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CHAPTER 1: INTRODUCTION 

A. Down syndrome (DS) 

Down syndrome (DS) is one the most common genetic disorders in the US, with 400, 000 

Americans living with DS and 6,000 babies born with DS each year (S. E. Parker et al., 2010). 

DS is a condition in which the affected individual has a full or partial extra copy of chromosome 

21 (Trisomy 21).  John Langdon Down first described the condition in 1866, while the 

underlying cause for it was discovered by Jerome Lejeune in 1959.   Ninety five percent of DS 

cases are caused by an error in cell division during either meiosis I or meiosis II, when an 

embryo receives three copies of chromosome 21 instead of two. This meiotic division error is 

commonly known as trisomy 21, a form of chromosomal nondisjunction. The extra chromosome 

is then replicated in every cell of the body unlike the mosaic trisomy (5%), where triplicated 

Hsa21 is only found in certain tissues.  Chromosome 21 is the smallest human chromosome, 

spanning about 48 million base pairs and representing 1.5 -2% of the total DNA in a cell. 

Chromosome 21 contains 200 - 300 known protein-coding genes involved in a wide range of 

processes.  

Individuals with DS suffer from both physical and cognitive disabilities (Table 1.1).  

Common conditions seen in people affected with Down syndrome are: altered immune system 

function, muscular hypotonia, dysmorphic otolaryngologic features, and premature aging 

(Esbensen, 2010; Patterson & Cabelof, 2012; Roth, Sun, Greensite, Lott, & Dietrich, 1996; 

Scoggin & Patterson, 1982; Shin et al., 2009; Shott, 2006; Zigman, Schupf, Lubin, & Silverman, 

1987). These individuals are highly susceptible to infections, particularly of the respiratory and 

the gastrointestinal tract. Congenital heart defects are seen in almost 50% of DS newborns (Shin 

et al., 2009) and many, even without congenital heart defects, develop mitral valve disease. 
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Nearly 50% of DS individuals have hypothyroidism and about 20% celiac disease. Obstructive 

sleep apnea syndrome occurs in approximately half of the cases (Shott 2006). DS individuals 

have  high prevalence of obesity during childhood and adolescence (van Gameren-Oosterom et 

al., 2012).  Sensori-neural hearing loss and cataract may develop before the age of 30 (Shott 

2006). Behavioral changes with loss of skills, withdrawal, psychomotoric retardation, and 

mutism occur frequently from the age of 30 and may represent either symptoms of mental illness 

or onset of Alzheimer's dementia (Hill et al., 2003; Levine, Saltzman, Levy, & Ginsberg, 2009; 

Lott, 1982; Odetti et al., 1998; Qureshi & Parvez, 2007; Rabinowe, Rubin, George, Adri, & 

Eisenbarth, 1989; Scoggin & Patterson, 1982; Shin et al., 2009; Zigman et al., 1987) By the age 

of 40, virtually all individuals with DS  will have neuropathology of AD (Head, Powell, Gold, & 

Schmitt, 2012). 

To dissect the pathogenesis of DS, two hypotheses have been proposed:  the amplified 

developmental instability hypothesis and the gene-dosage effect hypothesis (Pritchard & Kola, 

1999).The amplified developmental instability hypothesis advocates that a non-specific 

disturbance of the chromosomal balance leads to development homeostasis disruption (Pritchard 

& Kola, 1999; N. Rueda, Florez, & Martinez-Cue, 2012). This hypothesis states that the features 

of DS are likely due to the overall abundance of genetic material and not to specific genes.  

The gene-dosage effect hypothesis suggests that the HSA21 trisomy causes a general 

alteration in developmental homeostasis that leads to the DS phenotypes (Pritchard & Kola, 

1999).  It states that these alterations result from overexpression of a subset of genes located in 

the critical region on chromosome 21 (Greber-Platzer, Schatzmann-Turhani, Wollenek, & Lubec, 

1999).  Genes implicated in oxidative stress regulation have been shown to play key roles in the 

pathogenesis of DS.  This hypothesis aligns with the free radical theory of aging, which states 



3 
 

 

that energy consumption causes in time buildup of waste, such as ROS (Harman, 1981), which 

leads to constant attack on cells, causing them to cease proliferation and thus, age. Over the 

years, evidence of  the role of caloric restriction in longevity  has helped to support this theory 

(Heilbronn & Ravussin, 2003).   

Premature Aging  

DS exhibits many of the typical aging signs such as atrophy (skin thinning and loss of 

elasticity), loss of cutaneous fat, wrinkling, greying hair, and loss of hair ((Bittles & Glasson, 

2004; Brown, 1987; Esbensen, 2010; Franceschi et al., 1992; Gilchrest, 1981; Hill et al., 2003; 

Horvath et al., 2015; Lott, 1982; Murdoch & Evans, 1978; Patterson & Cabelof, 2012; Roth et 

al., 1996)). DS was first characterized as a segmental progeria in 1982 (Martin, 1982) and was 

found to be the only genetic disorder that had 14 of the 17 features of a true premature aging 

syndrome, according to Martin (Table 1.2) (Martin 1977).  In the early 1900s, the life expectancy 

of DS individuals was about 12 years of age (Carmeli, Kessel, Bar-Chad, & Merrick, 2004). By 

1983 it was 35 years, an increase accredited to improvements in medical care for both children 

and adults (Head et al., 2012). Current life expectancy for a one year old with DS is 43-55 years 

(Uppal, Chandran, & Potluri, 2015). The shortened  lifespan is said to be due to  DS mortality 

rate doubling every 6.4 years , as compared to every 9.6 years for the rest of the population 

(Head et al., 2012).   

Evaluating in vitro aging/senescence of cultured fibroblasts is widely utilized as a 

surrogate model for in vivo aging.  Segal and McCoy were first to show that DS  fibroblasts  had 

a slower growth rate and  decreased life span (Segal & McCoy, 1974).  Chapman et al  showed 

that NAD levels and proliferation ability were altered in DS lymphocytes and fibroblasts 

(Chapman, Zaun, & Gracy, 1983).  The senescence phenotype of DS has been confirmed in 
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human tissue and mouse DS models (Chapman et al., 1983; Contestabile, Fila, Cappellini, 

Bartesaghi, & Ciani, 2009; Fuchs, Ciani, Guidi, Trazzi, & Bartesaghi, 2012). The immune 

dysfunction seen in DS has been linked to the early senescence of immune system, as 

characterized by small thymus and abnormal lymphocytes (S. S. Agarwal et al., 1970; da Rosa 

Utiyama et al., 2008; Rabinowe et al., 1989).  Utilizing proliferation marker Ki-67, Contestabile 

et al showed a reduced number of proliferating cells in the hippocampal dentate gyrus and in the 

neocortical germinal matrix of fetuses with Down syndrome. A well-known method to assess 

senescence is the Senescence-Associated β-Galactosidase (SA- β-gal), which relies on the 

detection of beta galactosidase at pH =6 (Dimri et al., 1995; Itahana et al., 2003). This enzyme is 

specifically produced by senescent cells only and is not observed in quiescent or transformed 

cells (Dimri et al., 1995). Fibroblasts collected from DS donors are positive for SA-β-Gal in 

higher numbers than controls (Rodriguez-Sureda, Vilches, Sanchez, Audi, & Dominguez, 2015). 

Two other established markers of senescence, p16Ink4a and p19Arf, are involved in senescence-

induced loss of proliferation and have been shown to be overexpressed in DS (Adorno et al., 

2013; Baker et al., 2011; Itahana et al., 2003; Y. Liu et al., 2009; Yeo et al., 2000).  

 Similar findings were seen in a widely used mouse model of DS, Ts65dn. Ts65Dn model 

phenocopies much of DS, even though it is trisomic for only about 60% of the HSA21 genes. 

Mouse embryonic fibroblasts (MEFs) and terminal-tip fibroblasts (TTFs) from this model 

showed a high number of  SA-β-Gal-positive cells and increased p16Ink4a expression (Adorno 

et al., 2013; Contestabile et al., 2009). Interestingly, the reduced proliferation in Ts65Dn is 

widespread as multiple tissues were affected (heart, liver, skin and intestine) and appears early in 

life (postnatal) (Contestabile et al., 2009; Contestabile et al., 2007). More work is needed to fully 

evaluate the accelerated aging phenotype of this model. 
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 Alzheimer’s disease (AD) is considered a disease of old age, with increasing risk for 

individuals over 65 years (Head et al., 2012). It is the most common cause for dementia and 

overall cognitive decline (Larson, Kukull, & Katzman, 1992).  AD neuropathology appears in 

virtually all DS adults older than 40 years of age (Head et al., 2012). DS individuals have early 

AD onset , some showing signs in their 30s (Head et al., 2012; Hill et al., 2003; Jackson, 

Holland, Williams, & Dickerson, 1988). AD is a major cause of mortality in DS, third to 

congenial defects and leukemia (Esbensen, 2010; Hermon, Alberman, Beral, & Swerdlow, 2001; 

Hill et al., 2003; Uppal et al., 2015; Q. Yang, Rasmussen, & Friedman, 2002). AD risk has been 

attributed to β-amyloid precursor protein (APP), which is encoded on chromosome 21. The extra 

chromosome leads to overexpression of APP and thus, to generation of shortened β-amyloid 

(Aβ) peptides that cause senile plaques (Head et al., 2012)  Another DS trait responsible for 

increased AD risk is the highoxidative stress(Head et al., 2012).  

B. Oxidative Stress 

Oxidative stress is considered one of the main causes of aging and DS provides the best 

evidence for this hypothesis. DS is a disorder characterized by constitutive oxidative stress, 

which causes damage to DNA, lipid and protein oxidation (Amparo Gimeno et al., 2014; Odetti 

et al., 1998; Praticò et al., 2000; Marianna Zana, Janka, & Kálmán, 2007; M. Zana et al., 2006). 

This is likely due to the presence of many genes on HSA21 that are involved in regulation of 

oxygen metabolism (See Table 1.3) (Patterson & Cabelof, 2012).   

One of the best studied enzymes is superoxide dismutase 1 (Cu-Zn), SOD1.  SOD1 is 

encoded on the distal portion of HSA21 and  is responsible for destroying free superoxide 

radicals by converting them to hydrogen peroxide (H2O2) (F. L. Muller, M. S. Lustgarten, Y. 

Jang, A. Richardson, & H. Van Remmen, 2007).  The ~ 50% overexpression of SOD1 in DS, 
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without a coordinated upregulation of the two downstream enzymes, catalase (CAT) and 

glutathione peroxidase (GPx),  causes an abundance of H2O2, which leads to hydroxyl radical 

damage (Campos & Casado, 2015; de Haan, Cristiano, Iannello, & Kola, 1995; Druzhyna, Nair, 

LeDoux, & Wilson, 1998; A. Gimeno et al., 2014; Kedziora & Bartosz, 1988; Patterson & 

Cabelof, 2012). In addition, when SOD1 is overexpressed in human neuroblastoma cell line, the 

proliferation rate was reduced by 30% compared to untransfected cells (Lee, Hyun, Jenner, & 

Halliwell, 2001). The increased activity of SOD1 also underlies the neural abnormalities 

observed in individuals with Down syndrome (de Haan et al., 1995; Lee et al., 2001; Zitnanova 

et al., 2004). Other DS traits attributed to SOD1 overexpression were demonstrated in transgenic 

mouse models overexpressing SOD1.  In three independently derived transgenic SOD1 mice, 

overexpression caused thymus and bone marrow abnormalities similar to those seen in DS 

(Peled-Kamar, Lotem, Okon, Sachs, & Groner, 1995).  Another study showed that transgenic 

animals exhibited significant pathological changes in tongue neuromuscular junctions (NMJ) 

similar to those observed in the tongue muscle of patients with Down's syndrome (Groner et al., 

1990). 

For years, overexpression of SOD1 was thought to be the major cause of increased 

oxidative stress in DS.  Bach1, a transcription factor, acts as a repressor of oxidative stress 

response and was recently  implicated in DS pathogenesis (Domenico et al., 2015). Bach1 binds 

to antioxidant response elements (AREs) of DNA and inhibits transcription of specific genes 

involved in the cell stress response (Dohi et al., 2008). Thus, its overexpression can potentially 

play a role in the constitutive state of oxidative stress of DS. Bach1 was shown to be upregulated 

in the brain of DS individuals where it downregulates heme oxygenase-1 (HO-1)(Domenico et 

al., 2015). HO-1 is up-regulated in response to oxidative stress in order to protect cells against 
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ROS-induced damage and thus, its downregulation in DS brain could be a contributing factor to 

the early onset of Alzheimer's disease (Dohi et al., 2008; Domenico et al., 2015; Hefti, 

Quinones-Lombrana, Redzematovic, Hui, & Blanco, 2016).  

DS exhibits many makers of oxidation. In lipids, isoprostane 8,12-iso-iPF(2α)-VI is a 

specific marker of lipid peroxidation. Elevated levels of this isoprostane were found  in the urine 

of DS subjects compared with controls ((Praticò et al., 2000). DS neurons exhibit a three-fold 

increase in intracellular reactive oxygen species and show elevated levels of lipid peroxidation 

(Busciglio & Yankner, 1995). Protein oxidation is assessed by carbonyl assays (Marianna Zana 

et al., 2007), which measure the  amino acid oxidation by ROS. Cerebral cortices from DS 

fetuses, showed a 2.9 fold increase in carbonyl groups (M. Zana et al., 2006).  Using a 

proteomics approach, Perluigi et al showed that lipid peroxidation damages brain proteins by 

modify them and rendering them nonfunctional (M. Perluigi et al., 2009).  The accumulation of 

oxidation damage was shown to start very early, as evidenced by the presence of isoprostane in 

fetal liver (Cabelof et al., 2009). .   

ROS can cause multiple DNA modifications ranging from single base damage, single 

strand breaks, and double strand breaks.  Single base modifications  due to oxidative stress  

include: 8-oxoguanine (8-oxoG),  2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), and  

2,2- diamino-4-(2-deoxy-b-D-erythropentofuranosyl)amino]-5 (2H)-oxazolone (oxazolone, Oz) 

(Jena, 2012).  In fibroblasts from both adult and fetal DS samples, levels of 8-oxodG were 3-fold 

higher than in their matched controls (Necchi et al., 2015). Similar results were observed in 

brains of DS individuals (Domenico et al., 2015).  Numerous studies have shown an overall 

increase in DNA damage in DS samples. In one study, DS lymphocytes showed twice as much 

constitutive DNA damage in G2 over control  (Pincheira, Romero, Marcelain, Salazar, & de la 
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Torre, 2007)  A recent study showed that DS patients had significantly higher DNA damage, as 

assayed by comet assay (El-Bassyouni et al., 2015).  

DNA repair capacity  

Maintaining the integrity of DNA is vital for cell survival. There are numerous pathways 

that facilitate repair of damaged DNA. ROS are considered a major source of spontaneous DNA 

damage. A few sources of oxidative stress in the cell include: lipid peroxidation (Campos & 

Casado, 2015; Praticò et al., 2000; Marianna Zana et al., 2007), oxygen radicals produced during 

cellular respiration(Perrone et al., 2007) , and increased release of amyloid beta-peptide (Aβ) 

(Marzia Perluigi & Butterfield, 2012). The primary DNA repair pathway responsible for repair 

of oxidative stress damage is  base excision repair (BER) (Figure 2). BER is responsible for the 

repair of single base or  gap lesions, including abasic sites, single-strand breaks, deamination and 

alkylation damage (Cabelof, 2007; Dianov et al., 2001; Horton, Baker, Berg, Sobol, & Wilson, 

2002; Krokan & Bjoras, 2013; Ochs, Sobol, Wilson, & Kaina, 1999; Sobol et al., 1996; Wilson 

et al., 2000; Xu, Herzig, Rotrekl, & Walter, 2008). BER can be classified as either short patch or 

long patch, depending on the number of nucleotides replaced (Figure 1.4). The excision repair is 

initiated by DNA glycosylases, enzymes which recognize and excise the damaged base (Krokan 

& Bjoras, 2013). They are grouped in two classes: mono-functional or bifunctional, based on the 

distinct biochemical mechanism by which they repair damage. There are 11 known human 

glycosylases, with overlapping substrates, able to recognize more than one type of DNA damage 

(Jacobs & Schär, 2012). Mono-functional glycosylases, such as uracil DNA glycosylase (UDG), 

excise the damaged base by nucleophilic attack of N-glycosylic bond, via an activated water or 

hydroxyl ion (Savva, McAuley-Hecht, Brown, & Pearl, 1995), without nicking the DNA 

backbone. The resulting abasic site (Lindahl, Ljungquist, Siegert, Nyberg, & Sperens, 1977) is 
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then processed by apurinic or apryrimidine (AP) endonucleases.  AP endonucleases (APE1) 

create nicks in DNA by β-elimination, to yield 3' OH adjacent to a 5’-dRP (Bailly & Verly, 

1988; Y. J. Kim & Wilson, 2012).  Bifunctional glycosylases possess AP lyase activity that 

allows them to nick the DNA in addition to excising the damaged base. These enzymes use the 

amino group of a lysine side chain as a nucleophile for base cleavage, forming a covalent Schiff-

base intermediate with the damaged DNA strand (Jacobs & Schär, 2012). The product of this 

reaction is a strand break with 3′-phosphate and 5′-OH ends that are later processed by Ape1 to 

create 3’-OH and 5’-phosphate.  DNA polymerase beta (POLB) is the next enzyme. The 5’-dRP 

flap produced by APE1 will be processed by the dRP-lyase activity of POLB, creating a 

5’phosphate. The polymerization activity of POLB will then add the correct base creating a 3’-

OH adjacent to the 5’-phosphate. The final step is DNA ligase sealing the DNA strands and 

completing the repair. XRCC1, PCNA and  PARP1, are also involved in the repair process, by 

working to recruit and coordinate proteins in the BER process. LIGIIIα, the DNA ligase used in 

short patch BER (SP-BER) requires XRCC1 for full activity (Y. J. Kim & Wilson, 2012).  

