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CHAPTER 1 - INTRODUCTION 

Preterm birth (PTB) is defined as occurring prior to 37 weeks of gestation (1).  

With a rate of 11.39% in the United States (2), PTB is the leading cause of perinatal 

mortality (3).  The infants that survive PTB have increased risk of developing short-term 

and lifelong complications (4-6), which greatly increases the number of years they lose 

due to illness, disability or early death (7).  Preterm birth is a syndrome of multiple 

etiologies (8), which makes studying its pathophysiological mechanisms more 

challenging.  However, the common factor of inflammation underlies many of these 

etiologies, including decidual senescence, infection, stress, allergy, and breakdown of 

fetal-maternal tolerance. 

Inflammation at the maternal-fetal interface during labor has been well 

substantiated by the documented increased bioavailability of cytokines and chemokines 

and an influx of immune cells, including macrophages, neutrophils, and T cells, into the 

reproductive tissues (9-11).  Inflammation has been shown to promote initiation of the 

common pathway of parturition (12) (Figure 1) via up-regulation of matrix 

metalloproteinases (13-18) and prostaglandins (19, 20).  Sterile intraamniotic 

inflammation occurring in the absence of detectable microorganisms is more prevalent 

than microbial-associated intraamniotic inflammation in patients with preterm labor and 

intact fetal membranes (21).  Innate immune response initiates sterile inflammation 

when endogenous danger signals derived from necrosis or cellular stress (22), referred 

to as damage-associated molecular pattern molecules (DAMPs) (23) or alarmins (24), 

bind to their respective pattern recognition receptors (PRRs) and trigger pro-

inflammatory cascade. 

We aimed to determine 1) whether alarmins are capable of inciting sterile 
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inflammation of the chorioamniotic membranes leading to pro-labor changes.  In 

addition to initiating innate immune response, alarmins can also activate adaptive 

immunity (25, 26).  We hypothesized that the release of alarmins activates invariant 

natural killer (iNKT) cells (27) – unique immune cells that have characteristics of both 

innate and adaptive immunity – leading to labor.  Therefore, our next aim was to 

determine whether 2) activation of iNKT cells leads to sterile inflammation and 

precipitates labor.  Secretion of alarmins is one of the hallmarks of senescent cells (28-

30), which have been implicated in the process of murine parturition (31).  Thus, our 

final aim was 3) to investigate whether chorioamniotic membranes obtained from 

women who underwent preterm labor exhibit cellular senescence. 

 
Figure 1: Inflammation as a common factor of multiple etiologies of preterm birth.  We 
propose that decidual senescence, among other pro-inflammatory conditions, causes the 
release of alarmins at the maternal-fetal interface which induces iNKT cell activation and sterile 
inflammation initiating the common pathway of parturition. 
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CHAPTER 2 - HMGB1 INDUCES STERILE INFLAMMATION AT THE MATERNAL-
FETAL INTERFACE 

Introduction 

Innate immune response can initiate sterile inflammation when danger signals 

(32) are sensed by pattern recognition receptors (PRRs) (33), which leads to activation 

of the inflammasome complex and caspase-1-mediated maturation of IL1β (34-39).  

Expression of the inflammasome components is upregulated in the chorioamniotic 

membranes of patients who underwent spontaneous term labor when compared to term 

delivery without labor (40).  Concentration of caspase-1 is elevated in the amniotic fluid 

of patients with spontaneous preterm labor and intraamniotic infection/inflammation 

when compared to patients who delivered preterm without intraamniotic 

infection/inflammation or those who delivered at term (41).  Finally, elevated amniotic 

fluid IL1 β in term spontaneous labor was demonstrated over two decades ago (42-45).  

However, the danger signals that initiate the inflammasome-mediated release of IL1β in 

the chorioamniotic membranes remain unknown. 

High mobility group box 1 (HMGB1) is an evolutionary conserved protein that 

stabilizes nucleosome formation and facilitates gene transcription while localized to the 

nucleus, but acts as an alarmin when released extracellularly (46).  HMGB1 can be 

either passively released during cell necrosis or actively exocytosed by immune cells to 

initiates pro-inflammatory intracellular signaling in multiple cell types by binding their cell 

surface PRRs – RAGE, TLR2, and TLR4 (47, 48).  In macrophages, HMGB1 was 

shown to stimulate production of TNF, IL8, IL6, and IL1β (49).  In neutrophils, HMGB1 

increases levels of TNF, IL8, and IL1β (50), enhances adhesion and migration (51), and 

upregulate NF-κB (50).  HMGB1 also upregulates NF-κB and induces secretion of TNF, 
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IL8, and IL6 in dendritic cells (52), and promotes Th1 differentiation in both dendritic 

cells and T cells (52).  Finally, HMGB1 was demonstrated to upregulate expression of 

VCAM-1, ICAM-1, RAGE and NF-κB and to increase production of TNF and IL8 in 

endothelial cells (53). 

Transcriptomic profiling has identified HMGB1 as a predicted upstream regulator 

of the inflammatory response in the choriodecidua during term labor (54).  Sterile intra-

amniotic inflammation in patients with preterm labor and intact membranes is 

associated with elevated levels of HMGB1 in the amniotic fluid (21).  Amniotic fluid 

HMGB1 concentration is also increased in patients at term with clinical chorioamnionitis 

(55) and in patients with preterm prelabor rupture of membranes (PPROM) (56).  

Furthermore, extranuclear expression of HMGB1 is upregulated in the preterm cervix 

(57), extracellular HMGB1 promotes migration of cord blood CD34+ cells (58), and 

tracheal aspirates from premature infants that develop bronchopulmonary dysplasia 

contain elevated HMGB1 (59).  Therefore, we hypothesized that HMGB1 can induce 

sterile inflammation of the chorioamniotic membranes leading to preterm labor and 

neonatal complications.  In support of this hypothesis, our recent findings demonstrate 

that intraamniotic injections of HMGB1 increase the rate of preterm birth and neonatal 

mortality in mice (60).  Herein, we aimed to explore the molecular mechanisms behind 

these adverse effects of HMGB1, specifically whether HMGB1 is capable of inducing 

sterile inflammation of the human chorioamniotic membranes via inflammasome-

mediated release of IL1β. 

Materials and Methods 

Human subjects 

Chorioamniotic membranes were obtained from women who underwent elective 
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caesarian sections without labor and were provided with written informed consent.  

Samples were collected from the Bank of Biological Specimens of the Perinatology 

Research Branch, an intramural program of the Eunice Kennedy Shriver National 

Institute of Child Health and Human Development, National Institutes of Health, U. S. 

Department of Health and Human Services (NICHD/NIH/DHHS), Wayne State 

University, and The Detroit Medical Center (Detroit, MI, USA).  The Institutional Review 

Boards of NICHD and Wayne State University (Detroit, MI, USA) approved the 

collection and use of biological materials for research purposes.  Non-laboring status 

was confirmed by the absence of regular uterine contractions at a frequency of at least 

two contractions every 10 minutes and the lack of cervical dilatation.  Patients with 

multiple pregnancies or with deliveries prior to 37 weeks of gestation were excluded.  

The detailed patient demographics information is contained in Table 1. 

Table 1: The demographical data of patients whose samples were used for the HMGB1 
study  

Age (years) 25 (19-33) 
Body mass index (kg/m2) 31.5 (20.4-42-.5) 
Gestational age at delivery (weeks) 38.93 (39.4-37.1) 
Newborn weight (g) 3225 (2745-3880) 
Race 

African-American 
Caucasian 
Hispanic 
Asian 
Other 

 
91.4% (21/23)  
8.6% (2/23) 
0% (0/23) 
0% (0/23) 
0% (0/23) 

Primiparity 17.4% (4/23) 
C-section 100% (23/23) 
Absence of chorioamnionitis 100% (23/23) 
Smoking During Pregnancy 17.4% (4/23) 

Age, body mass index, gestational age at delivery, and newborn 
weight are shown as mean (min-max). Race, primiparity, C-
section, absence of chorioamnionitis, and smoking during 
pregnancy are shown as percent (positive/total). 

In vitro HMGB1 treatment 

Chorioamniotic membrane samples obtained from non-laboring, term deliveries, 

were spread out flat onto a sterile cutting board.  A dermatological biopsy punch (12mm 
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Acu-Punch, Acuderm Inc., Fort Lauderdale, FL, USA) was used to expunge tissue 

explants from the chorioamniotic membranes.  The explants were treated with 500μL of 

1x Dulbecco’s Modified Eagle Medium (DMEM) (Corning, Manassas, VA, USA) 

containing 10% Fetal Bovine Serum (FBS) (Gibco, Life Technologies Corporation, 

Grand Island, NY, USA) and 1% penicillin/streptomycin (Gibco) either with or without 

Ultra-Pure HMGB1 (Catalog # REHM050, IBL International Corporation, Toronto, ON, 

Canada).  Explants were placed in a falcon 24 well plate (Corning) and incubated for 

24-hours in a humidified 5% CO2 incubator. 

ELISA 

Mature IL1β and IL6 released from the chorioamniotic membrane explants into 

the culture media (n=6-13) was quantified using IL1β ELISA kit (R&D Systems, Inc. 

Minneapolis, MN, USA) and IL6 ELISA kit (R&D Systems, Inc.).  The sensitivities of 

detection were <1pg/mL and <0.70pg/mL, respectively.  Caspase-1 concentrations in 

the chorioamniotic membranes homogenized in their conditioning media (n=9) was 

determined using caspase-1 ELISA kit (Cloud Clone, Houston, TX, USA) with sensitivity 

of detection of <0.112 ng/ml.  All ELISAs were run according to the manufacturers’ 

protocols.  Briefly, recombinant human standards and the samples were incubated in 

duplicate wells of the 96-well microplates pre-coated with immobilized monoclonal 

antibodies specific for target analytes.  After washing the unbound substances, enzyme-

conjugated anti-IL1β, anti-IL6 or anti-caspase-1 antibodies were added to the wells.  

After incubation, assay plates were washed again to remove the unbound antibodies, 

followed by the addition of a substrate solution, which produced color in proportion to 

the amount of bound target analytes.  Finally, sulfuric acid solution was added to arrest 

the color development and the microplates were read using a programmable 
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spectrophotometer (SpectraMax M5 Multi-Mode Microplate Reader, Molecular Devices, 

Sunnyvale, CA, USA). 

RT-PCR 

TRIzol® (Life Technologies Corporation), Qiagen RNeasy® Kit (Qiagen, 

Valencia, CA, USA), RNase-Free DNase Sets (Qiagen), and QIAshredders (Qiagen) 

were used for total RNA extraction from the chorioamniotic membrane (n=5-8) on 

QIAcube (Qiagen).  RNA concentration was determined with the NanoDrop® 1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and RNA integrity was 

assessed with the Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, USA).  

Table 2:  The list of primers used for RT-PCR in the HMGB1 study 
Gene Full Name ID Lot

NOD1 
Nucleotide-Binding Oligomerization Domain-

Containing Protein 1 
hs00196075_m1 730289 

NOD2 
Nucleotide-Binding Oligomerization Domain-

Containing Protein 2 
hs00223394_m1 1130429 

NLRP1 NLR Family, Pyrin Domain Containing 1 hs00249187_m1 696883 
NLRP3 NLR Family, Pyrin Domain containing 3 hs00918082_m1 1204490 
NLRC4 NLR family, CARD domain containing 4 hs00368367_m1 724373 
AIM2 Absent in Melanoma 2 hs00915710_m1 1014056 

CASP1 Caspase 1 hs00354836_m1 1035134 
CASP4 Caspase 4 hs01031947_m1 1010522 

IL1B Interleukin 1, Beta hs00174097_m1 815049 
IL18 Interleukin 18 hs99999040_m1 666991 
IL6 Interleukin 6 hs00985639_m1 941055 

INFG Interferon, Gamma hs00989291_m1 970586 
IL1A Interleukin 1, Alpha hs99999028_m1 937514 
TNF Tumor Necrosis Factor hs00174128_m1 905231 
TLR2 Toll-Like Receptor 2 hs00610101_m1 435401 
TLR4 Toll-Like Receptor 4 hs00152939_m1 432491 

AGER (RAGE) Receptor for Advanced Glycation Endproducts hs00153957_m1 897932 

NFKB1 
Nuclear Factor of Kappa Light Polypeptide Gene 

Enhancer in B-cells 1 
hs00765730_m1 1208011 

PTGS2 Prostaglandin-Endoperoxide Synthase 2  hs01573477_m1 816998 
MMP9 Matrix Metallopeptidase 9 hs00234579_m1 439744 

GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase hs99999905_m1 1335169 
ACTB Actin, Beta hs99999903_01 984416 

RPLPO Ribosomal Protein, Large, P0 hs99999902_m1 1347306 
HMGB1 High Mobility Group Box 1 hs01590761_g1 1032400 

S100A12 S100 Calcium Binding Protein A12 hs00194525_m1 866042 
HSPA1A (HSP70) Heat Shock 70kDa Protein 1A hs00359163_s1 1310706 

HMGB1 High Mobility Group Box 1 hs01923466_g1 946636 
The abbreviations and the full names of genes are listed with assay IDs and Lot numbers for each 
primer. 

The SuperScript® III First-Strand Synthesis System (Life Technologies 



8 

 

Corporations) and oligo(dT)20 primers (Life Technologies Corporation) was used to 

synthesize the cDNA.  Gene expression profiling was performed on the BioMark™ 

System for high-throughput qRT-PCR (Fluidigm, San Francisco, CA, USA) with 

TaqMan® gene expression assays (Applied Biosystems, Life Technologies Corporation) 

listed in Table 2. 

Immunoblotting 

Chorioamniotic membrane explants homogenized in their conditioned medium 

(n=9 per group) were heated at 95oC for 5 minutes in NuPAGE® Sample Reducing 

Agent (Novex®, Life Technologies Corporation, Carlsbad, CA, USA) and NuPAGE® 

LDS Sample Buffer (Novex®, Life Technologies Corporation).  NuPAGE® 4-12% Bis-

Tris Gel (Catalog # IM-8042, Novex®, Life Technologies Corporation) was used to 

perform an SDS-PAGE of the samples and a protein ladder (BioRad Precision Plus 

Protein Dual Color Standards, Catalog# 161-0374) in Invitrogen Novex® Mini-Cell (Life 

Technologies Corporation) with NuPAGE® MES SDS Running Buffer (Novex®, Life 

Technologies Corporation).  After electrophoresis, separated proteins were transferred 

onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA) using NuPAGE® Transfer 

Buffer (Novex®, Life Technologies Corporation) diluted in 20% methanol.  Transfer was 

performed in a Bio-Rad Mini-Protean II Cell (Bio-Rad).  Ponceau S solution (Sigma-

Aldrich®, St. Louis, MO, USA) was used to visualize successful protein transfer.  The 

membranes were blocked with StartingBlockTM T20 (TBS) Blocking Buffer (Thermo 

Scientific, Rockford, IL) for 30 minutes and probed with 1:500 mouse anti-CASP-1 

monoclonal antibody (Catalog # MAB6215, R&D Systems) diluted in the 

StartingBlockTM T20 (TBS) Blocking Buffer overnight at 4°C.  After washing with 1X 

TBS (Bio-Rad) containing 0.1% Tween-20 (BioRad), the membranes were incubated 
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with 1:5000 anti-mouse IgG HRP-linked secondary antibody (Catalog # 7076S, Cell 

Signaling, Boston, MA, USA).  Chemiluminescence signals were detected with 

ChemiGlow West Reagents (Protein Simple, Santa Clara, CA, USA).  Images were 

acquired was performed using the FUJIFILM LAS-4000 Imaging System (FUJIFILM 

North America Corporation, Valhalla, NY, USA) and semi-quantification was performed 

by ImageJ 1.44p (National Institute of Health, USA).  Reference gene was probed for 1h 

at room temperature with a mouse anti-human GAPDH monoclonal antibody (Catalog # 

SC-32233, Santa Cruz Biotechnology, Inc.). 

Zymography 

Chorioamniotic membrane explants homogenized in their conditioned medium 

(n=9 per group) were mixed at 1:1 with a Tris-Glycine SDS Sample Buffer (2x) 

(Novex®, Life Technologies Corporation, Carlsbad, CA, USA) and loaded into Novex® 

10% Zymogram (Gelatin) Gel (Catalog # EC6175, Novex®, Life Technologies 

Corporation) with a protein ladder (BioRad Precision Plus Protein Dual Color Standards, 

Catalog# 161-0374).  SDS-PAGE was performed in an Invitrogen Novex® Mini-Cell 

(Life Technologies Corporation) with Novex® Tris-Glycine SDS Running Buffer 

(Novex®, Life Technologies Corporation).  After electrophoresis, gels were removed 

and incubated for 30 minutes in Novex® Zymograph Renaturing buffer (Novex®, Life 

Technologies Corporation), followed by an additional 30-minute incubation in Novex® 

Zymograph Developing Buffer (Novex®, Life Technologies Corporation), both with a 

gentle agitation.  Gels were then placed in a freshly made developing buffer and 

incubated overnight at 37°C.  After overnight incubation, gels were washed 3x in ddH2O 

with a gentle agitation, for 5 minutes each.  Deionized water was removed and gels 

were stained for four hours with SimplyBlue™ SafeStain (Invitrogen, Life Technologies 
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Corporation).  Once staining was complete, gels were washed 2x for 1 hour in ddH2O. 

Images were taken using Alpha Innotech FluorChem™ SP (ProteinSimple, San Jose, 

CA, USA) and semi-quantified by ImageJ 1.44p (National Institute of Health, USA). 

Trichromic staining 

Chorioamniotic membrane explants embedded into paraffin blocks were cut into 

five-μm-thick sections, placed onto salinized slides, deparaffinized with xylene, and 

hydrated with ethanol and water.  The staining was performed on the Dako 

AutostainerPlus (Dako, Carpinteria, CA, USA) using Masson’s Trichrome Stain Kit 

(American MasterTech, Lodi, CA, USA) as per the manufacturer’s protocol.  Briefly, 

sections were incubated overnight in Bouin solution at room temperature, rinsed, and 

stained with Weigert’s hematoxylin for 5 minutes.  The slides were then rinsed again in 

water and stained with Biebrich Scarlet-Acid Fuchsin Solution for 15 minutes, rinsed a 

third time, and incubated with phosphomolybdic/phosphotungstic acid for 15 min.  Final 

staining with Aniline Blue Stain for 10 minutes was followed by another rinse and 

incubation in 1% acetic acid for 5 minutes.  The sections were then dehydrated in a 

series of alcohol baths, cleared with Xylene, and cover slipped.  The images were taken 

using the Pannoramic MIDI Digital Slide Scanner (PerkinElmer, Inc., Waltham, MA, 

USA) at 40X magnification. 

Statistical analyses 

Statistical analyses were performed using SPSS, Version 21.0 (IBM Corporation, 

Armonk, NY, USA), GraphPad Prism 6 Software (GraphPad Software, Inc., La Jolla, 

CA, USA), and R open-source software environment.  For gene expression data, Ct 

values over technical replicates were averaged and gene expressions relative to 

reference (BACT, GAPDH, RPLPO) were quantified by subtracting target gene Ct 
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values from mean reference gene Ct values within the same sample.  A Shapiro–Wilk 

test was performed to determine whether data were normally distributed and all 

normally distributed data were analyzed by the paired Student’s t-test.  Data that did not 

follow normal distribution were analyzed either by Wilcoxon signed-rank test for 

matched samples or by Mann-Whitney U test for unmatched samples.  A value of 

p<0.05 was considered statistically significant. 

Results 

In vitro incubation with HMGB1 causes secretion of mature IL1β and IL6 by the 
chorioamniotic membranes 

We first determined the concentration of HMGB1 that caused the release of pro-

inflammatory cytokines by the chorioamniotic membranes in vitro. 

It has been demonstrated that 10 and 50ng/mL HMGB1 can induce the release 

of pro-inflammatory cytokines such as IL6 and IL8 from the chorioamniotic membranes 

(61).  A previous study showed that amniotic fluid concentrations of HMGB1 were 

lowest in women with PTL with intact membranes and no intra-amniotic 

infection/inflammation (median 0.98ng/mL) and highest in women with PTL with 

PPROM and intra-amniotic infection/inflammation (median 7.3ng/mL) (56).  We used 

membrane explants from women who delivered at term without labor to test HMGB1 

concentrations ranging from 0-1000 ng/mL and then measure released mature IL1β 

(Figure 2A) and IL6 (Figure 2B).  We found that concentrations in the ng/mL range were 

not effectively inducing cytokine secretion from the chorioamniotic membrane tissue 

explants.  However, a higher concentration of 25μg/mL significantly increased secretion 

of mature IL1β (Figure 2C) and IL6 (Figure 2D) from the chorioamniotic membrane 

explants in vitro.  We found that 50μg/mL of HMGB1 increased IL1β secretion even 
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further (Figure 2C) and chose to use this concentration for the subsequent experiments.  

Therefore, these data show that incubation with a concentration of 50μg/mL of HMGB1 

is capable of inducing sterile inflammation of the chorioamniotic membranes observed 

as secretion of mature IL1β and IL6 from the chorioamniotic membrane explants. 

 

 

Figure 2: HMGB1 induces release of IL-1β and IL-6 from the chorioamniotic membranes. 
The chorioamniotic membranes treated with low doses (0-1000ng/mL) of HMGB1 (A and B) did 
not release pro-inflammatory cytokines. Higher concentrations (25μg/mL and 50μg/mL) of 
HMGB1 (C and D) significantly enhanced release of mature IL-1β and IL-6. 

HMGB1 induces expression of pro-inflammatory cytokines in the chorioamniotic 
membranes 

We used RT-PCR to confirm that secretion of IL1β and IL6 from the 

chorioamniotic membrane explants in response to HMGB1 treatment is also 

accompanied by the increased gene expression of IL1B and IL6.  To further assess the 
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extent of sterile inflammation induced by HMGB1, we explored whether HMGB1 

treatment was upregulating expression of other known pro-inflammatory cytokines TNF, 

IL1A, IL18, and IFNG.  We also evaluated the expression of NFKB1, a master 

transcription factor of inflammation known to promote labor (62-65).  

