium) or with SHI-1:2 (10 µM in 2% DMSO in growth medium) or 

SAHA (10 µM in 2% DMSO in growth medium) for an additional 24 h before harvesting 

and washing, as described. Cells were lysed (Section 2.4.11) and Eg5 was 

immunoprecipitated with myc antibody (Section 2.4.12), separated on a SDS-PAGE gel 

(10%) (Section 2.4.14), and visualized by Sypro Ruby total protein stain (Molecular 

Probes) according to the manufacturer’s instructions (Section 2.4.15). Bands 

corresponding to Eg5 were excised from the gel and subjected to in gel digestion and 

mass spectrometry as described above (Section 2.4.21). 
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2.4.24 ATPase assays 

For in vitro ATPase assay, HEK293 cells (at 60% confluency) were transfected 

with myc-tagged wild type or mutant Eg5 plasmid and allowed to recover under normal 

growth conditions for 48 h. After the 48 h recovery period, cells were treated with SHI-1:2 

(10 µM in 2% DMSO in growth media) for an additional 24 h before harvesting and 

washing, as described. Cells were lysed and Eg5 was immunoprecipitated with myc 

antibody and bound myc-tagged protein was eluted using myc peptide by incubating at 4 

°C for 30 min. Eluted wild type or K890R mutant protein was used in the ATPase assay.  

ADP-Glo assay was used to measure the amount of ADP produced according to 

manufacturer’s instructions. First, ATPase reaction (20 μL: 0.5 mM ATP, 2 µL from the 

immunoprecipitated protein) was performed at 37 °C for 30 min in the ATPase reaction 

buffer (25 mM triethanolamine, 13 mM Magnesium acetate, 1.8 mM DTT). Next, the 

components were transferred to 96 well plate, glo reagent (20 uL) was added, and 

incubated at room temperature for 40 min, followed by the addition of kinase detection 

reagent (40 μL). After 30 min incubation at room temperature, chemiluminiscence 

readings were taken using the GeNiOS plate reader and the reaction containing no 

enzyme was used as the background correction. Readings of the wild type Eg5 was set 

to 1 and the IgG control and K890R activity was calculated relative to wild type.  

2.4.25 Indirect Immunofluorescence 

For endogenous HDAC1 and Eg5 immunofluorescence experiments, HEK293 

cells were grown on glass cover slips in 6 well plates (Corning). At 40% confluency, cells 

were fixed with ice-cold methanol for 15 min at -20 °C, washed three times with PBS (2 

mL; 10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4), and blocked 
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with 1% bovine serum albumin (GenDEPOT) in PBST (2 mL; PBS containing 0.1% tween-

20) for 1 h at room temperature. After blocking, cells were incubated with a mixture of 

primary antibodies to HDAC1 (1:6000) and Eg5 (1:1000) in PBST overnight at 4 °C (1 

mL). After washing 3 times with PBS (2 mL), cells were incubated with a mixture of 

secondary antibodies in PBST (1 mL; Alexa fluor 488 rabbit antibody and Alexa fluor 647 

mouse antibody; 1:500) for 1 h at room temperature. Then, cells were washed three times 

with PBS (2 mL) and stained with DAPI (1 µg/µL) for 5 min and washed three times with 

PBS. Glass coverslips were mounted onto slides using ProLong gold antifade mounting 

solution and stored at 4 °C until use. The slides were visualized using an Olympus 

inverted IX81 fluorescence microscope (magnification 100X). 

For HDAC1-FLAG and Eg5 colocalization experiments, the same procedure was 

followed except transiently transfected HEK293 cells were fixed with 4% 

paraformaldehyde (2 mL) for 15 min at room temperature instead of methanol. After 

fixation, cells were washed three times with PBS (2 mL) and permeabilized by incubating 

with 0.3% triton X-100 (2 mL) for 10 min at room temperature. After washing three times 

with PBS, cells were blocked for 1 h at room temperature in PBS containing 5% BSA and 

0.3% triton X-100. 1% BSA and 0.3% triton X-100 was used in place of 0.1% tween-20 in 

the PBST buffer to prepare antibody dilution buffer as well. 

To count monopolar spindles, HEK293 cells were treated with DMSO, STLC (10 

uM) or SHI-1:2 (10 uM) for 48h. Then, cells were washed with PBS briefly, fixed with 4% 

paraformaldehyde for 15 min at room temperature, followed by permeabilizing with 0.3% 

triton-X-100 for 10 min at room temperature. Cells were washed three times with PBS, 

and blocked with 1% bovine serum albumin (GenDEPOT) in PBST (2 mL; PBS containing 
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0.3% triton-X-100) for 1 h at room temperature. After blocking, cells were incubated with 

a primary antibody to α-tubulin overnight at 4 °C, followed by secondary antibody in PBST 

(1 mL; Alexa fluoro488 rabbit antibody) for 1 h. Then, cells were washed three times with 

PBS (2 mL) and mounted onto slides using ProLong gold antifade mounting solution. The 

slides were visualized using an Nikon Eclipse Ni-U Microscope with motorized 

epifluorescence. Monopolar spindles were counted from atleast 100 mitotic cells and 

presented as a percentage. Monopolar spindles seen in STLC treated samples were set 

to 100% and monopolar spindles seen with SHI-1:2 was presented relative to STLC. 

2.4.26 Cell cycle analysis using Flow Cytometry 

HEK293 cells were treated with DMSO, STLC (10 uM) or SHI-1:2 (10 uM)  for 48 

h, harvested and washed with PBS twice. Cells (2 X 106) were fixed with 70% ethanol 

overnight at 4 °C and proceed to staining. Fixed cells were washed once with cold PBS 

(500 uL) and permeabilized with 0.25% Triton X-100 (in PBS) for 15  min on ice followed 

by incubation with the antibody to phospho histone H3 (S10) conjugated to Alexa Fluor 

488 (100 uL) for 1 h. After washing with PBS once, cells were stained with DAPI (1 µg/mL) 

overnight at 4 °C. Flow cytometry analysis was performed at Microscopy, Imaging and 

Cytometry resources core at the Karmanos Cancer Institute, Wayne State University. 

Samples were run on BD LSR II analytical flow cytometer (BD Biosciences, San Jose, 

CA) and analyzed by ModFit LT v4.0 (Verity Software House, Topsham, ME) and FlowJo 

v10 (FlowJo, LLC, Ashland, OR) software.  

To study the effect of wild type and mutant Eg5 on cell cycle arrest, HEK293 cells 

(at 60% confluency) were transfected with myc-tagged wild type or mutant Eg5 plasmid 

and allowed to recover under normal growth conditions for 48 h. After the 48 h recovery 
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period, cells were treated without (2% DMSO) or with SHI-1:2 (10 µM in 2% DMSO in 

growth media) for an additional 48 h. Cells were harvested, washed and fixed overnight 

at 4 °C with 70% ethanol. Staining of phospho histone H3 and DAPI was performed and 

analyzed by flow cytometry as described in the above paragraph. 
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CHAPTER 3. HDAC1- MEDIATED DEACETYLATION OF LSD1 AFFECTS 

SUBSTRATE BINDING AND GENE EXPRESSION 

 (A portion of this chapter is reprinted or adapted from Nalawansha, D. A. et al. 2016, 

LSD1 substrate binding and gene expression are affected by HDAC1-mediated 

deacetylation, ACS Chem. Biol., in revision) 

3.1 Introduction 

In Chapter 2, a substrate trapping mutant strategy was performed with HDAC1 to 

identify Eg5/Kinesin 5 as a novel HDAC1 substrate in Jurkat cells (105). Given the 

significance of identifying non-histone substrates to explore the role of HDAC1 in the cell, 

we extended this HDAC1 trapping strategy to HEK293 cells. In this chapter, lysine specific 

histone demethylase 1 (LSD1) was identified as a novel substrate of HDAC1 using 

trapping mutants to reveal a previously unidentified crosstalk between HDAC1 and LSD1.  

3.2 Results 

3.2.1 Substrate trapping identifies novel substrates of HDAC1 in HEK293 cells 

For HEK293 trapping, wild type and mutant HDAC1 were overexpressed in 

HEK293 cells, and then cells were treated with SAHA to induce robust acetylation. SAHA 

treatment increases the number of acetylated proteins in the cell to augment the ability to 

trap HDAC substrates. Wild type and mutant HDAC1 were immunoprecipitated in the 

presence or absence of SHI-1:2 as an active site inhibitor. This active site inhibitor 

competes with bound substrates and assists in distinguishing substrates from interacting 

proteins. Bound substrates present in the mutant but not wild type or inhibitor 

immunoprecipitate were visualized using gel methods. Among the several inactive 

HDAC1 mutants screened (H141A, F150A and C151A), C151A HDAC1 displayed good 
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substrate trapping properties in HEK293 cells (Figure 3.1, lane 3). Therefore, the C151A 

mutant was selected for further trapping studies.  

 

Figure 3.1– Screening inactive mutants in HEK293 cells. Wild type (WT) or mutant 

HDAC1 (indicated below each lane) were expressed as Flag-tagged proteins in HEK293 

cells and then cells were treated with 10 µM SAHA for 24 h to induce robust protein 

acetylation. Cells were lysed and proteins were immunoprecipitated with anti-Flag 

agarose in the presence or absence of 10 µM SHI-1:2. Bound proteins were separated 

by SDS-PAGE, and stained with Sypro Ruby total protein stain. Arrows point to HDAC1 

or possible substrates (p100, p55, p38) present in mutant but not WT or inhibitor treated 

samples. Repetitive trials are shown in Figure A.3.1. 

Three new bands (p100, p55 and p38) appeared only in the C151A mutant, but 

not in the wild type immunoprecipitates (Figure 3.2A, compare lanes 1 and 2). The p100, 

p55 and p38 bands disappeared when SAHA (Figure 3.2A, compare lanes 2 and 4) or 

HDAC1 and 2-selective inhibitor (SHI-1:2) (Figure 3.2B, compare lanes 2 and 4) was used 
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as an active site competitor, suggesting that these proteins interact directly with the active 

site of HDAC1 and could be potential substrates.  

 

Figure 3.2–Substrate trapping in HEK293 cells. Wild type (WT) or mutant HDAC1 

(indicated below each lane) were expressed as Flag-tagged proteins in HEK293 cells and 

then cells were treated with 10 µM SAHA for 24 h to induce robust protein acetylation. 

Cells were lysed and proteins were immunoprecipitated with anti-Flag agarose in the 

presence or absence of A) 2 mM SAHA, or B) 0.5 mM SHI-1:2. Bound proteins were 

separated by SDS-PAGE, and stained with sypro ruby total protein stain. Arrows point to 

HDAC1 or possible substrates (p100, p55, p38) present in mutant but not WT or inhibitor 

treated samples. Repetitive trials are shown in Figure A.3.2. 

To confirm the selectivity of bound substrates, we used HDAC1 and 2-selective 

inhibitor (SHI-1:2) and HDAC6-selective inhibitor (tubastatin) as competitors (Figure 3.3). 

The p100, p55 and p38 bands were observed only in the presence of tubastatin, 

suggesting that they are substrates of HDAC1 (Figure 3.3, compare lanes 2 to 3 and 4). 
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Figure 3.3– Substrate trapping with inhibitor competition in HEK293 cells. Wild type 

(WT) or mutant HDAC1 (indicated above each lane) were expressed as Flag-tagged 

proteins in HEK293 cells and then cells were treated with 10 µM SAHA for 24 h to induce 

robust protein acetylation. Cells were lysed and proteins were immunoprecipitated with 

anti-Flag agarose in the presence or absence of 10 µM SHI-1:2 or 10 µM tubastatin. 

Bound proteins were separated by SDS-PAGE, and stained with sypro ruby total protein 

stain. Arrows point to HDAC1 or possible substrates (p100, p55, p38) present in mutant 

but not WT or inhibitor treated samples. Repetitive trials are shown in Figure A.3.2. 

To identify the p100, p55, and p38 proteins interacting with C151A HDAC1, the gel 

bands were excised, trypsin digested, and subjected to LC-MS/MS analysis. With high 

confidence, p38, p55 and p100 were identified as rRNA 2’-O-methyltransferase fibrillarin 

(histone-glutamine methyltransferase), RuvB-like 2 (reptin 52), and lysine specific histone 

demethylase 1 (LSD1 or KDM1A), respectively (Table 3.1, Figures A.3.3-A.3.8). For all 

three hits, sequence coverage was higher in the mutant compared to wild type, 

suggesting effective trapping by the mutant.  
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Table 3.1- Mass spectrometric analysis of p100, p55 and p38* 

 

*Unique peptide count – Number of different amino acid sequences that are associated 

with a protein.  #Unique spectral count – Number of unique spectra that identified each 

unique peptide including modifications. €% Coverage – the percentage of the protein 

amino acid sequence was identified.  

rRNA 2’-O-methyltransferase fibrillarin is capable of methylating RNA and proteins 

(106,107). Fibrillarin mediates the methylation of glutamine 104 in histone H2A and 

disrupts its interaction with the FACT (Facilitator of chromatin transcription) complex 

involved in transcription. RuvB-like 2 is a component of the NuA4 histone 

acetyltransferase complex that mediates the acetylation of histone H2A and H4 (108). 

RuvB-like 2 protein also possesses ATP-dependent DNA helicase activity (109) and is 

found in a complex with the INO80 chromatin remodeling complex (110). LSD1 is a 

histone lysine demethylase, typically found in association with HDAC1/2 and CoREST to 

mediate H3K4 demethylation and regulate gene expression (Figure 3.4) (111). The fact 

that LSD1 and HDAC1 are found in the same complex in cells is consistent with a possible 

substrate relationship. We selected the LSD1 protein for further validation due to its 
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important role in gene expression regulation, as well as implications in diseases such as 

cancer (12,112).  

 

Figure 3.4 - LSD1 mediates the demethylation of lysine 4 of histone H3. LSD1 is 

typically found in complex with HDAC1, HDAC2 and CoREST to mediate the 

demethylation (Me) of lysine 4 of Histone H3 (H3K4), which leads to gene repression. 

Copyright permission obtained from Klose, R. J. et al. Nat. Rev. Mol. Cell. Biol. 2007, 8 

(113). 

3.2.2 Validation of p100 as LSD1 

I confirmed that the p100 protein is in fact LSD1 using substrate trapping. Wild type 

and mutant HDAC1 were overexpressed in HEK293 cells, immunoprecipitated in the 

presence or absence of SHI-1:2, and the bound p100 was analysed by western blotting 

(Figure 3.5). Consistent with the MS data, LSD1 was trapped only by the C151A mutant, 

but not by the WT HDAC1 (Figure 3.5, top, compare lanes 2 and 3). SHI-1:2 treatment 

decreased LSD1 trapping (Figure 3.5, top, compare lanes 3 and 5), suggesting that LSD1 

interacts with the active site of HDAC1. This LSD1 Western blot analysis confirmed that 

LSD1 is trapped by HDAC1 mutants. 
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Figure 3.5 – Validation of p100 as LSD1. Wild type (WT) or C151A HDAC1 were 

expressed as Flag-tagged proteins in HEK293 cells, and cells were treated with 10 µM 

SAHA for 24 h prior to harvesting. FLAG-tagged wild type and mutant HDAC1 were 

immunoprecipitated with anti-Flag agarose in the presence or absence of 10 µM SHI-1:2, 

separated by SDS-PAGE, and immunoblotted with LSD1 and FLAG antibodies. 

Repetitive trials are shown in Figure A.3.9. 

3.2.3 HDAC inhibitors regulate LSD1 acetylation 

 Since LSD1 must be acetylated to act as an HDAC1 substrate, we analyzed the 

acetylation status of LSD1. FLAG-tagged LSD1 was transfected into HEK293 cells and 

cells were treated with HDAC1 and 2-selective inhibitor (SHI-1:2), as well as broad 

spectrum HDAC inhibitor-SAHA, to induce acetylation prior to harvesting. FLAG-tagged 

LSD1 was immunoprecipitated with anti-FLAG agarose beads and immunoprecipitates 

were analyzed by FLAG and acetyl lysine antibodies. The pan HDAC inhibitor SAHA 

enhanced LSD1 acetylation (Figure 3.6, top, compare lanes 2 vs 4), confirming that 

HDAC proteins regulate acetylation of LSD1. Interestingly, the HDAC1 and 2-selective 

inhibitor (SHI-1:2) was also capable of inducing LSD1 acetylation (Figure 3.6, top, 

compare lanes 2 vs 3), consistent with the hypothesis that LSD1 is an HDAC1 substrate. 

1      2       3            4     5

α-FLAG

α-LSD1

IgG WT   C151A      WT  C151A

10 uM

SHI-1:2



90 
 

 
 

 

Figure 3.6 – HDAC inhibitors regulate LSD1 acetylation. HEK293 cells were 

transfected with FLAG-LSD1 and grown for 48 h. Then 10 µM SHI-1:2 and 10 µM SAHA 

were added for another 24 h. Cells were harvested and FLAG-LSD1 was 

immunoprecipitated with anti-FLAG agarose beads. Immunoprecipitates were analyzed 

by western blotting with FLAG and acetyl lysine antibodies. Repetitive trials are shown in 

Figure A.3.10. 

