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CHAPTER 1 INTRODUCTION

Lipschitzian stability of locally optimal solutions with respect to small parameter per-

turbations is undoubtedly important in optimization theory allowing us to recognize robust

solutions and support computational work from the viewpoints of justifying numerical al-

gorithms, their convergence properties, stopping criteria, etc. There are several versions of

Lipschitzian stability in optimization; see, e.g., the books [1, 5, 10, 27, 53] and the references

therein. The focus of this dissertation is on what is known as full stability of locally opti-

mal solutions introduced by Levy, Poliquin and Rockafellar [20]. This notion emerged as

a far-going extension of tilt stability of local minimizers in the sense of Poliquin and Rock-

afellar [45]; see Chapter 2 for the precise definitions and more discussions. It seems that

full stability is probably the most fundamental stability notion for locally optimal solutions,

from both theoretical and practical points of view, particularly in connection with numerical

methodology and applications [20,45].

In [20], the authors derived necessary and sufficient conditions for fully stable minimizers

of parameterized optimization problems written in the unconstrained format with extended-

real-valued and prox-regular cost functions. They expressed these conditions in terms of a

partial modification of the second-order subdifferential (or generalized Hessian) in the sense

of Mordukhovich [26], which was previously used in [45] for characterizations of tilt stabil-

ity. As mentioned in [20], implementing this approach in particular classes of constrained

optimization problems important for the theory and applications requires the developments

of second-order subdifferential calculus for the constructions involved, which was challenging

and not available at that time. Partly such a calculus has been developed in the recent paper

by Mordukhovich and Rockafellar [38] with applications to tilt stability therein.

Quite recently, Mordukhovich and Nghia [31] have developed a new approach to both

Lipschitzian and Hölderian (introduced therein) full stability in finite and infinite dimensions

and applied it to deriving constructive characterization of full stability in NLPs, infinite-
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dimensional problems with polyhedric constraints, and optimal control problems governed

by semilinear elliptic equations without any nondegeneracy assumption. Moreover, they

extended their results in [33] for constrained optimization problems under the nondegeneracy

assumption using the uniform second-order growth condition.

The main goal of this dissertation is to obtain complete characterizations of full stability

for remarkable classes of constrained optimization problems expressing these characteriza-

tions entirely in terms of the problem data. The classes under consideration include general

models given in composite formats of optimization (particularly with fully amenable compo-

sitions), and consequently for classical problems of nonlinear programming (NLP) with C2

equality and inequality constraints. The key machinery is based on exact (equality type)

second-order calculus rules for the aforementioned constructions taken partly from [38] and

also the new ones derived in this dissertation.

The rest of the dissertation is organized as follows. In Chapter 2 we review the basic

generalized differential tools of variational analysis used in formulations and proofs of the

main results. We then presents definitions of full stability and related notions for optimiza-

tion problems written in the unconstrained extended-real-valued format. We discuss the

second-order necessary and sufficient conditions for full stability of local minimizers in this

setting [20] and establish relationships between full stability of local minimizers and the new

notion of partial strong metric regularity (PSMR) of the corresponding subdifferential map-

pings. Then these conditions are characterized via a certain uniform second-order growth

condition (USOGC).

Chapter 3 addresses a general class of constrained optimization problems covering those

in conic programming, establishes new properties of fully stable minimizers, and provides

new proofs of major second-order characterizations of fully stable minimizers under reducibil-

ity and partial nondegeneracy conditions. In particular, the developed approach allows us

to describe the framework of canonical perturbations, where full stability is equivalent to
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tilt stability under an appropriate parametric reduction. Then we investigate relationships

between full stability of local minimizers for general constrained optimization problems with

C2-smooth data and Lipschitzian single-valued localizations of solution maps to the corre-

sponding KKT (Karush-Kuhn-Tucker) systems. The obtained results with self-contained

proofs ensure, in particular, the equivalence between full stability of local minimizers and

Robinson’s strong regularity [47] of the associated generalized equations as well as strong

Lipschitz stability of stationary points with respect to C2-smooth perturbations.

The major result of Chapter 4 is to establish a certain equivalence between qualification

conditions used in [28, 38] for deriving by different approaches the exact second-order chain

rule for fully amenable compositions involving convex piecewise linear (CPWL) functions.

Being important for its own sake, the key ingredient of this result (together with the explicit

calculation of the second-order subdifferential of CPWL functions) is the proof of the so-

called C∞-reducibility of CPWL functions via linear transformations that are used then in

the formulation of partial nondegeneracy. As a by-product of the obtained equivalence, we

completely clarify the essence of the powerful second-order chain rule that is largely employed

in the subsequent material. Next we present the explicit composite SSOSC characterization

of fully stable local minimizers in the partially nondegenerate composite framework of opti-

mization involving CPWL functions. Then we effectively apply the general composite result

to characterizing full stability of local optimal solutions of minimax problems with polyhedral

constraints. Finally, we finish our study of composite optimization models with CPWL func-

tions with characterizing strong regularity of the associated KKT systems and strong stability

of the related stationary points under perturbations. We prove that these differently defined

notions are equivalent to full stability of the corresponding local minimizers under partial

nondegeneracy being therefore completely characterized by the aforementioned SSOSC.

The last chapter discusses a very recent concept of critical multipliers for composite

optimization problems. We first formulate the later concept in this framework and then
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characterize it via second-order subdifferentials. Then we show that full stability of local

minimizers can rule out critical multipliers for problems of composite optimization.
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CHAPTER 2 FULL STABILITY FOR UNCON-

STRAINED PROBLEMS

2.1 Tools of Variational Analysis

In this chapter we briefly overview some basic constructions of generalized differentiation

in variational analysis, which are widely used in what follows. Then we discuss the concept

of full stability in the general framework of unconstrained optimization problems. Finally,

we provide some characterizations of this concept, which open the door to proceed in the

subsequent chapters. We start with recalling the corresponding first-order subdifferentials

as well as associated objects of variational geometry. Given ϕ : Rn → R finite at x̄, its

regular subdifferential (known also as the presubdifferential and as the Fréchet or viscosity

subdifferential) at x̄ is

∂̂ϕ(x̄) :=
{
v ∈ Rn

∣∣∣ lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0
}
. (2.1)

While ∂̂ϕ(x̄) reduces to a singleton {∇ϕ(x̄)} if ϕ is Fréchet differentiable at x̄ and to the

classical subdifferential of convex analysis if ϕ is convex, the set (2.1) may often be empty for

nonconvex and nonsmooth functions as, e.g., for ϕ(x) = −|x| at x̄ = 0 ∈ R. Another serious

disadvantage of (2.1) is the failure of standard calculus rules inevitably required in the theory

and applications of variational analysis including those to optimization and equilibria.

The picture dramatically changes when we perform a limiting procedure over the mapping

x 7→ ∂̂ϕ(x) as x
ϕ→ x̄ that leads us to the (basic first-order) subdifferential of ϕ at x̄ defined

by

∂ϕ(x̄) := Lim sup
x
ϕ→x̄

∂̂ϕ(x) (2.2)

and known also as the general, or limiting, or Mordukhovich subdifferential; it was first

introduced in [24] in an equivalent way. In contrast to (2.1), the subgradient set (2.2) is

often nonconvex (e.g., ∂ϕ(0) = {−1, 1} for ϕ(x) = −|x|) while enjoying a full calculus based
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on variational/extremal principles, which replace separation arguments in the absence of

convexity.

We need also another first-order subdifferential construction for ϕ : Rn → R finite at

x̄, which is complemented to (2.2) in the case of non-Lipschitzian functions. The singu-

lar/horizon subdifferential of ϕ at x̄ is defined by

∂∞ϕ(x̄) := Lim sup
x
ϕ→x̄
λ↓0

λ∂̂ϕ(x). (2.3)

We know that ∂∞ϕ(x̄) = {0} if and only if ϕ is locally Lipschitzian around x̄, provided that

it is lower semicontinuous (l.s.c.) around this point.

Recall further some constructions of variational geometry needed in what follows and

associated with the subdifferential ones defined above. Given a set ∅ 6= Ω ⊂ Rn, consider its

indicator function δ(x; Ω) equal to 0 for x ∈ Ω and to ∞ otherwise. For any fixed x̄ ∈ Ω,

the regular normal cone to Ω at x̄ is

N̂(x̄; Ω) := ∂̂δ(x̄; Ω) =
{
v ∈ Rn

∣∣∣ lim sup
x

Ω→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0
}

(2.4)

and the (basic, limiting) normal cone to Ω at x̄ is N(x̄; Ω) := ∂δ(x̄; Ω). It follows from (2.2)

and (2.4) that the normal cone N(x̄; Ω) admits the limiting representation

N(x̄; Ω) = Lim sup
x

Ω→x̄

N̂(x; Ω) (2.5)

via the Painlevé-Kuratowski outer limit. Observe also the duality/polarity correspondence

N̂(x̄; Ω) = T (x̄; Ω)∗ :=
{
v ∈ Rn

∣∣∣ 〈v, w〉 ≤ 0 for all w ∈ T (x̄; Ω)
}

(2.6)

between the regular normal cone (2.4) and the tangent cone to Ω at x̄ ∈ Ω defined by

T (x̄; Ω) :=
{
w ∈ Rn

∣∣∣ ∃xk Ω→ x̄, αk ≥ 0 with αk(xk − x̄)→ w as k →∞
}

(2.7)

and known also as the Bouligand-Severi contingent cone to Ω at this point. Note that the

basic normal cone (2.5) cannot be tangentially generated in a polar form (2.6), since it is
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intrinsically nonconvex while the polar T ∗ to any set T is always convex. In what follows we

may also use the subindex set notation like NΩ(x̄), TΩ(x̄), etc. for the constructions involved.

Given further a mapping F : Rn ⇒ Rm, define its coderivative [25] at (x̄, ȳ) ∈ F by

D∗F (x̄, ȳ)(v) :=
{
u ∈ Rn

∣∣ (u,−v) ∈ N
(
(x̄, ȳ);F

)}
, v ∈ Rm, (2.8)

via the normal cone (2.5) to the graph F . The set-valued mapping D∗F (x̄, ȳ) : Rm ⇒ Rn is

clearly positive-homogeneous. Moreover, if the mapping F : Rn → Rm is single-valued (then

we omit ȳ = F (x̄) in the coderivative notation) and strictly differentiable at x̄ (which is

automatic when it is C1 around this point), then the coderivative (2.8) is also single-valued

and reduces to the adjoint derivative operator

D∗F (x̄)(v) =
{
∇F (x̄)∗v

}
, v ∈ Rm, (2.9)

with the operator symbol ‘∗’ on the right-hand side of (2.9) standing for the matrix transpo-

sition in finite dimensions. It is worth noting that the coderivative values in (2.8) are often

nonconvex sets due to the intrinsic nonconvexity of the normal cone on the right-hand side

therein. Observe furthermore that this nonconvex normal cone is taken to a graphical set.

Thus its convexification in (2.8), which reduces to the convexified/Clarke normal cone to the

set in question, creates serious troubles; see Rockafellar [50] and Mordukhovich [27, Subsec-

tion 3.2.4] for more details.

Coming back to extended-real-valued functions, let us present their second-order subd-

ifferential constructions, which are at the heart of the variational techniques developed in

this dissertation. Given ϕ : Rn → R finite at x̄, pick a subgradient ȳ ∈ ∂ϕ(x̄) and follow

Mordukhovich [26] to introduce the second-order subdifferential (or generalized Hessian) of

ϕ at x̄ relative to ȳ by

∂2ϕ(x̄, ȳ)(u) := (D∗∂ϕ)(x̄, ȳ)(u), u ∈ Rn (2.10)

via the coderivative (2.8) of the first-order subdifferential mapping (2.2). Observe that for
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ϕ ∈ C2 with the (symmetric) Hessian matrix ∇2ϕ(x̄) we have

∂2ϕ(x̄)(u) =
{
∇2ϕ(x̄)u

}
for all u ∈ Rn.

From now on we focus on an appropriate partial counterpart of (2.10) for functions ϕ : Rn×

Rd → R of two variables (x,w) ∈ Rn × Rd. Consider the partial first-order subgradient

mapping

∂xϕ(x,w) :=
{

set of subgradients v of ϕw := ϕ(·, w) at x
}

= ∂ϕw(x), (2.11)

take (x̄, w̄) with ϕ(x̄, w̄) <∞, and define the extended partial second-order subdifferential of

ϕ with respect to x at (x̄, w̄) relative to some ȳ ∈ ∂xϕ(x̄, w̄) by

∂̃2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂xϕ)(x̄, w̄, ȳ)(u), u ∈ Rn. (2.12)

This second-order construction was first employed by Levy, Poliquin and Rockafellar [20] for

characterizing full stability of extended-real-valued functions in the unconstrained format of

optimization. Note that the second-order construction (2.12) is different from the standard

partial second-order subdifferential

∂2
xϕ(x̄, w̄, ȳ)(u) := (D∗∂ϕw̄)(x̄, ȳ)(u) = ∂2ϕw̄(x̄, ȳ)(u), u ∈ Rn,

of ϕ = ϕ(x,w) with respect to x at (x̄, w̄) relative to ȳ ∈ ∂xϕ(x̄, w̄), even in the classical C2

setting. Indeed, for such functions ϕ with ȳ = ∇xϕ(x̄, w̄) we have

∂2
xϕ(x̄, w̄)(u) =

{
∇2
xxϕ(x̄, w̄)u

}
while

∂̃2
xϕ(x̄, w̄)(u) =

{
(∇2

xxϕ(x̄, w̄)u,∇2
xwϕ(x̄, w̄)u)

}
for all u ∈ Rn. (2.13)

2.2 Full Stability

Let ϕ : Rn × Rd → R = (−∞,∞] be a proper extended-real-valued function of two

variables (x,w) ∈ Rn × Rd. Throughout this chapter we assume, unless otherwise stated,
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that ϕ is lower semicontinuous around the reference points of its effective domain

domϕ :=
{

(x,w) ∈ Rn × Rd| ϕ(x,w) <∞
}
.

Following Levy, Poliquin and Rockafellar [20], consider the two-parametric unconstrained

problem of minimizing the perturbed function ϕ defined by

minimize ϕ(x,w)− 〈v, x〉 over x ∈ Rn (2.14)

and label it as P(w, v). In this parameterized optimization problem, the vector w ∈ Rd

signifies general parameter perturbations (called basic perturbations in [20]) while the linear

parametric shift of the objective with v ∈ Rn in (2.14) represents the so-called tilt perturba-

tions. We consider the following fairly general type of quantitative/Lipschitzian stability of

local minimizers for the parameterized family P(w, v) of the optimization problems (2.14)

with respect to parameter perturbations (w, v) varying around the given nominal parame-

ter value (w̄, v̄) corresponding to the unperturbed problem P(w̄, v̄). Feasible solutions to

P(w, v) are the points x ∈ Rn such that the function value ϕ(x,w) is finite.

Let x̄ be a feasible solution to the unperturbed problem P(w̄, v̄). For any number γ > 0

we consider the (local) optimal value function

mγ(w, v) := inf
‖x−x̄‖≤γ

{
ϕ(x,w)− 〈v, x〉

}
, (w, v) ∈ Rd × Rn, (2.15)

for the perturbed optimization problem (2.14) and then the corresponding parametric family

of optimal solution sets to (2.14) given by

Mγ(w, v) := argmin‖x−x̄‖≤γ

{
ϕ(x,w)− 〈v, x〉

}
, (w, v) ∈ Rd × Rn. (2.16)

A point x̄ is said to be a locally optimal solution to P(w̄, v̄) if x̄ ∈ Mγ(w̄, v̄) for some small

γ > 0. We recall the following notion of Lipschitzian stability for locally optimal solutions

to the unperturbed problem P(w̄, v̄) introduced in [20].

Definition 2.1 (full stability). A point x̄ is a fully stable locally optimal solution
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to problem P(w̄, v̄) if there exist a number γ > 0 and neighborhoods W of w̄ and V of v̄

such that the mapping (w, v) 7→ Mγ(w, v) is single-valued and Lipschitz continuous with

Mγ(w̄, v̄) = {x̄} and the function (w, v) 7→ mγ(w, v) is likewise Lipschitz continuous on

W × V .

Tilt stability of local minimizers x̄ introduced earlier by Poliquin and Rockafellar [45]

corresponds to Definition 2.1 under the fixed basic parameter w = w̄, i.e., it imposes single-

valued Lipschitzian behavior of v →Mγ(w̄, v) with respect to tilt perturbations v in (2.14).

Observe that in this case the Lipschitz continuity of the optimal value functions mγ(w̄, v) is

automatic in the finite-dimensional setting under consideration, since it follows from (2.15)

that mγ(w̄, v) is finite and concave in v. Note also that the idea of considering stability

from the viewpoint of single-valued Lipschitzian behavior goes back to Robinson [47] being

mainly motivated by applications to numerical algorithms in optimization.

Below, we give an equivalent description of full stability and show that indeed the single-

valuedness property in Definition 2.1 can be dropped provided that we replace the Lipschitz

continuity with an appropriate Lipschitzian concept for set-valued mappings. To this end,

recall that F : Rn ⇒ Rm is Lipschitz-like (or has the Aubin property) around (x̄, ȳ) ∈ F with

modulus l ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (u) + l‖x− u‖IB whenever x, u ∈ U. (2.17)

Recall also that F : Rn ⇒ Rn is monotone provided that

〈y2 − y1, x2 − x1〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ F.

Theorem 2.2 (equivalent description of full stability). Definition 2.1 can be equiva-

lently reformulated by replacing the single-valuedness and Lipschitz continuity of the solution

map Mγ around (w̄, v̄) by the Lipschitz-like property of this mapping around (w̄, v̄, x̄).

Proof. By the Lipschitz-like property of Mγ around (w̄, v̄, x̄), find a neighborhood triple
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(W,V, U) for (w̄, v̄, x̄) such that (2.17) holds for Mγ in this notation. Fix w ∈ W and define

ϕw(·) = ϕ(·, w), ϕ̃w := ϕw + δIBγ(x̄), gw := ϕ̃∗w,

where the latter stands for the conjugate of ϕ̃w. Thus gw is convex and being expressed as

gw(v) = max
x∈IBγ(x̄)

{
〈v, x〉 − ϕw(x)

}
, v ∈ Rn. (2.18)

Considering further the set-valued mapping Tw : Rn ⇒ Rn defined by Tw(v) := Mγ(w, v) on

V and Tw(v) := ∅ otherwise, we claim that it is monotone. Indeed, pick xi ∈ Tw(vi) with

vi ∈ V as i = 1, 2 and get from (2.18) the relationships

〈x1 − x2, v1 − v2〉 = 〈x1, v1〉 − 〈x2, v1〉 − 〈x1, v2〉+ 〈x2, v2〉

=
[
gw(v1)− 〈x2, v1〉+ ϕw(x2)

]
+
[
gw(v2)− 〈x1, v2〉+ ϕw(x1)

]
≥ 0,

which verify the claimed monotonicity of Tw̄. Since the mapping v 7→ Tw̄(v) = Mγ(w̄, v)

is Lipschitz-like (i.e., surely lower semicontinuous) around (v̄, x̄), the classical Kenderov

theorem [16] tells us that Tw̄(v̄) = {x̄}, and hence Mγ(w̄, v̄) = {x̄}. The same arguments

work for any (w, v) ∈ W × V justifying therefore the single-valuedness of Mγ on W × V . 4

To formulate the main result of [20] on characterizing full stability of local minimizers in

problem P(w̄, v̄) with an extended-real-valued ϕ in finite dimensions, we need to recall the

following important notions of variational analysis; cf. [20, 44, 53] for more details. A lower

semicontinuous function ϕ(x,w) is prox-regular in x at x̄ for v̄ with compatible parameteri-

zation by w at w̄ if v̄ ∈ ∂xϕ(x̄, w̄) and there exist neighborhoods U of x̄, W of w̄, and V of

v̄ together with numbers ε > 0 and γ ≥ 0 such that

ϕ(u,w) ≥ ϕ(x,w) + 〈v, u− x〉 − γ

2
‖u− x‖2 for all u ∈ U

when v ∈ ∂xϕ(x,w) ∩ V, x ∈ U, w ∈ W, ϕ(x,w) ≤ ϕ(x̄, w̄) + ε.

(2.19)

Furthermore, ϕ(x,w) is called to be subdifferentially continuous at (x̄, w̄, v̄) if it is continuous

as a function of (x,w, v) on the partial subdifferential graph ∂xϕ at this point. If both of
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these properties hold simultaneously, we say that ϕ is continuously prox-regular in x at x̄ for

v̄ with compatible parameterization by w at w̄, or simply that this function is parametrically

continuously prox-regular at (x̄, w̄, v̄).

It is known from [20] that the class of parametrically continuously prox-regular functions

ϕ : Rn × Rd → R at (x̄, w̄, v̄) with v̄ ∈ ∂xϕ(x̄, w̄) is fairly large including, in particular, all

extended-real-valued functions ϕ(x,w) that are strongly amenable in x at x̄ with compatible

parametrization by w at w̄ in the following sense: There are Φ: Rn×Rd → Rm and θ : Rm →

R such that ϕ(x,w) = θ(Φ(x,w)) and Φ is C2 around (x̄, w̄) while θ is convex, proper, l.s.c.,

and finite at Φ(x̄, w̄) under the first-order qualification condition

∂∞θ
(
Φ(x̄, w̄)

)
∩ ker∇xΦ(x̄, w̄)∗ = {0}. (2.20)

The parametric continuous prox-regularity of such functions is proved in [20, Proposition 2.2],

where it is shown in addition that the parametric strong amenability of ϕ formulated above

ensures the validity of the basic constraint qualification:

(0, q) ∈ ∂∞ϕ(x̄, w̄) =⇒ q = 0. (2.21)

The strong amenability property and its parametric expansion hold not only in the obvious

cases of C2 and convex functions but in dramatically larger frameworks typically encountered

in finite-dimensional variational analysis and optimization; see [20,21,45,53]. The main result

of [20, Theorem 2.3] is as follows.

Theorem 2.3 (characterization of full stability in unconstrained extended-real-

valued format). Let x̄ be a feasible solution to the unperturbed problem P(w̄, v̄) in (2.14)

at which the first-order necessary optimality condition v̄ ∈ ∂xϕ(x̄, w̄) and the basic constraint

qualification (2.21) are satisfied. Assume in addition that ϕ is parametrically continuously

prox-regular at (x̄, w̄, v̄). Then x̄ is a fully stable locally optimal solution to P(x̄, w̄) if and
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only if the following second-order conditions hold:

(0, q) ∈ D∗(∂xϕ)(x̄, w̄, v̄)(0) =⇒ q = 0, (2.22)

[(p, q) ∈ D∗(∂xϕ)(x̄, w̄, v̄)(u), u 6= 0] =⇒ 〈p, u〉 > 0 (2.23)

via the extended second-order subdifferential mapping (2.12).

In the subsequent chapters we employ Theorem 2.3 to obtain verifiable necessary and

sufficient conditions for full stability of local minimizers in favorable classes of constrained

optimization problems in terms of the problem data. Achieving it requires the implementa-

tion and development of second-order subdifferential calculus as well as precise calculating the

partial second-order subdifferential constructions for the corresponding functions involved.

2.3 Characterizations of Full Stability

We proceed in this section with establishing useful relationships between full stability of

local minimizers in the unconstrained format of (2.14) with an extended-real-valued function

ϕ(x,w) and an appropriate version of the so-called “strong metric regularity" of the partial

subdifferential mapping ∂xϕ. Recall [5] that a set-valued mapping F : Rn ⇒ Rm is strongly

metrically regular at (x̄, ȳ) ∈ F if the inverse mapping F−1 admits a Lipschitzian single-

valued localization around (x̄, ȳ), i.e., there are neighborhood U of x̄ and V of ȳ and a single-

valued Lipschitz continuous mapping f : V → U such that f(ȳ) = x̄ and F−1(y)∩U = {f(y)}

for all y ∈ V . This notion is an abstract version of Robinson’s strong regularity for variational

inequalities and nonlinear programming problems [47].

Close relationships (equivalences under appropriate constraint qualifications) between tilt

stability and strong regularity have been established by Mordukhovich and Rockafellar [38]

and Mordukhovich and Outrata [34] in the framework of nonlinear programming and by

Lewis and Zhang [22] and Drusvyatskiy and Lewis [6] via strong metric regularity of subdif-
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ferential mappings for extended-real-valued objective functions in the general unconstrained

format of nonparametric optimization. Based on [20], we now extend the latter results to

the parametric framework of (2.14) while establishing the equivalence between full stability

of locally optimal solutions to (2.14) and an appropriate notion of partial strong metric reg-

ularity for the corresponding partial subdifferential mapping of the function ϕ(x,w) therein.

We also establish characterizations of these notions via a certain partial second-order growth

condition.

Given a function ϕ : Rn×Rd → R, consider its partial first-order subdifferential mapping

∂xϕ : Rn × Rd → Rn and define the partial inverse of ∂xϕ by

S(w, v) :=
{
x ∈ Rn| v ∈ ∂xϕ(x,w)

}
, (2.24)

where the subdifferential is understood in the basic sense (2.2).

Definition 2.4 (partial strong metric regularity). Given (x̄, w̄) ∈ domϕ and v̄ ∈

∂xϕ(x̄, w̄), we say that the partial subdifferential mapping ∂xϕ : Rn×Rd ⇒ Rn is partially

strongly metrically regular ( abbr. PSMR) at (x̄, w̄, v̄) if its partial inverse (2.24)

admits a Lipschitzian single-valued localization around this point.

Note that the notion introduced in Definition 2.4 is different from the (total) strong metric

regularity of ∂xϕ at (x̄, w̄, v̄) discussed above, since its concerns Lipschitzian localizations of

the partial inverse S instead of the inverse mapping (∂xϕ)−1.

Theorem 2.5 (full stability versus partial strong metric regularity). Given a func-

tion ϕ : Rn×Rd → R with (x̄, w̄) ∈ domϕ, consider the unperturbed problem P(w̄, v̄) in (2.14)

with some v̄ ∈ ∂xϕ(x̄, w̄) and let x̄ be a locally optimal solution to P(w̄, v̄), i.e., x̄ ∈Mγ(w̄, v̄)

for some number γ > 0 in (2.16). Assume that the basic constraint qualification (2.21) is

satisfied at (x̄, w̄). The following assertions hold:

(i) If ∂xϕ is PSMR at (x̄, w̄, v̄), then x̄ is a fully stable local minimizer for P(w̄, v̄) and

the function ϕ is prox-regular in x at x̄ with compatible parameterization by w at w̄.
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(ii) Conversely, if ϕ is parametrically continuously prox-regular at (x̄, w̄, v̄) and if x̄ is a

fully stable local minimizer for P(w̄, v̄), then ∂xϕ is PSMR at (x̄, w̄, v̄).