We found that all of these genes were significantly upregulated in response to 

HMGB1 (Figure 3) with an exception of IL18. IL18 expression also tended to increase; 

however, this tendency did not reach significance (data not shown).  Therefore, we 

concluded that the sterile inflammation induced by HMGB1 involves upregulation of 

multiple pro-inflammatory genes in the chorioamniotic membranes. 

 
Figure 3: HMGB1 up-regulates expression of multiple pro-inflammatory cytokines in the 
chorioamniotic membranes. Expression of the pro-inflammatory transcription factor NFKB1 
and its downstream targets IL1B, IL6, TNF, IL1A, and IFNG was assessed in the chorioamniotic 
membranes treated with HMGB1 (50μg/mL). 
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HMGB1 upregulates the expression of inflammasome components and NOD 
proteins in the chorioamniotic membranes 

Mature IL1β is a resulting product of inflammasome activation (38).  Therefore, 

we next aimed to investigate whether HMGB1 stimulates release of mature IL1β by 

activating the inflammasome pathway.  We recently demonstrated that expression of 

the inflammasome component NLRP3 (NOD-like receptor family, pyrin domain 

containing protein 3) is increased in the chorioamniotic membranes during spontaneous 

term labor compared with term delivery without labor (40).  In the same study, we also 

found that expression of NOD1 (nucleotide-binding oligomerization domain-containing 

proteins 1), a NOD protein that directly activates nuclear factor kappa B (NF-κB) to 

induce expression of pro-IL1β (66-69), is elevated in term labor.  Therefore, we 

hypothesized that HMGB1 may upregulate NLRP3, NOD1, and/or other inflammasome 

components and NOD proteins. 

We used RT-PCR to measure the expression of NOD1, NOD2, NLRP1, NLRP3, 

AIM2, and NLRC4 in the chorioamniotic membrane explants treated with HMGB1.  We 

found that inflammasome components NLRP1, NLRP3, and AIM2 were significantly 

upregulated, while NLRC4 had a tendency to increase, after treatment with HMGB1 

(Figure 4).  We also found that that both NOD proteins – NOD1 and NOD2 – were 

upregulated by HMGB1 (Figure 4).  Therefore, we concluded that HMGB1 is capable of 

upregulating the expression of specific inflammasome components and NOD proteins in 

the chorioamniotic membranes. 
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HMGB1 increases concentration and promotes activation of caspase-1 

Inflammasomes activate inflammatory caspases, most notably caspase-1 (38, 

70-72).  Caspase-1 is an important enzyme for the IL1 cytokine family, as it is 

responsible for cleaving pro-IL1β, pro-IL18, and pro-IL33 into their mature active forms 

(73-76). 

First, we examined the expression of CASP1 in the chorioamniotic membrane 

explants to see whether HMGB1 upregulates caspase-1 at the mRNA level.  We found 

that CASP1 expression tended to increase following HMGB1 treatment, yet this 

tendency did not reach statistical significance (Figure 5A).  We then evaluated the 

protein concentration of caspase-1 and found that HMGB1 treatment caused a 

Figure 4: HMGB1 induces expression of the inflammasome components and NOD proteins
in the chorioamniotic membranes.  Expression of the inflammasome components NLRP1, 
NLRP3, and AIM2, as well as NOD proteins NOD1 was assessed in the chorioamniotic 
membranes treated with HMGB1 (50μg/mL). 
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significant increase in total caspase-1 concentration in the chorioamniotic membranes 

(Figure 5B).  Pro-caspase-1 must be cleaved into two non-identical subunits, p10 and 

p20, to become an active enzyme (75, 77).  Therefore, we semi-quantified pro- and 

active forms of caspase-1 using Western blot.  We found that both the immature pro-

caspase-1 and the active caspase-1-p20 were significantly increased after treatment 

with HMGB1 (Figure 5C).  We concluded that HMGB1 increases concentration and 

promotes activation of caspase-1. 

 
Figure 5: HMGB1 increases concentration and promotes activation of caspase-1 in the 
chorioamniotic membranes.  Expression of CASP1 gene (A), concentration of total Caspase-
1 protein (B), and accumulation of active forms of Caspase-1 (p-20 and p-10) (C) were assayed 
in the chorioamniotic membranes treated with HMGB1 (50μg/mL). 

 

Control HMGB1 
0

2

4

6

8

10

CASP1

E
x

p
re

s
si

o
n

 (
- 

C
T

)

   Control
Pro-CASP1 

CASP1 p20 

CASP1 p10 

GAPDH 

A C

Pro-Caspase-1 Caspase-1 p-20 Caspase-1 p-10
-1

0

1

2

3

4

5

P
ro

te
in

 Q
u

a
n
ti

ty

Contol
HMGB1

p=0.004

p=0.012 

Caspase-1

Control HMGB1
3

6

9

12

15

C
o

nc
en

tr
a
ti

o
n 

(n
g

/m
L

)

B 

p=0.006 

HMGB1
Pro-CASP1 

CASP1 p20 

CASP1 p10 

GAPDH 



17 

 

HMGB1 upregulates the expression of its own receptors in chorioamniotic 
membranes 

HMGB1 has been previously shown to interact with RAGE as well as TLR2 and 

TLR4 (47, 48).  HMGB1 may act through positive feedback, increasing the expression 

of its own receptors during inflammation (78).  We wanted to examine the expression of 

these receptors in the chorioamniotic membranes to see whether receptor expression 

correlated with HMGB1 treatment.  We found that RAGE and TLR2 were significantly 

upregulated in explants after culturing with HMGB1; additionally, TLR4 showed a 

tendency to increase as well (Figure 6).  We concluded that HMGB1 is capable of 

upregulating the expression of its own receptors in vitro. 

 

HMGB1 upregulates activity of MMP9 in the chorioamniotic membranes 

Matrix metalloproteinase 9 (MMP9) is an enzyme that functions primarily to break 

down the extracellular matrix (ECM) and is implicated in the process of labor (13, 79-

81).  Active MMP9 has previously been shown to be increased in spontaneous rupture 

of membranes, term and preterm parturition, and microbial invasion (13, 82, 83), as well 

Figure 6: HMGB1 upregulates the expression of its own receptors in the chorioamniotic
membranes. Expression of particle recognition receptors known to bind HMGB1 – RAGE,
TLR2, and TLR4 was assayed in the chorioamniotic membranes treated with HMGB1
(50μg/mL). 
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as PPROM (84).  MMP9 expression can be stimulated by IL1β in the myometrium and 

chorioamniotic membranes (85, 86).  We aimed to determine whether HMGB1 could 

upregulate the expression and activity of MMP9 in vitro.  We found that MMP9 gene 

expression is significantly increased in the membrane explants cultured with HMGB1 

(Figure 7A). In addition to increased expression, the enzymatic activity of MMP9 was 

significantly elevated following HMGB1 treatment (Figure 7B). 
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Figure 7: HMGB1 upregulates expression and activity of MMP9 in the chorioamniotic
membranes. Expression (A), and activity of MMP9 (B) was assayed in the chorioamniotic
membranes treated with HMGB1 (50μg/mL) by RT-PCR and zymography, respectively. The
collagen reorganization was examined by the trichrome stain (C). 
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This was further demonstrated by the trichrome staining which showed 

decreased collagen content (blue) in the chorioamniotic membranes treated with 

HMGB1 (Figure 7C).  Therefore, we showed that HMGB1 upregulates the expression 

and activity of MMP9 in the chorioamniotic membranes. 

Discussion 

HMGB1 induces sterile inflammation of the chorioamniotic membranes 

The study herein affirms that HMGB1 is capable of inducing sterile inflammation 

of the chorioamniotic membranes by increasing concentration and/or expression of 

multiple pro-inflammatory cytokines including IL1β, IL6, TNF, IL1α, and IFNγ (Figures 2 

& 3) and pro-inflammatory PRRs Nod1 and Nod2 (Figure 4).  This inflammatory 

cascade may be amplified by positive-feedback via up-regulation of HMGB1 receptors 

(RAGE and TLR2) by HMGB1 itself (Figure 6). 

Pathogen Associated Molecular Patterns (PAMPs) present during microbial 

infection have been shown to act, in part, by promoting release of DAMPs from the 

infected cells, including HMGB1 (87, 88).  Interestingly, the evidence suggests that 

HMGB1 also participates in mediating infection-induced inflammation at the maternal-

fetal interface.  For instance, chorioamniotic membranes stimulated with LPS have been 

shown to release HMGB1 in vitro (61) and intraamniotic administration of LPS 

significantly increases HMGB1 concentration in the chorioamniotic membranes in the 

sheep model of preterm birth (89).  Additionally, co-expression of HMGB1 and its 

receptor RAGE was observed in sites of brain and liver tissue injury of mouse embryos 

in murine model of LPS-induce preterm birth (90).  Therefore, HMGB1-induced 

signaling is a possible treatment target for both infection- and non-infection-associated 

preterm birth. 
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The induction of sterile inflammation by HMGB1 occurs via the inflammasome 
pathway 

We found that the mechanism by which HMGB1 increases release of IL1β from 

the chorioamniotic membranes includes up-regulation of inflammasome components.  

Inflammasome activation requires two steps: 1) priming via NF-κB-dependent 

transcriptional up-regulation of multiple pro-inflammatory targets including pro-IL1β and 

inflammasome components; and 2) assembly of the inflammasome components 

including pro-capsapse-1, ASC adaptor protein, and specific PRRs, into a functional 

complex capable of inducing auto-catalytic cleavage of pro-caspase-1 into its 

mature/activated form (91-94).  Activated caspase-1 then cleaves pro-IL1β, pro-IL18, 

and newly described pro-IL33, into their secreted forms (75-77, 95-105).  The data 

presented herein suggests that HMGB1 promotes both steps of the inflammasome 

activation.  The priming by HMGB1 is clearly demonstrated by the increased mRNA 

levels of IL1B, NLRP1, NLRP3, and AIM2 (Figures 3 & 4).  Although assembly of the 

inflammasome complex was not assessed by direct methods such as co-

immunoprecipitation, Fluorescence Resonance Energy Transfer (FRET), or 

oligomerization assays, the increased production of active form of caspase-1-p20 

(Figure 5) and elevated levels of released IL-1β (Figure 2) strongly suggest 

inflammasome assembly.  Further studies are needed to establish the direct link 

between HMGB1 and assembly of the inflammasome complex.  

HMGB1-induced sterile inflammation promotes remodeling of the chorioamniotic 
membranes 

The data herein demonstrates that HMGB1 promotes inflammasome activation 

and IL-1β production at the maternal-fetal interface.  Inflammasome activation is 

associated with enhanced production of labor-promoting eicosanoids (106) and 
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activation of MMP9 (107).  Inflammasome-derived IL-1β induces labor by up-regulating 

the expression of cyclooxygenase-2/ prostaglandin synthase 2 (COX2/ PTGS2) (65) 

and promoting synthesis of prostaglandin E2 (108-110), as well as by activating the 

matrix remodeling enzymes such as MMP9 (111).  Therefore, it is not surprising that 

systemic administration of IL-1β precipitates preterm birth in mice (45, 112) and 

monkeys (113-120).  Recently we demonstrated that intraamniotic injections of HMGB1 

also induce preterm birth (121).  Our current results demonstrate that in vitro stimulation 

with HMGB1 causes up-regulation of MMP9 expression, increased MMP9 activity, and 

collagen remodeling of the chorioamniotic membranes (Figure 7), which may contribute 

to membrane rupture.  However, we did not observe significant up-regulation of COX2 

with HMGB1 treatment (data not shown).  Further studies are required to determine the 

exact mechanism by which HMGB1-induced sterile inflammation promotes labor. 
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CHAPTER 3 - S100A12 INDUCES STERILE INFLAMMATION OF THE 
CHORIOAMNIOTIC MEMBRANES 

Introduction 

S100 proteins are calcium triggers or sensory proteins that, upon calcium 

dependent activation, regulate the function and/or subcellular distribution of certain 

target proteins and peptides (122-124).  S100 proteins are sensed as alarmins when 

they are released extracellularly (125), exerting pro-inflammatory effects on various cell 

types in the paracrine and autocrine manner (126).  S100A12, along with S100A8 and 

S100A9, belong to a S100 protein subfamily termed calgranulins or myeloid-related 

proteins, whose members are linked to innate immune functions by their predominant 

expression in cells of myeloid origin (127, 128).  S100A12 is known to be expressed in 

granulocytes (129), monocytes (130), and select epithelial cells (131).  Although 

S100A12 is capable of binding multiple PRRs (132), the receptor for advanced glycation 

endproducts (RAGE) is the best studied specific PRR targeted by S100A12 (132, 133).  

RAGE is expressed at relatively low levels in homeostasis, but in situations 

characterized by enhanced cellular activation or stress, the expression of RAGE 

receptor is upregulated (123, 134).  Human S100A12 is markedly amplified in 

inflammatory compartments i.e. synovial fluid of inflamed joints (135), and elevated 

serum levels of S100A12 are found in patients suffering from various inflammatory, 

neurodegenerative, metabolic, and neoplastic disorder (136-141). 

In pregnancy, amniotic fluid concentration of S100A12 is elevated in women with 

intra-amniotic infection and correlates with the degree of inflammation and severity of 

histologic chorioamnionitis (140).  S100A12 is also elevated in maternal serum, amniotic 

fluid, and infant fecal matter in preeclampsia (142), neonatal sepsis (143), and intestinal 
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distress in very-low-birth-weight infants (144), respectively.  Furthermore, detection of 

elevated S100A12 in the amniotic fluid among four biomarkers termed as “MR score” 

was proposed to be a quick and accurate predictor of preterm birth (145).  Based on 

these association studies, we aimed to determine whether S100A12 is indeed capable 

of inducing sterile inflammation of the human chorioamniotic membranes and causes 

preterm birth in mice.  IL-1β was chosen as a marker of sterile inflammation because its 

systemic administration induces PTB (146).  Biologically active form of IL-1β is 

produced by cleavage of pro-IL-1β by caspase-1, a protease that itself requires 

proteolytic processing by inflammasomes for activation.  We have previously 

demonstrated that the increased release of mature IL-1β from the chorioamniotic 

membranes obtained from the women who underwent term labor (as opposed to the 

women who delivered at term without labor) is associated with increased concentration 

of both active caspase-1 and NLRP3 inflammasome in the membrane tissue extracts 

(40). 

We therefore hypothesized that S100A12 induces sterile inflammation of the 

chorioamniotic membranes by up-regulating inflammasome components, which leads to 

activation of caspase-1 and subsequent maturation of IL-1β.  The aims of this study 

were: 1) to determine whether S100A12 induces release of mature IL-1β from the 

chorioamniotic membranes; 2) to assess whether S10012A12 increases expression of 

the inflammasome components; 3) to evaluate the levels of total and mature casapase-

1 following S100A12 treatment; 4) to discern the expression of pro-inflammatory and 

pro-labor genes in the chorioamniotic membranes treated with S100A12; and 5) to 

characterize the effects of S100A12 on gestation length and neonatal complications. 
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Materials and Methods 

Study population 

The chorioamniotic membranes were obtained from women who underwent term 

delivery without labor as described in Chapter 2.  The demographical characteristics of 

the patients are summarized in Table 3. 

In vitro S100A12 treatment 

The chorioamniotic membrane explants (n=21) were cultured as described in 

Chapter 2.  For S100A12 treatment, the media was supplemented with 5μg/mL of 

S100A12 (Catalog no. 11143-HNAE-50, Lot no. LCL06NO0926, Life Technologies 

Corporation).  This concentration was chosen based on previous in vitro experiments 

(147-150). 

ELISA/ RT-PCR/ Immunoblotting/ Trichromic staining 

ELISA, RT-PCR, and immunoblotting experiments were performed as described 

in Chapter 2. 

Animals and husbandry 

C57BL/6 mice were purchased from The Jackson Laboratory (Bar Harbor, ME, 

USA) and acclimated for at least two weeks.  Breeding took place in the animal facilities 

at Wayne State University under specific pathogen-free conditions on a 12-h light, 12-h 

dark circadian cycle.  Pregnant dams were obtained by placing one or two females (8-

12 weeks old) with a proven fertile male and checked daily between 0800 and 0900 

hours for a vaginal plug which resulted from mating during the periovulatory period 

(2200-0200 hours).  The morning of detection of a vaginal plug was considered the 0 

day of gestation and 0.5 days post coitum (dpc).  Plugged females were removed from 

the mating cage and housed individually with food and water ad libitum.  Protocol for 
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animal handling and care was approved by the Institutional Animal Care and Use 

Committee (IACUC) of Wayne State University (Detroit, MI, USA). 

Table 3:  Demographic characteristics of the patients whose samples were used for the 
S100A12 study. 

Race: 
African-American 
Caucasian 

 
19 (90.5%) 

2 (9.5%) 

Maternal age (years) 29 (20-40) 

Maternal weight (kg) 189 (102-304) 

Maternal body mass index (kg/m2) 32.7 (20.4-50.6) 

Gestational age at delivery (weeks) 38.9 (37-41.9) 

Newborn weight (grams) 3190 (1775-3820) 

C-section 21 (100%) 

Acute chorioamnionitis 3 (14%) 

Age, body mass index, gestational age at delivery, and 
newborn weight are shown as mean (min-max).  Race, 
Primiparity, C-section, and absence of chorioamnionitis are 
shown as percent (positive/total). 

In vivo S100A12 injections 

C57BL/6 plugged females were monitored by weight to confirm pregnancy.  

Pregnant dams were injected intraperitoneally at 16.5 dpc with 5µg/mL S100A12 (n=8) 

dissolved in a vehicle of 1X sterile PBS.  Additional pregnant dams (n=8) were injected 

with just the vehicle as a negative control.  Following injections, pregnant mice were 

recorded by video camera until delivery.  Gestational length, duration of active labor, 

and the rate of stillbirth were determined based on the video recordings.  Gestational 

length was defined as the time between detection of the vaginal plug and the 

appearance of the first pup in the cage.  The duration of active labor was defined as the 

time between the appearance of the first pup and the appearance of the last pup of the 

litter.  The rate of stillbirth was defined as the proportion of pups that were born dead 

out of the total number of pups.  The surviving pups were weighed at weeks 1, 2, and 3 

postpartum and their survival rate was recorded. 

 



26 

 

Statistical analyses 

Statistical analyses were performed using SPSS, Version 21.0 (IBM Corporation, 

Armonk, NY, USA), GraphPad Prism 6 Software (GraphPad Software, Inc., La Jolla, 

CA, USA), and R open-source software environment.  A Shapiro–Wilk test was 

performed to determine whether the data was normally distributed.  The normally 

distributed data were analyzed by the paired Student’s t-test, while those data that did 

not follow normal distribution were analyzed by Wilcoxon signed-rank test.  Neonatal 

mortality was analyzed by Logistic Regression.  A value of p<0.05 was considered 

statistically significant. 

Results 

S100A12 induces release of mature IL-1β from the chorioamniotic membranes in 
vitro 

We first aimed to determine whether S100A12 is capable of inducing sterile 

inflammation of the chorioamniotic membranes.  Indeed, release of mature active form 

of IL-1β, a marker of sterile inflammation, was drastically elevated (p<0.0001) in those 

membranes that were treated with S100A12 in vitro (Figure 8). 

Additionally, a four-fold increase (p=0.0009) was observed in the expression of 

IL1B gene in the chorioamniotic membranes after S100A12 treatment (Figure 8).  This 

suggested that S100A12 regulates IL-1β on two levels – maturation of pro-IL-1β 

precursor protein and enhancement of IL1B gene transcription. 
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Figure 8: S100A12 induces IL-1β secretion from the chorioamniotic membranes. The 
chorioamniotic membrane explants were treated with S100A12 (5μg/mL), after which ELISA and 
RT-PCR assays were performed to determine the secretion of mature IL-1β and the expression 
of IL1B, respectively. 

S100A12 increases expression of inflammasome components 

Proteolytic processing pro-IL-1β precursor protein into active IL-1β is performed 

by a cysteine-aspartic acid protease caspase-1 that must be activated by 

inflammasomes. 

We assessed expression of the inflammasome components NLRP1, NLRP3, 

AIM2, and NLRC4 in the chorioamniotic membranes treated with S100A12 to determine 

whether S100A12 stimulates maturation of IL-1β by up-regulation of inflammasomes.  

Chorioamniotic membrane explants cultured with S100A12 exhibited significant 

increase in NLRP3 expression (p=0.046) and tended to up-regulate NLRP1 (p=0.06) 

(Figure 9).  Thus, S100A12 activates transcription of the specific inflammasome 

components in the chorioamniotic membranes. 
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Figure 9: S100A12 upregulates 
expression of the 
inflammasome components in 
the chorioamniotic 
membranes. The chorioamniotic 
membranes treated with 
S100A12 (5μg/mL) were 
subjected to the RT-PCR assay 
to analyze expression of the 
known inflammasome 
components NLRP3, NLRP1, 
AIM2, and NLRC4. 
 

 

 

 

 

 

 

 
S100A12 activates caspase-1 

In order to evaluate the effect of S100A12 on caspase-1, we first quantified the 

concentration of total caspase-1 in the chorioamniotic membrane explants cultured with 

S100A12.  Although caspase-1 concentration tended to increase with S100A12 

treatment, this tendency was not statistically significant (Figure 10A).  Similarly, 

expression of CASP1 gene was not significantly affected by S100A12 treatment (Figure 

10B).  Western blot analysis was performed to differentiate between pro- (p50) and  

mature (p20 and p10) forms of caspase-1.  Caspase-1-p20 was significantly elevated in 

the chorioamniotic membranes treated with S100A12 (p=0.0154) (Figure 10C).  These 

results demonstrate that S100A12 promotes activation of caspase-1 in the 

chorioamniotic membranes. 
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Augmented secretion of IL-1β from the chorioamniotic membrane explants 

cultured with S100A12 occurs concurrently with increased expression of the 

inflammasome subunits and accelerated maturation of caspase-1.  Therefore, S100A12 

up-regulates expression of inflammasomes, which may cause the demonstrated 

activation of caspase-1 and the subsequent release of mature IL-1β. 

S100A12 induces NF-κB signaling in the chorioamniotic membranes 

Although maturation of IL-1β in the chorioamniotic membranes treated with 

S100A12 may occur via the inflammasome-dependent activation of caspase-1, 

increased expression of IL1B gene (Figure 8) suggests additional effect of S100A12 on 

transcription.  