3.2.4 LSD1 is a substrate of HDAC1 

To confirm that HDAC1 deacetylates LSD1, we performed an in vitro deacetylation 

assay using recombinant LSD1 (rLSD1: a gift of Dr. Ryuji Hamamoto) and recombinant 

HDAC1 (rHDAC1). rLSD1 was chemically acetylated using acetic anhydride. Acetylated 

rLSD1 was incubated in the absence or presence of rHDAC1.  As a control, rHDAC1 was 

pre-incubated with or without SAHA prior to the incubation with acetylated rLSD1. 

Acetylation of rLSD1 was significantly reduced in the presence of rHDAC1 (Figure 3.7A, 

top, compare lanes 1 and 2), but not SAHA-treated rHDAC1 (Figure 3.7A, top, compare 

lanes 2 and 3), suggesting that HDAC1 deacetylates LSD1. Quantification of acetylated 

LSD1 also confirmed that HDAC1 significantly reduces LSD1 acetylation (Figure 3.7B 

and Figure A.3.12A). These data indicate that LSD1 is a substrate of HDAC1. 

To validate that LSD1 is a substrate of HDAC1 in cellulo, we performed 

deacetylation assays using cellular LSD1 and HDAC1. FLAG-tagged LSD1 was 
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overexpressed in the absence or presence of wild type or C151A mutant HDAC1. LSD1 

was immunoprecipitated from HEK293 cells, separated by SDS-PAGE, and analyzed by 

Western blotting with acetyl lysine antibodies. Acetylation of LSD1 was markedly reduced 

in the presence of WT HDAC1 (Figure 3.7C, top, compare lanes 2 and 3), but not with 

the catalytically inactive mutant (Figure 3.7C, top, compare lanes 2 and 4). Quantification 

of acetylated LSD1 also confirmed that HDAC1 significantly reduces LSD1 acetylation 

(Figure 3.7D and Figure A.3.14A). The fact that LSD1 acetylation depended on the 

presence of active HDAC1 supports the conclusion that LSD1 is a substrate of HDAC1.  

 

Figure 3.7 – LSD1 is a substrate of HDAC1. A) Acetylated recombinant LSD1 was 

incubated with or without recombinant HDAC1 and SAHA for 2.5 h at 37 °C and separated 

by SDS-PAGE and analysed by AcLys, HDAC1, and LSD1 antibodies. Repetitive trials 

are shown in Figure A.3.11. B) Quantification of AcLys LSD1 signal from part A. Three 

independent trials are shown as mean ± standard error in Figure A.3.12A. LSD1 blot was 

used as a loading control and quantification is shown in Figure A.3.12B and C. **p<0.01, 
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***p<0.001, ns-not significant. C) FLAG-tagged wild type (WT) or C151A mutant HDAC1 

were cotransfected with FLAG-tagged wild type LSD1 into HEK293 cells. FLAG tagged 

proteins were immunoprecipitated using anti-FLAG agarose beads, separated by SDS-

PAGE, and immunoblotted with acetyl lysine (AcLys) and FLAG antibodies. Repetitive 

trials are shown in Figure A.3.13. D) Quantification of AcLys LSD1 signal from part C. 

Three independent trials are shown as mean ± standard error in Figure A.3.14A. LSD1 

blot was used as a loading control and quantification is shown in Figure A.3.14B and C. 

**p<0.01, ns-not significant.  

3.2.5 HDAC inhibitors affected LSD1 activity in cellulo 

 Acetylation has been demonstrated to regulate protein activity, stability, and 

interactions (70). As a first step to understand the role of acetylation on LSD1, we studied 

the effect of HDAC-mediated acetylation on LSD1 demethylation activity. FLAG-tagged 

LSD1 was overexpressed in HEK293 cells, and cells were treated with HDAC inhibitors 

to induce robust acetylation prior to harvesting. FLAG-LSD1 was immunoprecipitated with 

anti-FLAG agarose beads before use as the enzyme source in demethylation assays. 

LSD1 activity was comparable in SHI-1:2 or SAHA-treated samples and DMSO samples 

(Figure 3.8). These data indicate that acetylation of LSD1 does not significantly alter its 

in vitro demethylation activity.   
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Figure 3.8 - In-vitro demethylation assay of LSD1. HEK293 cells were transfected with 

FLAG-LSD1 and grown for 48 h. Then 10 µM SHI-1:2 or 10 µM SAHA was added for 

another 24 h, cells were harvested and proteins were immunoprecipitated with anti-FLAG 

agarose beads. Half of the immunoprecipitate was subjected to LSD1 activity assay 

(histogram); the other half was analyzed by western blotting with FLAG antibody (gel 

image). The fluorescence signal was background corrected using a reaction with all the 

components except the LSD1 enzyme. The background corrected signal of each sample 

was normalized to DMSO treated LSD1 enzyme (set to 1). The mean and the standard 

error from at least three independent trials are shown. ns – not significant. Percent 

demethylation activity, mean and standard error for independent trials are shown in the 

Table A.3.1. 

In addition to the in vitro demethylation assay, which utilizes a histone H3 peptide 

substrate, we analysed LSD1 demethylase activity in cellulo by monitoring dimethylated 

histone H3 (H3K4me2) protein in different cell lines. HeLa, MCF-7, or HEK293 cells were 

treated with SHI-1:2 or SAHA to promote robust acetylation. Cell lysates were then 
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analysed for methylated H3 using gel methods (H3K4me2) (Figure 3.9). Consistent with 

previous work (114), HDAC inhibitors enhanced H3K4me2 levels in the three cell lines 

(Figure 3.9A and 3.9B, H3K4me2 blot, compare lanes 1 to 2 and 3, Figure 3.9C, 

H3K4me2 blot, compare lanes 2 to 3 and 4), suggesting reduced demethylase activity 

upon inhibitor treatment. These results suggest that HDAC proteins do have a direct 

impact on LSD1 activity, albeit not through alteration of its catalytic function. In addition 

to H3K4me2 mark, we also analyzed the effect of HDAC inhibitors on H3K9me2, which 

is also regulated by LSD1. In contrast, the effect of HDAC inhibitors on dimethylated lysine 

9 of H3 (H3K9me2) was inconsistent (Figure 3.9A and B, H3K9me2 blots), although H3K9 

acetylation was consistently elevated (Figure 3.9, H3K9ac blots). Given that LSD1 mainly 

target H3K4me2 mark when it is in complex with HDAC1 and 2, we did not study 

H3K9me2 mark further.  

 

Figure 3.9 – HDAC inhibitors increase methylation of H3K4 in lysates. A) HEK293, B) 

MCF7, or C) HeLa cells were untreated (NT) or treated with DMSO, 10 µM SHI-1:2, or 10 

µM SAHA for 24 h, harvested, lysed and proteins were separated by SDS-PAGE followed 

by immunoblotting with LSD1, histone H3, Histone H3K4me2, histone H3K9ac and 

GAPDH antibodies. Repetitive trials are shown in Figure A.3.15. 
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3.2.6 LSD1 acetylation altered histone H3 binding ability 

 In cellulo demethylation assays suggested that acetylation of LSD1 affects its 

enzymatic       activity (Figure 3.9) whereas in vitro assays showed that acetylated LSD1 

retains robust catalytic activity (Figure 3.8). Acetylation of a protein may also affect protein-

protein interactions or substrate binding (70). LSD1 activity is regulated by binding to the 

CoREST protein (111). To assess if LSD1 activity is reduced due to changes in protein-

protein associations, coimmunoprecipitation studies were performed. FLAG-tagged LSD1 

was overexpressed in HEK293, and cells were treated with HDAC inhibitors to induce 

acetylation. Cells were harvested and FLAG-LSD1 was immunoprecipitated with anti-FLAG 

agarose beads. Proteins were separated by SDS-PAGE and immunoblotted with antibodies 

to CoREST, in addition to the H3 substrate as a control (Figure 3.10). Acetylation did not 

affect the LSD1/CoREST interaction (Figure 3.10A, CoREST blot, compare lane 2 to 3 and 

4).  In contrast, HDAC inhibitors altered the interaction between LSD1 and its cellular 

substrate histone H3 (Figure 3.10A, Histone H3 blot, compare lane 2 to 3 and 4). These 

data indicated that HDAC inhibitor-mediated acetylation of LSD1 has a direct effect on the 

interaction between LSD1 and Histone H3. Further, co-immunoprecipitated H3 in SHI-1:2 

and SAHA treated cells displayed elevated methylation at lysine 4 compared to DMSO 

control (Figure 3.10A, H3K4me2 blot, compare lane 2 to 3 and 4), suggesting a loss of 

LSD1 enzyme function. These data revealed that acetylation alters the substrate binding 

ability of LSD1, which diminishes its demethylation activity. 

 To further study acetylation-dependent LSD1/H3 binding, we analyzed the effect of 

HDAC inhibitors on the H3 interaction with endogenous LSD1. Endogenous LSD1 was 

immunoprecipitated from HDAC inhibitor treated HEK293 or HeLa cell lysates and analyzed 
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by Western blot (Figure 3.10B and C). Similar to overexpressed LSD1, endogenous LSD1 

interacted more robustly with H3 and methylated H3K4 upon HDAC inhibitor treatment 

(Figure 3.10B and C, H3 and H3K4me2 blots, compare lane 2 with lanes 3 and 4). These 

data are consistent with the hypothesis that LSD1 acetylation alters its interaction with H3 

and thus the methylation of H3K4. In addition, the similar results obtained with both HEK293 

and HeLa cells showed that the acetylation-dependence of H3 binding and methylation is 

general.   

 

Figure 3.10 – Acetylation of LSD1 induces LSD1-H3 interaction. A) FLAG-LSD1 was 

overexpressed in HEK293 and cells were untreated (IgG) or treated with DMSO or HDAC 

inhibitors to induce acetylation. Cells were harvested and proteins were immunoprecipitated 

with anti-FLAG agarose beads. Immunoprecipitates were analyzed by Western blotting with 

FLAG, acetyl lysine, histone H3, histone H3K4me2, histone H3K9me2, and CoREST 

antibodies. B) HEK293 cells or C) HeLa cells were treated with HDAC inhibitors, harvested, 
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and endogenous LSD1 was immunoprecipitated. Western blotting was performed with 

LSD1, histone H3, and histone H3K4me2 antibodies. GAPDH was used as a loading control. 

Repetitive trials are shown in Figures A.3.16 and A.3.17. 

3.2.7 Acetylation of LSD1 at K374 affects histone H3 binding              

 To fully understand the effect of LSD1 acetylation on Histone H3 binding, we 

utilized a mass spectrometric based approach to identify acetylated lysines on LSD1. FLAG-

tagged LSD1 was transfected into HEK293 cells and cells were then treated with or without 

HDAC inhibitors. After lysis, immunoprecipitation, and SDS-PAGE separation, protein bands 

corresponding to LSD1 were excised from the gel, trypsin digested, and subjected to mass 

spectrometric (MS) analysis. Both SAHA and SHI-1:2 enhanced acetylation of LSD1 at K374 

compared to untreated samples, suggesting that K374 is the target site for HDAC1 mediated 

deacetylation (Table 3.2, Figure A.3.18).  K374 is a solvent exposed amino acid which lies 

in an α-helix (Sα1) in the substrate binding lobe of LSD1 (Figure 3.11A). Previous studies 

have shown the involvement of this α-helix in histone H3 binding (115-118). 
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Table 3.2- MS analysis of LSD1 acetylation*  

 

*% Coverage – the percentage of the protein amino acid sequence was identified. Unique 

# of acetylated peptides - number of different amino acid sequences containing acetylated 

lysines. Red color represents the acetylated lysines identified reproducibly only in HDAC 

inhibitor treated samples. Spectra shown in Figure A.3.18. 

Protein name/ 

Accession

Trials Sample % 

Coverage 

Unique # of 

acetylated 

peptides

Lysine Specific 

histone 

demethylase 1 

(LSD1) 

(KDM1A_HUMA

N)

1 LSD1+DMSO 90 3 (K6, K268, K280) 

(K374  covered, 

but no acetylation)

LSD1+SHI-1:2 94 6 (K6, K268, K280, 

K374, K404, K503, 

K507)

LSD1+SAHA 59 0 (K374 not 

covered)

2 LSD1+DMSO 71 0 (K374 covered, 

but no acetylation)

LSD1+SHI-1:2 84 3 (K268, K374, 

K404)

LSD1+SAHA 75 0 (K374 covered, 

but no acetylation)

3 LSD1+DMSO 75 0 (K374 covered, 

but no acetylation)

LSD1+SAHA 79 1 (K374)
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 To study whether acetylation at K374 is a major site regulated by HDACs, we 

created a K374R mutant using the full length FLAG-tagged LSD1 construct. Following 

transfection of wild type LSD1 and K374R into HEK293 cells, HDAC inhibitors were added 

to induce LSD1 acetylation in cells. Then, LSD1 was immunoprecipitated and 

immunoblotted with an acetyl lysine antibody to detect acetylation. As anticipated, the 

level of acetylation of K374R was significantly reduced after HDAC inhibitor treatment, 

compared to that of wild type LSD1 (Figure 3.11B, top, compare lanes 3 and 4 to 6 and 

7). These data suggest that K374 is a major HDAC-dependent acetylation site on LSD1. 

 

Figure 3.11 – Acetylation at K374 alters LSD1/H3 interaction. A) A crystal structure of 

LSD1 (2V1D-green) bound to histone H3 (red spheres) and FAD (dark blue). K374 (light 

blue) is solvent exposed and present in the Sα1 helix (yellow) of the substrate binding lobe. 

B) and C) FLAG-tagged wild type or K374R mutant LSD1 were transfected into HEK293 
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cells, and cells were treated with HDAC1/2 selective inhibitor (SHI-1:2) or SAHA.  FLAG-

LSD1 was immunoprecipitated with FLAG antibody, subjected to SDS-PAGE separation, 

and immunoblotting with the indicated antibodies. Repetitive trials are shown in Figures 

A.3.16 and A.3.19. 

 To test the effect of acetylation at K374 on LSD1/H3 interaction, HEK293 cells 

were transfected with WT or K374R mutant FLAG-LSD1, treated with SHI-1:2 or SAHA, and 

harvested, before LSD1 was immunoprecipitated and analyzed by western blotting (Figure 

3.11C). Consistent with the hypothesis, the K374R LSD1 mutant coimmunoprecipitated 

reduced histone H3 compared to wild type (WT) (Figure 3.11C, Histone H3 blot, compare 

lanes 3 and 4 to 6 and 7). Methylated lysine 4 of histone H3 (H3K4me2) is higher in HDAC 

inhibitor treated WT compared to that of mutant LSD1 (Figure 3.11C, H3K4me2 blot, 

compare lanes 3 and 6) suggesting loss of LSD1 activity. The data indicate that K374 

acetylation of LSD1 is critical for altered histone H3 binding. Given the placement of K374 

in the histone H3 binding Sα1 helix (Figure 3.11A, yellow helix), we hypothesize that K374 

acetylation results in non-productive binding between LSD1 and histone H3, thereby leading 

to elevated H3 methylation.  

3.2.8 Acetylation of LSD1 at K374 reactivates expression of LSD1 target genes 

 LSD1 represses target genes through demethylation of lysine 4 in histone H3. 

Based on the altered LSD1 binding and consequent methylation of histone H3 at lysine 4 of 

the K374R mutant, we hypothesize that acetylation of LSD1 affects the expression of 

downstream target genes. Because SCN3A and SCN2A are two known target genes of 

LSD1 (111,112), we analyzed their expression using real time-PCR (RT-PCR). HEK293 

cells were transfected with WT or K374R mutant FLAG-LSD1, treated with SHI-1:2, and 
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harvested; then RNA was isolated, converted to cDNA, and used as the template in PCR 

reactions using gene specific primers. Consistent with the hypothesis, SHI-1:2 treatment 

resulted in increased expression of both SCN2A (5.4 ± 1 fold) and SCN3A (2.4 ± 0.1 fold) 

compared to the DMSO control with the wild type LSD1 (Figure 3.12A and B).  In contrast, 

SHI-1:2 treatment showed values comparable to the DMSO control in the presence of the 

K374R mutant LSD1 (Figure 3.12B, column 4). These data suggest that K374 is critical for 

efficient HDAC inhibitor-dependent LSD1 gene regulation.  Taken together with earlier co-

immunprecipitation studies, we hypothesize that LSD1 acetylation at K374 alters LSD1/H3 

binding, augments the active chromatin mark H3K4me2, and reactivates the expression of 

LSD1 target genes.  
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Figure 3.12- Acetylation of LSD1 at K374 reactivates expression of LSD1 target genes. 

HEK293 cells were transfected with WT or K374R mutant FLAG-LSD1, treated with SHI-

1:2, and harvested, before RNA was isolated from cells, converted to cDNA, and then used 

as the template in PCR reactions using gene specific primers for SCN2A (A), SCN3A (B) 

and GAPDH genes. Fold change was calculated compared to DMSO treated WT LSD1 

transfected sample, which is normalized to 1 (column 2). Relative mRNA expression was 

calculated from four independent trials with mean and standard error shown in Table S3. 