The rate limiting enzyme in this pathway is DNA polymerase beta (POLB). POLB is a 39 

kDa protein containing a 31 kDa nucleotidyl-transferase domain and an 8 kDa dRP-lyase 

domain. Both polymerization and dRp-lyase activity are crucial to efficiently complete the repair 

process (Srivastava et al., 1998). The generation of the dRP-flap is a function of repair initiation 

by DNA glycosylases. POLB is regulated by a TATA-less promoter and also lacks a CAAT box. 

The minimal promoter contains 3 SP1 sites and a cAMP-response element (Widen, Kedar, & 

Wilson, 1988). Promoter deletion studies have clearly established that the TGACGTCA 

palindrome is essential for β-pol induction by alkylating (MNNG) and oxidizing (H2O2) agents 

(Kedar, Widen, Englander, Fornace, & Wilson, 1991; Widen & Wilson, 1991). A precise 
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sequence including the CRE palindrome and flanking residues (7 on each side of the palindrome) 

is required for ATF/CREB binding. As such, proteins that bind to ATF/CREB sites in other 

genes do not recognize the POLB promoter (Widen & Wilson, 1991). In 1997, it was determined 

that CREB1 and ATF1 were the transcription factors required for CRE-mediated TPA activation 

of the POLB promoter (X. P. Yang, He, Rawson, & Wilson, 1997). Importantly, following 

MNNG treatment, CREB1 levels increased but ATF1 levels did not. Additionally, recombinant 

expression of CREB1 increased POLB expression, even in the absence of MNNG (Narayan, 

Widen, Beard, & Wilson, 1994) In addition to the CRE site, POLB promotor has functional 

binding elements for transcription factors Sp1 and NF-κB (Faumont et al., 2009; Narayan et al., 

1994; Pei et al., 2011). Three NF-κB  binding sites were identified on POLB promoter(Faumont 

et al., 2009). Only the proximal kappaB binding site (-211 to -199nt) was found cause activation 

upon viral factors release in EBV-infected cells. Sp1 binds to DNA at consensus GC-boxes 

(Narayan et al., 2000) and on POLB promoter it acts as a stabilizer of the transcription complex 

(Narayan et al., 2000).  HIV-1 transactivator protein Tat transactivation of POLB is dependent 

on Sp1 binding site on POLB promoter (Srivastava et al., 2001).  

Most experiments on PolB functionality were done in mouse models. Homozygous PolB 

null (PolB
-/-

) mice are embryonically lethal, while the heterozygous mice (PolB
+/-

) are viable and 

have been vital in elucidating the phenotype associated with PolB loss. Mouse Embryonic 

Fibroblast (MEFs) from PolB
-/-

 collected at day 14 of gestation have been cultured and show 

sensitivity to alkylating agents, MMS and MNNG, and oxidative stress(Horton et al., 2002; Ochs 

et al., 1999; Pascucci, Russo, Crescenzi, Bignami, & Dogliotti, 2005; Podlutsky, Dianova, 

Wilson, Bohr, & Dianov, 2001; Sobol et al., 1996). PolB
-/-

 MEFs not only have deficient repair 

phenotype but also have a higher mutation frequency post MMS treatment (Sobol et al., 2002). 
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Studies on the PolB
+/-

 mouse and cultured cells show that heterozygosity leads  to ~50% 

reduction of PolB transcript and protein(Cabelof et al., 2003). These cells exhibit a significant 

reduction in the ability to repair damage due to MMS as evidenced by increased mutation 

frequency (Cabelof et al., 2003). Tissues collected from PolB
+/-

  mouse  displayed higher levels 

of DNA single-Strand breaks as well as increased chromosomal aberrations as compared to 

control littermates (Cabelof et al., 2003). PolB
+/-

  mice also showed an accelerated  onset of age-

dependent lymphoma and accelerated rate of mortality (Cabelof, Ikeno, et al., 2006). The loss of 

BER and POLB as a driving factor in accelerated aging has been the basis for my thesis.  

The DNA repair capacity of various organisms and their rate of aging were first shown to 

be correlative by Hart and Setlow in 1974 (Hart & Setlow, 1974).  Since then, various studies 

have shown that the DNA repair capacity declines with age and it  might be underlying old age 

diseases (Brosh & Bohr, 2007; Brown, 1987; Bucholtz & Demuth, 2013; Cabelof, 2007; 

Cabelof, Ikeno, et al., 2006; Cabelof, Raffoul, et al., 2006; Carre & Pieau, 1979; Franceschi et 

al., 1992; Gilchrest, 1981; Hanaoka et al., 1983; Harman, 1981; Intano, Cho, McMahan, & 

Walter, 2003; Li, Mitchell, & Hasty, 2008; Martin, 1982; Florian L. Muller, Michael S. 

Lustgarten, Youngmok Jang, Arlan Richardson, & Holly Van Remmen, 2007; Murray, 1981; 

Qureshi & Parvez, 2007; Rao, Annapurna, & Raji, 2001; Sykora et al., 2015; Vyjayanti, Swain, 

& Rao, 2012; Weirich-Schwaiger, Weirich, Gruber, Schweiger, & Hirsch-Kauffmann, 1994; 

Weissman et al., 2007; Xu et al., 2008).  The brain is highly affected by a DNA repair decline 

with age (Sykora, Wilson, & Bohr, 2013), shown by increase of neurodegenerative diseases with 

age. Defective or lost BER is suspected to have a role in dementia related disease, such as 

Alzheimer’s (Sykora et al., 2015; Weissman et al., 2007). This reduction in repair capacity 

furthermore correlates with decrease in the enzymatic activity of PolB enzymatic and low protein 
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and mRNA levels (Cabelof et al., 2002; Kisby et al., 2010; Krishna et al., 2005; Rao et al., 2001; 

Rao, Vinay Kumar, Bhaskar, & Sripad, 1994; Subba Rao & Subba Rao, 1984).  

DS is characterized by accelerated aging and abundant evidence appoints toward a DNA 

repair defect as the driving force of this phenotype. Many of the premature aging syndromes 

have been linked to a defect in either DNA damage response or repair (Brosh & Bohr, 2007). 

Unlike the other premature aging diseases, which are monogenic, DS genotype makes the 

identification of critical DNA repair genes difficult, but not impossible. Reduced DNA repair 

had been demonstrated in people with DS by accumulation of DNA repair intermediates (strand 

breaks), increased chromosomal damage, and reduced repair capacity, as demonstrated by in 

vitro methods and/or by expression levels of key DNA repair genes. Leukocytes from individuals 

with DS contain more DNA strand breaks than leukocytes from control patients (Maluf & 

Erdtmann, 2001). The ability to repair single strand breaks induced by gamma irradiation is 

reduced by DS (Athanasiou, Sideris, & Bartsocas, 1980). These unrepaired strand breaks might 

be expected to induce chromosomal aberrations. Indeed, patients with DS exhibit higher baseline 

levels of micronucleus formation (MN) and greater induction of MN in response to mitomycin 

C, cyclophosphamide, and quercetin than their age-matched controls(Caria, Chaveca, & Rueff, 

2001). Further, the MN response to mitomycin C is significantly impacted by age in DS (Shafik, 

Au, & Legator, 1988). Chromosomal aberrations are greater in lymphocytes exposed to ionizing 

radiation from DS individuals than age-matched controls (Scarfi et al., 1990). Actual measures of 

DNA repair capacity in DS have been addressed by what are now considered crude methods in 

which thymidine incorporation provides an estimate of unscheduled DNA synthesis (i.e., DNA 

repair). By these methods, investigators have shown reduced ability to repair DNA in response to 

PHA stimulation (S. S. Agarwal et al., 1970) and MNNG exposure (Raji & Rao, 1998). 
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Interestingly, this loss of repair capacity is accelerated with advancing age in DS (Raji & Rao, 

1998). 

In support to the hypothesis of this thesis, Raji and Rao have shown that young DS 

individuals experience a 50% reduction in POLB activity (Raji & Rao, 1998). The aged DS 

individuals experience an even greater deficit in POLB activity. Additionally, the inducibility of 

POLB in response to DNA damaging agents is blunted in DS. Importantly, they showed no 

effect of DS on another DNA polymerase that is not involved in DNA repair (POLε) Since then, 

we have shown that down regulation of POLB starts in utero (Cabelof et al., 2009). DS fetal liver 

(a surrogate for the hematopoietic system) expresses reduced transcript, protein, and enzymatic 

activity of POLB (Cabelof et al., 2009).  These data support a connection between the DNA 

repair defect of DS and the BER pathway. As mentioned above, Trisomy 21 causes an 

abundance of ROS/oxidative stress, damaging lipids, proteins and DNA.  Typically damage 

caused by ROS is predominately repaired by BER, but this pathway is defective in DS. Is the 

lack of an adaptive response to oxidative stress in DS a curse or blessing?  Across age, sex, and 

racial groups, individuals with DS develop tumors less than one-tenth as often as expected (Hill 

et al., 2003), with the exceptions of childhood leukemia and testicular cancer. In DS, leukemia is 

a childhood cancer  initiated in utero, and thus likely unrelated to senescence. Testes resist the 

increased expression of senescence-related biomarkers that occurs with age (Krishnamurthy et 

al., 2004). It is hypothesized that the reduced DNA repair causes a shift towards senescence 

instead of tumorigenesis.  

microRNA-155 

What is the cause of POLB downregulation in DS? The  two proposed  hypotheses for 

DS pathogenesis, the amplified developmental instability and the gene-dosage effect hypotheses 
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(Pritchard & Kola, 1999), point to faulty transcriptional regulation of POLB.  The extra 

chromosome does lead to overexpression of many HSA21 genes (Aït Yahya-Graison et al., 

2007). HSA21 also contains 14 microRNAs: hsa-miR-99a, let-7c, miR-125b, miR-155, miR-802, 

miR-3197, miR-3648, miR-3687, miR-4327, miR-4759, miR-4760, miR-3118-5, miR-3156-3 

and miR-548x (Kozomara & Griffiths-Jones, 2011). MicroRNAs (miRNA) are single strand 

RNA molecules composed of about 19-24 nucleotides (Bartel, 2004) that  repress translation of 

its target genes via binding sites on 3’untranslated regions of mRNA targets.  Studies have 

shown that  5 of 14 HSA21  miRNAs ( hsa-miR-99a, let-7c, miR-125b-2, miR-155 and miR-

802)  play a significant role in the variable phenotypes of DS (Elton, Sansom, & Martin, 2010). 

Studies of miRNA expression, using microarrays and quantitative PCR (qPCR), revealed that 

these 5 miRNAs are overexpressed in DS. Sethupathy et al evaluated expression in fibroblasts 

collected from monozygotic twins, where trisomy penetrance varied and one twin had no 

aneuploidy in skin. DS twin exhibited a 2-fold increase in miR-155 expression compared to 

nonDS twin (Sethupathy et al., 2007). miR-155  and miR-802 were also found to be 

overexpressed in  DS fetal brain and heart tissues, as well as in the hippocampus and whole 

blood of the DS mouse model, Ts65Dn(Keck-Wherley et al., 2011; Kuhn et al., 2008).  

miR-155 is one of the five miRNAs with the potential to regulate POLB and BER. miR-

155 is a multifaceted  microRNA with numerous target genes ((Faraoni, Antonetti, Cardone, & 

Bonmassar, 2009)). It has been implicated in inflammation, cancer, hematopoiesis, immunity and 

DNA repair (Faraoni et al., 2009; Hefti et al., 2016; Keck-Wherley et al., 2011; Khamaneh, 

Alipour, Sheikhzadeh Hesari, & Ghadiri Soufi, 2015; Lashine, Salah, Aboelenein, & Abdelaziz, 

2015; S. Liu, Yang, & Wu, 2011; Teng et al., 2008; N. Valeri et al., 2010; Velazquez et al., 

2016; Yan et al., 2016). Validation studies reveal overexpression of miR-155 eads to  
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downregulation of genes like AID, CEBPB, Ets-1, SHIP-1, FOXO3a, MLH1 and 

CREB1(Faraoni et al., 2009; Hefti et al., 2016; Keck-Wherley et al., 2011; Khamaneh et al., 

2015; S. Kim et al., 2016; Kuhn et al., 2008; Lashine et al., 2015; S. Liu et al., 

2011).Transcription factor CREB1, activator of POLB, was shown to be regulated by miR-155 

(Elton et al., 2010; Lashine et al., 2015; S. Liu et al., 2011).  Overexpression or miR-155 causes 

a decrease in protein levels of CREB1, as well as its targets (Lashine et al., 2015; S. Liu et al., 

2011). POLB promoter studies demonstrated that when levels of CREB1 are compromised, 

POLB levels are also affected (K. H. Chen et al., 1998; Narayan et al., 1994; Pei et al., 2011; 

Podlutsky, Dianova, Podust, Bohr, & Dianov, 2001; Sobol et al., 1996; Srivastava et al., 1998). 

The question becomes, does miR-155 overexpression in DS cause a down regulation of POLB 

and does this play a role in the accelerated aging phenotype of DS? 
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Figure 1.1: Nondisjunction. Failure of the maternal chromosome to separate during meiosis 

causing a zygote with an extra chromosome to be fertilized and Trisomy21 to arise (" National 

Down Syndrome Society," 2012). 
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1 Increased frequency of non-constitutional aberrations 

2 Increased susceptibility to certain types of neoplasm  

3 Premature greying or loss of hair  

4 Dementia or degenerative neuropathology related to senile changes  

5 Increased amyloid deposition  

6 Increased lipofuscin pigments  

7 Diabetes mellitus  

8 Disordered lipid metabolism  

9 Hypogonadism  

10 Autoimmunity  

11 Hypertension  

12 Degenerative vascular disease  

13 Osteoporosis  

14 Cataracts  

15 Mitochondrial abnormalities  

16 Regional fibrosis  

17 Abnormal amounts/distribution of adipose tissue  

 

Table1.2: Pathophysiological and cellular criteria of ageing, adapted from G. M. Martin (1977) 
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Table 1.3: Genes on chromosome 21 implicated in oxygen metabolism(Patterson & Cabelof, 

2012) 

Gene Name 

ATP synthase F0 coupling factor 

NF-E2 related factor (NRF2) (GABPA) 

Amyloid precursor protein (APP) 

Bach1-repressor of oxidative stress response 

TIAM1 

Cytosolic superoxide dismutase (SOD1) 

NADPH: quinine reductase-like (CRYZL1 or NORL1) 

ATP synthase OSCP subunit 

RCAN1 (DSCR1) 

Carbonyl reductase 1 (CBR1) 

Carbonyl reductase 3 (CBR3) 

DYRK1A 

Thioredoxin-like protein (SH3BGR)    

Mitochondrial NADH: Oxidoreductase 10kDa subunit (NDUFV3) 

MIR155HG 
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Figure 1.4: Base Excision Repair pathway  
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CHAPTER 2: LOSS OF DNA POLYMERASEΒ INDUCES SENESCENCE: 

IMPLICATIONS IN DOWN SYNDROME 

 

SUMMARY 

Individuals with Down syndrome exhibit accelerated aging and premature cellular 

senescence.  Correlative evidence for reduced DNA repair capacity, specifically base excision 

repair, is reported in Down syndrome, but no direct connection has emerged. We report here that 

primary fibroblasts from Down syndrome individuals exhibit greater SA-β-Gal staining (20% 

increase, p<0.001) and p16 transcript abundance (3-fold, p<0.01).). We also find that Down 

syndrome fibroblasts senesce more than their diploid counterparts in response to both hydrogen 

peroxide and hydroxyurea. To correlate this increased predisposition to senesce to a specific 

DNA repair deficiency, we measured POLβ transcript levels and find that expression is 

significantly reduced in Down syndrome (~50% decline, p<0.01). To mechanistically connect 

this loss of POLβ to senescence, we assessed polβ-null primary mouse embryonic fibroblasts 

(MEFs) for a senescence phenotype. Here we report that untreated polβ-null MEFs display an 

approximate 2-fold increase in number of senescent cells (p< 0.001) and a 4-fold increase in 

senescent cells in response to hydroxyurea (p<0.05) demonstrating that loss of polβ induces 

senescence. Polβ has not been reported to process DNA damage induced by hydroxyurea. We 

report here an induction in polβ transcript abundance in response to hydroxyurea exposure (2.5-

fold, p<0.01).  Additionally, we report a 5-fold increase in DNA double strand breaks in 

untreated polβ MEFs (p< 0.0001) which is amplified another 2-fold by hydroxyurea (p< 0.001). 