Figure 10: S100A12 activates caspase-1 in the chorioamniotic membranes.  Caspase-1
expression in the chorioamniotic membranes treated with S100A12 (5μg/mL) was determined on
the mRNA level by RT-PCR (A) and on the protein level by ELISA (B) and Western blot (C). 
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NF-κB is a transcription fact known to regulate transcription of IL1B (151) as well 

as a multitude of other pro-inflammatory mediators, including cytokines, chemokines, 

immunoreceptors, proteins involved in antigen presentation, and so on (152). NOD1 

and NOD2 are intracellular PRRs that induce nuclear translocation of NF-κB for 

initiation of transcription (153).  We found that S100A12 increases expression of both 

NOD1 (p=0.009) and NOD2 (p=0.0009) in the chorioamniotic membranes.  Expression 

of NFKB1 gene itself was significantly up-regulated by S100A12 (p=0.001), as was the 

expression of two prototypical NFκB targets TNF (p=0.014) and IL6 (p=0.0009).  

Expression of several other pro-inflammatory genes that were tested tended to increase 

with S100A12 treatment as well, although this tendency did not reach significance 

(Figure 11).  All together, these data indicate that S100A12 is capable of inducing NF- 

κB-dependent transcriptional activation in the chorioamniotic membranes. 

 

 

S100A12 increases expression of its receptor 

Figure 11: S100A12 induces NF-κB signaling in the chorioamniotic membranes. The
chorioamniotic membranes treated with S100A12 (5μg/ml) were subjected to RT-PCR assay to
determine the expression of NOD proteins (NOD1 and NOD2) as well as of the pro-
inflammatory transcription factor NFKB1 and its targets TNF, IL6, and IL1A, IL18, and IFNG. 
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Propagation of inflammation often requires positive feedback loop, as seen most 

strikingly in cytokine storm.  We assessed whether S100A12 treatment enhances 

sensitivity of the chorioamniotic membrane to S100A12 itself.  Indeed, S100A12 

increased expression of its own receptor, RAGE (p=0.005) (Figure 12).  Interestingly, 

expression of another putative S100A12 receptor TLR4 (132) was not effected by S100 

treatment, while expression of TLR2 (p=0.026) was (Figure 12).  Considering that 

transcription of both RAGE (154) and TLR2 (155) is stimulated by NF-κB, it is possible 

that S100A12-induced NF-κB  signaling leads to up-regulation of these PRRs, which, in 

turn, increases cellular sensitivity to various DAMPs, including S100A12 itself. 

 
 

 

 

 

 

 

Figure 12: S100A12 increases expression of its own receptors in the chorioamniotic 
membranes. Expression of the PRRs known to interact with S100A12 (RAGE, TLR2, and 
TLR4) was determined by RT-PCR using the chorioamniotic membrane explants treated with 
S100A12 (5μg/ml). 

S100A12 initiates pro-labor signaling in the chorioamniotic membranes 

Labor is characterized by the influx of immune cells and the release of pro-

inflammatory mediators at the maternal-fetal interface.  Since treatment of the 

chorioamniotic membranes with S100A12 induces sterile inflammation of the 

chorioamniotic membranes, we evaluated whether this inflammation leads to up-

regulation of pro-labor markers.  Treatment with S100A12 caused up-regulation of 
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prostaglandin-endoperoxide synthase 2 (PTGS2), a key enzyme in the biosynthesis of 

labor-inducing prostaglandins (Figure 13A).  S100A12 also increased expression of 

matrix metallopeptidase 9 (MMP9), the extracellular matrix degradation enzyme that 

mediates rupture of the chorioamniotic membranes among other remodeling processes 

of labor (Figure 13A).  When stained with Masson trichrome stain, the collagen fibers in 

the chorioamniotic membrane explants treated with S100A12 appeared less organized 

and more degraded (Figure 13B), which is also indicative of pro-labor state. 

 

 

 

Figure 13: S100A12 increases expression of MMP9 and PTGS2 in the chorioamniotic
membranes. The chorioamniotic membranes treated with S100A12 (5μg/mL) were subjected to
RT-PCR assay to determine expression of MMP9 and PTGS2 (A) as well as to Trichromic
Staining to visualize MMP-dependent collagen rearrangement (B). 
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S100A12 causes neonatal complications in vivo 

Based on the pro-labor effects of S100A12 on the chorioamniotic membrane 

explant in vitro, we designed a murine model to determine whether S100A12 is capable 

of inducing labor in vivo.  In this model, pregnant dams were intraperitoneally injected 

either with S100A12 or with PBS as a negative control at late gestation (16.5 dpc).  The 

S100A12 injections did not precipitate preterm delivery (data not shown).  However, the 

cohort of mice injected with S100A12 exhibited significantly increased neonatal mortality 

(p<0.001) (Figure 14).  The pups that survived weighed significantly less three weeks 

after birth than the pups from mothers injected with PBS (p<0.001).  Therefore, 

intraperitoneal injections of S100A12 at 16.5 dpc do not induce preterm birth in mice, 

but cause serious neonatal complications. 

Figure 14: S100A12 confers adverse neonatal effects in vivo.  Neonatal mortality was 
observed following labor and  pup weight were recorded at week 3 post-delivery in the mice that 
were intraperitoneally injected with S100A12 (5µg/ml). 

Discussion 

Major findings 

The major findings of this study are:  1) S100A12 is capable of inducing sterile 

inflammation of the chorioamniotic membranes confirmed by increased secretion and/or 
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expression of pro-inflammatory cytokines IL-1β, IL-1α, TNF, and IL-6, pro-inflammatory 

transcription factor NF-κB, and pro-inflammatory NOD proteins NOD1 and NOD2; 2) 

S100A12 significantly up-regulates expression of the inflammasome component NLRP3 

and tends to up-regulate NLRP1; 3).  The up-regulation of inflammasome components 

occurs together with elevated expression of pro- and active (p20) forms of 

inflammasome-dependent caspase-1; 4) S100A12 up-regulates expression of its own 

PRRs RAGE and TLR2, suggesting positive feedback regulation; 5) Chorioamniotic 

membranes treated with S100A12 exhibit increased expression of MMP9 and PTGS2 

and decreased collagen integrity; 6) The neonates born to mothers who were 

intraperitoneally injected with S100A12 in late gestation exhibit higher rate of mortality 

and reduced weights three week after delivery. 

S100A12 induces inflammasome-associated sterile inflammation of the 
chorioamniotic membranes 

Our findings confirm that S100A12 is capable if inducing sterile inflammation of 

the chorioamniotic membranes via up-regulation of pro-inflammatory transcription factor 

NF-κB and its down-stream targets including IL-1β, IL-1α, TNF, and IL-6, as well as 

NOD proteins NOD1 and NOD2 (Figure 11).  Interestingly, S100A12-induced sterile 

inflammation seems to involve up-regulation of the NLRP3 inflammasome (Figure 9) 

and corresponding maturation of caspase-1 (Figure 10).  This is in concert with our 

previous findings that demonstrate up-regulation of NLRP3 in term spontaneous labor 

when compared to term delivery without labor (40) and in preterm labor with 

chorioamnionitis when compared to preterm labor without chorioamnionitis (unpublished 

data).  NLRP3 is a NOD-like receptor capable of responding to a multitude of chemically 

and structurally divergent stimuli including, but not limited to, nucleic acids such as fetal 
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DNA, crystals such as uric acid, extracellular adenosine triphosphate (ATP), calcium 

levels, and ultraviolet radiation (156).  Thus, it is not surprising that both HMGB1 and 

S100A12 (Figure 4 & 9, respectively) are capable of up-regulating NLRP3. 

S100A12 promotes remodeling of the chorioamniotic membranes in vitro and 
neonatal complications in vivo 

Activation of the NF-κB pathway is known to occur in labor and is central to many 

of pro-labor processes (63), including prostaglandin synthesis.  The promoter of human 

PTGS2 contains two NF-κB response elements (157), which have been demonstrated 

to be bound by NF-κB in the myometrial cells stimulated by IL-1β (158).  Our results 

herein show that S100A12 actives NF-κB signaling (Figure 11) and up-regulates 

expression of PTGS2 in the chorioamniotic membranes (Figure 13).  Additionally, we 

found that S100A12 also up-regulates expression of MMP9 and promotes collagen 

rearrangement (Figure 13).  Collagen remodeling contributes to the rupture of 

chorioamniotic membranes, which is one of the components of final pathway of labor 

(Figure 1).  Thus, S200A12 may establish pro-labor environment at the maternal-fetal 

interface by promoting both the synthesis of prostaglandins and the membrane 

remodeling.  However, intraperitoneal injections of S100A12 did not precipitate preterm 

birth in mice (data not shown).  It was recently found that inducing sterile intraamniotic 

inflammation by intraamniotic injections of HMGB1 resulted in increased rate of murine 

preterm birth, while intraperitoneal injections of much higher doses of this alarmin did 

not affect the rate of preterm delivery (121).  Therefore, it is possible that S100A12 

needs to be injected intraamniotically in order to induce preterm labor in mice.  

Nevertheless, our data herein shows that intraperitoneal injections of S100A12 confer 

adverse effects on the offspring by increasing the rate of neonatal mortality and by 
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decreasing the weight of surviving pups (Figure 14), suggesting  the mechanism by 

which sterile inflammation at the maternal-fetal interface can lead to fetal/ neonatal 

injury.  Further studies are needed to assess the physiological relevance of S100A12 in 

women who undergo premature labor. 
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CHAPTER 4 - MONOSODIUM URATE INDUCES STERILE INFLAMMATION AT THE 
MATERNAL-FETAL INTERFACE 

Introduction 

Uric acid or urate is the final product of purine metabolism that, due to its limited 

solubility in bodily fluids, forms triclinic monosodium urate (MSU) crystals when present 

at high concentration by bonding to one sodium and one water molecule (159).  

Accumulation of MSU crystals is a well-known etiology of a form of arthritis known as 

gout and is also associated with the metabolic syndrome (160).  In pregnancy, 

increased uric acid is associated with gestational hypertension and preeclampsia (161-

164).  Maternal hyperuricemia in pregnant women is also significantly associated with 

preterm and small-for-gestational-age delivery (165), while amniotic fluid urate 

concentrations are inversely proportional to infant birth weight (166), and serum uric 

acid levels are elevated in adolescents born prematurely when compared to those born 

at term (167). 

High risk pregnancies are characterized by increased levels of both IL-1β and 

several alarmins, such as HMGB1 and MSU, in gestational tissues as well as 

systemically (168).  We hypothesize that alarmins, including MSU, promote secretion of 

mature IL-1β by inflammasome activation.  MSU is a known activator of the NLRP3 

inflammasome in T cells (169), macrophages (170, 171), dendritic cells (172), and other 

immune and non-immune cell types (173-175).  Dr. Vikki M. Abrahams’ group has 

demonstrated that human trophoblasts, or specialized cells of placenta, respond to uric 

acid with inflammasome-dependent IL-1β production (176).  More recently, Dr. Sylvie 

Girard’s lab exhibited preliminary findings at the Society for Reproductive Investigations 

63rd Annual Scientific Meeting suggesting that uric acid induces fetal growth restriction 
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in a rat model of non-infectious inflammation during pregnancy.  We aimed to determine 

whether MSU is capable of inducing sterile inflammation at the maternal-fetal interface 

and whether it confers any negative perinatal outcome. 

Materials and Methods 

Study population 

The chorioamniotic membranes were obtained from women who underwent term 

delivery without labor as described in Chapter 2.  The demographical characteristics of 

the patients are summarized in Table 4. 

Table 4: Demographic characteristics of the patients whose samples were used for the 
MSU study. 

Age (years) 26.6 (22-38) 

Body mass index (kg/m2) 29.1 (22.5-40.6) 

Gestational age at delivery (weeks) 39.1 (38.1-39.9) 

Newborn weight (g) 3279 (2260-4060) 

Race 
African-American 
Caucasian 

 
94% (16/17) 
6% (1/17) 

Primiparity 6% (1/17) 

C-section 100% (17/17) 

Absence of chorioamnionitis 100% (17/17) 

Age, body mass index, gestational age at delivery, and newborn 
weight are shown as mean (min-max).  Race, Primiparity, C-
section, and absence of chorioamnionitis are shown as percent 
(positive/total). 

In vitro MSU treatment 

The chorioamniotic membrane explants were cultured as described in Chapter 2.  

For MSU treatment, the media was supplemented with 50μg/mL of MSU (Catalog no. 

Catalog # tlrl-msu, InvivoGen, San Diego, California, USA).  This concentration was 

chosen based on the previous dose-response experiments and the MSU/ uric acid 

concentrations used by other research groups (176-179).  Additionally, previous studies 

showed that MSU concentrations below 400μg/mL do not affect cell viability measured 
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Figure 15: MSU induces
the release of mature IL-
1β from the
chorioamniotic 
membranes. Expression
of IL1B and release of
mature IL-1β from the
chorioamniotic 
membranes treated with
MSU (50μg/mL) was
determined by RT-PCR
and ELISA, respectively. 

after 24 hours, 48 hours, and 72 hours of treatment (177). 

ELISA/ RT-PCR/ Immunoblotting/ Trichromic staining/ Zymogrpahy 

ELISA, RT-PCR, immunoblotting, trichromic staining, and zymography 

experiments were performed as described in Chapter 2. 

Animals and husbandry/ MSU intraperitoneal injections 

Animal husbandry was performed as described in Chapter 3.  S100A12 was 

injected intraperitoneally at 16.5dpc at a concentration of 50μg/ml. 

Statistical analysis 

Statistical analysis was performed as described in Chapter 3. 

Results 

MSU induces the release of mature IL-1β from the chorioamniotic membranes 

To determine whether MSU is capable of inducing IL-1β-dependent sterile 

inflammation, we measured the expression of IL-1β both on mRNA and protein level.  

We found that, although MSU only tends to up-regulate IL1B gene expression, it 

significantly increases the release of mature IL-1β protein from the chorioamniotic 

membranes (Figure 15).  Interestingly, a great variability in response was seen, with 

some cases exhibiting over 20-fold increase in IL-1β secretion, while others showing 
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Figure 16: MSU induces the release of mature IL-1β from the chorioamniotic membranes.
Expression of IL1B and release of mature IL-1β from the chorioamniotic membranes treated with
MSU (50μg/mL) was determined by RT-PCR and ELISA, respectively. 

only minor change.  Such a great variability in response was not observed for other 

alarmins that we tested (Chapters 2, 3, & 5), which suggests that pro-inflammatory 

effect of MSU is more dependent on the tissue micro-environment. 

MSU up-regulates the expression of inflammasome components in the 
chorioamniotic membranes 

Because of release of mature IL-1β requires proteolytic processing by the 

inflammasome-dependent caspase-1, we next aimed to determine whether MSU affects 

expression of the inflammasome components NLRP1, NLRP3, AIM2, and NLRC4.  We 

found that NLRP1 (p=0.025) and NLRP3 (p=0.045) genes were significantly up-

regulated by the MSU treatment (Figure 16). 

 

 

 

 

 
 
 



41 

 

MSU promotes activation of caspase-1 in the chorioamniotic membranes 

The up-regulation of the inflammasome components NLRP1 and NLRP3 

suggests that MSU is capable of activating caspase-1 in the chorioamniotic 

membranes.  To test whether this is the case, we performed RT-PCR, ELISA, and 

Western blot to determine the levels of mRNA, total protein, and active forms of 

caspase-1, respectively. 

 

We found that MSU tends to increase CASP1 gene expression (Figure 17A) and 

Figure 17: MSU increases concentration of active caspase-1 in the chorioamniotic
membranes. Chorioamniotic membranes treated with MSU (50μg/mL) were subjected to RT-
PCR to determine expression of the CASP1 gene (A), to ELISA to evaluate the concentration of
total caspase-1 protein (B) and to immunoblotting to detect mature forms (p-10 and p-20) of
caspase-1 (C). 

Control MSU
-5

0

5

10

15

CASP1

E
x

p
re

ss
io

n 
(-


C
T

)

Caspase-1

Control MSU
3

4

5

6

7

8

9

10

11

C
on

c
en

tr
at

io
n

 (
n

g
/m

L
)

P<0.01 

Pro-Caspase-1 Caspase-1 p-20 Caspase-1 p-10
0.0

0.2

0.4

0.6
0.8

1.0

A
d

ju
st

ed
 In

te
ns

it
y

Control
MSU

P<0.01

P<0.01

P<0.01 

A 

B 

Control MSU

Pro-caspase-1

Caspase-1 p20

Caspase-1 p10

GAPDH

C



42 

 

significantly elevates the concentration of total caspase-1 protein (p<0.01) in the 

chorioamniotic membranes (Figure 17B).  When we evaluated the mature forms of 

caspase-1, we found that both caspase-1 p-20 (p<0.01) and caspase-1 p10 (p<0.01) 

are significantly elevated after MSU treatment (Figure 17C).  This suggests that MSU is 

capable of inducing inflammasome-regulated caspase-1 activation and subsequent IL-

1β release from the chorioamniotic membranes. 

MSU up-regulates expression of pro-inflammatory mediators IL6, IFNG, HMGB1, 
and TLR2 

Next, we assayed the expression of multiple pro-inflammatory targets upon MSU 

treatment to determine the extent to which MSU propagates sterile inflammation and the 

molecular pathways involved.  We found that, in addition to IL-1β, MSU promotes gene 

expression of two other pro-inflammatory cytokines:  IL-6 (p=0.07) and IFNγ (p=0.04) 

(Figure 18).  Interestingly, MSU also promotes expression of another alarmin – HMGB1 

(p=0.04) and its particle recognition receptor TLR2 (p=0.07) (Figure 18).  As discussed 

in Chapter 2, HMGB1 is a potent pro-inflammatory agent of its own.  This suggests that 

MSU propagates inflammation, in part, by activating HMGB1-dependent pro-

inflammatory response.  Under physiological conditions of sterile inflammation due to 

tissue stress or injury, multiple alarmins are released simultaneously from the activated 

leukocytes by active secretion or from the dying somatic cells by passive release.  

Therefore, it is plausible that various alarmins work synergistically to promote the single 

outcome – activation of the immune system required for healing. 
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Figure 18: MSU up-regulates expression of pro-inflammatory mediators in the 
chorioamniotic membranes. Chorioamniotic membranes treated with MSU (50μg/mL) 
exhibited increased expression of IL6, IFNG, HMGB1, and TLR2. 

MSU activates MMP2 and up-regulates expression of PTGS2 

Next we aimed to determine whether MSU-induced inflammation leads to 

establishment of pro-labor microenvironment.  We found that MSU significantly actives 

matrix-remodeling enzyme MMP2 (p=0.01) (Figure 19A) and collagen integrity tended to 

decrease as observed using the trichrome staining (Figure 19C).  In addition, MSU 

upregulated expression of PTGS2 (p=0.05) (Figure 19B), which is an important enzyme 

in prostaglandin biosynthesis.  Therefore, MSU seems to promote remodeling of the 

chorioamniotic membranes and establishment of the pro-labor environment at the 

maternal-fetal interface. 
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Figure 19: MSU activates MMP2 and up-regulates expression of PTGS2.  Chorioamniotic 
membranes treated with MSU (50μg/mL) were subjected to zymography to determine MMP2 
activity (A), to RT-PCR to assess PTGS2 gene expression (B), and to trichrome staining to 
visualize collagen distribution (C). 

Intraperitoneal HMGB1 injections do not cause adverse neonatal outcomes 

Finally, we aimed to determine whether MSU injections can induce adverse 

perinatal outcome in a murine animal model.  Based on our findings that neither 

HMGB1 nor S100A12 induces preterm birth when injected intraperitoneally, we 

hypothesized that intraperitoneal injections of MSU may not cause preterm labor but 

may have adverse effects on the neonates.  However, we found that neither the rate of 
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neonatal mortality nor the weights of pups changed with the administration of MSU at 

16.5dpc (Figure 20).  Therefore, a single intraperitoneal injection of MSU at 16.5dpc 

does not cause adverse perinatal outcomes. 

Figure 20: Intraperitoneal injection of MSU does not cause adverse neonatal outcomes. 
Pregnant dams were injected intraperitoneally with 100ug/mL of MSU at 16.5dpc. After delivery, 
the neonates were monitored for survival and weight gain. 

Discussion 

Major findings of the study 

The major findings of this study are:  1) MSU promotes expression and/or 

secretion of pro-inflammatory cytokines including IL-1β, IL-6, and IFNγ in the 

chorioamniotic membranes; 2) MSU significantly up-regulates gene expression of the 

inflammasome components NLRP1 and NLRP3; 3) MSU increases concentration of 

pro- and active forms of caspase-1; 4) MSU promotes MMP2 activity and collagen 

remodeling of the chorioamniotic membranes and up-regulates PTGS2 gene 

expression; 5) A single intraperitoneal injection of MSU at 16.5 dpc does not cause 

adverse perinatal outcomes in a mouse model. 

MSU promotes sterile inflammation of the chorioamniotic membranes 

We found that MSU is capable of inciting sterile inflammation of the 
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chorioamniotic membranes via up-regulation of pro-inflammatory cytokines, most 

notably IL-1β (Figure 15 & 18).  The increased secretion of mature IL-1β coincided with 

up-regulation of two inflammasome components – NLRP1 and NLRP3 (Figure 16) and 

elevated concentration of inflammasome-activated caspase-1 (Figure 17).  Interestingly, 

we showed that NLRP3 expression in the chorioamniotic membranes gets up-regulated 

in vitro by three alarmins tested by us:  HMGB1 (Figure 4), S100A12 (Figure 9), and 

MSU (Figure 16).  Preterm labor is a syndrome associated with multiple pathological 

processes (8) which eventually converge on the common final pathway of parturition 

(180).  The NLRP3 inflammasome may respond to the various pathological signals at 

the maternal-fetal interface and initiate pro-inflammatory cascade that ultimately leads 

to labor.  The sequential activation of the inflammasome and caspase-1 leading to 

release of IL-1β was proposed previously as a candidate pathway towards parturition 

when the amniotic fluid concentration of caspase-1 was found to be elevated in term 

labor and in preterm labor with intraamniotic infection/inflammation (41).  Our current 

findings support this hypothesis and provide a mechanism by which multiple stimuli can 

incite the inflammasome-regulated IL-1β release. 

