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CHAPTER 1. INTRODUCTION

Cluster algebras were first introduced by S. Fomin and A. Zelevinsky in [6] to design

an algebraic framework for understanding total positivity and canonical bases for quantum

groups. A cluster algebra is a subring of a rational function field generated by a distinguished

set of Laurent polynomials called cluster variables. The long-standing Positivity Conjecture,

now proved in [13] and [8], asserts that the coefficients in any cluster variable are positive

integers. From the combinatorial point of view, the Positivity Conjecture suggests that these

coefficients should count some combinatorial objects. Lots of research focuses on building

such combinatorial models. We give a brief summary of the pros and cons of four such models.

• T -paths: In [16], Schiffler obtained a formula for the cluster variables of a cluster

algebra of finite type A (see §2.1 for the definition) in terms of T -paths. This formula

has been modified and generalized to cluster algebras coming from surfaces [14, 15, 17,

18, 9].

• Perfect matchings of a snake diagram: A description that is similar to the T -

path model but has a more graph-theoretic flavor [14]. Interesting combinatorics, for

example the snake graph calculus [3, 4], arises in the study of this model. This formula

is also restricted to cluster algebras coming from surfaces.

• Compatible pairs in a Dyck path: In [12], the cluster variables of rank 2 quivers,

which do not necessarily come from surfaces, are described in terms of Dyck paths.

A more general construction of the so-called compatible pairs is used in the study of

greedy bases in [11], and another generalization called GCC is used in [1, 10].

• Broken lines and Theta functions: Discovered in [8], they are the most general
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combinatorial models so far. But the model is so mysterious that even the finiteness of

the number of broken lines is not immediate from the definition.

Our ultimate goal is to find a combinatorial model that is both general and effective in

computation. Even though this goal appears out of reach for now, we feel that the model of

maximal Dyck paths and compatible pairs has the potential to be generalized. This motivates

the main goal of this thesis:

For a type A quiver, give a new formula for the cluster monomials using a combinatorial

model similar to compatible pairs, and find the bijections to other known models.

We reach this goal by proving three equivalent formulas.

– In Theorem 5.1.1, we give a formula using a sequence of 0-1 sequences called GCS

(globally compatible sequence), where each vertex of the quiver is assigned a 0-1 sequence

satisfying a certain compatibility condition.

– In Theorem 5.2.2, we give a formula using globally compatible collections (GCCs) in

Dyck paths. This formula has a similar flavor to the combinatorial formula for greedy bases

in [11].

– In Chapter 3, we first use a combinatorial gadget called pipelines to decompose the

d-vector of a cluster monomial into the ones of cluster variables, then give a formula for

cluster variables using GCCs in Theorem 4.1.4.

The thesis is organized as follows. In Chapter 2 we recall the definition of cluster algebra

and some facts about type A quivers. In §3.1 we define the d-vector of a cluster monomial

and introduce its decomposition using pipelines. In the first section of Chapter 4, we define

Dyck paths and then show the GCC formula for a cluster variable of complete extended

linear quivers. In §4.2 we prove the GCC formula for cluster variables (Theorem 4.1.4) by
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establishing a bijection from GCCs to perfect matchings. In §4.3, we give an alternative proof

of Theorem 4.1.4 using T -paths. Chapter 5 consists of three equivalent formulas for cluster

monomials of type A quivers. The proof of the first two formulas is given in §5.4. Finally, we

give some examples in Chapter 6.
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CHAPTER 2. BACKGROUND ON CLUSTER ALGEBRAS
AND TYPE A QUIVERS

In this chapter, we recall some definitions and fix notations about quivers and skew-

symmetric cluster algebras (§2.1) and some special type A quivers (§2.2).