Our findings firmly establish polβ as causative in senescence induction, reasonably establishing 

POLβ and DNA base excision repair as important factors driving aging in Down syndrome. 

 

Introduction 
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A correlation between DNA repair capacity and longevity was first proposed by Hart and 

Setlow (Hart & Setlow, 1974), who correlated mammalian DNA repair capacity to maximum 

lifespan. This association launched an entire field of study into the relative roles of DNA repair 

capacity on lifespan. In turn, many human conditions of premature and/or accelerated aging have 

been directly linked to defective DNA repair (Brosh & Bohr, 2007). Down syndrome is a genetic 

disorder caused by an extra copy of chromosome 21 (trisomy 21), and is characterized by a 

shortened lifespan and biomarkers of precocious aging. The mean life expectancy for individuals 

with Down syndrome has improved greatly from the mid-teens in 1940s (Penrose, 1949) to 

nearly 60 today (Bittles & Glasson, 2004). In addition to shorter lifespan, individuals with Down 

syndrome exhibit signs of accelerated aging. Early onset of Alzheimer’s disease is highly 

penetrant in Down syndrome (Powers et al., 2015). Earlier skin changes, hair changes, 

menopause, vision and hearing impairment, thyroid dysfunction, and immune dysfunction 

(Esbensen, 2010; Hermon et al., 2001; Hill et al., 2003) as well. While other disorders of 

accelerated aging have been connected to specific DNA repair defects, Down syndrome has not.  

As a polygenic condition, the ability to identify a specific gene or pathway responsible for aging 

in Down syndrome is difficult, but there is evidence for reduced DNA repair in Down syndrome 

including: accumulation of DNA repair intermediates in the form of strand breaks (Athanasiou et 

al., 1980; Maluf & Erdtmann, 2001), increased chromosomal damage (Caria et al., 2001; Shafik 

et al., 1988), reduced in vitro measures of repair capacity (S. S. Agarwal et al., 1970; Raji, 

Surekha, & Rao, 1998), and reduced expression of DNA base excision repair genes in human 

Down syndrome samples (Cabelof et al., 2009; Raji et al., 1998).   

 Segal and McCoy first observed that fibroblasts from Down syndrome donors exhibited 

slower doubling time and had characteristics of fibroblasts from old, healthy donors (Segal & 
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McCoy, 1974). Over the years, evidence accumulated that the proliferative potential of 

fibroblasts and lymphocytes from individuals with Down syndrome is reduced (de Arruda 

Cardoso Smith et al., 2004). When cultured, they exhibit many of the features of premature 

aging, such as enlarged and flattened morphology, increased number of multinucleated cells and 

early appearance of SA-β-gal activity (Cristofalo, Lorenzini, Allen, Torres, & Tresini, 2004; 

Kalanj-Bognar, Rundek, Furac, Demarin, & Cosovic, 2002). In fibroblasts isolated from a mouse 

model of Down syndrome, TS65Dn, there is increased SA-β-gal activity and reduced 

proliferation, also seen in skin from these TS65Dn mice (Contestabile et al., 2009). Like 

Cockayne and Werner syndromes, the Down syndrome aging phenotype is characterized by 

subtle reductions in both lifespan and doubling time (Weirich-Schwaiger et al., 1994). In a 

longitudinal evaluation of biological aging in Down syndrome, the estimated rate of aging was 

found to be two-fold greater in Down syndrome (Nakamura & Tanaka, 1998). The impact of 

Down syndrome on aging has also been confirmed at the epigenetic level (Horvath et al., 2015).  

This premature aging has been attributed to the high levels of constitutive, endogenous oxidative 

stress in Down syndrome. 

 The DNA repair pathway primarily responsible for processing oxidative DNA damage is 

the base excision repair (BER) pathway. We have demonstrated inducibility of BER and DNA 

polymeraseβ (POLβ) in response to oxidative stress (Cabelof, 2007; Cabelof et al., 2003; 

Cabelof et al., 2002). Accordingly, we should anticipate an adaptive upregulation in POLβ in 

response to the constitutive oxidative stress of Down syndrome, but this does not occur. Lack of 

an adaptive DNA repair response over the lifespan of the individual with Down syndrome could 

conceivably contribute to a stress induced senescence. Our objective in this work is to establish 
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direct evidence that loss of POLβ drives premature cellular senescence and can mechanistically 

explain the accelerated aging phenotype of Down syndrome.  

Methods and Materials 

Tissue Culture.  Down syndrome (DS) primary fibroblasts (AG06872, AG05397) and their age- 

and sex-matched controls (GM00969, GM05659) were acquired from Coriell Cell Repositories. 

Results are pooled from both cell lines where stated. Cells were maintained in MEM medium 

(Life Technologies, Cat#10370-021) supplemented with 15% fetal bovine serum (Hyclone, Cat# 

SH3007003) and 1% penicillin/streptomycin (Gibco, Cat# 15240-062). DNA polymeraseβ 

(Polβ) null cells, a generous gift from Samuel H. Wilson, were maintained in DMEM (Gibco, 

Cat# 11995081) supplemented with 10% FBS. Polβ-null cells were derived from embryonic 

tissue of homozygous Polβ knockout mice (Sobol et al., 1996). Isogenic MEF cell lines, 

provided by Andrew Jackson, were cultured in DMEM (Gibco, Cat# 11995081) supplemented 

with 10% FBS and 0.1 mM β-mercaptoethanol. All cells were maintained in a 5% CO2 and 3% 

O2 humidified incubator at 37°C. 

SA-β-gal:  Senescence-associate β-galactosidase activity was assessed by using a senescence 

detection kit from BioVision (Milpitas, CA), according to the manufacturer’s instructions. 

Briefly, cells seeded at 5 × 10
4
density were treated for 10-14 days with either hydroxyurea (HU) 

or hydrogen peroxide (H2O2). Cells were fixed for 5 minutes at room temperature and incubated 

with staining solution containing X-gal and staining supplement, overnight at 37°C at ambient 

CO2. Blue-stained cells were identified as senescent. A minimum of 300 cells in at least 5 fields 

of view were photographed and counted at 20X magnification, by two blinded counters. Data 

shown here represent the average of three independent experiments. Results are expressed as 

percentage of stained cells in the total number of cells.  Cells cultured and treated concomitantly 
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with those used to assess senescence were passaged for additional 2 weeks to evaluate their 

ability to recover/emerge from senescence. 

Immunofluorescence staining: 4 × 10
4 

cells were seeded on coverslips in 12-well plates and 

fixed in ethyl: acetate (80:20) for 5 min. After three washes, cells were blocked in PBST 

containing 1% BSA for 30 min at room temperature and incubated with primary anti-H2AX 

antibody (Millipore, Cat# 05-636) for 1.5 hr at room temperature or overnight at 4°C. Cells were 

then incubated with Alexa Fluor 488-conjugated anti-mouse IgG (1:400) (Invitrogen, Cat# A-

11001) for 1 hr at room temperature and mounted with Pro-Long Gold anti-fade reagent 

(Invitrogen, CA). Slides were photographed under the Nikon Eclipse 80i microscope (Nikon, 

CA) and processed using the Nikon Elements built-in software. Approximately 300 cells were 

counted in more than 10 fields of view and those cells displaying more than 7 distinct foci/ 

nucleus were considered positive for -H2AX. 

Expression analysis: cDNA was synthesized, as described previously (Cabelof et al. 2006a), 

from 2µg RNA using random hexamer primers and purified with the QIAquick PCR Purification 

columns (Qiagen, Valencia, CA). Transcripts were amplified and quantitated with a LightCycler 

Real Time PCR machine (Roche). PCR reactions contained 2µl purified cDNA, 0.5 µM of each 

sense and antisense primer, and 2µl FastStart DNA Master SYBR Green I enzyme-SYBR 

reaction mix (Roche). For all amplifications, PCR conditions consisted of an initial denaturation 

step at 95°C for 5 min, followed by 40–45 cycles at 95°C for 10s, primer specific annealing 

temperatures for 10s, and elongation at 72°C for 10s. Melting curves from 65°C to 95°C 

confirmed specificity. External standards were prepared for all genes from cDNA amplicons 

cloned into pCRII TOPO cloning vector (Invitrogen, Carlsbad, CA). All transcripts were 

quantitated and normalized to GAPDH or Rpl4expression where stated.  Primer sequences are 
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detailed in Table 1, with the exception of primer sets used for amplification of human POLβ and 

human p16, which were purchased from SA Biosciences (Frederick, MD) (Cat#PPH13735F-200 

and Cat#PPH00207C, respectively).  

Data Analysis 

Results are expressed as mean ± SEM and were analyzed using Student’s t-test. Statistical 

comparisons between groups were conducted using one-way ANOVA, using GraphPad Prism 

5.0 (Graph Pad Software, La Jolla, CA). Values of p < 0.05 were considered statistically 

significant and individual p-values are shown in the figures. 

Results 

Primary fibroblasts from Down syndrome donors recapitulate the gene dosage phenotype 

of Down syndrome.  

To determine whether primary Down syndrome (DS) fibroblasts recapitulate the gene 

dosage effect of trisomy 21, we evaluated expression of three genes located on chromosome 21 

in cells from age, sex, and race matched individuals without Down syndrome (NDS) and with 

Down syndrome (DS). All three genes are involved in oxidative stress responses: Superoxide 

dismutase 1 (SOD1), Cystathionine-β-synthase (CBS), and BACH1. While not all triplicated 

genes in Down syndrome demonstrate gene dosage effects, SOD1, CBS and BACH1 do. SOD1 

overexpression has been verified in human tissues and DS cell lines (Aït Yahya-Graison et al., 

2007). CBS is involved in the conversion of homocysteine to cystathionine and its upregulation 

in Down syndrome is responsible for the low plasma levels of homocysteine (Perrone et al., 

2007; Pogribna et al., 2001). BACH1 is a transcription factor upregulated in Down syndrome 

(Domenico et al., 2015) that modulates oxidative stress-induced cellular senescence (Dohi et al., 

2008). In Figure 2.1 we show upregulation of SOD1 (5-fold, p<0.01), CBS (>5-fold, p < 0.001), 



26 
 

 

and BACH1 (2-fold, p<0.001) in our Down syndrome fibroblasts, confirming the gene dosage 

effect of trisomy 21. 

Premature cellular senescence in Down syndrome fibroblasts 

Senescence is an irreversible cell cycle state that can be induced by multiple endogenous 

and exogenous signals. Widely used biomarkers of senescence are senescence-associated beta-

galactosidase (SA-β-gal) and p16 expression (Alcorta et al., 1996). SA-β-gal is expressed only in 

senescent cells and is not observed in pre-senescent, quiescent, or transformed cells (Dimri et al., 

1995). Elevated expression of p16 maintains the senescence phenotype and is an established 

marker of premature aging (Alcorta et al., 1996). Further, removal of p16 from senescing tissues 

can reverse senescent phenotypes (Baker et al., 2011).  

Cells were stained for SA-β-Gal and the percentage of X-Gal-positive cells was 

calculated for each cell line. In the absence of exogenous stressors, 5% of NDS fibroblasts stain 

positive while 20% of DS fibroblasts stain positive for senescence (Figure 2.2A, 4-fold increase, 

p<0.001). These data are consistent with previous reports that Down syndrome fibroblasts are 

prone to early cellular senescence (Kalanj-Bognar et al., 2002). In parallel to SA-β-Gal detection, 

we evaluated p16 expression as a function of genotype and find a significant increase in p16 in 

primary DS fibroblasts (Figure 2.2A, 3-fold, p<0.01). When exposed to hydrogen peroxide 

(10uM H2O2), we observe 10% senescent cells in NDS fibroblasts and 35% senescent cells in the 

DS fibroblasts (Figure 2B, 3.5-fold increase p< 0.05). In response to hydroxyurea (HU), we 

observe 21.4% of NDS fibroblasts are senescent while 58.2% of the DS fibroblasts are senescent 

(Figure 2.2B, >2-fold, p<0.01). All SA-β-Gal data were collected 48 h after recovery from the 

final exposure. Cells grown and treated in parallel were maintained in culture for an additional 

two weeks, but never reentered the cell cycle.  
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Reduced DNA polymerase β (POLB) expression in Down syndrome fibroblasts 

As described above, loss of DNA repair capacity, in particular loss of POLβ, has been 

observed in several model systems of Down syndrome. To evaluate a possible DNA repair defect 

in our model system, we examined POLβ expression in two primary fibroblast cell lines from 

each genotype, and find a significant reduction in POLβ expression in Down syndrome (Figure 

2.3, 2.9-fold, ±SEM, p<0.01). This reduction is similar to levels previously reported in the Polβ
+/-

 

mouse which has been shown to be sufficient to induce a moderate increase in the rate of aging 

(Cabelof, Ikeno, et al., 2006). However, no study of POLβ has yet evaluated a direct role for this 

gene in premature senescence.   

Homozygous loss of DNA polymeraseβ induces premature cellular senescence  

To elucidate a possible role for POLβ in cellular senescence, we evaluated Polβ
-/- 

primary 

mouse embryonic fibroblasts gifted by Samuel H. Wilson (Sobol et al., 1996) for biomarkers of 

senescence, at baseline and in response to exogenous DNA damage. We anticipated a reduced 

DNA damage threshold in response to senescence-inducing agents in the absence of Polβ, but 

were surprised to see a large number of SA-β-gal positive cells in untreated Polβ
-/- 

cells (Figure 

4A, > 11-fold, p< 0.001). p16 was also significantly upregulated in the absence of Polβ, further 

confirming the premature senescence induced by Polβ deficiency (Figure 2.4A, 1.69-fold, 

p<0.001). This is the first direct evidence that Polβ loss is sufficient to induce premature cellular 

senescence. In addition, treatment of Polβ null cells with hydroxyurea resulted in a greater 

increase in both SA-β-gal positive cells (Figure 2.44B, >2-fold, p<0.05) and p16 expression 

(Figure 4B, > 3.5 fold, p<0.001). These data demonstrate both a senescence phenotype induced 

by the absence of Polβ alone and an increased susceptibility to toxic exposures that could further 

contribute to accelerated aging when polβ is inhibited.  
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DNA polymeraseβ protects cells from hydroxyurea-induced DNA double strand breaks. 

This sensitivity of Polβ null cells to HU suggests a role for this gene product in the 

processing of damage induced by HU. To investigate, we evaluated the impact of HU on Polβ 

expression in two isogenic MEF cell lines and found a significant increase in Polβ (Figure 2.5A, 

2.5-fold, p<0.01). Hydroxyurea inhibits ribonucleotide reductase, which alters dNTP/NTP ratios. 

This imbalance generates strand breaks and stalled  replication forks, both known drivers of 

senescence (Yeo et al., 2000). As such, we investigated the impact of HU on DNA double strand 

break (DSB) formation, both in the presence and absence of Polβ.  In wildtype cells, 20% of cells 

contain DSB when exposed to 300uM HU, while in the Polβ null cells this same exposure results 

in over 50% of cells with DSB (Figure 2.5B, >2.5-fold ,  p<0.001). This provides an explanation 

for the increased sensitivity and accelerated senescence of Polβ null cells in response to HU.  

Perhaps more notable is the significant induction of DSB in untreated Polβ null cells.  While 

fewer than 5% of wildtype cells show distinct foci, over 20% of polβ null cells contain DSB 

(Figure 2.5B, 4-fold, p<0.0001). Although loss of Polβ is known to induce DSB and drive 

recombination in response to DNA damaging agents (Horton et al., 2002), this is the first report 

that these breaks arise spontaneously. These data point to a mechanism by which loss of Polβ 

both induces senescence and reduces the threshold of damage able to induce senescence. 

Discussion 

We show here that loss of Polβ is sufficient to induce senescence, both in response to 

accumulating endogenous DNA damage and in response to hydroxyurea exposure, likely by 

reducing the DNA damage threshold for senescence. The offending DNA damage is most likely 

to be DNA double strand breaks (DSB), as hydroxyurea is known to induce senescence through a 

strand break-mediated mechanism (Yeo et al., 2000). The 10-fold increase in level of DSB in the 
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Polβ null cells supports this (Figure 2.5B).  Polβ performs both the DNA synthesis and dRPlyase 

steps of base excision repair (Sobol et al., 1996). In the absence of either enzymatic activity, 

DNA repair intermediates in the form of strand breaks accumulate, as evidenced by 

accumulation of DSB in Polβ
-/-

 cells exposed to methylmethane sulfonate (MMS) (Pascucci et 

al., 2005).  Our finding that DSB accumulate in unexposed Polβ
-/- 

null cells (Figure 2.5B) is the 

first report that loss of base excision repair results in spontaneous DSB.   