Proof. To justify assertion (i), assume that the partial subdifferential mapping ∂xϕ is PSMR

at (x̄, w̄, v̄) and fix the number γ > 0 from the formulation of the theorem. Then it follows

from Definition 2.4 that there exist neighborhoods U of x̄, V of v̄, and W of w̄ such that for

all (w, v) ∈ W × V the localization S(w, v) ∩ U is single-valued. Without loss of generality

suppose IBγ(x̄) ⊂ U . We claim that

Mγ(w̄, v̄) = {x̄}.

Indeed, by the stationary condition in (2.14) and the assumed PSMR property we have

ϕ0(x̄, w̄)− 〈v̄, x̄〉 < ϕ0(x, w̄)− 〈v̄, x〉 for all x ∈ int IBγ(x̄). (2.25)

If there is x̃ ∈Mγ(w̄, v̄) with x̃ 6= x̄ and ‖x̃− x̄‖ = γ, then replacing Mγ(w̄, v̄) by Mγ/2(w̄, v̄)

gives us Mγ/2(w̄, v̄) = {x̄}. Thus we can suppose that Mγ(w̄, v̄) = {x̄}. Invoking now the

basic constraint qualification (2.21) and employing [20, Proposition 3.5] ensure the Lipschitz

continuity around (w̄, v̄) of the optimal value function mγ from (2.15) and allow us to find

η > 0 with

Mγ(w, v) ⊂ int IBγ(x̄) whenever (w, v) ∈ int IBη(w̄)× int IBη(v̄).

Thus we have under the assumptions made that

Mγ(w, v) ⊂ S(w, v) ∩ int IBγ(x̄) for all (w, v) ∈ int IBη(w̄)× int IBη(v̄), (2.26)

which in fact holds as equality by the single-valuedness of the right-hand side and the

nonemptiness of the left-hand one, implying hence that Mγ is single-valued and Lipschitz

continuous around (w̄, v̄). This means that x̄ is a fully stable local minimizer of P(w̄, v̄) by

Definition 2.1.

To complete the proof of assertion (i), it remains to justify the claimed parametric prox-
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regularity of ϕ at (x̄, w̄). Take any x ∈ int IBγ(x̄), w ∈ int IBη(w̄), and v ∈ ∂xϕ(x,w) ∩

int IBη(v̄) with the positive numbers γ, η found above. Then x ∈ Mγ(w, v) by the equality

in (2.26), and thus we get from the construction of Mγ in (2.16) that

ϕ(u,w) ≥ ϕ(x,w) + 〈v, u− x〉 whenever u ∈ int IBγ(x̄),

which obviously implies by (2.19) the desired parametric prox-regularity of ϕ.

To justify assertion (ii), observe that it follows from the second part of [20, Theorem 2.3]

that (2.26) holds as equality with some numbers γ, η > 0 provided that ϕ is parametrically

continuously prox-regular at (x̄, w̄, v̄). Since x̄ is now assumed to be a fully stable local

minimizer in P(w̄, v̄), this ensures the single-valued Lipschitzian localization of Sϕ around

(w̄, v̄, x̄) and thus justifies the PSMR property of the partial subdifferential mapping ∂xϕ at

(x̄, w̄, v̄). 4

Next we derive necessary and sufficient conditions for PSMR from Definition 2.4 and full

stability properties in the case of general extended-real-valued functions via a partial version

of the so-called uniform second-order (quadratic) growth condition.

Definition 2.6 (uniform second-order growth condition). Given ϕ : Rn × Rd → R

finite at (x̄, w̄) and given a partial subgradient v̄ ∈ ∂xϕ(x̄, w̄), we say that the uniform

second-order growth condition (abbr. USOGC) holds for ϕ at (x̄, w̄, v̄) if there exist

a constant η > 0 and neighborhoods U of x̄, W of w̄, and V of v̄ such that for any (w, v) ∈

W × V there is a point xwv ∈ U (necessarily unique) satisfying v ∈ ∂xϕ(xwv, w) and

ϕ(u,w) ≥ ϕ(xwv, w) + 〈v, u− xwv〉+ η‖u− xwv‖2 whenever u ∈ U. (2.27)

Note that for problems of conic programming with C2 data this notion appeared in a

different while equivalent form in [1, Definition 5.16] as the “uniform second-order (quadratic)

growth condition with respect to the C2-smooth parameterization." Its version “with respect

to the tilt parameterization" was employed in [1, Theorem 5.36] for characterizing tilt-stable
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minimizers of conic programs and then in [22, Theorem 6.3] and [6, Theorem 3.3] in more

general settings of extended-real-valued functions.

Let us employ USOGC from Definition 2.6 to characterize fully stable local minimizer of

P(w̄, v̄). To achieve this goal, we use the following lemma obtained in [20, Lemma 5.2].

Lemma 2.7 (uniform second-order growth for convex functions). Let f : Rn → R

be a proper, l.s.c., and convex function whose conjugate f ∗ is differentiable on intIBγ(v̄) for

some v̄ ∈ Rn and γ > 0, and let the gradient of f ∗ be Lipschitz continuous on intIBγ(v̄) with

constant σ > 0. Then for any (x, v) ∈ (∂f) ∩ [intIBσγ
4

(x̄)× int IB γ
2
(v̄)] with x̄ ∈ Rn we have

f(u) ≥ f(x) + 〈v, u− x〉+
1

2σ
‖u− x‖2 whenever u ∈ IBσγ

4
(x̄). (2.28)

Proof. Consider the open set O := {v ∈ Rn| IB γ
2
(v) ⊂ intIBγ(v̄)}. Then by [20, Lemma 5.2]

for all v ∈ ∂f(x) ∩O we get the estimate

f(u) ≥ f(x) + 〈v, u− x〉+
1

2σ
‖u− x‖2 whenever ‖u− x‖ ≤ γσ

2
,

which implies (2.28) for the corresponding pairs (x, v). 4

Recall that a mapping T : Rn ⇒ Rn is local maximal monotone around (x̄, v̄), if there

exist neighborhoods U × V of (x̄, v̄) such that every monotone mapping S : Rn ⇒ Rn with

(T ) ∩ (U × V ) ⊂ S satisfies (T ) ∩ (U × V ) = (S) ∩ (U × V ).

Theorem 2.8 (relationships between full stability and uniform second-order

growth). Let ϕ : Rn × Rd → R be l.s.c. with v̄ ∈ ∂xϕ(x̄, w̄) for some (x̄, w̄) ∈ domϕ.

The following assertions hold:

(i) If x̄ is a fully stable local minimizer of the unperturbed problem P(w̄, v̄) in (2.14) and

the basic constraint qualification (2.21) is satisfied at (x̄, w̄) , then USOGC of Definition 2.6

holds at (x̄, w̄, v̄).

(ii) Conversely, assume that ϕ is parametrically continuously prox-regular at (x̄, w̄, v̄)

and that USOGC holds at this point with the mapping (w, v) 7→ xwv in Definition 2.6 being
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locally Lipschitzian around (w̄, v̄). Then ∂xϕ is PSMR at (x̄, w̄, v̄).

Proof. To justify (i), let x̄ be a fully stable locally optimal solution to problem P(w̄, v̄).

Then there is a number γ > 0 such that the mapping (w, v) 7→ Mγ(w, v) form (2.16) is

single-valued and Lipschitz continuous on int IBγ(w̄)× int IBγ(v̄) with some constant σ > 0.

For any fixed w ∈ int IBγ(w̄) consider the function ϕw(·) = ϕ(·, w) and define

ϕ̄w := ϕw + δIBγ(x̄), gw := ϕ̄∗w, and hw := g∗w. (2.29)

We easily get from (2.16) and the definition of gw that

Mγ(w, v) = argminx∈IBγ(x̄)

{
ϕ(x,w)− 〈v, x〉

}
∈ ∂gw(v) for v ∈ int IBγ(v̄). (2.30)

Indeed, it follows from the constructions above the function gw is convex and is expressed as

gw(v) = maxx∈IBγ(x̄)

{
〈v, x〉 − ϕw(x)

}
.

This readily implies the relationships

gw(v′)− gw(v) ≥ 〈v′,Mγ(w, v)〉 − ϕw(Mγ(w, v))− 〈v,Mγ(w, v)〉+ ϕw(Mγ(w, v))

= 〈v′ − v,Mγ(w, v)〉 for all v′ ∈ Rn,

which yields (2.30) holds. Consider further the mapping Tw(·) := Mγ(w, ·) and show that it

is monotone on int IBγ(v̄). To check it, pick xi ∈ Tw(vi) with vi ∈ int IBγ(v̄) as i = 1, 2 and

get from (2.30) that

〈x1 − x2, v1 − v2〉 = 〈x1, v1〉 − 〈x2, v1〉 − 〈x1, v2〉+ 〈x2, v2〉

=
[
gw(v1)− 〈x2, v1〉+ ϕw(x2)

]
+
[
gw(v2)− 〈x1, v2〉+ ϕw(x1)

]
≥ 0.

Since Tw is (Lipschitz) continuous, it is locally maximal monotone around (v̄, x̄) relative to

int IBγ(v̄) × int IBγ(x̄); see [53, Example 12.7]. Remembering next that the subdifferential

mappings for convex functions are also maximal monotone, we conclude from (2.30) that

(∂hw)−1(v) = ∂gw(v) = Tw(v) for all v ∈ int IBγ(v̄), (2.31)



19

where the first equality is duo to the relation hw := g∗w. Thus gw is Fréchet differentiable on

int IBγ(v̄) and its gradient mapping ∇gw is Lipschitz continuous with constant σ on this set.

Now we are in a position of applying Lemma 2.7 to the function f := hw with h∗w = g∗∗w = gw.

This gives us the estimate

hw(u) ≥ hw(x) + 〈v, u− x〉+
1

2σ
‖u− x‖2 whenever u ∈ int IBσγ

4
(x̄) (2.32)

for all (x, v) ∈ (∂hw) ∩ [int IBσγ
4

(x̄)× int IB γ
2
(v̄)]. Observe that, since the Lipschitz constant

σ does not depend on the w, the estimate in (2.32) is uniform with respect to w in the

selected neighborhood of w̄. Also we can assume without loss of generality that int IBσγ
4

(x̄) ⊂

int IB γ
2
(x̄).

Take now x ∈ (∂hw)−1(v) = ∂gw(v) = Tw(v) and get from the single-valuedness of the

set Tw(v) by its construction above that

hw(Tw(v)) = hw(x) = ϕw(x) = ϕ(x,w).

This allows us to deduce from (2.32) that

ϕ(u,w) ≥ ϕ(x,w) + 〈v, u− x〉+
1

2σ
‖u− x‖2 (2.33)

whenever (x, v) ∈ (∂hw) ∩ [int IBσγ
4

(x̄) × int IB γ
2
(v̄)] and u ∈ int IBσγ

4
(x̄). Since x̄ is a full

stable minimizer of (2.14), we get x̄ ∈ Mγ(w̄, v̄) for some γ < σγ
4
. Taking into account the

basic constraint qualification (2.21) together with [20, Proposition 3.5], we obtainMγ(w, v) ∈

int IBγ(x̄) for any (w, v) ∈ int IBγ(w̄)×int IBγ(v̄). Thus for any (w, v) ∈ int IBγ(w̄)×int IBγ(v̄),

we can find xwv : = Mγ(w, v) ∈ int IBγ(x̄). Remember that (∂gw)∩ [int IBγ(x̄)× int IBγ(v̄)] =

(∂Tw)∩ [int IBγ(x̄)× int IBγ(v̄)]. Since (v, xwv) ∈ (∂gw)∩ [int IBγ(x̄)× int IBγ(v̄)], we therefore

get

xwv = Tw(v) = ∂gw(v) = (∂hw)−1(v),

and hence (xwv, v) ∈ (∂hw) ∩ [int IBσγ
4

(x̄)× int IB γ
2
(v̄)]. Letting x : = xwv in (2.32) justifies
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validity of USOGC for ϕ at (x̄, w̄, v̄) and thus ends the proof of (i).

Next we justify assertion (ii) observing by Theorem 2.5 that it suffices to show that

the mapping ∂xϕ is PSMR at (x̄, w̄, v̄) under the assumptions made. To proceed, fix the

neighborhoods U of x̄,W of w̄, and V of v̄ for which the second-order growth condition (2.27)

holds and thus gives us the single-valued and Lipschitz continuous mapping s : W × V → U

defined by s(w, v) := xwv. Denote Tw(·) := s(w, ·) and pick any vectors vi ∈ T−1
w (xi) with

vi ∈ V and xi ∈ U for i = 1, 2. By (2.27) with η = (2σ)−1 for some σ > 0 we get the

estimates

ϕ(x2, w) ≥ ϕ(x1, w) + 〈v1, x2 − x1〉+
1

2σ
‖x2 − x1‖2,

ϕ(x1, w) ≥ ϕ(x2, w) + 〈v2, x1 − x2〉+
1

2σ
‖x2 − x1‖2,

which tell us that the mapping T−1
w is locally strongly monotone with constant σ−1; see [53,

Definition 12.53]. Hence Tw is locally monotone relative to V and U and in fact is locally

maximal monotone relative to V × U due to its continuity. Note that if (v, x) ∈ Tw, then

v ∈ ∂ϕw(x).

Let Fw : Rn ⇒ Rn be the mapping for which F−1
w is the intersection of ∂ϕw and U × V .

We have Tw ⊂ Fw and thus get the inclusions

T−1
w (x) ⊂ F−1

w (x) ⊂ ∂ϕw(x) whenever x ∈ U. (2.34)

It follows from the parametric continuous prox-regularity of ϕ that the mapping ∂ϕw are

locally hypomonotone whenever w ∈ W with the same constant r from (2.19), and so the

mapping F−1
w + tI is locally strongly monotone with constant t − r for any fixed t > r;

see [53, Example 12.28]. Since T−1
w is locally strongly monotone with constant σ−1, we

keep this property for the mapping T−1
w + tI with constant σ−1 + t. Hence the mappings

(F−1
w + tI)−1 and (T−1

w + tI)−1 are single-valued on their domains. Furthermore, it follows
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from (2.34) that (T−1
w + tI)−1 ⊂ (F−1

w + tI)−1. Assume γ > 0 is small enough such that

IBγ(x̄) ⊂ U, IB tγ
4

(v̄) ⊂ V, s(W × V ) ⊂ int IB γ
4
(x̄), (2.35)

otherwise we can shrink the neighborhoods W and V . Let U ′ : = int IBγ(x̄) and O :=

Jt(V ×U ′) where J is the bilinear mapping defined by Jt(v, u) = (v + tu, u). Therefore O is

a neighborhood of (v̄ + tx̄, x̄) due to open mapping theorem. Without loss of generality, we

can assume further that IBtγ(x̄+ tv̄)× IBγ(x̄) ⊂ O. Employing now (4.63) yields

(∂hw + tI)−1 ∩O = (T−1
w + tI)−1 ∩O. (2.36)

Let w ∈ W be arbitrary and fixed and then define the function pw(x) : = hw(x)+ t
2
‖x‖2 when

x ∈ IBγ(x̄) and ∞ otherwise, where hw is defined by (2.29). Therefore pw is proper, l.s.c,

and strongly convex with modulus t, which assures us that p∗w is a proper, l.s.c, and convex

function. Appealing now to [53, Proposition 12.60] confirms that the conjugate function p∗w

is differentiable on Rn and its gradient mapping is also Lipschitz continuous with constant

1
t
. We claim now that for any v̂ ∈ int IB tγ

8
(v̄ + tx̄), we can find a unique x̂ ∈ int IBγ(x̄) with

x̂ = ∇p∗w(v̂). To this aim, assume that v̂ ∈ int IB tγ
8

(v̄ + tx̄). Since p∗w is differentiable at v̂,

we can choose x̂ : = ∇p∗w(v̂). We need to show that x̂ ∈ int IBγ(x̄). Using convexity of p∗w

allows us to obtain

x̂ = ∇p∗w(v̂) = ∂p∗w(v̂) = argminx∈IBγ(x̄)

{
pw(x)− 〈v̂, x〉

}
, (2.37)

which in turn implies that x̂ = ∇p∗w(v̂) if and only if 0 ∈ ∂pw(x̂) − v̂ + NIBγ(x̄)(x̂). The

latter inclusion amounts to x̂ ∈ IBγ(x̄) and v̂ − α(x̂ − x̄) ∈ ∂pw(x̂) for some α ≥ 0 with

α(x̂ − x̄) ∈ NIBγ(x̄)(x̂). Remember that x̂ ∈ IBγ(x̄). We claim now that ‖x̂ − x̄‖ < γ.

By contradiction, we assume that ‖x̂ − x̄‖ = γ. Pick x′ ∈ IB γ
8
(x̄), which in turn verifies

that (v̂, x′) ∈ O. It is easy to see Jt(v, x
′) = (v̂, x′) with v : = v̂ − tx′. Using the above
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assumptions, we obtain

‖v − v̄‖ ≤ ‖v̂ − (v̄ + tx̄)‖+ t‖x′ − x̄‖ ≤ tγ

8
+
tγ

8
=
tγ

4
, (2.38)

and hence v ∈ IB tγ
4

(v̄) ⊂ V due (2.35). Since we have (w, v) ∈ W × V , we find xwv so that

s(w, v) = xwv, which demonstrates that xwv ∈ IB γ
4
(x̄). Applying now (4.63) confirms that

v ∈ ∂hw(xwv), which brings us to v+ txwv ∈ ∂pw(xwv) due to the first order calculus rule for

convex functions. Recalling that ∂pw is t-strongly monotone and v̂ − α(x̂− x̄) ∈ ∂pw(x̂), we

deduce that 〈
v̂ − α(x̂− x̄)− (v + txwv), x̂− xwv

〉
≥ t‖x̂− xwv‖2,

which in turn leads us to〈
v̂ − (v + txwv), x̂− xwv

〉
+
〈
− α(xwv − x̄), x̂− xwv

〉
≥ (t+ α)‖x̂− xwv‖2. (2.39)

Taking now into account (2.35) together with (2.39), we come up to

‖v̂ − (v + txwv)‖ ≥ (t+ α)‖x̂− xwv‖ − α‖xwv − x̄‖

≥ (t+ α)
[
‖x̂− x̄‖ − ‖x̄− xwv‖

]
− αγ

4

≥ (t+ α)
[
γ − γ

4

]
− αγ

4
= 3tγ

4
+ αγ

2
.

(2.40)

On the other hand, appealing to (2.35) and (2.38) tells us that

‖v̂ − (v + txwv)‖ ≤ ‖v̂ − (v̄ + tx̄)‖+ ‖v − v̄‖+ t‖x̄− xwv‖

< tγ
8

+ 2tγ
8

+ 2tγ
8

= 5tγ
8
,

(2.41)

which clearly contradicts (2.40) and thus proves the claim. Remember that (F−1
w + tI)−1 is

single-valued on its domain. Using the justified claim together with (2.36), we get

(∂hw + tI)−1 ∩O′ = (T−1
w + tI)−1 ∩O′ = (F−1

w + tI)−1 ∩O′ (2.42)

with O′ : = int IB tγ
8

(x̄)× int IBγ(x̄) ⊂ O. Therefore we arrive at

(∂hw)−1 ∩ J−1
t (O′) = Tw ∩ J−1

t (O′) = (∂ϕw)−1 ∩ J−1
t (O′), w ∈ W. (2.43)
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Since J−1
t (O′) is a neighborhood of (v̄, x̄), there exists β > 0 such that int IBβ(v̄)×int IBβ(x̄) ⊂

J−1
t (O′). Recalling finally definition (2.24) of the partial inverse S, we easily deduce from

(2.43) that

S(w, v) ∩ int IBβ(x̄) = {s(w, v)} whenever (w, v) ∈ W × int IBβ(v̄)

for the mapping s defined at the beginning of the proof of (ii). This means that s is a

Lipschitzian single-valued localization of S, and thus ∂xϕ is PSMR at (x̄, w̄, v̄) by Defini-

tion 2.4. 4

Finally, we apply Theorem 2.3 to derive necessary and sufficient conditions for full sta-

bility in composite models of optimization written in the form

minimize ϕ(x) := ϕ0(x) + θ(ϕ1(x), . . . , ϕm(x)) = ϕ0(x) + θ(Φ(x)) over x ∈ Rn, (2.44)

where ϕ0 : Rn → R, θ : Rm → R, and Φ(x) := (ϕ1(x), . . . , ϕm(x)) is a mapping from Rn to

Rm. Written in the unconstrained form, problem (2.44) is actually a problem of constrained

optimization with the cost function ϕ0 and the set of feasible solutions given by

X := {x ∈ Rn| (ϕ1(x), . . . , ϕm(x)) ∈ Z} with Z := {z ∈ Rm| θ(z) <∞}.

Observe that the results presented in this section for problem (2.44) can be easily transferred

to problem of this type with additional geometric constraints given by x ∈ Ω via a polyhedral

set Ω ⊂ Rn. Indeed the only change needed to be done is replacing the mapping Φ in (2.44) by

x 7→ (x, ϕ1(x), . . . , ϕm(x)) and the set Z above by the convex polyhedron Ω×Z. As discussed

in [52, 53], the composite format (2.44) is a general and convenient framework, from both

theoretical and computational viewpoints, to accommodate a variety of particular models

in constrained optimization. Note that conventional nonlinear programs with s inequality

constraints and m− s equality constraints can be written in form

minimize ϕ0(x) + δZ(Φ(x)) over x ∈ Rn (2.45)
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via the indicator functions of the set Z = Rs
− × {0}m−s.

Consider now the fully perturbed version P(w, v) of (2.44) with two parameters (w, v) ∈

Rd × Rn standing, respectively, for basic and tilt perturbations:

minimize ϕ(x,w)− 〈v, x〉 over x ∈ Rn with ϕ(x,w) := ϕ0(x,w) + (θ ◦ Φ)(x,w) (2.46)

and Φ(x,w) = (ϕ1(x,w), . . . , ϕm(x,w)) defined on Rn × Rd. Our characterization of full

stability for problem (2.45) utilizes the exact chain rule for the extended second-order sub-

differential obtained in [38, Theorem 3.1] under the full rank condition (2.47) on Φ. For

simplicity we suppose that the all the functions ϕi for i = 0, . . . ,m are C2 around the ref-

erence points, although it is sufficient to assume that ϕi are merely smooth with strictly

differentiable derivatives. Observe also that such properties are sometimes needed only par-

tially with respect to the decision variable x; see the formulations and proofs below. It is

worth noting that in the next theorem we use the second-order subdifferential of θ = θ(z)

and the special form (2.13) of the extended partial second-order subdifferential for the C2

functions ϕi = ϕi(x,w).

Theorem 2.9 (characterizing fully stable local minimizers for composite prob-

lems under full rank condition). Let x̄ be a feasible solution to the unperturbed problem

P(w̄, v̄) in (2.46) with some w̄ ∈ Rd and v̄ ∈ ∂xϕ(x̄, w̄), where ϕ0,Φ ∈ C2 around (x̄, w̄)

under the validity of the full rank condition

rank∇xΦ(x̄, w̄) = m. (2.47)

Assume further that the outer function θ is continuously prox-regular at z̄ := Φ(x̄, w̄) for the

unique vector ȳ satisfying the relationships

∇xΦ(x̄, w̄)∗ȳ = v̄ −∇xϕ0(x̄, w̄) and ȳ ∈ ∂θ(z̄). (2.48)
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Then x̄ is a fully stable local minimizer for P(w̄, v̄) if and only if we have the implication

[(p, q) ∈ T (x̄, w̄, v̄)(u), u 6= 0] =⇒ 〈p, u〉 > 0 (2.49)

for the set-valued mapping T (x̄, w̄, v̄) : Rn ⇒ Rn × Rd defined by

T (x̄, w̄, v̄)(u) : =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+
(
∇2
xx〈ȳ,Φ〉(x̄, w̄)u,∇2

xw〈ȳ,Φ〉(x̄, w̄)u
)

+
(
∇xΦ(x̄, w̄),∇wΦ(x̄, w̄)

)∗
∂2θ(z̄, ȳ)(∇xΦ(x̄, w̄)u), u ∈ Rn.

Proof. We apply the characterization of full stability from Theorem 2.3 to the function

ϕ(x,w) in (2.46). Observe first that the condition v̄ ∈ ∂xϕ(x̄, w̄) on the tilt perturbation can

be equivalently written as

v̄ ∈ ∂xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)∗∂θ(z̄). (2.50)

Indeed, this follows from first-order rules for ϕ in (2.46) under the full rank assumption

on ∇xΦ(x̄, w̄); see, e.g., [27, Propositions 1.107(ii) and 1.112(i)]. Employing further the

calculus of prox-regularity from [46, Theorem 2.1 and 2.2], which can be easily extended to

the parametric case under consideration, allows us to conclude that the composite function

ϕ is parametrically continuously prox-regular at (x̄, w̄, v̄).

Let us show next that the basic constraint qualification (2.21) is automatically satisfied,

under the assumptions made, for the function ϕ given in (2.46). Indeed, by the smoothness

of ϕ0 the constraint qualification (2.21) is clearly equivalent to

(0, q) ∈ ∂∞(θ ◦ Φ)(x̄, w̄) =⇒ q = 0. (2.51)

Employing in (2.51) the chain rule for (2.3) from [27, Proposition 1.107(ii)] reduces it to the

implication [
∇xΦ(x̄, w̄)∗p = 0, ∇wΦ(x̄, w̄)∗p = q, p ∈ ∂∞θ(z̄)

]
=⇒ q = 0,
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which obviously holds due to the full rank condition (2.47).