2.1 Quivers and skew-symmetric cluster algebras

Recall that a finite oriented graph is a quadruple Q = (Q0, Q1, h, t) formed by a finite

set of vertices Q0, a finite set of arrows Q1 and two maps h and t from Q1 to Q0 which

send an arrow α respectively to its head h(α) and its tail t(α). An arrow α whose head and

tail coincide is a loop; a 2-cycle is a pair of distinct arrows β and γ such that h(β) = t(γ)

and t(β) = h(γ). Similarly, it is clear how to define n-cycles for n ≥ 3. A vertex is a source

(respectively a sink) if it is not the head (resp. the tail) of any arrow.

In this thesis, a quiver is a finite oriented graph without loops or 2-cycles.

Given a quiver Q and a vertex v ∈ Q0, the mutation µv(Q) is the new quiver Q′ obtained

as follows:

1. For every path of the form u→ v → w, add a new arrow from u to w.

2. Reverse all arrows incident to v.

3. Remove all 2-cycles.

Example 2.1.1. Consider the following quiver.

1

2

3
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The sequence of steps to perform the mutation at the vertex 2 would be as follows:

After Step 1

1

2

3

After Step 2

1

2

3

After Step 3

1

2

3

Next, we recall the definition of seeds and the mutation of seeds.

Let Q = (Q0, Q1, h, t) be a quiver. Let Q0 = {v1, . . . , vn} and let F = Q(x1, . . . , xn)

be the field of rational functions in x1, x2, . . . , xn with rational coefficients. A seed is a pair

(Q,u) where u = {u1, u2, . . . , un} is a set of elements of F which freely generate the field F .



6

For any vertex i ∈ Q0, we denote

∏
j→i

uj =
∏

α∈Q1,h(α)=i

ut(α),
∏
i→j

uj =
∏

α∈Q1,t(α)=i

uh(α).

The mutation µi(Q,u) is the seed (Q′,u′) where Q′ = µi(Q) and u′ is obtained from u by

replacing ui by

u′i =

∏
j→i

uj +
∏
i→j

uj

ui
.

Example 2.1.2. Consider the quiver in Example 2.1.1, where we identify the vertices with

the variables {x1, x2, x3}.

1

2

3

Then the quiver mutation at 2 maps {x1, x2, x3} to {x1, x
′
2, x3}, where

x′2 =

∏
j→2

xj +
∏
2→j

xj

x2

=
x2

1 + x3

x2

.

If Q′ is the mutated quiver in Example 2.1.1, then

µ2(Q, {x1, x2, x3}) = (Q′, {x1,
x2

1 + x3

x2

, x3}).

Let (Q, {x1 . . . , xn}) be the initial seed. A cluster is a set u′ which appears in a seed

(Q′,u′) obtained from the initial seed by iterated mutations. An element in a cluster is

called a cluster variable. A cluster monomial is a product of cluster variables in the same

cluster. The (coefficient-free) cluster algebra A(Q) associated with Q is the subring of F
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generated by all cluster variables.

Example 2.1.3. Consider the following seed (
1•−→2•, {x1, x2}).

Mutating at 1,

(
1•←−2•, {x2 + 1

x1

, x2}).

Mutating at 2,

(
1•−→2•, {x2 + 1

x1

,
x1 + x2 + 1

x1x2

}).

For notational convenience, we rename the cluster variables x2+1
x1

and x1+x2+1
x1x2

as v1 and

v2, respectively. Then, mutating at 1,

v′1 =

∏
j→1

vj +
∏
1→j

vj

v1

=
1 +

x1 + x2 + 1

x1x2

1 +
x2 + 1

x1

=
x1 + 1

x2

.

Hence the seed obtained is

(
1•←−2•, {x1 + 1

x2

,
x1 + x2 + 1

x1x2

}).

Mutating at 2,

(
1•−→2•, {x1 + 1

x2

, x1}).

Mutating at 1,

(
1•←−2•, {x2, x1}).

Successive mutations will not produce new cluster variables due to symmetry. Hence, the

set of all cluster variables is{
x1, x2,

x1 + 1

x2

,
x2 + 1

x1

,
x1 + x2 + 1

x1x2

}
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and the cluster algebra A(Q) is generated by the cluster variables.

