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CHAPTER 1 INTRODUCTION 

Survival analysis generally includes a set of methods for analyzing data where the 

outcome variable is the time until the occurrence of an event of interest. The event can be death, 

relapse of a disease, remission to hospital, or any occurrence of certain events. The question 

often arises about the occurrence and timing of critical events, and therefore modeling the 

occurrence of those events becomes important. Examples in health care include how long the 

patients remain well after treatment, or whether patients with a certain history or characteristics 

have greater chances for an illness relapse. 

Kaplan and Meier (1958) demonstrated how to deal with incomplete observations. Their 

method is a nonparametric estimator of the survival function, and is used to estimate and graph 

survival probabilities as a function of time. The Kaplan-Meier curves have become popular in 

life and medical sciences (Allison, 1982; Barber, Murphy, Axinn, & Maples, 2000; Kaplan & 

Meier, 1958; Miller, 1981a, 1983). 

Cox (1972) proposed the discrete-time survival method for discrete-time data and the 

proportional hazard modeling for continuous-time data. The Cox proportional hazard regression 

model is a regression model for the analysis of survival data, and it provides useful information 

regarding the relationship of the hazard function to predictors. Similarly, Allison (1982) and 

Judith D. Singer and Willett (1993) proposed discrete-time survival methods. 

The Kaplan-Meier curves, life-table ("Life Table,"), and Cox Regression are commonly 

used methods in medical research (Rich et al., 2010). Some applications are only descriptive, but 

other applications involve estimating the survival or hazard after adjustment for other predictors. 

For example, the Cox proportional model is a well-established statistical technique for analyzing 

survival data. The Cox proportional model is considered as a semi-parametric procedure because 
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the baseline hazard function doesn’t have to be specified. Because the hazard function is not 

restricted to a specific form, the semi-parametric model has considerable flexibility and is widely 

used (Han et al., 2003). When the assumption of a particular probability distribution for the data 

is valid, inferences based on such an assumption are more precise with smaller standard errors 

and narrower confidence limits. 

Although the Cox proportional model is a commonly employed technique in survival 

analysis, it has some restrictions such as its proportional hazard assumption, meaning the hazard 

ratio between two sets of covariates is constant over time. The baseline hazard is defined as the 

hazard function for that individual with zero on all covariates. Because the Cox proportional 

model is a semi-parametric model, its baseline hazard has no particular form. Thus, the baseline 

hazard can take parametric form. Under certain circumstances in which parametric assumptions 

of baseline hazards are met, Cox proportional model will be more powerful (M. Pourhoseingholi 

et al., 2011). 

The discrete-time survival methods have been in use for decades, but they are less visible 

than continuous survival methods like Cox regression model, especially in the medical and 

behavioral science area (Altman, De Stavola, Love, & Stepniewska, 1995; Enderlein, 1987). The 

discrete-time survival method was proposed by Cox in 1972, and it is a type of logistic 

regression. The discrete-time methods are used more appropriate in the situation with large 

number of ties. A tie is defined as more than two individuals experience an event at the same 

time (Allison, 1982). Examples include a person-period dataset by Singer and Willett (1995, 

2003), Allison (1982), and Willett and Singer (1993). In 1990, D’Agostino et al. (1990) covered 

the relationship between a pooled logistic regression and time dependent Cox regression by a 
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variety of samples sizes and proportions of events, and displayed the closeness of this 

relationship under certain conditions. 

The advantages of the discrete-time survival method were summarized by Xie, McHugo, 

Drake, and Sengupta, (2003) and Sharaf and Tsokos (2014). In most clinical settings, the 

discrete-time survival methods are useful for longitudinal studies when the data are often 

collected at discrete-time periods. Discrete-time survival method examines the shape of hazards 

function, and it is simple to implement using the logistic regression model. In practice, when the 

time of experiencing event is hard to tell, then using the discrete-time method has more 

advantages than continuous-time survival method. 

Discrete-time vs. Continuous-time Survival Data 

 Time scales for events can be classified into two categories: continuous or discrete. 

Survival analysis requires that each individual be observed over some defined interval of time. 

The time to event or survival time can be measured in days, weeks, years, etc. If the event 

occurred during that interval, their times are recorded. Most methods of survival analysis require 

that survival time be measured with respect to some origin time. It is substantively important to 

choose the origin time because the risk of the event varies as a function of time since the origin. 

In many cases, the choice of origin is obvious. For instance, if the event is divorce, the origin 

time is the date of the marriage; if the event is recurrence of cancer, the origin time is the date of 

last cancer treatment. 

An event of interest may occur at any particular instant in time, and time is a continuum 

and measured as a non-negative real number. If it is known when the events occur for origin time, 

it is better to treat time as continuous (Allison, 1982; Xie, McHugo, Drake, & Sengupta, 2003). 

Applications using continuous-time assume that the timing of event is known and is measured in 
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some discrete intervals which are small enough to be treated as a continuous-time scale. 

Measuring the time in a discrete fashion will place it into bins (e.g. number of months or years). 

The observations on the transition process are summarized discretely rather than continuously. 

Both continuous-time and discrete-time models involve examining the coefficients for 

each explanatory variable. A positive regression coefficient for an explanatory variable means 

higher hazard and worse prognosis. Conversely, a negative regression coefficient implies a better 

prognosis with higher value of that variable. In comparison with continuous survival-time 

models, such as the Kaplan Meier and Cox proportional hazard methods, the discrete-time 

survival analysis is relatively unknown and underused in medical research. 

 Analytic models for survival analysis can be categorized into four general types: 

parametric models, nonparametric models, semi-parametric models and discrete-time models. 

Parametric models assume an underlying distribution for the probability function. And 

parametric statistical procedures are sensitive to the violation of underlying assumptions. 

Nonparametric procedures include no assumptions regarding the probability density function and 

use observed data to describe survivor functions and hazard functions. Nonparametric methods 

are robust with respect to Type I errors for departures from normality, meaning they don’t have 

distribution assumptions. However, they are also sensitive to the violation of other types of 

assumptions, e.g., independence and homoscedasticity. Similarly, outliers do impact the power 

properties of nonparametric procedures. 

Certain semi-parametric model, such as the Cox proportional model, does not have strong 

assumptions about the underlying probability function but does include an assumption of 

proportional hazards among model covariates. Altman, De Stavola, Love, and Stepniewska, 

(1995) reported that authors of only 5% of studies use Cox models checked the underlying 
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assumption. Outliers also play an important impact on nonparametric procedures. For Cox 

regression model, a single outlier can lead to violate the assumption of proportionality of hazard. 

Models such as the logit and complementary log-log are popular choices for discrete-time 

survival analysis. Key features of this type of analysis needs a properly structured data set with 

multiple records per respondent. In a parametric model, the maximum likelihood procedure is 

used to estimate the unknown parameters. In the Cox proportional regression model, the partial 

maximum likelihood is used for computing average hazard ratios in the presence of non-

proportionality of hazards. The maximum likelihood (ML) function is a mathematical expression 

which describes the joint probability of obtaining the data actually observed on the subjects in 

the study as a function of the unknown parameters in the model being considered. The likelihood 

function L  is sometimes written notationally as ( )L β where β  denotes the collection of unknown 

parameters. 

Event history data are common in many disciplines and its core is focused on time. Time 

can be regarded as continuous or discrete and this basic distinction affects the analytic approach 

selected. Singer and Willett (1993) demonstrated the use of discrete-time survival analysis using 

logistic regression in social sciences. The use of discrete-time survival method has been studied 

further by Prentice and Gloeckler (1978), as well as many others including Allison (1982), 

Altman et al. (1995), Barber et al. (2000), Xie et al. (2003), and McCallon (2009). 

Purpose of Study 

Despite the varied conditions under which discrete-time survival methods have been 

studied, its statistical properties remain largely unknown. Therefore, the purpose of this study is 

to research and explicate under what conditions the discrete-time survival method is comparable 

with Cox regression model respect to hazard estimation. 
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Definition of Terms 

Akaike Information Criterion (AIC): A goodness of fit measure of the relative quality of 

statistical models for a given set of data. 

Assumptions: A statistical test requirement necessary to maintain specified Type I error 

rates (e.g., p=.05). 

Bayesian Information Criterion (BIC): A criterion for model selection among a finite set 

of models. Lower value indicates a better model. It is closely related to the AIC on the likelihood 

function 

Coefficient: A multiplicative factor in terms of a polynomial, a series or any expression. 

Censored: The survival time of an individual is said to be censored when the end-point of 

interest has not been observed for that individual. 

Cox Regression: One type of regression. The dependent variable of Cox regression is the 

hazard function at a given time. 

0( ) ( ) exp( )i ih t h t Xβ= ⋅  

If taking natural logarithm of both sides: 

0( ) ( ( ) exp( ))i iInh t In h t Xβ= ⋅  

Confidence interval: A range of values, calculated from the sample of observations that 

are believed, with a particular probability, to contain the true parameter value. A 95% confidence 

interval implies that if the estimation process were repeated again and again, then 95% of the 

calculated intervals would be expected to contain the true parameter value. 

Cumulative distribution function (c.d.f.): is the common method to characterize the 

distribution of any random variable, which is denoted by: 

: ( ) ( )cdf F t P T t= ≤ , where T is non-negative elapsed time until an event. 
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Hazard function H(t): The chronological pattern of hazard probabilities over the time. 

The hazard probability refers to an individual will experience an event within a small time 

interval given that the individual has survived up to the beginning of the interval. 

t 0

Pr( | )
( ) lim

t T T t T t
h t

t∆ →

≤ < + ∆ ≥=
∆

 

Where the numerator is the probability that an event occurs during a very small interval 

of time[ , )t t t+∆ , given that no event occurred before time t . 

Hazard probability: The proportion of the risk set who experience the event in that time 

periods. 

Independent censoring: Censoring is unrelated to event occurrence. 

Left-censoring: The event has already occurred before enrollment. This is very rarely 

encountered. 

Logarithms: Logarithms are mainly used in statistics to transform a set of observations to 

values with a more convenient distribution. 

Logrank test: A method for comparing the survival times of two or more groups of 

subjects. It involves the calculation of observed and expected frequencies of events in separate 

time intervals. 

Monte Carlo Simulation: The use of a computer program to simulate some aspect of 

reality to make determinations of the nature of reality or change in reality through the repeated 

sampling via Monte Carlo methods (Sawilowsky & Fahoome, 2002). 

Maximum likelihood (ML): an estimate of unknown parameters which uses the joint 

probability of obtaining the data actually observed on the subjects in the study. 

Median lifetime: The time at which half the sample or population had experienced the 

target event and half have not. 
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Normality: A state of data distribution which fits the normal or Gaussian curve. It is a 

parameter assumed for the t and F tests. 

P-value: The probability value, or significance level, from a hypothesis test. p is the 

probability of the data arising by chance when the null hypothesis is true. 

Regression: The statistical technique used to describe the relationship between the values 

of two or more variables. When more than one explanatory variable is need to be taken into 

account, the method is known as multiple regression. 

Right-censoring: The event has not occurred by the end of the observation period. Right-

censoring is the most common form of censoring. 

Risk set: The group of people known to be eligible to experience the event in a particular 

time period. 

SE (se): The standard error of a sample mean or some other estimated statistics. It is the 

measure of the uncertainty of such an estimate and it is used to derive a confidence interval for 

the population values. 

Standard error: It is defined to be the square root of the estimated variance of the 

estimate, and is used in the construction of an interval estimate for a quantity of interest. 

Survival function S(t): The probability that an individual survives from the time origin to 

sometime beyond t. 

 ( ) P( ) 1 ( )S t T t F t= ≥ = − , where ( )F t  is probability density function. The 

distribution function of T is given by: 

 
0

( ) P( ) ( )d
t

F t T t f u u= < = ∫  

The baseline model: 
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In discrete-time survival analysis, 0( )tβ is the baseline log hazard profile, and represents 

the values of the outcome without other predictor variables. The baseline equation can be 

expanded to account for specific measurements of discrete-time intervals to 

e 1 1 2 2logit [ ... ]j k kh t t tα α α= + + +  

In Cox proportional model, the baseline hazard function is left unspecified but must be 

positive.  
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CHAPTER 2 LITERATURE REVIEW 

Censorship 

Analyzing survival data basically needs censor variable (outcome variable) and time 

variable (survival time). The survival time is defined as the time to events. Observations are 

called censored when the information about their survival time is incomplete (Tabachnick & 

Fidell, 1996). There are several different censorships: right-censoring, left-censoring, and 

interval-censoring. For example, the survival time of an individual is said to be right censored 

when the end-point of interest has not been observed for that individual at the end of study, or 

the individual has lost to follow-up or dropped out from the study. We call this phenomenon 

right-censoring because the true unobserved event is to the right of our censoring time. Right-

censoring is the most common type of censoring assumption we will deal with in survival 

analysis, and it underestimates the true survival time because the survival time is unknown and 

the ultimate event time for censored cases is greater than the imputed value which is equal to the 

length of data collection for the right-censored cases (Clark, Bradburn, Love, & Altman, 2003a; 

John B. Willett & Singer, 1991). “Most methods of survival analysis do not distinguish among 

type of right-censoring, but cases that are lost from the study may pose problems because it is 

assumed that there are no systematic differences between them and the cases that remain”. 

(Tabachnick & Fidell, 1996, p. 537) 

Left-censoring refers to the actual time of event of interest occurs less than the 

observation time. For example, if a patient was examined 6 month after treatment to determine 

recurrence, then those who had a recurrence would have a survival time that was left censored 

because their survival time is less than 6 month (Clark et al., 2003a). A problem of interval 

censoring arises when time to event may be known only up to a time interval. This usually 
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happens at a periodical monitoring. If we consider the previous example and patients are also 

examined at 6 months, then those who are disease free at 6 months but lost to follow-up between 

6 and 12 months are considered interval censored. Some studies even included both right 

censoring and left censoring observations (Miller, 1981a). Most survival data are right-censored, 

and methods for interval and left censored data are also available. 

Censorship is important and unavoidable in survival analysis since it represents a 

particular type of missing data. Sometimes, all the subjects in the study experienced the events of 

interests, and there is no censored case. In most situations, however, not all participants 

experience the events of interested during the study period. This may occur because participants 

are no longer able to be tracked. Since right censoring is the most common censorship, this 

dissertation only involves right censoring. For the right-censored cases, the time to failure is 

greater than the censoring time, and the censored cases because of loss to follow-up are treated to 

have same survival prospects as those who continue to be followed. Thus the censoring is 

uninformative. Informative censoring may occur when patients withdraw from a study because 

of special condition. Standard methods for survival analysis are valid for uninformative 

censoring but not for informative censoring in which uninformative censoring carries no 

prognostic information about subsequent survival experience (Clark et al., 2003a; Clark, 

Bradburn, Love, & Altman, 2003b). 

Willett (1991) wrote: 

Censoring creates an analytic dilemma: What should be done with people who do not 

experience the target event during the period of data collection? Although the researcher 

knows something about them – if they ever experience the event, they do so after data 

collection ends – this knowledge is imprecise. (p. 408) 

There are different strategies to deal with censoring and various methods can be used to 

treat different censored data, including complete data analysis, imputation techniques or analysis 
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based on dichotomized data (Prinja, Gupta, & Verma, 2010; John B. Willett & Singer, 1991). In 

some investigations, the purpose was to focus exclusively on those subjects with known events 

times and set aside censored cases (Judith D. Singer & Willett, 1993; John B. Willett & Singer, 

1991). It may lead to large bias if the number of censored cases is large (Allison, 1982). Some 

investigations impute the missing duration data, assigning the duration value to censored cases 

(John B. Willett & Singer, 1991). Other investigations dichotomize the event histories at a 

particular time and ask whether the event has occurred by that time. However, “the 

dichotomization of dependent variable is both arbitrary and wasteful of information” (Allison, 

1982, p. 64). It is arbitrary because the cutting point of dichotomization can be set to any number, 

and usually the cutting line is set to what investigation care about. “It is wasteful of information 

because it ignores the variation on either side of the cutoff point.” (Allison, 1982, p. 64) 

No matter which way the studies choose for analyzing the censored cases, summarizing 

the event history data is the main goal of survival analysis. Survival data are generally described 

and modeled into two related functions. One way is to use survival function to list estimated 

survival probabilities chronologically. Survival probabilities represent the proportions of the 

initial sample that do not experience the event through each of several time intervals. Another 

different way is looking at the proportion of the risk set who experiences the event in that period 

rather than the survival proportion. The hazard function involves both non-censored and 

censored cases, and it is an indirect way to estimate the survival functions. 

Survival and Hazard Functions 

The Survival Function 

Survival analysis aims to analyze longitudinal data on the occurrence of events. Events 

may include death, injury, onset of illness, etc. The goal of survival analysis is to estimate and 
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compare survival experiences of different groups. Survival data are generally described and 

modeled in terms of two related probabilities, namely survival and hazard. 