**p<0.01, ***p<0.001, ns-not significant. Data summarized in Table A.3.2 and A.3.3. 

3.3 Discussion 

Aberrant expression of HDAC1 is implicated in multiple diseases, which have 

made HDAC1 an interesting drug target (119). Substrate identification is important to 

unravel new functions of HDAC1 in the cell, and to reveal the mechanism of action of HDAC 
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inhibitor drugs. We employed a substrate trapping strategy with HDAC1 in HEK293 cells 

and discovered that LSD1 is a substrate of HDAC1. LSD1 was the first identified histone 

demethylase and mediates the removal of methylation on H3K4 and H3K9 to regulate gene 

expression (112). Given that both HDAC1 and LSD1 are overexpressed in multiple cancers 

(119-122), uncovering the mechanistic link between HDAC1 and LSD1 will lead to a better 

understanding of the functions of these epigenetic enzymes in normal and disease settings. 

 LSD1 is typically found in association with HDAC1, HDAC2, BRAF35 and CoREST 

(111). Previous reports indicated that LSD1 activity and substrate specificity can be 

regulated by its interacting proteins (111,123,124). CoREST is important for maintaining 

LSD1 activity and protects LSD1 from proteasomal degradation. HDAC5 also interacts with 

LSD1 and protect LSD1 from proteasomal degradation to promote breast cancer 

progression (125). Further, HDAC5 deacetylates LSD1 in vitro, but failed to do so in cellulo, 

suggesting LSD1 acetylation might be regulated by other deacetylases. In this report, 

HDAC1 was able to deacetylate LSD1 both in vitro and in cellulo, suggesting that HDAC1 is 

the deacetylase responsible for regulating LSD1 activity. Further, we show for the first time 

that LSD1 is acetylated at K374 and leads to non-productive binding between histone H3 

and LSD1. Altered H3 binding is accompanied with reduced LSD1 demethylation of H3, 

which leads to a derepression of LSD1 target genes. Based on our data, we hypothesize 

that HDAC1 regulates LSD1 activity through deacetylation of K374 (Figure 3.13A). 

Deacetylated LSD1 binds to histone H3 in a productive conformation and allows the 

demethylation and repression of LSD1 target genes, including tumor suppressors to 

promote cancer progression (Figure 3.13A). The combined activity of HDAC1 and LSD1 

enhances H3K4 demethylation, and H3K9 and K14 deacetylation to mediate gene 
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repression (126). The mechanism of HDAC inhibitors is based on promoting acetylation of 

H3K9 and K14 to mediate gene reactivation. Here, we uncovered a secondary mechanism 

of HDAC inhibitors, which enhance LSD1 acetylation and inhibit demethylation of H3K4me2 

from target gene promoters (Figure 3.13B).  Accumulation of active chromatin marks by 

inhibition of HDAC and LSD1 activities, leads to derepression of important tumor 

suppressors, which inhibits cancer progression. The present study reveals a functional 

relationship between HDAC1 and LSD1 in regulating gene expression. 

 

Figure 3.13 - Schematic model depicting the combined activities of HDAC1 and 

LSD1 on gene expression and tumorigenesis. A) HDAC1-mediated deacetylation of 

LSD1 allows proper binding of methylated lysine of Histone H3, hence LSD1 catalyzes 

the demethylation and repression of target genes to promote tumorigenesis. HDAC1 also 

mediates gene repression through deacetylation of H3K9 and K14. B)  HDAC inhibitors 

enhance LSD1 acetylation, and reduce histone H3 binding, leading to reduced LSD1 

activity, elevated H3 methylation, and derepression of target genes to inhibit 

tumorigenesis. HDAC inhibitors promote acetylation of K9 and K14 to reactivate gene 

expression. 
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 HDAC inhibitors such as Trichostatin A reactivate LSD1 target genes, however the 

mechanism of this reactivation was not understood (111). Previous groups have shown 

that HDAC inhibitors enhance the H3K4me2 mark, which is the target site for LSD1 

demethylation (114).  Consistent with the previous findings, HDAC1 and 2 selective 

inhibitor (SHI-1:2) as well as the pan inhibitor-SAHA induce methylation of H3K4. These 

results also confirm that HDAC1 works upstream of LSD1 and regulates its activity 

through acetylation. Here, we uncovered a new mechanism where HDAC1 regulates the 

repression of LSD1 target genes through deacetytation of LSD1.  

 LSD1 consists of three domains: the SWIRM, amine oxidase (AOD), and tower 

domains. The AOD comprises the FAD binding and substrate binding lobes (127). There 

are two alpha helices (Sα1 and Sα3) rich in acidic residues in the substrate binding lobe, 

which form tight interactions with the basic residues of histone H3 and positions the 

methylated lysine correctly for LSD1-mediated demethylation (Figure 3.14) (115,118). 

The Sα1 helix (372-394 residues) is also believed to undergo a conformational change 

upon H3 binding (116). Our data suggest that acetylation of LSD1 at K374, which lies in 

the Sα1 helix, leads to altered binding between LSD1 and H3. Based on our data, we 

hypothesize that acetylation of K374 induces a conformational change that affects the 

interactions between LSD1 and H3, thereby leading to non-productive binding of H3. This 

altered binding leads to incorrect positioning of methylated lysine (H3K4me2) in the 

catalytic center, which is consistent with our data showing loss of LSD1 enzymatic activity. 

Our hypothesis is further supported by a recent report that documents the effect of three 

disease related mutations of LSD1 (E379K, D556G, Y761H) (128). Among these, E379, 

which also lies in the Sα1 helix (Figure 3.14), is important for Histone H3 binding. The 
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E379K LSD1 mutant displayed reduced Vmax and altered Km, suggesting that amino acids 

in the Sα1 helix are critical for substrate binding. 

 

Figure 3.14 – Substrate binding lobe of LSD1. A closer view of the interactions between 

the histone H3 peptide (residues are shown in green) and LSD1 (residues and alpha 

helices are shown in gray). The Sα1 helix and Sα3 helix are shown in gray and form 

multiple interactions with histone H3. The FAD cofactor is shown in yellow. Adapted from 

(115). 

 In contrast to in cellulo data, results from the in vitro demethylation assay showed 

that HDAC inhibitors have no significant effect on LSD1 activity. The utilization of histone 

H3 peptide as a substrate in the in vitro assay may not accurately reflect the activity with 

the native nucleosome. We speculate that LSD1 acetylation-mediated altered H3 binding 

is a structural phenomenon that requires a nucleosomal substrate rather than a peptide 

Sα3-helix
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substrate (129). However, further structural characterization is needed to fully uncover 

the acetylation-mediated interaction of LSD1 and H3.  

 A recent paper documented that LSD1 acetylation suppressed epithelial to 

mesenchymal transition (EMT) (129). Male absent on the first (MOF) acetyltranferase 

was responsible for the acetylation of LSD1 in epithelial cells, whereas acetylation was 

not observed in mesenchymal cells. Acetylation of LSD1 disrupted nucleosomal binding, 

inhibited demethylation activity, and reactivated LSD1 target genes, which is consistent 

with our hypothesis. Three lysines in the tower domain of LSD1 (K432, K433 and K436) 

were identified using in silico analysis and global proteomics data from phosphosite. 

Although these lysines could be possible sites for MOF-mediated acetylation, we 

speculate that acetylation of LSD1 at K374, may also contribute to the LSD1 activity 

observed. Further studies are needed to identify the acetyltransferase responsible for 

mediating K374 acetylation in LSD1. Altogether, the data from both studies suggest that 

acetylation of LSD1 affects histone H3 binding, impairs demethylase activity, and 

mediates derepression of target genes involved in important processes, such as cell cycle 

and EMT. Given that HDAC1 is highly expressed in cancer cells, HDAC1 might compete 

with MOF to deacetylate LSD1 and promote tumor progression. The data from this recent 

report also showed that LSD1 was not acetylated in mesenchymal cells and this could be 

partly or completely due to the overexpression of HDAC1 (129).  

 Here, we provide a mechanistic basis for HDAC inhibitor-mediated histone 

methylation through discovering LSD1 as a substrate of HDAC1 (Figure 3.13B). Our 

findings demonstrate the significance of discovering novel substrates of specific HDACs 

towards understanding the full activities of these enzymes in the cell. Despite a growing 
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list of acetylated proteins, the HDACs involved in regulating these proteins have not been 

well studied mainly due to the lack of substrate discovery tools. Our substrate trapping 

strategy is a simple method which could be applied to other HDAC isoforms as well. Here, 

we uncovered a previously unknown functional link between HDAC1 and LSD1 using 

trapping mutants. Given the involvement of HDAC1 and LSD1 in cancer formation, and 

the use of HDAC inhibitors as promising anti-cancer drugs, these studies will broaden the 

understanding of diverse functional roles of HDAC1 in pathological conditions and assist 

in deciphering HDAC inhibitor mechanisms of action.  

3.4 Experimental procedure 

3.4.1 Antibodies and Reagents 

FLAG (catalog number – F3165) and LSD1 (catalog number – L4418) antibodies, 

as well as anti-FLAG agarose beads (catalog number – A2220), were purchased from 

Sigma. Acetyl lysine (catalog number – 9814S), acetyl histone H3 (catalog number – 

9649P), histone H3 (catalog number – 4499), H3K4me2 (catalog number – 9725P), 

H3K9me2 (catalog number – 4658P), GAPDH (catalog number – 5174P) and secondary 

HRP conjugated rabbit (catalog number – 7074) antibodies were purchased from Cell 

Signaling. CoREST antibody was obtained from Bethyl Laboratories (catalog number – 

A300-130A-T). Protein A/G plus agarose beads were purchased from Santa Cruz. 

Secondary rabbit (Alexa fluor 488; catalog number – A11008) and mouse (Alexa Fluor 

647; catalog number – A21235) antibodies were obtained from Molecular Probes. 

Recombinant HDAC1 (catalog number - 50051) was purchased from BPS Biosciences. 

First strand cDNA synthesis kit was purchased from New England Biolabs and Trizol plus 

RNA Easy Kit was purchased from Invitrogen. Fast Sybr green master mix (catalog 
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number - 4385612) and the 96 well PCR reaction plates (catalog number - 4360954) were 

purchased from Applied Biosystems. Proteomic grade Trypsin was purchased from 

Sigma aldrich (catalog number – T6567).  The LSD1 Fluorometric Drug Discovery Kit was 

purchased from Enzo Life Sciences (catalog number – BML-AK544-0001). 

3.4.2 Expression plasmids 

HDAC1 single point mutants were previously described (38). FLAG tagged 

pCAGGs-LSD1 was a generous gift from Dr. Ryuji Hamamoto (University of Chicago) 

(130). The pCAGGs-LSD1 K374R mutant was created by Quickchange site directed 

mutagenesis (Agilent) using pCAGGS-LSD1 as a template using the following primers 

(K374R Forward primer: 5’ GGA CAA GCT GTT CCT AAA GAG AGA GAT GAA ATG 

GTA GAG CAA GAG 3’, K374R Reverse primer: 5’ CTC TTG CTC TAC CAT TTC ATC 

TCT CTC TTT AGG AAC AGC TTG TCC 3’). The mutation was confirmed by DNA 

sequencing.  

3.4.3 Cell culture 

HEK293 cells were grown in Dulbecco's modified Eagle's medium (DMEM; Life 

Technologies) supplemented with 10% Fetal Bovine Serum (FBS; Life Technologies) and 

1% antibiotic/anti-mycotic (Hyclone) at 37 0C in a 5% CO2 incubator. HeLa cells were 

grown in Ham’s F12 media (Life Technologies) supplemented with 10% (FBS and 1% 

antibiotic/anti-mycotic (Hyclone) at 37 0C in a 5% CO2 incubator. MCF7 cells were 

maintained in Eagle’s minimum essential medium (EMEM: ATCC) supplemented with 

10% FBS at 370C in a 5% CO2 environment. For inhibitor treatments, cells were grown in 

the presence of an inhibitor for an additional 24 h after the 48 h growth period. 
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3.4.4 Transient transfections of DNA into HEK293 cells 

Transfection was carried out as described in Chapter 2, section 2.4.10. 

3.4.5 Cell Lysis 

This procedure is described in Chapter 2, section 2.4.11. 

3.4.6 Immunoprecipitation 

This procedure is described in Chapter 2, section 2.4.12. 

3.4.7 Co-Immunoprecipitation 

For co-immunoprecipitation experiments using overexpressed LSD1 protein, 

FLAG-tagged LSD1 was transfected into HEK293 cells and grown for 48 h as described. 

Cells were subsequently treated with SHI-1:2 (10 µM in growth medium) or SAHA (10 µM 

in growth medium) for an additional 24 h. Cells were lysed as described (section 3.4.5) 

and  proteins were immunoprecipitated from the lysates using pre-washed anti-FLAG 

agarose beads (20 µL bead slurry) (section 3.4.6) overnight at 4 °C with rocking. For 

endogenous LSD1 co-immunoprecipitation experiments, HEK293 or HeLa cells were 

treated with SHI-1:2 (10 µM in growth medium) or SAHA (10 µM in growth medium) for 

24 h before harvesting and lysis (section 3.4.5). Cell lysates were incubated with LSD1 

antibody (5 µg) at 4 °C for 1 h and then further incubated with pre-washed protein A/G 

plus agarose beads (20 µL bead slurry) (Chapter 2, section 2.4.13) overnight at 4 °C. 

Bound proteins were washed three times with Jurkat Lysis Buffer (JLB; 1 mL) and eluted 

using SDS loading dye (25 µL; 100 mM Tris-Cl pH 6.8, 4% SDS, 20% glycerol, 0.008% 

bromophenol blue), separated by 10% SDS-PAGE (Chapter 2, section 2.4.14), 

transferred to PVDF membrane (Immobilon P), and immunoblotted with the indicated 

antibodies (Chapter 2, section 2.4.16).  
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3.4.8 Elution of FLAG-tagged proteins using FLAG peptide 

After immunoprecipitation, beads were washed three times with JLB (1 mL) and 

bound proteins were eluted by incubating for 30 min at 4 °C using 3X FLAG peptide 

(APEXBIO; 50 µL; 0.25 mg/mL in Tris-buffered saline; 20 mM Tris-Cl pH 8.0, 150 mM 

NaCl). After incubation, beads were separated by centifuging at 5 X 103 rcf (x g) for 1 min 

at 4  °C. The supernatant (50 µL) was transferred to a new eppendorf tube, mixed with 

SDS-loading dye (10 µL from 5X) and β-mecaptoethanol (10% v/v) prior to SDS-PAGE. 

3.4.9  SDS-PAGE and Western blot 

This protocol was described in Chapter 2, section 2.4.14 and 2.4.16. After Western 

blotting, chemiluminiscence signal was measured using a Fluorochem SP (Alpha 

Innotech) imager. Fluorescence signal was scanned using the Typhoon 9210 variable 

mode imager. 

3.4.10 Sypro Ruby staining 

The staining procedure is described in Chapter 2, section 2.4.15. 

3.4.11 Acetylation of recombinant LSD1 using acetic anhydride 

Baculovirus expressed LSD1 was a kind gift from Dr. Ryuji Hamamoto (University 

of Chicago)(130). For acetylation of recombinant LSD1, the same procedure was used 

as described in Chapter 2, section 2.4.18. 

3.4.12 Gel image quantification 

Gels scanned using the Fluorochem SP (Alpha Innotech) imager were quantified 

using the AlphaEase®FC software (version 6.0.0). Squares with exact area were drawn 

around each gel band and each lane was separately background corrected. The 

percentages of the background corrected acetyl lysine signal was divided by the 
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percentage of the background corrected total immunoprecipitated protein from the same 

gel. The average percentages from at least three independent trials were shown in Figure 

3.7 with mean and standard error shown in Figure A.3.12 and Figure A.3.14. 

3.4.13 Substrate trapping and inhibitor competition 

Following transfection of HEK293 cells with pBJ5-HDAC1 or pBJ5-HDAC1 mutant 

plasmids, cells were grown for 48 h and then subsequently treated with SAHA (10 µM in 

growth medium containing DMEM, 10% FBS, and 1% antibiotic/anti-mycotic) for another 

24 h before harvesting. Cells (20 X 106) were lysed in JLB (500 µL; 50 mM Tris-Cl pH 8.0, 

150 mM NaCl, 10% glycerol and 0.5% triton-X100) containing 1X protease inhibitor 

cocktail (GenDEPOT) at 4 °C for 30 min with rotation. The supernatant was collected by 

centrifugation at 13.2 X 103 rpm for 10 min at 4 °C. Wild type or mutant HDAC proteins 

were immunoprecipitated using pre-washed anti-FLAG agarose beads (20 µL bead 

slurry) by incubating at 4 °C overnight with rotation. For inhibitor competition experiments, 

SHI-1:2 (10 µM in JLB) or tubastatin (10 µM in JLB) was added during 

immunoprecipitation. After immunoprecipitation, beads were washed three times with JLB 

(1 mL) and bound proteins were eluted using 3X FLAG peptide (section 3.4.8). The eluted 

proteins were mixed with SDS loading dye (25 µL; 100 mM Tris-Cl pH 6.8, 4% SDS, 20% 

glycerol, 0.008% bromophenol blue), separated by 10% SDS-PAGE, and visualized with 

Sypro Ruby total protein stain. 