Now we are ready to apply the characterization of full stability from Theorem 2.3 to

the function ϕ in (2.46). Let us first check that condition (2.22) is automatically satisfied

in the setting under consideration. To proceed, apply to this composite function ϕ the

second-order sum rule from [27, Proposition 1.121] and then the second-order chain rule

from [38, Theorem 3.1], which tell us that (2.22) is equivalent to[
(0, q) ∈

(
∇xΦ(x̄, w̄),∇wΦ(x̄, w̄)

)∗
∂2θ(z̄, ȳ)(0)

]
=⇒ q = 0, (2.52)

where the uniqueness of the vector ȳ satisfying (2.48) follows from the full rank condition

(2.47). The last implication can be rewritten as[
∇xΦ(x̄, w̄)∗p = 0, ∇wΦ(x̄, w̄)∗p = q, p ∈ ∂2θ(z̄, ȳ)(0)

]
=⇒ q = 0,

which surely holds by the full rank of ∇xΦ(x̄, w̄) in (2.47). To complete the proof of the

theorem, it remains finally to observe that condition (2.23) in Theorem 2.3 reduces to that

of (2.49) imposed in this theorem due to the aforementioned second-order sum and chain

rules from [27, Proposition 1.121] and [38, Theorem 3.1] applied to the function ϕ in (2.46).

4
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CHAPTER 3 STABILITY ANALYSIS OF UNCON-

STRAINED PROBLEMS

This chapter addresses the following constrained optimization problem:

minimize ϕ0(x) subject to Φ(x) : =
(
ϕ1(x), . . . , ϕm(x)

)
∈ Θ, (3.1)

where all the functions ϕi : Rn → R for i = 0, . . . ,m are C2-smooth around the reference

points, and where Θ ⊂ Rm is a closed convex set in Rm. Problems of this type belong

to conic programming provided that Θ is a subcone of Rm. Note that classical nonlinear

programs (NLPs) with s inequality and m − s equality constraints correspond to (3.1) for

Θ = Rs
− × {0}m−s.

To study full stability of local minimizers in (3.1) by reducing it to the extended uncon-

strained format (2.14), consider the two-parametric version of (3.1) written as

P(w, v) : minimize ϕ0(x,w) + δΘ(Φ(x,w))− 〈v, x〉 over x ∈ Rn (3.2)

with the basic parameter w ∈ Rd and the tilt parameter v ∈ Rn under the the same C2-smooth

assumptions on ϕ0 and Φ with respect to both variables. Let

ϕ(x,w) := ϕ0(x,w) + δΘ(Φ(x,w)) with x ∈ Rn, w ∈ Rd (3.3)

and fix in what follows a triple (x̄, w̄, v̄) such that Φ(x̄, w̄) ∈ Θ and v̄ ∈ ∂xϕ(x̄, w̄). Recall

that the (partial) Robinson constraint qualification (abbr. RCQ) holds for (3.1) at (x̄, w̄)

with Φ(x̄, w̄) ∈ Θ if we have

NΘ(Φ(x̄, w̄)) ∩ ker∇xΦ(x̄, w̄)∗ = {0}. (3.4)

Note that for NLPs the full rank condition (2.47) reduces to the classical linear independence

constraint qualification (LICQ). For the general constrained problem (3.1) this condition does

not depend on the underlying set Θ and thus readily calls for a possible improvement.

We now recall two conditions from [1, Definition 3.135], widely recognized in the frame-
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work of (3.1), and extend Theorem 2.9 to this general setting by reducing it to the full rank

case (2.47).

(RC) The closed and convex set Θ ⊂ Rm is said to be C2-reducible at z̄ = Φ(x̄, w̄) ∈ Θ to

the closed and convex set Ξ ⊂ Rp if there is a neighborhood U of z̄ and a C2-smooth

mapping h : U → Rp such that δΘ(z) = δΞ(h(z)) for all z ∈ U and the derivative

operator ∇h(z̄) : Rm → Rp is surjective. If this holds for all z ∈ Θ, then we say that Θ

is C2-reducible to Ξ. The reduction is pointed if the tangent cone TΞ(h(z̄)) is a pointed

cone. Without loss of generality we assume that h(z̄) = 0.

(ND) We say that (x̄, w̄) in (RC) is a partially nondegenerate point for Φ with respect to Θ

if

∇xΦ(x̄, w̄)Rn + lin{TΘ(z̄)} = Rm, (3.5)

where lin{TΘ(z̄)} signifies the largest linear subspace contained in TΘ(z̄).

It is well known that the reducibility condition (RC) holds for many important classes

of problems in constrained optimization. This includes the cases when Θ is a polyhedral

set, a Lorentz (second-order, ice-cream) cone, and the cone of positive semidefinite matrices;

see, e.g., [1]. The nondegeneracy condition (ND) is more restrictive. It follows from [1,

Proposition 4.73] that (3.5) can be equivalently reformulated in the dual form

span{NΘ(z̄)} ∩ ker∇xΦ(x̄, w̄)∗ = {0}, (3.6)

which shows that it reduces to LICQ for the case of NLPs, being however essentially less

restrictive than the latter even for polyhedral sets Θ as in [39, Example 6.9].

To proceed further, impose (RC) and deduce from it that the original constraint

Φ(x,w) ∈ Θ in (3.1) is locally equivalent to h(Φ(x,w)) ∈ Ξ. This allows us to conclude

that problem P(w, v) in (3.2) locally around (x̄, w̄) amounts to the reduced problem as fol-
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lows:

Pr(w, v)


minimize ϕ0(x,w)− 〈v, x〉 subject to x ∈ Rn,

Ψ(x,w) := h(Φ(x,w)) ∈ Ξ,

(3.7)

which can be equivalently rewritten as

minimize ϕ0(x,w) + δΞ(Ψ(x,w))− 〈v, x〉 over x ∈ Rn. (3.8)

3.1 Full Stability of Constrained Optimization Problems

We begin with the following result, which shows that full stability issues for (3.2) and

(3.7) are equivalent. Moreover, we show that the full rank condition for the reduced problem

is ensured by the validity of (ND) for the original one.

Proposition 3.1 (full stability and nondegeneracy in the original and reduced

problems). Let x̄ be a feasible solution to P(w̄, v̄) in (3.2) along the fixed parameter pair

(w̄, v̄), and let condition (RC) hold. Then x̄ is a fully stable locally optimal solution to

P(w̄, v̄) if and only if it is a fully stable locally optimal solution to the reduced problem

Pr(w̄, v̄). Furthermore, the validity in addition of (ND) for (x̄, w̄) implies the surjectivity

of ∇xΨ(x̄, w̄) for Ψ in (3.7).

Proof. The claimed equivalence follows directly from representation (3.8) of the reduced

problem with Ψ from (3.7) and the definition of full stability. To prove the second part of

the proposition, assume (ND) for (x̄, w̄) in (3.2) and get by (RC) and [1, Proposition 4.73]

that

lin
{
TΘ(z̄)

}
= TΩ(z̄) with Ω :=

{
z ∈ U

∣∣ h(z) = 0
}
,

where U is given in (RC). Taking into account the representation of the tangent cone to Ω

from [53, Example 6.8], the nondegeneracy condition (3.5) reduces now to

∇xΦ(x̄, w̄)Rn + ker∇h(z̄) = Rm.
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Using this together with the surjectivity of ∇h(z̄) we get by the classical chain rule that

∇xΨ(x̄, w̄)Rn = ∇h(z̄)∇xΦ(x̄, w̄)Rn = ∇h(z̄)
(
∇xΦ(x̄, w̄)Rn +ker∇h(z̄)

)
= ∇h(z̄)Rm = Rp,

which justifies the surjectivity of ∇xΨ(x̄, w̄) and completes the proof of the proposition. 4

Observe further from the standard subdifferential sum and chain rules [27,53] applied to

(3.3) under (3.4) that the stationary condition v̄ ∈ ∂xϕ(x̄, w̄) for (3.2) yields

v̄ ∈ ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)∗NΘ(Φ(x̄, w̄)). (3.9)

This leads us to the KKT system (2.48), which can be equivalently rewritten as

v̄ = ∇xL(x̄, w̄, λ̄), λ̄ ∈ NΘ(Φ(x̄, w̄)) (3.10)

via the Lagrangian L(x,w, λ) := ϕ0(x,w) + 〈λ,Φ(x,w)〉 for (3.2). It is well known (see,

e.g., [1, Proposition 4.75]) that (3.10) admits a unique Lagrange multiplier under the validity

of (ND).

Similarly we define the KKT system associated with reduced problem (3.7) by

v̄ = ∇xLr(x̄, w̄, µ̄), µ̄ ∈ NΞ(Ψ(x̄, w̄)), (3.11)

where Lr is the Lagrangian for (3.7) given by Lr(x,w, µ) := ϕ0(x,w) + 〈µ,Ψ(x,w)〉. This

system surely has a unique solution due to the full rank result of Proposition 3.1.

The next important result provides a second-order subdifferential characterization of

full stability for P(w̄, v̄) at nondegenerate solutions by reducing it to the full rank set-

ting of Theorem 2.9. Our proof is essentially different from the original one given recently

in [33, Theorem 5.6], which is based on the unform quadratic growth characterization of

Robinson’s strong regularity of the associated KKT system/generalized equation obtained

in [1, Theorem 5.24].

Theorem 3.2 (second-order subdifferential characterization of full stability of
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nondegenerate solutions in constrained optimization). Let x̄ be a feasible solution

to the unperturbed problem P(w̄, v̄) in (3.2) with some w̄ ∈ Rd and v̄ from (3.9). Assume

further (RC) and (ND) hold, and let λ̄ be a unique vector satisfying (3.10). Then x̄ is a

fully stable local minimizer of P(w̄, v̄) if and only if we have

〈u,∇2
xxL(x̄, w̄, λ̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉 > 0 (3.12)

for all q ∈ ∂2δΘ(z̄, λ̄)(∇xΦ(x̄, w̄)u) with u 6= 0.

Proof. Starting with verifying the “only if" part, let x̄ be a fully stable local minimizer for

P(w̄, v̄) and hence for the reduced problem Pr(w̄, v̄) in (3.7) by the first part of Proposi-

tion 3.1. The second part of this proposition ensures that ∇xΨ(x̄, w̄) is surjective under the

assumptions made. Then Theorem 2.9 tells us that implication (2.49) holds with replacing

T (x̄, w̄, v̄) by the set-valued mapping T̂r(x̄, w̄, v̄) : Rn ⇒ Rn × Rd defined by

T̂r(x̄, w̄, v̄)(u) : =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+
(
∇2
xx〈µ̄,Ψ〉(x̄, w̄)u,∇2

xw〈µ̄,Φ〉(x̄, w̄)u
)

+
(
∇xΨ(x̄, w̄),∇wΨ(x̄, w̄)

)∗
∂2δΞ(z̄, µ̄)(∇xΨ(x̄, w̄)u), u ∈ Rn,

where µ̄ is a unique solution of the reduced KKT system (3.11). Using now the second-order

chain rule from [38, Theorem 3.1] under the full rank assumption leads us to

T̂r(x̄, w̄, v̄)(u) =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+D∗∂x(δΞ ◦Ψ)(x̄, w̄, v̄)(u). (3.13)

On the other hand, it follows from (RC) that (δΞ ◦ Ψ)(x,w) = (δΘ ◦ Φ)(x,w) for all (x,w)

around (x̄, w̄). Using this together with (3.13), we get

T̂r(x̄, w̄, v̄)(u) =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+D∗∂x(δΘ ◦ Φ)(x̄, w̄, v̄)(u).

Finally, the result of [43, Theorem 7] held under (ND) ensures that

T̂r(x̄, w̄, v̄)(u) = T (x̄, w̄, v̄)(u), u ∈ Rn, (3.14)
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which justifies together with (2.49) that condition (3.12) is satisfied.

To verify now the “if” part, assume the validity of (3.12) and deduce from (3.14) that

it also holds for T̂r(x̄, w̄, v̄); hence we get implication (2.49) for the latter mapping. By the

surjectivity of∇xΨ(x̄, w̄) it follows from Theorem 2.9 that x̄ is a fully stable local minimizer of

the reduced problem P̂(w̄, v̄) and thus for the original problem P(w̄, v̄) by Proposition 3.1.4

Remark 3.3 (enhanced second-order condition). An important point hidden in the

proof of Theorem 3.2 and used below is that assumptions (RC) and (ND) ensure the validity

of implication (2.22), which was established previously under the full rank condition; see

(2.52) in the proof of Theorem 2.9. To elaborate it more, take (0, q) ∈ T (x̄, w̄, v̄)(0) and

observe from the discussion above that it yields

∇xΦ(x̄, w̄)∗p = 0 and ∇wΦ(x̄, w̄)∗p = q with some p ∈ ∂2δΘ(z̄, λ̄)(0). (3.15)

Employing (RC), we get Θ ∩ U = h−1(Ξ) ∩ U in the notation therein. It follows from

[27, Theorem 1.17] by the surjectivity of ∇xΨ(x̄, w̄) for Ψ = h ◦ Φ that NΘ(z̄) =

∇h(z̄)∗NΞ(Ψ(x̄, w̄)). Appealing now to [38, Theorem 3.1] gives us d ∈ ∂2δΞ(Ψ(x̄, w̄), µ̄)(0)

such that p = ∇h(z̄)∗d, where µ̄ ∈ NΞ(Ψ(x̄, w̄)) is the unique solution to the reduced KKT

system (3.11) satisfying λ̄ = ∇h(z̄)∗µ̄. Thus ∇xΨ(x̄, w̄)∗d = 0 due to (3.15), which shows

that d = 0 and hence p = 0. Substitution p = 0 into (3.15) justifies (2.22).

Recall that the validity of implication (2.22) under assumptions (RC) and ( ND) was

first proved in [39, Theorem 6.6] for mathematical programs with polyhedral constraint (i.e.,

when Θ in (3.1) is as polyhedral set) and then in [37, Lemma 4.5] for second-order cone

programs when Θ stands for the Lorentz second-order/ice-cream cone.

As a consequence of the discussions in Remark 3.3, we show next that the validity of

(ND) under (RC) implies the following second-order qualification condition (SOQC)

∂2δΘ(z̄, λ̄)(0) ∩ ker∇xΦ(x̄, w̄)∗ = {0} (3.16)



33

from [38], where λ̄ is the unique solution of KKT system (3.10) at the given triple (x̄, w̄, v̄).

Note that the converse implication holds when Θ is either a polyhedral convex set [35,

Proposition 6.1], or the Lorentz second-order cone [37, Theorem 3.6], or the SDP cone Sm+

(this can be derived from [3]), while in general it still remains an open question.

Corollary 3.4 (second-order qualification condition under nondegeneracy). Let

λ̄ be a unique vector satisfying (3.10) for the triple (x̄, w̄, v̄) from Theorem 2.9, and let

conditions (RC) and (ND) be fullfiled. Then SOCQ (3.16) holds.

Proof. Take p ∈ ∂2δΘ(z̄, λ̄)(0) with ∇xΦ(x̄, w̄)∗p = 0 and find from the discussions in

Theorem 3.2 and Remark 3.3 a vector d ∈ ∂2δΞ(Ψ(x̄, w̄), µ̄)(0) such that p = ∇h(z̄)∗d in

the notation above. This gives us ∇xΨ(x̄, w̄)∗d = 0 and hence d = 0 by the surjectivity of

∇xΨ(x̄, w̄). It shows that p = 0 and completes the proof. 4

The next consequence of Theorem 3.2 opens a technical gate for obtaining the main result

of Section 3.2 given in Theorem 3.8. To proceed, consider the following canonically perturbed

version of problem (3.1) with parametric pairs (v1, v2) ∈ Rn × Rm:

P̃w̄(v1, v2)


minimize ϕ0(x, w̄)− 〈v1, x〉 subject to x ∈ Rn

Φ(x, w̄) + v2 ∈ Θ.

(3.17)

Corollary 3.5 (full stability with respect to canonical perturbations). Let x̄ be a

feasible solution to the unperturbed problem P(w̄, v̄) in (3.2) with some w̄ ∈ Rd and v̄ from

(3.9), and assumptions (RC) and (ND) be satisfied. Then x̄ is a fully stable local minimizer

of P(w̄, v̄) if and only if it is a fully stable local minimizer of P̃w̄(v̄, 0).

Proof. We can easily to see that the nondegeneracy condition (ND) for P(w̄, v̄) at x̄ is

equivalent to the validity of this condition for P̃w̄(v̄, 0). It follows from Theorem 3.2 that the

full stability of the local minimizer x̄ in both problems P(w̄, v̄) and P̃w̄(v̄, 0) amounts to the
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validity of the same second-order condition (3.12). This justifies the claimed equivalence. 4

Looking at the problem P̃w̄(v̄, 0) in Corollary 3.5, observe that it corresponds to just

the tilt perturbation of the original problem (3.2) with the fixed basic parameter w = w̄.

The latter problem can be written as Pw̄(v). Thus we have the following consequence of

Corollary 3.5 about the relationship between full and tilt stability under the assumptions

made.

Corollary 3.6 (reduction of full stability to tilt stability at nondegenerate solu-

tions.) Consider the setting of Corollary 3.5. Then the full stability of the local minimizer

x̄ for the original problem P(w̄, v̄) is equivalent to its tilt stability in problem Pw̄(v̄).

Proof. It follows from the discussion above that both stability notions are characterized by

the same second-order condition (3.12) under the (RC) and (ND) assumptions made. 4

3.2 Relationships of Full Stability with Other Stability Notions

This section addresses relationships between full stability of our basic problem P(w̄, v̄) in

(3.2) and other well-recognized stability notions in constrained optimization and associated

variational systems. We develop a largely self-contained approach to such relationships based

on the reduction procedure of Section 3.1, which allows us to establish new equivalences and

also to provide new proofs of some recently discovered results in this direction.

We first present a rather simple description of full stability in P(w̄, v̄) via a Lipschitzian

single-valued localization of the parameterized collection of stationary points therein. Recall

that a set-valued mapping F : Rn ⇒ Rm admits a single-valued graphical localization around

(x̄, ȳ) ∈ F provided that there exist neighborhoods U of x̄ and V of ȳ together with a

single-valued mapping f : U → V such that F ∩ (U × V ) = f .

Proposition 3.7 (equivalence between full stability of P(w̄, v̄) and Lipschitzian

localization of parameterized stationary points). Let x̄ be a feasible solution to the
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unperturbed problem P(w̄, v̄) in (3.2) with some w̄ ∈ Rd and v̄ from (3.9), and let RCQ

(3.4) hold. Then x̄ is a fully stable locally optimal solution to problem P(w̄, v̄) if and only

if x̄ ∈Mγ(w̄, v̄) for some γ > 0 and the set-valued mapping

S(w, v) : =
{
x ∈ Rn

∣∣∣ v ∈ ∇xϕ0(x,w) +∇xΦ(x,w)∗NΘ(Φ(x,w))
}

(3.18)

admits a Lipschitzian single-valued graphical localization around (w̄, v̄, x̄).

Proof. Applying the corresponding characterization of full stability in the general uncon-

strained format of Theorem 2.5 with the extended-real-valued function ϕ from (3.3), we

conclude that the basic constraint qualification imposed on Theorem 2.5 holds due to the

assumed RCQ by [20, Proposition 2.2]. This ends the proof. 4

Unless otherwise stated, in the rest of this section we take v̄ = 0 in the KKT system

(3.10) without less of generality. Consider the generalized equation (GE) v

0

 ∈
 ∇xL(x,w, λ)

−Φ(x,w)

+

 0

N−1
Θ (λ)

 , (3.19)

which is indeed the KKT system for problem P(w, v) in (3.2). Let (x̄, λ̄) be a solution to

(3.19) with (w, v) = (w̄, 0) and define the partial linearization of (3.19) at (x̄, λ̄) by v1

v2

 ∈
 ∇2

xxL(x̄, w̄, λ̄)(x− x̄) +∇xΦ(x̄, w̄)∗(λ− λ̄)

−Φ(x̄, w̄)−∇xΦ(x̄, w̄)(x− x̄)

+

 0

N−1
Θ (λ)

 . (3.20)

Recall [47] that (x̄, λ̄) is a strongly regular solution to the KKT system (3.19) if the solution

map to (3.20) has a Lipschitz continuous single-valued localization around (0, 0) ∈ Rn×Rm.

Theorem 3.8 (full stability of P(w̄, v̄) and local single-valuedness and Lipschitz

continuity of solution maps to basic and reduced KKT systems). Let x̄ be a

feasible solution to the unperturbed problem P(w̄, v̄) in (3.2) with some w̄ ∈ Rd and v̄ = 0

from (3.9) under the validity of the reducibility (RC) and RCQ conditions. The following

are equivalent:
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(i) x̄ is a fully stable locally optimal solution to P(w̄, v̄) satisfying (ND).

(ii) x̄ ∈ Mγ(w̄, v̄) for some γ > 0 and the solution map SrKKT : (w, v) 7→ (x, µ) for the

reduced KKT system (3.11) is single-valued and Lipschitz continuous around (w̄, v̄, x̄, µ̄).

(iii) x̄ ∈ Mγ(w̄, v̄) for some γ > 0 and the solution map SKKT : (w, v) 7→ (x, λ) for the

KKT system (3.10) is single-valued and Lipschitz continuous around (w̄, v̄, x̄, λ̄).

(iv) x̄ ∈Mγ(w̄, v̄) for some γ > 0 and (x̄, λ̄) is a strongly regular solution to (3.19).

Proof. To verify implication (i) =⇒ (ii), we get from (i) and the first part of Proposition 3.1

that x̄ is a fully stable locally optimal solution to the reduced problem (3.7). The local single-

valuedness of the solution map SrKKT : (w, v) 7→ (x, µ) for the reduced KKT system (3.11) in

(ii) was established above as a consequence of the imposed (RC) and (ND) assumptions

ensuring the full rank condition for ∇xΨ(x̄, w̄) by the second part of Proposition 3.1.

Next we verify that the mapping SrKKT : (w, v) 7→ (x, µ) is Lipschitz continuous around

(w̄, v̄, x̄, µ̄). Note that the Lipschitz continuity of (w, v) 7→ xwv comes directly from the

full stability of x̄ in (3.7). To justify this property for the mapping (w, v) 7→ µwv, pick

w1, w2 ∈ W and v1, v2 ∈ V and then find µwivi ∈ NΞ(ci) with ci := Ψ(xwivi , wi) for i = 1, 2

satisfying 
v2 = ∇xϕ0(xw2v2 , w2) +∇xΨ(xw2v2 , w2)∗µw2v2 ,

v1 = ∇xϕ0(xw1v1 , w1) +∇xΨ(xw1v1 , w1)∗µw1v1 .

It shows therefore that the validity of the following equality

∇xΨ(xw2v2 , w2)∗(µw2v2 − µw1v1) =
(
∇xΨ(xw1v1 , w1)−∇xΨ(xw2v2 , w2)

)∗
µw1v1

+ ∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2) + v2 − v1.

(3.21)

By shrinking the neighborhoodsW and V if necessary, we can always assume the surjectivity

of ∇xΨ(xwivi , wi) due to this property of ∇xΨ(x̄, w̄). Thus it follows from the standard

surjectivity result of [27, Lemma 1.18] that for any (w, v) ∈ W × V there is κwv > 0 such
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that

‖∇xΨ(xw2v2 , w2)∗(µw2v2 − µw1v1)‖ ≥ κw2v2‖µw2v2 − µw1v1‖ ≥ κ‖µw2v2 − µw1v1‖, (3.22)

where κ := inf{κwv| (w, v) ∈ W × V }. Furthermore, it is easy to conclude from the sur-

jectivity of ∇xΨ(x̄, w̄) that κ > 0 and that there is ρ < ∞ such that ‖µwv‖ ≤ ρ for all

(w, v) ∈ W ×V . Denoting by ` > 0 is a common Lipschitz constant for the mappings ∇xϕ0,

∇xΦ, ∇h, Φ, and (w, v) 7→ xwv on W × V , we derive from (3.21) and (3.22) the estimates

‖µw2v2 − µw1v1‖ ≤ 1
κ

(
‖∇xΨ(xw1v1 , w1)−∇xΨ(xw2v2 , w2)‖ · ‖µw1v1‖

+ ‖∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2)‖+ ‖v2 − v1‖
)

≤ γ
κ

[
ρ`2
(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
+ `

(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
+ ‖v2 − v1‖

]
.

which imply the local Lipschitz continuity of (w, v) 7→ µwv and thus justify (ii).

Next we show that assuming the local Lipschitz continuity of SrKKT : (w, v) 7→ (x, µ)

around (w̄, v̄, x̄, µ̄) in (ii) implies this property for SKKT : (w, v) 7→ (x, λ) around (w̄, v̄, x̄, λ̄)

with λ̄ := ∇h(x̄)∗µ̄ and z̄ := Φ(x̄, w̄) in (iii). Similarly to the above, it remains to verify

that the mapping (w, v) 7→ λwv is Lipschitz continuous around (w̄, v̄). To proceed, take any

wi ∈ W , vi ∈ V and form λwivi := ∇h(zi)
∗µwivi with zi := Φ(xwivi , wi) for i = 1, 2. Then we

have

‖λw2v2 − λw1v1‖ = ‖∇h(z2)∗µw2v2 −∇h(z1)∗µw1v1‖

≤ ‖∇h(z2)∗‖ · ‖µw2v2 − µw1v1‖+ ‖∇h(z2)−∇h(z1)‖ · ‖µw1v1‖

≤ τ‖µw2v2 − µw1v1‖+ ρ`2
(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
in the notation above, where τ > 0 is an upper bound of ‖∇h(z)∗‖ for all z sufficiently close

to z̄. This justifies the claimed local Lipschitz continuity of SKKT and thus verifies (iii).

Our next implication to prove is (iii)=⇒(i). Taking into account Proposition 3.7 and the

form of the KKT system (3.10), it remains to check that (iii) ensures the validity of (ND).
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This kind of relationships has been well understood in optimization theory (see, e.g., [1]);

we present a complete proof in our setting for the reader’s convenience.

Arguing by contradiction, suppose that (ND) in the equivalent form (3.5) does not hold

and thus find 0 6= ϑ ∈ Rm so that ∇xΦ(x̄, w̄)∗ϑ = 0 and that ϑ ∈ span{NΘ(z̄)} with

z̄ = Φ(x̄, w̄). By (iii) we have SKKT (w̄, v̄) = {(x̄, λ̄)} for some λ̄ ∈ Rm. If λ̄ ∈ riNΘ(z̄), with

“ri" standing for the relative interior of a convex set, then λ̄+tϑ ∈ NΘ(z̄) for any small t > 0.