Let us now extend the linear quiver to now include an additional vertex, such that

Q = 1→ 2→ 3

and the initial seed now becomes (Q0, {x1, x2, x3}). The set of cluster variables generated via

the application of successive mutations would be{
x1, x2, x3,

x2 + 1

x1

,
x1 + x3

x2

,
x2 + 1

x2

,
x1 + x3(x2 + 1)

x1x2

,
x3 + x1(x2 + 1)

x2x3

,

,
x1(x2 + 1) + x3(x2 + 1)

x1x2x3

}
,

and the new cluster algebra is generated by these cluster variables.

Let Q′ = (Q′0, Q
′
1, h
′, t′) be another quiver. We say that Q is a subquiver of Q′ if

Q0 ⊆ Q′0 and Q1 ⊆ Q′1

and h(e) = h′(e) and t(e) = t′(e) for any arrow e ∈ Q1. We say that Q is a full subquiver of

Q′ if Q can be obtained from Q′ by removing vertices Q′0 \Q0 and their incident arrows.

2.2 Special classes of type A quivers

Here we define type A, linear, completely extended linear, and extended linear quivers.

The relation among the four classes can be described as follows:

{type A} ⊃ {extended linear} ⊃ {completely extended linear}
⊃
{linear}

2.2.1 Type A quivers

By definition, type A quivers are those that are mutation equivalent to quivers of the

form • → • → · · · → •. In [2], A. Buan and D. Vatne showed that a type A quiver is a
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connected quiver such that

• all nontrivial simple cycles in the underlying graph have length 3, and the corresponding

directed subgraphs are oriented (3-cycles);

• the vertex degrees of the underlying graph are at most 4; moreover, a degree-4 vertex

belongs to two 3-cycles, a degree-3 vertex belongs to one 3-cycle.

2.2.2 Linear quivers

For two integers a and b, we denote [a, b] = {a, a + 1, . . . , b} if a ≤ b, and [a, b] = ∅ if

a > b.

A linear quiver is a quiver with n vertices {v1, v2, . . . , vn} (we also simply use i to denote

the vertex vi, if no confusion arises) and n− 1 arrows in which any two consecutive vertices

vi and vi+1 (i ∈ [1, n− 1]) are connected by a single arrow in either direction and there are

no others arrows.

In order to have a convenient description for a linear quiver Q, we construct a sequence

{δi}1≤i≤n−1 such that δi = 0 if there is an arrow going from the vertex vi to the vertex vi+1,

and δi = 1 otherwise. For example, for the quiver

1→ 2→ 3← 4→ 5,

we have (δ1, δ2, δ3, δ4) = (0, 0, 1, 0).

2.2.3 Completely extended linear quiver

We define a completely extended linear quiver Q′ as one obtained from a linear quiver Q

by attaching a 3-cycle to every edge, a 3-cycle to v1, and a 3-cycle to vn. (So Q′ has 2n+ 3

vertices.) By abuse of terminology, we also call the pair (Q,Q′) a completely extended linear

quiver, whenever we need to specify the linear quiver Q.
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Let (Q,Q′) be a completely extended linear quiver with Q0 = {v1, . . . , vn} and Q′0 =

{v1, . . . , v2n+3}. If vi ∈ Q′0\Q0 is adjacent to both vj and vj+1 then we also denote vj,j+1 = vi.

For the 3-cycle attached to v1, the head (resp. tail) of the outgoing (resp. incoming) arrow

is denoted v1,0 (resp. v1,1). We define vn,0 and vn,1 similarly.

Example 2.2.1. The quiver (Q,Q′) in Figure 1 is a completely extended linear quiver, where

Q is the linear part 1→ 2→ 3← 4. In there, v1,0 := 5, v1,1 := 6, v1,2 := 7, v2,3 := 8, v3,4 := 9,

v4,0 := 10 and v4,1 := 11.