3.4.14 Mass Spectrometry  

To identify the proteins bound to the HDAC1 mutant, mass spectrometry analysis 

was used (Chapter 2, Section 2.4.21). Instead of Jurkat cells (Chapter 2), wild type or 

mutant HDAC1 proteins were expressed in HEK293 cells. 
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3.4.15 LSD1 validation 

For LSD1 validation studies, trapping experiments were performed as described 

above (section 3.4.13) and SHI-1:2 was used as the competitor. The eluted proteins were 

separated by 10% SDS-PAGE, transferred to a PVDF membrane (Immobilin P), and 

immunoblotted with LSD1 and FLAG antibodies. 

3.4.16 LSD1 acetylation assessment 

FLAG-tagged LSD1 was transfected into HEK293 cells (20 X 106) and grown for 

48 h. After 48 h, cells were incubated with SHI-1:2 (10 µM in growth medium) or SAHA 

(10 µM in growth medium) for another 24 h, harvested and lysed as described earlier. 

FLAG-tagged LSD1 protein was immunoprecipitated using anti-FLAG agarose beads (20 

µL bead slurry) at 4 °C overnight with rocking. After immunoprecipitation, beads were 

washed three times with JLB (1 mL). Bound proteins were eluted using SDS loading dye 

(25 µL), separated by 10% SDS-PAGE, transferred to PVDF membrane (Immobilon P), 

and immunoblotted with the FLAG and acetyl lysine antibodies. 

3.4.17 In vitro deacetylation assays 

For in vitro deacetylation assay, recombinant LSD1 was subjected to chemical 

acetylation using acetic anhydride (section 3.4.11). Prior to the addition of LSD1, 

recombinant HDAC1 (4 µg, BPS Biosciences) was first incubated with or without SAHA 

(1 mM in DMSO) in the HDAC assay buffer (48 µL; 50 mM Tris-Cl pH 8.0, 137 mM NaCl, 

2.7 mM KCl, 1 mM MgCl2) for 1 h at 37 °C while shaking at 400 rpm. After the 

preincubation period, acetylated recombinant LSD1 (1 µg) was incubated with or without 

HDAC1 for another 2.5 h at 37 °C while shaking at 400 rpm. The reaction was stopped 

by adding 4X SDS loading dye (final concentration 1X), and the reaction mixture  was 
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separated by 10% SDS-PAGE, transferred to PVDF membrane (Immobilin P), and 

immunoblotted with acetyl lysine, LSD1 and HDAC1 antibodies.  

3.4.18 In cellulo deacetylation assay 

For in cellulo deacetylation assays, pBJ5 expression constructs of wild type or 

C151A mutant HDAC1 were cotransfected with the pCAGGs construct of FLAG-tagged 

LSD1 into HEK293 cells, and grown for 48 h. After 48 h, cells were incubated with SAHA 

(10 µM in growth medium) for another 24 h, before harvesting and lysis as described 

(section 3.4.5). FLAG-tagged HDAC1 and LSD1 proteins were immunoprecipitated using 

pre-washed anti-FLAG agarose beads (25 µL bead slurry) at 4 °C overnight with rocking. 

Bound beads were washed three times with JLB (1 mL) and bound proteins were eluted 

using 3X FLAG peptide, as described (section 3.4.8), separated on a 10% SDS-PAGE, 

transferred to PVDF membrane (Immobilin P), and immunoblotted with acetyl lysine and 

FLAG antibodies.  

3.4.19 In vitro demethylation assay 

FLAG-tagged LSD1 was transfected into HEK293 cells (20 X 106) and grown for 

48 h. After 48 h, cells were incubated with SHI-1:2 (10 µM in growth medium) or SAHA 

(10 µM in growth medium) for another 24 h, harvested, and lysed as described earlier 

(section 3.4.5). FLAG-tagged LSD1 protein was immunoprecipitated using pre-washed 

anti-FLAG agarose beads (20 µL bead slurry) at 4 °C overnight with rocking. After 

washing three times with JLB (1 mL), beads were divided into two halves. One half of the 

immunoprecipitate was used for in vitro demethylation assays according to the 

manufacturer’s instructions (Enzo Life Sciences). The other half was eluted using 2X SDS 

loading dye, separated by 10% SDS-PAGE, and immunoblotted with FLAG antibody. The 
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fluorescence signal from the demethylation assay was background corrected using a 

reaction with all the components except the LSD1 enzyme. Then the signal of each 

sample was normalized to LSD1 immunoprecipitated from untreated cells (set to 1). The 

mean and the standard error from at least three independent trials are provided in Table 

A.3.1. 

3.4.20 In cellulo demethylation assay 

HEK293, HeLa, and MCF7 cells were treated with HDAC inhibitors for 24 h. For 

HEK293 and HeLa, SHI-1:2 and SAHA was used at a 10 µM concentration, whereas for 

MCF7, 5 µM HDAC inhibitors were used. After 24 h, cells were harvested and lysed; 

lysates (50 µg) were mixed with SDS loading dye (1X) and β-mercaptoethanol (10% v/v), 

separated by 12% SDS-PAGE, transferred to PVDF membrane (Immobilon P), and 

immunoblotted with the indicated antibodies.  

3.4.21 Identification of putative acetylated lysines in LSD1  

To identify acetylated lysines in LSD1that are regulated by HDAC1, FLAG-tagged 

LSD1 was overexpressed in HEK293 cells (20 X 106) and the cells were allowed to grow 

for 48 h. After a 48 h recovery period, cells were treated with 2% DMSO or SHI-1:2 (10 

µM in growth mediun) or SAHA (10 µM in growth medium) for another 24 h. Following 

harvesting and lysis, LSD1 was immunoprecipitated using pre-washed anti-FLAG 

agarose beads (25 µL bead slurry), separated by SDS-PAGE (10%) and visualized by 

Sypro Ruby total protein stain. LSD1 bands were excised from the Sypro Ruby stained 

gel and subjected to in gel digestion and mass spectrometry (Chapter 2, section 2.4.21) 
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3.4.22 Real Time PCR (RT-PCR) 

3.4.22.1 RNA isolation and purification 

FLAG-tagged wild type or K374R mutant LSD1 was transfected into HEK293 cells 

(5 X 106) and grown for 48 h. After 48 h, cells were incubated with SHI-1:2 (10 µM in 

growth medium) for another 24 h and harvested. After washing cells with cold PBS, RNA 

was isolated according to manufacturer’s instructions (Ambion). Briefly, cells (1 X 106) 

were lysed by adding the TRIzol® reagent (1 mL) and pipetting up and down. The lysate 

with the TRIzol® reagent was incubated at room temperature for 5 min to completely 

dissociate the nucleoprotein complex. Chloroform (200 µL/mL TRIzol®) was added, 

mixed well,  and incubated at room temperature for another 2-3 min. The tubes were 

centrifuged at 12 X 103 rcf (X g) for 15 min at 4 °C. After centrifugation, the mixture had 

separated into three layers: colorless upper phase containing RNA, an interphase 

containing DNA, and the lower red colored layer with cell debris. The upper layer with 

RNA (~400 µL) was carefully transferred to a new microcentrifuge tube and an equal 

volume of 70% ethanol was added. The tubes were inverted and everything was 

transferred into the spin cartridge. The RNA was purified according to the PureLink™ 

RNA mini kit instructions (Ambion). The concentration and the purity of the RNA were 

measured using a Nanodrop 2000 UV-vis spectrophotometer. 

3.4.22.2 cDNA synthesis 

cDNA synthesis was performed according to the manufacturer’s instructions (New 

England Biolabs). RNA (1 µg) was first incubated with oligo dT primer (2 µL from 50 µM) 

at 65°C for 5 min in a 8 µL reaction volume. After 5 min, the microcentrifuge tubes were 

spun briefly and put on ice. Then, Protoscript II Reaction Mix (10 µL from 2X) and 
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Protoscript II Enzyme Mix (2 µL from 10X) were added to the tubes containing RNA and 

oligo dT and incubated at 42 °C for 1 h. After 1 h, tubes were incubated at 80 °C for 5 min 

to inactivate the enzyme. The cDNA was then used immediately or stored at -20 °C.  

3.4.22.3 PCR reaction 

Real time PCR reaction (20 µL) included cDNA (50 ng), forward and reverse 

primers (1 µL from 10 µM primer; final 0.5 mM), RNAse free water and SYBR green 

reagent (1X). PCR was performed on a FAST 7500 instrument (Applied Biosystems). 

Each reaction was done in triplicate from four independent RNA isolations. For each 

sample, an average was taken from the expression values (Ct) of triplicates. Average 

expression values were normalized to the GAPDH control and fold change was calculated 

compared to DMSO treated wild type LSD1, which was set to 1. The mean and the 

standard error from at least four independent trials are shown in Table A.3.2 and Table 

A.3.3. The PCR cycle included 3 steps; 1) 95°C, 20s, 1 cycle 2) 95°C, 3s, 45 cycles 3) 

60°C, 30s. Gene specific primers for SCN2A, SCN3A, and GAPDH were (SCN2A forward 

primer:  5’-GAT GAG GAT GAT GAA AAT GGC-3’; SCN2A reverse primer: 5’-CTA ATT 

TTC TAA TAG GGT TGA AGG G-3’; SCN3A forward primer: 5’-CAC CAC TTC CTA CTT 

TAA TGG CA-3’; SCN3A reverse primer:  5’-AAA TAG AGA CAG GAA AGC CCA G-3’; 

GAPDH forward primer: 5’-GAA GGT GAA GGT CGG AGT C-3’; GAPDH reverse primer: 

5’-GAA GAT GGT GAT GGG ATT TC-3’ (112).  

3.4.14 Statistical analysis 

All data were presented as mean±standard error from at least three independent 

trials. One way ANOVA test was used to compare the data sets using GraphPad Prism 

software (version 5.01). p<0.05 was considered statistically significant.  
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CHAPTER 4. AN HDAC1 SNP REVEALS CROSSTALK BETWEEN ACETYLATION 

AND PHOSPHORYLATION 

4.1 Introduction  

The unregulated expression of genes related to cancer is often linked to the 

presence of a Single Nucleotide Polymorphism (SNP). A SNP is a naturally occurring 

variation at a particular site in the DNA that occurs between individuals. Cancer-related 

HDAC SNPs have been used as biomarkers to predict disease susceptibility and drug 

sensitivity (131,132). A few studies have shown an association of HDAC3 and HDAC4 

SNPs with schizophrenia and HDAC3 SNPs with diabetes mellitus (133-135). A SNP in 

the promoter region of HDAC10 was associated with increased expression and 

development of hepatocellular carcinoma (136). A recent study showed that an HDAC1 

SNP affects patient response to corticosteroids in asthmatics (137). These prior reports 

clearly suggest a link between HDAC SNPs and disease formation (138). 

To gain insights into the regulation of HDAC1, we focused on studying the effect 

of HDAC1 SNPs found in cancer. This project was initiated in collaboration with Andres 

Cisneros lab. The Cisneros lab created an algorithm named “Hypothesis Driven-SNP-

Search (HyDn-SNP-S)” to search SNPs in cancer genotyping studies stored in the 

database of Genotypes and Phenotypes (dbGAP) at NCBI (139). Using this HyDn-SNP-

S algorithm, Rebecca Swett in the Cisneros lab identified 66 cancer-related SNPs in 

HDAC 1, 3 and 6 (40 intronic SNPs and 26 exonic SNPs) (Table 4.1). Based on the 

involvement of HDAC1 in cancer, we hypothesized that a SNP of HDAC1 identified 

through Hypothesis driven SNP-search (HyDn-SNP-S) could affect its expression, activity 

and post-translational modifications. Here we performed a mutational analysis of non-
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synonymous HDAC1 exonic SNP-F437C to understand its HDAC1-related 

carcinogenesis. Our data suggest that the F437C SNP affects a crosstalk between 

acetylation and phosphorylation of HDAC1. These studies shed insights on the the 

molecular mechanism leading to HDAC deregulation and cancer onset, which may forge 

the creation of new diagnostics and cancer treatment options. 

Table 4.1- SNPs in HDAC 1, 3, 6 identified by using HyDn-SNP-S*  

 

*Table is provided by Dr. Rebecca Swett from the Cisneros lab.  

4.2 Results  

4.2.1 Effect of F437 mutation on HDAC1 expression, activity, and migration   

The presence of a SNP in a gene can affect activity, stability, expression, or post 

translational modifications. First, we created the HDAC1 F437C mutant and analyzed its 

effect on HDAC deacetylase activity and expression. Wild type or F437C mutant HDAC1 

was overexpressed in T-Ag Jurkat cells, immunoprecipitated using anti-FLAG agarose 

beads, and subjected to HDAC activity assays and gel analysis. The F437C mutant had 

a modestly reduced enzymatic activity (73±3%) compared to wild type (100%) (Figure 

4.1, lanes 2 and 4). The expression level of the F437C mutant was similar to wild type 

HDAC1 (Figure 4.1, compare lanes 2 and 4), which suggested that the F437C SNP did 

not affect the expression of HDAC1.  

The enzymatic activity of HDAC1 is affected by the presence of associated 

proteins (41). The reduced enzymatic activity could be accompanied by a change in 

HDAC 

isoform

# of Exonic

SNPs

# of Intronic

SNPs

Exonic SNPs Phenotypes

HDAC1 8 16 F437C Prostate,Melanoma,Lung

HDAC3 8 18 Q55Q, R265P,N411S Prostate,Melanoma,Lung

HDAC6 10 6 G1083D, V701A Prostate,Melanoma,Lung
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associated proteins caused by the HDAC1 exonic SNP. Infact, F437C lies in the C 

terminus of HDAC1, which is known to interact with associated proteins, such as mSIN3A 

and RbAp48. Binding of HDAC1 to mSin3a and RbAp48 can influence activity (67). We 

analysed the effect of F437 HDAC1 substitution mutants on association with RbAp48 

(Figure 4.1, bottom western blot, lanes 2-8). The data showed that mutation of F437 had 

no effect on RbAp48 association compared to wild type.  

Enzymatic activity can also be affected by post translational modifications (PTMs) 

(140). Because PTMs can lead to a change in migration through SDS-PAGE, we next 

analyzed the migration of wild type and mutant HDAC1. Interestingly, the F437C HDAC1 

mutant exhibited faster migration by SDS-PAGE compared to wild type HDAC1. Based 

on the initial gel analysis of F437C mutant, we hypothesized that the F437C SNP 

influenced a post-translational modification of HDAC1, which affects its migration.  

To study the effect of polarity or sterics at the 437 position on HDAC activity and 

migration, four additional mutants (F437L, F437A, F437S, F437Y) were created. 

Phenylalanine at 437 was mutated to serine and tyrosine to study the effect of polarity on 

HDAC activity and migration. F437 was mutated to leucine and alanine to study the effect 

of sterics. The F437 mutants displayed 73-97% remaining deacetylase activity compared 

to WT HDAC1 (Figure 1, lanes 5-8), suggesting that smaller or polar residues at the 437 

position also have an effect on HDAC activity. Interestingly, F437C, F437S and F437A 

migrated faster and F437L and F437Y migrate at an intermediate rate compared to WT 

HDAC1 (Figure 1, Western blot, compare lanes 4, 6, 7 vs 5, 8) suggesting polar or smaller 

residues at 437 position also affected HDAC1 modification. Non polar (F437L) or polar 

bulky (F437Y) residues at 437 position affect migration to a lesser extent compared to 
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F437C (Figure 1, Western blot, compare lanes 4 to 5 and 8). Overall, the altered migration 

of F437C is consistent with the hypothesis that a SNP at the F437 position is affecting a 

post-translational modification, and polarity at this position is also an important 

determinant.  

 

Figure 4.1 – Effect of HDAC1 F437 mutant on activity, expression and migration. 

Wild type or mutant HDAC1 proteins was expressed as FLAG-tagged proteins in T-Ag 

Jurkat cells and immunoprecipitated with anti-FLAG agarose beads. Catalytic activity was 

measured using an in vitro fluorescence assay (histogram). Proteins were separated by 

SDS-PAGE and immunoblotted with FLAG antibody (gel image, α-FLAG) to assess 

protein levels or RbAp48 binding (gel image, α-RbAp48). The histogram represents the 
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mean percent activity of at least three independent trials (wild type is set to 100%, Table 

A. 4.1). The standard error is shown as error bars. Repetitive trials are shown Figure 

A.4.1. 

4.2.2 Characterizing the gel shift in F437C mutant  

HDAC1 undergoes several post translational modifications, including 

phosphorylation, sumoylation, ubiquitination, and acetylation, which affect its activity, 

stability and subcellular localization (Figure 4.2)(141). HDAC1 is phosphorylated at S393, 

S421 and S423 and phosphorylation is important for HDAC deacetylase activity (137). 

Acetylation of HDAC1 occurs at K432, K438, K439 and K441, which reduces its 

enzymatic activity (142). Since the cancer-related HDAC1 SNP lies near sites of 

acetylation, we hypothesized that the F437C mutation might affect HDAC1 acetylation, 

which leads to a change in migration and enzymatic activity. We expect that wild type 

HDAC1 is unacetylated whereas F437C promotes acetylation of HDAC1. To test the 

hypothesis, we used the gel analysis of multiple mutants as an indication of modification. 