The survival probability is also called the survival function ( )S t , which is the probability 

that an individual survives from the time origin to a specified future time t . Survival experience 

is fundamental to a survival analysis because survival probabilities for different values of t

provide crucial summary information from time to event data. The cumulative survival function 

is described as follows: 

( ) P( ) 1 ( )S t T t F t= ≥ = −  

Where ( )F t is the c.d.f of ( )f t . The function ( )f t is defined as the probability density 

function which refers to the probability of the failure time occurring at exactly time t: 

0

( )
( ) lim

t

P t T t t
f t

t∆ →

≤ ≤ + ∆=
∆

 

Life table is one of the oldest survival techniques. The cumulative event-free probabilities 

for equal distance of time interval are calculated to generate the survival curve. In life table, the 

censored cases during an interval are assumed to have been followed on average for half the 

interval. It is also assumed that event occurs uniformly within the interval and withdrawal occurs 

uniformly within the interval. 

All survival functions have similar features - a negative accelerating extinction curve and 

a monotonically non-increasing function of time. At the beginning of a study, when all the 

samples are present, the survival probability is 1.00. A common survival analysis technique is 

the Kaplan-Meier. Kaplan and Meier (1958) and Efron (1967) adapted product limit method to 

the censored cases tests based on sample cumulative distribution function. When there is no 

event, the survival curve in a Kaplan-Meier plot will be drawn horizontally over time and only 
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drop (vertically) down at the time of event to the calculated cumulative probability of surviving. 

Suppose there are k  patients have event events in the period of follow-up at distinct times

1 2 3 4 kt t t t t< < < < ⋅⋅⋅ < . As events are assumed to occur independently, the probabilities of 

surviving from one interval to the next may be multiplied together to give the cumulative 

survival probability. In another way, the probability of being alive at time jt , ( )jS t is calculated 

from 1( )jS t −  which is the probability of being alive at 1jt − . If the number of patients alive just 

before jt  is jn , and jd is the number of events at jt , then, 

1( ) ( )(1 )
j

j j

j

d
S t S t

n
−= −  

The Hazard Function 

The hazard is the chronological profile of the probabilities that a portion of the risk set 

will experience the event during specific time periods, and it is usually denoted by ( )h t . In 

another word, it is the probability that an individual who is under observation at a time t  has an 

event at that time. The hazard function represents the instantaneous event rate for an individual 

who already survived to time t , defined as 

{ }
0

Pr |
( ) lim

dt

t T t dt T t
h t

dt→

≤ ≤ + ≥
=  

The numerator of this expression is the conditional probability that the event will occur in 

the interval [ , )t t dt+ , given that it has not occurred before, and the denominator is the width of 

the interval. Dividing one by the other we obtain a rate of event occurrence per unit of time. 

Taking the limit as the width of the interval goes down to zero, we obtain an instantaneous rate 

of occurrence. If we already set up the equal time intervals, and the hazard function is 

straightforward to calculate for the sample population. Under each time interval, identify the risk 
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set and calculate the proportion of group with events during that time interval. Collecting a 

sequence of hazard probabilities together as a plot over time provides a chronological summary 

of the risk of event occurring. 

The Hazard function has several appealing properties. First, it indicate whether the events 

occur, and if so, when. The risk of the event occurring during certain time period can be assessed 

directly. Higher hazard indicate higher risk. Second, both censored and non-censored cases are 

included in the calculations. Third, in discrete-time survival analysis, the information on 

variation in the timing of events is not ignored like Cox regression does. 

The survival function focuses on not having an event and reflects the cumulative non-

occurrence, and the hazard function focuses on the event occurring and relates to incident event 

rate. 

There is a clearly defined relationship between ( )S t  and ( )h t , which is given by the 

calculus formula: 

[ ]d
( ) log ( )

d
h t S t

t
= −  

The formula above is rarely seen in the survival analysis textbook since most statistical 

software already incorporates it. Here it is just simply illustrating the relationship. As long as 

either of ( )S t or ( )h t is known, the other is automatically determined. 

Survival function ( )S t is easy to be calculated either from life table or Kaplan-Meier 

method. Comparing with survival function, there is so simple way to estimate hazard function

( )h t . The cumulative hazard ( )H t is the integral of the hazard which is defined as the area under 

the hazard function between 0 and t , and it differs from the log-survival curves only by sign. The 

cumulative hazard ( )H t can be treated as the number of events that would be expected for each 
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individual by time t  if the events were a repeatable process, and it is used an intermediary 

measure for estimating ( )h t . A simple nonparametric method for estimating ( )H t is the Nelson-

Aalen estimator (Hosmer & Lemeshow, 1999) and kernel smoother to the increments was 

applied to estimate the hazard (Ramlau-Hansen, 1983). 

 The importance of hazard function was emphasized by Willett and Singer (1993): 

The hazard function is the cornerstone of survival analysis for several reasons. First, it 

tells us exactly what we want to know – whether and, if so, when events occur. Its 

magnitude summarizes the risk of event occurrence in each period… Second, the hazard 

function involves both noncensored and censored cases…Third, the sample hazard 

probabilities are computed in every time period that an event occurs – no information is 

ignored or pooled. Finally, the sample hazard function can be used to estimate the sample 

survivor functions indirectly in time periods that censoring precludes its direct 

computation. 

Unlike the survivor probabilities, the sample hazard probabilities can be computed in 

every time period regardless of censoring, censored observations are simply removed 

from the risk set at the appropriate juncture, reducing the denominator of the hazard 

quotient. (p. 954) 

Hazard function was also emphasized to have many appealing properties, as noted by 

Singer and Willit (1993): 

The hazard function has many appealing properties which, taken together, explain why it 

– and not the survivor function – forms the cornerstone of survival analysis. (p. 161) 

Collett (2003) mentioned two main reasons for modeling survival data: 

One objective of the modeling process is to determine which combination of potential 

explanatory variables affects the form of the hazard function. In particular, the effect that 

the treatment has on the hazard of death can be studied, as can the extent to which other 

explanatory variables affect the hazard function. Another reason for modeling the hazard 

function is to obtain an estimate of the hazard function itself for an individual. (p. 56) 

Hazard function is the risk of event occurrence instead of survival proportion and its 

calculation includes both noncensored cases and censored cases, and it doesn’t need to throw out 

the censored cases and no information will be discarded. The sample hazard can be 

correspondingly computed for each defined time interval to provide a clear picture of pattern of 
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hazard variation over the time. Furthermore, sample survival function can be indirectly 

calculated from hazard function as long as the data are independent censoring. Independent 

censoring requires that censoring is unrelated to event occurrence. Under independent censoring, 

individuals in the risk set don’t differ systematically from censored individuals. 

Nonparametric or Parametric Survival Analysis 

 Survival analysis techniques can be generally classified into nonparametric, parametric, 

and semi-parametric methods. 

The Kaplan Meier method is a nonparametric method. It uses the exact time when the 

event occurred rather than the intervals of follow-up, and an event rate is calculated at every time 

point where an event occurs (Kaplan & Meier, 1958). The probability of the event is equal to the 

number of events at that time divided by the number at risk at that point in time. If there are 

withdrawals before the time of event, they are subtracted from the number at risk. This is also 

known as a product-limit method (Kleinbaum & Klein, 2012). Kaplan and Meier (1958) 

discussed the analysis of right-censored incomplete data and explained the estimation solution 

via non-parametric maximum likelihood. Maximum likelihood or minimum chi-square can be 

interpreted as procedures to fit the observations which are selected from an admissible class of 

distribution. Efron (1967) adapted the product limit method to the censored cases tests based on 

sample cumulative distribution function. When there is no event, the survival curve in a Kaplan-

Meier plot will be drawn horizontally over time and only drop (vertically) down at the time of 

event to the calculated cumulative probability of surviving. Censoring affects the shapes of 

survival curve in a situation when a large number of individuals are censored at a single point of 

time leading to sudden spurious large jumps or large flat sections in survival curves. A low 
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number of individuals at risk especially toward the end of study can also lead to such spurious 

jump. 

There is no specific assumption about the distribution of survival time in Kaplan Meier 

method. Kaplan (1958) noted: 

“It seems reasonable to call an estimation procedure ‘nonparametric’ when the class of 

admissible distribution from which the best-fitting one is to be chosen is the class of all 

distribution” (p. 459). 

In the absence of censorship, several nonparametric tests for survival data, such as log-

rank, Wilcoxon, and Kruskal-Wallis tests were developed to compare the survival curves across 

different time points (Cox & Oakes, 1984; Mantel & Haenszel, 1959; Tarone & Ware, 1977). 

The log-rank test is equivalent to the Mantel-Haenszel method (Mantel, 1966; Mantel & 

Haenszel, 1959), and the only difference between log-rank and Mantel-Haenszel is in the way 

they deal with multiple deaths at exactly the same time point. The Wilcoxon (Breslow, Gehan) 

test is more sensitive to early survival differences and it gives more weight on earlier cases with 

events. Contrast with the Wilcoxon test, the log-rank test is more sensitive to later survival 

difference. If there are more than two groups presented, then a Kruskal-Wallis test is needed. 

These methods are nonparametric in that they don’t make any assumptions about the distribution 

of survival estimates. 

The Kaplan-Meier method has been recognized as an important tool to analyze censored 

data and is routinely used in many areas, especially in medical research. Miller (1981) introduced 

various parametric distributions and procedures for survival analysis as well as Kaplan-Meier 

method, and explained why the Kaplan-Meier method is inefficient, and parametric analysis is 

recommended especially for the exponential or Weibull distribution. 

Miller (1981b) wrote in his introduction: 
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The product-limit for Kaplan-Meier estimator is attractive because it is easy to compute 

and understand. It has an asymptotic normal distribution with an estimated variance that 

is easily computed by Greenwood’s formula. For the underlying probability structure, no 

assumptions are required other than the basic one of independence between the survival 

that there is a danger of becoming mentally lazy and not considering parametric modeling. 

Is there a price to be paid for this easy living? (p. 1077) 

 Miller also argued that Kaplan-Meier estimator has low efficiencies for high censoring 

proportions or for surviving fractions that are closer to one or zero. Miller (1983) further 

examined efficiency of the Kaplan-Meier product-limit estimator to the maximum likelihood 

estimator of a parametric survival function under a random censoring model. Klein and 

Moeschberger (1989) compared the efficiencies of Kaplan-Meier method and parametric method, 

and concluded that parametric estimators outperform the distribution free estimator when a 

particular parametric model’s distribution is assumed under a variety of censoring schemes and 

underlying failure model. Aranda-Ordaz (1987) examined the comparison of the Kaplan-Meier 

and the parametric maximum likelihood (MLE) through simulations for several sample sizes, 

percentages of censorship and proportions of outliers in the sample. The Exponential and 

Weibull models were used throughout the paper, and it was found that for Weilbull samples the 

effect can be substantial but for exponential samples it is almost negligible (Aranda-Ordaz, 1987). 

 Efron (1988) proposed a new modeling approach with the Kaplan-Meier estimator and 

introduced the techniques of using standard logistic regression to estimate hazard rates and 

survival curves by providing both estimates and standard errors. From the demonstrated example, 

it was pointed out that the logistic regression estimation is closely related to Kaplan-Meier 

curves and the logistic regression approach to the Kaplan-Meier estimate as the number of 

parameters grows large. That Kaplan-Meier survival estimator is easy to calculate and works 

well with just a few assumptions had been discussed in many literatures (Meier, Karrison, 

Chappell, & Xie, 2004; Miller, 1981b; Oakes, 2000). 
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 Meier et al. (2004) considered the discussion for both noncensored data and censored 

data. For the noncensored data, the Kaplan-Meier estimator was pointed to perform better in 

estimating the mean when the data are complete, although the parametric estimator may be 

advantage for point estimation of survival function. And Meier suggested that a parametric 

estimate of survival curve is necessary in certain extreme situation, such as when the sample size 

is very small. However, if the functions of survival curve are testing the mean or restricted mean, 

then the nonparametric approach is preferred over the parametric-based estimate since it is 

unbiased and entails little or no loss in efficiency. 

 When comparing two survival distributions,  Fisher (1950) argued that 

Even if the original distribution were not exactly normal, that of the mean usually tends 

to normality, as the size of the sample is increased; the method is therefore applied 

widely and legitimately to cases in which we have not sufficient evidence to assert that 

the original distribution was normal. (p. 112) 

The logrank test cannot be used to adjust for the effect of explanatory variables. The 

adjustment for explanatory variables will improve the precision of estimation with the treatment 

effect. 

 Breslow (1974) also addressed importance of distribution in multiple regressions for 

survival data, 

The past few years have witnessed intense activity among statisticians in adapting the 

powerful methods of multiple regression and covariance analysis for use with censored 

survival data. Some of these efforts have been directed towards extending traditional least 

squares methods based on normal distribution theory. However, researchers have found 

that working with distributions specifically proposed for life testing and survival 

problems, such as the exponential, Weibull, and Gompertz, often leads to methods which 

are mathematically more tractable and are conceptually and computationally somewhat 

simpler than is true for the normal. Regression models proposed for these distributions 

generally involve the assumption of proportional hazard functions which has long been 

used in the theory of competing risks. (p. 89) 

In contrast to non-parametric distributions, some survival time follows a known 

distribution is called parametric distribution. The parameters in parametric distributions can be 
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estimated. The classical parametric survival distributions are the exponential, the Weibull, the 

log-logistic, the lognormal and the generalized gamma. For parametric survival models, time is 

assumed to follow some distribution whose probability density function ( )f t  can be expressed 

in terms of unknown parameters. Once a probability density function is specified, the 

corresponding survival function and hazard functions can be determined. 

Cox Regression 

Estimating survival functions, median survival time, and hazard function are descriptive 

statistics to answer when and whether a sample of subjects has the events of interest. After 

introduction of the proportional hazards model by Cox (1972), the attention shifted from 

hypothesis testing to modeling effects of explanatory variables. “Statistical models of hazard 

express hypothesized population relationships between entire hazard profiles and one or more 

predictors”(John B. Willett & Singer, 1991). The Cox model is the most commonly used 

multivariate approach for analyzing survival time data in medical research. The Cox’s model 

permits an analysis in which survival time is treated as continuous variable and explanatory 

variables can be continuous scale or categorical form. The Cox model is a method for 

investigating the effect of several variables upon the time a specified event takes to happen. 

Cox’s model includes a simple multiplicative factor of baseline hazard function and the effects of 

the covariates on the hazard. The baseline hazard is defined as the hazard function for that 

individual with zero on all covariates. Since the baseline hazard is not assumed to be of a 

parametric form, Cox’s model is referred to as a semi-parametric model for the hazard function. 

Researchers in medical sciences often tend to prefer semi parametric instead of parametric 

because of its less assumptions. 

Mathematically, the Cox model is written as 
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'X

0( ,X) ( )h t h t eβ= ×  

The Cox model formula says that the hazard at time t  is the product of two quantities. 

The first is the baseline hazard function 0 ( )h t  which is left unspecified but must be positive. The 

0 ( )h t  involves t  but not 'X s . The second quantity is the exponential expression e  to the linear 

sum of P PXβ . Suppose for each individual, there are one or more measurements are available, let 

say variables 1,..., px x , and their corresponding impact are measured by the size of the respective 

coefficients ( )1 2, ,  , Pβ β β⋅⋅⋅ . 

The Cox model can be either one of the following form: 

1 1 ...

0( , ) ( ) i P iPx x

ih t x h t e
β β+ +=  

or 

0 1 1log ( , ) log ( ) ...i i P iPh t x h t x xβ β= + + +  

Another important feature of Cox model is that the baseline hazard is a function of t , but 

not specified function. This property makes the Cox model as a semi-parametric model. In 

contrast, a parametric model is one in which survival time is assumed to follow a known 

distribution. The survival or hazard function form is completely specified, except for the values 

of the unknown parameters. 

Breslow (1974) tested three models in the comparison of survival curves for a clinical 

trial of maintenance therapy of children leukemia. The log linear exponential, linear exponential 

and nonparametric generalization models were tested for the same data. 

Comparing with some small studies with few numbers of factors interests, some studies 

contain a large number of factors and relatively more information. It is not an easy task and 

always time-consuming to choose which variables should be included in the regression model 
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(Hosmer & Lemeshow, 1999). The availability of stepwise methods which contain either 

backward elimination or forward selection in many software packages makes this procedure easy 

to use without adding human decision. Adding or removing covariates are fully based on 

statistical significance at some pre-decided level, however, this automated selection technique 

has its own disadvantages because it only evaluates a small number of the set of possible models, 

especially for smaller sample sizes and when few event occur (Clark et al., 2003b), and it is 

sometimes lack of real meaning since selection of covariates only based on the statistical 

significance without involve any human’s experience. 