Down syndrome presents an accelerated aging model in which there is both increased 

endogenous damage, and reduced DNA base excision repair capacity, a perfect recipe for early 

senescence.  The level of oxidative stress in Down syndrome is constitutively high, and begins in 

utero (Cabelof et al., 2009; Domenico et al., 2015; Nizetic & Groet, 2012; Pogribna et al., 2001).  

The high level of oxidation likely results from the presence of over twenty genes involved in 

oxidative metabolism located on Chromosome 21 (Patterson & Cabelof, 2012). Likewise, the 

base excision repair defect also begins in utero (Cabelof et al., 2009). Under typical conditions, 

both base excision repair and POLβ are induced in response to oxidative stress.  The lack of this 

adaptive response provides a plausible explanation for the early senescence in Down syndrome.   

Base excision repair capacity and Polβ abundance decline by approximately 50% with 

age (Cabelof et al., 2003). Further, the polβ heterozygous mouse expresses 50% less Polβ and 

ages at a slightly faster rate than its wildtype littermates (Cabelof, Ikeno, et al., 2006)). This is 

coincident with an approximate 50% decline in POLβ levels observed in Down syndrome (Raji 

et al., 1998). Thus, POLβ haploinsufficiency in Down syndrome is sufficient to induce aging and 

premature senescence. The question becomes why POLβ is reduced in Down syndrome, and why 

tissues and cells from individuals with Down syndrome fail to respond properly to DNA damage.  

The combination of increased, chronic levels of oxidative stress and reduced DNA repair likely 
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make individuals uniquely susceptible to environmental exposures. In support, children with 

Down syndrome who develop AMkL are highly responsive to chemotherapy (Taub et al., 2000). 

While increased cytotoxicity is desirable in the treatment of pediatric leukemias, it is hazardous 

with respect to unintended enviornmental exposures. With a reduced threshold to senescence, the 

aging observed in Down syndrome may be the result of unknown gene/environment interactions 

in this population. With the incidence of Down syndrome at 14.47 per 10,000 live births (S. E. 

Parker et al., 2010)that is increasing an average of 0.9% per year (Shin et al., 2009), this is a 

highly relevant question and a potentially interesting model for addressing questions pertaining 

to mechanisms of aging as it relates to environmental exposures.   
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TABLES 

 

Gene Sense primer 5′–3′ Anti-sense primer 5′–3' 

Human   

CBS Ggggctgagattgtgaggac cggtactggtctaggatgtga 

SOD1 Ggtgggccaaaggatgaagag ccacaagccaaacgacttcc 

BACH1 Ctcagccttaatgaccagcgg gcctacgattcttgagtggaag 

Mouse   

p16 UPL probe #91 Aatctccgcgaggaaagc gtctgcagcggactccat 

Polβ (exon 12–13) Agcgagaaggatggaaaggaa cgtgcgctctcatgttcttat 

Housekeeping genes    

Gapdh Aggtcggtgtgaacggatttg tgtagaccatgtagttgaggtca 

GAPDH aaggtgaaggtcggagtcaac ggggtcattgatggcaacaata 

Rpl4 ccgtcccctcatatcggtgta  gcatagggctgtctgttgttttt 

Rpl4 UPL probe # 75 tggtggttgaagataaggttga ccaagctttgagtttcttgagc 

 

Table 2.1: Quantitative RT-PCR Primer sequences 
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Figure 2.1: Primary Down syndrome fibroblasts exhibit gene dosage effects for oxidative 

stress response genes on chromosome 21.Gene expression was evaluated in primary fibroblasts 

from age, sex and raced matched donors either without Down syndrome (NDS, GM00696 and 

GM05659) or with Down syndrome (DS, AG06872 and AG05397). Transcript levels were 

determined by quantitative RT-PCR and normalized to GAPDH. Data are presented as the 

average of pooled samples from each genotype ± SEM. *Values significantly different from 

control (NDS) at p < 0.01.  
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Figure 2.2: Premature cellular senescence in Down syndrome fibroblasts. A. Down 

syndrome fibroblasts exhibit a premature senescence phenotype. Senescence-associated β-

galactosidase (SA-β-Gal) activity and p16 transcript abundance were measured in primary 

fibroblasts from donors either without Down syndrome (NDS, GM05659) or with Down 

syndrome (DS, AG05397) as described in Methods. A minimum of 300 cells was counted in 

random fields by a technician blinded to genotype to quantify the proportion of SA-β-Gal-

positive cells.  Quantification is presented as the average of three independent experiments ± 

SEM and is expressed as a percent of positive cells [(SA-β-Gal-positive cells/total cells)*100]. 

p16 transcript abundance was determined by quantitative RT-PCR and normalized to GAPDH. 

B. Down syndrome fibroblasts exhibit an amplified senescence response to hydrogen peroxide 

and hydroxyurea. Cells were seeded 24 hours prior to treatment with 10 µM H2O2 or 300µM 

Hydroxyurea (HU) as described in Methods. Briefly, cells were exposed to H2O2 for two hours 

and allowed to recover for 5 days, and to HU every 2 days over a 14 day period. 300 cells were 

counted in random fields by a technician blinded to both genotype and treatment. Quantification 

is presented as the average of three independent experiments ± SEM and is expressed as a 

percent of positive cells [(SA-β-Gal-positive cells/total cells)*100].  *Values significantly 

different from control at p < 0.01. 
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Figure 2. 3. Primary Down syndrome fibroblasts exhibit reduced DNA polymeraseβ 

transcript abundance. Gene expression was evaluated in primary fibroblasts from age, sex and 

raced matched donors either without Down syndrome (NDS, GM00696 and GM05659) or with 

Down syndrome (DS, AG06872 and AG05397). POLβ transcript levels were determined by 

quantitative RT-PCR and normalized to GAPDH. Data are presented as the average of pooled 

samples from each genotype ± SEM. *Values significantly different from control (NDS) 

at p < 0.01.  
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Figure 2.4: Homozygous loss of DNA polymeraseβ induces premature cellular senescence. 

A. Loss of DNA polymeraseβ is sufficient to induce senescence. Senescence-associated β-

galactosidase (SA-β-Gal) activity and p16 transcript abundance were measured in primary mouse 

embryonic fibroblasts from wildtype or from DNA polymeraseβ null embryos as described in 

Methods. 300 cells were counted in random fields by a technician blinded to genotype to 

quantify the proportion of SA-β-Gal-positive cells. Quantification is presented as the average of 

three independent experiments ± SEM and is expressed as a percent of positive cells [(SA-β-Gal-

positive cells/total cells)*100].  p16 transcript abundance was determined by quantitative RT-

PCR using a probe-based system as described in Methods. B. DNA polymeraseβ null mouse 

embryonic fibroblasts exhibit an amplified senescence response to hydroxyurea. Cells were 

seeded 24 hours prior to treatment with 300µM Hydroxyurea (HU) as described in Methods.  

Briefly, cells were exposed to HU every 2 days over a 14 day period. 300 cells were counted in 

random fields by a technician blinded to both genotype and treatment. Quantification is 

presented as the average of three independent experiments ± SEM and is expressed as a percent 

of positive cells [(SA-β-Gal-positive cells/total cells)*100]. p16 transcript abundance was 
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determined by quantitative RT-PCR using a probe-based system as described in Methods. 

*Values significantly different from control at p < 0.01. 
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Figure 2.5: DNA polymeraseβ protects cells from hydroxyurea-induced DNA double strand 

breaks. A. DNA polymeraseβ is upregulated in response to hydroxyurea.  Polβ transcript 

abundance was determined by quantitative RT-PCR in two isogenic MEF lines following HU 

exposure. Expression was normalized to Rpl4, and data is presented as mean ± SEM. *Value 

significantly different from control at p < 0.01.  B. Loss of DNA polymeraseβ induces DNA 

double strand breaks.  DNA double strand breaks were detected by γ-H2AX immunostaining in 

primary mouse embryonic fibroblasts from wildtype or from DNA polymeraseβ null embryos as 

described in Methods. Cells were either untreated or were treated with 300uM HU for 24 hrs, 

fixed and stained with DAPI (blue). Cells were probed with antibody against γ-H2AX (green; 

anti-γ H2AX antibody (Millipore, Cat# 05-636)). A total of ≥300 cells in > 10 fields were 
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counted. Cells were considered positive for double strand breaks if >7 foci per nucleus were 

positive. Data are presented as mean ±SEM. *Values significantly different from control 

at p < 0.01. 
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CHAPTER 3: REGULATION OF DNA POLYMERASEΒ BY MIR-155 

Summary 

 

In this chapter we elucidate the link between Polβ downregulation and Down syndrome 

genotype. DS, unlike other premature aging syndromes, provides a non-monogenic model to 

study the effects of trisomy 21 on aging and DNA repair. Here, we set out to determine whether 

HSA21-localized miR-155 played any role in regulating Polβ. Although Polβ does not have a 

miR-155 seed on its 3’UTR, there is ample evidence that Creb1, a transcriptional regulator of 

Polβ, is a direct target of miR-155. miR-155 overexpression causes a reduction in Polβ promoter 

activity, as well as a decrease of both Creb1 and Polβ protein levels.  Data from proteomics study 

reveals that other BER genes are also differentially affected by miR-155 overexpression. Further 

investigation into the precise mechanisms of Polβ inhibition by miR-155 is necessary in order 

understand the effects of Trisomy 21 on DNA repair.      

          

          

         

         

          

        

       

 

Figure 3.1: Proposed mechanism of miR-155 regulation. 
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3.1 Introduction 

Down syndrome is a genetic disorder characterized by an accelerated aging, as result of 

increased genomic instability. This is due to an imbalance between increased DNA damage and 

decreased repair.  Individuals with DS have high constitutive oxidative stress linked to the 

overexpression of HSA21 genes SOD1, APP1, and BACH1 (Domenico et al., 2015; El-

Bassyouni et al., 2015; Nizetic & Groet, 2012; Patterson & Cabelof, 2012; Rodriguez-Sureda et 

al., 2015; N. Rueda et al., 2012). Typically, damage induced by oxidative stress is repaired by 

base excision repair (BER), a process in which POLB is the rate limiting enzyme. We have 

established that DS and Polβ null fibroblast exhibit high levels of senescence markers: SA beta 

gal staining and p16 expression. DS fibroblasts show a reduced POLβ expression that correlates 

with increase in senescence.  Data from Polβ nulls cells confirm that Polβ loss alone is sufficient 

to induce senescence.   

In this study, we explore the underlying mechanism responsible for the negative 

regulation of Polβ. Non-protein coding RNAs have recently been shown to play an important 

role in regulating multiple DNA repair pathways. The 20-nucleotide long miRNAs bind to 

specific 3’-UTR sites on target RNAs and limit the activity of targeted proteins, by either 

inhibiting translation or degrading the transcript.  It is estimated that miRNAs regulate 

approximately 30% of protein-coding genes (Bartel, 2004).  

Five miRNAs are found on chromosome 21: miR-99a, let-7c, miR-125b2, miR-155 and 

miR-802. miR-155 is overexpressed in the fetal brain, fetal heart, and fibroblasts of DS 

individuals  (Hefti et al., 2016; Sethupathy et al., 2007), as well as in the hippocampus and whole 

blood of the Ts65DN mouse (Keck-Wherley et al., 2011). miR-155 has been shown to negatively 

regulate DNA mismatch repair (MMR)(Nicola Valeri et al., 2010). It does so by binding to 
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mismatch repair genes, hMSH2, hMSH6, and MLH1, causing their downregulation.  This results 

in impaired MMR (N. Valeri et al., 2010). MiR-155 also affects DSB repair, by inhibiting Rad51 

(Gasparini et al., 2014), a gene responsible for strand invasion during homologous recombination 

(HR). A recent study showed that miR-155 is also involved in non-homologous end-joining 

(NHEJ), via transcription factor FOXO3a (Czochor, Sulkowski, & Glazer, 2016), which 

modulates DNA repair through Gadd45a and PCNA. This paper also demonstrated that miR-155 

overexpression results in significant reduction in DNA polymerase delta (POLD) (Czochor et al., 

2016). 

MiR-155 could potentially regulate BER, via translational inhibition of transcription 

factor Creb1. Creb1 has 3 putative binding sites for miR-155 on its 3’-UTR and has been shown 

to be negatively regulated by miR-155 (Y. Chen et al., 2013; Gaudet et al., 2016; Lashine et al., 

2015; S. Liu et al., 2011).  miR-155 overexpression causes decreased levels of CREB1 and its 

targets (Lashine et al., 2015; S. Liu et al., 2011), while miR-155 knockout results in restored 

Creb1 (Gaudet et al., 2016).  BER activity is dependent on Creb1 binding to the c-AMP-response 

element (CRE) site at positions -49 to -40 in the mouse Polβ promoter (Kedar et al., 1991; 

Narayan et al., 1994; Sobol et al., 1996; Widen & Wilson, 1991). Promoter studies from Wilson 

group have clearly demonstrated that Creb1 binding to the Polβ promoter is crucial for Polβ 

transcription and efficient BER activity (Srivastava et al., 1998) A zebrafish study also showed 

that reduced Creb1 in Ape1 knockdown results in low Polβ expression (Pei et al., 2011), a 

finding we have also seen in brain and liver of Ape1 heterozygous mice (Raffoul et al., 2004).  

Thus, we sought to establish whether miR-155 overexpression, characteristic of the 

overexpression seen in DS, could explain the low Polβ levels observed in these individuals. 
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3.2 Materials and Methods 

Tissue Culture SV-40 transformed mouse embryonic fibroblasts (MEFs; Tag 92), a generous 

gift from Robert W. Sobol, were maintained in DMEM (Gibco, Cat# 11995081) supplemented 

with 10% FBS, in a 5% CO2 and 20% O2 humidified incubator, at 37°C.   

Transfections  SV40 transformed mouse embryonic fibroblasts (MEFs) were electroporated 

with either pEGP-miR-155 or pEGP-miR-null. Cells incorporating the construct were selected 

and pooled by treatment with puromycin. Briefly, cells were grown to 75% confluence, then 

collected and counted. 1x10
6

 cells in 200 ul volume were transferred into a sterile Bio-Rad 

GenePulser electroporation cuvette (0.2 cm; Bio-Rad) along with 10 μg of pEGP-miR-155 or 

control pEGP-miR-null (Cell Biolabs, San Diego, CA) plasmid DNA. The mixture was gently 

mixed, then pulsed at 220 V and 500 μFD,  using a Bio-Rad GenePulser electroporation 

apparatus (Bio-Rad). Freshly electroporated cells were then transferred into 6–well plates 

containing 2ml of complete growth media and incubated at 37°C and 5% CO
2
 for 24 hours.  The 

media was changed after 24 h and total RNA was extracted using Trizol (Invitrogen) at 72h 

posttransfection. Stable clones were selected beginning at 48h posttransfection  with 3μg/ml 

puromycin (Sigma-Aldrich, St. Louis, MO), for 2 weeks.  

Plasmid constructs  A plasmid containing the Polb core promoter (positions -114 to +62), 

which exhibits the same CAT activity as a 4.6kb fragment, was kindly gifted by Dr. Samuel 

Wilson. The promoter sequence was PCR-amplified using the following primers: forward 

5’CCGCGCCGGCACGCCTCACAAACAGTA-3’and reverse 5’GAGCCGGAGGGCGGCCC 

GGGACTCAC-3’. Subsequently, it was cloned into the pGL3 basic vector, upstream of the 

luciferase gene. The CRE site in the minimal promoter was mutated  
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(TGACGTCA TGAatTC) by using the Q5 Site-Directed Mutagenesis kit (NEB, Ipswich, MA) 

with the following primers: forward TGGCGCGTGAATTCACCGCGCTGCGCC and reverse 

GGCTACGGGGCGGGGCTA.  Both constructs were sequenced to verify accuracy. 

MicroRNA 155 Expression Total RNAs was isolated using Trizol.  50 ng of total RNA were 

used for reverse transcription (RT). RT reactions comprised  0.15 μL dNTP, 1.5 μL buffer (10x), 

9 μLRNAse-free water, 0.2 μLRNAse inhibitor, 1 μL Multiscribe Reverse Transcriptase, and 3 

μL of specific miR-155  RT primers (Applied Biosystems). RT reactions for primer extension 

and synthesis of the first cDNA strand were set at 16°C for 30 minutes, 42°C for 30 minutes, and 

85°C for 5 minute, using a BioRad thermal cycler. The TaqMan miR-155 assay (Applied 

Biosystems) was used to quantify miR-155. 5 μL of RT reaction were mixed with 10 μL of 

TaqMan Universal PCR master mix (Applied Biosystems), 4 μL of RNAse-free water, and 1 μL 

of TaqMan miRNA Assay (Applied Biosystems). Quantitative real-time PCR analysis was 

performed using LightCycler 480 (Roche) at 95°C for 10 minutes, followed by 40 cycles of 95°C 

for 15 seconds, and 60°C for 60 seconds.  Sno202 (Applied Biosystems), a noncoding RNA, was 

used as endogenous control. 