Indeed, it is easy to see that span{NΘ(z̄)} = aff {NΘ(z̄)} and hence λ̄+tϑ ∈ aff {NΘ(z̄)} when

t > 0 is sufficiently small. Employing this, we get (x̄, λ̄+tϑ) ∈ SKKT (w̄, v̄), which contradicts

the the aforementioned uniqueness of Lagrange multipliers in (3.10) and so justifies (ND) in

this case. In the remaining case of λ̄ 6∈ riNΘ(z̄), pick ξ ∈ riNΘ(z̄) 6= ∅ and get from the well-

known result of convex analysis (see, e.g., [53, Proposition 2.40]) that λ̄+ t(ξ− λ̄) ∈ riNΘ(z̄)

for any t ∈ (0, 1). Putting vt = t∇xΦ(x̄, w̄)∗(ξ − λ̄) for t > 0 sufficiently small, we obtain

that (x̄, λ̄ + t(ξ − λ̄)) ∈ SKKT (w̄, vt). Since λ̄ + t(ξ − λ̄) ∈ riNΘ(z̄), it again justifies (ND)

by the arguments above and thus confirms the validity of assertion (i).

To verify now implication (i) =⇒ (iv), take x̄ from (i) and deduce from Corollary 3.5

that x̄ is a fully stable locally optimal solution to problem P̃w̄(v̄, 0) defined by (3.17) with

v̄ = 0. Note that the KKT system for the parametric problem P̃w̄(v1, v2) is given by v1

v2

 ∈
 ∇xL(x, w̄, λ)

−Φ(x, w̄)

+

 0

N−1
Θ (λ)

 , (3.23)

where (v1, v2) varies around (v̄, 0) ∈ Rn × Rm. It follows from the implication (i) =⇒ (iii)

established above that the solution map S̃KKT : (v1, v2) 7→ (x, λ) for (3.23) is single-valued

and Lipschitz continuous around (v̄, 0). Observe that the generalized equation (3.20) can

be treated as a (partial) linearization of the KKT system (3.23). Taking into account that

(3.23) is a canonically perturbed system, we conclude that the local single-valuedness and

Lipschitz continuity of its solution map is equivalent to these properties of solutions to its
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linearization (3.20); see, e.g., [5, Theorem 2B.10]). The latter justifies the strong regularity

of the KKT system (3.10) around (x̄, λ̄) according to the definition above taken from [47].

To complete the proof of the theorem, it remains to show that (iv) =⇒ (i). Take x̄

satisfying (iv) with some λ̄. Then the arguments of the preceding paragraph tell us that

the solution map S̃KKT for the KKT system (3.23) is single-valued and Lipschitz continu-

ous around (v̄, 0). Employing now in this setting the implication (iii) =⇒ (i) established

above ensures that x̄ is a fully stable locally optimal solution to problem P̃w̄(v̄, 0) satisfying

(ND). Thus it is a fully stable locally optimal solution to the original problem P(w̄, v̄) by

Corollary 3.5. 4

Note that the equivalence (i)⇐⇒(iv) of Theorem 3.8 has been recently proved in [33,

Theorem 5.6] by using a more sophisticated device based on characterizing strong regularity

in [1] via the uniform quadratic growth condition with respect to the so-called C2-smooth

parametrization defined below. Furthermore, the latter growth condition has been employed

in [33] to characterize yet another stability notion known as strong Lipschitzian stability. In

theorem 3.9 we relate this notion to full stability by using a new approach via Theorem 3.2

and Proposition 3.7. Note that the first part of Theorem 3.9 does not impose (RC) in

contrast to [33, Theorem 5.6].

To proceed, fix w̄ ∈ Rd and consider the constrained optimization problem

Pw̄ : minimize ϕ0(x, w̄) subject to Φ(x, w̄) ∈ Θ (3.24)

with the data from (3.1). We say that the pair (ϑ(x, u),Υ(x, u)) with u ∈ Rs and ϑ : Rn ×

Rs → R, Υ: Rn×Rs → Rm is a C2-smooth parametrization of (ϕ0(x, w̄),Φ(x, w̄)) in (3.24) at

ū ∈ Rs if ϕ0(x, w̄) = ϑ(x, ū) and Φ(x, w̄) = Υ(x, ū) for all x ∈ Rn, where both ϑ and Υ are
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twice continuously differentiable. Define the family of parametric optimization problems:

P̂(u)


minimize ϑ(x, u) subject to x ∈ Rn,

Υ(x, u) ∈ Θ.

We say [1, Definition 5.33] that a stationary point x̄ of Pw̄ is strongly Lipschitz stable with

respect to the C2-smooth parametrization (ϑ(x, u),Υ(x, u)) of (ϕ0(x, w̄),Φ(x, w̄)) in (3.24) at

ū ∈ Rs if there are neighborhoods U of ū and X of x̄ such that for any u ∈ U each problem

P̂(u) has a unique stationary point x(u) ∈ X and the mapping u 7−→ x(u) is Lipschitz

continuous around ū. If it holds for any C2-smooth parameterizations of (ϕ0(x, w̄),Φ(x, w̄))

in (3.24) at ū ∈ Rs, then x̄ is called strongly Lipschitz stable. This notion is a Lipschitzian

counterpart of the Kojima’s strong stability [18], where the mapping u 7−→ x(u) is merely

continuous.

Theorem 3.9 (full stability vs. strong Lipschitzian stability in constrained opti-

mization. Let x̄ be a Lipschitz stable locally optimal solution to problem Pw̄ in the framework

of Proposition 3.7. Then it is a fully stable locally optimal solution to problem P(w̄, v̄) with

v̄ = 0. The converse implication holds provided that both (RC) and (ND) conditions are

satisfied.

Proof. To justify the first part of the theorem, take a Lipschitz stable locally optimal solu-

tion to (3.24). It is easy to see that (ϕ0(x,w)−〈x, v〉,Φ(x,w)) is a C2-smooth parametrization

of (ϕ0(x, w̄),Φ(x, w̄)) in (3.24) at ū := (w̄, 0) ∈ Rd × Rn. Let x(u) be a unique stationary

point x(u) for any u = (w, v) close enough to ū and so that the mapping u 7−→ x(u) is

Lipschitz continuous around ū. This tells us that the set-valued mapping

S(u) : =
{
x ∈ Rn

∣∣∣ v ∈ ∇xϕ0(x,w) +∇xΦ(x,w)∗NΘ(Φ(x,w))
}

has a Lipschitzian single-valued graphical localization around (ū, x̄). Employing now Propo-

sition 3.7, we deduce that x̄ is a fully stable locally optimal solution to problem P(w̄, 0).
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To prove the converse implication of the theorem, suppose that x̄ is a fully stable

locally optimal solution to problem P(w̄, 0) under the validity of (RC) and (ND). By

Theorem 3.2 we have the second-order characterization (3.12). Take now an arbitrary C2-

smooth parametrization of (ϕ0(x, w̄),Φ(x, w̄)) in (3.24) at ū ∈ Rs. This yields the equalities

∇xϕ0(x̄, w̄) = ∇xϑ(x̄, ū), ∇xΦ(x̄, w̄) = ∇xΥ(x̄, ū) as well as those for the corresponding

second-order derivatives. Thus we have (3.12) for problem P̂(ū), which ensures that x̄ is a

fully stable locally optimal solution to this problem. Then it follows from Proposition 3.7

that the set-valued mapping

S(u, v) : =
{
x ∈ Rn

∣∣∣ v ∈ ∇xϑ(x, u) +∇xΥ(x, u)∗NΘ(Υ(x, u))
}

admits a Lipschitzian single-valued graphical localization around (ū, 0). Letting now x(u) : =

S(u, 0), we get that x(u) is a stationary point for problem P̂(u) and that the mapping

u 7−→ x(u) is locally Lipschitz continuous around ū. This verifies the strong Lipschitzian

stability of x̄ in (3.24) and thus completes the proof of the theorem. 4
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CHAPTER 4 SECOND-ORDER ANALYSIS OF

PIECEWISE LINEAR FUNCTIONS

In this chapter we mainly address variational theory and applications of the class of

convex piecewise linear (CPWL) extended-real-valued functions [53] playing an important

role in many aspects of variational analysis and optimization. Having in hands recently ob-

tained [41] explicit calculations of the second-order subdifferentials (or generalized Hessians)

of such function in the sense of [26], we present here some of their applications to second-

order variational analysis and parametric optimization. Proceeding in this direction requires

us to deal not only with CPWL functions per se but mainly with fully amenable composi-

tions involving such functions, which play an underlying role in many aspects of variational

analysis, optimization, and stability.

Recall [51, 53] that θ : Rn → R is piecewise linear if its domain dom θ is nonempty and

can be represented as the union of finitely many convex polyhedral sets so that on each

of these pieces θ is given by 〈a, x〉 − α with some α ∈ R and a ∈ Rn. Observing that

such functions are not necessarily convex, we focus on the study of convex piecewise linear

(CPWL) functions, which admit the following equivalent descriptions [53, Theorem 2.49].

For simplicity we write in what follows θ ∈ CPWL whenever θ belongs to this class.

Proposition 4.1 (convex piecewise linear functions). The following are equivalent:

(i) θ : Rm → R is a convex and piecewise linear function labeled as θ ∈ CPWL.

(ii) The epigraph epi θ is a convex polyhedron in Rm+1.

(iii) There are αi ∈ R and ai ∈ Rn for i ∈ T1 : = {1, . . . , l} such that ϕ is represented by

θ(x) =


max

{
〈a1, z〉 − α1, . . . , 〈al, z〉 − αl

}
if z ∈ dom θ,

∞ otherwise

(4.1)
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with some l ∈ IN , where the set dom θ is a convex polyhedron given by

dom θ =
{
z ∈ Rm

∣∣∣ 〈di, z〉 ≤ βi for all i ∈ T2 := {1, . . . , p}
}

(4.2)

with some di ∈ Rn, βi ∈ R, and p ∈ IN .

It follows from (4.1) that any θ ∈ CPWL can be represented in the sum form

θ(z) = max
{
〈a1, z〉 − α1, . . . , 〈al, z〉 − αl

}
+ δ(z; dom θ), z ∈ Rm, (4.3)

where both summands are nonsmooth. Note that CPWL functions may be given in other

forms different from (4.3), e.g., as the support function of a convex polyhedron

θ(x) = σP (z) := sup{〈h, z〉| h ∈ P},

which is conjugate to the indicator function of P . Thus σP is CPWL by [53, Theo-

rem 11.14(a)].

It is observed in [41, Proposition 3.2] that, besides (4.2), the domain of θ admits the

representation dom θ =
⋃l
i=1 Ci with l taken from (4.1) and the sets Ci, i ∈ T1, defined by

Ci :=
{
z ∈ dom θ

∣∣∣ 〈aj, z〉 − αj ≤ 〈ai, z〉 − αi, for all j ∈ T1

}
. (4.4)

Consider next the corresponding active index subsets in (4.4) and (4.2) given by

K(z̄) :=
{
i ∈ T1

∣∣∣ z̄ ∈ Ci} and I(z̄) :=
{
i ∈ T2

∣∣∣ 〈di, z̄〉 = βi

}
(4.5)

and recall the formula for ∂θ(z̄) at z̄ ∈ dom θ obtained in [41, Proposition 3.3]:

∂θ(z̄) = co
{
ai

∣∣∣ i ∈ K(z̄)
}

+N(z̄; dom θ) = co
{
ai

∣∣∣ i ∈ K(z̄)
}

+
{
di

∣∣∣ i ∈ I(z̄)
}
. (4.6)

Then for any (z̄, v̄) ∈ ∂θ we get from (4.6) that v̄ = v̄1 + v̄1, where

v̄1 =
∑
i∈K(z̄)

λ̄iai with
∑
i∈K(z̄)

λ̄i = 1, λ̄i ≥ 0 and v̄2 =
∑
i∈I(z̄)

µ̄idi with µ̄i ≥ 0. (4.7)
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Recall the well-known tangent cone representation

T (z̄; dom θ) =
{
x ∈ Rn

∣∣∣ 〈di, x̄〉 ≤ 0 for all i ∈ I(z̄)
}

(4.8)

for z̄ ∈ dom θ. Corresponding to (4.7), define the index subsets of positive multipliers by

J+(z̄, v̄1) :=
{
i ∈ K(z̄)

∣∣∣ λ̄i > 0
}
, J+(z̄, v̄2) :=

{
i ∈ I(z̄)

∣∣∣ µ̄i > 0
}

(4.9)

and then consider the following sets defined entirely via the parameters in (4.1) and (4.2)

along arbitrary index subsets P1 ⊂ Q1 ⊂ T1 and P2 ⊂ Q2 ⊂ T2:

F{P1,Q1},{P2,Q2} : = span
{
ai − aj

∣∣∣ i, j ∈ P1

}
+
{
ai − aj

∣∣∣ (i, j) ∈ (Q1 \ P1)× P1

}
+span

{
di

∣∣∣ i ∈ P2

}
+
{
di

∣∣∣ i ∈ Q2 \ P2

}
,

(4.10)

G{P1,Q1},{P2,Q2} :=
{
u ∈ Rn

∣∣∣ 〈ai − aj, u〉 = 0 if i, j ∈ P1,

〈ai − aj, u〉 ≤ 0 if (i, j) ∈ (Q1 \ P1)× P1,

〈di, u〉 = 0 if i ∈ P2, and 〈di, u〉 ≤ 0 if i ∈ Q2 \ P2

}
.

(4.11)

Now we are ready to formulate the precise calculation formulas for the second-order subdif-

ferential of CPWL functions. In the notation above we have from [41, Theorem 5.1] that

∂2θ(z̄, v̄)(u) =
{
w
∣∣∣(w,−u) ∈ F{P1,Q1},{P2,Q2} × G{P1,Q1},{P2,Q2}, (P1, Q1, P2, Q2) ∈ A

}
(4.12)

for any u ∈ Rm, where the set A of index quadruples is defined by

A :=
{

(P1, Q1, P2, Q2)
∣∣∣ P1 ⊂ Q1 ⊂ K, P2 ⊂ Q2 ⊂ I,

(P1, P2) ∈ D(z̄, v̄), H{Q1,Q2} 6= ∅
} (4.13)

with K := K(z̄), I := I(z̄), H{Q1,Q2} := {z ∈ dom θ | K(z) = Q1, I(z) = Q2}, and

D(z̄, v̄) :=
{

(P1, P2) ⊂ K × I
∣∣∣ v̄ ∈ co {ai| i ∈ P1}+ {di | i ∈ P2}

}
.
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Furthermore, [41, Theorem 5.2] gives us the domain formula

dom ∂2θ(z̄, v̄) =
{
u
∣∣∣ 〈ai − aj, u〉 = 0 for i, j ∈ Γ(J1) and 〈dt, u〉 = 0 for t ∈ Γ(J2)

}
,

(4.14)

where the index sets Γ(J1) and Γ(J2) are defined by

Γ(J1) :=
{
i ∈ K

∣∣∣ 〈ai − aj, u〉 = 0 for all j ∈ J1 and u ∈ G{J1,K},{J2,I}

}
,

Γ(J2) :=
{
t ∈ I

∣∣∣ 〈dt, u〉 = 0 for all u ∈ G{J1,K},{J2,I}

} (4.15)

with the notation J1 := J+(z̄, v̄1) and J2 := J+(z̄, v̄2) built upon (4.7) and (4.9).

In the subsequent sections of this chapter, we will often consider compositions θ ◦ Φ of

CPWL outer functions θ : Rm → R and inner mappings Φ: Rn × Rd → Rm that are C2-

smooth around some (x̄, w̄) with z̄ := Φ(x̄, w̄) ∈ dom θ under the first-order qualification

condition

∂∞θ(z̄) ∩ ker∇xΦ(x̄, w̄)∗ = {0}. (4.16)

Such compositions form an important subclass of functions known as fully amenable in x

at x̄ with compatible parametrization by w at w̄ (we will drop in what follows the latter

parametrization expression for brevity), which are defined in this way with using more general

convex piecewise linear-quadratic outer functions θ; see [53] for more details.

4.1 Reducibility, Nondegeneracy and Second-Order Qualification

The main goal of this section is to establish relationships between the second-order qual-

ification condition introduced in [53] in order to derive the exact second-order chain rule

for fully amenable compositions with CPWL outer functions and the partial nondegeneracy

condition of a completely different nature that was employed in [28] to get the same second-

order chain rule. In this way we obtain below some auxiliary results of their independent
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interest.

Considering first a fully amenable composition ψ = θ ◦ Φ as defined at the end of the

last section, recall that the second-order qualification condition (SOCQ) holds for ψ in x at

(x̄, w̄) if

∂2θ(z̄, v)(0) ∩ ker∇xΦ(x̄, w̄)∗ = {0} for all v ∈M(x̄, w̄, q̄), (4.17)

where q̄ ∈ ∂xψ(x̄, w̄) is a fixed partial subgradient of ψ in x at (x̄, w̄), and where

M(x̄, w̄, q̄) :=
{
v ∈ Rm

∣∣∣ v ∈ ∂θ(z̄) with ∇xΦ(x̄, w̄)∗v = q̄
}
. (4.18)

Note that the imposed qualification condition (4.16) ensures, by using the well-known first-

order subdifferential chain rule [27, 53], that M(x̄, w̄, q̄) 6= ∅.

For a given θ : Rn → R, denote by S(z) a subspace of Rm parallel to the affine hull

aff ∂θ(z) of the subdifferential ∂θ(z), z ∈ Rm. The next theorem provides a precise calcula-

tion of the second-order subdifferential for CPWL functions at the origin 0 ∈ Rm entirely

via the initial data in (4.1) and (4.2), relates it to the subspace S(z̄) defined above, and

gives an effective representation of SOQC in (4.17) convenient for our further analysis and

applications.

Theorem 4.2 (second-order subdifferential of CPWL functions at the origin and

SOQC representation). Let ψ = θ ◦ Φ be a fully amenable composition of θ : Rm → R

and Φ: Rn ×Rd → Rm with θ ∈ CPWL and z̄ = Φ(x̄, w̄), and let S(z̄) be a subspace of Rm

parallel to the affine hull aff ∂θ(z̄). Then we following assertions hold:

(i) For all v̄ ∈ ∂θ(z̄) we have the representation

∂2θ(z̄, v̄)(0) = span
{
ai − aj

∣∣∣ i, j ∈ K(z̄)
}

+ span
{
di

∣∣∣ i ∈ I(z̄)
}

(4.19)

via the data in (4.1) and (4.2) with the active index sets K(z̄) and I(z̄) defined in (4.5).

(ii) Furthermore, we have ∂2θ(z̄, v̄)(0) = S(z̄) independently of v̄ ∈ ∂θ(z̄).
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(iii) The SOQC property (4.17) can be equivalently written as

S(z̄) ∩ ker∇xΦ(x̄, w̄)∗ = {0} (4.20)

independently of v̄ ∈ ∂θ(z̄) and q̄ ∈ ∂xψ(x̄, w̄) in (4.18).

Proof. To verify first the inclusion “⊂" in (4.19), pick y ∈ ∂2θ(z̄, v̄)(0) and find by (4.12)

an index quadruple (P1, Q1, P2, Q2) ∈ A from (4.13) such that

(y, 0) ∈ F{P1,Q1},{P2,Q2} × G{P1,Q1},{P2,Q2}.

We immediately deduce from representation (4.10) that

F{P1,Q1},{P2,Q2} ⊂ span
{
ai − aj

∣∣∣ i, j ∈ K(z̄)
}

+ span
{
di

∣∣∣ i ∈ I(z̄)
}
,

which justifies the inclusion “⊂" in (4.19). To derive further the opposite inclusion “⊃"

therein, take any vector y ∈ span{ai − aj | i, j ∈ K(z̄)} + span{di | i ∈ I(z̄)} and then

put P1 = Q1 := K(z̄) and P2 = Q2 := I(z̄). Since z̄ ∈ H{Q1,Q2} in (4.19), it follows

that (P1, Q1, P2, Q2) ∈ A. Employing again the second-order formula (4.12) tells us that

(y, 0) ∈ N((z̄, v̄); ∂θ) and hence yields y ∈ ∂2θ(z̄, v̄)(0), which thus verifies assertion (i).

To prove assertion (ii), observe that S(z̄) = aff ∂θ(z̄) − at for some t ∈ K(z̄). Picking

y ∈ S(z̄) gives us y + at =
∑s

i=1 αici for some vectors ci ∈ ∂θ(z̄) and some number s > 0

with
∑s

i=1 αi = 1. It follows from (4.6) that ci = c1i + c2i with c1i ∈ co {ar | r ∈ K(z̄)} and

c2i ∈ N(z̄; dom θ) for i = 1, . . . , s. Therefore we arrive at the representation

y =
s∑
i=1

αici − at =
s∑
i=1

αi(c1i − at) +
s∑
i=1

αic2i. (4.21)

It is clear that c1i − at ∈ span{ai − aj | i, j ∈ K(z̄)} by c1i, at ∈ co {ar | r ∈ K(z̄)}. Thus we

get

ci − at ∈ span
{
ai − aj

∣∣∣ i, j ∈ K(z̄)
}

+ span
{
di

∣∣∣ i ∈ I(z̄)
}
.

Using this together with (4.21) and (4.19) justifies the inclusion S(z̄) ⊂ ∂2θ(z̄, v̄)(0) in (ii).
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To verify the opposite inclusion therein, take y ∈ ∂2θ(z̄, v̄)(0) and express it by (4.19) as

y =
∑

(i,j)∈A1×A2

αi,j(ai − aj) +
∑
t∈A3

βtdt

with some index subsets A1, A2 ⊂ K(z̄) and A3 ⊂ I(z̄). Select now B1, B2 ⊂ A1 × A2 and

B3, B4 ⊂ A3 so that A1 × A2 = B1 ∪B2, and A3 = B3 ∪B4, and

αi,j ≥ 0 whenever (i, j) ∈ B1 and αi,j < 0 whenever (i, j) ∈ B2,

βt ≥ 0 whenever t ∈ B3 and βt < 0 whenever t ∈ B4.

(4.22)

In this way we represent the given vector y as y = y′ − b with

y′ :=
∑

(i,j)∈B1

αi,jai−
∑

(i,j)∈B2

αi,jaj+
∑
t∈B3

βtdt and b :=
∑

(i,j)∈B1

αi,jaj−
∑

(i,j)∈B2

αi,jai+
∑
t∈B4

(−βt)dt.

Denoting α :=
∑

(i,j)∈B1
αi,j −

∑
(i,j)∈B2

αi,j, deduce from (4.22) that α ≥ 0. For α > 0 we

get

1

α
y′ ∈ aff ∂θ(z̄) and

1

α
b ∈ aff ∂θ(z̄). (4.23)

It follows from the construction of S(z̄) and the second inclusion in (4.23) that we have the

equality S(z̄) = aff ∂θ(z̄) − 1
α
b, and so the first one in (4.23) yields 1

α
y ∈ S(z̄). This shows

that y ∈ S(z̄) since S(z̄) is a subspace, and thus we get ∂2θ(z̄, v̄)(0) ⊂ S(z̄) in the case of

α > 0. Considering now the remaining case of α = 0 gives us the expression y =
∑

t∈A3
βtdt,

which implies by (4.22) that

y = at +
∑
t∈B3

βtdt −
(
at +

∑
t∈B4

(−βt)dt
)
∈ S(z̄) with some t ∈ K(z̄)

due to at +
∑

t∈B4
(−βt)dt ∈ aff ∂θ(z̄) and therefore verifies assertion (ii). This immediately

implies condition (4.20) in (iii) by comparing it with the SOCQ definition in (4.17). 4

Note that while the precise calculation of ∂2θ(z̄, v̄)(0) in Theorem 4.2(i) is new, asser-

tion (ii) therein follows from the proof of Theorem 4.3 in [38] by using the representation

of ∂2θ(z̄, v̄)(0) for piecewise linear-quadratic functions θ : Rm → R established in [38, Theo-
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rem 4.1]. The proof of the latter result in [38] is based on the tangential approach from [53]

being significantly more involved in comparison with the one given above.

It is also worth mentioning as a by product of the above calculations that the validity

of SOQC for fully amenable compositions with CPWL outer functions yields the fulfillment

of the first-order qualification condition (4.16) in the definition of such compositions. To

see this, recall that ∂∞θ(z̄) = N(z̄; dom θ) for convex functions and thus get the inclusion

∂∞θ(z̄) ⊂ ∂2θ(z̄, v̄)(0) whenever v̄ ∈ ∂θ(z̄) by comparing (4.19) with that of N(z̄; dom θ) =

{di : i ∈ I(z̄)}.

Next we consider the concept of nondegeneracy. It was first initiated for sets in [48] as a

polyhedral counterpart of the classical linear independence constraint qualification (LICQ)

in nonlinear programming. Note that even for mathematical programs with equilibrium con-

straints (MPPCs) this nondegeneracy condition may be strictly weaker than LICQ; see [39]

for equivalent descriptions for MPPCs and particularly Example 6.7 therein. Nondegener-

acy and associated reducibility notions for general sets were comprehensively studied in [1]

based on the previous paper of these authors. For the case of extended-real-valued functions

the notion of C2-reducibility and the corresponding notion of partial nondegeneracity was

formulated in [28] in order to derive the aforementioned second-order subdifferential chain

rule; see below.

Following this pattern, we say that a function θ : Rm → R is C2-reducible (resp. C∞-

reducible) to a function ϑ : Rs → R at z̄ with s ≤ m if there exists a C2-smooth (resp.

C∞-smooth) mapping h : Rm → Rs with the surjective derivative ∇h(z̄) such that θ(z) =

(ϑ ◦ h)(z) for all z around z̄.

Our next result shows that any function θ ∈ CPWL on Rm is C∞-reducible to some

function ϑ ∈ CPWL on Rs by using actually a linear surjective operator h : Rm → Rs. From

now on we assume that 0 ∈ aff ∂θ(z̄) at z̄ ∈ dom θ, which tells us that S(z̄) = aff ∂θ(z̄).
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In fact this assumption does not restrict the generality in dealing with the second-order

subdifferential. Indeed, we always have S(z̄) = aff ∂θ(z̄)−bz̄ for some bz̄ ∈ aff ∂θ(z̄). Defining

then θ̄(z) := θ(z) − 〈bz̄, z〉 shows that 0 ∈ aff ∂θ̄(z) and ∂2θ(z̄, ȳ) = ∂2θ̄(z̄, ȳ − bz̄) for any

v̄ ∈ ∂θ(z̄).

Lemma 4.3 (C∞-reducibility of piecewise linear functions). Let θ : Rm → R be

CPWL, let z̄ ∈ dom θ, and let s := dimS(z̄) ≤ m. Then θ is C∞-reducible at z̄ to a

CPWL function ϑ : Rs → R via a linear operator h(z) := Bz generated by some s × m

matrix B.