Adding interaction terms to a regression model can greatly expand understanding of the 

relationship among the variables in the model and allows more hypotheses to be tested. The 

interaction effect was also emphasized in many papers (Clark et al., 2003b; Hosmer & 

Lemeshow, 1999; Thomas & Reyes, 2014). The importance of testing of interaction in regression 

approach was emphasized in Breslow (1974) and Sawilowsky (1990). With exploring the 

interaction, the formal analyses may be invalidated. Sawilowsky (1990) reviewed nonparametric 

techniques for the testing of interaction in experimental design and showed they are robust, 

powerful, versatile, and easy to compute comparing to parametric methods. 

The Cox proportional hazards model is widely used in epidemiological analyses of cohort 

data (Rothman, Greenland, & Lash, 2007). The hazard function is taken to be a function of the 

explanatory variables and unknown regression coefficients multiplied by an arbitrary and 

unknown function of time (Cox, 1972). The coefficients in a Cox model relate to hazard. A 

positive coefficient indicates a worse prognosis and a negative coefficient indicates a protective 

effect of the variable with which it is associated. Efron (1977) suggested a simple method for the 

regression analysis of censored data, and explicated the connection between Cox regression with 
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the Kaplan-Meier estimator of a survival curve. The calculation by Efron showed Cox regression 

has full asymptotic efficiency under many realistic situations. 

Kleinbaum and Klein (2012) wrote, 

A key reason for the popularity of the Cox model is that, even though the baseline hazard 

is not specified, reasonably good estimates of regression coefficients, hazard ratios of 

interests, and adjusted survival curves can be obtained for a wide variety of data 

situations. Another way of saying this is that the Cox PH model is a “robust” model, so 

that the results from using the Cox model will closely approximate the results for the 

correct parametric model. (p. 96). 

 Cox proportional hazard model is one type of event history model. It makes no 

assumptions about the shape of the hazard function, and it treats the time as continuous. With the 

growing popularity of the semiparametric Cox proportional hazard model, it is important to find 

convenient ways to detect if the model is well specified. Kleinbaum and Klein (2012) introduced 

three approaches in his Chapter III for evaluating the proportional hazard (PH) assumption of the 

Cox model including a graphical procedure, a goodness-of-fit testing procedure, and a procedure 

that involves the use of time-dependent variables. The graphical and goodness of fit procedures 

for proportional hazard model had been discussed in many papers (Arjas, 1988; Moreau, 

O'Quigley, & Mesbah, 1985; Parzen & Lipsitz, 1999; Wei, 1984). 

The likelihood function is a mathematical expression which describes the joint 

probability of obtaining the data actually observed on the subjects in the study as a function of 

the unknown parameters in the model being considered. The formula for the Cox model 

likelihood function is called a partial likelihood function. The phrase partial likelihood considers 

the probabilities only for those subjects who fail, and does not explicitly consider those subjects 

who are censored. A detailed description of the mathematics of partial likelihood estimation can 

be found in Allison (1984), and the general properties are as follows: 
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The method relies on the fact that the likelihood function for data arising from the 

proportional hazards model can be factored into two parts: one factor contains 

information only about the coefficients 1β  and 2β ; the other factor contains information 

about 1β  and 2β , and the function ( )tα . Partial likelihood simply discards the second 

factor and treats the first factor as if it were an ordinary likelihood function. The first 

factor depends on the order in which events occur, not on the exact times of occurrence. 

(p. 37) 

 The effects of covariates are assumed to be constant over time in Cox proportional hazard 

model. Comparing with Cox proportional hazard model, the discrete-time survival model can 

allow the effects of covariates varying over the time. 

 Although Cox proportional hazard model is widely used in the many areas, there are 

some important limitations. The most significant is the basic assumption that cancels the 

interaction when the time is not in the equation. Singer and Willet (1991) state that time is 

crucial for time-varying predictor and time should be included in the model. The other major 

limitation is that it is lacking a term to represent the observed heterogeneity in the Cox 

proportional model. The latter one has been found to be especially significant when dealing with 

repeated events. 

Discrete-time Survival Analysis 

Cox (1972) introduced the discrete-time hazard model in terms of logit-hazard rather than 

hazard in his seminal article. The discrete-time survival analysis had been widely used in the 

educational research and social research (Allison, 1982; Judith D. Singer & Willett, 1993; J. B. 

Willett & Singer, 1993; John B Willett & Singer, 1995; John B. Willett & Singer, 1991). For 

example, event history data are usually collected in a retrospective cross-sectional survey, where 

dates are recorded to the nearest month or year, or event history data are prospectively collected 

in waves of a panel study. 
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Allison (1982) discussed about how censoring and time-varying explanatory variables 

impact standard survival analysis, 

“Although event histories are almost ideal for studying the causes of events, they also 

typically possess two features – censoring and time-varying explanatory variables – that create 

major difficulties for standard statistical procedures. In fact, the attempt to apply methods to such 

data can lead to serious bias or loss of information.” (p. 62). 

Under the following situations, discrete-time model may be more appropriate: where 

events can only occur at regular discrete points in time; where the events can occur at any point 

in time, but available data record only the particular interval of time in which each event occurs. 

“Discrete-time methods have several desirable features. It is easy, for example, to 

incorporate time-varying explanatory variables into a discrete-time analysis. Moreover, when the 

explanatory variables are categorical (or can be treated as such), discrete-time models can be 

estimated by using log-linear methods for analyzing contingency tables. With this approach one 

can analyze large samples at very low cost. When explanatory variables are not categorical, the 

estimation procedures can often be well approximated by using ordinary least-squares regression. 

Finally, discrete-time methods are more readily understood by the methodologically 

unsophisticated.” (p.63). 

Willett and Singer (1991) discussed the principles of survival analysis, and showed how 

they apply into educational research by using two examples: teacher entry into and exit from 

teaching and student entry into and exit from school. They believed that discrete-time survival 

analysis is the good choice for educational transitions: 

 Of all the survival methods available, we believe that discrete-time survival analysis 

offers the most promise for exploring educational transitions. The application is natural; 

educational data are typically collected at regular intervals, not in continuous time. Discrete-time 

survival analysis does not require dedicated software; it can be implemented using routines 

available in most standard statistical packages. In addition, it facilitates investigation of the effect 

of time-varying predictors; it can be used to detect interactions between predictors and time (as 

when the effects of a predictor fluctuate with the passage of time), and it can be used to study the 

many competing risks of exit – voluntary and involuntary terminations among teachers and 

dropping out and graduation among students. (p. 439) 

Willett and Singer (1993) explained three obstacles of survival analysis to model 

educational data: 
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First, most readily available software is designed for fitting models that incorporate only 

time-invariant predictors (those whose values are constant over time). Yet the values of 

many predictors of educational processes – such as financial aid, the availability of 

support and remedial programs, and the nature of the peer support network – fluctuate 

naturally with time. Second, the most popular model in use today (the continuous time 

proportional hazard model) is predicated on the often unrealistic assumption that the 

effect of a predictor on event occurrence is constant over time. Yet in many educational 

applications, the effects of predictors – such as teacher salary or peer pressure – will vary 

over time. Third, continuous time models (in which researchers assume that they know 

the precise instant when the event occurs) don’t not adapt readily to school contexts, 

where time is so often measured discretely, in quarters, semesters, or years. (p. 156) 

The advantages of discrete-time survival analysis used in education research were also 

emphasized by Judith D. Singer and Willett (1993) and Allison (1982). First, much history event 

data are collected in a discrete time manner due to the logistical and financial reasons. Second, 

the Cox regression model assumes the effect of predictor are constant, however, many effect of 

predictors will vary with time. These time-varying predictors can be easily included into the 

discrete-time models. Third, common model violations can be easily tested and remediated for 

discrete-time model. Finally, discrete-time survival analysis is specified by Cox as a type of 

logistic regression, and the calculation and estimation don’t need additional special statistical 

software and can be carried out within a standard statistical package(Pierce, Stewart, & Kopecky, 

1979; Prentice & Gloeckler, 1978). 

 Discrete-time survival analysis is a useful analogue to the continuous time proportional 

hazards model. The smaller the time interval the smaller that difference will be because as the 

interval width becomes smaller, the logistic model converges to the proportional hazard model 

(Thompson, 1977). In survival analysis, timing of event occurrence is critically important. 

Sometime the event occurrence could be thought of in a discrete time framework. For example, 

in many medical screening programs, the disease status is ascertained only during annual 

screening or periodic checking up. The particular discrete time interval instead of the exact date 

of event incidence is the only thing to know. 
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  Sharaf and Tsokos (2014) predicted survival time of localized melanoma patients by 

using discrete survival time method. The discrete survival time method was able to provide 

better results when applied on follow-up data sets. Xie et al. (2003) used the discrete time 

survival method into the mental health research. In the mental health, the interested outcomes are 

often the onset, relapse, and remission from an illness. When the data are collected at discrete-

time periods, then the discrete-time survival analysis model is more suitable than the continuous-

time survival model. 

Discrete-time survival analysis is not only useful in some medical science but also 

provide an idea framework whether and when the event happens for educational researcher 

(Bray , Almirall, Zimmerman, Lynam, & Murphy, 2006; Henry, Thornberry, & Huizinga, 2009; 

McCallon, 2009; Judith D. Singer & Willett, 1993), occupational and environmental science 

(Richardson, 2010). 

Masyn (2003) modeled single event discrete-time data by using a latent class regression 

model. The interested events were measured in discrete-time or grouped-time intervals. The data 

were presented as a set of binary event indicators and observed risk indicators. Time-dependent 

and time-independent covariates were tested in the models. All the models in this Masyn’s 

dissertation used the domestic violence data with an alcohol treatment intervention. The latent 

class regression framework was presented in Muthén and Masyn (2005). 

A discrete-time survival analysis was conducted for analyzing the departure patterns 

exhibited by students enrolled in a large, private church-related university over a six-year period 

(McCallon, 2009). Several risk factors including ethnicity, religious preference, and 

matriculation status were examined. Discrete-time survival was proven to be an effective 
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procedure in this social study.  Henry et al. (2009) initiated the prevention strategies after 

exploring the relationship between truancy and the onset of marijuana use for the teenagers. 

Discrete survival analysis can be treated as one form of logistic regression (Henry et al., 

2009; Judith D. Singer & Willett, 1993; Xie et al., 2003). Logistic regression is an efficient and 

powerful method to analyze the effect of a group of independent variables on a binary outcome 

by quantifying each independent variable’s unique contribution. However, the accuracy of 

logistic regression model is mainly relying on satisfactions of assumptions as well as the right 

strategy of building model (Stoltzfus, 2011). Adjusting confounder is also an important issue 

which is related with logistic regression. Mantel and Haenszel (1959) considered stratification on 

confounding variables for retrospective studies and suggested the odds ratio should be formed 

based on the combining estimator from individual strata. 

Selection of the Discrete-time Survival Analysis and Cox Regression Survival Analysis 

 In order to distinguish the difference of Cox regression and logistic regression, it must 

know that the distinction between rate and proportion. The incidence (hazard) rate refers to the 

number of new cases of events per population at-risk per unit time. If the event of interested is 

death, then it is called morality rate. Cumulative incidence refers to the proportion of new cases 

that develop in a given time period. Cox regression aims to estimate the hazard ratio which is the 

ratio of incidence rates, while logistic regression aims to estimate the odds ratio which is the 

ratio of proportions. 

 Cox regression does not require that you choose some particular probability model to 

represent survival times, and is therefore more robust than parametric methods (e.g. exponential 

or Weilbull). Unlike non-parametric Kaplan-Meier method, Cox regression is a semi-parametric 

and it can accommodate both discrete and continuous measures of event times. Furthermore, 
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both constant and time-dependent covariates can be incorporated into the model over the course 

of the observation period. 

Formalizing a Discrete-Time Survival Analysis Model 

 For each homogeneous group of individuals, the single event is nonrepeatable. On 

another way, one individual can experience the event only once. Once the event occurs, it cannot 

occur again. Repeated events model are not discussed here. To record event occurrence in 

discrete intervals, divide continuous time into an infinite sequence of contiguous time periods

1(0, ]t , 1 2( , ]t t ,…, 1( , ]j jt t− ,…, and so forth. The letter j represents the period index, and thj

period begins right after time 1jt − (using the initial parenthesis) and ends at, and includes time jt

(using the including bracket). For example, if the time is measured as years, when an event 

occurs any time after 2t (the last day of Year 2) and before 3t (including the last day of year 3), 

then the event is accounted as happening the 3rd time interval 2 3( , ]t t . Adopting common 

mathematical notation, [brackets] denote inclusions and (parentheses) denote exclusions. 

A discrete-time hazard rate jh can be defined as a conditional probability that a randomly 

selected individual will experience the target event in time period j , given that he or she did not 

experience the event prior to j : 

Pr[ | ]jh T j T j= = ≥          (1) 

Where T represent the discrete random variable that indicates the time period j when 

the event occurs for a randomly selected individual from the population. 

The discrete-time hazard rate jh  is a probability whose value lies between 0 and 1. The 

goal of the discrete-time survival analysis is to estimate these conditional probabilities jh  and 

investigate their dependence on selected covariates. Thus, the heterogeneities from covariates 
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need to be considered in the hazard model in order to determine whether different types of 

individuals with their specific covariates have different hazard functions. 

Let assume there are P covariates, Z ( =1,2,...,P)p p  refers to each specific covariate for 

the members of population. The vector 1 2[ , ,..., ]ij ij ij Pijz z z z=  can be used to represent the 

individual i ’s value for each of the P covariates in time period j , in such notation, Z p  can be 

constant over time or may vary over time. The values of each covariate remain constant within 

each time periods even they can be different in different time periods. After introducing the 

individual i  and time period j as long as the P covariates, the discrete-time hazard rate jh  can be 

extended into the following form: 

{ }1 1 , 2 2 ,Pr | , ...ij i i ij ij ij ij Pij Pijh T j T j Z z Z z Z z= = ≥ = = =      (2) 

The Equation 2 indicates that the hazard depends on each individual’s values on a vector 

of predictors. 

Cox (1972) proposed to re-parameterize the probabilities ijh  into a logistic dependence 

relationship on covaraites and the time periods. The model represents the log-odds of event 

occurrence as a function of covariates and also has the attributes of the baseline profile. The 

proposed population discrete-time hazard model is therefore: 

1 1 2 2 1 1 2 2[( ... ) ( ... )]

1

1 ij ij J Jij ij ij J Pij
ij D D D Z Z Z

h
e

α α α β β β− + + + + + + +=
+

     (3) 

Where 1 , 2 ,[ ..., ]ij ij JijD D D  is a sequence of dummy variables, with values 1 , 2 ,[ ..., ]ij ij Jijd d d  

indexing time periods. J  refers to the last time period observed for anyone in the sample, and ij  

refers to the last time period when individual i  was either observed or experienced the event. 

The time-period dummy variables are defined consistent to everyone. For example, 1  = 1ijd  
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when  = 1j , and 1  = 2ijd  when  = 2j , and so on. The vector 1, 2[ ,..., ]Jα α α  capture the baseline 

level of hazard in each time period, and the vector 1, 2[ ,..., ]Pβ β β  represent the effects of 

predictors on the baseline hazard function. 

Taking logistic transformations of both sides of the equation, the equation of (3) changes 

to the following form: 

1 1 2 2 1 1 2 2log( ) ( ... ) ( ... )
1

ij

ij ij J Jij ij ij J Pij

ij

h
D D D Z Z Z

h
α α α β β β= + + + + + + +

−
  (4) 

The Equation 4 above expresses a conditional log-odd which is linear function of a 

constant term jα  specific to period, and of the values of the predictors period j  multiplied by 

the appropriate slope parameters. With event history data on a random sample of n  individuals 

[ 1,2,..., ]i n= , the discrete-time hazard model can be fitted by Equation 3 and corresponding 

parameters in Equation 3 can be estimated. 

The direct connection between logits, odds, and probabilities is shown in the following 

table 1. From the relationships among them, it is understandable that hazard profiles can also be 

displayed as odds instead of probabilities. If a hazard probabilities in a time period is 0.4, there is 

a 40% chance that the event of interest will occur in the period and a 60% chance that it will not , 

given no prior occurrence. The odds of event occurrence in this period are 0.4 and 0.6, which 

refers to the odds equal to 4/6 or 0.66. 