1 2 3 4

5

6

7 8 9

10

11

Figure 1: A completely extended linear quiver

For convenience, if vj,k = vi, then we denote the variable xj,k = xi.

2.2.4 Extended linear quivers

An extended linear quiver (Q,P ) is obtained from a completely extended linear quiver

(Q,Q′) by removing some vertices (or none) in Q′0 \Q0 and the arrows incident with them.

Equivalently, we can characterize P as a quiver obtained from Q by adding some (or none)

of the following:

• a 3-cycle or an edge hung on v1, or

• a 3-cycle or an edge hung on vn, or

• 3-cycles attached to some edges of Q.

There is an obvious way to obtain a completely extended linear quiver (Q,Q′) from an

extended linear quiver (Q,P ) (up to relabeling vertices in Q′0 \ P0). An example is shown in



11

Figure 2.

1 2 3

4
5

1 2 3

4
5

6

7

8

9

Figure 2: An extended linear quiver before and after being completed
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CHAPTER 3. PARAMETRIZATION OF CLUSTER
MONOMIALS BY d-VECTORS

3.1 Cluster monomials and d-vectors

It is well known that any cluster algebra associated to a type A quiver with n vertices

can be constructed from a triangulation on the (n+ 3)-gon.

A diagonal on the (n + 3)-gon is a line segment connecting two non-adjacent vertices.

A connected curve on the polygon is called a pseudo-diagonal if it is isotopic to a diagonal

(and its endpoints are the same as those of the diagonal) and if its interior is in the interior

of the polygon. Two pseudo-diagonals are said to be crossing if they intersect in the interior

of the polygon.

Let Q be a type A quiver with n vertices, and let {T1, ..., Tn} be the diagonals given by

the corresponding triangulation on the (n+3)-gon and {Tn+1, ..., T2n+3} the boundary edges.

It is also known from [7] that the cluster variables of A(Q) are in natural bijection with all

the diagonals of the polygon.

Using this bijection, a cluster monomial of A(Q) can be identified with a finite set of

pairwise non-crossing pseudo-diagonals, or equivalently with

{(D1, d1), ..., (Dm, dm)},

where m is a positive integer, D1, ..., Dm are pairwise non-crossing pseudo-diagonals, and

d1, ..., dm are positive integers.

The following definition uses a natural intersection number, which was already considered

in [5, 14, 17, 18, 15].

Definition 3.1.1. For two diagonals D,E on the (n + 3)-gon, we define the intersection
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number i(D,E) of D and E as follows:

i(D,E) :=


1, if D and E cross each other;

−1, if D and E are the same;

0, otherwise.

Then the d-vector of the cluster monomial {(D1, d1), ..., (Dm, dm)} is defined by

(
m∑
j=1

dji(Dj, T1), ...,
m∑
j=1

dji(Dj, Tn)).

The d-vector (a1, ..., an) of any cluster monomial satisfies the following property.

Lemma 3.1.2. (Property A) For any 3-cycle i → j → k → i in Q such that ai, aj, ak

are positive and satisfy the triangle inequalities (i.e., the sum of any two numbers is strictly

greater than the third), the sum ai + aj + ak is even.

Proof. Let Pijk be the set of crossing point of D1, . . . , Dm and Ti, Tj, Tk. Then |Pijk| =

ai + aj + ak. For each u ∈ [1,m], Du only cross two diagonals, so contributes two points

to Pijk. That implies an even number of intersection points is made by all Du, u ∈ [1,m].

Therefore, Pijk has an even number of elements.

3.2 Construction of pipelines

LetW be the set of all integer vectors (a1, ..., an) satisfying Property A. In this subsection

we prove that the cluster monomials of A(Q) are in bijection with W . We will define a map

from W to the cluster monomials, which would then induce the immediate bijection. Let

[x]+ = max(x, 0) for any real number x.
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Let a = (a1, ..., an) ∈ W . We define a function σ : R3
≥0 → R≥0 as follows:

σ(x, y, z) =
[x+ y − z]+ − [x− y − z]+ − [y − x− z]+

2
=



x, if y > x+ z;

y, if x > y + z;

0, if z > x+ y;

x+ y − z
2

, otherwise.