Proof. It follows from [41, Proposition 3.3(i)] that ∂θ(z) ⊂ ∂θ(z̄) for all z ∈ O in some

neighborhood of z̄. Denote by A the matrix of a linear isometry from Rm into Rs × Rm−s

under which A∗(S(z̄)) = Rs × {0}. Define the function ξ : Rm → R by

ξ(y) := θ(Ay) for all y ∈ Rm (4.24)

and get by [53, Proposition 3.55(b)] that ξ is proper, convex, and piecewise linear on Rm.

Applying the first-order chain rule of convex analysis to (4.24) gives us

∂ξ(y) = A∗∂θ(z) with Ay = z. (4.25)

Denote U := A−1(O) and deduce from the classical open mapping theorem that U is a

neighborhood of ȳ := A−1z̄. Suppose that α > 0 is so small that IBα(ȳ) ⊂ U for the ball

centered at ȳ with radius α and put O′ := A(int IBα(ȳ)), which is a neighborhood of z̄ by

the open mapping theorem. Then S(z) = aff ∂θ(z) + bz with some bz ∈ Rm for each z ∈ O,

and furthermore bz̄ = 0 as discussed before the formulation of the lemma. This tells us by

the above relationships that

v = (v1, . . . , vm) ∈ ∂ξ(y) = A∗∂θ(z) ⊂ A∗∂θ(z̄) ⊂ A∗(S(z̄))− A∗bz̄ ⊂ Rs × {0} (4.26)

for all y ∈ U , which implies that the last m−s elements of any v ∈ ∂ξ(y) are zeros whenever

y ∈ U . Construct now the desired s ×m matrix B claimed in the lemma from the m ×m
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matrix A−1 by deleting the lastm−s rows of the latter. We define the corresponding function

ϑ : Rs → R by using ξ in (4.24) as follows: take y = (ys, ym−s) = (x, ym−s) ∈ Rs ×Rm−s and

put

ϑ(x) := ξ(x, ȳm−s) = ξ(ys, ȳm−s) for all x ∈ Rs, (4.27)

where ȳm−s is the last m − s elements of the vector ȳ = A−1z̄. Since ξ is proper, so is

the function ϑ in (4.27). It is easy to see that ϑ is piecewise linear and the convexity of ξ

implies the convexity of ϑ. To justify the statement of the lemma, it remains to verify the

representation

θ(z) = (ϑ ◦B)(z) for all z ∈ O′. (4.28)

Let us do it by observing first that y ∈ int IBα(ȳ) whenever y = A−1z generated by z ∈ O′.

It follows from (4.24), (4.27), and the definition of B that (ϑ ◦ B)(z) = ξ(ys, ȳm−s) in

the notation above, where (ys, ȳn−s) ∈ int IBα(ȳ). Thus (4.28) would be implied by the

relationship

ξ(ys, ȳm−s) = ξ(ys, ym−s) for any y = (ys, ym−s) = A−1z, z ∈ O′. (4.29)

Since (4.29) is trivial when both values ξ(ys, ym−s) and ξ(ys, ȳm−s) are infinite, suppose

without loss of generality that ξ(ys, yn−s) is a real number. The polyhedrality of epi ξ ensures

that the function ξ is l.s.c., and hence we can apply to it the approximate mean value

inequality from [27, Corollary 3.50]. This allows us to find a point c ∈ Rm on the segment

connecting (ys, ym−s) and (ys, ȳm−s) as well as a sequence vk ∈ ∂ξ(uk) with uk → c and

ξ(uk)→ ξ(c) so that

ξ(ys, ȳm−s)− ξ(ys, ym−s) ≤ lim inf
k→∞

〈vk, (0s, ȳm−s − ym−s)〉. (4.30)

It follows from (4.26) that uk ∈ int IBα(ȳ) ⊂ U and so 〈vk, (0s, ȳm−s − ym−s)〉 = 0 for all



52

k ∈ IN sufficiently large. In the same way we get the opposite inequality

ξ(ys, ym−s)− ξ(ys, ȳm−s) ≤ 0

and combining the latter with (4.30) arrive at (4.29), which completes the proof. 4

Now we are ready to formulate, following [28], the notion of nondegeneracy of one mapping

relative to another one used for deriving the second-order chain rule. Observe that, although

this notion is formulated for two arbitrary mappings, its application to second-order analysis

mainly concerns amenable compositions θ ◦ Φ of θ : Rm → R and Φ: Rn × Rd → Rm while

defining nondegenerate points of Φ: Rn × Rd relative to the mapping h : Rm → Rs that

furnishes the appropriate reducibility of the outer function θ. Thus in our case of θ ∈ CPWL

we deal with linear mapping h(z) = Bz that appears in the C∞-reducibility assertion of

Lemma 4.3.

Having this in mind, it is said that (x̄, w̄) ∈ Rn × Rd is a partial nondegenerate point of

Φ: Rn × Rd → Rm in x relative to h : Rm → Rs if

∇xΦ(x̄, w̄)Rn + ker∇h(z̄) = Rm with z̄ = Φ(x̄, w̄) (4.31)

under the corresponding differentiability assumptions on Φ and h. The next theorem based

on the previous results of this section reveals that, in the case of fully amenable composi-

tions with CPWL outer functions, the SOQC property (4.20) of θ ◦ Φ is equivalent to the

nondegeneracy condition (4.31) provided that the mapping h : Rm → Rs with s = dimS(z̄)

therein is the linear transformation h(z) = Bz constructed in Lemma 4.3 to realize the

C∞-reducibility of θ.

It is worth mentioning that this line of equivalency between the corresponding SOQC

and nondegeneracy properties is a continuation of the results previously established in [39]

in connection with mathematical programs with polyhedral constraints and in [37] in con-

nection with second-order cone programs (SOCPs), where (in both cases) the nondegeneracy
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condition of a mapping relative to the underlying set (polyhedron and second-order cone,

respectively) was understood in the sense of [1] via the tangent cone to this set. The crucial

difference of our case is that we implement the general nondegeneracy/reducibility notion [28]

relative to a mapping and emphasize the linearity of this mapping in the CPWL setting under

consideration.

Theorem 4.4 (relationship between SOQC and nondegeneracy for fully amenable

compositions with CPWL outer functions). Let ψ = θ ◦ Φ be a fully amenable com-

position finite at (x̄, w̄) ∈ Rn ×Rd, let θ : Rm → R be CPWL, and let B be an s×m matrix

constructed in Lemma 4.3. Then the SOQC property (4.20) holds at (x̄, w̄) if and only if this

point is partially nondegenerate (4.31) for Φ relative to h(z) = Bz with s = dimS(z̄).

Proof. Since 0 ∈ aff ∂θ(z̄) as discussed before the formulation of Lemma 4.3, we have

S(z̄) = aff ∂θ(z̄). This lemma gives us a CPWL function ϑ : Rs → R and a mapping

h(z) = Bz from Rm to Rs such that θ(z) = (ϑ ◦ h)(z) for all z ∈ Rm sufficiently close to z̄.

Assuming that SOQC holds at (x̄, w̄) and taking the orthogonal complements of both sides

in (4.20), we arrive at

∇xΦ(x̄, w̄)Rn + S(z̄)⊥ = Rm. (4.32)

To deduce from (4.32) the partial nondegeneracy condition (4.31) with h(z) = Bz, it suffices

to show that ker∇h(z̄) = S(z̄)⊥, which reads as kerB = S(z̄)⊥. Indeed, picking u ∈ kerB

and taking into account that A∗(S(z̄)) = Rs × {0} in the proof of the lemma yield

0 = 〈A−1u,A∗p〉 = 〈u, (A−1)∗A∗p〉 = 〈u, p〉 for any p ∈ S(z̄),

which tells us that u ∈ S(z̄)⊥, and so kerB ⊂ S(z̄)⊥. The opposite inclusion S(z̄)⊥ ⊂

kerB can be checked similarly, which shows therefore that SOQC=⇒partial nondegen-

eracy. The same arguments allow us to verify via (4.32) the reverse implication partial
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nondegeneracy=⇒SOQC and thus complete the proof of the theorem. 4

The final result of this section presents the second-order chain rule for the partial second-

order subdifferential (denoted below asD∗∂xψ) of fully amenable compositions ψ = θ◦Φ with

CPWL outer functions. This result was first obtained in [38, Theorem 4.3] for nonparametric

compositions and then in [39, Theorem 4.1] in the general parametric case. Both proofs

in [38, 39] are involved, being based on the difficult Theorem 4.1 from [38]. The new proof

given below is much simpler based on the equivalency result of Theorem 4.4 and the second-

order chain rule obtained in [28, Theorem 3.6] under nondegeneracy condition in the Banach

setting.

Corollary 4.5 (second-order chain rule for parametric compositions with CPWL

outer functions). Let ψ = θ ◦ Φ be a fully amenable composition with a CPWL outer

function θ : Rm → R and an inner mapping Φ: Rn × Rd → Rm that is C2-smooth around

(x̄, w̄). Then the validity of SOQC in (4.20) ensures that for any q̄ ∈ ∂xψ(x̄, ȳ) the set

M(x̄, w̄, q̄) from (4.18) is a singleton {v̄} and we have the following second-order chain rule

whenever u ∈ Rn:

(D∗∂xψ)(x̄, w̄, q̄)(u) =
(
∇2
xx〈v̄,Φ〉(x̄, w̄)u,∇2

xw〈v̄,Φ〉(x̄, w̄)u
)

+
(
∇xΦ(x̄, w̄),∇wΦ(x̄, w̄)

)∗
∂2θ(z̄, q̄)(∇xΦ(x̄, w̄)u).

(4.33)

Proof. For any v̄1, v̄2 ∈ M(x̄, w̄, q̄) we have v̄1 − v̄2 ∈ ker∇xΦ(x̄, w̄)∗. Since furthermore

v̄1, v̄2 ∈ ∂θ(z̄), it follows from (4.6) and Theorem 4.2(i) that v̄1, v̄2 ∈ S(z̄). Applying now

SOCQ (4.20) gives us v̄1 = v̄2, and soM(x̄, w̄, q̄) = {v̄}. Then we get from Lemma 4.3 that θ

is C∞-reducible by the linear mapping h(z) = Bz, and hence (x̄, w̄) is a partial nondegenerate

point (4.31) of Φ relative to this mapping h : Rm → Rs with s = dimS(z̄). To arrive finally

at the chain rule (4.33), it remains to apply [28, Theorem 3.6] and thus complete the proof.

4
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Note that Corollary 4.5 clarifying the meaning of [38, Theorem 4.3] and [39, Theorem 4.3]

can be viewed as a realization of the second-order chain rule from [28, Theorem 3.6] in the

case of CPWL outer functions under the fulfillment of SOQC, which corresponds to a linear

reduction mapping h : Rn → Rs in the nondegeneracy condition (4.31). The result of the

latter theorem justifies the validity of (4.33) under (4.31) when h is merely a C2-smooth

mapping that furnishes the required reducibility of θ.

4.2 Full Stability in Composite Optimization

In this section we proceed with applications of second-order generalized differentiation

to problems of composite optimization given in the form:

minimize ϕ0(x) + θ(Φ(x)) subject to x ∈ Rn with Φ(x) :=
(
ϕ1(x), . . . , ϕm(x)

)
, (4.34)

where θ : Rm → R is a CPWL extended-real-valued function, and where all ϕi : Rn → R,

i = 0, . . . ,m, are C2-smooth around the reference optimal solution. This class of problems

encompasses conventional problems of nonlinear programming (NLPs) as well as constrained

and unconstrained minimax problems. It also includes the following major subclass of ex-

tended nonlinear programs (ENLPs) introduced in [52]:

minimize ϕ0(x) + (θ ◦ Φ)(x) with θ(z) := sup
p∈P
〈p, z〉, x ∈ Rn, (4.35)

where P is a convex polyhedron and thus θ in (4.35) is piecewise linear; see [41] for more

details. Consider now the two-parametric version of (4.34) constructed by

P com(w, v) : minimize ϕ0(x,w) + θ(Φ(x,w))− 〈v, x〉 subject to x ∈ Rn, (4.36)

where the perturbed functions ϕ0(x,w) and Φ(x,w) = (ϕ1(x,w), . . . , ϕm(x,w)) are C2-

smooth with respect to both variables. Denote

ϕ(x,w) := ϕ0(x,w) + θ(Φ(x,w)) for (x,w) ∈ Rn × Rd (4.37)
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and then fix a number γ > 0 and a triple (x̄, w̄, v̄) with Φ(x̄, w̄) ∈ dom θ and v̄ ∈ ∂xϕ(x̄, w̄).

In this section we establish new second-order characterizations of full stability for local

optimal solutions to problems of composite optimization (4.36) with CPWL outer functions

therein. In particular, the results established below cover those in [39, 40] while being in-

dependent from characterizations obtained in [31–33, 37] for optimization and variational

problems that cannot be represented in the composite form (4.34) with a CPWL outer

function θ.

To proceed, denote z̄ := Φ(x̄, w̄) ∈ dom θ and recall from Lemma 4.3 that θ is reducible

at z̄ to some CPWL function ϑ : Rs → R with s = dimS(z̄) by using a linear mapping h(z) =

Bz with the s ×m matrix B constructed in that lemma. Thus we have the representation

θ(z) = (ϑ ◦ B)(z) for all z near z̄ generating the mapping Ψ(x,w) := (B ◦ Φ)(x,w). This

tells us that the problem P com(w, v) from (4.36) is locally equivalent around (x̄, w̄) to the

following reduced problem:

P com

r (w, v) : minimize ϕ0(x,w) + ϑ(Ψ(x,w))− 〈v, x〉 subject to x ∈ Rn. (4.38)

We will see below that the reduced problem (4.38) is very instrumental in deriving the explicit

second-order characterization of full stability of local minimizers in composite optimization

obtained in this section as well as other important results established in the subsequent

sections of the paper. The main assumption we need in what follows is the following nonde-

generacy condition discussed in Section 4.1:

ND: A pair (x̄, w̄) is a partial nondegenerate point (4.31) of Φ from (4.36) in x relative to

the linear mapping h(z) = Bz, where B is the s×m matrix constructed in the proof

of Lemma 4.3 with s = dimS(z̄), z̄ = Φ(x̄, w̄).

We know from Theorem 4.4 that condition ND is equivalent to the SOCQ property (4.20)

in the framework of the composite optimization problem (4.36).
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The next proposition is a composite optimization counterpart of Proposition 3.1 obtained

for constrained optimization problems with θ = δΘ, the indicator function of a C2-reducible

closed and convex set Θ.

Proposition 4.6 (full stability and nondegeneracy in the original and reduced

problems). Let x̄ be a feasible solution to P com(w̄, v̄) from (4.36) for the parameter pair

(w̄, v̄) ∈ Rd×Rn. Then x̄ is a fully stable locally optimal solution to P com(w̄, v̄) if and only if

it is a fully stable locally optimal solution to the reduced problem Prcom(w̄, v̄). Furthermore,

the validity of ND for (x̄, w̄) implies the surjectivity (full rank) of the partial Jacobian matrix

∇xΨ(x̄, w̄), where Ψ = B ◦ Φ.

Proof. The claimed equivalence for full stability follows directly from the above observation

that problems P com(w, v) and P com
r (w, v) are locally the same. Let us verify the part of the

proposition concerning nondegeneracy. Supposing that ND holds gives us

∇xΦ(x̄, w̄)Rn + ker∇h(z̄) = ∇xΦ(x̄, w̄)Rn + kerB = Rm.

It yields by applying the classical chain rule that

∇xΨ(x̄, w̄)Rn = B∇xΦ(x̄, w̄)Rn = B
(
∇xΦ(x̄, w̄)Rn + kerB

)
= BRm = Rs,

which justifies the surjectivity of ∇xΨ(x̄, w̄) and thus completes the proof. 4

Recall that the equivalence between ND and SOCQ implies that the first-order qualifi-

cation condition (4.16) automatically holds under ND; see the discussion after the proof of

Theorem 4.2. This ensures, by the well-known first-order subdifferential chain rule, that the

stationary condition v̄ ∈ ∂xϕ(x̄, w̄) via ϕ from (4.37) can be equivalently written as

v̄ ∈ ∇xϕ0(x̄, w̄) +∇xΦ(x̄, w̄)∗∂θ(Φ(x̄, w̄)). (4.39)

This allows us to consider the corresponding KKT system for problem P com(w, v) given in
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the form 
v = ∇xL(x,w, λ), λ ∈ ∂θ(Φ(x,w))

with L(x,w, λ) := ϕ0(x,w) + 〈λ,Φ(x,w)〉.
(4.40)

Similarly, the KKT system for the reduced problem P com
r (w, v) from (4.38) is given by

v = ∇xLr(x,w, µ), µ ∈ ∂ϑ(Ψ(x,w))

with Lr(x,w, µ) := ϕ0(x,w) + 〈µ,Ψ(x,w)〉.
(4.41)

It is not hard to observe from the reducibility θ(z) = (ϑ ◦ B)(z) around z̄ together with

the full rank property of B that Lagrange multipliers λ of (4.40) and µ of (4.41) are related

by λ = B∗µ. The next proposition establishes the uniqueness of solutions to (4.40) under

the validity of ND. It is a composite optimization counterpart of [1, Proposition 4.75] in

optimization problems with constraints Φ(x, z) ∈ Θ under the corresponding reducibility

and nondegeneracy conditions.

Proposition 4.7 (uniqueness of Lagrange multipliers for composite problems un-

der ND). Let x̄ be a feasible solution to P com(w̄, v̄) for the parameter pair (w̄, v̄) with v̄

from (4.39) and (z̄, v̄) ∈ ∂θ, let ND hold, and let θ ∈ CPWL. Then the set of Lagrange

multipliers {
λ̄ ∈ ∂θ(Φ(x̄, w̄))

∣∣∣ v̄ = ∇xL(x̄, w̄, λ̄)
}

(4.42)

for the KKT system (4.40) is singleton.

Proof. Pick two vectors λ1, λ2 from set (4.42). It follows from the structure of (4.42) and

the subdifferential description (4.6) for CPWL functions that λ1 − λ2 ∈ ker∇xΦ(x̄, w̄)∗ and

λs =
∑
i∈K(z̄)

ηsiai +
∑
i∈I(z̄)

τsidi with
∑
i∈K(z̄)

ηsi = 1, ηsi, τsi ≥ 0 for s = 1, 2.
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Then employing assertions (i) and (ii) of Theorem 4.2, we get

λ1 − λ2 =
∑
i∈K(z̄)

η1iai +
∑
i∈I(z̄)

τ1idi −
∑
i∈K(z̄)

η2iai −
∑
i∈I(z̄)

τ2idi

=
∑
j∈K(z̄)

η2j

∑
i∈K(z̄)

η1i(ai − aj) +
∑
i∈I(z̄)

τ1idi −
∑
i∈I(z̄)

τ2idi ∈ S(z̄)

thus showing that λ1 = λ2 by SOCQ (4.20), which is equivalent to ND. 4

Now we in a position to introduce a new second-order condition formulated entirely via the

initial data of the composite optimization problem (4.36) and then to show that this condition

provides a complete characterization of full stability of local minimizers therein under the

validity of ND. This condition is crucial in stability issues for composite optimization playing

here the role similar to the strong second-order sufficient condition (SSOSC) in the sense of

Robinson [47] for classical NLPs; so we keep this name in what follows while just adding

“composite."

Definition 4.8 (composite SSOSC). Given (x̄, w̄, v̄, λ̄) ∈ Rn × Rd × Rn × Rm with v̄

satisfying (4.39) and λ̄ satisfying (4.40), we say that the composite SSOSC holds at this

point if

〈u,∇2
xxL(x̄, w̄, λ̄)u〉 > 0 for all 0 6= u ∈ S, (4.43)

where L is the Lagrangian for (4.36) taken from (4.40), and where the subspace S is defined

by

S :=
{
u ∈ Rn

∣∣∣ 〈ai − aj,∇xΦ(x̄, w̄)u〉 = 0 for i, j ∈ Γ(J1),

〈dt,∇xΦ(x̄, w̄)u〉 = 0 for t ∈ Γ(J2)
} (4.44)

via the index sets Γ(J1) and Γ(J2) taken from (4.15).

Observe the following description of the subspace (4.44) of the positive definiteness of

the Lagrangian Hessian in the composite SSOSC:

u ∈ S ⇐⇒ ∇xΦ(x̄, w̄)u ∈ dom ∂2θ(x̄, v̄), (4.45)
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which is implied by (4.14) and reveals the second-order nature of this subspace. The com-

posite SSOSC reduces to Robinson’s SSOSC for NLPs by putting Γ(J1) = ∅ and Γ(J2) = J2

in (4.43) and (4.44). Accordingly, it reduces to [39, Definition 6.4] and [39, Definition 7.2]

in the corresponding settings of MPPCs and ENLPs, respectively.

The next lemma is important, together with the second-order subdifferential chain rule,

for deriving the aforementioned characterization of full stability of local minimizers in (4.36).

Lemma 4.9 (second-order subdifferential property of CPWL functions). Take a

pair (z̄, v̄) ∈ θ for a CPWL function θ. Then we have 0 ∈ ∂2θ(z̄, v̄)(u) whenever u ∈

dom ∂2θ(z̄, v̄).

Proof. Pick u ∈ dom ∂2θ(z̄, v̄) and find w ∈ ∂2θ(z̄, v̄)(u), which by the coderivative defini-

tion (2.8) means (w,−u) ∈ N((z̄, v̄), ∂θ). Applying now formula (4.12) gives us a quadruple

(P1, Q1, P2, Q2) ∈ A such that

w ∈ F{P1,Q1},{P2,Q2} and − u ∈ G{P1,Q1},{P2,Q2}.

Since we always have 0 ∈ F{P1,Q1},{P2,Q2}, it follows that

(0,−u) ∈ F{P1,Q1},{P2,Q2} × G{P1,Q1},{P2,Q2},

which implies by (4.12) the claimed inclusion 0 ∈ ∂2θ(z̄, v̄)(u). 4

We now proceed with establishing the main result of this section, which provides a com-

plete characterization of fully stable local minimizers of P com(w̄, v̄) entirely via the initial

data.

Theorem 4.10 (second-order characterization of full stability in composite op-

timization). Let x̄ be a feasible solution to P com(w̄, v̄) from (4.36) for the parameter pair

(w̄, v̄) with v̄ from (4.39), let θ ∈ CPWL, and let (z̄, v̄) ∈ ∂θ with z̄ = Φ(x̄, v̄). Under

the validity of ND, let λ̄ be a unique solution of the KKT system (4.40). Then x̄ is a fully

stable local minimizer of P com(w̄, v̄) if and only if the composite SSOSC from Definition 4.8
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is satisfied.

Proof. If x̄ is a fully stable local minimizer of P com(w̄, v̄), then it is also a fully stable

local minimizer of the reduced problem P com
r (w̄, v̄) by Proposition 4.6. It follows from this

proposition that the partial Jacobian matrix ∇xΨ(x̄, w̄) of Ψ = B ◦ Φ has full rank. Em-

ploying [39, Theorem 5.1] tells us that full stability of x̄ for the reduced problem P com
r (w̄, v̄)

is equivalent to

[(p, q) ∈ Tr(x̄, w̄, v̄)(u), u 6= 0] =⇒ 〈p, u〉 > 0 (4.46)

via the set-valued mapping Tr(x̄, w̄, v̄) : Rm ⇒ Rm × Rd defined by

Tr(x̄, w̄, v̄)(u) : =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+
(
∇2
xx〈µ̄,Ψ〉(x̄, w̄)u,∇2

xw〈µ̄,Ψ〉(x̄, w̄)u
)

+
(
∇xΨ(x̄, w̄),∇wΨ(x̄, w̄)

)∗
∂2ϑ(z̄, µ̄)(∇xΨ(x̄, w̄)u), u ∈ Rm,

where µ̄ is a unique solution to the reduced KKT system (4.41) for (x,w, v) := (x̄, w̄, v̄). The

full rank of ∇xΨ(x̄, w̄) allows us to use the second-order chain rule from [38, Theorem 3.1]

and get

Tr(x̄, w̄, v̄)(u) =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+D∗∂x(ϑ ◦Ψ)(x̄, w̄, v̄)(u).

By the representation (ϑ ◦Ψ)(x,w) = (θ ◦ Φ)(x,w) around (x̄, w̄) we have

Tr(x̄, w̄, v̄)(u) =
(
∇2
xxϕ0(x̄, w̄)u,∇2

xwϕ0(x̄, w̄)u
)

+D∗∂x(θ ◦ Φ)(x̄, w̄, v̄)(u). (4.47)

Applying now the second-order chain rule from Corollary 4.5 to the composition θ ◦ Φ in

(4.47) together with (4.46) tells us that x̄ being a fully stable local minimizer of the reduced

problem P com
r (w̄, v̄) is equivalent to the validity of the inequality

〈u,∇2
xxL(x̄, w̄, λ̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉 > 0 for all q ∈ ∂2θ(z̄, λ̄)(∇xΦ(x̄, w̄)u), u 6= 0.

(4.48)

Pick 0 6= u ∈ S and get by (4.45) that ∇xΦ(x̄, w̄)u ∈ dom ∂2θ(z̄, v̄). Thus it follows from
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Lemma 4.9 that 0 ∈ ∂2θ(z̄, λ̄)(∇xΦ(x̄, w̄)u) implying by (4.48) that

〈u,∇2
xxL(x̄, w̄, λ̄)u〉 = 〈u,∇2

xxL(x̄, w̄, λ̄)u〉+ 〈0,∇xΦ(x̄, w̄)u〉 > 0.

This shows that the composite SSOSC is satisfied and thus verifies the “only if" statement.

To justify next the “if" part of the theorem, take u 6= 0 and q ∈ ∂2θ(z̄, λ̄)(∇xΦ(x̄, w̄)u),

which yields u ∈ S. Then [45, Theorem 2.1] together with the convexity of θ ensures that

〈q,∇xΦ(x̄, w̄)u〉 ≥ 0, and hence we have

〈u,∇2
xxL(x̄, w̄, λ̄)u〉+ 〈q,∇xΦ(x̄, w̄)u〉 ≥ 〈u,∇2

xxL(x̄, w̄, λ̄)u〉 > 0

by the assumed composite SSOSC. This implies by (4.48) that x̄ is a fully stable local

minimizer of the reduced problem P com
r (w̄, v̄). Appealing finally to Proposition 4.6 shows

that x̄ is a fully stable local minimizer of problem P com(w̄, v̄) and thus completes the proof

of the theorem. 4

The obtained characterization extends the results of [39, Theorem 6.6] for MPPCs, of [39,

Theorem 7.3] for ENLPs, and of [40, Theorem 6.3] for unconstrained minimax problems. An

important advantage of Theorem 4.10 is that it allows us to characterize full stability of local

minimizers in (nonsmooth) minimax problems with polyhedral constraints, which is done in

the next section while cannot be obtained by using the developments in [39,40].