Expression analysis cDNA was synthesized, as described previously (Cabelof et al. 2006a), 

from 2µg RNA, using random hexamer primers and purified with the QIAquick PCR 

Purification columns (Qiagen, Valencia, CA). Transcripts were amplified and quantitated with a 

LightCyclerReal Time PCR machine (Roche). PCR reactions contained 2µl purified cDNA, 0.5 

µM of each sense and antisense primer, and 2µl FastStart DNA Master SYBR Green I enzyme-

SYBR reaction mix (Roche). For all amplifications, PCR conditions consisted of an initial 

denaturation step at 99°C for 10 min, followed by 35–45 cycles at 96°C for 10s, primer specific 

annealing temperatures for 10s, and elongation at 72°C for 5s. Melting curves from 40°C to 99°C 
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confirmed specificity. External standards were prepared for all genes from cDNAamplicons 

cloned into pCRII TOPO cloning vector (Invitrogen). All transcripts were quantitated and 

normalized to GAPDH or RPL4 expression. Primer sequences are detailed in Table 3.1. 

Western blotting Cells overexpressing miR-155 and null were pelleted and stored at -80°C until 

further use. Nuclear proteins were extracted using the NucBuster™ Protein Extraction Kit 

(Novagen, Darmstadt, Germany) and quantified using the Pierce BCA Protein Assay Kit 

(Thermo Scientific), as per the manufacturer protocols. 40 ug of nuclear extracts were ran on 

10% TGX Stain-free precast gels (BioRad) and transferred to 0.2um PVDF by using the Trans-

Blot Turbo Transfer System (BioRad), according to the manufacturer’s recommendations. 

Loading and transfer consistency was determined by UV-activation of the gel and membrane. 

Following activation, blots were incubated for 30 minutes in blocking buffer (5% BSA in PBST) 

and overnight at 4C in primary antibodies, at 1:500 dilutions: CEBP  (Abcam, ab18336) and 

Pol Abcam, ab3181). Blots were subsequently washed in PBST and incubated for 90min at 

room temperature in anti-mouse IgG-HRP secondary antibody (Cell Signaling, #7076), diluted at 

1:5000 in PBS.  Bands were detected using a ChemiImager, following activation with the 

SuperSignal Chemiluminescent Substrate luminol/enhancer (BioRad). Optical density was 

determined using ImageJ (Schneider, Rasband, & Eliceiri, 2012) and data were expressed as 

band intensity normalized to total protein intensity. 

Luciferase Assay Stable miR-155 and control clones were co-transfected with 5ug of pGL3-

Polβ promoter plasmid, which includes the CRE binding site (TGACGTCA), and 25ng of 

Renilla vector, which acts as control for transfection efficiency. The mixture was gently mixed, 

then pulsed at 200V and 500 μFD, using a Bio-Rad GenePulser electroporation apparatus (Bio-

Rad, Hercules, CA).  Media was changed 24 hours posttransfection and cells were grown for 
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additional 24 hours before analysis. Luminescence was detected using a Dual Luciferase assay 

(Promega, Madison, WI, USA) and quantified with a Turner Biosystems 20/20 Luminometer 

(Promega). Relative light units (RLUs) were calculated as luciferase activity normalized to 

Renilla activity. Data represent the average ± standard deviation of triplicate samples.  

Proteomics  

Stable isotope labeling with amino acids in cell culture  (SILAC): Select miR-155 

overexpressing and null cell lines were  maintained in DMEM media supplemented with 10 % 

dialyzed fetal bovine serum, 0.46 mM l-Lys-HCl or 0.46 mM13C6, 15N2-Lys-HCl, 0.47 mM l-

Arg-HCl or 0.47 mM 13C6-Arg-HCl, 200 mg/L l-proline, 2 mm glutamine, 100 U/mL penicillin, 

and 100 µg/mL streptomycin, in a humidified 5 % CO2 atmosphere (G. C. Parker, Carruthers, 

Gratsch, Caruso, & Stemmer, 2016).  Cells were passaged three times a week and harvested for 

experiments after six passages in the SILAC media. Cells were harvested by washing and 

scraping, then spun and stored in pellets at −80°C until analysis. 

Sample preparation Cells were resuspended in 100 µL of water, followed by addition of 100 µL 

of 2 % LiDS, and incubation in 95 °C water for 5 min. Proteins in the lysates were determined 

using a BCA protein assay (Pierce, Rockford, IL). Equal amounts of protein from SILAC heavy 

and light cell lysates were combined and treated with 10 mM DTT and alkylating agents with 30 

mM iodoacetamide, before adding 10 mM additional DTT. Samples were fractionated on 10 % 

polyacrylamide SDS-PAGE gels and stained with Coomassie blue. Each of the three sample 

lanes was divided into 30 fractions with the edges of each lane removed prior to slicing for 

analysis. Proteins in the gel were digested overnight with 0.04 μg trypsin per slice in buffer 

containing 20 mM Tris (pH 8.0) and 10 % acetonitrile. Eluted peptides solubilized in 0.1 % 

formic acid were analyzed by LC–MS/MS, without further purification. 
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LC-MS/MS analysis Two GelC-30 SILAC experiments were performed:  C1 with miR-155 

heavy and null light and C2 with null heavy and miR-155 light.  Mass spectra were searched 

against the Uniprot mouse database downloaded 2014.06.24, using MaxQuant version 1.5.28.  

Cysteine carbamido methylation was specified as a fixed modification and protein N-terminal 

acetylation and methionine oxidation were specified as variable modifications (Carruthers, 

Parker, Gratsch, Caruso, & Stemmer, 2015).  Unique and razor peptides were both used for 

protein quantification.  We identified 3342 proteins that were present in both SILAC 

experiments. An abundance ratio (miR-155/null) was determined for each protein group using 

ratios from all peptides that could be assigned to it.  Ratios were log-transformed and normalized 

so that the median log-fold change for each experiment was 0.   

Immunofluorescence staining 4 × 10
4 

cells were seeded on coverslips in 12-well plates and 

fixed in ethyl: acetate (80:20) for 5 min. After three washes, cells were blocked in PBST 

containing 3% BSA for 30 min at room temperature and incubated with primary anti-

antibody (Millipore, Cat# 05-636) for 1.5hr at room temperature or overnight at 4°C. Cells were 

then incubated with Alexa Fluor 488-conjugated anti-mouse IgG (1:400) (Invitrogen, Cat# A-

11001) for 1 hr at room temperature, and mounted with Pro-Long Gold anti-fade reagent 

(Invitrogen, CA). Slides were photographed under the Nikon Eclipse 80i microscope (Nikon, 

CA) and processed using the Nikon Elements built-in software. Approximately 300 cells were 

counted in more than 10 fields of view and those cells displaying more than 7 distinct foci/ 

nucleus were considered positive for γ-H2AX. 

Data Analysis 

Results are expressed as mean ± SEM analyzed and were analyzed using Student’s t-test. 

Statistical comparisons between groups were conducted using one-way ANOVA, using 
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GraphPad Prism 5.0 (Graph Pad Software, La Jolla, CA). Values of p < 0.05 were considered 

statistically significant and individual p-values are shown in the figures. 

3.3 Results 

We generated several miR-155-overexpressing clones, exhibiting a range of 2-12 fold 

miR-155 overexpression (Figure 3.3.1a, p<0.05). Most of the subsequent experiments were done 

in clone 3, which overexpresses miR-155 at levels 2-3 fold above control, consistent with the 

level of overexpression observed in DS.  This level of miR-155 overexpression is therefore 

relevant to our objective of studying gene dosage of Trisomy 21. Additionally, we confirmed our 

mir-155 overexpression by quantifying protein levels of previously validated targets of miR-155. 

Cebpβ, previously shown to be negatively regulated by miR-155 (Jiang et al., 2012; S. Kim et 

al., 2016), had reduced protein levels in our engineered miR-155 MEFs (Figure 3.3.1b).   

Next, we analyzed changes in PolβmRNA and protein in two stable miR-155 clones (2 – 

and 12-fold).  The low overexpressing cells showed an approximate 50% reduction in Polb 

transcript (p< 0.01 Figure 3.2a), reflected also by reduced PolB protein. However, cells 

overexpressing miR-155 at ~12 fold showed no difference in Polb transcript and protein, 

suggesting a dose dependent regulation (Figure 3.2b).  

To evaluate the impact of miR-155 overexpresssion on promoter activation, we have 

cloned the PolB core promoter, including the CRE site, into a luciferase vector as described in 

Methods.  We find that overexpression of miR-155 effectively inhibits PolB promoter activity by 

almost 5 fold (Fig 3 p<0.01). In addition, when the Creb1 binding site in the core promoter is 

mutated, the luciferase activity becomes undetectable. Taken together, these in vitro results 

suggest that miR-155 inhibition of Creb1 translation could be responsible for PolB inhibition. 
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We show in Chapter 2 that Polβ null cells exhibit a high number of DSBs, both at 

baseline and in response to DNA damage. A recent study also showed that cells overexpressing 

miR-155 leads to initiation of the error prone NHEJ repair (Czochor et al., 2016).  The 

mutational specificity of miR-155 overexpression is consistent with upregulated NHEJ 

(Czochor…), but not consistent with a MMR deficiency, suggesting that the DNA repair defects 

induced by miR-155 overexpression are related more to strand break resolution and less to post 

replication repair.  To further investigate this point, we measured DSB by γ-H2AX staining in 

miR-155 overexpressing cells. In the miR-155 clone that mimicked DS conditions, we saw an 

almost 17% increase in γ-H2AX foci compared to ~ 4% increase in the null control (Figure 

3.4a). In the miR-155 clone with 12-fold overexpression, we did not see either an increase in 

DSB or a loss of Polβ(Figure 3.4b), strengthening the connections between Polβ loss and DSB 

formation.  Further, this creates an opportunity to connect the mutagenicity and DNA damage of 

miR-155 overexpression to polB and altered BER.  

In order to conduct an unbiased evaluation of the impact of miR-155 overexpression on 

DNA repair genes, we employed an unbiased proteomic approach to discover which DNA repair 

proteins and pathways are affected by miR-155 overexpression. Stable isotope labeling with 

amino acids in cell culture (SILAC) is a tool that allows for differential labeling of amino acids. 

Amino acids with substituted stable isotopic nuclei labeled either “light” or “heavy “are 

introduced into the growth medium. Cells in culture will incorporate the labeled amino acid 

instead of the natural amino acid into all newly synthesized proteins (Mann, 2006).  LC-MS/MS 

allows for analysis of the ratio between light and heavy in each identified peptide.   This 

approach generated 4000 differentially expressed proteins in response to miR-155 

overexpression.  Preliminary analysis of these 4000 proteins revealed the pleiotropic effects 
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known to be exerted by this promiscuous miRNA.  Multiple pathways and numerous gene 

products are differentially impacted by miR-155 overexpression, even at low levels of 

overexpression. Using the beta version of DAVID 2008, we established that these proteins 

belong to these processes such as: oxygen metabolism, dNTP metabolism, DNA damage 

response, and DNA repair. We have validated our proteomics findings both by comparing the 

proteins identified in our screen to those that have been previously validated as direct targets of 

miR-155 (Table 3.5.1), and by western analysis.  Using the DIANA tool in TarBase (Vlachos et 

al., 2015), we set protein identification filters for: mus musculus, directly validated targets of 

miR155, and a prediction score of >0.95.  This generated a list of 31 total mouse proteins 

identified as direct miR-155 targets that have been published in the literature.  Table 3.5.1 lists 

the proteins that overlap with our proteomics data, and 12 of our genes match the list generated 

by DIANA.  39% of all prior validated targets for miR-155 in mus musculus are represented in 

our data set.  This is particularly interesting in light of the fact that our system employed a 

completely different cell type (fibroblasts), pointing to the potential universality of the effect of 

miR-155 on these specific gene products.  In addition, by western analysis we measured protein 

levels of CEBPβ, a known human target of miR-155 (S. Kim et al., 2016), and find that in our 

system we likewise see downregulation of this miR-155 target. 

Next, we evaluated our data set for differential expression of DNA repair proteins.  i We 

find that theMMR proteins MSH6 and MSH2 are reduced in miR-155 overexpressing cells, 

consistent with published reports(N. Valeri et al., 2010).  Interestingly, we found that several 

BER genes downstream of Polβ are also affected (Table 3.5.2).  However, a search using the 

TargetScan database revealed that none of theBER genes contain seed sequence for miR-155 in 

their 3’-UTR, suggesting an indirect regulation by miR-155(V. Agarwal, Bell, Nam, & Bartel, 
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2015). Notably, all the upregulated BER proteins shown in Table 3.5.2 are downstream of the 

PolB reaction in BER.  

3.4 Discussion 

miR-155 is one of the most widely studied microRNAs. Based on its broad importance 

and on its known impact on another DNA repair pathway, mismatch repair, we set out to 

determine whether HSA21-localized miR-155 played any role in regulating Polβ. While there is 

no indication that Polβ would be a direct target of miR-155, there was abundant evidence that the 

transcription factor,Creb1,  was directly, negatively regulated by miR-155 (S. Liu et al., 2011).  

Because Creb1 and the CRE in the Polβ promoter are essential for transactivation of polB 

transcription, we hypothesized that inhibition of Creb1 by miR-155 would negatively impact 

Polβ expression.  Our data clearly establish that miR-155 overexpression results in 

downregulation of Polβ expression. In miR-155 overexpressing MEFs, we show downregulation 

in both Polβ transcript and protein. This is the first reported effect of miR-155 on a DNA repair 

protein outside the MMR pathway, and points to a role for Polβ in the phenotypes induced by 

miR-155 overexpression.  In chapter 2 we demonstrated clearly that loss of Polβ results in a 

significant accumulation of DNA DSB.  Here we find that miR-155 overexpression likewise 

causes accumulation of DSBs, conceptually tying the loss of Polβ in miR-155 overexpressors to 

the DSB. This is interesting and counterintuitive within the context of a recent paper in which 

strand breaks were suppressed in miR-155 overexpressing cells, but were elevated in cells with 

miR-155 silenced (Czochor et al., 2016).  However, in that work the level of miR-155 

overexpression was more than 50-fold overexpression.  In that same paper, the authors found no 

impact of miR-155 on Polβ, but did see a reduction in Polδ.  Our data set, on the other hand, 

showed no effect on Polδ.  Many studies investigating the roles of miRs on various outcomes 
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utilize systems that largely overexpress the miR of interest (hundreds of folds overexpression).  

This may be relevant to the study of cancer, as some types of cancer exhibit large fold increases 

in miR-155 expression.  But for our purposes of studying the impact of a trisomy 21-induced 

gene dosage effect of miR-155, those studies are irrelevant.  One important finding to come from 

our studies is that the level of overexpression can drastically vary the impact of miR-155 on its 

targets, and that blanket statements about the role(s) of this miRNA must take into consideration 

dosage context.   

To extend our investigation into a more complete evaluation of the entire BER pathway, 

we looked in Target Scan for BER(V. Agarwal et al., 2015) genes that might have miR-155 seed 

sequence in their 3’UTR, but found none.   However, this approach does not take into 

consideration potential indirect targets, like in the case of Polβ.  So we proceeded to compare our 

proteomic data set against all known DNA repair proteins (Wood RD, 2014)and found several 

BER proteins downstream of the Polβ step of BER that are also affected by miR-155 

overexpression (Table 3.5.2). Notably, these proteins are all upregulated.  Each of these genes 

conceivably plays a role in helping to resolve the DNA repair intermediates induced by loss of 

Polβ (i.e., DNA single strand breaks).  We suggest that the loss of Polβ generates damage that 

induces an adaptive response in these particular BER genes to minimize the impact of 

accumulating repair intermediates on the formation of DSB.  Because single strand breaks at the 

replication fork can cause replication stress and DSB accumulation, we further suggest that 

eliminating these proteins should amplify the DSB accumulation induced by miR-155 

overexpression.     

To conclude, our data definitively show that miR-155 overexpression inhibits Polβ and 

induces DSB.  It remains unclear what the mechanism of Polβ inhibition may be.  We propose 
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two possible mechanisms.  The first is through Creb1 downregulation induced by miR-155 

overexpression, as described above and supported by the reduced protein levels of Creb1 we 

observe when we overexpress miR-155 (data not shown). Another, not mutually exclusive 

mechanism could be through Foxo3.  miR-155 could regulate BER via FOXO3a and its target, 

Gadd45a. Gadd45a has been shown to activate BER and play a role in recruiting other DNA 

repair genes. As such, inhibition of Gadd45a by Foxo3 could block BER.  Further investigation 

into the precise mechanisms of Polβ inhibition by miR-155 is necessary in order to move toward 

developing interventional strategies to protect genome integrity in individuals with Down 

syndrome.  
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Gene Sense primer 5′–3′ Anti-sense primer 5′–3' 

Mouse   

B-pol (exon 12–13) agcgagaaggatggaaaggaa Cgtgcgctctcatgttcttat 

Housekeeping genes (mouse)   

Gapdh aggtcggtgtgaacggatttg Tgtagaccatgtagttgaggtca 

Rpl4 ccgtcccctcatatcggtgta Gcatagggctgtctgttgttttt 

Rpl4 UPL probe # 75 tggtggttgaagataaggttga Ccaagctttgagtttcttgagc 

 

Table 3.1: Primer sequences 
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Figure 3.2 SILAC-based quantitative proteomics.  Flowchart of double SILAC coupled with 

LC-MS/MS .  
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Figure 3.3.1: Ectopic overexpression of miR-155 in MEFs. miR-155 overexpression in MEFs  

by electroporation  is confirmed by qRT-PCR and normalized  endogenous control, sno202.  