Table 1 

Relationship between logit, odds and probability (Judith D. Singer & Willett, 1993) 

Original scale Desired scale Transformation 

Logit Odds logit
Odds e=  



33 

 

Odds Probability logit

logit
Probability

1 1+

odds e

odds e
= =

+
 

Logit Probability 
logit

1
Probability

1+e
=  

Example of Data Structure 

A typical example in the following Table 2, reprinted with permission, displays an 

example of the traditional method for summarizing event history data by Willett and Singer 

(1993). The first column lists student age in years. The next three columns tally the number of 

students who had not yet thought of suicide at the beginning of each age period, the number of 

students who contemplated suicide during each period, and the censored numbers at the end of 

the period. The last two columns give one proportion of who had not onset by the end of the 

period and the proportion of students who had not yet thought about suicide who onset during 

each period. For example, total 417 students were present at the beginning of the year 6, and 2 

students had contemplated suicide during Year 6, then hazard probability in Year 6 is therefore 

2/417, or .0048. The corresponding survival probability at the end of Year 6 is .9952 which 

equals to 1 minus hazard probability 0.048 at Year 6. Then, at the end of Year 6, the remaining 

risk population was 415. 

From Year 16, the hazard function involved both censored and non-censored cases, and 

the hazard probability was 21/201, or .1045. Two cases were censored during the 16th year, then 

at the beginning of 17th year, the risk set only considered total 178 students which were taken out 

21 events and 2 censored cases from 16th year. The survival probability by the end of 17th year 

equals to 0.4317*(1 - .0955), or .3904. It is a conditional probability – survival proportion for 

17th year based on the population who are event free for their 16th year. 

Table 2 
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What Do Survival Data Look Like? Age at First Suicide Ideation Among 417 College 

Students 

 

Note: Reprinted from “Investigating Onset, Cessation, Relapse, and Recovery: Why You Should, 

and How You Can, Use Discrete-Time Survival Analysis to Examine Event Occurrence” by 

John B Willet and Judith D. Singer, 1993, Journal of Consulting and Clinical Psychology 

Volume 61(6) p. 953. Copyright 1993 by the American Psychological Association Inc. 

 In many social and education research studies, for instance, the suicide example above in 

Willet (1991), the survey or the interview was given at 1-year intervals to obtain information. 

When the main aim of study is to investigate the relationship between some social economic 

factors and onset of suicide, the social economic factors like family income, parents’ marital 

status, and etc. may change during the follow-up periods. It is not reasonable to keep those 

factors as constant all the way through the study period, but instead treat each individual 

measurement as one record and incorporate them in the multiple regressions. 

 The figure 1 listed the data in person-period format for discrete-time survival model. The 

first column is the unique identification ID for each subject. The variables D1, D2, …, D12 

indicated 12 time intervals from the first time period through the twelve time period. Except the 

12 time interval variables, the data also include one categorical variable and one continuous 

variable. The categorical variable was the primary mode of cocaine ingestion before treatment 
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(ROUTE, coded 0 = all other routes, 1 = intranasal), and the continuous variable indicated the 

mood scale of subject (MOOD). The last column (REPLASE) in the right side is the event of 

interest - suicide occurrence (coded 0 = non-event, 1 = event). The first three records in figure 3 

indicate the same person, and the person had the event in the third time interval. The person 

cocaine ingestion kept same and mood scale changed through the time. The following 12 records 

were for the person with ID 02, and the person had not experienced the event at the end of 12th 

time interval. In each time interval, the mood scale was different, and the 2nd person used 

intranasal cocaine ingestion mode. The third person experienced the event during the 12th time 

period. 

 

Figure 1. The Person-period Dataset  

Note: Reprinted from “Investigating Onset, Cessation, Relapse, and Recovery: Why You Should, 

and How You Can, Use Discrete-Time Survival Analysis to Examine Event Occurrence” by 
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John B Willet and Judith D. Singer, 1993, Journal of Consulting and Clinical Psychology 

Volume 61(6) p. 958. Copyright 1993 by the American Psychological Association Inc. 

When Will Cox and Logit Estimates Be Similar? 

Cox model had two components: baseline hazard function that is left unspecified but 

must be positive, and a linear function of a set of k fixed covariates is exponentiated. The Cox 

model can be written: 

1 1 ...

0( ) ( ) i k ikx x

ih t h t e
β β+ +=  

or sometimes as: 

0 1 1log ( ) log ( ) ( ... )i i k ikh t h t x xβ β= + + +  

Where 0 ( )h t is the baseline hazard function which can take on any form. The ikx  is a 

vector of covariates with coefficients sβ . 

Cox estimates are effects on log scale, and exp( )β  are hazards ratios. 

Discrete-time logit model 

In order to distinguish the hazard probabilities in Cox regression model, let tip  be the 

probability that individual i  has an event during the interval t  in the discrete-time analysis, 

given that no event has occurred before the start of t . 

1,Pr( 1| 0)ti ti t ip y y −= = =  

tip  is a discrete-time approximation to the continuous-time hazard function ( )ih t . The 

logit model is listed below to expand the data to fit a binary response model. 

log( ) D x
1

ti
ti ti

ti

p

p
α β= +

−
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Where D ti is a vector of functions of the cumulative duration by interval t  with 

coefficients α . Changes in tip with t  are captured in the model by D tiα . Here D ti is specified 

as step function. 

1 1 2 2 ...ti q qD D D Dα α α α= + + +  

Where 1,  ... , qD D  are dummies variables for time interval 1,...,t q=  and q  is the 

maximum observed event time. 

tix  is a vector of covariates (time-varying or constant over time) with coefficients β . 

Logit estimates are effects on log-odds scale, and exp( )β are hazard-odds ratios. 

In general, Cox and logit estimates will get closer as the hazard function becomes smaller 

because: 

( )
log( ( )) log( )

1 ( )

h t
h t

h t
≈

−
 as ( ) 0h t → . 

The discrete-time hazard will get smaller as the width of the time intervals become 

smaller. A discrete-time model with a complementary log-log link, log( log(1 ))tp− − , is an 

approximation to the Cox proportional hazard model, and the coefficients are directly 

comparable(Steele & Washbrook, 2013). 

Model Evaluation 

Null Hypothesis 

To determine whether the regression coefficient is different from zero, there are several 

hypothesis tests that can be performed. Let’s say the null hypothesis assumes that the predictor 

variable is 0 for the population. If there is sufficient evidence in the sample to conclude that the 

regression coefficient is significantly different from 0, then the alternative hypothesis can assume 

that the predictor variable has some effect on the dependent variable. The z  test and the 
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likelihood ratio statistic (alternative Wald statistic) are methods of testing the null hypothesis. 

The likelihood ratio and the Wald statistic typically give similar results for the same data set, 

given the sample is large enough (Wright, 1995). 

The z  test is used for testing the significance of individual parameters. It is calculated by 

dividing the estimated parameter estimate for that predictor by its standard error. Ratios of 1.96 

and 2.58 or larger can be considered significant for an α  of 0.05 and 0.01. 

The Likelihood Ratio Statistic is similar to the F  test in that a large value means the 

population differs from zero. The probability is associated with the likelihood will determine if it 

is a significant difference. The likelihood ratio statistic is also used for comparing the fits of full 

and restricted models. Smaller value indicates a better fit of the model. 

The Wald statistic is an alternative method to the likelihood ratio for testing the 

significance of individual coefficient. It is obtained by comparing the maximum likelihood 

estimate of the β  to an estimate of its standard error. It can be calculated to be asymptotically 

distributed as a chi-square distribution or it can follow a normal distribution. The SPSS logistical 

regression and Cox regression procedures use the chi-square distribution. If the β  is large, the 

estimated standard error is inflated, resulting in failure to reject the null hypothesis when the null 

hypothesis is false. 

Goodness of Fit Measures 

One of the most common question for any regression method is “How do I know if the 

model fits the data”. The approaches to answer this question generally can be classified into two 

categories: measures of predictive power and goodness of fit tests (Allison, 2014). 

Maximum likelihood 
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The estimations of the parameters 'sβ  in general Cox model are called maximum 

likelihood (ML). As with logistic regression, the ML estimates of the Cox model parameters are 

derived by maximizing a likelihood function, usually denoted as L . The likelihood function is a 

mathematical expression which describes the joint probability of obtaining the data actually 

observed on the subjects in the study as a function of the unknown parameters (the 'sβ ) in the 

model being considered. 

For continuous-time, the general likelihood equation for censored data is: 

1

1

[ ( )] [1 ( )]i i

n

i i

i

L f t F t
δ δ−

=

= −∏  

For discrete-time model, the likelihood is presented as: 

1

1

[Pr( )] [Pr( )]i i

n

i i i i

i

L T t T t
δ δ−

=

= = >∏  

For both continuous-time and discrete-time models, iδ  is set equal to 1 if i  is uncensored; 

otherwise it is zero. 

The partial likelihood ( P L ) only considers probability for subjects who fail, and it 

doesn’t consider the probabilities for subjects who are censored. The formula for the Cox model 

likelihood function is actually called a “partial” likelihood function rather than a complete 

likelihood function since the likelihood for the Cox model does not consider probabilities for all 

subjects. At the thj  failure time, jL  denotes the likelihood of failing at this time, given 

survival up to this time. Let’s say the set of individuals at risk at the thj failure time is called the 

risk set ( )( )jR t , and this set will get smaller in size as the failure time increases. 

1 2 3

1

...
k

k j

j

PL L L L L L
=

= × × × × = ∏  
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Although the partial likelihood focuses on subjects who fail, survival time information 

prior to censorship is used for those subjects who are censored. In another words, a person who 

is censored after the thj  failure time is part of risk set used to compute jL , even though this 

person is censored later. 

The likelihood function is generally done by maximizing the natural log of L  by taking 

partial derivatives of log of L  with respect to each parameter in the model, and then solving a 

system of equations. Normally computer will do this step by carrying out through iterations. 

The log-likelihood function for the Cox proportional hazard model looks like this 

[ ] [ ]{ }0 0

1

( ) ln ( ) ln ( )i

n
x

i i i i i

i

L c h t c x e S t
ββ β

=

= + +∑  

In logistic regression, the log-likelihood is the criterion for selecting parameters. The 

likelihood itself is a small number, so the log of the likelihood is multiplied by -2 and 

approximates a chi-square distribution. Smaller values indicate a better prediction of the 

dependent variable. In the SAS and SPSS package, the log of the likelihood is commonly 

abbreviated as -2LL. The likelihood equals to 1 indicates the model perfectly fit, and -2LL 

equals to 0. The likelihood ratio test is used to test the significance of the coefficients in the 

model. The -2 Log Likelihood statistics has a chi-square distribution under the null hypothesis 

that all coefficients in the model are zero. The difference in fit between two nested models is 

assessed by looking at the change in -2LL, with degrees of freedom equal to the number of β

parameters. 

R-Squares Statistics 

There are many different ways to calculate the 2R  and there is no consensus on which one 

is best. The R-squares is an analogous to the 2R  in linear regression. It indicates a proportional 
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reduction in chi-square or in the absolute of the log-likelihood (Hosmer & Lemeshow, 1989). In 

logistic regression, the most common R square is the Cox and Snell 2R : 

2 2/

& 01 ( / ) n

C S MR L L= −  

Where 0L  is the likelihood function for a model with no predictors, and ML  is the 

likelihood for the model being estimated. 

Other Measures of Goodness of Fit 

The Akaike Information Criterion (AIC) and Bayesian information criterion (BIC) can be 

used to evaluate and compare the goodness of fit of an estimated statistical model (Akaike, 1974; 

M. A. Pourhoseingholi et al., 2007; M. Pourhoseingholi et al., 2011). A simulated data will be 

used to compare the properties of two approaches. Two approaches will be fitted into the models 

on clinical data to demonstrate the closeness of this relationship in different types of situations. 

The AIC is given by: 

AIC 2*Log(likelihood) *k npar= − +  

Where npar  represents the number of parameters in the fitted model, and 2k =  for the 

usual AIC, or log( )k n= (  being the number of observations)n for BIC. The smaller AIC 

represents the favor of model with smaller residual error. 

Robust Estimation 

The robustness estimations in Cox Regression (Bednarski, 1993; Farcomeni & Viviani, 

2011; Ten Have, Miller, Reboussin, & James, 2000; van Houwelingen & Putter, 2014) and 

logistic regression (Bianco & Yohai, 1996; Kordzakhia, 2001; van Houwelingen & Putter, 2014) 

had been discussed. 

The Cox regression model does not make any assumption on the underlying hazard. 

However it relies on the proportional hazards assumption. The traditional statistical solution of 
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the robustness problem is to extend the proportional hazard model by stratification or the 

introduction of time-varying effects of the covariates in the Cox model. 
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CHAPTER 3 METHODOLOGY 

Overview of the Research Design 

The purpose of this study is to determine whether the discrete-time survival model is 

comparable to the Cox regression model when both methods are used to investigate the 

relationship between predictors and outcome variable. 

The Cox’s proportional hazard model has been proposed for the purpose of exploring the 

effects of one or multiple variables on survival. Cox’s proportional hazard model is analogous to 

a multiple regression model and enables the difference between survival times of particular 

groups of patients to be tested while allowing for other factors. In the Cox’ proportional model, 

the dependent variable is the “hazard”. The hazard is the probability of experiencing the event 

given the individuals has survived up to a given point in time. 

Comparing with the Cox proportional hazard model, the discrete-time survival model is 

most likely to be used in educational research when looking at the timing of certain educational 

events. Regular continuous-time method don’t allow for the flexibility inherent in a discrete-time 

way. Under the discrete-time method, both time-invariant and time-varying predictors can be 

used, and the interaction of predictors with time can also be tested and implemented into the 

model. 

Data Structures 

For a continuous-time Cox hazard model, the data structure is “Person-Level” format. 

Normally, in a typical person-level data set, each individual in the sample has one record (line). 

Each record in the dataset indicates i th individual subject with his or her corresponding 

following information: 
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Censoring. The variable iY indicates whether the individual i  experienced the event of 

interest in the last time period in which he or she was observed. The value of iY  is 0, if individual 

i  was not censored in time period ij , and 1, if he or she was. 

Duration. The time interval is the length of the individual was observed. The time for 

subject to developing the event of interest can only be a positive value. 

The predictors. The covariates P  for individual i  are recorded in each time period j  up 

to, and including, time period ij . The explanatory variables can be continuous format or 

categorical format. 

The discrete-time model needs “Person-Period” instead of “Person-Level” data, thus 

corresponding data restructure is needed. The notation for the discrete-time model is similar to 

that for continuous-time survival model. It is assumed that time can take on only positive values 

( 1,2,3,...)t =  and observe a total of n  independent individuals ( 1,2,..., )i n=  beginning at some 

natural starting point 1t = . The observation continues until time it , at which point either an 

event occurs or the observation is censored. Censoring here is right-censoring, which means the 

individual is observed at it  but not at 1it + . Normally, the time of censoring is independent of the 

hazard rate for the occurrence of events. A period represented a “year” in both data sets. 

Basically, the following items are needed for the discrete-time model: 

The time indicators. The set of dummy variables, 1 2,  ,  ... ,ij ij JijD D D  identify the particular 

time periods to which the record refers. If the individual had the events on the time period j , all 

of the time indicators take on value 0 except for the j th dummy, jijD , which has value 1. 
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The predictors. In the j th record, the covariates contain the i th individual’s values of the 

P  covariates appropriate for time period j , 1 2,  ,  ... ,ij ij PijZ Z Z . Time-invariant predictors have 

values that are identical in all time periods between 1st period and j th period. Time-varying 

predictors, on the other hand, have values that may differ from time period to time period. 

Censoring. The variable Y records the value ijy  that indicates whether the event of 

interest occurred for individual i  in time period j . Its value is 0, if the event of interested did 

not occur, and 1, if it did. 

Sample Data and Hypothesis Testing 

Description of medical research data 

The medical research data came from in-house prostate cancer database in a large 

Midwestern county hospital. A total of 1577 intermediate- or high-risk prostate cancer patients 

with clinical tumor stage T1-T3 N0 M0 who were treated with conventional dose EBRT, high-

dose adaptive radiation therapy, EBRT+high-dose-rate brachytherapy boost, or brachytherapy 

alone between 1984 and 2005 were included. All the patients had minimum 5-year follow-up. 

Biochemical failure was defined as a rise in the blood level of prostate-specific antigen (PSA) in 

prostate cancer patients after treatment with surgery or radiation (Roach et al., 2006). After 

radiation therapy, PSA levels usually fall below 0.3 ng/mL or undetectable levels. In 2005, the 

American Society for Therapeutic Radiology and Oncology (ASTRO) revised a definition of 

biochemical failure in Phoenix, Arizona. A rise by 2 ng/mL or more above the nadir PSA is 

considered the standard definition for biochemical failure after EBRT with or without hormone 

treatment. Cancer recurrence is a return of the cancer after a period of time in which no cancer 

could be detected. The odds of a cancer recurring depend on many factors, including type of 
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cancer, its extent within the body at the time of treatment, type of treatment received, and many 

baseline patient’s characteristics. 

We will test three hypotheses concerning the timing of biochemical failure, and test how 

some prognostic variables impact on biochemical failure. The hypotheses are listed below: 

H1 Patients with higher risk factor including higher Gleason score, higher pre-RT 

PSA, and higher clinical tumor stage have a higher hazard of biochemical failure compared to 

the patients with lower risk factors. 