4.3 Full Stability in Constrained Minimax Problems

This section deals with applications of Theorem 4.10 and second-order subdifferential

calculations from [41] to characterizing fully stable local minimizers for the following class

of minimax problems with polyhedral constraints:

minimize max{ϕ1(x), . . . , ϕl(x)} over Υ(x) := (ζ1(x), . . . , ζr(x)) ∈ Z with r + l = m,

(4.49)
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where the functions ϕi : Rn → R for i = 1, . . . , l and ζs : Rn → R for s = 1, . . . , r are

C2-smooth around the reference points, and where the convex polyhedron Z ⊂ Rr is given

by

Z :=
{
y ∈ Rr

∣∣∣ 〈ct, y〉 ≤ τt for all t = 1, . . . , p
}

(4.50)

with (ct, τt) ∈ Rr × R for t = 1, . . . , p. The minimax counterpart of the perturbed problem

P com(w, v) from the previous section is written now as

minimize max{ϕ1(x,w), . . . , ϕl(x,w)}+ δ(Υ(x,w);Z)− 〈v, x〉 subject to x ∈ Rn (4.51)

with (w, v) ∈ Rd × Rn. We say that x ∈ Rn is a feasible point to it (4.51) if Υ(x,w) ∈ Z.

Note that problem (4.51) differs from P com(w, v) in (4.36) due to nonsmoothness of all the

summands in (4.51) but 〈v, x〉. Let us show that nevertheless (4.51) can be reduced to the

composite form (4.36) as follows. Consider the mapping Φ: Rn×Rd → Rl+r = Rm given by

Φ(x,w) := (Ξ(x,w),Υ(x,w)) for all (x,w) ∈ Rn × Rd (4.52)

with the mapping Υ taken from (4.49) and Ξ(x,w) := (ϕ1(x,w), . . . , ϕl(x,w)). Remembering

that r + l = m, define the extended-real-valued function θ : Rl+r → R by
θ(x) := max

{
〈a1, x〉, . . . , 〈al, x〉

}
+ δ(x;Z) for x ∈ Rl+r = Rm

with Z :=
{
x ∈ Rl+r

∣∣∣ 〈dt, x〉 ≤ τt for t = 1, . . . , p
}
,

(4.53)

where the generating vectors ai and dt are constructed from the unit orths ei ∈ Rl and the

vectors ct ∈ Rr from (4.50) by, respectively,

ai := (ei, 0) for i = 1, . . . , l and dt := (0, ct) for t = 1, . . . , p. (4.54)

Observe the θ from (4.53) is a CPWL function in the summation form (4.3). Thus we can

represent the constrained minimax problem (4.51) in the composite optimization form (4.36)
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written as

minimize (θ ◦ Φ)(x,w)− 〈v, x〉 subject to x ∈ Rn (4.55)

with θ taken from (4.53) with parameters (4.54) and the C2-smooth mapping Φ defined by

(4.52).

Now we can apply Theorem 4.10 to (4.55) and derive in this way a second-order char-

acterization of full stability of local solutions to the minimax problem (4.51) via its initial

data. Prior to that, let us specify the nondegeneracy condition ND for problem (4.55) and

presents it in terms of the original minimax problem (4.51) without appealing to the matrix

B from the proof of Lemma 4.3.

Denote z̄1 := Ξ(x̄, w̄) and z̄2 := Υ(x̄, w̄) ∈ Z and construct the index sets

K(z̄1) : =
{
i ∈ {1, . . . , l}

∣∣∣ max{ϕ1(x̄, w̄), . . . , ϕl(x̄, w̄)} = ϕi(x̄, w̄)
}
,

I(z̄2) : =
{
t ∈ {1, . . . , p}

∣∣∣ 〈ct, z̄2〉 = τt

} (4.56)

via the data of (4.49) and (4.50). It is easy to observe that K(z̄1) = K(z̄) and I(z̄2) = I(z̄)

for the index sets defined in (4.5) for the function θ from (4.53) with z̄ := (z̄1, z̄2) ∈ dom θ.

Proposition 4.11 (equivalent form of condition ND for constrained minimax

problems). Let x̄ be a feasible solution to (4.51) corresponding to (w̄, v̄), and let z̄ = (z̄1, z̄2)

with z̄1 = Ξ(x̄, w̄), z̄2 = Υ(x̄, w̄), and (z̄, v̄) ∈ ∂θ, where the mappings Ξ and Υ and the

CPWL function θ are defined by (4.52) and (4.53), respectively. Then the nondegeneracy

condition ND in the framework of the minimax problem (4.51) can be equivalently written as

D ∩ ker
(
∇xΞ(x̄, w̄)∗,∇xΥ(x̄, w̄)∗

)
= {0} (4.57)

with D := {(y1, y2) ∈ Rl × Rr | y1 ∈ span{ei − ej | i, j ∈ K(z̄1)} and y2 ∈ span{ct | t ∈

I(z̄2)}}, where ei ∈ Rl are the unit vectors, and where the index sets K(z̄1) and I(z̄2) are

defined in (4.56).
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Proof. Applying the nondegeneracy condition ND to the composite optimization form (4.55)

of the minimax problem (4.55) and using Theorem 4.4 on the equivalence of ND to SOCQ

give us

∂2θ(z̄, v̄)(0) ∩ kerΦ(x̄, w̄)∗ = {0}

with Φ and θ taken from (4.52) and (4.53), respectively. Then the second-order calculations

of Theorem 4.2 together with the equalities K(z̄1) = K(z̄) and I(z̄2) = I(z̄) reveal that

∂2θ(z̄, v̄)(0) = span
{
ai − aj

∣∣∣ i, j ∈ K(z̄)
}

+ span
{
dt

∣∣∣ t ∈ I(z̄)
}

=
{

(y1, y2) ∈ Rl × Rn
∣∣∣ y1 ∈ span{ei − ej | i, j ∈ K(z̄1)}, y2 ∈ span{ct | t ∈ I(z̄2)}

}
,

(4.58)

where the vectors ai and dt are taken from (4.54). Observing that

∇xΦ(x̄, w̄) =

 ∇xΞ(x̄, w̄)

∇xΥ(x̄, w̄)


and combining this with representation (4.58) justify the equivalent form (4.57) of the ND

condition in the minimax problem under consideration. 4

After these adjustments, we are now ready to derive a characterization of fully stable

local minimizers of (4.51). The KKT system associated with (4.51) can be expressed as
v̄ =

l∑
i=1

λ̄i∇xϕi(x̄, w̄) +
r∑
s=1

µ̄s∇xζs(x̄, w̄)

with λ̄i ≥ 0,
l∑

i=1

λ̄i = 1, (µ̄1, . . . , µ̄r) ∈ N(z̄2;Z),

(4.59)

where z̄2 = Υ(x̄, w̄), and where Z is taken from (4.50). The following definition is an

adaptation of the composite SSOSC for the minimax problem (4.51).

Definition 4.12 (minimax SSOSC). Given $ := (λ̄, µ̄) ∈ Rl × Rr from (4.59), we say
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that the minimax SSOSC holds at (x̄, w̄, v̄, $) with v̄ satisfying (4.59) if

l∑
i=1

λ̄i〈u,∇2
xxϕi(x̄, w̄)u〉+

r∑
s=1

µ̄s〈u,∇2
xxζs(x̄, w̄)u〉 > 0 for all 0 6= u ∈ S, (4.60)

where the subspace S is defined by

S :=
{
u ∈ Rn

∣∣∣ 〈∇xϕi(x̄, w̄), u〉 = γ for i ∈ Γ(J1) and 〈dt,∇xΥ(x̄, w̄)u〉 = 0 for t ∈ Γ(J2)
}

via the index sets Γ(J1) and Γ(J2) taken from (4.15) and some constant γ ∈ R.

The next result extends [38, Theorem 6.3] to the case of constrained minimax problems.

Theorem 4.13 (characterization of fully stable solutions to constrained minimax

problems). Let x̄ be a feasible solution to the minimax problem (4.51) corresponding to

(w̄, v̄) with v̄ ∈ ∂x(θ ◦Φ)(x̄, w̄), where θ and Φ are taken from (4.53) and (4.52), respectively.

Assume that the ND condition (4.57) holds, and let $ = (λ̄, µ̄) ∈ Rl×Rr be a unique solution

to (4.59). Then x̄ is a fully stable local minimizer of (4.51) if and only if the minimax SSOSC

from (4.60) holds.

Proof. Taking into account the previous considerations in this section, we now implement

Theorem 4.10 in the constrained minimax setting by observing that the Lagrangian for

problem (4.51) is L(x̄, w̄, $) = 〈$,Φ(x̄, w̄)〉. Therefore we get

∇2
xxL(x̄, w̄, $) =

l∑
i=1

λ̄i∇2
xxϕi(x̄, w̄) +

r∑
s=1

µ̄s∇2
xxζs(x̄, w̄).

Furthermore, it is easy to see that the set S from Definition 4.12 is an adaptation of the set S

from (4.44) to the minimax problem (4.51). Thus the claimed second-order characterization

of full stability in (4.51) readily follows from the equivalence in Theorem 4.10. 4

4.4 Strong Regularity and Strong Stability in Composite Models

In this section, we continue our study of composite optimization problems of type (4.34)

with CPWL outer functions θ therein. Our main goal is to establish relationships between

full stability of local minimizers in (4.36) and some other stability/regularity notions for
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perturbed versions of (4.34) and associated (linearized and nonlinearized) KKT systems. The

notions under consideration in what follows revolve around Robinson’s strong regularity [47]

and Kojima’s strong stability [18]. Involving the nondegeneracy condition ND in composite

optimization and employing the reduction approach as above, we show that these notions

are actually equivalent in our setting while being also equivalent to full stability of local

minimizers under appropriate choices of perturbations. In this way we derive explicit second-

order characterizations of strong regularity and strong stability via the composite SSOSC

introduced in Definition 4.8. All the results below can be specified in the case of constrained

minimax problems (4.49) with replacing the composite SSOSC by its minimax counterpart

from Definition 4.12.

To begin with, we rewrite the KKT system (4.40) for (4.36) as the generalized equation v

0

 ∈
 ∇xL(x,w, λ)

−Φ(x,w)

+

 0

(∂θ)−1(λ)

 (4.61)

and denote by SKKT : (w, v) 7→ (x, λ) the solution map to (4.61).

Robinson’s idea [47] to define the property of strong regularity for generalized equations

involved considering Lipschitzian single-valued localizations of solution maps to appropriate

linearizations. This idea was further developed and applied in many publications; see, e.g.,

the books [1,5,10,17] and the references therein. We keep such a definition of strong regularity

in the case of (4.61) and study it later on in this section. However, it is more convenient for

us to start with a similar property for the solution map SKKK of the KKT system (4.61)

itself, without any linearization, and characterize it via the composite SSOSC.

Definition 4.14 (SVLL property of KKT systems). We say that the KKT system

(4.61) associated with the composite optimization problem (4.36) has the single-valued

Lipschitzian localization (SVLL) property at (x̄, λ̄, w̄, v̄) ∈ SKKT if its solution map

SKKT : (w, v) 7→ (x, λ) admits a Lipschitzian single-valued graphical localization around
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(w̄, v̄, x̄, λ̄).

The next theorem shows the SVLL property of (4.61) is characterized by the simultane-

ous fulfillment of the composite SSOSC and the nondegeneracy condition ND in composite

optimization. It extends the corresponding result of [2, Theorem 4.10] and [4, Theorem 6]

for NLPs; see also commentaries in [2, 5, 17] on related developments in this direction.

Theorem 4.15 (characterization of SVLL property via ND and composite

SSOSC). Let x̄ be a feasible solution to problem P com(w̄, v̄) in (4.36) with some w̄ ∈ Rd

and v̄ from (4.39), where θ ∈ CPWL and Φ is C2-smooth around (x̄, w̄). Consider the

following statements:

(i) The SVLL property from Definition 4.14 holds and we have x̄ ∈ Mγ(w̄, v̄) for the

argminimum set (2.16) with some γ > 0.

(ii) The composite SSOSC (4.43) and the nondegeneracy condition ND are satisfied.

Then we have (ii)=⇒(i), while the converse application holds if in addition the first-order

qualification condition (4.16) is fulfilled.

Proof. Suppose first that (ii) holds and deduced from Theorem 4.10 that x̄ is a fully stable

locally optimal solution to P com(w̄, v̄). It follows from Proposition 4.6 that x̄ is also a fully

stable locally optimal solution to the reduced problem P com
r (w̄, v̄). Similarly to (4.61), we

can write the KKT system for the reduced problem (4.41) in the generalized equation form v

0

 ∈
 ∇xLr(x,w, µ)

−Ψ(x,w)

+

 0

(∂ϑ)−1(µ)

 (4.62)

and denote by SrKKT : (w, v) 7→ (x, µ) its solution map. Lemma 4.3 gives us the representation

θ = ϑ ◦ B with some mapping ϑ ∈ CPWL and the s × n matrix B constructed therein.

Remembering that λ = B∗µ, we split the proof of (ii)=⇒(i) into several steps.

Step 1: The conditions in (ii) imply that the solution map SrKKT : (w, v) 7→ (x, µ) has the
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SVLL property around (w̄, v̄, x̄, µ̄).

We start the proof of this fact by recalling that the full stability of x̄ in the reduced problem

P com
r (w̄, v̄) ensures by Theorem 2.5 that the set-valued mapping

Sr(w, v) :=
{
x ∈ Rn

∣∣∣ v ∈ ∇xϕ0(x,w) +∇xΨ(x,w)∗∂ϑ(Ψ(x,w))
}

admits a Lipschitzian single-valued graphical localization around (w̄, v̄, x̄). Employing this

together with the surjectivity of ∇xΨ(x̄, w̄), which comes from the second part of Proposi-

tion 4.6, tells us that the mapping SrKKT : (w, v) 7→ (x, µ) is single-valued around (w̄, v̄, x̄, µ̄).

The Lipschitz continuity of (w, v) 7→ xwv =: x around (w̄, v̄) is a direct consequence of

the full stability of x̄ in the reduced problem P com
r (w̄, v̄). Let the latter property hold in

some neighborhoods W of w̄ and V of v̄. To verify the same property for the mapping

(w, v) 7→ µwv =: µ, pick w1, w2 ∈ W and v1, v2 ∈ V and thus find µwivi ∈ ∂ϑ(ci) with

ci := Ψ(xwivi , wi) for i = 1, 2 satisfying
v2 = ∇xϕ0(xw2v2 , w2) +∇xΨ(xw2v2 , w2)∗µw2v2 ,

v1 = ∇xϕ0(xw1v1 , w1) +∇xΨ(xw1v1 , w1)∗µw1v1 .

This allows us to obtain the equality

∇xΨ(xw2v2 , w2)∗(µw2v2 − µw1v1) =
(
∇xΨ(xw1v1 , w1)−∇xΨ(xw2v2 , w2)

)∗
µw1v1

+ ∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2) + v2 − v1.

We can assume that ∇xΨ(xwivi , wi) is surjective because of this property for ∇xΨ(x̄, w̄). It

follows from [27, Lemma 1.18] that for any (w, v) ∈ W × V there is κwv > 0 such that

‖∇xΨ(xw2v2 , w2)∗(µw2v2 − µw1v1)‖ ≥ κw2v2‖µw2v2 − µw1v1‖ ≥ κ‖µw2v2 − µw1v1‖,

where κ := inf{κwv| (w, v) ∈ W × V }. Now we claim that κ > 0. Indeed, assuming κ = 0

gives us (wk, vk) → (w̄, v̄) such that κwkvk → 0 as k → ∞. Appealing to [27, Lemma 1.18],

observe that κwkvk = inf{‖∇xΨ(xwkvk , wk)
∗y‖ | ‖y‖ = 1}. This allows us to find yk with
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‖yk‖ = 1 and

‖∇xΨ(xwkvk , wk)
∗yk‖ < κwkvk +

1

k
. (4.63)

Suppose next without loss of generality that yk → ȳ as k → ∞ with ‖ȳ‖ = 1. Passing to

limit in (4.63), we deduce that ∇xΨ(x̄, w̄)∗ȳ = 0. Taking then into account the surjectivity

of ∇xΨ(x̄, w̄), we arrive at ȳ = 0, which is a contradiction telling us that κ > 0. By the

surjectivity of ∇xΨ(x̄, w̄) there is ρ <∞ so that ‖µwv‖ ≤ ρ for all (w, v) ∈ W ×V . Denoting

by ` > 0 a common Lipschitz constant for the mappings ∇xϕ0, ∇xΨ, and (w, v) 7→ xwv on

W × V yields

‖µw2v2 − µw1v1‖ ≤ κ−1
(
‖∇xΨ(xw1v1 , w1)−∇xΨ(xw2v2 , w2)‖ · ‖µw1v1‖

+ ‖∇xϕ0(xw1v1 , w1)−∇xϕ0(xw2v2 , w2)‖+ ‖v2 − v1‖
)

≤ κ−1
[
ρ`
(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
+ `

(
‖xw2v2 − xw1v1‖+ ‖w2 − w1‖

)
+ ‖v2 − v1‖

]
,

which justifies the claimed local Lipschitz continuity of the mapping (w, v) 7→ µwv.

Step 2: The conditions in (ii) imply that the SVLL property of (4.61) is satisfied (x̄, λ̄, w̄, v̄).

To verify it, remember that the conditions in (ii) ensure by Theorem 4.10 that x̄ is a fully

stable local minimizer of P com(w̄, v̄). Thus it follows from Theorem 2.5 that the set-valued

mapping

S(w, v) :=
{
x ∈ Rn

∣∣∣ v ∈ ∇xϕ0(x,w) +∇xΦ(x,w)∗∂θ(Φ(x,w))
}

(4.64)

is single-valued and locally Lipschitzian around (w̄, v̄, x̄). Since ND holds, the Lagrange

multiplier in (4.61) is unique, and therefore the mapping SKKT : (w, v) 7→ (x, λ) is single-

valued around (w̄, v̄, x̄, λ̄). Furthermore, the Lipschitz continuity of (w, v) 7→ xwv =: x

around (w̄, v̄) follows from full stability of x̄. Taking the neighborhoods W and V from

Step 1, pick wi ∈ W and vi ∈ V , i = 1, 2. Using then the relationship λ = B∗µ, for each
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i find a unique multiplier µwivi ∈ ∂ϑ(ci) with ci := Ψ(xwivi , wi) such that λwivi := B∗µwivi .

This leads us to

‖λw2v2 − λw1v1‖ = ‖B∗µw2v2 −B∗µw1v1‖

≤ ‖B∗‖ · ‖µw2v2 − µw1v1‖,

which thus justifies the local Lipschitz continuity of the mapping (w, v) 7→ λwv due to Step 1.

This completes the proof of implication (ii)=⇒(i).

To verify the converse implication (i)=⇒(ii), suppose that the SVLL condition holds

and pick η ∈ S(z̄) ∩ ker∇xΦ(x̄, w̄)∗ with z̄ = Φ(x̄, w̄). Since S(z̄) = aff ∂θ(z̄), we get

η ∈ aff ∂θ(z̄) and deduce that SKKT (w̄, v̄) = {(x̄, λ̄)} for some λ̄ ∈ Rm by taking into

account the imposed qualification condition (4.16). If λ̄ ∈ ri ∂θ(z̄) with “ri" standing for the

relative interior of a convex set, then λ̄+ tη ∈ ∂θ(z̄) for any small t > 0, which tells us that

(x̄, λ̄ + tη) ∈ SKKT (w̄, v̄). Employing now the single-valuedness of the mapping SKKT , we

get η = 0, and hence condition ND holds in this case. Suppose now that λ̄ 6∈ ri ∂θ(z̄) and,

taking into account that ri ∂θ(z̄) 6= ∅, pick η ∈ ri ∂θ(z̄). It follows from [53, Proposition 2.40]

that λ̄+t(η− λ̄) ∈ ri ∂θ(z̄) for any t ∈ (0, 1). Letting vt := t∇xΦ(x̄, w̄)∗(η− λ̄) for t > 0 small

enough gives us (x̄, λ̄+ t(η− λ̄)) ∈ SKKT (w̄, v̄+ vt). Remember that λ̄+ t(η− λ̄) ∈ ri ∂θ(z̄),

which allows us to repeat the above arguments and to justify the validity of ND.

To finish the proof, it is not hard to see that by SVLL the set-valued mapping S(w, v)

in (4.64) is single-valued and locally Lipschitzian around (w̄, v̄, x̄). Remembering that x̄ ∈

Mγ(w̄, v̄) in (i) and appealing to Theorem 2.5, with taking into account that the qualification

condition imposed therein follows from the justified ND, tell us that x̄ is a fully stable local

minimizer of P com(w̄, v̄). Thus SSOSC holds by Theorem 4.10, and we complete the proof of

the theorem. 4

Now we proceed with the definition and second-order characterization of Robinson’s

strong regularity for the KKT system (4.61) associated with problem P com(w̄, v̄) of composite
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optimization.

Definition 4.16 (strong regularity of KKT in composite optimization). Let (x̄, λ̄)

be a solution to (4.61) for (w, v) = (w̄, v̄) with v̄ = 0. We say that (x̄, λ̄) is strongly

regular for KKT (4.61) if the solution map to the linearized system at (x̄, λ̄) defined by v1

v2

 ∈
 ∇2

xxL(x̄, w̄, λ̄)(x− x̄) +∇xΦ(x̄, w̄)∗(λ− λ̄)

−Φ(x̄, w̄)−∇xΦ(x̄, w̄)(x− x̄)

+

 0

(∂θ)−1(λ)


admits a Lipschitzian single-valued graphical localization around (0, 0, x̄, λ̄) ∈ Rn × Rm ×

Rn × Rm.

Our subsequent goal is to establish relationships between the KKT strong regularity from

Definition 4.16 and full stability of local minimizers in composite optimization. We show

that these notions are actually equivalent under nondegeneracy; see the precise formulation

in Theorem 4.18. The result obtained below continues the line of equivalencies developed

recently for various problems of constrained optimization in [33,39,40] while being new for the

composite optimization problems studied in the paper. To proceed, we consider the following

canonically perturbed version of problem (4.34) with parametric pairs (v1, v2) ∈ Rn × Rm:

P̃ com

w̄ (v1, v2) : minimize ϕ0(x, w̄) + θ(Φ(x, w̄) + v2)− 〈v1, x〉 subject to x ∈ Rn. (4.65)

The next lemma important in what follows reduces the study of full stability in the

original optimization problem (4.36) to that in the canonically perturbed one (4.65) under

nondegeneracy. Its proof is based on the criterion of full stability obtained in Theorem 4.10

and allows us to deal with generalized equations of type (4.61) whose set-valued parts depend

on parameters.

Lemma 4.17 (full stability with respect to canonical perturbations). Let x̄ be a

feasible solution to the composite optimization problem P com(w̄, v̄) in (4.36) with some w̄ ∈ Rd

and v̄ from (4.39) under the nondegeneracy condition ND. Then x̄ is a fully stable local
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minimizer of P com(w̄, v̄) if and only if it is a fully stable local minimizer of P̃ com
w̄ (v̄, 0) in

(4.65).

Proof. It is easy to see that the nondegeneracy condition ND for the canonically perturbed

problem (4.65) agrees with the one for the fully perturbed problem (4.36). Suppose now that

x̄ is a fully stable local minimizer of P̃ com
w̄ (v̄, 0) and then apply Theorem 4.10 to conclude

that it is equivalent to the validity of the following inequality:

〈u,∇2
xxLw̄(x̄, 0, λ̄)u〉 > 0 for all 0 6= u ∈ S, (4.66)

where the subspace S is defined in (4.44) and Lw̄ is the Lagrangian associated with prob-

lem (4.65) given by Lw̄(x, v2, λ) : = ϕ0(x, w̄) + 〈λ,Φ(x, w̄) + v2〉. Therefore we have

∇2
xxLw̄(x̄, 0, λ̄) = ∇2

xxL(x̄, w̄, λ̄) with L coming from (4.40), which indeed tells us that x̄

is a fully stable local minimizer of P com(w̄, v̄). The converse implication of the lemma is

verified similarly. 4

We are now ready to establish the aforementioned relationships between full stability

of local minimizers in composite optimization and strong regularity of the associated KKT

systems.

Theorem 4.18 (relationships between full stability and strong regularity in com-

posite optimization). Let x̄ be a feasible solution to P com(w̄, v̄) in (4.36) with some w̄ ∈ Rd

and v̄ = 0 from (4.39). Assume that the qualification condition (4.16) holds. Then the fol-

lowing are equivalent:

(i) x̄ is a fully stable locally optimal solution to P com(w̄, v̄) satisfying ND.

(ii) x̄ ∈Mγ(w̄, v̄) for some γ > 0 and (x̄, λ̄) is a strongly regular solution to (4.61).

Proof. We first verify implication (ii)=⇒(i). It has been well recognized (see, e.g., [5,

Theorem 2B.10] that strong regularity of the KKT system (4.61) at (x̄, λ̄) is equivalent to

the fact that the KKT system associated with the canonically perturbed problem (4.65) and
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given by  v1

v2

 ∈
 ∇xL(x, w̄, λ)

−Φ(x, w̄)

+

 0

(∂θ)−1(λ)


admits a Lipschitz continuous single-valued graphical localization around (0, 0, x̄, λ̄) ∈ Rn ×

Rm × Rn × Rm. Thus it results from Theorem 4.15 that the composite SSOSC from (4.66)

and the nondegeneracy condition ND in the setting of P̃ com
w̄ (v̄, 0) are satisfied. As mentioned

in the proof of Lemma 4.17, the nondegeneracy conditions ND for both problems P̃ com
w̄ (v̄, 0)

and P com(w̄, v̄) are the same, and therefore Theorem 4.10 says that x̄ is a fully stable local

minimizer for P̃ com
w̄ (v̄, 0). Employing now Lemma 4.17 tells us that x̄ is a fully stable local

minimizer for the original problem P com(w̄, v̄) as well, which justifies that (ii)=⇒(i). By

similar arguments we verify the converse implication and thus complete the proof of the

theorem. 4

As a by-product of the obtained equivalence and the characterization of full stability of

local minimizers in Theorem 4.10, we get the composite SSOSC characterization of strong

regularity for the associated KKT system (4.61). The results of this type for various prob-

lems of constrained optimization with C2-smooth data can be found in [1, 4, 17, 33, 39] via

appropriate SSOSC and nondegeneracy conditions. Note that, in contrast to full stability,

the corresponding nondegeneracy condition is necessary for strong regularity. Some second-

order characterizations of full stability without nondegeneracy have been recently established

in [31] for NLPs.