Data presented is average ± SEM. Delta ΔΔ CT method was used to calculate fold change. 
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Figure 3.3.2: Validation of C/EBP β downregulation in miR-155.  The levels of C/EBP β 

protein  from miR-null and miR-155 overexpression cells  was determined by western blot 

analysis. The level of  C/EBP β protein was normalized  to whole protein.  Data are presented as 

means ± SEM of four replicates. 
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Figure 3.3.3: Polβ transcript and protein  expression is downregulated in miR-155 Cells.  

Polβ transcript expression  was determined by q RT-PCR in miR-null and miR-155 

overexpression cells.. Expression was normalized to Rpl4, and data is presented as mean ± SEM. 

*Value significantly different from control at p < 0.01.  The levels of Polβ protein was 

determined by western blot analysis. The level of Polβ protein was normalized to whole protein.  

Data are presented as means ± SEM of three biological replicates. 
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Figure 3.3.4:Polβ  Promoter activity is inhibited by miR-155 overexpression. A. Polβ 

constructs (2 μg) were co-transfected with a Renilla luciferase plasmid, serving as an internal 

control for transfection efficiency, into miR-null and miR-155 cells, and luciferase activity was 

measured 48 h post-transfection. . B. Luciferase expression in Mutated PolB construct 

transfected into miR-null cells.  
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Validated miR-155 targets  up/down cell type(s)  Our data 

fold 

change 

Myo1d Down Muscle Down 2.68 

Nr2f2 Down Muscle Down 1.5 

Strn3 Down Muscle Up 1.41 

Rps6ka3 Down Muscle Down 1.28 

Trps1 Down Muscle Up 1.24 

Rcor1 Down T cells; muscle Up 1.22 

Tab2 Down 

T cells; stem 

cells Down 1.19 

Fosl2 Down T cells; muscle Down 1.18 

Kdm2a Down T cells; muscle Up 1.18 

Irf2bp2 Down T cells; muscle Down 1.1 

Cdc73 Down T cells; muscle Up 1.05 

Pkn2 Down T cells Up 1.03 

     

 

Table 3.3.5 Validated  miR-155 targets shown in our dataset.   
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DNA REPAIR  

Fold 

change 

Mismatch repair 

 MSH3 -1.8 

MSH2 -1.3 

MSH6 -1.3 

BER/strand 

break 

 DNA ligase3 1.31 

DNA ligase 1 1.41 

Xrcc1 1.46 

Pnkp 2.12 

Parp2 1.76 

Fen1 1.26 

Xrcc4 1.37 

DNA polk 1.5 

 

TABLE 3.3.6: Impact of miR-155 overexpression on proteins involved in DNA repair. 

Proteins involved in MMR and BER/SSB 
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CHAPTER 4: TS65DN MOUSE MODEL 

4.1 Summary 

It is important to consider that no mouse model can be a perfect model of DS, for the 

reasons eneumerated below, and as summarized in Vacano et al. (Vacano, Duval, & Patterson, 

2012). That said, the Ts65Dn model phenocopies much of DS, even though it is trisomic for only 

about 50% of the HSA21 genes. This model is particularly appropriate as it exhibits signs of 

premature aging(Adorno et al., 2013):fibroblasts from these mice senesce early (Contestabile et 

al., 2009). Our objective was to do an extensive evaluation of aging and senescence in tissues 

from these mice and their disomic littermates (WT) at different ages. Experiments were 

conducted in male mice only, to preserve female animals for breeding purposes. Expression 

levels of p16 and Polβ will allow us to correlate premature aging and reduced DNA repair 

capacity.  

4.2 Introduction 

Mouse models have been one of the most useful tools in studying DS pathogenesis due to 

the homology existing between human genes on chromosome 21 and mouse genes on 

chromosome 16, chromosome 10 and chromosome 17 (Rachidi & Lopes, 2007).  Mouse models 

allow scientist to dissect many of the features of DS as well as develop therapeutic drugs for 

aliments that afflict individuals with DS. In the last 40 years researchers have been able to study 

the molecular, cellular, physiological, and behavioral phenotypes observed in human DS through 

the use and manipulation of mouse models.   

Two types of mouse models have been developed to study the molecular genetics of DS: 

segmental trisomic models and transgenic models. Each model has its limitation but each offer 

insight into the molecular mechanisms driving the DS phenotype.  The segmental trisomic 
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models have the advantage of mimicking many of the clinical phenotypes observed in DS 

individuals. Despite this, their drawback remains  species-specific gene differences between 

mice and humans (Rachidi & Lopes, 2007). Alternatively, the transgenic mouse models, 

overexpressing only one or few genes, allow a direct genotype–phenotype relationship, but the 

disadvantage of these mouse models is the loss of critical interactions between genes present at 

three copies(Rachidi & Lopes, 2007).   

4.3 Trisomic mice 

The first mouse model of DS developed was Ts16using the rationale that MMU 16 and 

HSA21 were close in sentry.  A breeding scheme using a balanced Robertsonian translocation of 

MMU 16 was devised.  A male mouse carrying Robertsonian translocations of MMU 16 was 

mated with a normal female thus producing approximately one-third of the progeny with 

Trisomy of MMU16. The model presents several characteristics of DS such as increased 

oxidative stress, mitochondrial dysfunction and nervous system impairment (Cox, Smith, 

Epstein, & Epstein, 1984; Pagano & Castello, 2012). Ts16 mice develop cardiovascular 

anomalies similar to those seen in DS (Villar et al., 2005).  Severe thymic hypoplasia and 

delayed maturation of thymic lymphocytes are also observed in Ts16 mouse (Epstein, Cox, & 

Epstein, 1985). The key function of the thymus is to provide an area for T-lymphocyte 

maturation and in DS this process is significantly impaired (Kusters, Verstegen, Gemen, & de 

Vries, 2009; Peled-Kamar et al., 1995) . DS children display many signs of thymic hypoplasia 

such as  T-cell dysfunction and increased risk for infections, lymphoproliferative disorders, and 

autoimmune diseases (De Leon-Luis et al., 2011).   

With respect to cognitive function, Gearhart et al demonstrated impairment in the 

development of the basal forebrain cholinergic neuron (impaired learning) and increased 



63 
 

 

susceptibility of these mice to develop AD.  They exhibit a two fold increase in amyloid 

precursor protein (APP) accumulation, a protein implicated in senile plaque formation in AD.   

Cells cultured from these Ts16 mice have led to substantial insight on neuronal development in 

DS as well as in Alzheimer disease (AD). Ts16 lines overexpress other key genes involved in the 

pathogenesis of AD. These include Cu/Zn superoxide dismutase (SOD-1), Ets-2 transcription 

factors and Down Syndrome Critical Region 1 (DSCR1) stress-inducible factor (Lott, Head, 

Doran, & Busciglio, 2006). The overabundance of these genes due to Trisomy causes a 

pathological cascade that cause oxidative stress and a neurogeneration typical of AD (Lott et al., 

2006).  These findings are analogous to what is observed in DS brain.   

Nonetheless Ts16 is not an ideal model due to its many imperfections vis-à-vis human 

DS.  It does not accurately recapitulate human DS aneuploidy because Mmu16 is bigger than 

HSA21 and contains many genes homologous with HSA3, HSA8, HSA16, and HSA21 (Noemí 

Rueda, Flórez, & Martínez-Cué, 2012).  The extra genes that are not implicated in DS may 

contribute to the perceived DS phenotype in the mouse modes, confounding the story.  Further, 

one key characteristic of DS is degeneration of basal forebrain cholinergic neurons (BFCNs). 

The Ts16 mouse does not exhibit this trait, and many others as well, so it does not faithfully 

recapitulate enough of the DS phenotype to be an ideal model.  Another disadvantage is that the  

Ts16 genotype is embryonic lethal limiting the ability to research postnatal DS phenotypes 

l(Seregaza, Roubertoux, Jamon, & Soumireu-Mourat, 2006; Villar et al., 2005).   

Another model, the Ts(16C-tel)1Cje (Ts1Cje) mouse, is created by  a translocation 

between MMU12 and MMU16.  When a gamete carrying MMU12
, 
with translocation of MMU 

16, and another complete MMU16 combines with a normal gamete, a partial Trisomy of the 

distal region of MMU16 results(Sago et al., 1998) .  Consequently this scheme allows only a 
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small region of MMU16 to be trisomic, and about one third of genes seen in the Ts65Dn model 

are trisomic in Ts1Cje mice (Dierssen et al., 2001).  Unlike Ts65Dn(described below), Ts1Cje 

mice exhibit very few DS phenotypes.  Craniofacial anomalies are not visible, learning deficits 

are not severe, and the age-dependent degeneration of BFCN are absent in these mice.  However, 

this does not mean that Ts1Cje is of no use, as comparison between other trisomic models can 

allow for the pinpointing of genes involved in some DS phenotypes.  For example, neuronal 

atrophy is absent in Ts1Cje and present in Ts65Dn, suggesting that the missing region, from APP 

to SOD1, is required for the pathology to develop (Sago et al., 1998).    

 The newest model mouse to emerge is from a group out of England. Tc1 (Tc = 

transchromosomic).Unlike the previously discussed models, this mouse carries an almost 

complete copy of human chromosome 21 (approximately 92% of all genes). It recapitulates 

almost all DS phenotypes including the heart defects seen in DS newborns (Galante et al., 2009). 

While this sounds like the ideal model, genetically speaking it’s identical to DS in humans, it has 

many weaknesses. For one, the coexistence of  human chromosome and human proteins in 

mouse environment can be problematic for interpretation, since mice and humans have various 

differences that underline development and aging. Further, a primary issue with  the Tc1 model 

is that the freely segregating HSA21 is not found in all tissues, making this more relevant to 

mosaic type of DS.   

The DS model we have chosen to use for our studies is the most widely used and studied 

DS mouse model: Ts(17
16

)65Dn mouse (Ts65Dn). This mouse carries a segmental trisomy,  

created by Davisson et al,. To create this mouse, testes of DBA/2J male mice were cesium 

irradiated and then  bred to C57BL/6J female mice (Lorenzi, Duvall, Cherry, Reeves, & Roper, 

2010). The resulting offspring that carried reciprocal translocations for Mmu16 were bred to 
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B6C3F1 mice (Davisson et al., 1993). This resulted in Ts65Dn heterozygote mice producing 

offspring with the small marker chromosome consisting of the telomeric Mmu16 attached to a 

Mmu17 centromere (Dierssen et al., 2001).  Ts65Dn is trisomic for roughly 104 genes (from App 

to Mx1) that are homologous to HSA21 and have be shown to be responsible for several DS 

phenotypes (Noemí Rueda et al., 2012). Phenotypes exhibited in Ts65Dn mice include 

developmental abnormalities, cognitive and neurological impairments, craniofacial 

abnormalities, and age-related deterioration of BFCNs (Roper, St John, Philip, Lawler, & 

Reeves, 2006).  Another characteristic of Ts65Dn is the increase in oxidative stress markers seen 

in young and old mice(Domenico et al., 2015).  What makes this model practical is that the mice 

survive live birth and age to adulthood allowing for postnatal research.  This allows researchers 

to study many aspects of DS such as the premature aging phenotype as well as the development 

of AD. Proliferation impairment was reported in cultured fibroblasts from newborn Ts65Dn. 

Ts65dn fibroblasts uptake of BrdUrd, a thymidine analogue that is incorporated by proliferating 

cells during the S-phase of cell cycle was reduced by 30%  (Contestabile et al., 2009).   The 

fibroblast also exhibited morphologic changes characteristic of senescent cells sush as enlarged, 

flattened shape and increase in number of SA-Beta Gal positive cells (Contestabile et al., 2009).  

In vivo studies also showed Ts65Dn mice having an impaired proliferation in skin collected from 

2 day old Ts65dn post BrdU injection (Contestabile et al., 2009).  These findings show a 

premature aging phenotype that mimics what has been reported in DS. As they age, they develop 

pathologies consistent with other age related disease such development of AD and increase 

incidence of lymphomas (Levine et al., 2009).   

Even so there are drawbacks associated with Ts65Dn model.  For one, male progeny are 

sterile thus expansion is dependent on female mice. Though most features of DS are 
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recapitulated, some are nonexistent, notable they do not exhibit the heart defects seen in DS. 

Also Ts65Dn is only a partial Mmu 16 Trisomy, accounting for approximately 60% of genes on 

HSA21. Despite these weaknesses, the advantages of the Ts65Dn model have been 

used/exploited for the study of cognitive impairment, AD, and aging in DS.  

Ms1Ts65 is a DS mouse model created by crossing Ts65Dn female (see below) and 

Ts1Cje male mice.  Ms1Ts65 mice have been very useful in separating out the effects of genes  

present in Ts65Dn but not Ts1Cje mice on DS phenotypes.  Comparison studies between 

Ts65Dn and Ms1Ts65have demonstrated that the Ts65Dn phenotypes, absent in other segmental 

models,  is most likely due to the interaction between the trisomic genes in the distal end of 

MMU 16 (Dierssen et al., 2001) On its own, the Ms1Ts65 model displays the fewest similarities 

to the DS phenotype when compared to other segmental trisomics models, though they  have 

been useful in allowing us to have a better understanding of the genes found in DS critical region 

(DSCR) and their role of these genes in some phenotypes of DS. 

4.4 Transgenic Mice  

 Despite the overwhelming advantage of full and partial Trisomy models, single gene 

mouse models overexpressing genes on HSA21 have also generated key findings in deciphering 

DS pathogenesis. We refer to these models as transgenic DS mice. The transgenic genes are 

believed to be important in driving DS phenotypes.  This type of model allows researchers to 

examine the role of one gene at a time in the complex phenotype of DS. Though they don’t 

recapitulate all DS traits, they do offer insight into role of single genes on development of DS.  

The Sod1 mouse was the first of these transgenic mice to be produced.  Superoxide dismutase 1 

(Cu-Zn), Sod1, is gene encoded on DSCR of HSA21 and MMU 16 is responsible for destroying 

free superoxide radicals by converting them to hydrogen peroxide (Florian L. Muller et al., 
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2007).  Transgenic mice over expressing Cu-Zn Sod1 show chronic oxidative stress as well as 

cognitive impairment (de Haan et al., 1995).  The chronic oxidative stress has been linked to 

accelerated aging of many tissues and organism as a whole.  Overexpression of SOD1 has been 

verified in many, but not all, tissues and cell lines of DS  (Campos & Casado, 2015).  

 The amyloid precursor protein (APP) transgenic model is predominately used in 

Alzheimer’s disease research.  The humanized APP mouse  is overexpressed through use of 

active promoters, allowing for overexpression of human APP in the mouse (Quon et al., 1991).  

In addition to APP overexpressing models, mutants mimicking human APP mutations have also 

been created, and have been useful in identifying key human APP mutation that may lead to  

Alzheimer’s(Lott et al., 2006). Many of these transgenic models showed promising results but 

lacked full AD neuropathology, demonstrating pretty effectively that APP overexpression or 

mutation is not sufficient for development of AD.  In 1995 Games et al. used platelet-derived 

growth factor promoter, (PDGF)-B to generate a transgenic mouse model overexpressing mutant  

human APP ( with valine at residue 717 substituted by phenylalanine) (Games et al., 1995).  This 

model, unlike the previous models, exhibited AD neuropathology, including amyloid beta 

deposition, dystrophic neuritic components, gloiis and loss of synaptic density (Games et al., 

1995). Crosses of SOD1and APP mice revealed to be more useful than their standalone models 

in elucidating AD neuropathology.  As stated earlier, most transgenic models of APP lacked the 

formation of beta amyloid deposits, while SOD1-APP model recapuliated this phenomenon seen 

in DS individuals with AD.  Multiple models of APP are actively used today in developing 

therapeutics to treat not ony eldery AD patients but also DS individual with AD.  

 DYRK1A is a nuclear serine/threonine kinase that is localized to  HSA21 and 

isoverexpressed in several  DS tissues (Altafaj et al., 2001). DYRK1A is thought by many to be a 
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key candidate driving nervous system alterations in DS.  Altafaj et al., created a transgenic mice 

overexpressing DYRK1A under the control of the inducible sheep metallothionein-Ia (sMT-Ia) 

promoter (Altafaj et al., 2001). TgDyrk1A mice exhibit DS phenotypes that include neuromotor 

development, hyperactivity, and significant impairment in spatial learning and memory (Altafaj 

et al., 2001).   Researchers trying to detect the cellular and molecular events that lead to the 

phenotype seen in TgDyrk1A mice and other DS models were able to demonstrate that Dryk1A 

alters the timing of neural cell proliferation and differentiation (Yabut, Domogauer, & 

D'Arcangelo, 2010).  Additional studies using more sophisticated mice models of Dyrk1a will 

allow a better understanding of the role of this gene on DS phenotype.  