H2 Patients with longer nadir time have a lower hazard of biochemical failure 

compared to the patients with shorter nadir time. 

H3 Patients with lower risk category but have a longer nadir time have a better 

biochemical control compared to patients with high-risk and with a shorter nadir time. 

With H1, the hazards of biochemical failure occurrence between patients with different 

levels of risk factors were compared. With H2, the hazards of biochemical failure occurrence 

between patients between different nadir time groups were compared. The patients with shoter 

time to reach their lowest PSA value were more likely to have biochemical failure occurred 

earlier. Under H3, the hazards with different levels of NCCN risk group were compared. And the 

change of hazards of biochemical failure cross-level of risk groups and nadir time groups were 

also investigated. The patients with lower risk category and longer nadir time will decrease the 

hazard to develop the biochemical failure. Patients with lower risk factor may be more likely to 

have good outcome control, and their nadir time may be more likely to be longer than the nadir 

time for patients with worse risk factors (Vicini et al., 2011). 

To construct a model to test these hypotheses, we use the following variables with 

subscripts denoting the t th calendar year, and the j th patient in the k th risk group. 
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tjkY = a dichotomous indicator of whether patient j  in risk group k  initiates biochemical 

failure during year t . This is the outcome variable. 

tjkp = the hazard of initiating biochemical failure by patient j  in risk group k  during 

year t . 

tjkRisk = a categorical indicator of the patient j  had been classified into one of NCCN 

risk groups based on the pre-radiation treatment prognostic factors. This is a time-invariant 

individual level covariate. 

 tjkNadir Time = a continuous indicator of when the patient j  had their lowest PSA value. 

This is a time-variant individual level covariate. 

tjkGleason = a continuous indicator of the patient j  had pre-radiation treatment Gleason 

score. This is a time-invariant individual level covariate. 

 tjkpre RT PSA− = a continuous indicator of the patient j  had pre-radiation treatment 

PSA value. This is a time-invariant individual level covariate. 

 tjkT Stage = a continuous indicator of the patient j  had pre-RT clinical tumor stage. This 

is a time-invariant individual level covariate. 

Analysis Strategies 

Survival Function 

 The analysis begins with an examination of the survival function. The survival function is 

a plot of the probabilities that an individual will remain in the risk set as a function of time. The 

risk set contains only cases that are qualified to experience the event in question. The survival 

function may be expressed as: 
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Numbers of survivors to time 
( )

Total number in sample

t
S t =  

However, this study used a modification of this formula known as Kaplan-Meier method 

for estimating survival probabilities since the Kaplan-Meier method accommodates “censored” 

individuals. According to Slonim-Nevo and Clark (1989), 

…the Kaplan-Meier approach uses ordered observations rather than grouped data. This 

approach has the advantage of yielding results that do not depend upon the length of time 

interval used for grouping, and is especially useful for small sample sizes (p.9). 

The Kaplan-Meier estimate is also known as the product limit estimator and can provide 

a nonparametric estimate of survival outcome of interests. It is calculated as: 

[ ]{ } [ ]{ } [ ]{ }PL 1 1 1 2 2 2 k k kS (t) r(t ) d(t ) / r(t ) r(t ) d(t ) / r(t ) ... r(t ) d(t ) / r(t )= − × − × × −  

Where r is the risk set at time period t  and d is the number of individual had events at 

time t . 

Hazard function 

The hazard function can help a researcher identifying the high-risk period. Compared to 

the survival function, the hazard function is more sensitive since it can detect the slope of the 

survival function. The hazard function describes the probabilities of an event occurring during a 

particular time interval and provides the subject is at risk of experiencing the event. The higher 

the hazard is, the higher the risk that the event will occur. 

For the prostate cancer data, the hazard refers to the probability that a patient will have 

biochemical failure during a time interval after he finished the radiation treatment, given that the 

patient is at risk of having biochemical failure at the beginning of that time interval. Each 

separate hazard probability is computed only on that time period’s risk set. The hazard 

probability for a patient at time period t  is defined as: 
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( )
( )

( )

f t
h t

S t
=  

or, 

( )
( )

1 ( )

f t
h t

F t
=

−
 

Where ( )f t  is the probability density function at time period t , ( )S t  is the probability 

of surviving to the time period t  without experiencing the events, and ( )F t  is the cumulative 

distribution function for T  . The hazard function mathematically records changes in the slope of 

the survival function, thereby allowing researchers to identify high-risk periods. 

In discrete-time survival model, the set of the discrete-time hazard probabilities 

parameters jh  is a function of time period j  , which is called as discrete-time hazard function. 

The function can be plotted whose x-axis is time and y-axis is the population risk of the event 

occurring in each time period under the condition where the events haven’t occurred in any 

earlier time period. 

Statistical Model for Hazards 

Cox’s Proportional Hazard Model 

In 1972, David Cox, a British statistician proposed his model in his published paper 

entitled “Regression Analysis and Life Tables”, and he expressed the hazard rate depends on the 

predictors and the time period by using a logistic regression model. 

0 1 1log ( ) log ( ) ( ... )i i k ikh t h t x xβ β= + + +  

After we input the predictor variables along with baseline model, total eight models are 

presented here: 

Model A: 0 1 1log ( ) log ( )h t h t Xβ= + (T Stage) 
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Model B: 0 1 1log ( ) log ( )h t h t Xβ= + (Gleason score) 

Model C: 0 1 1log ( ) log ( ) (pre-treatment PSA)h t h t Xβ= +  

Model D: 0 1 1log ( ) log ( ) (nadir time)h t h t Xβ= +  

Model E: 0 1 1log ( ) log ( ) (pre-treatment hormone thearpy)h t h t Xβ= +  

Model F: 0 1 1log ( ) ( ) (NCCN risk category)h t t Xβ β= +  

Model G: 0 1 1 2 2log ( ) ( ) (NCCN risk category)+ (nadir time)h t t X Xβ β β= +  

Model H: 
0 1 1 2 2

3 3

log ( ) ( ) (NCCN risk category)+ (nadir time)

+ (pre-treatment hormone therapy)

h t t X X

X

β β β
β

= +
 

Discrete-Time Survival Analysis Model 

The proportional hazard model uses duration data and can handle the censoring problem 

effectively. In hazard modeling, the time of a patient’s occurrence an event becomes a part of the 

dependent variable. Hazard modeling provides decision-makers with additional information 

which includes 1) characteristics of high-risk patients, 2) high-risk time periods over the course 

of a patient post-treatment follow-up, 3) the probability of a patient surviving to any given time 

period (year), 4) the conditional probability of event occurring during any given time period 

post-treatment. The information above is very important for follow-up visit arrangement and 

implementation of follow-up care after initial cancer treatment. Both health caregivers and 

patient’s family can work closely to deal with the possibility of cancer recurrence. 

The entire hazard function can be modeled as a function of selected predictors. In 

discrete-time survival analysis, as in linear regression, the initial model (or baseline) contains 

only the intercept with no predictor variables. The baseline model fits the data with the models 

with unstructured hazard functions and no covariates. The baseline equation with no predictors 

(or baseline logit-hazard profile) is: 
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1 1 2 2logit ( ) ( ... )k kh t t t tα α α= + + +  

The alpha parameters (α ) are multiple intercepts which have one in each time period. 

They represent the “baseline logit-hazard function because they capture the time-period by time-

period conditional log-odds that individuals whose covariate values are all zero will experience 

the event in each time period, given that they have not already done so” (Judith D. Singer & 

Willett, 1993, p. 167). 

The baseline equation will be expanded to include predictor variables, as in ordinary least 

squares regression. The relationship of the logit-transformed hazard profile to a predictor 

variable, 1X , is 

1 1 2 2 1 1logit ( ) ( ... ) Xk kh t t t tα α α β= + + + +  

Where the 1β  measures the amount of vertical shift in logit-hazard per unit difference in 

the predictor variable. Using standard statistical packages, the β  coefficients and their standard 

errors can be estimated and inferences can be made with respect to the effects of predictors on 

survival. 

According to Willet and Singer (1991), the baseline logit-hazard model can be written as: 

0logit ( ) ( )h t tβ=  

Where 0 1 1 2 2( ) ( ... )k kt t t tβ α α α= + + +  (p.417) 

Using this formulation, eight hazard models, A, B, C, D, E, F, G, and H were constructed 

to model the hazard associated with prostate cancer patients’ recurrence during the first ten years 

post-treatment. These models are the following: 

Model A: 0 1 1logit ( ) ( ) (Clinical Tumor Stage)h t t Xβ β= +  

Model B: 0 1 1logit ( ) ( ) (Gleason Score)h t t Xβ β= +  
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Model C: 0 1 1logit ( ) ( ) (pre-treatment PSA)h t t Xβ β= +  

Model D: 0 1 1logit ( ) ( ) (nadir time  2 year)h t t Xβ β= + ≥  

Model E: 0 1 1logit ( ) ( ) (pre-treatment hormone thearpy)h t t Xβ β= +  

Model F: 0 1 1logit ( ) ( ) (risk group)h t t Xβ β= +  

Model G: 0 1 1 2 2logit ( ) ( ) (risk group)+ (nadir time  2 year)h t t X Xβ β β= + ≥  

Model H: 
0 1 1 2 2

3 3

logit ( ) ( ) (risk group)+ (nadir time  2 year)

+ (pre-treatment hormone therapy)

h t t X X

X

β β β
β

= + ≥
 

The variable clinical tumor stage (T1, T2, T3), Gleason score (<6, 7, 8-10), pre-tx PSA 

(<10ng/mL and ≥10 ng/mL), nadir time (< 2 years and ≥ 2 years) NCCN risk category 

(intermediate- and high-risk) are all categorical variables in the above models. Categories were 

coded using the digits 0 and 1 for binary variable, and 1, 2, and 3 for variables with multiple 

values. The disease risk was classified according to National Comprehensive Network (NCCN) 

criteria, with high risk being T3 or more, initial prostate-specific antigen (iPSA) ≥20 ng/mL, or 

Gleason score 8 to 10; low risk being T2a or less, iPSA <10 ng/Ml, and Gleason score ≤ 6; and 

intermediate risk being all the remainders. NCCN risk category definitions can be found in the 

supplement table (Table 8 

). 

Model A was used to examine the relationship between hazard to occurring and the time 

indicator. The model serves as a baseline for determining whether other variables have an effect 

on the event (cancer recurrence). The model A, B, C, D, and E tested the main effects of tumor 

stage, Gleason score, pre-tx PSA, and nadir time. Model F consider NCCN risk as a whole 

instead of investigating each individual tumor stage, Gleason score, and pre-treatment PSA. 

Model G tested the effect of two variables – NCCN risk group and nadir time group. Model H 
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tested the total effect after considering all three variables together (NCCN risk, nadir time, and if 

the patient received pre-treatment HT). 

Likelihood Ratio Chi-Square Statistics 

The likelihood ratio chi-squares were compared by computing a 
2 (df 1)G =  value with 

the following equation (Wainer, 1990): 

2 2 1

2 2(1)G G G= −  

For either the Cox regression model or the discrete-time survival model, the 
1

2G  is the -

2(loglikelihood) of model 1, and 
2

2G  is the -2(loglikelihood) of model 2 with additional 

variables. The statistical difference between two models’ chi-squares can also be assessed like 

likelihood ratio chi-square statistics from the formula above. 

Testing Assumptions 

Cox’s Proportional Hazard Model 

Cox’s proportional hazard model requires that the hazard ratio is constant over time. For 

any two individuals at any point in time, the ratio of their hazards is a constant. Two situations of 

proportional hazards mean here: 1) the hazards of two individuals are constant over time which 

makes the ratio of the two hazards be constant, 2) the hazards of two individuals varies over time 

but the rates of the changes in two hazards are the same. Basically, for any time t , the ratio of 

( ) / ( )i jh t h t c= , where i  and j  refer to distinct individuals and c  may depend on explanatory 

variables but not on time (Allison, 1984). Violation of the proportional hazard assumption can 

occur in many ways. The first violation may involve the inclusion of time-varying variables in 

the equation, whereby the hazards are no longer proportional, but may become nonproportional. 

Or if there is an interaction between time and one or more of predictor variables, the proportional 

hazard assumption is also violated. Care must be taken to check this assumption. Violation of 
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this proportionality assumption can be checked both graphically and statistically. By stratifying 

the sample according to the categories of a variable, assuming that the influence of other 

covariates are identical for all categories, and transforming the survivor function, the plotted 

curves should differ only by a constant factor, β . If there is a change in the distance between 

two curves, the proportionality assumption may be violated. A statistical test for proportionality 

would demonstrate that the coefficient β  would not be significantly different from zero and the 

hazard functions of the two categories of the variable should differ only by the constant factor 

exp( )β . 

Discrete-time Hazard Model 

There are three important assumptions which need to be tested in the discrete-time hazard 

model (Judith D. Singer & Willett, 1993). The first one is linearity assumption which requires 

that the vertical displacements in logit hazard are linear per unit of difference in each predictor. 

Exploratory analysis and statistical reference can be used to check this assumption. The graphical 

method is easy to implement by visual checking if hazard functions in logit-hazard form of 

difference stratums have approximately equal vertical displacements. If the displacements are 

roughly equal, then the linearity assumption is met. Otherwise, the assumption is violated. 

Generally, the violation of linearity assumption can be resolved by transformation of the 

predictors or converting the continuous variable into a set of dummy variables. 

The second assumption in discrete-time method is no unobserved heterogeneity. The 

individuals are hypothesized to be different only in their predictors, and all the variations in the 

hazard profiles across individuals only depend on observed variation in the predictors. Vaupel 

and Yashin (1985) brought the term of “heterogeneity’s ruses”, and illustrated that the mixing 

heterogeneous population with different risk profiles can yield a pooled profile that may have a 
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shape entirely different from the component profiles. Selection is the root cause for this. Because 

of selection without knowing unobserved heterogeneity, the shape of hazard profiles could be 

hard to explain. 

The third assumption is proportional assumption. Both continuous-time and discrete-time 

survival models involve a proportionality assumption. A simple graphical method can be used 

for verifying the proportionality assumption. In the preliminary analysis, “if logit-hazard profiles 

estimated separately within strata are all approximately parallel, then the assumption is met; if 

they are not, it is violated.”(Judith D. Singer & Willett, 1993, p. 186) 
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CHAPTER 4 RESULTS 

 This study was undertaken to examine the effect of certain data characteristics on 

survival analysis hazard estimation and goodness of fit statistics between Cox regression and 

discrete-time survival models. The following three conditions were varied to assess the impact 

on the hazard estimates and goodness of fit statistics: (a) the number of time periods for which 

the data were coded, (b) the sample size, (c) the number of parameters for which the statistics 

model was used. 

Data Sets 

 Two levels of time periods and four sample sizes of cases which were generated from the 

original medical research data, were compared among Model A through Model H (Table 9). The 

data were coded to reflect the division of time into either ten or five periods. Ten time periods 

(one year per time period) were chosen to emulate typical time periods found in the medical 

literature, and follow-up visits were recommended to occur every 6 months for the first 3 years 

and at least yearly starting the 4th year after patients finished their radiation treatment for prostate 

cancer. Five time periods (two years per time period) were chosen to compare how it impacts on 

the hazard estimation comparing to ten time periods. 

Singer (1991) described that the statistical power of the discrete-time survival analysis 

model is affected by sample size. The sample size sets were chosen by using one hundred 

percent, seventy-five percent, fifty percent, and twenty-five percent of empirical data sets. The 

four sample size sets were randomly chosen from the original data set. The conditions for each 

data set are presented in Table 3. 

Table 3 

Conditions for Simulated Date Sets 
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Data Sets Number of 

Time Periods 

Model Sample Size in Cox 

Model 

Sample Size in Discrete-

time Survival Model 

Data set 1 10 Model F 1577 9692 

Data set 2 10 Model G 1577 9692 

Data set 3 10 Model H 1577 9692 

Data set 4 5 Model F 1577 6041 

Data set 5 5 Model G 1577 6041 

Data set 6 5 Model H 1577 6041 

Data set 7 10 Model F 1213 7516 

Data set 8 10 Model G 1213 7516 

Data set 9 10 Model H 1213 7516 

Data set 10 5 Model F 1213 4688 

Data set 11 5 Model G 1213 4688 

Data set 12 5 Model H 1213 4688 

Data set 13 10 Model F 809 4939 

Data set 14 10 Model G 809 4939 

Data set 15 10 Model H 809 4939 

Data set 16 5 Model F 809 3097 

Data set 17 5 Model G 809 3097 

Data set 18 5 Model H 809 3097 

Data set 19 10 Model F 422 2490 

Data set 20 10 Model G 422 2490 

Data set 21 10 Model H 422 2490 

Data set 22 5 Model F 422 1576 

Data set 23 5 Model G 422 1576 

Data set 24 5 Model H 422 1576 

The purpose for the empirical example was to examine the biochemical failure hazard 

from both the Cox regression model and the discrete-time survival model. It was previously 

established that biochemical failure is related to patient prognostic factors (Vicini et al., 2011). 