 

Figure 4.2 – Post-translational modifications of HDAC1. Only the C-terminal region of 

HDAC1 (380-482) is shown, because it is rich in PTMs. P-phosphorylation, A- acetylation, 

S-sumoylation, U – ubiquitination (143). 

To initially characterize whether the observed gel shift of F437C in gel analysis is 

due to acetylation, the four lysine residues known to be acetylated (K432, K438, K439, 

K441) were mutated to arginines (4R) using site directed mutagenesis. A previous study 
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reported lysine to arginine mutations as a means to mimic the deacetylated form of 

HDAC1, as arginines cannot undergo acetylation and maintains the positively charged 

state of lysine (142). Also, the 4R+F437C mutant was created to confirm that the gel shift 

observed with the F437C mutant is in fact due to acetylation. If the shift of HDAC1 F437C 

is due to acetylation at K432, K438, K439 and K441, we should not see a shift in either 

the 4R or the 4R+F437C HDAC1 mutants compared to wild type, as they lack lysines that 

can undergo acetylation. As expected, the 4R HDAC1 and 4R+F437C HDAC1 mutants 

migrated slower than HDAC1 F437C (Figure 4.3A, compare lanes 2 to 4 and 5). These 

data are consistent with the hypothesis that the faster migration of F437C was due to 

acetylation of HDAC1 at K432, K438, K439 and K441.  

 

Figure 4.3 – The F437C mutant affects acetylation and phosphorylation. A) Wild type 

or mutant HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag Jurkat cells, 

immunoprecipitated with anti-FLAG agarose beads, separated by SDS-PAGE, and 

N
o

 p
ro

te
in

H
D

A
C

1

F
4
3
7
C

4
R

4
R

+
F

4
3
7
C

α- FLAG

1       2       3         4      5

HDAC1 F437C

CIP          - +           - +

IP-FLAG

α-FLAG

1           2           3          4   

S
3
9
3
A

H
D

A
C

1

F
4
3
7
C

4
R

4
R

+
F

4
3
7
C

α- FLAG
Ab

N
o
 P

ro
te

in

1         2        3      4        5        6

C

B

A



124 
 

 
 

immunoblotted with FLAG antibody. Arrows indicate migration of F437C and deacetylated 

mimic mutants. Repetitive trials are shown in Figure A.4.2. B) Wild type or mutant HDAC1 

proteins were expressed as FLAG-tagged proteins in T-Ag Jurkat cells, 

immunoprecipitated with anti-FLAG agarose beads, and subjected to in vitro 

dephosphorylation using CIP (calf intestinal phosphate). Then, proteins were separated 

by SDS-PAGE and immunoblotted with the FLAG antibody. Repetitive trials are shown in 

Figure A.4.10. C) Wild type or mutant HDAC1 proteins were expressed as FLAG-tagged 

proteins in T-Ag Jurkat cells, immunoprecipitated with anti-FLAG agarose beads and 

bound proteins were separated by SDS-PAGE, and immunoblotted with FLAG antibody. 

Arrows indicate the migration of deacetylated and unphosphorylated mutants compared 

to F437C. Repetitive trials are shown in Figure A.4.11. 

4.2.3 Characterizing the PTM of F437C mutant 

To study acetylation of the F437C HDAC1 mutant, we utilized a mass 

spectrometric- based approach. Due to the high abundance of lysine (amino acid residues 

430-441 including the sites of acetylated lysines), acetylated lysines were not covered 

after trypsin digestion. Instead of acetylation, phosphorylation of WT HDAC1 at S393 was 

observed from the mass spectrometric analysis (Figure A.4.3-4.6). Although a peptide 

containing S393 was identified in the F437C mutant, S393 was unphosphorylated (Figure 

A.4.7-4.9). The data suggests that the F437C mutant negatively affected phosphorylation 

at S393. 

To confirm the phosphorylation of wild type HDAC1 that was observed by MS, we 

performed in vitro dephosphorylation assays using calf intestinal phosphatase (CIP). Wild 

type or mutant HDAC1 was overexpressed in T-Ag Jurkat cells and immunoprecipitated 
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using anti-FLAG agarose beads. The immunoprecipitated proteins were incubated with 

or without CIP and analysed by Western blotting. Interestingly, CIP-treated HDAC1 

migrated more quickly compared to untreated WT, suggesting that HDAC1 is 

phosphorylated (Figure 4.3B, compare lane 1 and 2). In contrast, migration of F437C did 

not change upon CIP treatment (Figure 4.3B, compare lane 3 and 4), suggesting it is not 

phosphorylated. The data is consistent with the phosphorylation of S393 observed with 

the mass spectrometric data. Interestingly, the migration pattern of F437C was not similar 

to CIP-treated wild type HDAC1 (Figure 4.3B, compare lanes 2 and 3), which suggests 

that F437C may have multiple PTM.  

To observe the migration pattern of dephosphorylated or deacetylated HDAC1, the 

migration of different deacetylated mimic mutants (4R and 4R+F437C) compared to the 

phosphomutant (S393A) (144) were analysed using gel electrophoresis (Figure 4.3C). 

According to MS data, wild type HDAC1 is phosphorylated and we hypothesized that 

would not be acetylated. In contrast, F437C is acetylated and not phosphorylated. 

Interestingly, the migration of deacetylated mimic 4R and 4R+F437C mutants were 

comparable to unphosphorylated S393A migration (Figure 4.3C, compare lanes 4, 5 and 

6). Like the 4R and 4R+F437C mutants, the migration of the S393A mutant is intermediate 

compared to F437C and wild type and is consistent with the migration observed with CIP-

treated wild type HDAC1 (Figure 4.3B, compare lanes 2 and 4). From the results of both 

in vitro dephosphorylation and migration analysis, we speculate that the faster migration 

of F437C is due to acetylation at K432, K438, K439 and K441 and lack of phosphorylation 

at S393.           
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4.2.4 F437C mutant affects acetylation of HDAC1 at K432 

Given the hypothesis that faster migration of F437C is due to acetylation, we 

generated additional mutants, including a phophomimetic (S393E), an acetylmimetic (4Q: 

K432Q, K438Q, K439Q and K441Q), and a phosphomutant/acetylmimetic (S393A/4Q) to 

further characterize the acetylation of F437C mutant. The expectation is the wild type 

would migrate similarly to the phosphomimetic S393E, if both are phosphorylated. As 

expected, migration of wild type HDAC1 was comparable to S393E, suggesting wild type 

HDAC1 is phosphorylated (Figure 4A, compare lanes 2 and 3). If acetylated at all four 

lysines (K432, K438, K439 and K441), the HDAC1 F437C mutant should migrate similar 

to the acetylated mimic mutants 4Q or S393A/4Q. The reason for comparing S393A/4Q 

to 4Q was to observe any effect due to S393 phosphorylation on acetylation. Interestingly, 

the HDAC1 4Q and S393A/4Q mutants migrated further than the F437C mutant (Figure 

4.4A, compare lanes 7 to 8 and 9). The migration pattern of 4Q was comparable to 

S393A/4Q suggesting that phosphorylation at S393 does not regulate acetylation (Figure 

4.4A, compare lanes 8 and 9). The different migrations observed for F437C and 4Q could 

be due to the fact that not all four lysines are modified in the F437C mutant HDAC1. 

Prior work has shown that acetylation of K432 is critical for HDAC1 activity, where 

K438, K439 and K441 has very little effect on activity (142). To test whether F437C is 

acetylated only at a single lysine, the K432Q single mutant was generated and analyzed 

by western blotting. The K432Q mutant migrated similarly to the F437C mutant (Figure 

4.4B, compare lanes 2 and 4). The data indicated that the F437C mutant likely affected 

acetylation at a single lysine of HDAC1. 
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To further confirm which lysine is acetylated in the F437C mutant, we created the 

deacetylated mimic K432R/F437C mutant and analyzed by Western blotting (Figure 

4.4C). If F437C is acetylated at the K432 residue, the migration of K432R/F437C mutant 

should be slower than that of F437C, due to a lack of acetylation at the K432 position in 

the K432R/F437C mutant. As expected, the K432R/F437C mutant migrated more slowly 

compared to the F437C mutant (Figure 4.4C, compare lanes 3 and 5), suggesting that 

the F437C mutant was specifically acetylated at K432.  

 

Figure 4.4 – The F437C mutant affects acetylation at K432.  Wild type or mutant 

HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag Jurkat cells, 

immunoprecipitated with anti-FLAG agarose beads, separated by SDS-PAGE and 

immunoblotted with FLAG antibody. Repetitive trials are shown in Figure A.4.12. 
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4.3 Discussion  

The aberrant activity of HDAC proteins is implicated in multiple diseases, including 

cancer (47,145). As a consequence, HDAC proteins have emerged as anti-cancer 

targets. Multiple HDAC inhibitors are in clinical trials, with four HDAC inhibitors approved 

as anti-cancer therapeutics (58-61). Despite the importance of HDAC proteins in cancer, 

the mechanisms leading to deregulation of HDAC activity are poorly understood. The 

presence of SNPs is well known to affect disease susceptibility, drug sensitivity, splicing, 

and post-translational modifications (131,132). SNPs are also known to cause changes 

in gene expression and protein interactions. SNPs on HDAC proteins are now gaining 

attention due to their correlation with diseases.  

Here we identified a new HDAC1 exonic SNP (F437C) using HyDN-SNP-S and 

performed a mutational analysis to understand the influence of this mutation on PTMs. 

The HDAC1 F437C SNP lies in the C terminal domain of HDAC1, which is known to bind 

to associated proteins. Also, HDAC1 is highly post-translationally modified in its C-

terminus (141). Phosphorylation of HDAC1 occurs at S393, S421 and S423. 

Phosphorylation was shown to be important for activity and complex formation (137). 

Acetylation of HDAC1 occurs at six residues (K218, K220, K432, K438, K439, and K441) 

and loss of acetylation abrogates deacetylase activity to affect gene transcription (142). 

For example, acetylation of HDAC1 at K432 is critical for its deacetylase activity. 

Acetylation of HDAC1 is regulated by the p300 and Sirt1 enzymes during differentiation 

and cellular stress (146). Regulation of HDAC activity by acetylation in different cancer 

models is still not fully understood.  
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According to our data, an HDAC1 exonic SNP at F437 resulted in reduced 

enzymatic activity compared to wild type HDAC1, but had no effect on HDAC expression. 

Interestingly, gel migration of HDAC1 SNP-F437C was faster than wild type, suggesting 

that F437C affects a PTM of HDAC1. Further, our data indicated that the presence of the 

HDAC1 SNP promoted acetylation at K432. HDAC1 SNP negatively affected the 

phosphorylation of HDAC1 at S393. A similar type of crosstalk between acetylation and 

phosphorylation was observed with histone H3, HDAC2, and p53 previously 

(20,44,147,148).  

According to the data, we hypothesized that wild type HDAC1 is phosphorylated 

at S393 and deacetylated at K432 (Figure 4A), whereas the F437C mutant is 

dephosphorylated at S393 and acetylated at K432 (Figure 4B). Due to these 

modifications, wild type HDAC1 is active and is capable of regulating gene expression. In 

contrast, the reduced activity of acetylated F437C mutant would lead to altered gene 

expression. The hypothetical model (Figure 4) explains that the reduced activity of the 

F437C mutant HDAC1 can be related to altered gene expression in various types of 

cancer, and could be used as a biomarker in different cancer models (75,149). Therefore, 

studying the details of the regulation of HDAC1 in cancer will assist in revealing 

mechanism of HDAC1-mediated cancer progression. 

HDAC overexpression shows a positive correlation with cancer initiation and 

progression (150). But several studies have found that a lower expression level of HDACs 

is also associated with cancer (75,151,152). A truncating mutation of HDAC2 in colon 

cancer causes loss of protein expression and activity (52). Presence of a SNP in HDAC10 

led to an increase in expression in hepatocellular carcinoma (136). HDAC3 and HDAC4 
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SNPs have been identified in diabetes mellitus and schizophrenia (133-135).  An HDAC1 

SNP was found to be important for response to corticosteroids (138). Here, we show that 

presence of an exonic SNP in HDAC1 protein leads to a reduction in activity, which might 

lead to the activation of oncogenes to promote carcinogenesis.  

 

Figure 4.5 – Hypothetical model. A) Wild type HDAC1 is phosphorylated at S393, but 

not acetylated at K432. Wild type HDAC1 is active and gene expression is controlled. B) 

The HDAC1 SNP at F437C inhibits phosphorylation at S393 and induces acetylation at 

K432, which leads to a reduction in enzymatic activity, to presumably affect gene 

expression controlled by HDAC1. 

Given the importance of HDAC proteins in disease formation and the use of HDAC 

inhibitor drugs in anti-cancer therapy, understanding the mechanisms leading to HDAC 

deregulation will have a direct impact on cancer biology studies and drug design efforts. 

A detailed understanding of the role of HDAC1 SNPs in different diseases will assist in 

finding new treatments in a personalized manner. 
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4.4 Experimental procedure  

4.4.1 Antibodies and Reagents 

 FLAG (catalog number – F3165) and RbAp48 (catalog number R3654) antibodies 

and as well as anti-FLAG agarose beads (catalog number – A2220), were purchased 

from Sigma. Secondary mouse (Alexa Fluoro 647; catalog number – A21235) and 

secondary rabbit (Alexa Fluoro 488; catalog number – A11008) antibodies were obtained 

from Molecular Probes. Calf intestinal phosphatase (CIP) was purchased from New 

England BioLabs (NEB). Proteomic grade trypsin was purchased from Sigma and a 

FLUOR DE LYS® HDAC fluorometric activity assay kit (BML-AK500-0001) was 

purchased from Enzo Life Sciences. 

4.4.2 Expression plasmids 

 Single point mutants of HDAC1 were created using the pBJ5HDAC1-FLAG 

expression plasmid, as previously described (38) and described in sections 4.4.3. 

4.4.3 Polymerase Chain Reaction (PCR) 

 Two step (touchdown PCR program) site directed mutagenesis was used to create 

HDAC1 mutants using the primers described in Table 4.2 (mutated bases are underlined). 

The PCR reactions included water, 10X Pfu buffer (5 μL of 200 mM Tris, 100 mM 

(NH4)2SO4, 100 mM KCl, 1% TritonX-100, 20 mM MgSO4, 1 mg/mL BSA, pH 8.8), DMSO 

(5 μL), plasmid template (1 μL from 100 ng/uL stock), forward and reverse primers (1 μL 

from 25 pmol/μL stocks), and dNTPs (2μL of 10 mM; 2.5 mM of each base). The final 

volume of the PCR reaction was 49 μL, without the Pfu enzyme. The PCR reaction was 

mixed well, briefly spun, and incubated for 1 minute at 95 °C in the thermocycler 

(Eppendorf Mastercycler Gradient). After 1 min, Pfu enzyme (1 μL) was added to the 
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tubes, and mixed well by pipetting up and down, before the program was run for 5h. The 

final concentration of reaction components are as follows, plasmid template (2ug/mL), 

dNTP (0.4mM), forward and reverse primers (0.5 pmol/uL).  The first half of the PCR cycle 

included 9 cycles of denaturing time of 95 °C for 1 min, annealing time of 1 min where the  

temperature decreased by 1°C per cycle from 60°C to 50°C, and extension time of 72 °C 

for 6 min. The second half included 15 cycles of denaturing time of 95 °C for 1 min, 

annealing step at 50 °C for 2 min, and extension time of 72 °C for 6 min. The final 

extension step was performed at 72°C for 10 min. PCR products were separated by 1 % 

agarose gel (section 4.4.4) and used for subsequent steps. 

 PCR fragments amplified from the first PCR reaction were used as the template 

for the second PCR reaction. The same touch down PCR program was used for the 

amplification of full length HDAC1 gene, which was then used in homologous 

recombination (section 4.4.6).  
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Table 4.2 – List of primers used in mutagenesis* 

* Underlined residues represents the mutations introduced. 

4.4.4 DNA agarose gel electrophoresis 

 PCR reaction products (50uL; section 4.4.3) or digested products (20uL;section 

4.4.5) were mixed with 6X DNA gel loading dye (10 μL; 15% Ficoll®-400, 66 mM 

EDTA,19.8 mM Tris-HCl, 0.102% SDS, 0.09% bromophenol blue, pH 8.0) and separated 

by 1% agarose gel by running at 120 V for 1 h in 1X tris acetate EDTA buffer (1X TAE; 

40 mM Tris, 1 mM EDTA, 2.3 mL glacial acetic acid). Gel bands were excised from the 

gel using a razor blade, and purified using the QIAgen gel extraction kit (cat # 28704) and 

then used for homologous recombination. 