MSU promotes pro-labor environment but fails to induce adverse perinatal 
outcomes 

We hypothesized that sterile inflammation incited by MSU can promote preterm 

labor.  We found that MSU-induced pro-inflammatory signaling indeed coincided with 

increased activity of extracellular matrix remodeling enzyme MMP2 as well as with 

collagen rearrangement and increased expression of prostaglandin synthase PTGS2 

(Figure 19).  However, these in vitro observations did not coincide with any adverse 

perinatal effects in vivo (Figure 20).  This discrepancy may be due to insufficient in vivo 
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stimulation at the maternal-fetal interface, since a single 100mg/ml injection was 

performed intraperitoneally rather than intraamniotically.  A rat model of non-infectious 

inflammation during pregnancy that involved consecutive injections of MSU crystals 

from gestation day 18 to 21 (250, 500, or 1000mg/kg/12hr) reportedly resulted in fetal 

growth restriction (Dr. Sylvie Girard’s lab, data not published).  Since urate is a normal 

product of purine metabolism and is normally found in the amniotic fluid, higher doses 

may be required to elicit pro-inflammatory response strong enough to induce preterm 

birth and/or other perinatal complications.  Serial injections with higher concentration of 

MSU will have to be performed in order to better analyze the effect of this alarmin on 

gestation and fetal/neonatal health. 
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CHAPTER 5 - HEAT SHOCK PROTEIN 70 INDUCES STERILE INFLAMMATION AT 
THE MATERNAL-FETAL INTERFACE 

Introduction 

70-kDa heat shock proteins (HSP70s) are folding catalysts and molecular 

chaperones (181) that are thought to act as alarmins when released extracellularly (182, 

183).  HSP70 proteins are associated with numerous disorders characterized by 

pathological inflammation including inflammatory bowel disease (184), stroke (185), 

chronic kidney disease (186), cancer (187), and others (188-190).  In pregnancy, 

elevated HSP70 levels in the amniotic fluid correlate with term labor and spontaneous 

preterm labor with premature rupture of membranes and intraamniotic infection/ 

inflammation (191).  Increased HSP70 in the maternal and fetal circulations is also 

associated with preterm delivery (192).  Finally, increased placental expression of 

HSP70 is associated with preterm birth and/or low birth weights (193). 

However, anti-inflammatory effects of HSP70 have been reported as well (194-

196).  For instance, vaginal HSP70 protein expression in mid trimester pregnant women 

is associated with the downregulation of the pro-inflammatory immune response to 

abnormal vaginal flora (197).  A paper by Eden et al. (198) even proposes to reclassify 

heat shock proteins as “DAMPERs” rather than DAMPs because of their tendency to 

dampen the inflammation.  Recently, a hypothesis was proposed asserting that 

extracellular to intracellular HSP70 ratio determines pro- vs anti-inflammatory action of 

this protein (199).  We aimed to ascertain whether HSP70 acts as an alarmin at the 

maternal-fetal interface.  Based on our findings with other DAMPs (Chapters 2 through 

4), we specifically hypothesized that HSP70 is capable of inducing inflammasome-

dependent, caspase-1-mediated release of IL-1β as well as other pro-inflammatory 
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cytokines from the chorioamniotic membranes, which leads to perinatal complications in 

an animal model. 

Materials and Methods 

Study population 

The chorioamniotic membranes were obtained from women who underwent term 

delivery without labor as described in Chapter 2.  The demographical characteristics of 

the patients are summarized in Table 5. 

Table 5:  Demographic characteristics of the patients whose samples were used for the 
HSP70 study 

Age (years) 28.5 (20-36) 

Body mass index (kg/m2) 33 (20.4-50.6) 
Gestational age at delivery (weeks) 39.1 (37-41.9) 
Newborn weight (g) 3341 (2740-3820) 
Race 

African-American 
Caucasian 

 
90.5% (19/21) 
9.5% (2/21) 

Primiparity 9.5% (2/21) 

C-section 100% (23/23) 
Absence of chorioamnionitis 95.2% (20/21) 

Age, body mass index, gestational age at delivery, and newborn 
weight are shown as mean (min-max).  Race, Primiparity, C-
section, and absence of chorioamnionitis are shown as percent 
(positive/total). 

In vitro HSP70 treatment 

The chorioamniotic membrane explants were cultured as described in Chapter 2.  

For HSP70 treatment, the media was supplemented with 10μg/mL of full-length HSP70 

(Catalog no. ab78434, Abcam).  Injury-induced lysis of as little as a half a gram of tissue 

could cause extracellular release of 100μg/mL of HSP70 (200).  The concentration that 

we chose for the in vitro treatment was lower or in line with the published studies from 

several research groups (200-204). 

ELISA/ RT-PCR/ Immunoblotting/Trichromic staining/Statistical methods 

ELISA, RT-PCR, immunoblotting, and trichromic staining experiments were 
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performed as described in Chapter 2.  Statistical methods were described in Chapter 3. 

Animals and husbandry/ HSP70 Intraperitoneal injections 

Animal were handled and injected as described in Chapter 3.  Concentration of 

20μg/ml was used for the intraperitoneal injections. 

Results 

HSP70 induces the release of mature IL-1β from the chorioamniotic membranes 

To determine whether HSP70 can exert pro-inflammatory effect on the 

chorioamniotic membranes, the membrane explants cultured with recombinant HSP70 

were subjected to RT-PCR and ELISA to determine expression of IL1B gene and 

secretion of mature IL-1β protein, respectively.  We found that, although HSP70 did not 

change expression of IL1B, it significantly up-regulated IL-1β protein secretion 

(p<0.001) (Figure 21).  This finding supports the assertion that HSP70 is an alarmin that 

initiates pro-inflammatory signaling. 

 
Figure 21:  HSP70 induces release of mature IL-1β from the chorioamniotic membranes.  
Chorioamniotic membrane explants treated with HSP70 (10μg/mL) were subjected to RT-PCR 
to determine expression of IL1B and to ELISA to measure concentration of mature IL-1β 
released into the media. 
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HSP70 promotes activation of caspase-1 

To determine whether the observed increase of IL-1β upon HSP70 treatment 

occurs via activation of the caspase-1 enzyme, we measured CASP1 gene expression, 

concentration of total caspase-1 protein as well as pro- and active forms of caspase-1.  

We found that HSP70 does not significantly affect the gene expression of CASP1 

(Figure 22A) and the concentration of total caspase-1 protein (Figure 22B), yet it does 

promote activation of caspase-1 as confirmed by the increased immunoreactivity of 

caspase-1 p20 (p<0.01) after HSP70 treatment (Figure 22C).  Thus, HSP70 promotes 

activation, but not transcription, of caspase-1. 

Figure 22: HSP70 promotes activation of caspase-1 in the chorioamniotic membranes.  
Chorioamniotic membranes treated with HSP70 (10μg/mL) were assayed for expression of 
CASP1 gene by RT-PCR (A), concentration of total caspase-1 protein by ELISA (B), and the 
presence of active forms of caspase-1 by Western blot (C). 
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HSP70 does not induce expression of the major inflammasome components 

Because inflammasome complexes are known to activate caspase-1, we next 

aimed to determine whether increased activity of caspase-1 after HSP70 treatment 

corresponds to up-regulation of the inflammasome components.  We found that neither 

one of the four inflammasome components tested (AIM2, NLRP1, NLRP3, and NLRC4) 

was up-regulated in response to HSP70 (Figure 23).  In fact, HSP70 tended to down-

regulate these genes. 

 
Figure 23: HSP70 does not induce expression of the major inflammasome components in 
the chorioamniotic membranes. Chorioamniotic membranes treated with HSP70 (10μg/mL) 
were assayed for expression of AIM2, NLRP1, NLRP3, and NLRC4 by RT-PCR. 
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This surprising finding suggests that HSP70 either induces inflammasome 

assembly rather than the expression of inflammasome components or promotes 

activation of caspase-1 via inflammasome-independent signaling. 

HSP70 increases expression of NOD2 and TNF 

To further determine the extent of HSP70-induced sterile inflammation, we 

assayed the expression of the NOD proteins (NOD1 and NOD2), the pro-inflammatory 

transcription factor (NFKB1), and its down-stream targets TNF, IL6, IL1A, IFNG, and 

IL18). 

We found that HSP70 significantly up-regulated TNF (p=0.01) and tended to up-

regulate NOD2 (p=0.06) (Figure 24).  Therefore, HSP70 does not seem to induce strong 

pro-inflammatory transcriptional response in the chorioamniotic membranes. 

Figure 24: HSP70 increases expression of NOD2 and TNF in the chorioamniotic 
membranes. The chorioamniotic membranes treated with HSP70 (10μg/mL) were subjected to 
RT-PCR to determine expression of NOD2 and TNF, but not of NOD1, NFKB1, IL6, IL1A, IFNG, 
or IL18. 
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HSP70 up-regulates expression of MMP9 in the chorioamniotic membranes 

Although HSP70 seemed to elicit weaker pro-inflammatory response compared 

to the other alarmins that we tested (Chapters 2 through 4), we aimed to determine 

whether HSP70-stimulated release of mature IL-1β is able to induce membrane 

remodeling and establish pro-labor environment in the chorioamniotic membranes.  

We found that HSP70 significantly upregulated expression of MMP9 (p=0.018), 

but not of PTGS2 (Figure 25A).  Trichromic staining suggested that HSP70 promotes 

collagen reorganization of the chorioamniotic membranes (Figure 25B). 

 

Figure 25: HSP70 up-regulates expression of MMP9 and remodels collagen composition 
of the chorioamniotic membranes. The chorioamniotic membranes treated with HSP70 
(10μg/ml) exhibited increased expression of MMP9 (A) and collagen remodeling (B). 
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HSP70 increases neonatal mortality in vivo 

Finally, to determine whether HSP70 has adverse perinatal effects, pregnant 

mice were administered HSP70 via intraperitoneal injection at 16.5dpc.  Although, no 

preterm birth was observed (data not shown), the neonatal mortality rate significantly 

increased (p<0.001), while pup weights were not affected (Figure 26).  Thus, 

intraperitoneal administration of HSP70 promotes neonatal mortality in vivo. 

Figure 26: HSP70 increases neonatal mortality in vivo. Damps were injected 
intraperitoneally with HSP70 (20μg/mL) at 16.5dpc.  After term delivery, neonatal mortality and 
pup weights were recorded. 

Discussion 

Major findings 

The major findings of this study are:  1) HSP70 significantly increases secretion 

of mature IL-1β from the chorioamniotic membranes; 2) Although HSP70 does not up-

regulate expression of the inflammasome components, it does promote activation of 

caspase-1; 3) HSP70 upregulates expression of the pro-inflammatory cytokine TNF and 

the matrix remodeling enzyme MMP9; 4) Intraperitoneal injection of HSP70 at 16.5dpc 

greatly increases the rate of neonatal mortality. 
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HSP70 promotes maturation of IL-1β by caspase-1 

The findings herein show that HSP70 significantly increases the release of 

mature IL-1β from the chorioamniotic membranes (Figure 21) and simultaneously 

promotes activation of the IL-1β cleaving enzyme caspase-1 (Figure 22).  However, 

HSP70 does not increase the expression of the inflammasome components that we 

tested (Figure 23).  Inflammasome activation is a two-step process that requires both 

priming and assembly of the inflammasome complex (92, 93).  The priming step 

involves NFκB-directed transcriptional up-regulation of the inflammasome components 

to a functional level (91-93).  The second step is post-transcriptional and allows the 

assembly of the NLRP3 inflammasome complex (92, 93).   Considering that treatment 

with HSP70 did not up-regulate expression of NFκB and its downstream targets, with an 

exception of TNF (Figure 24), it is possible that HSP70 acts at the second step of 

inflammasome activation by promoting assembly of the inflammasome complex.  To 

test this possibility, additional experiments that assess the inflammasome assembly will 

have to be performed.  It is also possible that HSP70 promotes secretion of IL-1β via 

inflammasome-independent pathway.  Several such pathways have been described in 

the literature (105, 205-208) and inflammasome/caspase-1-independent processing of 

IL-1β is an area of active research.  Further research is required to determine if and 

what inflammasome-independent pathways are involved in HSP70-stimulated secretion 

of IL-1β at the maternal-fetal interface. 
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CHAPTER 6 - INVARIANT NKT CELL ACTIVATION INDUCES LATE PRETERM 
BIRTH THAT IS ATTENUATED BY ROSIGLITAZONE 

(This chapter contains previously published material.  See Appendix C) 

Introduction 

Administration of such alarmins as IL1α (112) or HMGB1 (209) induces preterm 

labor/birth. In addition, IL33, a classic alarmin (102), is expressed in decidual tissues 

and up-regulated in acute chorioamnionitis (210), a placental lesion associated with 

preterm labor (211).  Recently, it was demonstrated that IL33 is a potent activator of 

invariant (i)NKT cells (212, 213).  Therefore, we hypothesized that activation of iNKT 

cells, immune cells that can be activated by alarmins in the context of sterile 

inflammation, could participate in the immune mechanisms that lead to non-infection-

related preterm labor/birth.  

iNKT-cell activation induces the initiation of signaling pathways (e.g., the NF-κΒ 

pathway) that lead to the production of Th1 and Th2 cytokines and chemokines (214-

219) which, in turn, leads to a massive immune response mediated by innate and 

adaptive immune cells (220).  Hence, we hypothesized that iNKT-cell activation via α-

galactosylceramide (α-GalCer), a high affinity iNKT ligand (221, 222), would activate 

innate and adaptive immune cells at the maternal-fetal interface promoting pathological 

inflammation and leading to spontaneous preterm labor/birth.  In addition, we proposed 

that suppression of this inflammatory response would prevent PTB induced by NKT-cell 

activation.  In search of an anti-inflammatory drug to prevent PTB, we evaluated 

rosiglitazone, a selective peroxisome proliferator-activated receptor (PPAR)γ agonist 

(223).  Rosiglitazone causes activation of the PPARγ pathway which, in turn, 

suppresses gene transcription by interfering with signal transduction pathways, such as 
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the NF-κB, STAT, and AP-1 pathways (224-226).  PPARγ activation has been 

suggested as a therapeutic intervention for preventing PTB (227) since treatment with 

15-deoxy-∆12,14-prostaglandin J2 compound, a PPARγ agonist (228, 229), delays 

endotoxin-induced PTB (230).  However, whether PPARγ activation blunts the 

inflammatory response induced by iNKT-cell activation has not been investigated.  

Using a murine model, our investigations demonstrate for the first time that 

administration of α-GalCer in the third trimester leads to late PTB, which is prevented 

following PPARγ activation by treatment with rosiglitazone.  In addition, we describe that 

PPARγ activation regulates immune mechanisms locally, at the maternal-fetal interface, 

and systemically to attenuate α-GalCer-induced late PTB.  Finally, we broaden the 

significance of our findings by demonstrating an increase of activated iNKT-like cells in 

decidual tissue from women who underwent spontaneous preterm labor/birth. 

Materials and Methods 

Animals 

C57BL/6J (B6) mice were bred in the animal care facility at the C.S. Mott Center 

for Human Growth and Development at Wayne State University, Detroit, Michigan, 

USA, and housed under a circadian cycle (light: dark=12:12 h).  Eight- to 12-week-old 

females were mated with male mice of proven fertility. Female mice were examined 

daily between 8:00 a.m. and 9:00 a.m. for the presence of a vaginal plug, which 

denoted 0.5 days post-coitum (dpc).  Upon observation of vaginal plugs, female mice 

were then separated from the males and housed in other cages.  The weight gain of two 

or more grams confirmed pregnancy at 12.5 dpc.  Procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Wayne State University. 
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α-GalCer-induced late preterm birth model 

Pregnant B6 mice were i.v. injected with 1µg, 2µg, 3µg, or 4µg of α-GalCer 

(KRN7000, Funakoshi Co., Ltd., Tokyo, Japan; n=3 each for 1µg, 3µg, or 4μg, and n=20 

for 2μg) that had been dissolved in 50µl of 4% DMSO (Sigma-Aldrich Co., LLC, St. 

Louis, MO, USA) or with 50µl of 4% DMSO alone (referred to throughout the manuscript 

as DMSO) as a control (n=19) at 16.5 dpc (third trimester).  Following injection, 

pregnant mice were monitored using a video camera with infrared light (Sony 

Corporation, China) until delivery.  A second group of mice was i.v. injected with either 

2μg of α-GalCer or DMSO at 10.5 dpc (n=5 each; second trimester), and inspection of 

resorption sites was performed at 14.5 dpc.  A third group of mice was i.v. injected with 

2μg of α-GalCer at 10.5 dpc (n=3) and monitored during delivery; photographs of the 

neonates at 1 day and 2 days after birth were taken using a camera (Sony).   

Video monitoring, pup mortality and neonatal weight 

Video monitoring allowed for determination of gestational age and rate of pup 

mortality.  Gestational age was calculated from the presence of the vaginal plug (0.5 

dpc) until the observation of the first pup in the cage bedding.  The rate of pup mortality 

for each litter was defined as the proportion of born pups found dead among the total 

litter size.  Late PTB was defined as delivery between 18.0 and 18.5 dpc.  Neonatal 

survival and weight were recorded after one week postpartum.  

In vivo imaging by ultrasound  

On the morning of 16.5 dpc, pregnant B6 mice were anesthetized by inhalation of 

2-3% isoflurane (Aerrane, Baxter Healthcare Corporation, Deerfield, IL, USA) and 1-2 

L/min of oxygen in an induction chamber.  Using Doppler ultrasound, the fetal heart rate 

and umbilical artery hemodynamic parameters were recorded (VisualSonics Inc., 
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Toronto, ON, Canada).  Following ultrasound, dams were placed under a heat lamp for 

recovery, which occurred 10-20 min after heating.  On the same day at noon, dams 

were injected either with 2μg of α-GalCer or DMSO as described previously (n=3 each).  

On the afternoon of 17.5 dpc (just prior to late PTB in those mice injected with α-

GalCer), a second ultrasound was performed, and the same hemodynamic parameters 

were evaluated. 

Video monitoring by infrared thermography 

Pregnant B6 mice were i.v injected with 2μg of α-GalCer at 16.5 dpc (n=3).  

Immediately after late preterm delivery, the body temperature of the newborns was 

monitored using a thermal infrared camera (FLIR e50, FLIR Systems, Inc., Wilsonville, 

OR, USA).  Temperature readings were recorded at intervals of 15 and 30 sec, and also 

at intervals of 1, 2, 3.5, 5.5, and 8 min after birth.  A newborn that maintained a constant 

body temperature was considered a viable pup, while a newborn that gradually 

decreased in body temperature to the level of room temperature was qualified as a 

dead pup; viable and dead pups were also confirmed by visual analysis. 

Fetal and placental weights 

Pregnant B6 mice were i.v. injected with 2μg of α-GalCer (n=8) or DMSO (n=6) 

at 16.5 dpc.  Six hours after injection, dams were euthanized, and placental and fetal 

weights were recorded using a scale (DIA-20, American Weight Scales, Norcross, GA, 

USA). 

Rosiglitazone treatment of α-GalCer-induced late PTB 

Pregnant B6 mice were i.v. injected with 2µg of α-GalCer (n=14) at 16.5 dpc. 

After 2h, mice were s.c. injected with a 10mg/kg of body weight dose of rosiglitazone 

(Selleck Chemicals, Houston, TX, USA) diluted in 1:10 DMSO.  Control pregnant mice 
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received only the dose of rosiglitazone at 16.5 dpc (n=10).  Following injection, mice 

were monitored via video camera with infrared light until delivery (Figure 2A). 

Tissue collection from pregnant mice 

Pregnant B6 mice were i.v. and/or s.c. injected at 16.5 dpc with: 1) DMSO, 2) 

2μg of α-GalCer, 3) 2μg of α-GalCer followed by rosiglitazone (10mg/kg of bodyweight) 

2h after, or 4) rosiglitazone alone as a control.  Mice were euthanized 6h after the 

injection with α-GalCer or DMSO, or 4h after treatment with rosiglitazone (n=6-10 mice 

per group).  Decidual and myometrial tissues from one implantation site were collected 

as previously described (231) and placed in RNAlater Stabilization Solution (Life 

Technologies, Grand Island, NY, USA) according to the manufacturer’s instructions. 

Decidual and myometrial tissues from the remaining implantation sites were collected, 

and leukocytes were immediately isolated.  The spleen, uterine lymph nodes (ULN), and 

liver were also collected, and leukocyte suspensions were prepared.  

Leukocyte isolation from murine tissues 

Isolation of leukocytes from myometrial and decidual tissues was performed as 

previously described (231).  Briefly, tissues were cut into small pieces using fine 

scissors and enzymatically digested with StemPro Cell Dissociation Reagent (Accutase, 

Life Technologies) for 35 min at 37°C. The spleen, ULN, and liver were gently 

dissociated using two glass slides in order to prepare a single leukocyte suspension. 

Leukocyte suspensions were filtered using a 100µm cell strainer (Fisher Scientific, 

Hanover Park, IL, USA), and washed with FACS buffer [0.1% bovine serum albumin 

(Sigma-Aldrich) and 0.05% sodium azide (Fisher Scientific Chemicals, Fair Lawn, NJ, 

USA) in 1X PBS (Fisher Scientific Bioreagents)] before immunophenotyping.  
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Immunophenotyping of murine leukocytes 

Leukocyte suspensions from decidual and myometrial tissues and the liver were 

stained using the LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Life Technologies) prior 

to incubation with extracellular mAbs.  Leukocyte suspensions were then centrifuged, 

and cell pellets were incubated for 10 min with the CD16/CD32 mAb (FcγIII/II Receptor; 

BD Biosciences, San Jose, CA, USA), and subsequently incubated with specific 

fluorochrome-conjugated anti-mouse mAbs (Table 6) for 30 min.  Leukocyte 

suspensions were lysed/fixed with Lyse/Fix Buffer (BD Biosciences) for extracellular 

staining, and the BD Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit (BD 

Biosciences) for intracellular staining.  At least 50,000 events for the spleen, liver, and 

decidual cells, or 25,000 events for the ULN and myometrial cells, were acquired using 

the BD LSRFortessa flow cytometer (BD Biosciences) and the FACSDiva 8.0 software 

(BD Biosciences).  Leukocyte subsets were gated within the viability gate. 