ETS2 is a member of the Ets family of transcription factors and is known to activate 

apoptosis in DS tissues.  It is located within the crictial region of DS on HSA2.  DS neuronal 

cultures exhibit a fivefold increase in ETS2 expression (Rueda et al 2012). ETS2 has important 

roles in cancer, bone development and immune responses (Wolvetang et al., 2003).   It should be 

noted that the overexpression of ETS2  is thought to be key  in the low incidence of solid tumors 

in DS. This is believed to be due to its role in regulation of key apoptotic genes (N. Rueda, 

Florez, & Martinez-Cue, 2013).  Like the other transgenic DS models, tgETS2 displays DS 

phenotypes such as smaller thymus and lymphocyte abnormalities (Wolvetang et al., 2003).   

ETS2 mice also display increased neural cell death, which leads to suggestion that  it plays a 

major role in the neural degeneration seen in many mouse models of DS as well as inDS 

individuals (Rueda et al 2013) 

S100 calcium binding protein  (S100) is found to affect the nervous system, 

specifically the glial cells.  Transgenic S100 mice were development by placing the human S-

100β gene into the mouse genome, under control of its own regulating elements (Friend et al., 
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1992).  Studies by Whitaker-Azmitia et al. show transgenic mice overexpressingS-100β  have 

abnormal neuronal morphology as well as accelerated aging (Whitaker-Azmitia et al., 1997).  

When comparing the transgenic mice to control,  young mice had increased density of dendrites 

and that as they aged they exhibit a significant loss of dendrite density, suggesting an important 

role of S100B in AD development in DS individuals (Whitaker-Azmitia et al., 1997).  

4.5 Materials and Methods 

Animals: Segmental trisomy 16 (Ts65Dn) mice were obtained by mating Ts65Dn females 

(B6EiC3H – a/ATs65Dn) with (C57BL/6JEi × C3H/HeJ)F1 (JAX # JR1875) males. Ts65Dn 

mice were thus maintained on the B6/C3H background (Davisson et al., 1993).
  

Experimental 

male mice were housed at the Eleanor Roosevelt Institute at the University of Denver. Ts65Dn 

was genotyped using a quantitative PCR protocol. The technique is based on the DDCT 

calculation method between a control gene present in two copies (ApoB) and a target gene 

present in three copies (Mx1) (Lorenzi et al., 2010).  Mice were organized into three cohorts (16 

week, 32 week, and 48 week) . A total of 63 mice were placed in three cohorts: 16 week (n=23) 

with 10 Ts65Dn and 13 WT, 32 week (n=20) with 9 Ts65Dn and 11 WT and 48 week (n=20) 

with 10 Ts65Dn and 10 WT. In each cohort, there were 9-11 mice in each group (~10 WT and 

10 Ts65Dn).  Animals were maintained in a 12:12-hour light/dark schedule (lights on at 7 AM) 

with ad libitum access to food and water. The cross-sectional pathological analysis of tissues 

from trisomic and disomic mice was carried out by Dr. Yuji Ikeno at UTHSCSA.   

 

        16 weeks (4 months)  32 weeks (8 months)    48 weeks (12 months) 

 

 

13 WT 10 WT 10 WT 10 Ts65dn 9 Ts65Dn 10 Ts65Dn 
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Analysis of Pathology:   The mice were necropsied for gross pathological lesions. Organs and 

tissues were excised and preserved in 10% buffered formalin. The fixed tissues were processed 

conventionally, embedded in paraffin, sectioned at 5 μm, and stained with hematoxylin and eosin 

(Zhang et al., 2009). For each mouse, a list of pathological lesions that included both neoplastic 

and non-neoplastic diseases was constructed. Based on these histopathological data, the tumor 

burden, disease burden, and severity of each lesion in each mouse were assessed (Bronson & 

Lipman, 1991). The severity of neoplastic  lesions was assessed using the grading system 

previously described (Ikeno, Bronson, Hubbard, Lee, & Bartke, 2003).  

MicroRNA 155 Expression:  Total RNAs was isolated from the brain, testes, heart, kidney, 

lung and liver of Ts65Dn and WT mice using Trizol method.  A total of 50 ng of total RNA was 

used for reverse transcription (RT) reaction. RT reactions were realized with 0.15 μL dNTP, 1.5 

μL buffer (10x), 9 μL RNAse-free water, 0.2 μL RNAse inhibitor, 1 μL multiscribe Reverse 

Transcriptase, and 3 μL of specific miR-155  RT primers (Applied Biosystems ). RT reactions 

were set at 16°C for 30 minutes, 42°C for 30 minutes, and 85°C for 5 minutes using a BioRad 

thermal cycler . The TaqMan  miR-155 assay (Applied Biosystems ) was used to quantify miR-

155. 5 μL of RT reactions was mixed with 10 μL of TaqMan Universal PCR master mix (2x, 

(Applied Biosystems)) 4 μL of RNAse-free water, and 1 μL of TaqMan miRNA Assay (20X , 

(Applied Biosystems)). Quantitative real-time PCR analysis was performed using the 

LightCycler 480 (Roche) at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds 

and 60°C for 60 seconds.  Sno202 (Applied Biosystems), a noncoding RNA, was used as 

endogenous control.  

Expression analysis: Total RNAs were isolated from the brain, testes, heart, kidney, lung and 

liver of Ts65Dn and WT mice using Trizol method. cDNA was synthesized, as described 
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previously (Cabelof et al. 2006a), from 2µg RNA using random hexamer primers and purified 

with the QIAquick PCR Purification columns (Qiagen, Valencia, CA). Transcripts were 

amplified and quantitated with a LightCycler Real Time PCR machine (Roche). PCR reactions 

contained 2µl purified cDNA, 0.5 µM of each sense and antisense primer, and 2µl FastStart 

DNA Master SYBR Green I enzyme-SYBR reaction mix (Roche). For all amplifications, PCR 

conditions consisted of an initial denaturation step at 99°C for 10 min, followed by 35–45 cycles 

at 96°C for 10s, primer specific annealing temperatures for 10s, and elongation at 72°C for 5s. 

Melting curves from 40°C to 99°C confirmed specificity. External standards were prepared for 

all genes from cDNA amplicons cloned into pCRII TOPO cloning vector (Invitrogen). All 

transcripts were quantitated and normalized to GAPDH or RPL4 expression. Primer sequences 

are detailed in Table 4.4. 

Data Analysis: 

Results are expressed as mean ± SEM analyzed and were analyzed using Student’s t-test. 

Statistical comparisons between groups were conducted using one-way ANOVA, using 

GraphPad Prism 5.0 (Graph Pad Software, La Jolla, CA). Values of p < 0.05 were considered 

statistically significant and individual p-values are shown in the figures. 

4.6 Results 

Body and Organ Weight of Ts65Dn and WT Mice at 16, 32 and 48 weeks. 

We evaluated the body weight of Ts65Dn and WT controls with in the three age groups.   

The body weight of both Ts65Dn and WT mice increased steadily and almost linearly with age 

(Figure 4.6.1). A comparison of Ts65Dn and WT mice showed that Ts65Dn mice had a smaller 

body weight than the WT counterparts (Figure 4.6.1).  This difference persisted in three age 

groups. Evaluation of tissues showed some differences. Lung of Ts65Dn at 16 week were 
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significantly smaller but with age this difference is lost (Figure 4.6.2). The most dramatic 

difference was in testes size. Ts65Dn testes were significantly smaller than their WT controls 

and this difference persisted in all three aged cohorts (Figure 4.6.3).These results are consistent 

with has been reported earlier and is has been linked to male sterility that is reported in Ts65Dn 

(Davission et al., 2007)   Kidney and brain did not show any difference between the two 

genotypes (Figure 4.6.4 and 4.6.7).  Heart and liver of Ts65Dn mice at 16 week were 

significantly smaller than WT (Figure 4.6.5 and 4.6.6).These results are consistent with Fuchs et 

al study. They showed that not only was heart and liver smaller, there was also an impaired 

proliferation as assayed by BrdU  (Fuchs et al., 2012). At 32 and 48 weeks a trend of small size 

was seen but was not significantly different from WT. Interestingly, we did not see any 

differences in spleen or thymus which have been shown to be underdeveloped in Ts65Dn 

((Lorenzo, Shatynski, Clark, Yarowsky, & Williams, 2013). Furth more, no differences were 

seen in fat tissues between Ts65Dn and WT (data not shown).  

 Neoplastic incidences  

It has been suggested that gene dosage imbalances caused by the presence of an extra 

copy of chromosome 21 may be protective against the development of certain malignancies in 

DS individuals. The low incidence of solid tumors in DS individuals has been well documented 

in population studies worldwide; with the exception to this is testicular cancer (Uppal et al., 

2015). Though the incidence of solid tumors is low, DS children have a 10- to 20-fold increased 

risk of developing acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) 

compared with non-DS children (Hermon et al., 2001).  The mouse models of DS have shown 

similar results with respect to low incidence of solid tumors and increase in malignant lymphoma 

(Patterson & Cabelof, 2012). In our study we found that Ts65Dn spleen had an increase minimal 
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and mild lymphoma at 16 week and 32 week (Figure 4.6.17). By 48 weeks, the difference 

between ts65dn and WT was lost. 20% of 16 week old Ts6d5n mice also exhibited minimal 

invasive lymphoma in lung and stomach (Figure4.6.18 and 4.6.19). Lungs of Ts65Dn mice also 

showed increase in alveolar/bronchiolar adenoma incidence which was absent in WT mice 

(Figure 4.6.18).  In 48 week old Ts65Dn, the incidence of invasive lymphoma increased for both 

stomach and intestine (Figure 4.6.20).  Our results are in line with that Levine et al., showed in 

three different mouse models of DS including Ts65dn. The absence of solid tumors in our 

cohorts of Ts65Dn supports the continued use of this model in studying DS malignances.  

 p16 expression on peripheral tissues 

One of the most commonly used in vivo markers of senescence is the expression of 

p16INK4A, a selective inhibitor of cyclin D-dependent CDK4 and CDK6 (Y. Liu et al., 2009). 

The expression of p16 increases with age normally and in the response to stress (Baker et al., 

2011). In our study we sought to know if Ts65Dn tissues had increase in p16 expression. In all of 

tissues evaluated, we did not see a significant increase of p16 in either WT or Ts65Dn mice.  

Liver and Lung of Ts65dn showed a slight increase at 16 weeks that was not statistical 

significant (Figure 4.6.11 and 4.6.13). Testes did show an increase in p16 with age independent 

of genotype differences (Figure 4.6.16). Our results further support previous work that p16 is 

only detectable in advanced age and is undetectable or very low in most adult 

tissues(Krishnamurthy et al., 2004). It is possible that 48 week (12 months) old mice are too 

young to display any aging phenotype regardless of genotype.   

Expression of DNA polymerase beta (Polβ)  

 Evaluation of DNA repair capacity or expression levels of the main players has not been 

extensively studied in Ts65Dn. DS individuals have been shown to have a defective DNA repair 
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(Druzhyna et al., 1998; Necchi et al., 2015; Pincheira, Rodriguez, Bravo, Navarrete, & Lopez-

Saez, 1994; Weirich-Schwaiger et al., 1994) and in particular have reduced expression and 

activity of POLΒ(Cabelof et al., 2009; Raji & Rao, 1998).  Our objective was to look at the 

expression of Polβ  in several tissues of Ts65Dn. In the tissues assessed (liver, lung, kidney, 

testes, brain, heart, and skin), only testes showed a reduction of Polβ. In the 16 week old group, 

the Ts65Dn mice showed a significant decrease in Polβ compared to control littermates (Figure 

4.6.7, p<0.01).These findings are notable as testes are the only tissues to develop cancer in DS.  

Brain of Ts6dn at 16 week revealed a trend of downregulation of Polβ that was not statistically 

significant. Skin also showed reduced Polβ expression at 48 weeks though it was not significant 

(Figure4.6.10). Unlike DS, the Ts65Dn mouse did not show a progressive downregulation of 

Polβ over time in the tissues tested. The next step is to look at accumulation of repair 

intermediates, such as SSB and DSB, as markers of repair capacity. A recent study revealed 

hematopoietic stem cells (HSCs) of Ts65Dn have an accumulation of DSBs at baseline and that 

these HSCs are defective in repairing radiation-induced DSBs(Wang et al., 2016). These results 

allows us to anticipate that Ts65Dn will show an increase in DSBs as they age. 

4.7 Discussion 

In the 1970s we saw the production of the first model of DS and it had promising results. 

Many years later, we still do not have a perfect animal model but a compilation of data from 

distinct models has given us great insight into DS pathogenesis. The limitations with many of the 

in elucidating the genetic sources of the DS phenotype have been described above.  In addition to 

genetic influences, we have not discussed potential epigenetic factors that may also account for 

pathogenesis in DS, as well as the many difference between mice and humans (Gunter & Dhand, 

2002).  



75 
 

 

In our studies, we utilize the model considered by most to be the most inclusive model of 

DS. Though the model lacks certain cardiovascular anomalies it is still a very useful model for 

studying molecular mechanism of DS. Studies focusing on aging traits have revealed Ts65Dn 

mice exhibit muscle weakness and motor alterations (sarcopenia) at  12 months and 19 months 

(Cisterna, Costanzo, Scherini, Zancanaro, & Malatesta, 2013).  Systemic pathology in aged 

Ts65Dn (8 to 24 months) indicated a significant increase in prevalence of adenocarcinoma 

/lymphoma (Levine et al., 2009).  Our study showed that Ts65Dn does mimic some of DS traits 

such as increase in lymphoma incidence and low incidences of solid tumors. We failed to find 

any solid tumors in the three cohorts evaluated. Counter to our hypothesis, we did not see any 

changes in expression of p16 or Polβ over time in most tissues, with the one exception being 

testes which showed an early significant downregulation of POLB (figure 2.1) and a steady 

increase of p16 over time (figure 3.6).  Screening for other markers of aging such as SA-beta gal 

and SASP in this model will allow us to consider whether continued use of this model in aging 

research is beneficial.  
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Mouse Model Type of Model DS Features 

Ts16 Trisomic - impaired learning 

- increased oxaditive stress in 

utero 

-mitochondrial dysfunction 

Ts65Dn Segmental Trisomy -developmental delay 

-hyperactivity, 

-craniofacial dysmorphology  

-impaired learning 

-behavior deficits 

-Reduced density of 

cerebellar granule cells 

- oxidative stress markers in 

young and old Ts65Dn mice 

Ts1Cje Segmental Trisomy -impaired learning  and 

memory 

-Reduced density of 

cerebellar granule cells 

-hypoplasia of the cerebellum 

and enlarged ventricles  

Ms1Ts65 Segmental Trisomy -Moderate reduction in 

density of cerebellar granule 

cells 

-moderate impaired learning 

and memory. 