The last part of this section is devoted to studying relationships between strong regularity

in the sense of Definition 4.16 and strong Lipschitzian stability in the sense of Kojima [18].

The concept of strong Lipschitzian stability was considered before only for problems of con-

strained optimization with C2-smooth data. Here we extend its to the general framework of

composite optimization problems and then show that it is indeed equivalent to strong regu-



75

larity of the corresponding KKT system. Note that relationships between strong regularity

and strong stability were first studied in [15] for classical NLPs and then further developed

for more general constrained problems in [1, 17,33,40]; see also the references therein.

To proceed in our composite optimization setting, suppose without loss of generality

that v̄ = 0 and say that the pair (ξ(x, u),Υ(x, u)) with u ∈ Rq, ξ : Rn × Rq → R, and

Υ: Rn×Rq → Rm is a C2-smooth parametrization of (ϕ0(x, w̄),Φ(x, w̄)) in P(w̄, 0) at ū ∈ Rq

if ϕ0(x, w̄) = ξ(x, ū) and Φ(x, w̄) = Υ(x, ū) for all x ∈ Rn, where both functions ξ and Υ are

twice continuously differentiable. Consider now the family of the parametric optimization

problems given by

P̂(u) : minimize ξ(x, u) + θ(Υ(x, u)) subject to x ∈ Rn.

Definition 4.19 (strong Lipschitzian stability for composite optimization prob-

lems). A stationary point x̄ of problem P com(w̄, 0) from (4.36) is called strongly Lip-

schitz stable with respect to the given C2-smooth parametrization (ξ(x, u),Υ(x, u)) of

(ϕ0(x, w̄),Φ(x, w̄)) in P(w̄, 0) at ū ∈ Rq if there are neighborhoods U of ū and O of x̄

such that for any u ∈ U each problem P̂(u) has a unique stationary point x(u) ∈ O and the

mapping u 7−→ x(u) is locally Lipschitz continuous around ū. If it holds for any C2-smooth

parameterization of (ϕ0(x, w̄),Φ(x, w̄)) in P(w̄, 0) at ū ∈ Rq, then the stationary point x̄ is

called strongly Lipschitz stable.

The next theorem provides exact relationships between strong regularity and strong sta-

bility.

Theorem 4.20 (equivalence between strong regularity and strong Lipschitzian

stability for composite optimization problems). Let x̄ be a feasible solution to the

unperturbed problem P com(w̄, v̄) in (4.36) with some w̄ ∈ Rd and v̄ = 0 from (4.39). Assume

further that the qualification condition (4.16) holds. Then the following are equivalent:

(i) x̄ is a Lipschitz stable local optimal minimizer of P com(w̄, 0) satisfying ND.
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(ii) x̄ ∈Mγ(w̄, v̄) for some γ > 0 and (x̄, λ̄) is a strongly regular solution to (4.61).

Proof. Suppose that (i) holds. Since (ϕ0(x,w)−〈x, v〉,Φ(x,w)) is a C2-smooth parametriza-

tion of (ϕ0(x, w̄),Φ(x, w̄)) in problem P com(w̄, 0) at the point ū := (w̄, 0) ∈ Rd×Rn, we find

some neighborhoods U of ū and O of x̄ such that for any u = (w, v) ∈ U there exists a

unique stationary point x(u) of P̂(u) for which the mapping u 7−→ x(u) is Lipschitz contin-

uous around (ū, x̄). This shows that the set-valued mapping

S(u) :=
{
x ∈ Rn

∣∣∣ v ∈ ∇xϕ0(x,w) +∇xΦ(x,w)∗∂θ(Φ(x,w))
}

admits a Lipschitzian single-valued graphical localization around (ū, x̄). Employing Theo-

rem 2.5, we see that x̄ is a fully stable locally optimal solution to problem P com(w̄, 0), which

in turn yields the validity of (ii) due to Theorem 4.18.

To prove the converse implication (ii) =⇒ (i), let (x̄, λ̄) be a strongly regular solution to

the KKT system (4.61). This tells us that x̄ is a fully stable local minimizer of P com(w̄, 0)

due to Theorem 4.18 and that the nondegeneracy condition ND is satisfied. Pick now an

arbitrary C2-smooth parametrization (ξ(x, u),Υ(x, u)) of (ϕ0(x, w̄),Φ(x, w̄)) in P com(w̄, 0) at

ū ∈ Rq, which gives us the equalities ∇xϕ0(x̄, w̄) = ∇xξ(x̄, ū) and ∇xΦ(x̄, w̄) = ∇xΥ(x̄, ū)

together with those for the corresponding second-order derivatives. Therefore the composite

SSOSC from (4.43) is satisfied for problem P̂(ū), which in turn implies that x̄ is a fully

stable local minimizer of problem P̂(ū). Employing now Theorem 2.5, we deduce that the

set-valued mapping

S(u, v) :=
{
x ∈ Rn

∣∣∣ v ∈ ∇xξ(x, u) +∇xΥ(x, u)∗∂θ(Υ(x, u))
}

admits a Lipschitzian single-valued graphical localization around (ū, 0, x̄). Defining x(u) :=

S(u, 0), conclude that it is a stationary point for problem P̂(u) and that the mapping u 7−→

x(u) is locally Lipschitzian around (ū, x̄). This verifies (i) and completes the proof of theorem.

4
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CHAPTER 5 CRITICAL MULTIPLIERS FOR

COMPOSITE PROBLEMS

This chapter concerns some applications of full stability in numerical algorithms. To this

end, we first introduce the concept of critical multipliers for composite optimization prob-

lems. This concept has been recently investigated in [14] for classical problems of nonlinear

programming. It is shown there that critical multipliers are largely responsible for slow

convergence of major primal-dual numerical algorithms including the Newton method and

the sequential quadratic programming method. Therefore it is crucial from the numerical

viewpoint to rule out the existence of critical multipliers. In this chapter, we show how full

stability can be implement to rule out such multipliers.

Assume that the mapping f : Rn → Rn is C1-smooth, and that the mapping Φ: Rn →

Rm is C2-smooth around x̄. Letting (p1, p2) ∈ Rn × Rm and θ ∈ CPWL, consider the

parameterized generalized equations p1

p2

 ∈
 Ψ(x, v)

−Φ(x)

+

 0

(∂θ)−1(v)

 (5.1)

with the mapping Ψ defined by

Ψ(x, v) : = f(x) +∇Φ(x)∗v, (x, v) ∈ Rn × Rm.

The generalized equation (5.1) is a broad framework for many KKT systems of optimization

problems including composite optimization problems, which were recently studied in [42],

and nonlinear programming problems. Following the tradition for optimization problems, if

(x, v) is a solution of the generalized equation (5.1) associated with the parameters (p1, p2),

then v is referred as a Lagrange multiplier associated with the primal solution x. Given

x̄ ∈ Rn, define the set of Lagrange multipliers associated with x̄ by

Λ(x̄) : =
{
v ∈ Rm

∣∣∣ Ψ(x̄, v) = 0, v ∈ ∂θ(z̄)
}

with z̄ = Φ(x̄). (5.2)
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Pick v̄ ∈ ∂θ(z̄) with z̄ = Φ(x̄) and introduce the critical cone for the CPWL function θ by

K(z̄, v̄) :=
{
w ∈ T (z̄; dom θ)

∣∣∣ 〈v̄, w〉 = dθ(z̄)(w)
}
, (5.3)

where the subderivative function dθ(z̄) : Rn → R is defined by

dθ(z̄)(w̄) : = lim inf
w→w̄
t↓0

θ(z̄ + tw)− θ(z̄)

t
.

It was proved in [53, Theorem 10.21] that the subderivative function for the CPWL function

θ can be simplified as

dθ(z̄)(w̄) = lim
t↓0

θ(z̄ + tw̄)− θ(z̄)

t
. (5.4)

The term “critical cone" exploited above for the set K(z̄, v̄) from (5.3) was inspired by the

same concept for convex polyhedra. Indeed, when we have l = 0 in representation (4.3), the

CPWL function θ reduces to the indicator function δ(· ; Ω) of the polyhedral set Ω: = dom θ.

This implies that dθ(z̄)(w̄) = 0 for any w̄ ∈ T (z̄; Ω) and hence the set K(z̄, v̄) from (5.3) has

a representation of the form

K(z̄, v̄) = T (z̄; Ω) ∩ v̄⊥,

which is the the well-known definition for the critical cone of the convex polyhedral set Ω.

Below, we prove that the critical cone K(z̄, v̄) for CPWL functions can be entirely expressed

via their parameters from (4.3).

Proposition 5.1 (equivalent description of the critical cone for CPWL functions).

Let θ ∈ CPWL with (z̄, v̄) ∈ ∂θ, and let v̄1, v̄2 be from (4.7) such that v̄ = v̄1 + v̄2. Denote

by K : = K(z̄), I : = I(z̄), J1 := J+(z̄, v̄1), and J2 := J+(z̄, v̄2) the index sets from (4.5),
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and (4.9), respectively. Then the critical cone K(z̄, v̄) can be equivalently expressed by

K(z̄, v̄) =
{
u ∈ Rm

∣∣∣ 〈ai − aj, u〉 = 0 if i, j ∈ J1,

〈ai − aj, u〉 ≤ 0 if (i, j) ∈ (K \ J1)× J1,

〈di, u〉 = 0 if i ∈ J2, and 〈di, u〉 ≤ 0 if i ∈ I \ J2

}
.

(5.5)

Proof. Take u ∈ K(z̄, v̄). We claim that 〈as, u〉 = 〈ai, u〉 whenever i ∈ J1. In fact, it follows

from [53, Theorem 10.21] that dom dθ(z̄) = T (z̄; dom θ). Since we have u ∈ T (z̄; dom θ), we

find sequences tk ↓ 0 and uk → u such that z̄ + tkuk ∈ dom θ. Thus we obtain a constant

index subset P ⊂ K so that K(z̄ + tkuk) = P for all k. Picking s ∈ P and using the

equivalent description (5.4) of the subderivative function for CPWL functions, we arrive at

dθ(z̄)(u) = 〈as, u〉. (5.6)

Pick i ∈ K and s ∈ P and observe that 〈ai, z̄ + tkuk〉 − αi ≤ 〈as, z̄ + tkuk〉 − αs, which leads

us to

〈ai, u〉 ≤ 〈as, u〉 whenever i ∈ K, s ∈ P. (5.7)

Moreover, we deduce from (4.8) and u ∈ T (z̄; dom θ) that 〈v̄2, u〉 ≤ 0. Employing this

together with (5.6) and (5.7), we get

〈as, u〉 = dθ(z̄)(u) = 〈v̄, u〉 ≤ 〈v̄1, u〉 =
∑
i∈J1

λ̄i〈ai, u〉 ≤
∑
i∈J1

λ̄i〈as, u〉 = 〈as, u〉, (5.8)

which justifies the claim. Thus we get 〈ai − aj, u〉 = 0 whenever i, j ∈ J1. Assume now

(i, j) ∈ (K \ J1) × J1. Pick s ∈ P and observe from (5.7) that 〈ai, u〉 ≤ 〈as, u〉. Since

〈as, u〉 = 〈aj, u〉, we accomplish that 〈ai − aj, u〉 ≤ 0. Finally, we infer from (5.8) that

〈v̄2, u〉 = 0. Combining this with the inequality 〈v̄2, u〉 ≤ 0, we arrive at 〈di, u〉 = 0 for i ∈ J2

and 〈di, u〉 ≤ 0 when i ∈ I \ J2. These justify the inclusion “⊂" in (5.5).

To prove the opposite inclusion, let u be an element from right side of (5.5). Thus

we deduce from (4.8) that u ∈ T (z̄; dom θ). Appealing to [53, Exercize 8.4] that 〈v̄, u〉 ≤
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dθ(z̄)(u). On the other hand, it is not hard to see that dθ(z̄)(u) = 〈ar, u〉 for some r ∈ K.

Take i ∈ J1 and get

〈ar, u〉 ≤ 〈ai, u〉 = 〈v̄1, u〉 = 〈v̄, u〉.

This shows that 〈v̄, u〉 = dθ(z̄)(u) and hence we arrive at u ∈ K(z̄, v̄). 4

Definition 5.2 (critical multipliers). Assume that (x̄, v̄) is a solution of the generalized

equation (5.1) for the parameters (p̄1, p̄2) = (0, 0), and that θ ∈ CPWL with (z̄, v̄) ∈ ∂θ and

z̄ = Φ(x̄). We say that the Lagrange multiplier v̄ ∈ Λ(x̄) is critical for the generalized

equation (5.1) if there exists a pair (ξ, η) ∈ Rn × Rm with ξ 6= 0 for which the following

conditions are satisfied:

(i) η ∈ D̂∗(∂θ)(x̄, v̄)(−∇Φ(x̄)ξ).

(ii) ∇xΨ(x̄, v̄)ξ +∇Φ(x̄)∗η = 0.

(iii) 〈η,∇Φ(x̄)ξ〉 = 0.

Moreover, the Lagrange multiplier v̄ ∈ Λ(x̄) is called noncritical provided that it is not

critical.

It is worth noticing that the values of the precoderivative of CPWL functions were recently

calculated in [41, Theorem 4.3] via their parameters from (4.3). Indeed, it was justified there

that

D̂∗(∂θ)(z̄, v̄)(u) =
(
K(z̄, v̄)

)∗
for any u ∈ dom (D̂∗∂θ)(z̄, v̄) = −K(z̄, v̄), (5.9)

where ‘∗’ signifies the polar cone of K(z̄, v̄). Moreover, we showed that(
K(z̄, v̄)

)∗
= span

{
ai − aj

∣∣∣ i, j ∈ J1

}
+
{
ai − aj

∣∣∣ (i, j) ∈ (K \ J1)× J1

}
+span

{
di

∣∣∣ i ∈ J2

}
+
{
di

∣∣∣ i ∈ I \ J2

}
,

where the index sets K : = K(z̄), I : = I(z̄), J1 := J+(x̄, v̄1), and J2 := J+(z̄, v̄2) are from

(4.5), and (4.9), respectively. The original definition of critical multipliers was appeared
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in [14, Definition 1.41] when the CPWL function θ is the indicator function δ(· ; Ω) of the

polyhedral set Ω: = Rs×Rn−s
− . The latter cone is used in problems of nonlinear programming

with s equality and n − s inequality constraints. It is not hard to see that Definition 5.2

reduces to the one appeared in [14, Definition 1.41] when the CPWL function θ is as described

above. It is worth noticing that the validity of the second order sufficient condition

〈∇xΨ(x̄, v̄)u, u〉 > 0 for all 0 6= u ∈ Rn with ∇Φ(x̄)u ∈ K(z̄, v̄) (5.10)

for v̄ ∈ Λ(x̄) results in that the Lagrange multiplier v̄ is noncritical. The interest on keeping

the term “second-order sufficient condition" for condition (5.10) resides in the following

observation. Consider the following composite optimization problem:

minimize ϕ0(x) + θ(Φ(x)) subject to x ∈ Rn, (5.11)

where θ ∈ CPWL, and where ϕ0 : Rn → R and Φ: Rn → Rm are C2-smooth around the

reference optimal solution. Pick v ∈ ∂θ(x) for x ∈ Rn and define the Lagrangian of problem

(5.11) by

L(x, v) : = ϕ0(x) + 〈Φ(x), v〉.

Moreover, introduce the set of Lagrange multipliers associated with the feasible solution x̄

for problem (5.11) by

Λcom(x̄) : =
{
v ∈ Rm

∣∣∣ L(x̄, v) = 0, v ∈ ∂θ(z̄)
}

with z̄ = Φ(x̄). (5.12)

The next proposition reveals that the validity of the second order sufficient condition

〈∇2
xxL(x̄, v̄)u, u〉 > 0 for all 0 6= u ∈ Rn with ∇Φ(x̄)u ∈ K(z̄, v̄) (5.13)

ensures that x̄ is a unique local optimal solution for problem (5.11). It is important to point

out that condition (5.13) boils down to the well-known second order sufficient condition for

problems of nonlinear programming.
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Proposition 5.3 (sufficient condition for local optimal solutions of composite op-

timization problems). Let θ ∈ CPWL and Φ(x̄) ∈ dom θ, and let v̄ ∈ Λcom(x̄). Assume

further that the second order sufficient condition (5.13) is satisfied. Then x̄ is a unique local

optimal solution to problem (5.11).

Proof. Suppose that x̄ is not a unique local minimizer for problem (5.11). This allows us

to find a sequence xk with xk → x̄ as k →∞ for which we have

ϕ0(xk) + θ(Φ(xk)) ≤ ϕ0(x̄) + θ(Φ(x̄)) and Φ(xk) ∈ dom θ. (5.14)

Letting z̄ : = Φ(x̄) and zk : = Φ(xk), we have K(zk) ⊂ K(z̄) for all k sufficiently large.

Extracting a subsequence of zk if necessary, pick without loss of generality a constant index

subset P ⊂ K(z̄) so that K(zk) = P for all k. Define uk : = xk−x̄
‖xk−x̄‖

and assume without

loss of generality that uk → ū as k → ∞ for some ū ∈ Rn. Pick r ∈ P and observe by the

inclusion P ⊂ K(z̄) that

θ(Φ(x̄)) = 〈ar,Φ(x̄)〉 − αr and θ(Φ(xk)) = 〈ar,Φ(xk)〉 − αr.

Hence we get (
ϕ0(xk)− ϕ0(x̄)

)
+ 〈ar, zk − z̄〉 ≤ 0, (5.15)

which leads us to the relationship

∇ϕ0(x̄)ū+ 〈ar,∇Φ(x̄)ū〉 ≤ 0 (5.16)

for any r ∈ P . Since v̄1 ∈ ∂θ(z̄) and ar ∈ ∂θ(zk) for any r ∈ P , we deduce from the convexity

of θ that

〈v̄1, zk − z̄〉 ≤ 〈ar, zk − z̄〉.

Combining this with (5.16), we arrive at

∇ϕ0(x̄)ū+ 〈v̄1,∇Φ(x̄)ū〉 ≤ 0. (5.17)
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Moreover, by the inclusion I(zk) ⊂ I(z̄), we obtain

〈v̄2, zk − z̄〉 ≤ 0 and 〈v̄2,∇Φ(x̄)ū〉 ≤ 0. (5.18)

Remember that v̄ ∈ Λcom(x̄), which says that ∇ϕ0(x̄) +∇Φ(x̄)∗v̄ = 0. Taking it into account

together with (5.17) and (5.18), we come up to the relationships

〈aj,∇Φ(x̄)ū〉 = −∇ϕ0(x̄)ū for j ∈ J1 and 〈dt,∇Φ(x̄)ū〉 = 0 for t ∈ J2. (5.19)

Take i ∈ K and conclude from the convexity of θ that

〈ai, zk − z̄〉 ≤ θ(zk)− θ(z̄) ≤ −
(
ϕ0(xk)− ϕ0(x̄)

)
by which we arrive at

〈ai,∇Φ(x̄)ū〉 ≤ −∇ϕ0(x̄)ū = 〈aj,∇Φ(x̄)ū〉 for j ∈ J1.

Employing this along with (5.19) tells us that ∇Φ(x̄)ū ∈ K(z̄, v̄) with ū 6= 0. Since we have

v̄ = v̄1 + v̄2, it follows from (5.15) and (5.18) that(
ϕ0(xk)− ϕ0(x̄)

)
+ 〈v̄, zk − z̄〉 ≤ 0.

Implementing now the Taylor expansion formula together with v̄ ∈ Λcom(x̄) leads us to

〈∇2
xxL(x̄, v̄)ū, ū〉 ≤ 0,

being a contradiction with the second-order sufficient condition (5.13). This justifies the

result. 4

It is worth noticing that the assumption v̄ ∈ Λcom(x̄) in Proposition 5.3 can be satisfied

under the validity of the well-known qualification condition

∂∞θ(Φ(x̄)) ∩ ker∇Φ(x̄)∗ = {0}, (5.20)

which reduces to the Robinson constraint qualification for problems of constrained optimiza-

tion. Moreover, we can guarantee the validity of the latter assumption provided that the
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set-valued mapping F : Rn × R ⇒ Rm × R defined by

F (x, α) : = epi θ − (Φ(x), α)

is metrically subregular at (x̄, θ(Φ(x̄)), 0, 0); see [13, pp. 210] for more details. It is interesting

to observe that the qualification condition (5.20) is equivalent to the set-valued mapping F

being metrically regular around (x̄, θ(Φ(x̄)), 0, 0).

5.1 Critical Multipliers for Composite Optimization Problems

We continue with the following extension of [41, Theorem 3.4]. The message of the

following important theorem for problems of nonlinear programming is trivial. Indeed, let

the CPWL function θ be the indicator function δ(· ; Ω) of the polyhedral set Ω:= Rs×Rp−s
−

with s ≥ 0. This tells us that l = 0 and di = ei in representation (4.3), where ei ∈ Rm is

the unit vector such that the ith component of it is 1 while the others are 0. The following

result in this particular case can be easily proved because the vectors di, i ∈ T2, are linear

independent. However, in the general framework of CPWL functions it needs to be taken

care rigourously.

Theorem 5.4 (description of points in the subdifferential graph of CPWL func-

tions). Let θ ∈ CPWL with (z̄, v̄) ∈ ∂θ. Then there exists a neighborhood O of (z̄, v̄) such

that for any (z, v) ∈ (∂θ) ∩O we have J+(z̄, v̄1) ⊂ K(x) and J+(z̄, v̄2) ⊂ I(z), where v̄1 and

v̄2 are taken from (4.7), and where and J+(z̄, v̄1) and J+(z̄, v̄2) are given by (4.9).

Proof. We split the proof into the following major steps with keeping all the notation above.

Claim 1: Let v̄ =
∑

i∈P ηiai +
∑

i∈Q τidi with some τi, ηi ≥ 0 satisfying
∑

i∈P ηi = 1,

P ⊂ K(z̄), and Q ⊂ I(z̄). Then we have the equality∑
i∈P

ηiαi +
∑
i∈Q

τiβi =
∑
i∈K(z̄)

λ̄iαi +
∑
i∈I(z̄)

µ̄iβi, (5.21)

where the multipliers λ̄i and µ̄i are taken from (4.7).
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To verify this claim, suppose that v̄ = v̂1 + v̂2 for v̂1 =
∑

i∈P ηiai and v̂2 =
∑

i∈Q τidi with∑
i∈P ηi = 1 and ηi, τi ≥ 0. Fix j ∈ P and observe that 〈aj, z̄〉 − αj = 〈ai, z̄〉 − αi for any

i ∈ K(z̄) and P ⊂ K(z̄). This tells us that

〈aj, z̄〉 − αj = 〈v̄1, z̄〉 −
∑
i∈K(z̄)

λ̄iαi

with v̄1 taken from (4.7), which implies in turn that

〈v̂1, z̄〉 −
∑
j∈P

ηjαj = 〈v̄1, z̄〉 −
∑
i∈K(z̄)

λ̄iαi. (5.22)

Since Q ⊂ I(z̄), this allows us to deduce that

〈v̂2, z̄〉 =
∑
i∈Q

τiβi and 〈v̄2, z̄〉 =
∑
i∈I(z̄)

µ̄iβi, (5.23)

where v̄2 is from (4.7). Combining (5.22) and (5.23) with v̂1 + v̂2 = v̄1 + v̄2 justifies the claim.

Suppose now that the conclusion of the theorem does not hold and thus find a sequence

(zk, vk) ∈ ∂θ such that (zk, vk) → (z̄, v̄) as k → ∞ while either J+(z̄, v̄1) 6⊂ K(zk) or

J+(z̄, v̄2) 6⊂ I(zk) for all k ∈ IN . We suppose that J+(z̄, v̄1) 6⊂ K(zk) and J+(z̄, v̄2) 6⊂ I(zk)

for all k ∈ IN . The other cases can be handled similarly.

Taking into account that the sets J+(z̄, v̄1) and J+(z̄, v̄2) are finite and considering a

subsequence of zk if necessary, we find s ∈ J+(z̄, v̄1) and s′ ∈ J+(z̄, v̄2) so that s 6∈ K(zk)

and s′ 6∈ I(zk) for all k ∈ IN . Furthermore, it is not hard to see that K(zk) ⊂ K(z̄) and

I(zk) ⊂ I(z̄) for k sufficiently large. Extracting similarly another subsequence, pick without

loss of generality constant index subsets P ⊂ K(z̄) and Q ⊂ I(z̄) so that K(zk) = P and

I(zk) = Q for all k. Select j ∈ P and observe that zk ∈ Cj, which implies by (4.4) that

〈aj, zk〉 − αj ≥ 〈ai, zk〉 − αi for all i ∈ K(z̄). (5.24)

On the other hand, the construction in (4.4) and the conditions zk 6∈ Cs, zk ∈ dom θ allow

us to select t ∈ T1 independently of k and so that 〈as, zk〉 − αs < 〈at, zk〉 − αt for all k ∈ IN .
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Claim 2: We have t ∈ K(z̄) for the index t ∈ T1 selected above.

Indeed, suppose by contradiction that t 6∈ K(z̄). Combining this with s ∈ K(z̄) tells us that

〈at, z̄〉 − αt < 〈as, z̄〉 − αs, and thus 〈at, zk〉 − αt < 〈as, zk〉 − αs for all k sufficiently large.

This clearly contradicts the choice of the index t and hence justifies the claim.

For the selected s ∈ J+(z̄, v̄1) define now the index set

Ds :=
{
t ∈ T1

∣∣∣ 〈as, zk〉 − αs < 〈at, zk〉 − αt for all k ∈ IN
}
.

It follows from Claim 2 that ∅ 6= Ds ⊂ K(z̄). We continue with the next assertion.

Claim 3: P ⊂ Ds, where P was selected so that K(zk) = P for all k ∈ IN .