For example, patients with higher pre-treatment PSA, higher Gleason score, higher clinical 

tumor stage, longer time to reach the nadir PSA, and the lack of hormone therapy before 
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radiation would likely have biochemical failure earlier than patients with lower risk factors, 

shorter nadir time, and treatment with hormone therapy. 

For the Cox regression model or discrete-time survival Model, the Model A through 

Model F were individually examined on how each single factor impacted the outcome, i.e., 

biochemical failure (BF). The hazard coefficients estimates were analyzed and compared by 

using Cox regression model and discrete-time survival model cross the Model G and Model H. 

Twenty-four data sets were analyzed and compared coefficients for Model F, Model G, and 

Model H. 

 In the life tables (Table 10, 11, and 12), the incidence rates for BF were different among 

the three NCCN risk groups. Table 10 lists the hazard rates for low-risk patients. Table 11 lists 

the hazard rates and survival proportions of all intermediate-risk patients who had not 

experienced BF by the end of each year. Patients in the intermediate-risk group had their peak 

hazard rates between 4th – 5th years after finishing radiation treatment, with almost no 

biochemical failures after 12 years after radiation treatment. The high-risk group had much 

earlier BF starting from the 1st year after radiation treatment (Table 12) and with its peak BF of 

13% rate occurring around the 5th year after radiation. The intermediate-risk and high-risk groups 

were more important than low-risk group for the clinicians to investigate how well intermediate- 

and high-risk patients response the treatment, and if, there is a way to tell the patients and 

clinicians how much probability they may have the cancer back based on the prognostic factors 

and follow-up PSA information. 

 The estimated hazard function and corresponding survival function are displayed in 

Figures 2 and 3, respectively. The figures provide the same result from life table graphically. 
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Figure 2. Hazard Functions for Biochemical Failure by NCCN Risk Groups. 

Figure 3. Survival Functions for Biochemical Control by NCCN Risk Groups. 

Survival Function and Hazard Function 

 The survival functions indicated that the high-risk group had higher biochemical failure 

rate and worse biochemical control (Figure 4 and Figure 5) compared with the intermediate-risk 
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group. The median biochemical failure times for the intermediate-risk group and high-risk group 

are 14.9 year and 6.4 year. The biochemical control rate was also highly associated with the time 

when the patients reached their nadir PSA after radiation treatment and if the patients received 

the hormone therapy before radiation therapy. Patients who took longer time to reach their 

lowest PSA value were less likely to have BF compare to the patients with a shorter time to PSA 

nadir (Figure 6 and Figure 7). Patients who received pre-treatment hormone therapy were less 

likely to have BF comparing to those who did not have hormone therapy before radiation therapy 

(Figure 8 and Figure 9). 

 The cumulative hazard rates are shown in the Figure 5, Figure 7, and Figure 9, and 

survival rates are shown in the Figure 4, Figure 6, and Figure 8. 
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Figure 4. Freedom from Biochemical Failure by Risk Group 



62 

 

Figure 5. Cumulative Hazard Rates for Biochemical Failure by Risk Groups 
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Figure 6. Biochemical Control by Nadir PSA Time Groups 
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Figure 7. Cumulative Hazard Rate for Biochemical Failure by Nadir PSA Time Groups 
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Figure 8. Biochemical Control by Groups Received HT or No HT 
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Figure 9. Cumulative Hazard Rate for Biochemical Failure by Groups Received HT or No HT 

Cox Model 

 The univariate analysis was tested for each individual factor for different sample size 

n=1577, n=1213, n=809, and n=422. Models A through E were tested with one covariate by 

using the Cox regression model and the discrete-time survival model. The single covariate in 

Model A to E included clinical tumor Stage, the pre-treatment PSA, tumor’s Gleason score, if the 

patient received the hormone therapy before radiation, and the time to reach the nadir PSA. All 

single covariates are strong predictors of biochemical failure in the univariate analysis (p < 

0.001). Model F tested the NCCN risk group as the combination of clinical tumor stage, pre-
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treatment PSA and tumor Gleason score information. The high risk group had higher risk had 

more frequent and earlier biochemical failures. 

The multivariate analysis was used in Model F, G and H. The likelihood ratio test was 

used to test the significance of the coefficients in the model. The -2 log likelihood statistics (-

2LL) has a chi-square distribution under the null hypothesis that all coefficients in the model are 

zero. The difference in fit between two nested models is assessed by looking at the change in -

2LL, with the degree of freedom equal to the difference between the numbers of parameters in 

the two models. For example, the group with sample size n=1577, the -2LL for the model H is 

7160.8 (Table 13) smaller than in the model G with -2LL=7304.1. The decreased -2LL indicates 

that the model H was improved relative to model G by taking account the additional variable 

which is if the patient received the HT before radiation. The summary of Model A through H 

including -2LL estimates are presented in Table 13. Under other sample size groups, model H 

had the best representation among model F, G, and H. For the sample size n=1213, n=809, and 

n=422, the summary of goodness-of-fit for the -2LL estimates are presented under Table 14, 15, 

and 16. 

Figure 10, Figure 11, and Figure 12 are the graphs from the Cox model for cumulative 

hazard, survival rate and log-hazard against time. Line 1 indicates the baseline hazard for the null 

model without considering any variable, the line 2 indicates that the hazard increased with the 

variable of risk factor in the Model F, line 3 is the hazard after considering risk and nadir time 

variable in the Model G. Line 4 indicates the highest hazard rate after inputting all three factors 

into the model H. 
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Figure 10. Cumulative Hazard Comparison from Nested Model Null/F/G/H under Sample Size n 

= 1577 
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Figure 11. Survival Rate Comparison for Nested Model Null/F/G/H under Sample Size n = 1577 
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Figure 12. Log Hazard Comparison for Nested Model Null/F/G/H under Sample Size n = 1577 

For the subgroup of patients who are under intermediate-/high-risk, nadir time <2 / ≥2 

year, and no HT/with HT were investigated their hazard and survival probabilities. Eight groups 

were investigated to compare their hazards and survival functions: 1) intermediate-risk, nadir 

time < 2 yrs, and NO HT; 2) intermediate-risk, nadir time < 2 yrs, and with HT; 3) intermediate-

risk, nadir time ≥ 2 yrs, and NO HT; 4) intermediate-risk, nadir time ≥ 2 yrs, and with HT; 5) 

high-risk, nadir time < 2 yrs, and NO HT; 6) high-risk, nadir time < 2 yrs, and with HT; 7) high-

risk, nadir time ≥ 2 yrs, and NO HT; 8) high-risk, nadir time ≥ 2 yrs, and with HT. Indicated in 
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the Figure 13 and Figure 14, the solid lines refer to intermediate-risk group (Group 1-4) and the 

dash lines (Group 6-8) refer to high-risk group. 

 

Figure 13. Hazard Functions for Biochemical Failure by Subgroups. 

Figure 14. Survival Function for Biochemical Failure by Subgroups 

The high-risk group with nadir time less than 2 year and no HT had the highest 

biochemical failure, and it had worse biochemical control comparing to intermediate-risk with 

nadir time less than 2 year and no HT. The graphs indicated that group without HT had worse 

outcome than group with HT. With the same characteristics, the high-risk group had worse 
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outcome than intermediate-risk group. Group with shorter nadir time (< 2 years) had worse 

outcome than the group with longer nadir time (≥ 2 years). The Figure 30 in Appendix from Cox 

regression model indicated the same result. 

Discrete-time Survival Model 

The conversion from person-case format to person-period format was done by using 

SPSS ver. 22 code (Appendix A2). Under different sample sizes in Cox models, the numbers of 

records of person-period data in DTSA models were reconstructed correspondingly, depending 

on the duration of observation of each case and the number of time periods. 

The logit model A through H was tested by different sample sizes. The summary 

statistics for discrete-time survival models under different sample sizes are listed in the Table 17 

- 20 for 10 time periods and Table 21 - 24 for 5 time periods. 

The univariate analysis was conducted in the discrete-time model, the estimated odds, the 

estimated hazard, and the estimated logit(hazard) under five time periods and ten time periods 

were plotted for the Model F, G, and H. The Figure 27, Figure 28, and Figure 29 are the 

estimated hazard, estimated odds, and the estimated logit(hazard) against time for Model F under 

ten periods. The plots for Model D and E under ten periods and five periods are present in the 

Figure 24, Figure 25, and Figure 26. 

Analysis of the Effect of Sample Size 

 Chi-square statistics are affected by sample size. Therefore, the model chi-square and 

likelihood ratio chi-square are not appropriate statistics to use when comparing data sets for 

difference due to the sample size. However, a visual analysis of hazard functions of data sets 

with different sample size by using either the Cox regression model or the discrete-time survival 

model with same time periods reveal that the smaller sample sizes had higher hazard estimates in 
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general. The hazard estimates for the compared data sets can be ordered in this fashion: n=1577; 

n=1213; n=809; n=422, and hazard estimates for the compared data sets are plotted in Figure 15. 

The dash dot line represents the hazard function for the data set with smallest sample size 

(n=422), and the hazard function is similar with other data set with different sample sizes at 

beginning. The other lines are for sample size 809, sample size 1213, and sample size 1577. 

As shown in Figure 15, the smaller sample size had a larger hazard estimate. When the 

sample size reaches 500 more, the difference between the hazard estimates among the different 

sample sizes becomes smaller. After the five year post-treatment, the hazard function in the 

sample size 422 starts to rise above from other three lines which indicates a higher hazard 

function estimation. Presented in Figure 16 and Figure 17, the survival function and log hazard 

function were plotted by different sample sizes. 
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Figure 15. Cumulative Hazard Rate Comparisons in Cox Regression Model H by Different 

Sample Sizes 
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Figure 16. Survival Function Comparisons in Cox Regression Model H by Different Sample 

Sizes 
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Figure 17. Log Hazard Comparisons in Cox Regression Model H by Different Sample Sizes 

For the discrete-time survival model, hazard estimates for the compared data sets can be 

ordered in the same fashion: n=1577; n=1213; n=809; n=422. Hazard estimates, odds estimates, 

and logit(hazard) are plotted in Figure 18 through Figure 23 for sample size n=1577 in Appendix 

for these comparisons. Generally, data sets with smaller sample sizes have higher hazard 

estimates. The group with sample size n=422 had larger variance due to the small size comparing 

with the number of variable in the Model F. 

The findings from this study indicate that sample size has an impact on survival analysis 

and hazard estimates. As the sample size decrease, the noise increase. With five time periods, the 

sample size n = 422 had the highest hazard estimates compare to the other sample size group. 
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The trends of odds, hazard, and logit(hazard) were similar for the sample size n = 1517, n = 1213, 

and n = 809. 

 As shown in the Figure 18, Figure 19 and Figure 20, the odds, logit(hazard) and hazard 

functions are presented for five-period data sets. The estimations under sample size n = 422 were 

dramatically different with the other three sample size. Under the ten time periods, the 

differences of estimations between different sample size groups were decreasing. 

Figure 18. Odds Comparisons in Discrete-time Model F by Different Sample Sizes Under Five 

Time Periods 
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Figure 19. Logit Hazard Comparisons in Discrete-time Model F by Different Sample Sizes 

Under Five Time Periods 
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Figure 20. Hazard Comparisons in Discrete-time Model F by Different Sample Sizes Under Five 

Time Periods 
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Figure 21. Odds Comparisons in Discrete-time Model F by Different Sample Sizes Under Ten 

Time Periods 
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Figure 22. Logit Hazard Comparisons in Discrete-time Model F by Different Sample Sizes 

Under Ten Time Periods 
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Figure 23. Hazard Comparisons in Discrete-time Model F by Different Sample Sizes Under Ten 

Time Periods 

Analysis of the Effect of Number of Time Periods 

 Within the same model, the estimated hazard, odds, and logit(hazard) were plotted for the 

same group of patients after restructuring them into person-period data format in five time 

periods and ten time periods. Figure 24, Figure 25, and Figure 26 are the hazard, odds, and 

logit(hazard) against time for Model F, Model G, and Model H under five time periods for the 

sample size n=1577. For the ten time periods, the odds, logit(hazard) and hazard were plotted in 

the Figure 27, Figure 28, and Figure 29. The plots of odds, logit(hazard) and hazards for sample 

size n=1213, n=809, and n=422 are presented in the Figure 35 - 52. 
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Figure 24. Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five Time 

Period Under Sample Size n = 1577 
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Figure 25. Odds Comparisons of Model F/G/H by Using Discrete-time Method with Five Time 

Period Under Sample Size n = 1577 
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Figure 26. Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five 

Time Period Under Sample Size n = 1577 
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Figure 27. Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time 

Period Under Sample Size n = 1577 
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Figure 28. Odds Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time 

Period Under Sample Size n = 1577 
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Figure 29. Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten 

Time Period Under Sample Size n = 1577 

Analysis of the Effect on Hazard Estimates 

The hazard estimates were conducted to compare between Cox regression and discrete-

time survival model. For certain group of patients under one sample size, the same population 

was reconstructed into person-period data format. The hazards were tested in both models. For 

model F, the comparisons of hazard estimations from Cox model and discrete-time survival 

model are listed in the Tables 4 - 7 under different sample sizes and time periods. The results 
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indicate that both Cox regression model and discrete-time survival model provided similar 

hazard estimation. 

Presented in Table 4 are the results of hazard estimations from Cox regression and 

discrete-time survival models with different time periods for the sample size n=1577. In the Cox 

regression, the patient in high-risk group had 2.541 times more likely to have biochemical failure 

than the patient in the intermediate-risk group. The patient with nadir time less than 2 years had 

3.947 times more likely to have biochemical failure compare to the patients with nadir time 

greater than 2 years. The patients with no hormone treatment before radiation had 4.974 times 

more likely to have biochemical failure compare to the patients with hormone treatment before 

radiation. In the discrete-time survival model with 10 time periods, the patients in high-risk had 

2.717 times more likely to have BF compare to intermediate-risk patient. The patients with nadir 

time less than 2 years and did not receive the hormone treatment before radiation had 4.161 and 

5.457 times more likely to have BF compare to group with nadir time longer than 2 years and 

patients with hormone. Similarly, in the discrete-time model with 5 time periods, the patients in 

high-risk, with nadir time less than 2 years and no hormone treatment before radiation had 3.242, 

3.303 and 5.150 times more likely to have BF compare to patients in intermediate-risk group, 

patients with nadir time longer than 2 year and patients with hormone treatment before radiation. 

Table 4 

Model H Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 1577) 
 Model H 

 Cox Regression Model Discrete-time Survival 

Model 

5 Time Periods 

Discrete-time Survival 

Model 

10 Time Periods 

 N=1577 N=6041 N=9692 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  2.541*** 2.141 - 3.017 3.242*** 2.474 - 4.247 2.717*** 2.262 - 3.265 

Nadir Time < 2 yrs 3.947*** 3.242 – 4.805 3.303*** 2.463 – 4.429  4.161*** 3.389 – 5.109 

No HT before RT 4.974*** 3.856 – 6.416 5.150*** 3.493 – 7.594 5.457*** 4.183 – 7.120 

Goodness-of-fit       
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-2LL 7106.8 1787.9 3825 

n parameters 3 8 13 

AIC 7166.8 1803.9 3851 

BIC 7182.9 1857.6 3944.3 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 

*p < 0.05. **p < 0.01. ***p < 0.001. 

 The hazard estimations for sample size n = 1213, n = 809, and n = 422 are shown in the 

Table 5, 6, and 7. 

Table 5 

Model H Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 1213) 
 Model H 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival 

Model 

10 Time Periods 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  2.481*** 1.448 - 2.117 2.908*** 2.148 – 3.936 2.649*** 2.156 – 3.256 

Nadir Time < 2 yrs 3.931*** 3.154 – 4.900 3.262*** 2.354 – 4.518 4.151*** 3.299 – 5.224 

No HT before RT 5.145*** 3.833 – 6.907 5.853*** 3.675 – 9.321 5.693*** 4.186 – 7.743 

Goodness-of-fit       

-2LL 5443 1421.8 3025.9 

n parameters 3 8 13 

AIC 5449 1437.8 3051.9 

BIC 5464 1489.4 3141.9 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 

*p < 0.05. **p < 0.01. ***p < 0.001. 