Ts1Rhr Segmental Trisomy -impaired learning  and 

memory 

-moderate craniofacial 

dysmorphology   

Tc1 “full Trisomy” -cardiac malformations 

-developmental delay 

-hyperactivity, 

-craniofacial dysmorphology  

-impaired learning 

 

Table 4.2:  Summary of segmental trisomy mouse models and features of Down syndrome that 

have been documented in each model. 
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Mouse Model Type of Model DS Features 

Dyrk1A BAC Transgenic -Abnormal brain structure 

and locomotors behavior 

SOD1 Transgenic -chronic oxidative stress 

-Abnormal neuromuscular 

junction  

-decreased plasma serotonin 

level  

 

APP Transgenic -Dystrophic neuritis 

associated with congophilic 

plaques 

ETS2 Transgenic -Skeletal abnormalities 

particularly craniofacial 

abnormalities 

 -brachycephaly 

S100β Transgenic -Abnormal dendritic 

development 

 

Table 4.3:  Summary of transgenic Mouse models 
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Gene Sense primer 5′–3′ Anti-sense primer 5′–3' 

Mouse   

p16 UPL probe #91 aatctccgcgaggaaagc Gtctgcagcggactccat 

B-pol (exon 12–13) agcgagaaggatggaaaggaa Cgtgcgctctcatgttcttat 

Housekeeping genes (mouse)   

Gapdh aggtcggtgtgaacggatttg Tgtagaccatgtagttgaggtca 

Rpl4 ccgtcccctcatatcggtgta Gcatagggctgtctgttgttttt 

Rpl4 UPL probe # 75 tggtggttgaagataaggttga Ccaagctttgagtttcttgagc 

 

Table 4.4: Primer sequences 
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Figure 4.6.0: Ts65Dn are smaller than WT controls.  These data were obtained from three 

cohorts (16, 32, and 48 week) Ts65Dn and WT mice. Body weight (n = 23, 20, and 20 for 16, 32 

and 48 week mice, respectively). The data shown is from male mice only.  The data are 

expressed as the mean ± SEM.  
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Figure 4.6.1: Liver wet weights in Ts65dn (DS) and WT (NDS). These data were obtained 

from three cohorts (16, 32, and 48 week) Ts65Dn and WT mice. Body weight and tissue wet 

weight (n = 23, 21, and 20 for 16, 32 and 48 week mice, respectively). The data shown is from 

male mice only.  The data are expressed as the mean ± SEM 
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Figure 4.6.2: Weight of Lung in three cohorts. These data were obtained from three cohorts 

(16, 32, and 48 week) Ts65Dn and WT mice. Tissue wet weight (n = 23, 21, and 20 for 16, 32 

and 48 week mice, respectively). The data shown is from male mice only.  The data are 

expressed as the mean ± SEM  
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Figure 4.6.3: Ts65Dn mice have underdeveloped Testes.  Both left and right testes in Ts65Dn 

mice were significantly smaller in the three age groups. A total of  n = 23, 21, and 20 for 16, 32 

and 48 week mice, respectively). The data are expressed as the mean ± SEM  
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Figure 4.6.4: Kidney weight did not differ. These data were obtained from three cohorts (16, 

32, and 48 week) Ts65Dn and WT mice. Body weight and tissue wet weight (n = 23, 21, and 20 

for 16, 32 and 48 week mice, respectively). The data shown is from male mice only.  The data 

are expressed as the mean ± SEM  
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Figure 4.6.5: Ts65Dn heart seems to be smaller than WT. These data were obtained from 

three cohorts (16, 32, and 48 week) Ts65Dn and WT mice. Body weight and tissue wet weight (n 

= 23, 21, and 20 for 16, 32 and 48 week mice, respectively). The data shown is from male mice 

only.  The data are expressed as the mean ± SEM  
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Figure 4.6.6: No difference was seen in Brain weight. These data were obtained from three 

cohorts (16, 32, and 48 week) Ts65Dn and WT mice. Body weight and tissue wet weight (n = 

23, 21, and 20 for 16, 32 and 48 week mice, respectively). The data shown is from male mice 

only.  The data are expressed as the mean ± SEM  
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Figure 4.6.7: PolB expression in Ts65Dn mice tissues at 16 week.  cDNAs were prepared 

from RNA isolated from  tissues of  Ts65Dn (n=10) and control littermates (n=13) mice from 

three cohorts ( 16, 32, and 48 week). PolB transcript levels were determined by real time RT-

PCR analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Figure 4.6.8:  PolB expression in Ts65Dn mice tissues.  cDNAs were prepared from RNA 

isolated from  tissues of  Ts65Dn (n=10) and control littermates (n=10). PolB transcript levels 

were determined by real time RT-PCR analysis and normalized to Rpl4. Data are presented as 

mean ± SEM. 
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Figure 4.6.9: PolB expression in Ts65Dn mice tissues.  cDNAs were prepared from RNA 

isolated from  tissues of  Ts65Dn (n=9) and control littermates (n=10) mice from three cohorts ( 

16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR analysis and 

normalized to Rpl4. Data are presented as mean ± SEM 
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Figure 4.6.10:  PolB expression in Ts65Dn Skin.  cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn (n=9) and control littermates (n=10) mice from three cohorts ( 16, 32, 

and 48 week). PolB transcript levels were determined by real time RT-PCR analysis and 

normalized to Rpl4. Data are presented as mean ± SEM 
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Figure 4.6.11: p16 expression in Ts65Dn Tissues: cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn ( 9-11 mice in each group) and control littermates mice from three 

cohorts(16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR 

analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Figure 4.6.12 : p16 expression in Ts65Dn Tissues: cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn ( 9-11 mice in each group) and control littermates mice from three 

cohorts(16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR 

analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Figure 4.6.13: p16 expression in Ts65Dn Tissues: cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn ( 9-11 mice in each group) and control littermates mice from three 

cohorts(16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR 

analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Figure 4.6.14: p16 expression in Ts65Dn Tissues: cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn ( 9-11 mice in each group) and control littermates mice from three 

cohorts(16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR 

analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Figure 4.6.15: p16 expression in Ts65Dn Tissues: cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn ( 9-11 mice in each group) and control littermates mice from three 

cohorts(16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR 

analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Figure 4.6.16: p16 expression in Ts65Dn Tissues: cDNAs were prepared from RNA isolated 

from  tissues of  Ts65Dn ( 9-11 mice in each group) and control littermates mice from three 

cohorts(16, 32, and 48 week). PolB transcript levels were determined by real time RT-PCR 

analysis and normalized to Rpl4. Data are presented as mean ± SEM. 
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Age (weeks)  

Minimal Invasive 

Lymphoma   

Mild Invasive 

Lymphoma 

16 

WT (n=13) 39% 0% 

Ts65dn (n=10) 80% 0% 

32 

WT (n=10) 55% 0% 

Ts65dn (n=9) 67% 11% 

48 

WT (n=10) 60% 20% 

Ts65dn (n=10) 80% 0% 

 

Figure 4.6.17: Incidence of lymphoma in Ts65Dn Spleen. Spleen was excised and preserved 

in 10% buffered formalin. It was sectioned at 5 μm, and stained with H&E.  Grading of 

neoplastic lesions as described in Materials and Methods was  completed on  Ts65Dn and WT 

mice terminated at each of the three time points (16, 32 and 48 weeks). Percentage of mice with 

lesions is presented.   

 

 

 

 

 

 

 

 



97 
 

 

 

 

Figure 4.6.18: Incidence of malignant tumors of lung in Ts65Dn. Lung was excised and 

preserved in 10% buffered formalin. It was sectioned at 5 μm, and stained with H&E.  Grading 

of neoplastic lesions as described in Materials and Methods was  completed on  Ts65Dn and WT 

mice terminated at each of the three time points (16, 32 and 48 weeks). Percentage of mice with 

lesions is presented 

 

 

 

 

 

 

Age (weeks)  

Minimal Invasive 

Lymphoma   

lymphocytic 

infiltrate 

alveolar/bronchiolar 

adenoma 

16     

WT (n=13) 0% 0% 0% 

Ts65dn 

(n=10) 20% 0% 0% 

32    

  WT (n=10) 9% 9% 0% 

Ts65dn (n=9) 11% 11% 0% 

48  

   WT (n=10) 10% 0% 0% 

Ts65dn 

(n=10) 20% 20%                         10% 
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Figure 4.6.19: Incidence of lymphoma in stomach of Ts65Dn. Stomach was excised and 

preserved in 10% buffered formalin. It was sectioned at 5 μm, and stained with H&E.  Grading 

of neoplastic lesions as described in Materials and Methods was  completed on  Ts65Dn and WT 

mice terminated at each of the three time points (16, 32 and 48 weeks). Percentage of mice with 

lesions is presented 

 

 

 

 

 

 

 

 

 

Age (weeks)  Minimal Invasive Lymphoma   Mild Invasive Lymphoma 

16    

WT (n=13) 0% 0% 

Ts65dn (n=10) 10% 20% 

32      

WT (n=10) 0% 0% 

Ts65dn (n=9) 0% 0% 

48      

WT (n=10) 0% 0% 

Ts65dn (n=10) 0% 20% 
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Age 

(weeks)  

Minimal Invasive 

Lymphoma   

Mild Invasive 

Lymphoma 

Minimal 

lymphocytic 

infiltrate  

Mild 

lymphocytic 

infiltrate  

16  

WT (n=13) 46% 15% 15% 0% 

Ts65dn 

(n=10) 40% 30% 0% 0% 

32    

 

    

WT (n=10) 45% 0% 18% 9% 

Ts65dn 

(n=9) 56% 0% 0% 0% 

48    

 

    

WT (n=10) 20% 10% 10% 0% 

Ts65dn 

(n=10) 40% 0% 20% 0% 

 

Figure 4.6.20: Incidence of lymphoma in Intestine of Ts65Dn. Intestine was excised and 

preserved in 10% buffered formalin. It was sectioned at 5 μm, and stained with H&E.  Grading 

of neoplastic lesions as described in Materials and Methods was  completed on  Ts65Dn and WT 

mice terminated at each of the three time points (16, 32 and 48 weeks). Percentage of mice with 

lesions is presented 
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DS Ts65Dn Ts1Cje Ms1Ts65 Ts1Rhr 

Motor skills Delayed 

acquisition 

Delayed 

acquisition 

   

Motor coordination Impaired Impaired    

Activity and attention Reduced 

attention 

Hyperactivity and 

reduced attention 

Normal activity Normal activity Normal activity 

Spatial learning and memory Impaired Impaired Impaired Impaired  

Working and reference 

memory 

Impaired Impaired    

Novel object recognition  Impaired   Impaired 

Brain volume 
  

Reduced during 

the embryonic 

period 

Reduced during 

the embryonic 

period 

Reduced 

Neuronal density 
  

Reduced Not affected 
 

Cerebellar volume 
   

Reduced Not affected 

Cerebellar neuronal density 
   

Reduced Reduced 

Proliferation  Impaired Impaired    

DNA repair capacity Defective to 

extent 

evaluated  

Defective to 

extent evaluated 

   

 

Table 4.7.1:  Summary of Segmental trisomy Mouse models. 
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CHAPTER 5: Conclusion and Future directions 

 

The study sought to answer the following two questions: 

 Is the premature aging seen in DS a result of PolB downregulation? 

 Is miR-155 involved in down regulations of POLB and DNA repair capacity 

overall?  

The study set out to explore the possible role of POLB in the premature aging phenotype 

of Down syndrome. Premature aging has been demonstrated in numerous biological systems in 

individuals with DS: cognition, the auditory system, the skin, brain structure, the immune 

system, and the olfactory system. Additionally, it has been reported that persons with DS show 

an earlier appearance of various biomarkers associated with aging, including DNA damage 

accumulation and chromosomal sensitivity to mutagens. Nearly all premature aging syndromes 

(including Werner, Rothmund-Thomson and Cockayne syndromes, trichothiodystrophy and 

ataxia telangiectasia) have been characterized by DNA repair defects, yet no specific defect has 

yet been identified for DS(Brosh & Bohr, 2007).  

The problem with firmly establishing the role of a DNA repair defect, in particular 

POLB, in premature aging of DS is that DS is a chromosomal disorder and not monogenic. Still, 

several studies have shown that POLB is downregulated in DS, while other polymerases are 

unaffected (Cabelof et al., 2009; Raji & Rao, 1998). POLB is the best candidate for the 

premature aging phenotype of DS, since it has been shown to be reduced with age in multiple 

models (Krishna et al., 2005; Patterson & Cabelof, 2012; Raji & Rao, 1998; Rao, 2007; Rao et 

al., 2001; Swain & Rao, 2012; Sykora et al., 2015; Vyjayanti et al., 2012).  
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Studies conducted in this thesis further provide support that reduced POLB is causative in 

premature aging.  My data from chapter 2 clearly demonstrated that reduced POLB expression 

results in premature senescence as well an accumulation of DSBs. To confirm role of POLB in 

premature senescence, I show primary PolB null MEFs also have increase in senescence 

markers, p16 expression and SA-beta gal staining, as well as DSBs.  Another observation 

generated by the work on PolB null cells is that PolB is upregulated by hydroxyurea and that 

DSBs generate in these cells in absence of any exogenous damage. It would be very interesting 

to investigate the mechanism of hydroxyurea mandated upregulation of PolB since POLB 

upregulation is common in several cancers and hydroxyurea is a common antineoplastic 

chemotherapy drug(Illuzzi & Wilson, 2012).  

Establishing that POLB down regulation correlates with premature aging was the primary 

objective of this thesis.  My data in chapter 2 led to further exploration of the cause of POLB 

downregulation in DS. The hypothesis was that PolB inhibition was induced by chromosome 21-

linked miRNA overexpression. miR-155 is one of five microRNAs on HSA21, which has been 

shown to modulate DNA repair. miR-155 role in mismatch repair is well establish and has been 

linked to increase in genomic instability in several cancers. However, the mutational specificities 

of both 155 overexpression and Down syndrome are not consistent with a MMR defect (Cabelof 

et al., 2009; Czochor et al., 2016; Finette et al., 1998). 

 My search of possible link between miR-155 and PolB revealed that Creb1, transcription 

factor of PolB, is a direct target of mir-155.  Validation studies demonstrated that miR-155 

overexpression results in reduced protein levels of creb1 and its targets. Researchers have long 

established the importance of Creb1 in PolB expression. With that, I anticipated that mir-155 

would cause low creb1 resulting in low PolB. Data from chapter 3 demonstrated just that.  PolB 
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promoter activity in cells that I engineered to over express miR-155 was significantly decrease 

compared to empty (null) vector.  Creb1 and PolB protein levels were also significantly reduced. 

My work only shows the effect of miR-155 in the absence of any damaging agents. It would be 

interesting to investigate the promoter inducibility by cytotoxic agents such as: MMS, H2O2, and 

methotrexate. An alternative hypothesis to explain PolB downregulation is accumulation of loss 

of function mutations on the promoter. Sequencing the PolB promoter in DS samples of varying 

ages would also be interesting. My data shows that DS cells have an attenuated response in 

presence of DNA damaging agents.   

 Over the years, studies have emerged to show that miR-155 is an important regulator of 

DNA repair. On the other hand, DNA damage response (DDR) in DS, has not been extensively 

studied and thus provides obvious issue when studying DNA repair in these individuals. Is the 

defect in DS a response or repair impairment? The research thus far does not present a clear 

answer.  A recent study suggests that miR-155 is regulating both the DDR and several repair 

pathways (Czochor et al., 2016). Interestingly, they show that regulation is via the transcription 

factor, FOXO3a. They show that miR-155 overexpression results in reduced FOXO3a protein 

and this leads to inhibition of HR and an upregulation of the error prone NHEJ. But FOXO3a is 

also a potent activator of BER via Gadd45a. These findings provide an alternative mechanism of 

how miR-155 could be inhibiting PolB independently of Creb1. Typically FOXO3a would 

activate Gadd45a in response to DNA damage, and in turn Gadd45a activates recruitment of 

BER genes via PCNA (Gutierrez-Mariscal et al., 2014). As described in diagram 5.1.1, I’m 

proposing that miR-155 may be regulating POLB by two distinct mechanisms: directly, via 

Creb1-induced inhibition, and indirectly via FOXO3a.  My proteomic data in chapter 3 provides 

support or both proposed models,  as we found that several BER genes are affected by miR-155.  
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Figure 5.1.1: The proposed mechanism by which miR-155 regulates PolB.  

The primary consequence of premature cellular senescence is the loss of proliferation 

which can be detrimental to survival of the organism.  Another important effect is secretion of 

factors that alter the tissue microenvironment.  Recent studies on senescence-associated secretory 

phenotype (SASP) of senescent cells revealed the potential of these secretions to initiate 

tumorigenesis(Taguchi et al., 2000) . High Mobility Group Box 1 protein (HMGB1) is one of 

many markers in the SASP. Exocytosis of HMGB1 enhances pro-inflammatory activity of 

cytokines. Several studies showed that senescent cells secrete HMGB1, which in turn recruits 

and activates cells from the innate immune system to clear senescent cells (Schlueter et al., 

2005).  Others showed that extracellular HMGB1 protein may be promoting cancer and 

metastatic progression (Sha, Zmijewski, Xu, & Abraham, 2008). HMGB1 is being used in 
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combination with p16 and SA-beta gal staining as markers of in vitro senescence. I have 

preliminary data on HMGB1 in our DS and PolB null cells that suggest that under both 

conditions, HMBB1 is extruded from the nucleus: an indicator of senescence. Early passage 

PolB cells show HMGB1 localized to nucleus while late passage cells show cytoplasmic 

localization. The DS fibroblast show the delocalization from nucleus to cytoplasm is occurring at 

earlier passage than their matched controls. Further investigation into the SASP both in the 

absence of POLB and in DS could provide great insight into the role of these factors in the DS 

phenotype.  One can speculate that the increase in age dependent lymphomas in DS might be due 

to SASP of the senescent cells that provide the proper microenvironment for tumorigenesis.  
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ABSTRACT 
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Down syndrome (DS) is a chromosomal condition characterized by accelerated aging that 

has yet to be directly linked to a DNA repair defect. Reduced PolB and unrepaired damage from 

oxidative stress observed in DS, point toward defective base excision repair (BER). In this study, 

we report that low PolB transcript correlates with increased markers of senescence.  The gene 

dosage effect of Trisomy 21 is likely the source for PolB downregulation. We show that the 

HSA21-localized miR-155 overexpression correlates with a decrease in Creb1 and PolB, thus 

establishing a putative regulatory pathway. Data from the DS mouse model, Ts65Dn, reveal low 

incidence of solid tumors consistent with clinical observations. Our findings establish Polβ as a 

causative factor of senescence, suggesting that base excision repair is one of the processes 

driving aging in Down syndrome. 
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