Primer Sequence (5’-3’)

HD100-For GCC AGA ATG CGG CCG CAT GGC GCA G

pBJ5-153 Rev TAT CAT GTC TGG ATC CGG 

F437C for GG GGC CGC AAG AAC TCT TCC AAC TGC AAA AAA GCC AAG AGA GTC

F437 rev GAC TCT CTT GGC TTT TTT GCA GTT GGA AGA GTT CTT GCG

F437L for GG GGC CGC AAG AAC TCT TCC AAC TTA AAA AAA GCC AAG AGA GTC

F437A for GG GGC CGC AAG AAC TCT TCC AAC GCC AAA AAA GCC AAG AGA GTC

F437S for GG GGC CGC AAG AAC TCT TCC AAC TCC AAA AAA GCC AAG AGA GTC

F437Y for GG GGC CGC AAG AAC TCT TCC AAC TAC AAA AAA GCC AAG AGA GTC

4R for GAG GGA GAG GGG GGC CGC AGG AAC TCT TCC AAC TTC AGA AGA GCC AGG AGA 

GTC AAA ACA GAG GAT G

4R,Q,A rev GCG GCC CCC CTC TCC CTC CTC TTC AG

4R+F437C GAG GGA GAG GGG GGC CGC AGG AAC TCT TCC AAC TGC AGA AGA GCC AGG AGA 

GTC AAA ACA GAG GAT G

4Q for GAG GGA GAG GGG GGC CGC CAG AAC TCT TCC AAC TTC CAA CAA GCC CAG AGA 

GTC AAA ACA GAG GAT G

K432Q for GAG GGA GAG GGG GGC CGC CAG AAC TCT TCC AAC TTC AAA AAA GC

K432R for GAG GGA GAG GGG GGC CGC AGG AAC TCT TCC AAC TTC AAA AAA GC

K432R/F437C for GAG GGA GAG GGG GGC CGC AGG AAC TCT TCC AAC TGC AAA AAA GCC AAG AG
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4.4.5 Restriction digestion 

 pBj5-HDAC1 (67) plasmid was digested with Not1 (Promega) and EcoR1 

(Promega) enzymes by incubating at 37 °C for 2 h while shaking at 250 rpm. The 

restriction digestion reaction mixture contained pBH5HDAC1 plasmid (1 μL of 1 μg/μL), 

buffer H (2 μL; Promega), BSA (1 μL of 2 mg/mL), Not1 and EcoRI (1 μL each 10 U/μL) 

and water (14 μL). The final concentration of all components were as follows, 

pBH5HDAC1 plasmid (50 μg/mL), buffer H (1X), BSA (0.1 mg/mL), Not1 and EcoRI (0.5 

U). After incubation, the digested products were separated by agarose gel electrophoresis 

(section 4.4.4) and desired band (3.3 kb) was excised and purified from the gel using the 

QIAgen gel extraction kit (cat # 28704).  

4.4.6 Homologous recombination 

 To combine the Not1 and EcoRI digested plasmid (section 4.4.5) with the mutant 

HDAC1 PCR product (section 4.4.3), homologous recombination was used. KC8 cells (50 

μL, section 4.4.7) were thawed on ice and mixed with purified PCR insert (5 μL; section 

4.4.3), digested pBJ5 plasmid (5 μL; section 4.4.5), KCM buffer (10 μL of 0.1 M KCl, 30 

mM CaCl2, 50 mM MgCl2) and 30 μL of water. The final concentration of the buffer was 

0.01 M KCl, 3 mM CaCl2, 5 mM MgCl2 in a 100 μL total volume. The mixture was 

incubated on ice for 20 min before heat shock was given at 42 °C for 60s. Cells were then 

incubated on ice for 2 min and LB media (500 μL; 1% peptone, 0.5% yeast extract and 

1% NaCl) was then added. The mixture was incubated at 37 °C for 1.5 h while shaking at 

250 rpm. The cells were harvested by centrifuging at 13.2X103 for 10 min and 400 uL of 

the supernatant was removed. The remaining cells were resuspended in the remaining 

media (200 uL), and plated on LB-agar plates containing ampicillin (100ug/mL). The 
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plates were incubated overnight (12-16 h) at 37 °C and observed for the presence of 

colonies that contained the pBJ5-HDAC1 plasmid. Single colonies were inoculated in LB 

media containing ampicillin (5 mL), grown overnight                                                                                                                              

at 37 °C with shaking at 250 rpm, and subjected to miniprep or midiprep plasmid 

purification (Chapter 2; section 2.4.8). After verification for the presence of the HDAC1 

insert by restriction digestion (section 4.4.5), the mutation was confirmed by DNA 

sequencing (University of Michigan DNA Sequencing Core). 

4.4.7 Competent cell preparation 

 KC8 cells were a kind gift from Finley lab at Wayne State University. A single 

colony from an LB agar plate with ampicillin antibiotic (100 μg/mL) was inoculated in LB 

media (5 mL) and grown overnight at 37 °C  while shaking at 250 rpm. The following day, 

the overnight culture was diluted 200-fold (1 mL of overnight grown culture was added to 

200 mL of new LB media) and grown for a few hours (typically 3-4 h) until the OD600 

reached 0.3-0.5. Once the OD600 was 0.5, cells were harvested by spinning at 4000 rpm 

for 10 min at 4 °C. Cells were resuspended in a cold CaCl2 solution (250 mL; 50 mM), 

and incubated on ice for 30 min, followed by centrifugation at 4000 rpm for 10 min. The 

cell pellet was resuspended in cold CaCl2 (10 mL; 50 mM) containing glycerol (10%) and 

incubated 1 h on ice. Following incubation on ice, cells were aliquoted (200 uL) into 

microcentrifuge tubes and stored at -80 °C until further use. 
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4.4.8 Bacterial Transformation 

 The protocol was described in Chapter 2, section 2.4.7. The protocol is described 

for DH5α and it is also same for KC8 cells. 

4.4.9 Plasmid isolation (Miniprep and midiprep) 

 The protocol was described in Chapter 2, section 2.4.8. 

4.4.10 Cell culture 

 The protocol was described in Chapter 2, section 2.4.3. 

4.4.11 Transient transfections 

 The protocol was described in Chapter 2, section 2.4.9. 

4.4.12 Cell lysis 

 The protocol was described in Chapter 2, section 2.4.11. 

4.4.13 Immunoprecipitation 

 The protocol was described in Chapter 2, section 2.4.12. 

4.4.14 Co-Immunoprecipitation 

 For co-immunoprecipitation of overexpressed proteins, wild type or mutant 

HDAC1-FLAG was transfected into T-Ag Jurkat cells (section 4.4.11). After lysis as 

described (section 4.4.12), FLAG-tagged HDAC1 in the lysates (2 mg) was 

immunoprecipitated using pre-washed anti-FLAG agarose beads (20 µL bead slurry) by 

incubating at 4 °C overnight with rocking. Bound beads were washed three times with 

Jurkat Lysis Buffer (JLB; 1 mL; 50 mM Tris-Cl pH 8.0, 150 mM NaCl, 10% glycerol, and 

0.5% triton-X100) and bound proteins were eluted with 2X SDS loading dye (25 µL: 50 

mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 0.004% bromophenol blue), separated by 
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10% SDS-PAGE (section 4.4.15), transferred to PVDF membrane (Immobilon P), and 

immunoblotted with FLAG and RbAp48 antibodies (section 4.4.15). 

4.4.15 SDS-PAGE and western blot 

 The protocol was described in Chapter 2, section 2.4.14 and 2.4.16. 

4.4.16 HDAC activity assay 

 HDAC activity assays were performed using the Fluoro de Lys™ Fluorometric 

Activity Assay kit (Enzo Life Sciences). Following transfection of FLAG-tagged wild type 

or mutant HDAC1 plasmids (section 4.4.11), cells were lysed in JLB (500 μL) containing 

1X protease inhibitor cocktail (GenDEPOT) at 4 °C for 30 min with rotation (section 

4.4.12). Protein concentration of the lysates were measured by Bradford assay. Wild type 

or mutant HDAC1 was immunoprecipitated from the T-Ag Jurkat lysates (2 mg) using pre-

washed anti-FLAG agarose beads (20 μL bead slurry) by incubating overnight at 4 °C 

with rotation. The immunoprecipitates were washed three times with JLB (1 mL) and 

divided into two halves. One half was used in the HDAC activity assay, whereas the 

second half was used for the gel analysis. For the activity assay, immunoprecipitated 

HDAC1 on bead was resuspended in the HDAC assay buffer (25 µL; 50 mM Tris-Cl, pH 

8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2) and incubated with the Fluoro de Lys 

substrate (25 µL of 100 uM) at 37 0C for 45 min with shaking (750 rpm). Next, the 

developer (50 µL of a 1X solution) was added and incubated for another 10 min, with 

readings (fluorescence; ex: 360 nm, em: 450 nm) taken using the GENios Plus plate 

reader (Tecan). The fluorescence signal was background corrected using a reaction with 

all the components except the HDAC enzyme. Then, the signal of each mutant was 

normalized to wild type HDAC1 (set to 100%). The means and the standard errors from 
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at least three independent trials are shown in Figure 4.1. For the gel analysis, bound 

proteins were eluted using 2X SDS loading dye (25 μL; 50 mM Tris-Cl pH 6.8, 2% SDS, 

10% glycerol, 0.004% bromophenol blue), separated by 10% SDS-PAGE, transferred to 

a PVDF membrane (Immobilin-P) and immunoblotted with FLAG antibody. 

4.4.17 Mass Spectrometric analysis 

 To identify the possible post-translational modifications on wild type and F437C 

mutant HDAC1, FLAG-tagged wild type or F437C mutant HDAC1 were overexpressed in 

T-Ag Jurkat cells (section 4.4.11). Following harvesting and lysis (section 4.4.12), wild 

type or F437C mutant HDAC1 were immunoprecipitated using pre-washed anti-FLAG 

agarose beads (20 μL bead slurry) by incubating overnight at 4 °C with rocking (section 

4.4.13). Bound proteins were washed three times with JLB (1 mL), eluted using 2X SDS 

loading dye (25 μL; 50 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 0.004% bromophenol 

blue), separated by 10% SDS-PAGE, and stained with Sypro Ruby total protein stain. Gel 

slices containing the HDAC1 proteins were excised from the Sypro Ruby stained gel, 

trypsin digested, and subjected to MS analysis, as described in chapter 2, section 2.4.21 

(105). 

4.4.18 In vitro dephosphorylation assays 

 For in vitro dephosphorylation assays, wild type or mutant HDAC1-FLAG were 

transfected into T-Ag Jurkat cells, as described (section 4.4.11). FLAG-tagged HDAC1 

protein in the lysates (2 mg) were immunoprecipitated using pre-washed anti-FLAG 

agarose beads (20 µL bead slurry) by incubating at 4 °C overnight with rocking (section 

4.4.13). Bound beads were washed three times with JLB (1 mL), and beads were 

resuspended in NEB buffer 3.1 (20 µL; 100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 
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100 µg/mL BSA, pH 7.9; New England Biolabs), and incubated at 37 oC for 1 h in the 

absence or presence of Calf Intetinal Phosphatase (CIP; NEB; 100 U). Then, the reaction 

was stopped by adding 2X SDS loading dye (10 µL) and proteins were separated by 10% 

SDS-PAGE, transferred to PVDF membrane (Immobilon P), and immunoblotted with 

FLAG antibody. 
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CHAPTER 5 - CONCLUSIONS AND FUTURE DIRECTIONS 

 HDAC proteins regulates key cellular processes such as proliferation, 

differentiation and apoptosis. As a consequence, dysregulation of HDAC activity and 

expression is associated with multiple diseases, including cancer. Substrate identification 

is an effective approach to fully understand the function of individual HDACs in 

physiological processes as well as in diseases. Despite the growing list of acetylated 

proteins, very few non-histone substrates have been identified for HDAC1 due to the lack 

of substrate discovery tools.  

 The main goal of my first dissertation project was to develop a method to identify 

substrates of HDAC1. By applying a substrate trapping strategy to HDAC1, few new 

substrates have been identified. Among these hits, Eg5 or Kinesin like protein 11 and 

Lysine specific histone demethylase (LSD1) were fully characterized as novel substrates 

of HDAC1.  

 Three inactive mutants (H141A, F150A and C151A) were selected from HDAC1 

active site and screened for substrate trapping ability in jurkat cells. All three mutants 

were able to bind to Eg5, suggesting that Eg5 could be a potential substrate of HDAC1. 

The results indicated that HDAC1 deacetylates Eg5 at K890 which affects ATPase activity 

of Eg5. HDAC1 colocalized with Eg5 during prophase in mitosis. HDAC1 and 2 selective 

inhibitor increased cell cycle arrest at mitotic phase. Further mechanistic studies proved 

that mitotic arrest phenotype observed with HDAC1 and 2 selective inhibitor was mainly 

due to inactivation of Eg5 and formation of monopolar spindles. The study clearly 

uncovered a previously unknown function of HDAC1 during mitosis and the mechanism 

of HDAC1 and 2 selective inhibitor induced mitotic arrest. 
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 The substrate trapping strategy was extended to HEK293 cells to confirm that this 

method can be applied to multiple cell lines to discover non-histone substrates of HDAC1. 

The C151A mutant displayed good trapping ability compared to other mutants tested. 

Three new substrates were identified using mass spectrometry. Among these three hits, 

LSD1 was further validated using secondary assays to understand the functional link 

between HDAC1 and LSD1. The data indicated that HDAC1 deacetylates LSD1 at K374. 

Acetylation of LSD1 at K374 affected the histone H3 binding and target gene expression. 

The study revealed a crosstalk between two epigenetic enzymes as well as a secondary 

mechanism of HDAC inhibitors on LSD1 activity. Overall, identification of two non-histone 

substrates of HDAC1 revealed new functions of HDAC1 and the mechanism of action of 

HDAC inhibitors. 

 The substrate trapping strategy seems an effective tool to identify substrates of 

HDAC1. The method can be applied to other HDAC isoforms as well. This project could 

be directed to multiple directions in the future. As initial studies were performed with three 

strictly conserved active site residues, multiple mutants can be screened from the 11 A 

and 14 A channels to find the optimal substrate trapping mutant. Most importantly, the 

trapping strategy could be applied to compare the substrate profile of HDAC1 in 

physiological conditions and pathological conditions using respective cell lines. Further, 

the strategy can be applied to class II HDAC isoform, HDAC6. Given that HDAC6 has two 

deacetylase domains, this method can be applied to distinguish between substrate 

specificities among the two domains. In conclusion, this method holds a great promise to 

broaden the substrate profile and regulation of HDAC1 in normal and disease conditions 

in the future. 
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 The second project of my dissertation focused on undersdanding the effect of 

HDAC1 SNP on expression, activity and post-translational modifications.  Presence of 

HDAC1 exonic SNP-F437C, reduced the deacetylase activity, increased acetylation at 

K432. Further, presence of F437C negatively affected the phosphorylation of HDAC1 at 

S393. These studies are helpful in understanding how mutations could affect enzymatic 

activity or modifications in disease conditions. Detailed understanding of the role of 

HDAC1 SNPs in different diseases will assist in finding new treatments in a personalized 

a manner.  
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APPENDIX A – CHAPTER 2 REPRODUCIBLE TRIALS  

 

 

Figure A 2.1 - Substrate trapping by HDAC1 mutants.  Wild type (WT) and mutant 

HDAC1 (indicated below each lane) were expressed as Flag-tagged proteins in T-Ag 

Jurkat cells, immunoprecipitated with anti-Flag agarose, separated by 12% (A) or 16 % 
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(B) SDS-PAGE, and visualized with SyproRuby total protein stain. Arrows indicate 

immunoprecipitated HDAC1 or possible substrates (p130, p95, p45, or histones) 

observed in the absence but not presence of competitive active site inhibitor SAHA (0.8 

mM). Repetitive trials are shown in Figure 2.2. 

 

Figure A.2.2 - Peptides of Eg5 (KIF11) observed in the substrate trapping 

experiment. Primary sequence of Eg5 (KIF11), which was identified in the substrate 

trapping experiment as p130. Peptides observed in the MS/MS analysis are highlighted 

in yellow. The parameters were set to protein threshold 95%, peptide threshold 99% with 

minimum number of peptides set to 2.  
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A)  Peptide sequence- TVLQELINVLK 

 

B) Peptide sequence- FCADSDGFSQELR 

 

Figure A.2.3 – Spectra of Eg5 (KIF11) peptides identified by MS/MS analysis.  The 

annotated spectra of Eg5 (KIF11) peptides identified by MS/MS analysis (Figure 2.2). 

Each spectrum represents the different peptides identified from Eg5. 
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Figure A.2.4 - Peptides of actin observed in the substrate trapping experiment. 

Primary sequence of cytoplasmic actin identified in the substrate trapping experiment as 

p45. Peptide sequences observed in the MS/MS analysis are highlighted in yellow, 

while modified amino acids are in green. The parameters were set to protein threshold 

95%, peptide threshold 99% with minimum number of peptides set to 2.  