Immunophenotyping included identification of: 1) CD1d-restricted iNKT cells (CD1d 

Tetramer+DX5+NK1.1+TCRβ+ cells) and their activation status by expression of CD69, 

CD44, IFNγ, and IL4; 2) conventional T cells (CD3+CD4+ and CD3+CD8+ cells) and their 

activation status by expression of CD69, CD25, PD1, CD40L, and CTLA-4; 3) 

neutrophils (CD11b+Ly6G+ cells) and their activation status by expression of IFNγ; 4) 

macrophages (CD11b+F4/80+ cells) and their activation status by expression of Arg1, 

iNOS, IFNγ, and IL10; and 5) expression of IFNγ by mature DCs 

(CD11b+CD11c+DEC205+ cells).  Data were analyzed using the FACSDiva 8.0 

software.  The total number of specific leukocytes was determined using CountBright 

absolute counting beads (Molecular Probes, Eugene, OR, USA).  The figures were 

prepared using the FlowJo Software version 10 (FlowJo, LLC, Ashland, OR, USA). 
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Table 6:  List of antibodies used for Flow Cytometry analysis for the iNKT study 

Antibody Fluorochrome Clone Catalog # Company 

CD3ε APC-Cy7 or PE-Cy5 145-2C11 557596/553065 BD Biosciences 

CD4 APC or AF 700 RM4-5 553051/561025 BD Biosciences 

CD8 PE-CF594 or PE-Cy5 53-6.7 562283/561094 BD Biosciences 

CD25 PE-Cy7 PC61 552880 BD Biosciences 

CD154/CD40L APC MR1 17-1541-82 eBioscience 

CD279/PD-1 FITC J43 11-9985-85 eBioscience 

CD69 PE-CF594 H1.2F3 562455 BD Biosciences 

CD152/CTLA-4 PE UC10-4F10-11 561718 BD Biosciences 

CD11b PE-CF594 M1/70 562287 BD Biosciences 

Ly6G APC 1A8 560599 BD Biosciecnces 

F4/80 APC-efluor 780 BM8 47-4801-82 eBioscience 

iNOS PE CXNFT 12-5920-82 eBioscience 

IL4 PE-Cy7 11B11 560699 BD Biosciences 

IFNγ V450 XMG1.2 560661 BD Biosciences 

CD49b/DX5 APC DX5 560628 BD Biosciences 

NK1.1 AF 700 PK136 560515 BD Biosciences 

TCR-β PerCP-Cy 5.5 H57-597 560657 BD Biosciences 

CD44 APC-Cy7 IM7 560568 BD Biosciences 

CD11c AF488 N418 53-0114-82 eBioscience 

DEC205 PerCP-eFluor 710 205yekta 46-2051-82 eBioscience 

IL-10 AF700 JES5-16E3 56-7101-82 eBioscience 

CD16/CD32 N/A 2.4G2 553142 BD Biosciences 

CD1d Tetramer 
loaded with α-Galcer 

PE N/A N/A NIH 

Antibody name, the directly conjugated flourochrome, clone, catalog number, and company are listed. 

Gene expression determination 

RNA was extracted from decidual and myometrial tissues using TRIzol Reagent 

(Life Technologies), QIAshredders (Qiagen, Valencia, CA, USA), RNase-Free DNase 

Sets (Qiagen), and RNeasy Mini Kits (Qiagen).  RNA concentrations and purity were 

assessed with the NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, 

DE, USA), and RNA integrity was evaluated with the Bioanalyzer 2100 (Agilent 
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Technologies, Wilmington, DE, USA).  cDNA was synthesized using RT2 First Strand 

Kits (Qiagen). 

The RT² Profiler Mouse PPAR Targets PCR Array (Qiagen) and RT² Profiler 

Mouse Inflammatory Cytokines & Receptors PCR Array (Qiagen) were used for initial 

screening (n=4 samples per group) and performed by using RT² SYBR Green ROX 

qPCR Mastermix (Qiagen) on a 7500 Fast Real-Time PCR System (Applied 

Biosystems, Life Technologies Corporation, Foster City, CA, USA).  Expression profiling 

of those genes selected based on the screening results was confirmed by qRT-PCR 

using a BioMark High-throughput qRT-PCR System (Fluidigm, San Francisco, CA, 

USA) and an ABI 7500 FAST Real-Time PCR System (Applied Biosystems) using 

TaqMan gene expression assays (Applied Biosystems) (n=6-8 mice per group; Table 7). 

Table 7:  List of primers used for RT-PCR in the iNKT study 

Gene Name 
Gene 

Symbol Assay ID Company 

β-actin Actb Mm00607939_s1 Invitrogen/Applied 
Biosystems 

Chemokine (C-C motif) ligand 1 Ccl1 Mm00441236_m1 Invitrogen/Applied 
Biosystems 

Chemokine (C-C motif) ligand 12 Ccl12 Mm01617100_m1 Invitrogen/Applied 
Biosystems 

Chemokine (C-C motif) ligand 2 Ccl2 Mm00441242_m1 Invitrogen/Applied 
Biosystems 

Fatty acid binding protein 4 Fabp4 Mm00445878_m1 Invitrogen/Applied 
Biosystems 

Long-chain fatty acid transport protein 4 Fatp4 Mm01327405_m1 Invitrogen/Applied 
Biosystems 

Tumor necrosis factor α Tnf Mm00443258_m1 Invitrogen/Applied 
Biosystems 

Gene name, gene symbol, assay ID, and company are listed. 

Chemokine/cytokine serum concentrations 

Pregnant B6 mice were injected at 16.5 dpc with: 1) DMSO, 2) 2μg of α-GalCer, 

3) 2μg of α-GalCer followed by rosiglitazone (10mg/kg bodyweight) 2h after, or 4) 

rosiglitazone alone as a control.  Mice were euthanized 6h or 24h after the injection with 

α-GalCer or DMSO (n=8-9 mice per group).  Blood was recovered by cardiac puncture, 
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and serum samples were separated by centrifugation and stored at -20°C until analysis.  

The Milliplex MAP Mouse Cytokine/Chemokine Kit (MCYTOMAG-70K-PX32, EMD 

Millipore, Billerica, MA, USA) was used to measure the concentrations of G-CSF, GM-

CSF, IFNγ, IL1α, IL1β, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL12p40, IL12p70, IL13, 

IL15, IL17, CCL11, CXCL10, CXCL1, LIF, CXCL5, CCL2, M-CSF, CXCL9, CCL3, 

CCL4, CXCL2, CCL5, and TNF-α in the serum samples according to the manufacturer’s 

instructions.  Plates were read using the Luminex 100 System (Luminex Corporation, 

Austin, TX, USA), and analyte concentrations were calculated using the xPONENT3.1 

software (Luminex).  The sensitivities of the assays were: 1.7pg/ml (G-CSF), 1.9pg/ml 

(GM-CSF), 1.1pg/ml (IFNγ), 10.3pg/ml (IL1α), 5.4pg/ml (IL1β), 1.0pg/ml (IL2), 1.0pg/ml 

(IL3), 0.4pg/ml (IL4), 1.0pg/ml (IL5), 1.1pg/ml (IL6), 1.4pg/ml (IL7), 17.3pg/ml (IL9), 

2.0pg/ml (IL10), 3.9pg/ml (IL12p40), 4.8pg/ml (IL12p70), 7.8pg/ml (IL13), 7.4pg/ml 

(IL15), 0.5pg/ml (IL17), 1.8pg/ml (CCL11), 0.8pg/ml (CXCL10), 2.3pg/ml (CXCL1), 

1.0pg/ml (LIF), 22.1pg/ml (CXCL5), 6.7pg/ml (CCL2), 3.5pg/ml (M-CSF), 2.4pg/ml 

(CXCL9), 7.7pg/ml (CCL3), 11.9pg/ml (CCL4), 30.6pg/ml (CXCL2), 2.7pg/ml (CCL5), 

2.3pg/ml (TNF-α) and 0.3pg/ml (VEGF).  Inter-assay and intra-assay coefficients of 

variation were below 15% and 4.9%, respectively. 

Human samples 

Chorioamniotic membrane and basal plate samples were collected within 30 min 

after delivery from the Bank of Biological Specimens of the Perinatology Research 

Branch, an intramural program of the Eunice Kennedy Shriver National Institute of Child 

Health and Human Development, National Institutes of Health, U. S. Department of 

Health and Human Services (NICHD/NIH/DHHS), Wayne State University, and The 

Detroit Medical Center (Detroit, MI, USA).  The Institutional Review Boards approved 
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the collection and use of biological materials for research purposes.  All participating 

women provided written informed consent.  The study groups included women who 

delivered at term without labor (TNL), at term with labor (TIL), preterm without labor 

(PTNL), and preterm with labor (PTL).  Demographic and clinical characteristics of 

these study groups are represented in Table 8.  Patients with multiple births or with 

neonates having congenital or chromosomal abnormalities were excluded. Labor was 

defined by the presence of regular uterine contractions at a frequency of at least two 

contractions every 10 minutes with cervical changes resulting in delivery (232).  In each 

case, several tissue sections of the chorioamniotic membranes, umbilical cord, and 

placental disc were evaluated for acute chorioamnionitis and chronic chorioamnionitis, 

according to published criteria (233, 234), by pathologists who had been blinded to the 

clinical outcome. 

Table 8: Demographical characteristics of patients whose samples were used for the 
iNKT study 

Demographic or clinical 
characteristic 

TNL 
(n=7) 

TIL 
(n=26) 

PTNL 
(n=13) 

PTL 
(n=14) 

P value 

Maternal age (years)* 28 (23-32) 23.5 (22-27) 25 (22-30) 22 (19.5-25) NS 

Race**     11 (84.6%) 

1 (7.7%) 

0 (0.0%) 
1 (7.7%) 

  
     African-American  7 (100%) 26 (100%) 13 (92.9%) NS 

     Caucasian  0 (0.0%) 0 (0.0%) 1 (7.1%)  
     Hispanic  0 (0.0%) 0 (0.0%) 0 (0.0%)  
     Other 0 (0.0%) 0 (0.0%) 0 (0.0%)  

Maternal weight (kg)* 93 (68.8-98.7) 90.05 (71.1-106.0) 74.8 (62.6-102.7) 75.6 (56.7-88.2) NS 

Body mass index (kg/m²)* 
31.2 (26.35-

41.45) 
33.9 (27.38-39.25) 32.8 (23-39.4) 28.35 (21.53-31.6) NS 

Primiparity** 0 (0%) 6 (23.08%) 3 (23.08%) 1 (7.14%) NS 
Gestational age at 
delivery (weeks)* 

39 (38.5-39.5) 39.4 (38.2-39.9) 34.9 (32-36.1) 34.2 (31.2-35.3) <0.0001 

Birth weight (grams)* 3005 (2855-3073) 3240 (2906-3419) 1510 (1255-2375) 2148 (1674-2554) <0.0001 

Cesarean section** 100% 15.4% 100% 14.3% <0.0001 
Chronic 
h i i iti **

28.6% 30.8% 46.2% 21.4% NS 

Acute chorioamnionitis** 0% 34.6% 7.7% 42.8% NS 

Smoked during 
Pregnancy** 

Yes 
No 

  
1 (14.3%) 
6 (85.7%) 

 
5 (19.2%) 

21 (80.8%) 

 
2 (15.4%) 

11 (84.6%) 

 
0 (0%) 

14 (100%) 

 
NS 

(*Kruskal-Wallis test, **Chi-square test). Maternal age, race, maternal weight, body max index, Primiparity, gestational 
age at delivery, birth weight, Cesarean section, chronic chorioamnionitis, acute chorioamnionitis, smoking during 
pregnancy are listed as median (interquantile range) or n (%). Either Kruskal-Wallis test or Chi-square test were used 
to analyze the statistical differences between the study groups (TNL, TIL, PTNL, and PTL). 
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Decidual leukocyte isolation from human samples 

Decidual leukocytes from human decidual tissue were isolated as previously 

described (235).  Briefly, the decidua basalis was collected from the basal plate of the 

placenta, and the decidua parietalis was separated from the chorioamniotic membranes 

(Figure 8A).  Decidual tissue was homogenized using a gentleMACS Dissociator 

(Miltenyi Biotec, San Diego, CA, USA) in StemPro Cell Dissociation Reagent. 

Homogenized tissues were incubated for 45 min at 37°C with gentle agitation.  After 

incubation, tissues were washed in ice-cold 1X PBS (Life Technologies) and filtered 

through a 100μm cell strainer.  Cell suspensions were collected and centrifuged at 300 

x g for 10 min, and the cell pellet was suspended in FACS buffer.  Mononuclear 

leukocytes were purified using a density gradient (Ficoll-Paque Plus; GE Healthcare 

Bio-Sciences AB, Sweden), following the manufacturer’s instructions.  Lastly, 

mononuclear cell suspensions were washed using FACS buffer before 

immunophenotyping. 

Immunophenotyping of human decidual leukocytes 

Mononuclear cell suspensions from decidual tissues were stained with BD 

Horizon Fixable Viability Stain 510 dye (BD Biosciences) prior to incubation with 

extracellular mAbs.  Mononuclear cell suspensions were then washed with staining 

buffer (Cat No. 554656; BD Biosciences) and centrifuged.  Cell pellets were incubated 

for 10 min with FcR Blocking Reagent (Cat No. 130-059-901; Miltenyi Biotec).  Next, 

mononuclear cell suspensions were incubated with the following fluorochrome-

conjugated anti-human mAbs: CD14-BUV395 (clone MφP9; BD Biosciences), CD15-

BV605 (clone W6D3; BD Biosciences), CD3-BV650 (clone OKT3; BD Biosciences), 

CD19-BUV737 (clone SJ25C1; BD Biosciences), CD56-PE-Cy7 (clone NCAM16.2; BD 
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Biosciences), CD69-Alexa Fluor 700 (clone FN50; BD Biosciences) and Vα24Jα18TCR-

PE (clone 6B11; eBioscience; San Diego, CA, USA) for 30 min at 4 ºC in the dark.  

Finally, mononuclear cell suspensions were washed and re-suspended in 0.5ml of 

staining buffer and acquired using the BD LSRFortessa flow cytometer and FACSDiva 

6.0 software.  Leukocyte subsets were gated within the viability gate, and activated 

iNKT-like cells were identified as CD15-CD14-CD19-CD3+CD56+CD69+ or 

CD3+Vα24Jα18TCR+CD69+ cells.  The analysis was performed, and the figures 

generated using FlowJo Software version 10.   

Immunofluorescence 

Immediately after collection, the chorioamniotic membranes were frozen in 

Tissue-Plus O.C.T. Compound (Fisher HealthCare, Houston, TX, USA).  Ten-μm-thick 

cryosections were cut, placed on Fisherbrand Superfrost Plus microscope slides 

(Thermo Scientific, Waltham, MA, USA), fixed with 4% paraformaldehyde (Electron 

Microscopy Sciences, Hatfield, PA, USA), and washed with 1X PBS. Non-specific 

antibody interaction was blocked using a Protein Blocker serum-free (Cat No. X0909; 

Dako North America, Carpinteria, CA, USA) for 30 min at room temperature.  Slides 

were then incubated with the following anti-human mAbs: mouse CD69-FITC (LifeSpan 

BioSciences, Inc., Seattle, WA, USA), mouse CD56-APC (clone MEM-188, BioLegend, 

San Diego, CA, USA), and rabbit CD3 (Abcam, Cambridge, MA, USA) at 4˚C overnight. 

Following incubation, slides were washed with 1X PBS containing 0.1% Tween-20 

(Sigma-Aldrich).  Secondary goat anti-rabbit IgG-Alexa Fluor 594 (Invitrogen, Molecular 

Probes, Eugene, OR, USA) was added for CD3 detection, and slides were incubated for 

1h at room temperature. Slides were washed and mounted with the ProLong Gold 

Antifade reagent with DAPI (Life Technologies).  Immunofluorescence was visualized 
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using a Zeiss LSM 780 laser scanning confocal microscope (Carl Zeiss Microscopy 

GmbH, Jena, Germany) at the Microscopy, Imaging and Cytometry Resources Core at 

Wayne State University School of Medicine (http://micr.med.wayne.edu/).  

Immunofluorescence signals for APC, Alexa Fluor 594, and FITC were excited using a 

633 nm HeNe laser, a 561 nm HeNe laser, and the 488 nm line of a Multiline Argon 

laser, respectively. The DAPI signal was excited using a 405 nm diode laser.  

Statistical analysis 

Observational mouse data were analyzed using IBM SPSS, version 19.0, and all 

other analyses were performed in R (http://www.R-project.org/).  For the gestational 

age, rate of pup mortality, and ultrasound parameters, the statistical significance of 

group comparisons was assessed using Mann-Whitney U tests.  For flow cytometry 

data, the statistical significance of group comparisons was assessed using Mann-

Whitney U tests.  For fetal, placental, and neonatal weights, the statistical significance 

of group comparisons was assessed using pooled variance t-tests after log 

transformation. For qRT-PCR arrays, negative ∆Ct values determined using multiple 

reference genes (Gusb, Hsp90ab1, Gapdh and Actb) averaged within each sample to 

determine gene expression levels.  A heat map was created for the group mean 

expression matrix (gene x group mean) with each gene expression level being first 

standardized.  A hierarchical clustering tree of genes was constructed using 1-Pearson 

correlation as distance metric and average linkage, while treatment groups clustering 

was based on an Euclidean distance with Ward linkage.  For Fluidigm qPCR assays, 

negative ∆Ct values were calculated using Actb as a reference gene.  For Fluidigm 

gene expression and cytokine concentrations, statistical tests of group differences were 

performed using linear models, and whenever data was left, right, or interval censored, 
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a survival regression model with Gaussian error was used instead.  Human 

demographic data were analyzed using IBM SPSS, version 19, and comparisons 

among the groups were performed using Chi-square tests for proportions as well as 

Kruskal-Wallis tests for non-normally distributed continuous variables.  For proportions 

of activated iNKT-like cells in human decidual tissues, statistical significance of group 

differences was assessed using Mann-Whitney U tests.  A p-value of < 0.05 was used 

to determine statistical significance. 

Results 

α-GalCer administration in the third trimester induces late preterm birth 

Intravenous administration of 2μg of α-GalCer during the third trimester caused 

75±18.9% of births to be categorized as late preterm (birth occurring between 18.0 and 

18.5 dpc; α-GalCer-induced late PTB), while DMSO (control) resulted in no late PTB 

(Figure 27A).  Consequently, dams that were i.v. injected with 2μg of α-GalCer had 

shorter gestations than the DMSO control group (Figure 27B).  A high proportion of 

preterm pups were found dead minutes after delivery (Figure 27C).  Intravenous 

administration of 3µg or 4μg of α-GalCer induced very early PTB (birth occurring before 

17.5 dpc with 100% pup mortality); however, 1μg of α-GalCer did not cause PTB (data 

not shown).  These data demonstrate that α-GalCer administration in the third trimester 

induces late PTB and pup mortality. 

α-GalCer administration in the third trimester causes neonatal death  

Dams that were injected with α-GalCer delivered premature viable and non-

viable pups.  We then investigated whether these pups were dying in the uterus (fetal 

death) or after delivery (neonatal death).  Abnormal umbilical artery velocimetry and 

fetal  heart  rate  are  associated with  fetal compromise  (236-239).   Therefore, Doppler 
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Figure 27: α-GalCer induces late PTB but not pregnancy loss. (A) The rate of term birth was 
defined as the percentage of dams delivering at 19.5 ± 0.5 dpc among all births. The rate of late 
PTB was defined as the percentage of dams delivering between 18.0 and 18.5 dpc among all 
births. Data are shown as percentage ± 95% confidence interval. (B) Gestational age was 
calculated from the presence of the vaginal plug (0.5 dpc) until the observation of the first pup in 
the cage bedding. (C) The rate of pup mortality for each litter was defined as the proportion of 
born pups found dead among the total litter size. Data in (A–C) are from individual dams (n = 
19–20 each). (D and E) Doppler ultrasound was performed on fetuses just prior to α-GalCer–
induced late PTB in dams injected with α-GalCer and in time-matched DMSO controls. Umbilical 
artery pulsatility index and fetal heart rate were recorded. Data are from three independent 
litters. (F) Immediately after α-GalCer–induced late PTB, the body temperature of the newborns 
was monitored using a thermal infrared camera. Temperature readings were recorded at 0, 15, 
and 30 s, as well as at 1, 2, 3.5, 5.5, and 8 min. Data are representative of individual dams (n = 
3). (G) Uterine horns at 14.5 dpc from dams injected i.v. with DMSO or α-GalCer on 10.5 dpc. 
Data are representative of individual dams (n = 5 each). (H) Term neonates at 1 and 2 d old 
delivered from dams injected i.v. with α-GalCer on 10.5 dpc. Data are representative of 
individual dams (n = 3). 
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ultrasound was performed on 17.5 dpc, just prior to late PTB in those mice injected with 

α-GalCer.  The umbilical artery pulsatility index did not differ between fetuses from 

dams injected with α-GalCer and DMSO (Figure 27D). 

However, bradycardia, a reduction of the heart rate, occurred in fetuses from 

dams injected with α-GalCer when compared to the DMSO control (Figure 27E).  These 

data demonstrated that, although pups do not die in the uterus, their health was 

compromised before birth.  Administration of α-GalCer also reduced fetal and placental 

weights, but did not decrease the weight of one-week-old neonates (Figure 28A-C). 

Figure 28: Fetal, placental, and neonatal weights with αGalCer treatment. (A&B) Fetuses 
and placentae from dams i.v. injected with 2μg of α-GalCer or DMSO were weighed 6 h post-
injection. Data are pooled from 6-8 litters (n=38 for DMSO and n=58 for α-GalCer).  (C) 
Neonates delivered by dams i.v. injected with 2μg of α-GalCer or DMSO were weighed at 1 
week postpartum.  Data are from independent neonates (n=57 for DMSO and n=46 for α-
GalCer).  

To further evaluate when the premature pups died, we placed dams injected with 

α-GalCer under video surveillance using infrared thermography.  A high proportion of 

premature pups died within 10 min of delivery.  In Figure 27F, representative frames 

demonstrate that the body temperature of a non-viable premature pup (red circle) 

reduced quickly from 30.5°C to 21.3°C.  Conversely, a viable premature pup kept a 

constant temperature of 23.3°C to 23.1°C (green circle). 