Table 6 

Model H Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 809) 
 Model H 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Periods 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  2.450*** 1.946 – 3.083 2.919*** 2.030 – 4.197 2.626*** 2.053 – 3.360 

Nadir Time < 2 yrs 3.730*** 2.872 – 4.844 2.918*** 1.981 – 4.300 3.897*** 2.966 – 5.122 

No HT before RT 5.213*** 3.651 – 7.444 6.284*** 3.513 – 11.24 5.724*** 3.947 – 8.302 

Goodness-of-fit       

-2LL 3576.7 973.9 2086.3 

n parameters 3 8 13 

AIC 3582.7 989.9 2112.3 
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BIC 3596.8 1038.2 2196.9 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 

*p < 0.05. **p < 0.01. ***p < 0.001. 

Table 7 

Model H Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 422) 
 Model H 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Periods 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  2.506*** 1.826 – 3.439 2.918*** 2.171 – 3.922 2.630*** 1.870 – 3.700 

Nadir Time < 2 yrs 3.966*** 2.779 – 5.660  1.493* 1.092 – 2.041 4.173*** 2.863 – 6.082 

No HT before RT 8.265*** 4.712 – 14.496 8.101***  4.724 – 13.891 9.095*** 5.076 – 16.295 

Goodness-of-fit       

-2LL 1642.1 1244.8 1060.9 

n parameters 3 8 13 

AIC 1648.1 1260.8 1086.9 

BIC 1660.2 1303.7 1162.6 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 

*p < 0.05. **p < 0.01. ***p < 0.001. 

The model G comparisons under different sample size are listed in the Table 25 - 28. 

Effects of Covariates 

As in any analysis with covariates, identifying which covariate has significant effects on 

the response is a major issue of interest. In the case of the tumor recurrence data here, all three 

factors including if patient received HT before radiation, time to reach nadir PSA, and risk group 

have a significant effect on the risk of biochemical recurrence. The significance of covariate 

effects can be assessed by using the confidence intervals of the covariates sβ . The approximate 

100(1 )α−  per cent confidence intervals 1 2 3,  ,  β β β  can be calculated by the formula 

/ 2estimate STDzα± × , 

where / 2zα is the upper ( / 2)α th-percentile of the standard normal distribution. 
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CHAPTER 5 CONCLUSIONS 

Cox regression models had been utilized in many survival applications in medical data 

analysis. Compared to the Cox regression model, the discrete-time survival model has been used 

more frequently in the fields of education and social science in the past decades, but it is still not 

a familiar method in the medical literature. There is little information on how certain data 

characteristics impact survival analysis hazard estimates and goodness of fit statistics between 

Cox regression and discrete-time survival models. This study examined three attributes including 

sample size, the number of time period, and the number of parameters used in the model, and 

investigated how these attributes related to the hazard estimation and model fitness. The purpose 

of this study was to investigate the effects of attributes that could be compared for any survival 

data set by using the Cox regression model and the discrete-time survival model. Data sets came 

from experimental medical data and were compared between both models to assess if varying 

these characteristics caused statistically significant differences among the model chi-squares and 

likelihood ratios. Hazard estimations were also compared to assess the effects of the varied 

models and varied characteristics. Based on the results of the study, the sample size does have an 

effect on hazard estimates. Sample size has been found to have an effect on many statistical 

procedures. Both the Cox regression and the discrete-time survival model have chi-square 

distributions, thus it was not appropriate to compare model chi-squares and likelihood ratios 

across models with different sample sizes. Therefore, only hazard functions were used for 

comparison. 

From the Cox regression model, data sets with smaller sample sizes had higher hazard 

estimates than the data sets with larger sample size. For the discrete-time survival model, the 

group with sample size n=422 had relative larger hazard estimates than the groups with sample 
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size n=809, n=1213, and n=1577 with five time periods. For the discrete-time survival model 

under ten time periods, the hazard estimates crossed over among four sample size groups. 

However, after removing the group with sample size n=422, the hazard estimates had similar 

trends. Generally, the group with larger sample size had the smaller hazard estimates. Decreasing 

the sample size produced larger hazard estimates. 

As observed from the results of data sets with different lengths of time periods, the 

goodness of fit statistics which was measured in more finite units are significantly different with 

those measured in fewer units. Data sets coded into ten time periods had larger model chi-

squares and likelihood ratio values than those coded into five time periods. In both logistic 

regression and Cox regression, smaller values of chi-square and the likelihood ratio indicate a 

better fit the model. Data sets with fewer time periods had smaller sample sizes compare with 

data sets with more time periods. Further work is needed to test if smaller values of the 

likelihood ratio or chi-square indicate a better fit of the model with different sample size. 

Under the five time periods, model H had larger odds, hazard, and logit(hazard) estimate 

compared to model F and model G because model H involved more variables than the other two 

models. However, under the ten time periods, the difference between Model H and Model F or 

Model G became smaller as increasing the time periods from five to ten and decreasing the 

sample size. 

The hazard estimation is the cornerstone when comparing two methods in this study. As 

we can see from the hazard estimation table (Table 4, 5, 6, and 7), discrete-time survival method 

provided similar results as Cox regression had. Under the same sample size n=1577, n=1213, or 

n=809, hazard estimates under ten time periods are closer to the hazard estimates from Cox 

regression model with narrower confidence interval compared to five time periods. For the data 
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with sample size n=422, the hazard estimates of certain variable in Model G and H did not reach 

significance under the five time periods, but showed the significance in the Cox regression and 

discrete-time survival model under ten time periods. It is possible that fewer subjects and events 

were observed in the shorter period (ten time periods) instead of longer time period (five time 

periods) due to the random selected sample. In general, the discrete-time survival models 

provided similar results comparing with ones in Cox regression model, and the strategies for 

comparing -2LL statistics for the Cox regression model are identical to those for comparing 

deviance statistics for the discrete-time hazard model. 

The aim of this study was trying to identify certain attributes related to the hazard 

estimation and model fitness in the survival analysis. The strategies of both the Cox regression 

model and the discrete-time survival model are comparable to provide similar answers for the 

hazard estimation. In many real life scenarios, especially for cancer care situations, the 

completion of cancer treatments is not the end point for the patient outcome analysis. After the 

completion of treatment, cancer patients will experience a series of follow-up care in the long 

term. Current NCCN guideline suggests several treatment options after radiation therapies which 

include observation, ADT, clinical trial, and regular laboratory testing. Also, the NCCN 

guideline provides recommended follow-up care plan for patients. Either additional treatment 

plan or follow-up plan options could potentially increase the patients’ anxiety and doctor’s 

concern. However, if the clinicians have an better understanding regarding the whether the 

cancer occur, and if so, when the cancer come back based on patients’ certain characteristics and 

follow-up information, then some patients may not need frequent follow-up monitoring after 

cancer treatment. 

RECOMMENDATIONS 
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Real data were tested under the situations with varied attributes. It would be beneficial if 

there were more medical data sets with differing characteristics available to be tested. Several 

recommendations for further research are the following: 

1. Twenty four data sets were generated from one prostate oncology data. The 

comparisons were conducted by changing one attribute, for example, same parameters, 

same time period, but different sample size. The comparisons of data sets that differ in 

more than one attribute should be conducted. 

2. The 
2 (df 1)G =  value was used to compare the model chi-square and the 

likelihood ratio, but a statistic to compare hazard estimates needs to be identified and 

conducted. 

3. Sample sizes were chosen randomly from the real data as 100%, 75%, 50%, and 

25% of data set. Because the outcome is biochemical failure which is a binomial variable, 

the choice of sample sizes doesn’t count the balance of proportions of biochemical failure 

and biochemical control. Future analyses should consider the balanced proportions of 

event and control cases. 
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APPENDIX A ADDITIONAL TABLES AND FIGURES 
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Table 8 

Supplement NCCN Risk Guideline for Prostate Cancer Patients 

Risk Group Definition 

Low risk Meeting all three conditions: 

1) T1a, T1b, T1c, or T2a 

2) Pre-RT PSA < 10 ng/mL 

3) Gleason score <=6 

Intermediate risk Meeting at least one from all three conditions: 

1) T2b or T2c 

2) Pre-RT PSA 10-20 ng/mL 

3) Gleason score = 7 

High risk Meeting at least one from all three conditions: 

1) T3a, T3b or T4 

2) Pre-RT PSA >=20 ng/Ml 

3) Gleason score 8 - 10 
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Table 9 

Model Tested 

Model Variable Used Value 

A Clinical tumor stage T1a, T1b, T1c, T2a, T2b, T3a, T3b, T4 

B Tumor Gleason score 2-10 

C PSA Value before radiation treatment >0 

D Time to reach the lowest PSA after 

radiation treatment 

>=0 

E If Patient received hormone therapy before 

radiation 

Yes/No 

F NCCN risk category Intermediate- and high-risk 

G NCCN risk category + time to reach the 

lowest PSA after radiation treatment 

 

H NCCN risk category +  

time to reach the lowest PSA after radiation 

treatment +  

If Patient received hormone therapy before 

radiation 
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Table 10 

Life Table of the Number of Biochemical Failure Cases, Probability of Biochemical Failure, and 

Cumulative Proportion of Biochemical Control Among 727 Low-risk Patients Over 20 Years 

 No. of patients who  Proportion of 

Years After 

RT 

Had not yet 

experienced 

BF at the 

beginning of 

the year 

Were 

censored at 

the end of 

the year 

Number of 

BF at the 

end of the 

year 

 

Patient who 

had BF 

during this 

year 

All patients 

who had not 

experienced 

BF by the end 

of year 

0-1 727 18 5  0.0070 0.9930 

1-2 704 27 7  0.0101 0.9830 

2-3 670 42 11  0.0169 0.9663 

3-4 617 37 10  0.0167 0.9502 

4-5 570 47 17  0.0311 0.9206 

5-6 506 88 24  0.0519 0.8728 

6-7 394 87 19  0.0542 0.8255 

7-8 288 65 10  0.0391 0.7932 

8-9 213 50 10  0.0532 0.7510 

9-10 153 40 5  0.0376 0.7227 

10-11 108 34 6  0.0659 0.6751 

11-12 68 16 5  0.0833 0.6188 

12-13 47 15 3  0.0759 0.5718 

13-14 29 6 0  0.0000 0.5718 

14-15 23 5 0  0.0000 0.5718 

15-16 18 8 2  0.1429 0.4901 

16-17 8 4 0  0.0000 0.4901 

17-18 4 2 0  0.0000 0.4901 

18-19 2 1 0  0.0000 0.4901 
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Table 11 

Life Table of the Number of Biochemical Failure Cases, Probability of Biochemical Failure, and 

Cumulative Proportion of Biochemical Control Among 985 Intermediate-risk Patients Over 20 

Years 

 No. of patients who  Proportion of 

Years After 

RT 

Had not yet 

experienced 

BF at the 

beginning of 

the year 

Were 

censored at 

the end of 

the year 

Number of 

BF at the 

end of the 

year 

 

Patient who 

had BF 

during this 

year 

All patients 

who had not 

experienced 

BF by the end 

of year 

0-1 985 22 25  0.0257 0.9743 

1-2 938 31 22  0.0238 0.9511 

2-3 885 47 37  0.0429 0.9102 

3-4 801 49 35  0.0451 0.8692 

4-5 717 61 51  0.0743 0.8046 

5-6 605 134 37  0.0688 0.7493 

6-7 434 76 20  0.0505 0.7115 

7-8 338 74 14  0.0465 0.6784 

8-9 250 63 14  0.0641 0.6349 

9-10 173 41 7  0.0459 0.6058 

10-11 125 24 7  0.0619 0.5682 

11-12 94 27 3  0.0373 0.5471 

12-13 64 18 3  0.0545 0.5172 

13-14 43 17 0  0.0000 0.5172 

14-15 26 11 2  0.0976 0.4668 

15-16 13 6 0  0.0000 0.4668 

16-17 7 4 0  0.0000 0.4668 

17-18 3 1 0  0.0000 0.4668 

18-19 2 1 0  0.0000 0.4668 

19-20 1 0 0  0.0000 0.4668 

20-21 1 1 0  0.0000 0.4668 
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Table 12 

Life Table of the Number of Biochemical Failure Cases, Probability of Biochemical Failure, and 

Cumulative Proportion of Biochemical Control Among 572 High-risk Patients Over 20 Years 

 No. of patients who  Proportion of 

Years After 

RT 

Had not yet 

experienced 

BF at the 

beginning of 

the year 

Were 

censored at 

the end of 

the year 

Number of 

BF at the 

end of the 

year 

 

Patient who 

had BF 

during this 

year 

All patients 

who had not 

experienced 

BF by the end 

of year 

0-1 572 9 29  0.0511 0.9489 

1-2 534 22 51  0.0975 0.8564 

2-3 461 25 56  0.1249 0.7494 

3-4 380 29 38  0.1040 0.6715 

4-5 313 35 31  0.1049 0.6011 

5-6 247 45 30  0.1336 0.5208 

6-7 172 23 13  0.0810 0.4786 

7-8 136 19 11  0.0870 0.4370 

8-9 106 22 8  0.0842 0.4002 

9-10 76 17 4  0.0593 0.3764 

10-11 55 10 1  0.0200 0.3689 

11-12 44 16 1  0.0278 0.3587 

12-13 27 2 3  0.1154 0.3173 

13-14 22 7 0  0.0000 0.3173 

14-15 15 2 0  0.0000 0.3173 

15-16 13 7 0  0.0000 0.3173 

16-17 6 1 0  0.0000 0.3173 

17-18 5 3 1  0.2857 0.2266 

18-19 1 0 0  0.0000 0.2266 

19-20 1 0 0  0.0000 0.2266 

 

  



102 

 

Table 13 

Goodness-of-fit Summary for Model A – H for Sample Size n = 1577 Using Cox Regression 

 Model A Model 

B 

Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -3712.5 -3737.9 -3598.6 -3675.65 -3721.1 -3703.3 -3652.05 -3580.4 

-2LL 7425.0 7475.8 7197.2 7351.3 7442.2 7406.6 7304.1 7160.8 

LR statistics 68.6 11.8 456.1 130.3 39.1 86.1 182.9 390.7 

n parameters 1 1 1 1 1 1 2 3 

p <0.001*** 0.001** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 7427 7477.8 7199.2 7353.3 7444.2 7408.6 7306.1 7166.8 

BIC 7432.4 7483.2 7204.6 7358.7 7449.6 7414.0 7311.5 7182.9 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 14 

Goodness-of-fit Summary for Model A – H for Sample Size n = 1213 Using Cox Regression 

 Model A Model 

B 

Model C Model D Model E Model F Model 

G 

Model H 

Goodness-

of-fit 

        

LL 
-2984.3 -2865.4 -2766.15 -2816.35 -2851.75 -2841.4 

-

2799.85 
-2721.5 

-2LL 5968.6 5730.8 5532.3 5632.7 5703.5 5682.8 5599.7 5443 

LR statistics 46.2 10.9 325.7 104 32.4 62.2 140.8 302.3 

n 

parameters 

1 1 1 1 1 1 2 3 

p <0.001*** 0.001** <0.001*** <0.001*** <0.001*** <0.001*** <0.001 <0.001*** 

AIC 5970.6 5732.8 5534.3 5634.7 5705.5 5684.8 5603.7 5449 

BIC 5975.7 5737.9 5539.4 5639.8 5710.6 5689.9 5613.9 5464.3 
*p < 0.05, **p < 0.01, ***p < 0.001. 