Peptide sequence- AVFPSIVGRPR 

 

Figure A.2.5– Spectrum of actin peptide identified by MS/MS analysis.  The 

annotated spectrum of one of the cytoplasmic actin peptides identified by MS/MS 

analysis. 
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B 

 

C 

 

Figure A.2.6 - Eg5 interacts with HDAC1. A) Wild type (WT) or C151A HDAC1 were 

expressed as FLAG-tagged proteins in T-Ag Jurkat cells, immunoprecipitated (IP) with 

anti-Flag agarose in the absence (lanes 1 and 2) or presence (lane 3) of SAHA (3 mM), 

separated by SDS-PAGE, and Western blotted with Eg5 (top), acetyl-lysine (AcLys, 

middle), or Flag (bottom) antibodies. Three trials are shown here with a fourth shown in  

Figure 2.3A. B) Endogenous HD1 and Eg5 were immunoprecipitated (IP) separately from 

T-Ag Jurkat cells, separated by SDS-PAGE, and Western blotted with Eg5 (top) or 

HDAC1 (bottom) antibodies. Two trials are shown here with a third shown in the Figure 

2.3B. C) HDAC1-Flag and Eg5-myc were coexpressed in HEK293 cells, 

immunoprecipitated (IP) separately with Flag antibody, separated by SDS-PAGE, and 

Western blotted with myc (top) or Flag (bottom) antibodies. Agarose beads without bound 

antibodies were used as an immunoprecipitation controls (Figure A 2.6C-lane 1).  Three 
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trials are shown here with a fourth shown in Figure 2.3C. For all gels, arrows indicate the 

position of Eg5 and HDAC1 in the gels. 

             Trial 1                                           Trial 2                                           Trial 3 

 

Figure A.2.7 – Independent trials used for quantification of in vitro assay with 

recombinant HDAC1. Western blot analyses from three independent trials (first trial is 

shown in Figure 2.6A). These blots were quantified with the raw data shown as a Table 

A.2.1 or a histogram (Figure 2.6B).  To assure equal protein loading, the Eg5 bands in 

the Eg5 Western blot were quantified with the data shown in Table A.2.2. 

Table A.2.1 – Quantification of AcLys signal from in vitro deacetylation assay 

 Trial 

1 

Trial 

2 

Trial 

3 

Mean Standard 

Error 
rEg5 Ac-Lys  100 100 100  100 0.0 

rEg5 Ac-Lys + rHDAC1 39 19 39  32 7 

rEg5 Ac-Lys + rHDAC1 + 

SAHA 

70 43 71 61 9 

*Data shown in Figure 2.6B. 

Table A.2.2 - Quantification of Total Eg5 signal from in vitro deacetylation assay 

 Trial 1 Trial 2 Trial 3 Mean Standard Error 

Eg5  100 100 100 100 0.0 

rEg5 + rHDAC1 106 116 127 115 5 

rEg5 + rHDAC1 + SAHA 98 127 118 114 9 

*Data shown in Figure A.2.8 
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Figure A.2.8 – Quantification of total Eg5 protein. Raw data is shown in the table 

A.2.2. ns- not significant. 

                   Trial 1                                       Trial 2                                     Trial 3        

        

 
Figure A.2.9 – Independent trials used for quantification of deacetylation with 

cellular HDAC1. Western blots from three independent trials (Trial 1 is shown in Figure 

2.6C) were quantified with the raw data shown in Table A.2.3 or histogram (Figure 2.6D).  

To assure equal protein loading, the Eg5 bands in the Eg5 Western blot were quantified 

with the data shown as a Table A.2.4. 
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Table A.2.3 – Quantification of AcLys signal from in cellulo deacetylation assay 

 Trial 

1 

Trial 

2 

Trial 

3 

Mean Standard 

Error 
Eg5 Ac-Lys  100 100 100  100 0.0 

Eg5 Ac-Lys + HDAC1 12 11 16  13 2 

Eg5 Ac-Lys + HDAC1 + 

SAHA 

90 120 80 97 12 

*Data shown in Figure 2.6D. 

Table A.2.4 – Quantification of Eg5 signal from in cellulo deacetylation assay 

 Trial 1 Trial 2 Trial 3 Mean Standard Error 

Eg5  100 100 100 100 0.0 

Eg5 + HDAC1 97 90 110 99 6 

Eg5 + HDAC1 + SAHA 96 110 90 92 2 

*Data shown in Figure A.2.10. 

 

Figure A.2.10 – Quantification of total Eg5 protein. Raw data is shown in Table 

A.2.4. ns- not significant 
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Figure A 2.11 – K146 is not a predominant Eg5 acetylation site regulated by HDAC1.  

A) Myc-tagged wild type or K146A mutant Eg5 were transfected into HEK293 cells, 

treated with SAHA for 24 h, and immunoprecipitated with a myc antibody. SDS-PAGE 

separation and immunoblotting were performed with acetyl lysine (top) and myc (bottom) 

antibodies.  No change in the acetylation levels of the wild type and mutant proteins were 

observed (top gel), which indicated that K146 is not a predominant acetylation site on 

Eg5. Two trials are shown here with a third shown in Figure 2.7A. B) FLAG-tagged wild 

type (WT) or C151A mutant HDAC1 were cotransfected with myc-tagged wild type or 

K146A mutant Eg5 into HEK293 cells. Wild type and C151A mutant HDAC1 were 

immunoprecipitated using anti-FLAG agarose beads, separated by SDS-PAGE, and 

immunoblotted with myc (top) and FLAG (bottom) antibodies. No changes in the levels of 

immunoprecipitated Eg5 were observed with either wild type or mutant proteins (top gel), 

which indicated that K146 is not a site bound and regulated by HDAC1. Two trials are 

shown here with a third shown in Figure 2.7B. 

α-AcLys

α-Eg5

Eg5       K146A

IP: myc

AcEg5

Eg5

1 2 1 2

α-AcLys

α-Eg5

Eg5      K146A

IP: myc

AcEg5

Eg5

Trial 2 Trial 3

α -FLAG

α –myc

IP : FLAG

WT 

Eg5
C151A

Eg5

WT

K146A

C151A

K146A

1            2             3           4

Eg5-myc

HDAC1-

FLAG

1         2          3        4         5         6    

α -FLAG

α –myc

IP : FLAG

WT 

Eg5

C151A

Eg5

WT

K146A

C151A

K146A

Eg5-myc

HDAC1-

FLAG

IgG Lys

Trial 2 Trial 3

A

B



152 
 

 
 

A. Eg5 + DMSO sample  - sequence converage 

 

B. Eg5 + DMSO sample  - peptide identified 

  Peptide sequence- (K)QHNIFLDQMTIDEDKLIAQNLELNETIK(I) 
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C. Eg5 + SHI-1:2 sample  - sequence coverage 

 

D. Eg5 + SHI-1:2 sample  - peptide identified 

Peptide sequence- (K)QHNIFLDQMTIDEDKAcLIAQNLELNETIK(I) 
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E. Eg5 + SAHA sample  - sequence coverage 

 

F. Eg5 + SAHA sample  - peptide identified 

Peptide sequence- (K)QHNIFLDQMTIDEDKLIAQNLELNETIK(I) 
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G. Eg5 + overexpressed HDAC1 sample  - sequence coverage 

 

H. Eg5 + overexpressed HDAC1 sample  - peptide identified 

Peptide sequence- (K)QHNIFLDQMTIDEDKLIAQNLELNETIK(I) 

 

Figure A.2.12- MS analysis of K890. A) Primary sequence of Eg5 (KIF11) identified in 

the control DMSO-treated sample. Peptides observed in the MS/MS analysis are 

highlighted in yellow. The parameters were set to protein threshold 95%, peptide 

threshold 99% with minimum number of peptides set to 2 for all samples discussed here. 

B) Spectrum of the Eg5 peptide containing K890 from control DMSO-treated sample 

identified by MS/MS analysis (unacetylated K890 shown in red).  C) Primary sequence 

of Eg5 (KIF11) identified in the SHI-1:2-treated sample. Peptides observed in the MS/MS 

analysis are highlighted in yellow. D) Spectrum of Eg5 peptide containing acetylated 

K890 from the SHI-1:2-treated sample identified by MS/MS analysis (acetylated K890 

shown in red). E) Primary sequence of Eg5 (KIF11) identified in the SAHA-treated 
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sample. Peptides observed in the MS/MS analysis are highlighted in yellow. F) Spectrum 

of Eg5 peptide containing K890 from SAHA treated sample identified by MS/MS analysis 

(unacetylated K890 shown in red). G) Primary sequence of Eg5 (KIF11) identified in the 

Eg5 sample where HDAC1 was overexpressed. Peptides observed in the MS/MS 

analysis are highlighted in yellow. D) Spectra of Eg5 peptide containing K890 from Eg5 

where HDAC1 was overexpressed identified by MS/MS analysis (unacetylated K890 

shown in red). 

       Trial 1                       Trial 2                       Trial 3                    Trial 4 

 

Figure A.2.13 – Independent trials used for quantification of K890R aceylation. A-

D) Western blots from four independent trials (Trial 3 is shown in Figure 2.8A) were 

quantified with the raw data shown in Table A.2.5 or as a histogram (Figure 2.8B).  To 

assure equal protein loading, the Eg5-myc bands in the myc Western blot were quantified 

with the data shown as a Table A.2.6 or histogram (Figure A.2.14) 

Table A.2.5 – Quantification of AcLys signal from WT and K890R mutant 

 Trial 1 Trial 2 Trial 3 Trial 4 Mean Standard Error 

Eg5 AcLys 100 100 100 100 100 0.0 

K890R AcLys  31 28 29 32 30 1 

*Data shown in Figure 2.8B. 
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Table A.2.6 – Quantification of myc signal from WT and K890R mutant 

 Trial 1 Trial 2 Trial 3 Trial 4 Mean Standard Error 

Eg5-myc 100 100 100 100 100 0.0 

K890R myc 100 104 102 104 103 1 

*Data shown in Figure A.2.14. 

 

Figure A.2.14 – Quantification of myc signal from WT and K890R mutant. Raw data 

is shown in the table A.2.6.  ns - not significant 
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                            Trial 2                                                         Trial 3                     

 

Figure A.2.15 – Acetylation of Eg5 at K890 mediates the interaction between Eg5 

and HDAC1. FLAG-tagged wild type (WT) or C151A mutant HDAC1 were cotransfected 

with myc-tagged wild type or K890R mutant Eg5 into HEK293 cells. Wild type and C151A 

mutant HDAC1 were immunoprecipitated using anti-FLAG agarose beads, separated by 

SDS-PAGE, and immunoblotted with myc (top) and FLAG (bottom) antibodies. Two trials 

are shown here with a third shown in the Figure 2.8.C. 
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     Trial 3                                                         

 

Figure A.2.16 – Repetitive trials for endogenous and overexpressed HDAC1 

localization in the nucleus. HEK293 cells expressing FLAG-tagged HDAC1 (A) or 

HEK293 cells alone (B) were fixed and stained with FLAG (A) or HDAC1 (B) antibodies 

(red). Cells were counterstained with DAPI (blue) and visualized using fluorescence 

microscopy. Both endogenous and overexpressed HDAC1 were predominantly nuclear. 

The data suggests that the FLAG tag does not affect the localization of HDAC1-FLAG. 

Two trials are shown here with the third shown in Figure 2.9. 
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Figure A.2.17 – Repetitive trials for Eg5 and HDAC1 localization in mitotic phases. 

HEK293 cells were fixed and stained with HDAC1 (red) and Eg5 (green) antibodies. Cells 

were counterstained with DAPI (blue). Fluorescence microscopy was used to visualize 

HDAC1 and Eg5 in each cell. Cells in interphase (A), prophase (B), metaphase (C), 

anaphase (D), and telophase (E) are shown. HDAC1 (red) and Eg5 (green) images were 

used to generate merged images (yellow). Two trials are shown here with the third shown 

in Figure 2.10. 
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APPENDIX B – CHAPTER 3 REPRODUCIBLE TRIALS  

 

Figure A.3.1–Repetitive trials for substrate trapping in HEK293 cells. Wild type (WT) 

or mutant HDAC1 (indicated above each lane) were expressed as Flag-tagged proteins 

in HEK293 cells and then cells were treated with 10 µM SAHA for 24 h to induce robust 

protein acetylation. Cells were lysed and proteins were immunoprecipitated with anti-Flag 

agarose in the presence or absence of 10 µM SHI-1:2. Bound proteins were separated 

by SDS-PAGE, and stained with Sypro Ruby total protein stain. Arrows point to HDAC1 

or possible substrates (p100, p55, p38) present in mutant but not WT or inhibitor treated 

samples. Two trials are shown here, with the third shown in the Figure 3.1 
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Figure A.3.2–Repetitive trials for substrate trapping and inhibitor competition. Wild 

type (WT) or mutant HDAC1 (indicated below each lane) were expressed as Flag-tagged 

proteins in HEK293 cells and then cells were treated with 10 µM SAHA for 24h to induce 

robust protein acetylation. Cells were lysed and proteins were immunoprecipitated with 

anti-Flag agarose in the presence or absence of A) 2 mM SAHA, B) 0.5 mM SHI-1:2, C) 

10 µM SHI-1:2, and 10 µM Tubastatin (TubA) . Bound proteins were separated by SDS-

PAGE, and stained with Sypro Ruby total protein stain. Arrows point to HDAC1 or possible 

substrates (p100, p55, p38) present in mutant but not WT or inhibitor treated samples. 

Several trials are shown here, with an additional trial shown in Figure 3.2 and 3.3. 
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A 

 

B 

 

 

Figure A.3.3 – Peptides of LSD1 observed in the wild type HDAC1 substrate 

trapping experiment. A) Primary sequence of LSD1, which was identified in the 

substrate trapping experiment as p100. Peptides observed in the MS/MS analysis are 

highlighted in yellow. Green color represents the oxidation of methionine. The parameters 

were set to protein threshold 95%, peptide threshold 99% with minimum number of 

peptides set to 2. B) Spectrum of one representative peptide from LSD1 identified by 

MS/MS analysis after trapping with wild type HDAC1 is shown below the sequence. 

 

 

 

 

 

Peptide sequence - (K)APILLALVAGEAAGImENISDDVIVGR(C) 
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B  

      Peptide sequence - (K)EKDEmVEQEFNR(L) 

 

 

Figure A.3.4 – Peptides of LSD1 observed in the HDAC1 C151A mutant substrate 

trapping experiment. A) Primary sequence of LSD1, which was identified in the 

substrate trapping experiment as p100. Peptides observed in the MS/MS analysis are 

highlighted in yellow. Green color represents the oxidation of methionine. The parameters 

were set to protein threshold 95%, peptide threshold 99% with minimum number of 

peptides set to 2.  B) Spectrum of one representative peptide from LSD1 identified by 

MS/MS analysis after trapping with C151A HDAC1 is shown below the sequence. 
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B   

     Peptide sequence - (R)QASQGmVGQLAAR(R) 

 

Figure A.3.5 - Peptides of RuvB like 2 observed in the wild type HDAC1 substrate 

trapping experiment. A) Primary sequence of RuvB like 2, which was identified in the 

substrate trapping experiment as p55. Peptides observed in the MS/MS analysis are 

highlighted in yellow. Green color represents the oxidation of methionine. The parameters 

were set to protein threshold 95%, peptide threshold 99% with minimum number of 

peptides set to 2. B) The annotated spectrum of one representative RuvB like 2 peptides 

identified by MS/MS analysis after trapping with wild type HDAC1 is shown below the 

sequence. 
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    Peptide sequence - (K)GTEVQVDDIKR(V) 

 

Figure A.3.6 - Peptides of RuvB like 2 observed in the HDAC1 C151A mutant 

substrate trapping experiment. A) Primary sequence of RuvB like 2, which was 

identified in the substrate trapping experiment as p55. Peptides observed in the MS/MS 

analysis are highlighted in yellow. Green color represents the oxidation of methionine. 

The parameters were set to protein threshold 95%, peptide threshold 99% with minimum 

number of peptides set to 2. B) The annotated spectrum of one representative RuvB like 

2 peptide identified by MS/MS analysis  after trapping with C151A HDAC1 mutant.  
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     Peptide sequence - (R)GKEDALVTK(N) 

 

Figure A.3.7 - Peptides of rRNA-2’-O-methyltransferases fibirllarin (FBRL) observed 

in the wild type HDAC1 substrate trapping experiment. A) Primary sequence of FBRL, 

which was identified in the substrate trapping experiment as p38. Peptides observed in 

the MS/MS analysis are highlighted in yellow. The parameters were set to protein 

threshold 95%, peptide threshold 99% with minimum number of peptides set to 2. B) The 

annotated spectrum of one representative FBRL peptides identified by MS/MS analysis 

after trapping with wild type HDAC1 is shown below the sequence. 
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     Peptide sequence - (R)DHAVVVGVYRPPPK(V) 

 

Figure A.3.8 - Peptides of rRNA-2’-O-methyltransferases fibirllarin (FBRL) observed 

in the C151A substrate trapping experiment. A) Primary sequence of FBRL, which 

was identified in the substrate trapping experiment as p38. Peptides observed in the 

MS/MS analysis are highlighted in yellow. Green color represents the oxidation of 

methionine.  The parameters were set to protein threshold 95%, peptide threshold 99% 

with minimum number of peptides set to 2. B) The annotated spectrum of one 

representative FBRL peptides identified by MS/MS analysis after trapping with C151A 

HDAC1 mutant. 
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Figure A.3.9 – Repetitive trials for validation of p100 as LSD1. Wild type (WT) or 

C151A HDAC1 were expressed as Flag-tagged proteins in HEK293 cells, and cells were 

treated with 10 µM SAHA for 24 h prior to harvesting. FLAG-tagged wild type and mutant 

HDAC1 were immunoprecipitated with anti-Flag agarose in the presence or absence of 

10 µM SHI-1:2, separated by SDS-PAGE, and immunoblotted with LSD1 and FLAG 

antibodies. Two trials are shown here, with the third shown in Figure 3.5. 