α-GalCer administration in the second trimester does not cause pregnancy loss 

During mid-pregnancy, iNKT-cell activation by i.p. administration of α-GalCer 
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(100μg/kg of body weight, ~2.5μg) leads to pregnancy loss (240, 241).  Herein, we 

demonstrated that i.v. administration of 2μg of α-GalCer in the second trimester did not 

cause pregnancy loss (Figure 27G).  However, we could not rule out the possibility that 

this dose would cause PTB or have deleterious effects on neonates.  Therefore, 

neonates from dams injected with α-GalCer at 10.5 dpc were observed up to one week 

post-partum.  All delivered pups were viable and appeared healthy.  Figure 27H shows 

viable term pups at 1 day and 2 days post-partum from dams injected with α-GalCer in 

the second trimester.  

Rosiglitazone treatment reduces the rate of α-GalCer-induced late preterm birth 

iNKT-cell activation can initiate the NF-κΒ pathway, leading to production of Th1 

cytokines, such as IFNγ (216).  We then hypothesized that activation of the PPARγ 

pathway by administration of rosiglitazone, which interferes with the NF-κB pathway 

(224, 225), would prevent α-GalCer-induced late PTB.   

Dams that were injected with α-GalCer and subsequently treated with 

rosiglitazone had a 40% reduction in the rate of late PTB in comparison to dams 

injected with α-GalCer alone (35.7±25.1% vs. 75±18.9%; Figure 29B).  Consequently, 

gestational age was greater in dams treated with rosiglitazone after α-GalCer injection 

than in dams injected with α-GalCer alone (Figure 29C).  Importantly, dams that were 

treated with rosiglitazone after an injection of α-GalCer had a 30% reduction in pup 

mortality when compared to dams injected with α-GalCer alone (Figure 29D).  These 

results demonstrate that treatment with rosiglitazone can prevent α-GalCer-induced late 

PTB and improve neonatal outcomes. 
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Figure 29: Rosiglitazone treatment reduces the rate of α-GalCer–induced late PTB by 
inducing PPARγ activation at the maternal–fetal interface. (A) On 16.5 dpc, pregnant mice 
were injected i.v. with α-GalCer and treated shortly after with rosiglitazone (Rosi; s.c.) and 
monitored via video camera (n = 14).  Control mice were injected s.c. with rosiglitazone alone (n 
= 10). (B)  The rate of term birth was defined as the percentage of dams delivering at 19.5 ± 0.5 
dpc among all births.  The rate of late PTB was defined as the percentage of dams delivering 
between 18.0 and 18.5 dpc among all births.  Data are represented as percentage ± 95% 
confidence interval. (C) Gestational age was calculated from the presence of the vaginal plug 
(0.5 dpc) until the observation of the first pup in the cage bedding.  (D) The rate of pup mortality 
for each litter was defined as the proportion of born pups found dead among the total litter size.  
(E) A heat map visualization of PPAR targets gene expression in myometrial and decidual 
tissues from dams injected with DMSO, α-GalCer, Rosi, or α-GalCer + Rosi.  Data are from 
individual dams (n = 4 each). mRNA expression of Fabp4 (F) and Fatp4 (G) in myometrial and 
decidual tissues.  Negative ∆CT values (F and G) were calculated using Actb as a reference 
gene.  Data are from individual dams (n = 6–8 each). 
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α-GalCer inhibits PPARγ activation at the maternal-fetal interface that is restored 
by rosiglitazone 

Since treatment with rosiglitazone reduced the rate of α-GalCer-induced late 

PTB, we investigated whether α-GalCer was inhibiting PPARγ genes at the maternal-

fetal interface and whether this inhibition could be abrogated by rosiglitazone.  

Expression profiles of the PPAR pathway-related genes were different between 

myometrial and decidual tissues in all of the groups (Figure 29E).  We specifically 

focused on PPARγ target genes.  Adipocyte-specific fatty acid binding protein (Fabp4) 

and fatty acid transport protein 4 (Fatp4) are recognized as indicators of PPARγ 

activation (242, 243).  Our array data showed that rosiglitazone up-regulated Fabp4 in 

myometrial tissues and Fatp4 and Cyp410 in decidual tissues while α-GalCer down-

regulated such genes; therefore, we validated the expression of Fabp4 and Fatp4 in 

these tissues.  Administration of α-GalCer down-regulated expression of Fabp4 in 

myometrial tissues; however, treatment with rosiglitazone resulted in up-regulation to 

basal levels (Figure 29F).  Administration of α-GalCer down-regulated expression of 

Fatp4 in myometrial tissues and tended to down-regulate expression of Fatp4 in 

decidual tissues (Figure 29G).  Treatment with rosiglitazone partially restored Fatp4 

expression in decidual tissues but not in myometrial tissues (Figure 29G).  These 

results demonstrate that rosiglitazone prevents α-GalCer-induced late PTB by restoring 

PPARγ activation at the maternal-fetal interface. 

α-GalCer induces an expansion of activated CD1d-restricted iNKT cells in 
decidual tissues that is blunted by rosiglitazone 

Next, we investigated whether α-GalCer caused a systemic and local (maternal-

fetal interface) expansion of iNKT cells and whether rosiglitazone reduced such 
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expansions.  Because NKT-cell function and subsets are tissue- or organ-specific (244-

246), we used a combination of markers including CD1d-Tetramer loaded with α-

Figure 30: Administration of α-GalCer induces an expansion of activated CD1d-restricted 
iNKT cells in decidual tissues that is blunted by rosiglitazone. (A) Gating strategy used to 
identify CD1d-restricted iNKT cells (CD1d tetramer+DX5+NK1.1+TCRβ+ cells) in decidual 
tissues. (B) Number of CD1d-restricted iNKT cells in decidual tissues from mice injected with
DMSO, α-GalCer, rosiglitazone (Rosi), or α-GalCer + Rosi. Data are from individual dams (n =
6–8 each). (C) Immunophenotyping of activation markers CD69, CD44, and IL-4 in CD1d-
restricted iNKT cells in decidual tissues from mice injected with DMSO, α-GalCer, Rosi, or α-
GalCer + Rosi. The shaded graph represents the autofluorescence control, and the open graph
represents the fluorescence signal from CD1d-restricted iNKT cells.  (D and E) Number of 
CD69+CD44+ and IL-4+ CD1d-restricted iNKT cells in decidual tissues from mice injected with 
DMSO, α-GalCer, Rosi, or α-GalCer + Rosi. Data are from individual dams (n=6–8 each). 
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GalCer, DX5, NK1.1, and TCRβ to identify iNKT cells (Figure 30A).  Administration of α-

GalCer caused an expansion of CD1d-restricted iNKT cells (CD1d 

Tetramer+DX5+TCRβ+NK1.1+ cells) in decidual tissues; yet, this expansion was blunted 

by treatment with rosiglitazone (Figures 30B).  In contrast, administration of α-GalCer 

did not significantly alter the number of CD1d-restricted iNKT cells in the liver (Figure 

31A), myometrium (Figure 31B), spleen (Figure 31C), or ULN (Figure 31D). 

 
Figure 31: CD1d-restricted iNKT cells in the liver, myometrium, spleen, and lymph nodes.  
Number of CD1d-restricted iNKT cells in the liver (A), myometrium (B), Spleen (C), and uterine 
lymph nodes (D) from mice injected with DMSO, α-GalCer, rosiglitazone (Rosi), or α-GalCer + 
rosiglitazone. Data are representative of individual dams, n=6-8 each.  

We also evaluated whether α-GalCer-expanded decidual iNKT cells were 

activated and, in such a case, whether rosiglitazone treatment reduced the number of 

these cells.  Activated iNKT cells express CD69 and CD44, and release Th1 (e.g., IFNγ) 

and Th2 cytokines (e.g., IL4) (216, 218, 247).   

Decidual CD1d-restricted iNKT cells expressed CD69, CD44, IL4 (Figure 30C), 
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and, to a lesser extent, IFNγ (Figure 32).  Administration of α-GalCer increased the 

number of activated CD69+CD44+ and IL4+CD1d-restricted iNKT cells in decidual 

tissues, both of which were reduced by treatment with rosiglitazone (Figure 30D&E).  

No significant effects were seen in IFNγ+CD1d-restricted iNKT cells upon α-GalCer 

and/or rosiglitazone administration (Figure 32).  Together, these data demonstrate that 

rosiglitazone prevents α-GalCer-induced late PTB by reducing activated CD1d-

restricted iNKT cells at the maternal-fetal interface. 

Figure 32: IFNγ+ CD1d-restricted iNKT cells in 
decidual tissues. Number of IFNγ+ CD1d-
restricted iNKT cells in decidual tissues from 
mice injected with DMSO, α-GalCer, 
rosiglitazone (Rosi), or α-GalCer + rosiglitazone. 
Data are from individual dams, n=6-8 each. 
 

 

 

α-GalCer induces activation of conventional CD4+ T cells in myometrial tissues 
that is reduced by rosiglitazone 

iNKT cells bridge the innate and adaptive limbs of the immune system; therefore, 

activation of iNKT cells triggers both innate and adaptive immune responses (248).  

Indeed, activation of CD1d-restricted iNKT cells by administration of α-GalCer in non-

pregnant mice induces expression of CD69, an early activation marker, in T cells and B 

cells (249-252).  We then investigated whether administration of α-GalCer in the third 

trimester induced T-cell activation in myometrial and decidual tissues, and whether this 

activation was reduced after treatment with rosiglitazone.  Several markers of T-cell 

activation including CD25, CD40L, PD1, CD69, and CTLA-4 were determined in 

conventional CD4+ and CD8+ T cells.  Administration of α-GalCer led to the activation of 
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conventional CD4+ T cells demonstrated by the expression of CD25 and PD1 in 

myometrial tissues, which was reduced by treatment with rosiglitazone (Figures 33A-C). 

Figure 33: Administration of 
α-GalCer induces activation 
of CD4+ T cells in myometrial 
tissues that is reduced by 
rosiglitazone. (A) Gating 
strategy used to identify 
activated CD4+ T cells 
(CD3+CD4+ cells) in 
myometrial tissues. 
Immunophenotyping of 
activation markers CD25 and 
PD1 in CD4+ T cells in 
myometrial tissues from mice 
injected with DMSO, α-GalCer, 
rosiglitazone (Rosi), or α-
GalCer + Rosi. The shaded 
graphs represent the 
autofluorescence control, and 
the open graph represents the 
fluorescence signal from CD4+ 
T cells. (B and C) Proportion of 
CD25+CD4+ T cells and 
PD1+CD4+ T cells in 
myometrial tissues from mice 
injected with DMSO, α-GalCer, 
Rosi, or α-GalCer + Rosi. Data 
are from individual dams (n=6–
8 each). (D & E) Proportion of 
CD25+CD8+ T cells and 
CD69+CD8+ T cells in 
myometrial tissues from mice 
injected with DMSO, α-GalCer, 
Rosi, or α-GalCer + Rosi. Data 
are from individual dams (n = 
6–8 each). 
 
 
 
 
 
 
 

This treatment also reduced basal CD8+ T cell activation in myometrial tissues 

(Figures 33D & E).  No significant effects were seen in activated CD4+ and CD8+ T cells 
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upon α-GalCer administration in decidual tissues (Figure 34).  These data demonstrate 

that rosiglitazone prevents α-GalCer-induced late PTB by reducing activated T cells in 

the myometrial tissues. 

Figure 34: Activated CD4+ and CD8+ T cells in decidual tissues. (A) Proportion of 
CD25+CD4+ T cells and PD1+CD4+ T cells in decidual tissues from mice injected with DMSO, 
α-GalCer, rosiglitazone (Rosi), or α-GalCer + rosiglitazone. (B) Proportion of CD25+CD8+ T 
cells and CD69+CD8+ T cells in decidual tissues from mice injected with DMSO, α-GalCer, 
rosiglitazone, or α-GalCer + rosiglitazone. Data are from individual dams, n=6-8 each. 

α-GalCer induces innate immune activation at the maternal-fetal interface that is 
attenuated by rosiglitazone 

iNKT-cell activation also initiates innate immune responses mediated by 

macrophages and neutrophils (251, 253) as well as induces the full maturation of DCs 

manifested by the expression of MHC class II, IFNγ production, and APC function (254).  

First, we investigated whether administration of α-GalCer induces macrophage 

activation in myometrial and decidual tissues, and whether this activation was reduced 

after treatment with rosiglitazone.  Macrophage activation is a complex process since it 
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depends on the nature of the stimulus and the microenvironment where these cells 

exhibit their function (255, 256). 

The classical M1/M2 macrophage paradigm provides useful markers (Arg1, iNOS, 

IL10, and IFNγ) for macrophage activation (257-260); therefore, we evaluated the 

expression of these molecules in myometrial and decidual macrophages 

(CD11b+F4/80+ cells).  Administration of α-GalCer increased the number of decidual 

Figure 35: Administration of α-GalCer induces activation of innate immune cells at the
maternal–fetal interface that is blunted by rosiglitazone. (A) Number of activated IFN-γ+IL-
10+ macrophages in decidual tissues from mice injected with DMSO, α-GalCer, rosiglitazone 
(Rosi), or α-GalCer + Rosi. Data are from individual dams (n = 6–8 each). (B) Number of 
activated IL-10+Arg1+ macrophages in decidual tissues from mice injected with DMSO, α-
GalCer, Rosi, or α-GalCer + Rosi. Data are from individual dams (n = 6–8 each).  (C) Number 
of activated IFN-γ+ neutrophils in decidual tissues from mice injected with DMSO, α-GalCer, 
Rosi, or α-GalCer + Rosi.  Data are from individual dams (n = 6–8 each). (D) Number of IFN-γ+

mature DCs in decidual tissue from mice injected with DMSO, α-GalCer, Rosi, or α-GalCer + 
Rosi.  Data are from individual dams (n = 6–8 each). 
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macrophages that produce both IFNγ and IL10 (Figure 35A).  Also, administration of α-

GalCer increased the number of decidual macrophages that express both Arg1 and 

IL10; yet, this increase did not reach statistical significance (Figure 35B).  In both cases, 

treatment with rosiglitazone reduced the number of activated macrophages (Figures 

35A & B).  Administration of α-GalCer did not have such effects on myometrial 

macrophages (data not shown). 

Next, we investigated whether administration of α-GalCer induces neutrophil 

activation in myometrial and decidual tissues, and whether this activation was reduced 

after treatment with rosiglitazone.  IFNγ expression is an indicator of neutrophil 

activation (261, 262).  In the study herein, we demonstrated that administration of α-

GalCer increased the expression of IFNγ by neutrophils in myometrial and decidual 

tissues, and this effect was reduced by treatment with rosiglitazone (Figures 35C & 

Figure 36).  

Figure 36: Number of IFNγ+ neutrophils 
in myometrial tissues from mice 
injected with DMSO, α-GalCer, 
rosiglitazone (Rosi), or α-GalCer + 
rosiglitazone. Data are from individual 
dams, n=6-8 each. 
 

 

 

 

 
Lastly, we investigated whether administration of α-GalCer in the third trimester 

induced DC maturation in decidual tissues, and whether this process was blocked by 

administration of rosiglitazone.  Administration of α-GalCer increased the number of 

mature DCs (CD11b+CD11c+DEC205+ cells; data not shown) and the number of IFNγ+ 
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mature DCs in decidual tissues (Figure 35D).  Treatment with rosiglitazone did not 

reduce the number of mature DCs (data not shown); however, it reduced the number of 

IFNγ+ mature DCs in decidual tissues (Figure 35D).  Taken together, these data 

demonstrate that rosiglitazone prevents α-GalCer-induced late PTB by attenuating 

innate immune activation at the maternal-fetal interface.  

α-GalCer induces a pro-inflammatory microenvironment at the maternal-fetal 
interface that is partially attenuated by rosiglitazone 

Whereas iNKT-cell activation induces the expression of inflammatory genes 

(214, 215), PPARγ activation suppresses their expression (224, 225).  We next 

investigated whether α-GalCer up-regulated inflammatory genes at the maternal-fetal 

interface, and whether this up-regulation was suppressed by rosiglitazone.  Expression 

profiles of inflammation-related genes were different between decidual and myometrial 

tissues (Figure 37A).  As expected, several genes were up-regulated in both types of 

tissue upon administration of α-GalCer (α-GalCer vs. DMSO; Figure 37A).  Some of 

these genes were down-regulated after treatment with rosiglitazone, mainly in decidual 

tissues (α-GalCer+Rosi vs. α-GalCer; Figure 37A).  We selected some of the down-

regulated genes after treatment with rosiglitazone and validated their expression.  

Administration of α-GalCer up-regulated the expression of Ccl1, Ccl2, Ccl12, and Tnf in 

decidual tissues; however, these genes were down-regulated after treatment with 

rosiglitazone (Figure 37B).  Administration of α-GalCer also up-regulated expression of 

Ccl2 and Ccl12 in myometrial tissues; however, only Ccl2 was significantly down-

regulated after treatment with rosiglitazone (Figure 37C).  These data demonstrate that 

rosiglitazone prevents α-GalCer-induced late PTB by partially reducing the pro-

inflammatory milieu at the maternal-fetal interface. 



84 

 

Figure 37: Administration of α-
GalCer induces a pro-
inflammatory microenviron-
ment at the maternal–fetal
interface that is partially
attenuated by rosiglitazone. (A)
A heat map visualization of
cytokine and chemokine gene
expression in myometrial and
decidual tissues from dams
injected with DMSO, α-GalCer,
rosiglitazone (Rosi), or α-GalCer +
Rosi. Data are from individual
dams (n = 4 each). (B) mRNA
expression of Ccl1, Ccl2, Ccl12,
and Tnf in decidual tissues.
Negative ∆Ct values were
calculated using Actb as a
reference gene. Data are from
individual dams (n=6–8 each). (C)
mRNA expression of Ccl2 and
Ccl12 in myometrial tissues.
Negative ∆Ct values (B and C)
were calculated using Actb as a
reference gene. Data are from
individual dams (n = 6–8 each). 

A 

B 
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α-GalCer induces a maternal systemic pro-inflammatory response, yet 
rosiglitazone triggers a maternal systemic anti-inflammatory response  

Next, we evaluated the effects of α-GalCer and rosiglitazone on cytokine serum 

concentration in maternal circulation at 6h or 24h (prior to α-GalCer-induced late PTB) 

post α-GalCer administration.  Six hours post α-GalCer administration, the 

concentrations of all measured cytokines, except GMSCF, IL3, IL4, and IL7, were 

increased when compared to DMSO or rosiglitazone controls; however, none of these 

cytokines were reduced after treatment with rosiglitazone (data not shown).  Twenty- 

four hours post α-GalCer administration, the pro-inflammatory cytokines —IFNγ, 

 

Figure 38: Administration of α-GalCer induces a maternal systemic proinflammatory
response, yet rosiglitazone drives a maternal systemic anti-inflammatory response.
Pregnant mice were injected with DMSO, α-GalCer, rosiglitazone (Rosi), or α-GalCer + Rosi. 
Serum concentrations of proinflammatory (A) and anti-inflammatory (B) cytokines/chemokines 
were determined 24 h after the initial injection. Data are from individual dams (n = 8–9 each). 
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IL2, CXCL9, CXCL10, CCL2, and CCL5 — were increased when compared to DMSO or 

rosiglitazone controls (Figure 38A).  

Treatment with rosiglitazone did not reduce these high concentrations; indeed, it 

further increased the concentrations of IFNγ, CXCL9, CXCL10, and CCL2 (Figure 38A).  

Interestingly, dams injected with α-GalCer that were subsequently treated with 

rosiglitazone had increased concentrations of anti-inflammatory cytokines IL10, IL17, 

IL3, IL5, GSCF, and IL12p40 when compared to mice injected with only α-GalCer 

(Figure 37B).  These data demonstrate that rosiglitazone prevents α-GalCer-induced 

late PTB by enhancing a maternal systemic anti-inflammatory response. 

Spontaneous preterm labor/birth is associated with an increased proportion of 
activated iNKT-like cells in decidual tissues 

Up to this point, our results demonstrated that activation of decidual iNKT cells 

leads to late PTB in mice; however, it was unknown whether these cells are increased 

during preterm labor/birth in humans.  iNKT cells are present in first-trimester decidua 

(263); therefore, we hypothesized that preterm labor will be associated with an increase 

in the proportion of activated iNKT cells at the maternal-fetal interface.  In humans, the 

maternal-fetal interface includes: 1) the decidua parietalis that lines the uterine cavity 

not covered by the placenta and is in juxtaposition to the chorion leave, and 2) the 

decidua basalis, located in the basal plate of the placenta where it is invaded by 

interstitial trophoblasts (Figure 39A).  The gating strategy used to determine activated 

iNKT-like cells (CD69+CD56+CD3+CD19-CD14-CD15- cells) in decidual tissues is 

shown in Figure 39B.  In the decidua basalis and parietalis, activated iNKT-like cells 

were greater in women who underwent spontaneous term labor (TIL) or preterm labor 

(PTL) when compared to women who did not undergo labor at term (TNL) or preterm 
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(PTNL), respectively (Figure 39C).  In the decidua basalis, activated iNKT-like cells 

were more abundant in PTL samples than in TIL samples (Figure 39C).  Further 

immunophenotyping of decidual samples (TIL and PTL, n=4 each) revealed that 

activated iNKT cells (CD3+Vα24Jα18TCR+CD69+ cells; Figure 39D) were present at 

proportions similar to previously identified activated iNKT-like cells (CD3+CD56+CD69+ 

cells) (Figure 39B).  

 
Figure 39: Spontaneous preterm labor/birth is associated with an increased proportion of 
activated iNKT-like cells in decidual tissues. (A) Schematic representation showing the 
decidua basalis and decidua parietalis. (B) Gating strategy used to identify activated iNKT-like 
cells (CD69+CD56+CD3+CD19−CD14−CD15− cells) in human decidual tissue. (C) Activated 
iNKT-like cells in the decidual basalis or decidual parietalis from women who underwent 
spontaneous TIL or spontaneous PTL. Controls included samples from women who delivered at 
term (TNL) or preterm (PTNL) without labor.  Data are from individual women: n = 7 for TNL, n = 
26 for TIL, n = 13 for PTNL, and n = 14 for PTL. (D) Identification of CD3+Vα24Jα18TCR+CD69+ 
cells in PTL decidual tissues. (E) Identification of activated iNKT-like cells in the decidua 
parietalis by confocal microscopy. Nuclei are blue (DAPI), CD3+ cells are red (Alexa Fluor 594), 
CD56+ cells are magenta (allophycocyanin), and CD69+ cells are green (FITC). White arrows 
denote activated NKT cells.  Scale bar, 20μm. 