  



104 

 

Table 15 

Goodness-of-fit Summary for Model A – H for Sample Size n = 809 Using Cox Regression 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-

of-fit 

        

LL -1873.9 -1885.35 -1805.2 -1855.45 -1875.4 -1868.75 -1843.25 -1788.35 

-2LL 3747.8 3770.7 3610.4 3710.9 3750.8 3737.5 3686.5 3576.7 

LR statistics 33.7 8.82 236.2 65.5 24.1 43.9 92.4 207.2 

n parameters 1 1 1 1 1 1 2 3 

p <0.001*** 0.003** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 3749.8 3772.7 3612.4 3712.9 3752.8 3739.5 3690.5 3582.7 

BIC 3754.5 3777.4 3617.1 3717.6 3757.5 3744.2 3699.9 3596.8 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 16 

Goodness-of-fit Summary for Model A – H for Sample Size n = 422 Using Cox Regression 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -875.4 -877.1 -835.1 -867.4 -867.85 -871.8 -861.35 -821.05 

-2LL 1750.8 1754.2 1670.2 1734.8 1735.7 1743.6 1722.7 1642.1 

LR statistics 11.6 8.3 99.2 25.9 21.5 18.8 38.9 120.8 

n parameters 1 1 1 1 1 1 2 3 

p 0.001** 0.004** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 1752.8 1756.2 1672.2 1736.8 1737.7 1745.6 1726.7 1648.1 

BIC 1756.8 1760.2 1676.2 1740.8 1741.7 1749.6 1734.8 1660.2 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 17 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Ten 

Time Periods (n = 9692 for 1577 patients) 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -2068.35 -2096.5 -1975.25 -2035.75 -2078.75 -2062.1  -1912.5 

-2LL 4136.7 4193 3950.5 4071.5 4157.5 4124.2 4024.3 3825 

LR statistics 109.96 53.7 235.6 175.23 89.21 122.5 232.4 421.64 

n parameters 11 11 11 11 11 11 12 13 

p <0.001*** 0.001** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 4158.7 4215 3972.5 4093.5 4179.5 4146.2 4048.3 3851 

BIC 4237.7 4294.0 4051.5 4172.5 4258.5 4225.2 4134.4 3944.3 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 18 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Ten 

Time Periods (n = 7516 for 1213 patients) 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -1638.8 -1656.85 -1571.15 -1609.1 -1641.95 -1632.85 -1592.65 -1512.95 

-2LL 3277.6 3313.7 3142.3 3218.2 3283.9 3265.7 3185.3 3025.9 

LR statistics 84.7 48.6 177.7 141.2 78.4 96.5 177 336.4 

n parameters 11 11 11 11 11 11 12 13 

P <0.001*** 0.002** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 3299.6 3335.7 3164.3 3240.2 3305.9 3287.7 3185.3 3051.9 

BIC 3375.8 3411.9 3240.5 3316.4 3382.1 3363.9 3292.4 3141.9 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 19 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Ten 

Time Periods (n = 4939 for 809 patients) 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -1126.8 -1139.5 -1077.45 -1110.8 -1128.85 -1122.75 -1098.4 -1043.15 

-2LL 2253.6 2279 2154.9 2221.6 2257.7 2245.5 2196.8 2086.3 

LR statistics 57.5 32.05 126.1 89.5 53.4 65.6 114.3 224.7 

n parameters 11 11 11 11 11 11 12 13 

P <0.001*** 0.005** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 2275.6 2301 2176.9 2243.6 2279.7 2267.5 2220.8 2112.3 

BIC 2347.2 2372.6 2248.5 2315.2 2351.3 2339.1 2298.9 2196.9 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 20 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Ten 

Time Periods (n = 2490 for 422 patients) 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -582.95 -585.3 -554.15 -575.9 -575.4 -580 -570.1 -530.45 

-2LL 1165.9 1170.6 1108.3 1151.8 1150.8 1160 1140.2 1060.9 

LR statistics 37.92 33.24 71.4 52.05 53.04 43.9 63.6 142.9 

n parameters 11 11 11 11 11 11 12 13 

p <0.001*** 0.009** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 1187.9 1192.6 1130.3 1173.8 1172.8 1182 1164.2 1086.9 

BIC 1251.9 1256.6 1194.3 1237.8 1236.8 1246.0 1234.0 1162.6 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 21 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Five 

Time Periods (n = 6041 for 1577 patients) 

 Model A Model 

B 

Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -962.45 -975.85 -918.65 -956.05 -967.85 -950.7 -936.9 -893.95 

-2LL 1924.9 1951.7 1837.3 1912.1 1935.7 1901.4 1873.8 1787.9 

LR statistics 109.96 53.7 236 194.9 171.4 205.6 233.3 319.1 

n parameters 6 6 6 6 6 6 7 8 

p <0.001*** 0.072 <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 1936.9 1963.7 1849.3 1924.1 1947.7 1913.4 1887.8 1803.9 

BIC 1977.1 2003.9 1889.5 1964.3 1987.9 1953.6 1934.7 1857.6 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 22 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Five 

Time Periods (n = 4688 for 1213 patients) 

 Model A Model 

B 

Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -767.05 -772.6 -734.75 -757.95 -763.4 -757.95  -710.9 

-2LL 1534.1 1545.2 1469.5 1515.9 1526.8 1515.9 1494.6 1421.8 

LR statistics 131.4 120.4 175.6 149.6 138.8 149.6 170.9 243.8 

n parameters 6 6 6 6 6 6 7 8 

p <0.001*** 0.15 <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 1546.1 1557.2 1481.5 1527.9 1538.8 1527.9 1508.6 1437.8 

BIC 1584.8 1595.9 1520.2 1566.6 1577.5 1566.6 1553.8 1489.4 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 23 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Five 

Time Periods (n = 3097 for 809 patients) 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -525.15 -527.85 -506.05 -520.85 -520.35 -517.85 -512.85 -486.95 

-2LL 1050.3 1055.7 1012.1 1041.7 1040.7 1035.7 1025.7 973.9 

LR statistics 84.2 78.8 108.7 92.8 93.8 98.8 108.8 160.6 

n parameters 6 6 6 6 6 6 7 8 

p 0.006** 0.173 <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

AIC 1062.3 1067.7 1024.1 1053.7 1052.7 1047.7 1039.7 989.9 

BIC 1098.5 1103.9 1060.3 1089.9 1088.9 1083.9 1082.0 1038.2 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 24 

Goodness-of-fit Summary for Model A – H Using Discrete-time Survival Regression with Five 

Time Periods (n = 1576 for 422 patients) 

 Model A Model B Model C Model D Model E Model F Model G Model H 

Goodness-of-

fit 

        

LL -676.25 -672.75 -664.45 -676.75 -651.05 -663.15 -662.45 -622.4 

-2LL 1352.5 1345.5 1328.9 1353.5 1302.1 1326.3 1324.9 1244.8 

LR statistics 46 53 58 44.9 60.4 72.2 73.6 153.7 

n parameters 6 6 6 6 6 6 7 8 

p 0.261 0.003** <0.001*** 0.654 0.012 <0.001*** <0.001*** <0.001*** 

AIC 1364.5 1357.5 1340.9 1365.5 1314.1 1338.3 1338.9 1260.8 

BIC 1396.7 1389.7 1373.1 1397.7 1346.3 1370.5 1376.4 1303.7 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 25 

Model G Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 1577) 

 Model F 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  1.819*** 1.535 - 2.155 2.286*** 1.761 - 2.969 1.864*** 1.562 - 2.224 

Nadir Time < 2 yrs 2.575*** 2.122 – 3.125 2.086*** 1.572 – 2.768 2.618*** 2.147 – 3.192 

Goodness-of-fit       

-2LL 7304.1 1873.8 4024.3 

n parameters 2 7 12 

AIC 7308.1 1887.8 4048.3 

BIC 7318.8 1934.7 4134.4 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 26 

Model G Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 1213) 

 Model G 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  1.751*** 1.448 – 2.117 2.004*** 1.495 – 2.685 1.792*** 1.469 – 2.184 

Nadir Time < 2 yrs 2.597*** 2.091 – 3.227 2.059*** 1.502 – 2.822 2.635*** 2.109 – 3.291 

Goodness-of-fit       

-2LL 5599.7 1494.6 3185.3 

n parameters 2 7 12 

AIC 5603.7 1508.6 3209.3 

BIC 5613.9 1553.8 3292.4 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 27 

Model G Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 809) 

 Model F 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  1.781*** 1.418 – 2.237 2.063*** 1.450 – 2.936 1.833*** 1.446 – 2.324 

Nadir Time < 2 yrs 2.433*** 1.883 – 3.143 1.803*** 1.242 – 2.617 2.453*** 1.886 – 3.191 

Goodness-of-fit       

-2LL 3686.5 1025.7 2196.8 

n parameters 2 7 12 

AIC 3690.5 1039.7 2220.8 

BIC 3699.9 1082.0 2298.9 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 28 

Model G Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 422) 

 Model G 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk  1.744*** 1.276 – 2.384 2.161*** 1.629 – 2.866 1.764** 1.273 – 2.446 

Nadir Time < 2 yrs 2.158*** 1.532 – 3.039 0.841 0.629 – 1.124  2.169*** 1.524 – 3.087 

Goodness-of-fit       

-2LL 1722.7 1324.9 1140.2 

n parameters 2 7 12 

AIC 1726.7 1338.9 1164.2 

BIC 1734.8 1376.4 1234.0 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 29 

-2loglikelihood Comparisons for Nested Model H (n = 1577) 

  Discrete-time Survival 

Model 

5 Time Periods 

Discrete-time Survival 

Model 

10 Time Periods 

Null Time Variables 1953.8 4203.1 

Model F Time variables 

+ Risk Group 

1901.4 4124.2 

Model G Time variables 

+ Risk Group 

+ Nadir Time Group 

1873.8 4024.3 

Model H Time variables  

+ Risk Group 

+ Nadir Time Group 

+ If the patient received HT before RT 

1787.9 3825.0 
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Table 30 

-2loglikelihood Comparisons for Nested Model H (n = 1213) 

  Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Periods 

Null Time Variables 1547.2 3322.6 

Model F Time variables 

+ Risk Group 

1515.9 3265.7 

Model G Time variables 

+ Risk Group 

+ Nadir Time Group 

1494.6 3185.3 

Model H Time variables 

+ Risk Group 

+ Nadir Time Group 

+ If the patient received HT before RT 

1421.8 3025.9 
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Table 31 

-2loglikelihood Comparisons for Nested Model H (n = 809) 

  Discrete-time Survival 

Model 

5 Time Periods 

Discrete-time Survival 

Model 

10 Time Periods 

Null Time Variables 1057.5 2286.3 

Model F Time variables 

+ Risk Group 

1035.7 2245.5 

Model G Time variables 

+ Risk Group 

+ Nadir Time Group 

1025.7 2196.8 

Model H Time variables 

+ Risk Group 

+ Nadir Time Group 

+ If the patient received HT before RT 

973.9 2086.3 

  



121 

 

 

Table 32 

-2loglikelihood Comparisons for Nested Model H (n = 422) 

  Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Periods 

Null Time Variables 1176.0 1353.7 

Model F Time variables 

+ Risk Group 

1160.0 1326.3 

Model G Time variables 

+ Risk Group 

+ Nadir Time Group 

1140.2 1324.9 

Model H Time variables 

+ Risk Group 

+ Nadir Time Group 

+ If the patient received HT before RT 

1060.9 1244.8 
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Table 33 

Model F Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 1577) 

 Model F 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk 2.163*** 1.830 - 2.556 2.208*** 1.857 - 2.626 2.614 2.023 - 3.379 

Goodness-of-fit       

-2LL 7406.6 4124.2 1901.4 

n parameters 1 11 6 

AIC 7408 4136 1923 

BIC 7413.4 4179.1 1996.8 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 34 

Model F Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 1213) 

 Model F 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk 2.087*** 1.731 - 2.517 2.285*** 1.714 - 3.045 2.128*** 1.752 - 2.584 

Goodness-of-fit       

-2LL 5740.8 1515.9 3265.7 

n parameters 1 6 11 

AIC 5742.8 1527.9 3287.7 

BIC 5747.9 1566.6 3363.9 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 35 

Model F Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 809) 

 Model F 

 Cox Regression Model Discrete-time Survival Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk 2.097*** 1.676 - 2.623 2.285*** 1.714 - 3.045 1.668*** 1.230 - 2.262 

Goodness-of-fit       

-2LL 3737.5 1515.9 1248.1 

n parameters 1 6 11 

AIC    

BIC    

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 36 

Model F Comparisons between Cox Regression and Discrete-time Survival Model under 

Different Time Periods (n = 422) 

 Model F 

 Cox Regression Model Discrete-time Survival 

Model 

5 Time Periods 

Discrete-time Survival Model 

10 Time Period 

Variable HZ 95% CI HZ 95% CI HZ 95% CI 

High Risk 1.958*** 1.437 - 2.667 2.111*** 1.596 – 2.793 1.970*** 1.428 – 2.718 

Goodness-of-fit       

-2LL 1743.6 1326.3 1159.9 

n parameters 1 6 11 

AIC 1745.6 1338.3 1181.9 

BIC 1749.6 1370.5 1245.9 

Note. HZ = hazard ratio, an HZ < 1 indicates a lower risk for the indicator group, HZ = 1 no 

difference between indicator and reference group, HZ > 1 indicates a higher risk for the indicator 

group; CI = confidence interval. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Figure 30 

Estimated Survival Function in Model G by Using Cox regression 
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Figure 31 

Hazard Comparisons in Discrete-time Model H by Different Sample Sizes 
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Figure 32 

Odds Comparisons in Discrete-time Model H by Different Sample Sizes 
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Figure 33 

Logit Hazard Comparisons in Discrete-time Model H by Different Sample Sizes 
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Figure 34 

Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five Time Period 

under Sample Size 1213 
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Figure 35 

Odds Comparisons of Model F/G/H by Using Discrete-time Method with Five Time Period 

under Sample Size 1213 
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Figure 36 

Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five Time 

Period under Sample Size 1213 
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Figure 37 

Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time Period 

under Sample Size 1213 
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Figure 38 

Odds Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time Period under 

Sample Size 1213 
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Figure 39 

Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time 

Period under Sample Size 1213 
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Figure 40 

Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five Time Period 

under Sample Size 809 
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Figure 41 

Odds Comparisons of Model F/G/H by Using Discrete-time Method with Five Time Period 

under Sample Size 809 
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Figure 42 

Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five Time 

Period under Sample Size 809 
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Figure 43 

Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time Period 

under Sample Size 809 
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Figure 44 

Odds Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time Period under 

Sample Size 809 
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Figure 45 

Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time 

Period under Sample Size 809 
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Figure 46 

Hazard Comparisons of Model F/G/H by using Discrete-time Method with Five Time Period 

under Sample Size 422 
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Figure 47 

Odds Comparisons of Model F/G/H by using Discrete-time Method with Five Time Period under 

Sample Size 422 
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Figure 48 

Logit Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Five Time 

Period under Sample Size 422 
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Figure 49 

Hazard Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time Period 

under Sample Size 422 
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Figure 50 

Odds Comparisons of Model F/G/H by Using Discrete-time Method with Ten Time Period under 

Sample Size 422 
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Figure 51 

Logit Hazard Comparisons of Model F/G/H by using Discrete-time Method with Ten Time 

Period under Sample Size 422 
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Figure 52 

Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 422 

 

  



149 

 

 

 

Figure 53 

Odds Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 422 
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Figure 54 

Logit Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample 

Size 422 
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Figure 55 

Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 809 
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Figure 56 

Odds Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 809 
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Figure 57 

Logit Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample 

Size 809 
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Figure 58 

Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 

1213 
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Figure 59 

Odds Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 809 
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Figure 60 

Logit Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample 

Size 1213 
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Figure 61 

Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 

1517 
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Figure 62 

Odds Comparisons in Discrete-time Model F by Different Time Period Under Sample Size 1517 
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Figure 63 

Logit Hazard Comparisons in Discrete-time Model F by Different Time Period Under Sample 

Size 1517 

 

  



160 

 

 

 

APPENDIX B  

SPSS PROGRAM FOR CREATING THE PERSON-PERIOD DATA SET 

COMPUTE BFTimeY=TRUNC(BFTimeNew,1) +1. 

EXECUTE. 

loop #i = 1 to BFTimeMaxY. 

compute time_new = #i. 

compute event_new = 0. 

if #i = BFTimeMaxY and BFN2HT = 1 event_new = 1. 

DO IF time_new=1 . 

            compute time1=1. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 

            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=2 . 

            compute time1=0. 

            compute time2=1. 

            compute time3=0. 

            compute time4=0. 

            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 
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            compute time21=0. 

END IF. 

DO IF time_new=3 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=1. 

            compute time4=0. 

            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=4 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=1. 

            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=5 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 

            compute time5=1. 

            compute time6=0. 

            compute time7=0. 
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            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=6 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 

            compute time5=0. 

            compute time6=1. 

            compute time7=0. 

            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=7 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 

            compute time5=0. 

            compute time6=0. 

            compute time7=1. 

            compute time8=0. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 
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            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=8 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 

            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=1. 

            compute time9=0. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=9 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 

            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=0. 

            compute time9=1. 

            compute time10=0. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

DO IF time_new=10 . 

            compute time1=0. 

            compute time2=0. 

            compute time3=0. 

            compute time4=0. 
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            compute time5=0. 

            compute time6=0. 

            compute time7=0. 

            compute time8=0. 

            compute time9=0. 

            compute time10=1. 

            compute time11=0. 

            compute time12=0. 

            compute time13=0. 

            compute time14=0. 

            compute time15=0. 

            compute time16=0. 

            compute time17=0. 

            compute time18=0. 

            compute time19=0. 

            compute time20=0. 

            compute time21=0. 

END IF. 

end loop. 

execute. 
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ABSTRACT 

COMPARISON OF COX REGRESSION AND DISCRETE TIME SURVIVAL MODELS 

by 

HONG YE 

August 2016 

Advisor: Dr. Shlomo Sawilowsky 

Major: Education Evaluation and Research 

Degree: Doctor of Philosophy 

A standard analysis of prostate cancer biochemical failure data is done by conducting two 

approaches in which risk factors or covariates are measured. Cox regression and discrete-time 

survival models were compared under different attributes: sample size, time periods, and 

parameters in the model. The person-period data was reconstructed when examining the same 

data in discrete-time survival model. Twenty-four numerical examples covering a variety of 

sample sizes, time periods, and number of parameters displayed the closeness of Cox regression 

and discrete-time survival methods in situations from a typical cancer study.   
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