 

Figure A.3.10 – HDAC inhibitors regulate LSD1 acetylation. HEK293 cells were 

transfected with FLAG-LSD1 and grown for 48 h. Then 10 µM SHI-1:2 or 10 µM SAHA 

was added for another 24 h. Cells were harvested and FLAG-LSD1 was 

immunoprecipitated with anti-FLAG agarose beads. Immunoprecipitates were analyzed 

by Western blotting with FLAG and acetyl lysine antibodies. Two trials are shown here, 

with the third shown in Figure 3.6. 
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Figure A.3.11 – Repetitive trials for in vitro deacetylation using recombinant LSD1 

and recombinant HDAC1. Acetylated recombinant LSD1 was incubated with or without 

recombinant HDAC1 and SAHA for 2.5 h at 37 °C and separated by SDS-PAGE and 

analysed by AcLys, HDAC1 and LSD1 antibodies. Two trials are shown here, with the 

third shown in Figure 3.7A. 
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Figure A.3.12- Quantification of in vitro deacetylation assay. Percent AcLys signal of 

rLSD1 was quantified from Western blots using three independent trials and raw data are 

shown in table (A) or histogram (Figure 3.7B). As a loading control, total rLSD1 was 

quantified from western blots and the raw data is shown in table (B) and histogram (C). 

ns - not significant. 
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Figure 3.13 – Repetitive trials for in cellulo deacetylation using overexpressed wild 

type or inactive C151A HDAC1 mutant. FLAG-tagged wild type (WT) or C151A mutant 

HDAC1 were cotransfected with FLAG-tagged wild type LSD1 into HEK293 cells. FLAG 

tagged proteins were immunoprecipitated using anti-FLAG agarose beads, separated by 

SDS-PAGE, and immunoblotted with acetyl lysine (AcLys) or FLAG antibodies. Two trials 

are shown here, with the third shown in Figure 3.7C. 
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LSD1 100 100 100 100 0.0

LSD1 + WT 
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93 101 92 95 3
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Figure A.3.14- Quantification of in cellulo deacetylation assay. The percent AcLys 

signal of FLAG-LSD1 was quantified from western blots using three independent trials 

and raw data is shown in table (A) or histogram (Figure 3.7D). C) As a loading control, 

total FLAG-LSD1 was quantified from Western blots and raw data is shown in table (B) 

and histogram (C). ns - not significant. 

Table A.3.1- In vitro demethylation assay of LSD1* 

 

*HEK293 cells were transfected with FLAG-LSD1 and grown for 48 h. Then 10 µM SHI-

1:2 or 10 µM SAHA was added for another 24 h, cells were harvested, and proteins were 

immunoprecipitated with anti-FLAG agarose beads. Half of the immunoprecipitate was 

subjected to LSD1 activity assay (Enzo Life Sciences) and the other half was analyzed 

by Western blotting with FLAG antibody. The fluorescence signal was background 

corrected using a reaction with all the components except the LSD1 enzyme. Then the 

signal of each sample was normalized to DMSO-treated LSD1 enzyme (set to 1). The 
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mean and the standard error from at least three independent trials are shown in Figure 

3.8. Data is depicted in Figure 3.8. 
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Figure A.3.15 – Repetitive trials for in cellulo demethylation assays. A) HEK293, B) 

MCF7, or C) HeLa cells were untreated (NT) or treated with DMSO, 10 µM SHI-1:2 or 10 

µM SAHA for 24 h, harvested, lysed and proteins were separated by SDS-PAGE, followed 

by immunoblotting with LSD1, histone H3, histone H3K4me2, histone H3K9ac, and 

GAPDH antibodies. Two trials are shown here, with an additional trial shown in Figure 3.9.  
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Figure A.3.16 – Repetitive trials for overexpressed LSD1-H3 

coimmunoprecipitation (Co-IP). FLAG-LSD1 was overexpressed in HEK293 and cells 

were untreated (IgG) or treated with DMSO or HDAC inhibitors to induce acetylation. Cells 

were harvested and proteins were immunoprecipitated with anti-FLAG agarose beads. 

Immunoprecipitates were analyzed by Western blotting with FLAG, acetyl lysine, histone 

H3, histone H3K4me2, histone H3K9me2, and CoREST antibodies. Two trials are shown 

here, with the third trial shown in Figure 3.10A. 
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Figure A.3.17 – Repetitive trials for endogenous LSD1-H3 Co-IP. A) HEK293 cells or 

B) HeLa cells were untreated (IgG) or treated with DMSO or HDAC inhibitors, harvested, 

and endogenous LSD1 was immunoprecipitated. Western blotting was performed with 

LSD1, histone H3, and histone H3K4me2 antibodies. GAPDH was used as a loading 

control. Two trials are shown here, with the third trial shown in Figure 3.10B and C. 
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A. Trial 1 

 LSD1+DMSO 

Peptide sequence- (K)EKDEmVEQEFNR(L) 
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Peptide sequence- (K)EKacDEMVEQEFNR(L) 
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B .Trial 2 

LSD1+DMSO 

Peptide sequence- (K)EKDEMVEQEFNR(L) 

 

LSD1+SHI-1:2 

Peptide sequence- (K)EKacDEmVEQEFNR(L) 
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LSD1+SAHA 

Peptide sequence- (K)EKDEmVEQEFNR(L) 

 

 

C. Trial 3  
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LSD1+SAHA 

Peptide sequence- (K)EKacDEmVEQEFNR(L) 

 

Figure A.3.18 – Repetitive trials for MS analysis of K374 acetylation in LSD1. 

Representative spectra for acetylated and unacetylated peptides of LSD1 identified from 

three independent trials. Data are represented in Table 3.2. 

Figure A.3.19- Repetitive trials for LSD1 acetylation at K374. FLAG-tagged wild type 

or K374R mutant LSD1 were transfected into HEK293 cells, and cells were treated with 

HDAC1/2 selective inhibitor (SHI-1:2) or SAHA.  FLAG-LSD1 was immunoprecipitated 

with FLAG antibody, subjected to SDS-PAGE separation, and immunoblotted with the 

FLAG and acetyl lysine antibodies. Two trials are shown here, with the third shown in 

Figure 3.11B. 
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Figure A.3.20- Repetitive trials for altered LSD1-H3 binding due to acetylation at  

K374. FLAG-tagged wild type or K374R mutant LSD1 were transfected into HEK293 

cells, and cells were treated with HDAC1/2 selective inhibitor (SHI-1:2) or SAHA.  FLAG-

LSD1 was immunoprecipitated with FLAG antibody, subjected to SDS-PAGE separation, 

and immunoblotted with indicated antibodies. Two trials are shown here, with the third 

shown in Figure 3.11C. 

Table A.3.2 – Real time PCR analysis of the SCN2A gene*  

 

*Fold change calculated from four independent trials, mean and standard error are shown 

for SCN2A. Data depicted in Figure 3.12A. 

  

α-AcLys

IP-FLAG

IgG                  WT                          K374R

DMSO   SHI   SAHA  DMSO  SHI  SAHA

α-FLAG

α-CoREST

α-Histone H3

α -H3K4me2

1         2        3    4        5        6         7

α-AcLys

IP-FLAG

IgG                  WT                          K374R

DMSO   SHI   SAHA  DMSO  SHI  SAHA

α-FLAG

1       2         3         4          5          6          7

α-CoREST
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SCN2A Trial 1 Trial 2 Trial 3 Trial 4 Mean Standard 

Error

NT 1.4 3.9 1.7 2.6 2.4 0.6

WT LSD1+DMSO 1.0 1.0 1.0 1.0 1.0 0.0

WT LSD1+SHI-1:2 7.8 5.9 2.7 5.0 5.4 1.0

K374R LSD1+SHI-1:2 2.7 1.7 1.0 0.70 1.5 0.4
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Table A.3.3 – Real time PCR analysis of the SCN3A gene*  

  

*Fold change calculated from four independent trials, mean and standard error are shown 

for SCN3A. Data depicted in Figure 3.12B. 

  

SCN3A Trial 1 Trial 2 Trial 3 Trial 4 Mean Standard 

Error

NT 1.4 1.2 1.7 - 1.4 0.1

WT LSD1+DMSO 1.0 1.0 1.0 1.0 1.0 0.0

WT LSD1+SHI-1:2 2.3 2.3 2.6 2.5 2.4 0.1

K374R LSD1+SHI-1:2 0.40 0.80 1.2 1.2 0.90 0.2
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APPENDIX C – CHAPTER 4 REPRODUCIBLE TRIALS  

Table A. 4.1- Percent deacetylase activities of HDAC1 F437 substitution mutants* 

 

*Wild type or mutant HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag 

Jurkat cells, and immunoprecipitated with anti-FLAG agarose beads. Catalytic activity 

was measured using an in vitro fluorescence assay (section 4.4.18). The table 

summarizes the mean percent activity of at least three independent trials (wild type is set 

to 100%) with standard error (data was depicted in Figure 4.1). The protein quantities 

used in the trials were confirmed by gel analysis, which is shown in Figure 4.1 and Figure 

A.4.1. 

Sample Trial 1 Trial 2 Trial 3 Trial 4 Mean Standard error 

(SE)

No protein 4 10 1 11 7 2

Wild type HDAC1 100 100 100 100 100 0

H141A 23 14 12 18 17 2

F437C 66 82 72 70 73 3

F437L 77 63 89 ND 76 8

F437A 75 68 93 ND 79 7

F437S 96 97 87 ND 93 3

F437Y 84 89 70 ND 84 5
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Figure A.4.1 – Repetitive trials for the expression and coimmunoprecipitation of 

HDAC1 F437 mutants. Wild type or mutant HDAC1 proteins were expressed as FLAG-

tagged proteins in T-Ag Jurkat cells and immunoprecipitated with anti-FLAG agarose 

beads. Proteins were separated by SDS-PAGE, and immunoblotted with FLAG antibody 

(gel image) to assess protein levels or RbAp48 antibody. These gel images represent two 

independent trials, with the third shown in Figure 4.1. 
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α- RbAp48

1           2        3         4        5        6        7         8  

NoP HDAC1 H141A F437C F437L F437A F437S  F437Y

α- FLAG

α- RbAp48

1           2        3         4         5        6        7          8  

Trial 2

Trial 3



188 
 

 
 

 

Figure A.4.2 – Repetitive trials for the migration of deacetylation mimic mutants. 

Wild type or mutant HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag 

Jurkat cells, immunoprecipitated with anti-FLAG agarose beads, separated by SDS-

PAGE and immunoblotted with FLAG antibody. Three trials are shown here with the fourth 

shown in Figure 4.3A. 
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Figure A.4.3 – Peptide sequences identified from the wild type HDAC1 

immunoprecipitate (Trial 1). Peptide sequences observed in the MS/MS analysis are 

highlighted in yellow, while modified amino acids are in green. The parameters were set 

to protein threshold 99%, peptide threshold 99% with minimum number of peptides set to 

1. A spectrum for select peptides are shown in Figure A.4.4. 

 

Peptide sequence - (R)mLPHAPGVQmQAIPEDAIPEEsGDEDEDDPDKR(I) 

 

Figure A.4.4 – Spectra of the phosphopeptide containing phosphorylated S393 

(S+80) in wild type HDAC1 (Trial 1).  
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Figure A.4.5 – Peptide sequences identified from the wild type HDAC1 

immunoprecipitate (Trial 2). Peptide sequences observed in the MS/MS analysis are 

highlighted in yellow, while modified amino acids are in green. The parameters were set 

to protein threshold 99%, peptide threshold 99% with minimum number of peptides set to 

1. Spectra for select peptides are shown in Figure A.4.6. 

 

Peptide sequence - (R)mLPHAPGVQmQAIPEDAIPEEsGDEDEDDPDKR(I) 

 

Figure A.4.6 – Spectra of the phosphopeptide containing phosphorylated S393 

(S+80) in wild type HDAC1 (Trial 2). 
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Figure A.4.7 – Peptide sequences identified from the F437C HDAC1 

immunoprecipitate (Trial 1). Peptide sequences observed in the MS/MS analysis are 

highlighted in yellow, while modified amino acids are in green. The parameters were set 

to protein threshold 99%, peptide threshold 99% with minimum number of peptides set to 

1. A spectrum for a select peptide is shown in Figure A.4.8. 

Peptide sequence - (R)mLPHAPGVQmQAIPEDAIPEESGDEDEDDPDKR(I) 

 

Figure A.4.8 – Spectrum of the peptide containing S393 in F437C HDAC1 (Trial 1).  

 

Figure A.4.9 – Peptide sequences identified from the F437C HDAC1 

immunoprecipitate (Trial 2). Peptide sequences observed in the MS/MS analysis are 

highlighted in yellow, while modified amino acids are in green. The parameters were set 

to protein threshold 99%, peptide threshold 99% with minimum number of peptides set to 

1. The peptide containing the S393 residue was not observed. 
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Figure A.4.10 – Repetitive trials for the in vitro dephosphorylation assay. Wild type 

or mutant HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag Jurkat cells, 

immunoprecipitated with anti-FLAG agarose beads and subjected to in vitro 

dephosphorylation with CIP (section 4.4.18). Then, proteins were separated by SDS-

PAGE, and immunoblotted with FLAG antibody. Two trials are shown here with the third 

shown in the Figure 4.3B. Arrows indicate migration differences between wild type and 

F437C mutant. 

 

Figure A.4.11 – Repetitive trials for the migration of the S393A mutant. Wild type or 

mutant HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag Jurkat cells, 

immunoprecipitated with anti-FLAG agarose beads, separated by SDS-PAGE, and 

immunoblotted with FLAG antibody. Two trials are shown here with the third shown in the 
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Figure 4.3C. Arrows indicate migration difference between wild type and mutants and 

antibody (Ab). 

 

 

Figure A.4.12 – Repetitive trials for the migration of acetylation mimic mutants. Wild 

type or mutant HDAC1 proteins were expressed as FLAG-tagged proteins in T-Ag Jurkat 

cells, immunoprecipitated with anti-FLAG agarose beads, separated by SDS-PAGE, and 

immunoblotted with FLAG antibody. Five trials are shown here with the sixth shown in 

Figure 4.4. Arrows indicate the migration pattern of various acetylmimetic and 

acetylmutants compared to F437C and antibody (Ab). 
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Aberrant expression of histone deacetylase 1 (HDAC1) is implicated in multiple 

diseases, including cancer. As a consequence, HDAC1 has emerged as an important 

therapeutic target for drug development. HDAC1 regulates key cellular processes, such 

as cell proliferation, apoptosis, and cell survival, by deacetylating both histone and non-

histone substrates. Due to the lack of simple tools to identify physiological substrates of 

HDAC1, the full spectrum of HDAC1 activities in the cell remains unclear. Here, we 

employed a substrate trapping strategy to discover cellular substrates of HDAC1. Using 

this approach, we identified mitosis-related protein Eg5 as a substrate. HDAC1 

colocalizes with Eg5 during mitosis, suggesting a role for HDAC1 in the mitotic defects 

observed with HDAC inhibitor drugs.  

By extending our substrate trapping strategy to HEK293 cells, we identified lysine 

specific demethylase 1 (LSD1) as an HDAC1 substrate. Significantly, LSD1 is 

overexpressed in multiple cancers and has emerged as a potential anti-cancer drug 

target. LSD1 is typically found in association with another epigenetic enzyme, histone 

deacetylase1 (HDAC1). HDAC and LSD1 inhibitor compounds have been tested as 
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combination anti-cancer agents.  However, the functional link between LSD1 and HDAC 

has yet to be understood in detail. Here we uncovered that HDAC1 mediated 

deacetylation of LSD1 at K374 in the substrate binding lobe, which affected the histone 3 

binding and gene expression activity of LSD1.  The mechanistic link between HDAC1 and 

LSD1 established here suggests that HDAC inhibitors influence LSD1 activity, which will 

ultimately guide drug design targeting epigenetic enzymes. Discovery of novel substrates 

using trapping mutants will reveal the full activities of HDAC1 in both physiological and 

pathological conditions, which will lead to a better understanding of HDAC inhibitor 

mechanism of action. 

My second project focused on studying the effect of Single nucleotide 

polymorphisms (SNPs) of HDAC1. HDAC1 is upregulated in multiple diseases, and has 

emerged as an important therapeutic target for drug development. SNPs in multiple genes 

are often linked to the diseases, such as cancer. Here, we used the Hypothesis driven 

SNP search (HyDn-SNP-S) program to identify a HDAC1 SNP-F437C. The presence of 

SNP-F437C on HDAC1 affected acetylation at K432 and phosphorylation at S393, which 

ultimately altered enzymatic activity. These studies shed insights into the altered 

posttranslational modifications caused by HDAC1 exonic SNP. The study also revealed 

the significance of studying SNPs of HDAC in understanding the mechanisms leading to 

HDAC deregulation in cancer.
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