 
Since we did not use the iNKT marker, Vα24Jα18TCR, in our initial 

immunophenotyping, we cannot refer to these as iNKT cells and have instead termed 
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them iNKT-like cells.  Localization of activated iNKT-like cells (CD3+CD56+CD69+DAPI+ 

cells; white arrows) in the decidua parietalis is shown in Figure 39E.  This last set of 

data demonstrates that activated iNKT-like cells in human decidual tissues are linked to 

spontaneous preterm labor/birth. 

Discussion 

Sterile intra-amniotic inflammation is more frequent than microbial-associated 

intra-amniotic inflammation in patients with spontaneous preterm labor (21, 264).  

Sterile inflammation is initiated by alarmins (22) and such danger signals are potent 

activators of iNKT cells (212, 213); therefore, we hypothesized that these innate 

lymphocytes participate in the pathophysiology of sterile inflammation-related preterm 

labor/birth.  Using a highly-affine iNKT-cell ligand, α-GalCer (222), we provided direct 

evidence that iNKT-cell activation is implicated in the mechanisms that lead to 

inflammation-induced preterm labor in the absence of infection.  Indirect evidence for 

the role of iNKT cells in the pathophysiology of inflammation-induced preterm labor was 

based on two facts: (1) iNKT-cell null mice (Ja18-/- mice) are more resistant to 

endotoxin-induced PTB than wild type mice (265), and (2) adoptive transfer of decidual 

iNKT cells into iNKT-cell null mice injected with an endotoxin rapidly induces the onset 

of PTB (266).  However, endotoxins are not iNKT-cell ligands and can only indirectly 

activate autoreactive iNKT cells through TLR signaling and the release of IL12 by APCs 

(217, 220, 267).  Therefore, indirect activation of iNKT cells by an endotoxin resembles 

Gram-negative bacteria-related preterm labor, and direct activation via an iNKT-cell 

ligand could explain sterile inflammation-related preterm labor.  

Administration of α-GalCer in the second trimester did not result in pregnancy 

loss.  This finding is not surprising since the mechanisms that lead to pregnancy loss 
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differ from those implicated in preterm labor/birth.  For example, during the second 

trimester, pregnancy maintenance depends on regulatory T cells (Tregs), as their 

depletion causes pregnancy loss (268, 269).  In the third trimester, however, depletion 

of Tregs does not cause preterm labor/birth (270).  These data led us to suggest that 

during the third trimester, Treg-independent regulatory mechanisms such as iNKT-cell 

quiescence may be responsible for pregnancy maintenance.  Further studies are 

needed to investigate the mechanisms whereby iNKT cells remain quiescent in order to 

maintain pregnancy until term. 

Late preterm neonates survive, yet are at a higher risk for morbidity and mortality 

than term neonates (271, 272).  In our model of α-GalCer-induced late PTB, we 

consistently showed that pups did not die in utero; yet, they were bradycardic and died 

shortly after birth.  This finding indicated that fetal compromise was occurring 

simultaneously with the process of preterm labor rather than as a direct cause of 

prematurity.  Because NKT cells appear at day 5 after birth (273), we are confident that 

the adverse neonatal outcomes are due to the effects of α-GalCer administration on the 

maternal immune system and at the maternal-fetal interface rather than as a direct 

effect on the pups.  

Herein, we demonstrated for the first time that α-GalCer inhibits PPARγ 

activation at the maternal-fetal interface, which is concordant with a previous study 

demonstrating that PPARγ expression is reduced in intrauterine tissues in term 

parturition (274).  These data suggest that PPARγ activation, a suppression of 

inflammatory genes, is required for late pregnancy maintenance and its inhibition 

participates in the normal and pathological processes of labor.  Conversely, 

rosiglitazone causes PPARγ activation and prevents α-GalCer-induced late PTB. Our 
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unpublished results demonstrated that this PPARγ agonist also prevents endotoxin-

induced PTB (275).  Therefore, targeting the PPARγ pathway could represent a new 

strategy to prevent both sterile and microbial inflammation-related preterm labor/birth.   

An expansion of decidual iNKT cells was observed shortly after α-GalCer 

administration.  This is consistent with a previous study demonstrating that iNKT-cell 

activation is observed only 4 hours post-αGalCer administration (241).  A systemic 

expansion of iNKT cells occurs 2-3 days after α-GalCer administration (276), which 

explains why in our study we did not observe such an event.  We also demonstrated 

that treatment with rosiglitazone attenuated the α-GalCer-induced iNKT-cell expansion 

in decidual tissues.  It is likely that rosiglitazone is interfering with iNKT-cell 

development instead of causing cell death, since this drug did not reduce cell viability in 

decidual cells (Figure 40); yet, it caused a reduction of iNKT cells in the liver (Figure 

31A).  The previous hypothesis is supported by the fact that PPARγ activation regulates 

CD1d molecules (242, 277), which are constitutively expressed by APCs (278, 279) and 

can modulate iNKT-cell responses (220, 280).  Therefore, it is probable that indirect 

suppression of iNKT-cell expansion and activation is the primary mechanism whereby 

rosiglitazone prevents PTB in our model.  Consequently, we investigated whether 

rosiglitazone could be suppressing activation/maturation of T cells, macrophages, 

neutrophils, and DCs, all of which are implicated in the pathophysiology of preterm 

labor/birth (281-283).  
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Figure 40: Viability of 
decidual cells after 
treatment with 
rosiglitazone. Cell viability of 
decidual leukocytes (CD45+ 
cells) was determined by flow 
cytometry after 6 hrs of 
incubation with DMSO 
(rosiglitazone vehicle), 
rosiglitazone, or without either 
treatment (control). 

 

 

 

 

 

 

 

 

 

 

T cells seem to be implicated in the process of preterm parturition (282).  This 

concept was based on the fact that mice deficient in T and B cells (Rag1-/-) are more 

susceptible to endotoxin-induced PTB than wild type mice, and this susceptibility is 

reversed upon transfer of CD4+ T cells (284).  These findings led us to suggest that 

CD4+ T cells play a regulatory role in late pregnancy (282); however, their function has 

not been established by depleting these cells prior to preterm labor.  Recently, we 

proposed that the activation of effector CD4+ T cells is involved in the physiological 

process of parturition (9, 10, 285).  Herein, we provide further evidence to this 
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hypothesis by demonstrating that activation of CD4+ T cells occurs prior to αGalCer-

induced PTB. We also demonstrated that rosiglitazone reduced αGalCer-induced T-cell 

activation.  This finding is consistent with previous studies demonstrating that 

pretreatment with PPARγ ligands reduces T-cell activation and proliferation in vitro (286, 

287).  Taken together, these data support the hypothesis that CD4+ T cell activation 

participates in the physiological and pathological processes of parturition and suggests 

that targeting the PPARγ pathway attenuates activation of the adaptive limb of 

immunity, rescuing preterm labor/birth. 

The role of macrophages in the mechanisms that lead to preterm labor is well-

established since the depletion of these innate cells protects mice from endotoxin-

induced PTB (15).  The study herein demonstrated increased macrophage activation 

prior to αGalCer-induced PTB, which supports a central role for these innate immune 

cells in the pro-inflammatory milieu that accompanies the sterile processes of preterm 

parturition.  We also demonstrated that treatment with rosiglitazone inhibits macrophage 

activation in decidual tissues.  Prior research, in line with our study, has shown that 

PPARγ expression is up-regulated in activated macrophages and that treatment with 

rosiglitazone, or natural PPARγ agonists, down-regulates the expression of iNOS, 

inhibits migration, and suppresses the release of inflammatory cytokines by these cells 

(224, 288, 289).  

Unlike macrophages, the depletion of neutrophils does not prevent endotoxin-

induced PTB; yet, it ameliorates the pro-inflammatory response in the uterine-placental 

tissues (290).  Herein, we demonstrated that activation of neutrophils occurs prior to 

αGalCer-induced preterm birth, which suggests that although neutrophils are not 

essential, they participate in the pro-inflammatory milieu that accompanies the 
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pathological process of preterm parturition.  We also found that treatment with 

rosiglitazone reduced α-GalCer-induced neutrophil activation.  This is in accord with a 

previous in vitro study which demonstrated that PPARγ agonists (troglitazone and 15-

deoxy-∆12,14 prostaglandin J2) diminished the chemotactic response of neutrophils and 

suppressed their production of pro-inflammatory cytokines (291).  

In addition, administration of α-GalCer resulted in the expression of IFNγ by 

mature decidual DCs.  These innate immune cells seem to contribute to the initiation of 

T cell responses during the physiological and pathological processes of parturition (282, 

284, 285, 292, 293).  Herein, we provide evidence to support this hypothesis by 

demonstrating that mature DCs participate in the inflammatory process that leads to 

inflammation-related preterm labor/birth.  We also showed that treatment with 

rosiglitazone blunted the α-Galcer-induced IFNγ expression in mature DCs but did not 

interfere in their maturation.  This is consistent with a previous study demonstrating that 

rosiglitazone does not interfere with the maturation of DCs in vitro nor affects their ability 

to activate T cells in vivo; however, this PPARγ agonist modifies DC differentiation by 

reducing their secretion of cytokines (294).  

Collectively, our results demonstrated that prior to α-Galcer-induced PTB there 

was an activation of innate immune cells at the maternal-fetal interface, which were 

suppressed by PPARγ activation, rescuing inflammation-related preterm labor/birth.  

Besides regulating immune cell activation at the maternal-fetal interface, rosiglitazone 

attenuated the expression of pro-inflammatory cytokine/chemokines implicated in the 

pathophysiology of inflammation-related preterm labor (295-303).  The suppressive 

effect of PPARγ agonists on cytokine expression has been previously demonstrated in 

vitro (304).  These data demonstrate that PPARγ activation regulates the local pro-
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inflammatory milieu associated with preterm labor/birth. 

The systemic anti-inflammatory activity of rosiglitazone was also demonstrated in 

this study.  This finding is in concordance with our unpublished data showing that 

treatment with rosiglitazone increases the serum concentration of IL5 and CXCL9 in 

dams injected with an endotoxin (Yi Xu, et al; unpublished data).  The 

immunomodulatory action of rosiglitazone through the up-regulation of anti-inflammatory 

cytokines was previously demonstrated when PMA-stimulated THP-1 cells were 

incubated with PPARγ agonists and an increased production of IL1RA was observed 

(305).  In our study, the anti-inflammatory effect of rosiglitazone was observed at 24h, 

but not at 6h, after α-GalCer administration, suggesting that said effect takes place after 

regulating the local microenvironment. 

To conclude, we identified activated iNKT-like cells at the human maternal-fetal 

interface in term and preterm gestations.  Activated iNKT-like cells were more abundant 

in the decidual basalis of women who underwent preterm labor than in those who 

delivered preterm without labor, suggesting that these cells are localized in a fetal 

antigenic site.  The majority (92%) of our samples came from women who underwent 

spontaneous preterm labor and did not present intra-amniotic infection, which further 

supports the hypothesis that activated iNKT-like cells are implicated in the sterile 

process of inflammation that leads to preterm labor/birth.  

In summary, this study demonstrates that in vivo iNKT-cell activation leads to late 

preterm labor/birth by activating innate and adaptive immune cells as well as decidual 

and myometrial cells at the maternal-fetal interface.  We also showed that iNKT-cell 

activation exerts this effect by inducing a maternal systemic pro-inflammatory response.  

Finally, we demonstrated that PPARγ activation prevents prematurity by modulating the 
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local and systemic inflammatory milieu that accompanies preterm labor.  Further 

exploration of the PPARγ pathway and its regulation in pregnancy complications may 

lead to novel therapeutic approaches that can improve neonatal outcomes. 
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CHAPTER 7 - THE ROLE OF SENESCENCE IN THE PATHOPHYSIOLOGY OF 
STERILE INFLAMMATION 

Introduction 

Cellular senescence, first described in 1965 as limited replicative capacity of a 

normal cell (306), is characterized by growth arrest, resistance to apoptosis, altered 

gene expression and, in some cases, by formation of heterochromatic foci, telomere 

shortening, and increased secretion of signaling molecules (307).  Under physiological 

conditions, senescence cells, immuno-recognized by T helper cells (308), are thought to 

recruit phagocytes, promoting clearance and regeneration that occur during tissue 

remodeling in embryogenesis and upon tissue damage (309).  However, persistence or 

deficient clearance of senescent cells can lead to accumulation of cellular damage, 

which is associated with multiple disorders (309).  

The initial observation that uterine-specific p53 deficiency leads to uterine 

senescence and causes preterm delivery in 50% of mice (310) provided the first 

indication of senescence-associated preterm birth.  The follow-up studies showed that 

increased mTORC1 signaling (31) and oxidative stress (311) predispose these mice to 

preterm birth, which reaches 100% with a mild inflammatory insult (312).  Additionally, 

deciduae obtained from women who underwent preterm labor stained positive for 

senescence-associated β-galactosidase (SA- β-gal) and exhibited higher 

immunoreactivity for the mTORC1 signaling marker pS6 as well as for labor-promoting 

enzyme cyclooxygenase 2 (COX2) when compared to term labor cases and non-labor 

controls (312).  It has been proposed that, in addition to decidual senescence, 

senescence of the chorioamniotic membranes may promote labor (313).  Although 

senescence of the chorioamniotic membranes was documented in preterm prelabor 
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rupture of membranes (pPROM) (314), it requires clearer characterization in the context 

of spontaneous preterm labor.  The evidence presented herein stipulates that the 

chorioamniotic membranes of patients who undergo spontaneous preterm labor exhibit 

both exaggerated senescence, as confirmed by the expression of senescence-

associated genes and increased reactivity of SA- β-gal, and up-regulated mTOR 

signaling, as indicated by elevation of pS6 in the chorioamniotic membranes. 

Materials and Methods 

Human subjects, clinical specimens, and definitions 

The chorioamniotic membrane samples were collected at the Perinatology 

Research Branch, an intramural program of the Eunice Kennedy Shriver National 

Institute of Child Health and Human Development, National Institutes of Health, U. S. 

Department of Health and Human Services (NICHD/NIH/DHHS), Wayne State 

University (Detroit, MI, USA), and the Detroit Medical Center (Detroit, MI, USA). All 

participants provided written informed consent. 

Table 9:  Demographical characteristics of the patients whose samples were used for RT-
PCR in the Senescence study 

 TNL 
(n=28) 

TIL 
(n=28) 

PTNL 
(n=27) 

PTL 
(n=26) 

p value 

Age, y 
26.5 

(22.8-29.3) 
22.5 

(20-25) 
24 

(21-27) 
23 

(20-25) 
0.047 

Body mass index, kg/m2 
28.3 

(25.3-35.4) 
22.7 

(19.8-25.9) 
27.3 

(23.9-34.1) 
22.1 

(20-25.2) 
0.001 

Gestational age at 
delivery, wk 

39.3 
(39-39.7) 

39.7 
(39.2-40.2) 

32.9 
(29.8-34.2) 

33.8 
(31.3-35.3) 

<0.001 

Birth weight, g 
3293 

(3104-3633) 
3238 

(3076-3490) 
1480 

(908-1865) 
1980 

(1558-2155) 
<0.001 

Race 
African-American 
Caucasian 
Hispanic 
Other 

 
22 (78.5%) 
3 (10.7%) 
1 (3.6%) 
2 (7.1%) 

 
22 (78.5%) 

2 (7.1%) 
3 (11%) 

1 (3.6 %) 

 
26 (96.2%) 

0 (0%) 
0 (0%) 

1 (3.7%) 

 
24 (92.3%) 

1 (3.8%) 
0 (0%) 

1 (3.8%)     

 
 
 

NS 

Primiparity 1 (3.6%) 5 (17.8%) 4 (14.8%) 2 (8%) NS 
C-section  28 (100%) 0 (0%) 27 (100%) 8 (31%) <0.001 

Acute Chorioamnionitis  0 (0%) 0 (0%) 0 (0%) 0 (0%) NA 
Maternal age, body mass index, gestational age at delivery, birth weight, race, Primiparity, C-section, and 
acute chorioamnionitis are listed as mean (range) or n (%).  Either Kruskal-Wallis test or Chi-square test 
was used to analyze the statistical differences between the study groups (TNL, TIL, PTNL, and PTL). 
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The collection and utilization of biological materials was approved by the 

Institutional Review Boards of the NICHD and Wayne State University.  The collected 

samples were categorized based on the labor status of the patients: 1) spontaneous 

term labor (TIL) (n=40); 2) term delivery without labor (TNL) (n=35); 3) spontaneous 

preterm labor (PTL) (n=37); and 4) preterm delivery without labor (PTNL) (n=36).  The 

demographic characteristics of these patients are shown in Tables 9 & 10.  Labor was 

defined as the presence of regular uterine contractions at a minimum frequency of two 

every 10 minutes associated with cervical changes leading to delivery (315, 316). 

Table 10:  Demographical characteristics of the patients whose samples were used for 
expression array and SA-β-gal assays in the Senescence study 

 
TNL  
(n=7) 

TIL  
(n=8) 

PTNL 
(n=8) 

PTL  
(n=9) 

p value

Age, y 
29 

(26-29) 
22 

(18.8-24.3)  
29 

(25.5-35.3) 
23 

(19-27) 
NS 

Body mass index, 
kg/m2 

34.1 
(30.2-36.6) 

23.5 
(21.3-24.3) 

27.6 
(22.1-45.8) 

25.2 
(23.4-32) 

NS 

Gestational age at 
delivery, wk 

39.3 
(39.2-39.7) 

39.4 
(39.2-39.6) 

30.2 
(29.3-30.7) 

34 
(33.6-36) 

<0.001 

Birth weight, g 
3820 

(3603-3898) 
3256 

(3156-3390) 
1117 

(816.3-1233.8) 
2330 

(1795-2655) 
<0.001 

Race  
  African-American 
  Caucasian 
  Hispanic 
  Other  

 
5 (71.4%) 
2 (28.6%) 

0 (0%) 
0 (0%) 

 
8 (100%) 
0 (0%) 
0 (0%) 
0 (0%) 

 
6 (75%) 
0 (0%) 
0 (0%) 
2 (25%) 

 
9 (100%) 
0 (0%) 
0 (0%) 
0 (0%) 

 
NS 

Primiparity    0 (0%)  3 (37.8%)        0 (0%)         1 (11.1%) NS 

C-section     7 (100%)      0 (0%)    8 (100%)       4 (44.4%) <0.001 

Acute Chorioamnionitis    0 (0%)      0 (0%)          0 (0%)          0 (0%) NA 

Maternal age, body mass index, gestational age at delivery, birth weight, race, Primiparity, C-section, and 
acute chorioamnionitis are listed as mean (range) or n (%). Either Kruskal-Wallis test or Chi-square test 
was used to analyze the statistical differences between the study groups (TNL, TIL, PTNL, and PTL). 

Gene Expression Determination 

Frozen chorioamniotic membranes were treated with TRI Reagent ® Solution 

(Ambion, Carlsbad, CA, USA), and RNA extraction was performed with RNeasy Mini 
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Kits (Qiagen,Valencia, CA, USA), QIAshredders (Qiagen), and RNase-Free DNase Sets 

(Qiagen).  

Table 11:  List of primers used for RT-PCR in the Senescence study 
Symbol Gene Name Assay ID Lot 

P53 Tumor Protein p53 Hs01034249_m1 1366180

CDKN1A (P21) Cyclin-Dependent Kinase Inhibitor 1A Hs00355782_m1 1347306

AKT1 V-akt Murine Thymoma Viral Oncogene Homolog 1 Hs00178289_m1 1349271

AGF1 AT-Hook Protein of GA Feedback 1 Hs00153126_m1 731440 

IFNG Interferon Gamma Hs00989291_m1 1099507

CCNE1 Cyclin E1 Hs01026536_m1 1320002

CCNA2 Cyclin A2 Hs00996788_m1 1351631

CCNB1 Cyclin B1 Hs01030099_m1 1323891

CDK2 Cyclin-Dependent Kinase 2 Hs01548894_m1 1356790

FN1 Fibronectin 1 Hs01549940_m1 1221289

COL1A1 Collagen, Type I, Alpha 1 Hs00164004_m1 1078329

RPLP0 Ribosomal Protein, Large, P0 Hs99999902_m1 1347306

BACT Beta-Actin Hs99999903_m1 1086982

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase Hs99999905_m1 1335169

Gene symbol, gene name, assay ID, and lot are listed. 

NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) 

was used to analyze the extracted RNA for concentration and purity whereas the 

Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, USA) was used to assess the 

RNA integrity.  The RT2 First Strand Kits (Qiagen) were utilized to synthesize cDNA.  

RT2 Profiler PCR Array (Qiagen) was used to determine expression of 84 senescence-

associated genes and 6 reference genes (n=7-9).  Based on the pathway analysis 

results, gene expression of the selected candidates was confirmed by RT-PCR (n=25-

28). The RT-PCR experiments were performed on BioMark™ High-throughput qRT-

PCR system (Fluidigm, San Francisco, CA, USA) and on an ABI 7500 FAST Real-Time 

PCR System (Applied Biosystems, Life Technologies Corporation, Foster City, CA, 

USA) with TaqMan® gene expression assays (Applied Biosystems) (Table III). 
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Western Blot 

The immunoblotting was performed as described in Chapter 2.  For detecting 

phosphorylated S6, 1:500 mouse pS6 Ribosomal Protein (S235/236) (Catalog #2211S, 

Cell Signal Technology, Danvers, MA, USA) was used.  The housekeeping gene was 

probed with 1:5000 β-actin antibody (Catalog # A5316, Clone AC-74, Sigma Aldrich, 

Saint Louis, MO).  Images were semi-quantified using ImageJ 1.44p software (National 

Institute of Health, USA). 