Assuming the contrary, find j ∈ P such that j 6∈ Ds and pick t ∈ Ds. Employing this gives

us

〈as, zk〉 − αs < 〈at, zk〉 − αt for all k ∈ IN. (5.25)

Since j 6∈ Ds, there exists a number k0 ∈ IN for which we have

〈aj, xk0〉 − αj ≤ 〈as, xk0〉 − αs. (5.26)

Combining (5.25) for k = k0 together with (5.26) leads us to the strict inequality

〈aj, xk0〉 − αj < 〈at, xk0〉 − αt,

which contradicts (5.24) due to t ∈ K(z̄) and thus verifies the claim.

We proceed with proof of the theorem with the following claim.

Claim 4: We have v̄ 6∈ co
{
ai

∣∣∣ i ∈ P }+
{
di

∣∣∣ i ∈ Q }.

To verify the claim, suppose on the contrary that there exist vectors v̂1 ∈ co{ai| i ∈ P} and

v̂2 ∈ cone{di| i ∈ Q} such that v̄ = v̂1 + v̂2. This allows us to find numbers τi, ηi ≥ 0 with∑
i∈P ηi = 1 such that v̂1 : =

∑
i∈P ηiai and v̂2 : =

∑
i∈Q τidi. Pick t ∈ Ds ∩ P , which can
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be done by Claim 3. It follows from t ∈ Ds that

〈as, zk〉 − αs < 〈at, zk〉 − αt for all k

while t ∈ P results in the inequality

〈ai, zk〉 − αi ≤ 〈at, zk〉 − αt whenever i ∈ K(z̄).

Using these two facts together with s ∈ J+(z̄, v̄1) yields

〈v̄1, zk〉 −
∑
i∈K(z̄)

λ̄iαi < 〈at, zk〉 − αt, (5.27)

where v̄1 is from (4.7) and the multipliers λ̄i are taken from (4.7). Remembering that

〈ai, zk〉 − αi = 〈aj, zk〉 − αj for all i, j ∈ P and taking (5.27) into account ensure that

〈v̄1, zk〉 −
∑
i∈K(z̄)

λ̄iαi < 〈v̂1, zk〉 −
∑
i∈P

ηiαi. (5.28)

On the other hand, we know that zk ∈ dom θ, s′ ∈ J+(z̄, v̄2), and s′ 6∈ I(zk) which leads us

to

〈v̄2, zk〉 <
∑
i∈I(z̄)

µ̄iβi and 〈v̂2, zk〉 =
∑
i∈Q

τiβi. (5.29)

Using (5.28) and (5.29) together with v̄1 + v̄2 = v̂1 + v̂2 gives us∑
i∈K(z̄)

λ̄iαi +
∑
i∈I(z̄)

µ̄iβi >
∑
i∈P

ηiαi +
∑
i∈Q

τiβi. (5.30)

Appealing finally to Claim 1 along with the inclusions Q ⊂ I(z̄) and P ⊂ K(z̄), we arrive

at a contradiction with (5.30) and hence verify this claim.

Now we are ready to finish the proof of the theorem. Remember that (zk, vk)
∂θ−→ (z̄, v̄),

which yields vk ∈ ∂θ(zk) for all k ∈ IN . It follows from (4.6) that ∂θ(zk) = co {ai| i ∈ P}+

{di| i ∈ Q} due to K(zk) = P and I(zk) = Q. Hence we have v̄ ∈ co {ai| i ∈ P}+{di| i ∈ Q}

thus contradicting Claim 4 and showing that the assumption made after Claim 1 cannot be

correct, while the opposite is the conclusion of the theorem. 4
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Next, we provide a characterization for noncritical Lagrange multipliers via upper Lip-

schitzian property for the generalized equation (5.1). This is an extension of [14, Proposi-

tion 1.43] that provides such a characterization when the CPWL function θ in the framework

of the generalized equation (5.1) is the indicator function δ(· ; Ω) of the convex polyhedral

set Ω: = Rs × Rn−s
− .

Theorem 5.5 (characterization of critical multipliers via upper Lipschitizan prop-

erty of the KKT system). Let (x̄, v̄) be a solution of the generalized equation (5.1) for

the parameters (p̄1, p̄2) = (0, 0) ∈ Rn × Rm. Let z̄ : = Φ(x̄) and denote by K : = K(z̄),

I : = I(z̄), J1 := J+(x̄, v̄1), and J2 := J+(z̄, v̄2) the index sets from (4.5), and (4.9), respec-

tively. Then the following properties are equivalent:

(i) The Lagrange multiplier v̄ is noncritical.

(ii) There exist some number ` ≥ 0, and neighborhoods V of p̄1 : = 0 ∈ Rn and W

of p̄2 : = 0 ∈ Rm such that for any solution (xp1p2 , vp1p2) of the generalized equation (5.1),

associated with the pair (p1, p2) ∈ V ×W , close to (x̄, v̄) we have

‖xp1p2 − x̄‖+ dist(vp1p2 ; Λ(x̄)) ≤ `(‖p1‖+ ‖p2‖). (5.31)

Proof. To justify implication (ii) =⇒ (i), assume by contradiction that there exists a pair

(ξ, η) ∈ Rn × Rm with ξ 6= 0 for which properties (i)− (iii) in Definition 5.2 are satisfied.

Let t > 0 and define (xt, vt) := (x̄+ tξ, v̄ + tη). Thus for sufficiently small t we get

Ψ(xt, vt)−Ψ(x̄, v̄) =
(
f(xt)−∇f(x̄)

)
+

(
∇Φ(xt)−∇Φ(x̄)

)∗
v̄ + t∇Φ(xt)

∗η

= t∇f(x̄)ξ + o(t) + t(∇2Φ(x̄)ξ)∗v̄ + t∇Φ(x̄)∗η + o(t)

= t
(
∇xΨ(x̄, v̄)ξ +∇Φ(x̄)∗η

)
+ o(t) = o(t).



89

Since Ψ(x̄, v̄) = 0, we conclude that

Ψ(xt, vt) = p1t with p1t := o(t). (5.32)

Remember that Φ(xt) = Φ(x̄) + t∇Φ(x̄)ξ + o(t). Letting zt := Φ(x̄) + t∇Φ(x̄)ξ, we obtain

zt = Φ(xt) + p2t with p2t := o(t). (5.33)

It is not hard to see that zt ∈ dom θ for sufficiently small t, where the dom θ was given by

(4.2). To proceed we need to prove the following claim.

Claim 1. Given zt as defined above and t sufficiently small, we have J1 ⊂ K(zt) and

J2 ⊂ I(zt).

To prove the second inclusion J2 ⊂ I(zt), take i ∈ J2 and see that

〈di, zt〉 = 〈di,Φ(x̄)〉+ t〈di,∇Φ(x̄)ξ〉 = 0

due to ∇Φ(x̄)ξ ∈ K(z̄, v̄) and J2 ⊂ I(z̄). To prove the inclusion J1 ⊂ K(zt), pick i ∈ J1. To

finish the proof of the claim, we have to show that zt ∈ Ci, where the polyhedral set Ci is

taken from (4.4). To see this, take t ∈ K and then get 〈ai− at, z̄〉 = αi− αt. It follows from

∇Φ(x̄)ξ ∈ K(z̄, v̄) that 〈ai − at,∇Φ(x̄)ξ〉 ≤ 0. These lead us to 〈ai − at, zt〉 ≤ αi − αt for

t ∈ K. Similarly, we can show that 〈ai− at, zt〉 ≤ αi−αt for t ∈ T1 \K. Therefore we arrive

at 〈ai − at, zt〉 ≤ αi − αt for t ∈ T1 and hence zt ∈ Ci.

We next prove that vt ∈ ∂θ(zt) when t is sufficiently small. To this end, it follows from

Definition 5.2(i), and from (5.9) and Proposition 5.1 that

η ∈
(
K(z̄, v̄)

)∗
=
(
G{K,J1},{I,J2}

)∗
= F{K,J1},{I,J2}.
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Thus by (4.10) we get η = η1 + η2 so that

η1 :=
∑
i,j∈J1

βij(ai − aj) +
∑

(i,j)∈(K\J1)×J1

ρij(ai − aj) and η2 :=
∑
s∈J2

τ1sds +
∑
s∈I\J2

τ2sds,

βij ∈ R for i, j ∈ J1, and τ1s ∈ R for s ∈ J2,

ρij ≥ 0 for (i, j) ∈ (K \ J1)× J1, and τ2s ≥ 0 for s ∈ I \ J2.

(5.34)

We know that K(zt) ⊂ K(z̄) and I(zt) ⊂ I(z̄) for sufficiently small t. Pick i0 ∈ K(z̄)\K(zt)

and j ∈ J1. Thus we deduce from Claim 1 that j ∈ K(zt), which together with ∇Φ(x̄)ξ ∈

K(z̄, v̄) brings us to 〈ai0 − aj,∇Φ(x̄)ξ〉 < 0. This implies by Definition 5.2(iii) that ρi0j = 0

in (5.34); therefore we accomplish by (4.7) that

v1t := v̄1 + tη1 =
∑
i∈K

λ̄iai + t
∑
i,j∈J1

βij(ai − aj) + t
∑

(i,j)∈(K\J1)×J1

ρij(ai − aj)

=
∑
i∈J1

λ̄iai + t
∑
i,j∈J1

βij(ai − aj) + t
∑

(i,j)∈(K(zk)\J1)×J1

ρij(ai − aj).
(5.35)

Taking t > 0 sufficiently small, we can find λ′ti ≥ 0, i ∈ K(zt), so that
∑

i∈K(zt)
λ′ti =∑

i∈K λ̄i = 1 and

v1t =
∑
i∈J1

λ′tiai +
∑

i∈K(zt)\J1

λ′tiai. (5.36)

Similarly, pick s0 ∈ I(z̄) \ I(zt) and observe by ∇Φ(x̄)ξ ∈ K(z̄, v̄) that 〈ds0 ,∇Φ(x̄)ξ〉 < 0.

So we obtain from Definition 5.2(iii) that τ2s0 = 0 in (5.34), which says that

v2t := v̄2 + tη2 =
∑
s∈I

µ̄sds + t
∑
s∈J2

τ1sds + t
∑
s∈I\J2

τ2sds

=
∑
s∈I\J2

(µ̄s + tτ2s)ds +
∑
s∈J2

(µ̄s + tτ1s)ds

=
∑

s∈I(zt)\J2

(tτ2s)ds +
∑
s∈J2

(µ̄s + tτ1s)ds.

(5.37)

Taking into account (5.36) and (5.37) together with the inclusions J1 ⊂ K(zt) and J2 ⊂ I(zt)
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due to Claim 1 tells us that

vt = v1t + v2t ∈ co
{
ai

∣∣∣ i ∈ K(zt)
}

+
{ ∑
s∈I(zt)

µsds

∣∣∣ µs ≥ 0
}

= ∂θ(zt).

Using this along with (5.32) and (5.33) tells us that (xt, vt) is a solution for the generalized

equation (5.1) associated with the parameters (p1t, p2t); therefore by (ii) we come up to

t‖ξ‖ = ‖xt − x̄‖ ≤ `(‖p1t‖+ ‖p2t‖) = `‖o(t)‖.

This confirms that ξ = 0, which is a contradiction, and hence completes the proof of impli-

cation (ii) =⇒ (i).

To prove implication (i) =⇒ (ii), it suffices to show that there exist some number ` ≥ 0

and neighborhoods V of p̄1 = 0 ∈ Rn and W of p̄2 = 0 ∈ Rm such that for any solution

(xp1p2 , vp1p2) of the generalized equation (5.1), associated with the parameters (p1, p2) ∈

V ×W , close to (x̄, v̄) we have

‖xp1p2 − x̄‖ ≤ `(‖p1‖+ ‖p2‖). (5.38)

Assume that estimate (5.38) holds. We next prove that there exists some number `′ ≥ 0

such that

dist(vp1p2 ; Λ(x̄)) ≤ `′(‖xp1p2 − x̄‖+ ‖p1‖+ ‖p2‖), (5.39)

which together with (5.38) justifies (5.31). To furnish it, observe that ∂θ(z̄) is a convex

polyhedral set; therefore by [5, Theorem 2E.2] we find a positive number r, a matrix A ∈

Rm×r, and a vector q ∈ Rr such that the convex polyhedral set ∂θ(z̄) have an equivalent

representation of the form

∂θ(z̄) =
{
y ∈ Rm

∣∣∣ Ay ≤ q
}
.

Define now the set

Dx̄(ε, τ) =
{
v ∈ Rm

∣∣∣ Ψ(x̄, v) = ε, Av ≤ τ
}
, (5.40)
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where ε ∈ Rn and τ ∈ Rr. It is easy to observe that Dx̄(0, q) = Λ(x̄), where the set

Λ(x̄) comes from (5.2). Let ρ ≥ 0 be a Lipschitz constant for the mappings f and ∇Φ.

Appealing now to the Hoffman lemma (see [5, Lemma 3C.4]) together with the fact that

vp1p2 ∈ ∂θ(Φ(xp1p2) + p2) ⊂ ∂θ(z̄) for any (p1, p2) ∈ V ×W , we arrive at

dist(vp1p2 ; Λ(x̄)) = dist(vp1p2 ;Dx̄(0, q)) ≤ κ‖Ψ(x̄, vp1p2)‖

≤ κ
(
‖Ψ(x̄, vp1p2)−Ψ(xp1p2 , vp1p2)‖

+ ‖Ψ(xp1p2 , vp1p2)‖
)

≤ κ
(
ρ‖xp1p2 − x̄‖+ ‖p1‖

)
≤ κ

(
ρ‖xp1p2 − x̄‖+ ‖p1‖+ ‖p2‖

)
,

(5.41)

which justifies (5.39). Now we turn to proving (5.38). Suppose on the contrary that for

any k ∈ IN there exist a pair (p1k, p2k) ∈ IB 1
k
(v̄) × IB 1

k
(w̄) with (p̄1, p̄2) = (0, 0) ∈ Rn × Rm

and a solution (xk, vk) of the generalized equation (5.1) associated with the pair (p1k, p2k),

converging to (x̄, v̄), such that

‖xk − x̄‖
‖p1k‖+ ‖p2k‖

→ ∞ as k →∞,

which amounts to

‖p1k‖+ ‖p2k‖
‖xk − x̄‖

→ 0 as k →∞.

This tells us that p1k = o(‖xk−x̄‖) and p2k = o(‖xk−x̄‖). Let zk : = Φ(xk)+p2k and observe

by (5.1) that (zk, vk) ∈ ∂θ. Applying Theorem 5.4, we conclude that J1 ⊂ K(zk) ⊂ K(z̄)

and J2 ⊂ I(zk) ⊂ I(z̄). Passing to a subsequence of (zk, vk) if necessary, we can assume

without loss of generality that there exist subsets P ⊂ K(z̄) and Q ⊂ I(z̄) such that

P = K(zk) and Q = I(zk) whenever k ∈ IN. (5.42)

Remember that (xk, vk) is a solution of the generalized equation (5.1) associated with the
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pair (p1k, p2k), so we deduce that

o(‖xk − x̄‖) = p1k = Ψ(xk, vk)

= Ψ(xk, v̄)−Ψ(x̄, v̄) +∇Φ(xk)
∗(vk − v̄)

= ∇xΨ(x̄, v̄)(xk − x̄) +∇Φ(x̄)∗(vk − v̄) + o(‖xk − x̄‖).

(5.43)

Employing [41, Proposition 3.2], we find λik ≥ 0 with i ∈ P , and µik ≥ 0 with i ∈ Q for

which vk has a representation of the form vk = v1k + v2k, where

v1k =
∑
i∈P

λikai and v2k =
∑
i∈Q

µikdi with
∑
i∈P

λik = 1.

This together with (4.7) and (5.43) implies that

−∇xΨ(x̄, v̄)
(xk − x̄)

‖xk − x̄‖
+
o(‖xk − x̄‖)
‖xk − x̄‖

=
1

‖xk − x̄‖
∇Φ(x̄)∗

[
(v1k − v̄1) + (v2k − v̄2)

]
=

1

‖xk − x̄‖
∇Φ(x̄)∗

[(∑
i∈P

λikai −
∑
j∈J1

λ̄jaj

)
+
(∑
i∈Q

µikdi −
∑
j∈J2

µ̄jdj

)]
=

1

‖xk − x̄‖
∇Φ(x̄)∗

[∑
i∈P

λik
∑
j∈J1

λ̄j(ai − aj) +
(∑
i∈Q

µikdi −
∑
j∈J2

µ̄jdj

)]
∈ ∇Φ(x̄)∗

(
span

{
ai − aj

∣∣∣ i, j ∈ J1

}
+
{
ai − aj

∣∣∣ (i, j) ∈ (P \ J1)× J1

}
+
{
dj

∣∣∣ j ∈ Q \ J2

}
+ span

{
dj

∣∣∣ j ∈ J2

})
.

(5.44)

Assume without loss of generality that xk−x̄
‖xk−x̄‖

→ ξ as k → ∞. Because the set on the

right-hand side of (5.44) is closed, by passing to the limit we get

−∇xΨ(x̄, v̄)ξ ∈ ∇Φ(x̄)∗
(
span

{
ai − aj

∣∣∣ i, j ∈ J1

}
+
{
ai − aj

∣∣∣ (i, j) ∈ (P \ J1)× J1

}
+
{
dj

∣∣∣ j ∈ Q \ J2

}
+ span

{
dj

∣∣∣ j ∈ J2

})
.

Therefore we find some vector η = η1 + η2 with

η1 ∈ span
{
ai − aj

∣∣∣ i, j ∈ J1

}
+
{
ai − aj

∣∣∣ (i, j) ∈ (P \ J1)× J1

}
,

η2 ∈
{
dj

∣∣∣ j ∈ Q \ J2

}
+ span

{
dj

∣∣∣ j ∈ J2

}
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for which we have ∇xΨ(x̄, v̄)ξ +∇Φ(x̄)∗η = 0. This tells us that

η1 =
∑
i,j∈J1

γij(ai − aj) +
∑

(i,j)∈(P\J1)×J1

γ′ij(ai − aj) and η2 =
∑
t∈J2

τtdt +
∑

t∈Q\J2

τ ′tdt (5.45)

for some numbers γij ∈ R, γ′ij ≥ 0, τt ≥ 0, and τ ′t ∈ R. We now claim that ∇Φ(x̄)ξ ∈ K(z̄, v̄),

which together with (5.45) confirms that properties (i) and (ii) in Definition 5.2 are satisfied.

To prove the claim, let i, j ∈ J1 and conclude by the inclusion J1 ⊂ P ⊂ K(z̄) together with

(4.7) that

〈ai − aj, zk − z̄〉 = 〈ai − aj,Φ(xk) + p2k − Φ(x̄)〉 = 0,

so we deduce from p2k = o(‖xk − x̄‖) that

〈ai − aj,∇Φ(x̄)
xk − x̄
‖xk − x̄‖

+
o(xk − x̄)

‖xk − x̄‖
〉 = 0.

This results in

〈ai − aj,∇Φ(x̄)ξ〉 = 0 whenever i, j ∈ J1. (5.46)

Assume now i ∈ K \ J1 and j ∈ J1; by the similar arguments as above, we can justify that

〈ai − aj,∇Φ(x̄)ξ〉 ≤ 0 whenever (i, j) ∈ (K \ J1)× J1. (5.47)

Pick now t ∈ J2 and observe that 〈dt,Φ(xk) + p2k − Φ(x̄)〉 = 0 because of the inclusion

J2 ⊂ Q ⊂ I. Combining this with p2k = o(‖xk − x̄‖) allows us to get

〈dt,∇Φ(x̄)
xk − x̄
‖xk − x̄‖

+
o(xk − x̄)

‖xk − x̄‖
〉 = 0,

so we come up to

〈dt,∇Φ(x̄)ξ〉 = 0 whenever t ∈ J2. (5.48)

For any t ∈ I \J2 we have 〈dt,Φ(xk)+p2k−Φ(x̄)〉 ≤ 0, and by the similar arguments it yields

〈dt,∇Φ(x̄)ξ〉 ≤ 0. Using this together with (5.46)-(5.48), we accomplish that ∇Φ(x̄)ξ ∈

K(z̄, v̄) via representation (5.5), hence justifies the claim. It is not hard to see that (5.46)
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holds if J1 is replaced by P . Similarly, inequality (5.48) is still true provided that J2 is

replaced byQ. Employing these observations along with (5.45), we arrive at 〈η,∇Φ(x̄)ξ〉 = 0,

which says that the Lagrange multiplier v̄ is critical, a contradiction. This finishes the proof.

4

5.2 Full Stability and Critical Multipliers

In this section we consider the perturbed version of problem (5.11) defined by

minimize ϕ0(x, p2) + θ(Φ(x, p2))− 〈p1, x〉 subject to x ∈ Rn (5.49)

with (p1, p2) ∈ Rn×Rd. Fix γ > 0 and (x̄, p̄1, p̄1) with Φ(x̄, p̄2) ∈ dom θ. To proceed instead

of working with the fully perturbed problem (5.49), we need to restrict our attention to the

canonical perturbed version of problem (5.11) given by

minimize ϕ0(x) + θ(Φ(x) + p2)− 〈p1, x〉 subject to x ∈ Rn (5.50)

with (p1, p2) ∈ Rn × Rm. We next demonstrate that the full stability for the canonical

perturbed problem (5.11) excludes the existence of critical multipliers, which are the main

source for slow primal convergence in the Newton-type algorithms.

Theorem 5.6 (excluding critical multipliers via full stability). Let x̄ be a feasible

solution to (5.50) for the parameter pair (p̄1, p̄2) = (0, 0) ∈ Rn × Rm, and let θ ∈ CPWL.

Let x̄ be a fully stable local minimizer of the canonical perturbed problem (5.50). Then the

Lagrange multiplier set Λcom(x̄) from (5.12) does not include any critical multipliers.

Proof. We first show that the assumed full stability implies the validity of the constraint

qualification (5.20). To this end, let η ∈ ∂∞θ(Φ(x̄))∩ker∇Φ(x̄)∗. Since the CPWL function

θ is convex, we have ∂∞θ(Φ(x̄)) = N(Φ(x̄); dom θ). Select p1 = p̄1 = 0 and p2 = tη with

t ↓ 0. By assumption, there exist ` ≥ 0 and a solution of problem (5.50), denoted by xp1p2 ,

for which we have ‖xp1p2 − x̄‖ ≤ `‖p2‖ = `t‖η‖. It follows from Φ(xp1p2) + p2 ∈ dom θ and
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Φ(xp1p2) = Φ(x̄) +∇Φ(x̄)∗(xp1p2 − x̄) + o(‖xp1p2 − x̄‖) that

0 ≥ 〈η,Φ(xp1p2) + p2 − Φ(x̄)〉

= 〈η,∇Φ(x̄)∗(xp1p2 − x̄) + o(‖xp1p2 − x̄‖) + p2〉

= 〈η, o(‖xp1p2 − x̄‖)〉+ t‖η‖2,

which tells us that η = 0. This justifies the claim.

Pick v̄ ∈ Λcom(x̄), where the Lagrange multiplier set Λcom(x̄) is defined by (5.12). We

need to prove that v̄ is noncritical. Consider the KKT system of problem (5.50), which can

be written as a generalized equation p1

p2

 ∈
 ∇xL(x, v)

−Φ(x)

+

 0

(∂θ)−1(v)

 (5.51)

with ∇xL(x, v) : = ∇ϕ0(x) +∇Φ(x)∗v being the Lagrange function for problem (5.50). By

Theorem 5.5 it suffices to show that there exist some number ` ≥ 0 and neighborhoods V of

p̄1 = 0 ∈ Rn andW of p̄2 = 0 ∈ Rm such that for any solution (xp1p2 , vp1p2) of the generalized

equation (5.51), associated with the pair (p1, p2) ∈ V ×W and close to (xp̄1p̄2 , vp̄1p̄2) = (x̄, v̄),

the upper Lipschitzian estimate (5.31) holds. To this end, since x̄ is a fully stable local

minimizer of problem (5.50), it follows from [39, Proposition 6.1] that there exist some

neighborhoods Ṽ × W̃ of (p̄1, p̄2) and Ũ of x̄ for which the set-valued mapping

S(p1, p1) : =
{
x ∈ Rn

∣∣∣ p1 ∈ ∇ϕ0(x) +∇Φ(x)∗∂θ(Φ(x) + p2)
}

admits a Lipschitzian single-valued graphical localization on Ṽ × W̃ × Ũ . This amounts

to saying that there exists a Lipschitzian single-valued mapping s : Ṽ × W̃ → Ũ such that

S ∩ (Ṽ × W̃ × Ũ) = s. Letting now V = Ṽ and W = W̃ , pick any solution (xp1p2 , vp1p2) of

the generalized equation (5.51), associated with the pair (p1, p2) ∈ V ×W , close to (x̄, v̄).

This implies that xp1p2 ∈ S(p1, p2); therefore we can find some number ` ≥ 0 such that

‖xp1p2 − x̄‖ = ‖xp1p2 − xp̄1p̄2‖ ≤ `(‖p1 − p̄1‖+ ‖p2 − p̄2‖) = `(‖p1‖+ ‖p2‖).
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As we showed in the proof of Theorem 5.5, the above estimate justifies the validity of estimate

(5.39), which therefore leads us to the upper Lipschitzian estimate (5.31). This completes

the proof. 4
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ABSTRACT

VARIATIONAL ANALYSIS AND STABILITY IN OPTIMIZATION

by
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Degree: Doctor of Philosophy

The dissertation is devoted to the study of the so-called full Lipschitzian stability of local

solutions to finite-dimensional parameterized problems of constrained optimization, which

has been well recognized as a very important property from both viewpoints of optimization

theory and its applications. Employing second-order subdifferentials of variational analy-

sis, we obtain necessary and sufficient conditions for fully stable local minimizers in general

classes of constrained optimization problems including problems of composite optimization

as well as problems of nonlinear programming with twice continuously differentiable data.

Based on our recent explicit calculations of the second-order subdifferential for convex piece-

wise linear functions, we establish relationships between nondegeneracy and second-order

qualification for fully amenable compositions involving piecewise linear functions and obtain

new applications of the developed second-order theory to full stability in composite optimiza-

tion and constrained minimax problems, strong regularity of associate generalized equations

and strong stability of stationary points for composite optimization. Finally, we discuss the

important concept of critical multipliers for composite optimization problems and charac-

terize it via second-order subdifferentials. Then we demonstrate that full stability can rule

out the existence of critical multipliers in the mentioned framework.
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