Immunohistochemistry 

Five-μm-thick sections of formalin-fixed, paraffin-embedded chorioamniotic 

membrane tissues (n=7-8) were placed on salinized slides. Anti-Cox2 antibody (1:100, 

catalog # NB100-689, Novus Biologicals, Littleton, CO, USA) was used to perform 

immunostaining on Leica Bond Max automatic staining system (Leica Microsystems, 

Wetzlar, Germany). Antigen retrieval was performed for 10 min with citrate-based Bond 

TM Epitope Retrieval Solution I (Leica Microsystems).  Chromogenic reaction of 

horseradish peroxidase was detected with Bond™ Polymer Refine Detection Kit (Leica 

Microsystems).  A PerkinElmer Pannoramic MIDI slide scanner (PerkinElmer, Waltham, 

MA, USA) was used to assess the intensity of staining (a semi-quantitative method of 

analysis). 

Senescence-associated β-galactosidase (SA-β-gal) staining  

To detect the presence of SA-β-gala in the fetal membranes, positive cells were 

identified as described by Dimri et al. with minor modifications.  Fetal membrane roll 

sections were frozen in a 25mm x 20mm x 5mm cryomold (Sakura, Torrance, CA, USA) 

with O.C.T.  Compound (Fisher Scientific, Hampton, NH, USA); from these blocks, 

10µm thick sections were cut using a Leica CM3050 cryostat (Leica Biosystems, Buffalo 
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Grove, IL, USA) and mounted on FisherBrand Superfrost microscope slides (Fisher 

Scientific, Hampton, NH, USA).  Newly prepared slides were fixed with a cytology 

fixative (Leica Biosystems, Buffalo Grove, IL, USA) and kept frozen at -20° C. Sections 

were fixed in 0.5% glutaraldehyde in PBS (Life Technology, Carlsbad, CA, USA) (pH 

5.5) at room temperature for 15 minutes.  The slides were then washed twice in 1mM 

MgCl2 in PBS (pH 6.0) for 5 minutes each.  After last wash, staining solution containing 

1mg/ml X-gal, 1mM MgCl2, 5mM potassium ferricyanide, and 5mM potassium 

ferrocyanide in PBS (pH 6.0) was added.  Slides were then incubated at 37° C for 24 

hours.  After incubation, slides were washed twice in 1mM MgCl2 in PBS (pH 7.4), 

followed by an additional 30-minute wash with tap water to remove any 

crystals/precipitates from the staining solution.  Slides were dehydrated with a graded 

alcohol bath, counterstained with eosin, mounted with xylene, and cover slipped by 

Tissue-Tek SCA (Sakura, Torrance, CA, USA).  The slides were scanned using the 

Pannoramic MIDI Digital Slide Scanner (PerkinElmer, Inc., Waltham, MA, USA); and 

annotations were made by laboratory personnel who then utilized 3DHISTECH software 

(3DHISTECH Kft., Budapest, Hungary) to assess the intensity of the SA-β-gal staining. 

ELISA 

ELISA was performed as described in Chapter 2.  PathScan® Total S6 

Ribosomal Protein Sandwich ELISA Kit (Cell Signaling, catalog # 7225C) was used. 

Statistical analysis 

For senescence-associated gene expression array, Ct values over technical 

replicates were averaged, and gene expressions relative to reference (ACTB, B2M, 

GAPDH, HPRT1, RPLP0) were quantified by subtracting target gene Ct values from 

mean reference gene Ct values within the same sample.  Group comparisons were 
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conducted via t-test from a linear model.  Hierarchical clustering on genes was applied 

on the group mean expressions using 1-Pearson correlation as distance metric and 

average linkage.  Gene set analysis was performed for PTL vs TIL. Gene sets (GO and 

KEGG signaling and metabolic pathways) were extracted from R Bioconductor package 

“gageData”, and gene symbol to Entrez ID mapping was obtained from package 

“org.Hs.eg.db”.  The list of genes (ranked by the p value from differential expression 

comparison PTL vs TIL), the expression data, the sample classification and the gene 

sets are formatted as input to Gene Set Enrichment Analysis (GSEA: 

http://www.broadinstitute.org/gsea/index.jsp) (317).  For confirmatory RT-PCR, Ct 

values over technical replicates were averaged, and gene expressions relative to 

reference (BACT, GAPDH, RPLPO) were quantified by subtracting target gene Ct 

values from mean reference gene Ct values within the same sample.  Wilcoxon rank 

sum test was used for group comparison.  All expression analyses were performed in R 

statistical computing environment (http://www.R-project.org/).  Western blot and 

immunohistochemistry data were analyzed by Mann-Whitney U test in GraphPad Prism 

6 (GraphPad Software, Inc., La Jolla, CA, USA).  Patient demographics data was 

performed using Chi-square test for proportions as well as the Kruskal-Wallis test for 

non-normally distributed continuous variables in SPSS Statistics 19 (IBM Corporation, 

Armonk, NY, USA). A p-value < 0.05 was set as a threshold of statistical significance. 

Results 

Expression of the senescence-associated genes is dysregulated in preterm 
spontaneous labor 

To determine whether senescence-associated genes are dysregulated in preterm 

labor, we utilized commercially available RT2 Profiler PCR Array (Qiagen).  The patient 
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demographics for this experiment are listed in Table 10.  Each of the four labor group 

tested (preterm labor, term labor, and respective no-labor controls) had a unique 

expression profile (Figure 41).  Interestingly, the no-labor groups (PTNL and TNL) 

exhibited up-regulation of multiple senescence-associated genes.  Additionally, we 

assessed the expression of two labor groups (term and preterm) complicated by acute 

infection/inflammation of the chorioamniotic membranes (chorioamnionitis).  We found 

that the cases with chorioamnionitis exhibited striking increase in expression of 

senescence-associated genes (data not shown).  However, we aimed to determine 

whether senescence contributes to the pathophysiology of sterile, or infection-free, 

inflammation in preterm labor.  Therefore, we used the Senescence RT2 Profiler PCR 

Array data to perform more detailed comparison in gene expression between normal 

term labor (TIL) and pathological preterm labor (PTL). 

When comparing expression patterns between preterm and term labor groups by 

gene set enrichment analysis (317), we found significant differences between the 

groups (p=0.0036), with all of the core enrichment genes being up-regulated in PTL 

(Figure 42).  We also used the Senescence Array data for pathway analysis to identify 

which of the senescence-associated cellular pathways is differentially expressed 

between PTL and TIL.  We found that the greatest difference in expression (p=0.038) 

between term and preterm labor occurred in genes of the p53 pathway (Figure 43). 

Considering that disruption of P53 gene induces preterm delivery in mice (310), it 

was reassuring to find that preterm labor cases exhibited dysregulated expression of 

several genes in the P53 pathway. 
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Figure 41:  Heat map analysis of the senescence expression array.  The chorioamniotic 
membranes obtained from women who either delivered at term (TIL and TNL) or preterm (PTL 
and PTNL) with or without labor, respectively, were subjected to the Senescence RT2 Profiler 
PCR Array (Qiagen). Heat map compares the expression patterns of senescence-associated 
genes between the labor groups (n=7-9 per group). 
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Figure 42: Gene set enrichment 
analysis to compare senescence-
associated gene expression 
between preterm and term labor.  
Senescence RT2 Profiler PCR Array 
data was further analyzed by set 
enrichment analysis to compare gene 
expression patterns between PTL 
(marked in red) and TIL (marked in 
blue). Nine out of nine core 
enrichment genes and seven out of 
ten non-core enrichment genes were 
up-regulated in PTL (p=0.0036). 
 
 
 
 
 
 
 
 

 
 

 
Figure 43: P53 pathway is differentially expressed between preterm and term labor.  
Pathway analysis revealed significant differences in the P53 signaling pathway between PTL 
and TIL groups   (p=0.038).  Genes highlighted in red were found to be differentially expressed. 
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Taken together, these data show that preterm labor is characterized by up-

regulation of the senescence-associated genes, including the genes in the P53 

pathway, when compared to term labor. 

Based on our expression array findings, we selected several candidate genes for 

expression confirmation using conventional RT-PCR with a greater number of samples 

per group (n=25-28).  We found that the expression of P53 was significantly down-

regulated in both preterm and term labor when compared to non-labor controls (p=0.007 

and 0.001, respectively) and tended to be down-regulated in preterm labor when 

compared to term labor (Figure 44).  Inversely, expression of P21 is significantly 

increased in both preterm (p<0.001) and term (p<0.001) labor when compared to the 

non-labor controls (Figure 44). P21, also referred to as cyclin-dependent kinase inhibitor 

1, is known to inhibit such cell cycle progression genes as cyclin-dependent kinase 2 

(CDK2), cyclin-A2 (CCNA2), G2/mitotic-specific cyclin-B1 (CCNB1), and G1/S-specific 

cyclin-E1 (CCNE1) (318, 319).  Correspondingly, the expression of CDK2, CCNA2, 

CCNB1, and CCNE1 was significantly decreased (p=0.018, <0.001, <0.001, <0.001, 

respectively) in preterm labor when compared to preterm delivery without labor (Figure 

44).  Additionally, expression of CCNA2 and CCNB1 is down-regulated (p=0.02 and 

0.009, respectively) in preterm labor when compared to term labor (Figure 44). 

Therefore, preterm labor is associated with decreased expression of P53 as well 

as increased expression of the cell cycle inhibitor P21 and subsequent decreased 

expression of several cell cycle progression genes. 



107 

 

 

Figure 44: Expression of P53, P21, and several cycle-progression genes is dysregulated 
in preterm labor. The confirmatory RT-PCR (n=25-28) was performed to compare expression 
of P53, P21, CDK2, CCNA2, CCNB1, and CCNE1 in the chorioamniotic membranes between 
four labor groups (PTNL, PTL, TNL, and TIL). 

Senescence-Associated β-galactosidase is more prominent in preterm labor 

To determine localization of the senescent cells in the chorioamniotic 

membranes, we utilized senescence-associated β-galactosidase staining (SA-β-gal) 

which specifically marks senescent cells blue. 

We found that the senescent cells were mostly localized to choriodecidua, which 

some staining present in the mesenchyme layer as well (Figure 45A).  This suggests 

that the senescence initiates from the maternal compartment rather than from the fetus.  

When we semi-quantified the intensity of the blue signal, we found that the SA-β-gal 



108 

 

mean intensity was greater in the preterm labor group when compared to term labor 

(p=0.0006) or preterm delivery without labor (p=0.06) (Figure 45B).  These findings 

provide further evidence that preterm labor is associated with pathological senescence 

of the chorioamniotic membranes. 

 
Figure 45: SA-β-gal is increased in preterm labor. Senescence-associated β-galactosidase 
staining was performed on the chorioamniotic membranes from four labor groups (n=7-11 per 
group). Only senescent cells stain blue (A). Staining intensity was semi-quantified (B). 

Heightened mTORC signaling in preterm labor 

Next, we aimed to determine whether senescence-induced phenotype of the 

chorioamniotic membranes is due to increased mTOR singling, as previously proposed 

by Hirota et al. (31).  S6 kinase is a down-stream enzyme in mTOR signaling (320); thus 

phosphorylated S6 (pS6) is a marker of mTOR activity.  We found that, when compared 

to the term labor group, the chorioamniotic membranes obtained from women who 

TILPTL 

p=0.0006p=0.06

PTNL TNL

A 

B 
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underwent preterm labor contained significantly increased concentration of pS6 

(p=0.0047) as determined by ELISA (Figure 46A).  Surprisingly, term labor membranes 

exhibited significantly higher concentration of pS6 (p=0.0002) than the membranes that 

were collected from women who underwent elective Caesarian section at term without 

labor, but no significant differences were observed between preterm labor and its 

corresponding non-labor control (Figure 46A).  When we attempted to confirm this 

finding by Western blot, the identical trend was reveled, although no statistical 

significance was reached (Figure 46B). 

 

Figure 46:  Heightened mTOR signaling in preterm labor.  Phosphorylated S6 protein (pS6) 
was measured by ELISA (A) and by Western blot (B) in the chorioamniotic membranes from 
four labor groups (PTNL, PTL, TNL, and TIL). 

 
Cox2 expression is increased in preterm labor 

With uterine-specific p53 deficiency in mice, senescence-associated preterm 

birth is reversed by oral administration of the selective Cox2 inhibitor celecoxib (310).  

Rapamycin is another chemical agent that attenuates senescence, decreases the levels 

of Cox2, and rescues preterm birth in this animal model (31).  Thus, it was hypothesized 

A B



110 

 

that senescence promotes labor via activation of Cox-2-dependent prostaglandin 

secretion (321).  We semi-quantified the immunoreactivity of Cox2 in the chorioamniotic 

membranes and found that Cox2 is significantly elevated in preterm and term labor 

when compared to non-labor controls, as expected (Figure 47).  It is possible that 

senescent cells induce preterm labor by releasing pro-inflammatory mediators, such as 

alarmins, which are known to up-regulate expression of Cox2. 

 
Figure 47: Cox2 expression is increased in preterm labor. Cox2 immunostaining was 
performed on the chorioamniotic membranes, followed by semi-quantification of the staining 
intensity (n=7-8 per group). 

 
Discussion 

Major findings of the study 

Major findings of the study herein are:  1) Preterm labor is characterized by 

dysregulated expression of the senescence-associated genes; 2) The expression of 

senescence-associated genes, including the genes in the P53 pathway tends to be 

elevated in preterm labor when compared to term labor; 3) P53 gene itself is down-

regulated in preterm labor, whereas cell cycle inhibitor P21 is up-regulated, while 

numerous cell cycle progression genes are down-regulated; 4) SA-β-gal localizes 
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senescent cells to choriodecidua and is elevated in preterm labor; 5) mTOR signaling is 

heightened in preterm labor when compared to term labor, as determined by 

concentration of pS6; 6) Chorioamniotic membranes from patients who underwent 

preterm labor exhibit higher immunoreactivity for Cox2 enzyme when compared to non-

labor controls. 

Preterm labor is characterized by dysregulated expression of senescence-
associated genes in the chorioamniotic membranes 

Our findings demonstrate that dysregulated gene expression characteristic of the 

senescent cells occurs in the chorioamniotic membranes of those patients who 

underwent spontaneous preterm labor.  Pathological senescence of preterm labor 

differs from the natural processes of term labor, as confirmed by differential expression 

of multiple senescence-associated genes (Figure 42), including those in the p53 

pathway (Figure 43).  P53 is best known for being mutated in over half of all cancers, as 

it functions to induce cell cycle arrest or apoptosis when the cells get exposed to DNA 

damage signals (322).  Paradoxically, P53 is actually capable of both inducing 

senescence and of suppressing it (323, 324).  The precise regulation of senescence by 

P53 is still under investigation, but both up-regulation and down-regulation of P53 as 

well as its post-transcriptional modifications can promote senescence (325-327).  In the 

mouse model of senescence-induced preterm birth, P53 deletion in the uterus causes 

senescent phenotype and ultimately leads to labor (310).  We find that P53 is 

significantly down-regulated in the chorioamniotic membranes of the patients who 

underwent preterm labor when compared to preterm delivery without labor (Figure 44).  

Down-regulation of P53 occurs simultaneously with up-regulation of cell cycle inhibitor 

P21 and inhibition of its targets CDK2, CCNA2, CCNB1, and CCNE1 (Figure 44).  



112 

 

Interestingly, it was previously found that knocking out P21 in the animal model of 

senescent-induced preterm labor rescues preterm birth (31, 328).  Taken together, our 

findings confirm that senescence-associated transcription occurs in the chorioamniotic 

membranes of patients that eventually undergo preterm birth. 

SA-β-gal and mTOR signaling are elevated in the chorioamniotic membranes of 
patients who undergo preterm labor 

Our findings reveal that the chorioamniotic membranes of patients who undergo 

preterm labor are more reactive to SA-β-gal staining that localizes the senescent cells 

predominantly to choriodecidua (Figures 45A and B).  The senescent phenotype occurs 

with heightened mTOR signaling, as evidenced by increased concentration of pS6 in 

the chorioamniotic membranes from patients that undergo preterm labor when 

compared to labor at term (Figure 46A).  Additionally, preterm labor samples also 

exhibit increased immunostaining for Cox2 enzyme when compared to no-labor 

controls, although no significant differences between preterm labor and term labor in 

terms of Cox2 concentrations were observed (Figure 47).  We hypothesize that 

increased mTOR signaling promotes senescent-associated secretory phenotype 

(SASP) which leads to secretion of pro-inflammatory alarmins that activate various 

immune cells including iNKTs and ultimately initiate the final pathway of parturition that 

involves Cox2-mediated heightened uterine contractility.  In support of our hypothesis, 

p53 was found to promote the release of prototypical alarmin HMGB1 (28, 329), and 

both placental membrane aging and HMGB1 signaling were found to be associated with 

human parturition (330).  Interestingly, the relationship between senescence and sterile 

inflammation may be of mutual causation – senescence is known to promote local 

inflammation and emergent evidence suggests that inflammation promotes senescence.  
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For instance, pro-inflammatory transcription factor NF-κΒ inducible by alarmins was 

shown to trigger SASP in the senescent cells (331) and heat shock protein 60 (an 

alarmin) was found to induce senescence in monocytes (332).  Further research is 

required to sort out the complexities of interaction between senescence, sterile 

intraamniotic inflammation, and labor. 
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CHAPTER 8 - CONCLUSION 

The studies described herein demonstrate that sterile inflammation of the 

chorioamniotic membranes can be initiated by such alarmins as HMGB1 (Figure 2), 

S100A12 (Figure 8), MSU (Figure 15), and HSP70 (Figure 21) as evidenced by 

increased expression/ secretion of IL-1β and numerous other pro-inflammatory 

mediators, after in vitro treatment.  Although most of the alarmins tested promote 

inflammation by NF-κΒ-dependent up-regulation of the inflammasome components, 

particularly NLRP3 (Figures 4, 9, & 16), HSP70 seems to act via inflammasome-

independent pathway (Figure 23). 

Alarmins have been shown to activate various immune cells, including iNKT cells 

(212, 213).  We found that activation of iNKT cells in late gestation in turn induces 

activation of CD4+ and CD8+ T cells (Figure 34) as well as innate immune cells (Figures 

35 & 36) establishing pro-inflammatory microenvironment at the maternal-fetal interface 

(Figure 37) and ultimately leading to preterm birth (Figure 27).  Therefore, alarmins set 

in motion a complex multi-directional immune response that is exaggerated by positive 

feedback regulation (Figures 6 & 12), cross-talk between innate and adaptive immunity 

(Chapter 6), and mutual causation (Chapter 7). 

The alarmins are released during tissue/ cell stress or injury (333).  In pregnancy, 

the sources of tissue injury and the subsequent release of alarmins can vary from 

microbial infection (334-336) to physical trauma (337), maternal stress (338), 

environmental exposure/ pollution (339), oxidative damage (340), and cellular 

senescence (341).  Such range of alarmin-releasing conditions coincides with the mutli-

factorial nature of preterm parturition syndrome (180).  The studies detailed in Chapter 7 

provide evidence for cellular senescence as a potential etiology for preterm birth.  
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Specifically, we show that the chorioamniotic membranes obtained from patients who 

undergo preterm birth are characterized by dysregulated expression of senescence-

associated genes (Figures 41, 42, 43, & 44), increases SA-β-gal staining in the 

choriodecidua (Figure 45), heightened mTOR signaling (Figure 46), and increased 

immunoreactivity for Cox2 (Figure 47).  Therefore, senescence of the chorioamniotic 

membranes may contribute to the release of alarmin at the maternal-fetal interface and 

the ensued sterile inflammation characteristic of preterm labor. 

In summary, we found that the release of alarmins at the maternal-fetal interface 

from senescent, stressed, or injured cells initiates multifaceted pro-inflammatory 

cascade that involves activation of both innate and adaptive immune cells including 

iNKTs and the release of a multitude of pro-inflammatory cytokines, most notably IL-1β.  

This exaggerated inflammatory response initiates the final pathway of parturition that 

involves up-regulation of prostaglandin synthase-2 (Figures 13, 19, & 47) and increased 

activity of matrix metalloproteinases (Figures 7, 13, & 25) and culminates in preterm 

birth (Figure 27) and adverse neonatal outcomes (Figures 14 and 26).  More detailed 

elucidation of the mechanisms of sterile intraamniotic inflammation will allow us to 

search for new therapeutic agents, such as PPARγ agonist rosiglitazone (Chapter 6). 
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ABSTRACT 
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Preterm birth is defined as the delivery of a live baby prior to the 37th week of 

gestation.  It is the leading cause of neonatal mortality worldwide.  Preterm neonates 

are at a higher risk for short- and long-term complications, and prematurity places 

significant burden on our society.  Elucidation of the mechanisms that lead to 

spontaneous preterm labor will enable development of therapies to prevent this 

syndrome.  We aimed to study pathological inflammation that is implicated in the 

pathophysiology of spontaneous preterm labor. 

Pathological inflammation can be initiated by the activation of innate immunity 

either by microorganisms or alarmins, which are endogenous danger signals derived 

cellular stress or injury.  The inflammatory process initiated by alarmins in the amniotic 

cavity is referred to as sterile intraamniotic inflammation because it occurs in the 

absence of detectable microbial infection.  Sterile intra-amniotic inflammation is more 

common than microbial-associated intra-amniotic inflammation in patients with intact 

chorioamniotic membranes who undergo spontaneous preterm labor, and 

administration of such alarmins as IL1α or HMGB1 was shown to induce preterm birth.  
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Our major aim was to determine whether HMGB1 and three additional alarmins 

(S100A12, monosodium urate, and HSP70) are capable of inducing sterile inflammation 

of the chorioamniotic membranes and by what molecular mechanism. 

Our findings show that HMGB1, S100A12, monosodium urate, and HSP70 

greatly increase secretion of pro-inflammatory cytokine IL-1β from the chorioamniotic 

membranes and up-regulate other pro-inflammatory pathways leading to collagen 

remodeling and synthesis of labor promoting enzyme prostaglandin synthase 2.  We 

also found that activation of iNKT cells, which was shown to occur via stimulation with 

alarmins, induces preterm birth in mice by activating CD4+ and CD8+ T cells as well as 

innate immune cells and by establishing pro-inflammatory microenvironment at the 

maternal-fetal interface.  We also identified rosiglitazone, an anti-inflammatory drug that 

dampens iNKT-dependent inflammation, as a potent treatment for preterm labor in 

mice.  Finally, our data demonstrates that preterm labor is associated with dysregulated 

expression of senescence-associated genes and accumulation of senescence markers.  

Cellular senescence is characterized by release of pro-inflammatory mediators, 

including alarmins, and thus may provide a source of inflammatory signaling in a subset 

of patients who undergo preterm parturition. 
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