For convenience, we denote

σa
ijk = σ(ai, aj, ak).

(If no confusion shall arise, we denote σijk = σa
ijk.)

We are ready to construct the so-called pipelines associated to a.

Step 1: If ai > 0 then draw ai marking points on the diagonal Ti to separate it into ai + 1

segments. If ai < 0 then draw −ai pipes so that these pipes are pairwise non-crossing pseudo-

diagonals isotopic to Ti and that they do not cross any other Tj (j 6= i).

Step 2: If Ti and Tj are two sides of a triangle with the third side Tk, then for 1 ≤ r ≤ σijk,

we join the two r-th marking points on Ti and Tj (ordering in the increasing distance from

the common endpoint of Ti and Tj) by a pipe inside the triangle. Draw these pipes so that

they are disjoint from each other and from the pipes constructed in Step 1.

Step 3: Suppose that Ti, Tj, Tk form a triangle. Then for each marking point on Ti that is

not connected by a pipe to any marking point on Tj or Tk, we draw a pipe from the marking

point to the common endpoint of Tj and Tk. Draw these pipes inside the triangle in such a

way that they are non-crossing with each other and with the pipes constructed in Step 1,2.

A pipeline is a union of pipes connected consecutively through the marking points (but
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not through the vertices of the (n + 3)-gon). Then the pipelines are pairwise non-crossing.

Since the endpoints of each pipeline are non-adjacent vertices of the polygon, every pipeline

is a pseudo-diagonal. Hence the union of these pipelines corresponds to a cluster monomial.

Clearly the d-vector of this cluster monomial is equal to a.

Using the above construction of pipelines, it is straightforward to prove the following:

Proposition 3.2.1. Let Q be a type A quiver. Then

(1) a ∈ Zn is the d-vector of some cluster monomial of A(Q) if and only if a ∈ W.

(2) Two distinct cluster monomials have different d-vectors.

This allows us to denote the (unique) cluster monomial with d-vector (a1, . . . , an) by

x[a1, . . . , an] or x[a].

Each pipe Λ corresponds to a 0-1 sequence b = bΛ = (b1, . . . , bn) such that

bi =


0, if the pipe Λ is disjoint from Ti;

1, otherwise.

(3.1)

Note that Λ corresponds to a linear full subquiver of Q. Let S be the multiset of all such

sequences. Then

x[a] =
∏
b∈S

x[b]. (3.2)

Example 3.2.2. The first two pictures in Figure 3 are a type A quiver with 7 vertices

and its corresponding triangulation on the 10-gon. For clearer illustration, the 10-gon is

drawn as a concave polygon. The bottom illustrates the construction of pipelines for a =

(3, 3, 3, 2, 4, 3, 1).
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1

2 3

4

5

6 7

Q

1 2 3
5

67

4

G

2 3

4

5

67

1

21 2 3

5

3

4

9

5

67

Figure 3: The construction of pipelines

There are 5 pipelines, passing through edges sets {1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 5, 7}, {3, 4, 5, 6},

{3, 5, 6}, respectively. So the cluster monomial x[a] is decomposed as

x[3, 3, 3, 2, 4, 3, 1] = x[1, 1, 1, 1, 0, 0, 0] · x[1, 1, 0, 0, 1, 1, 0] · x[1, 1, 0, 0, 1, 0, 1]·

· x[0, 0, 1, 1, 1, 1, 0] · x[0, 0, 1, 0, 1, 1, 0].

Lemma 3.2.3. For a ∈ Zn, assume that [a]+ satisfies Property A and x[[a]+] =
∏
x[b] is a

factorization into cluster variables in the same cluster. Then x[b] and xi (ai < 0) are in the

same cluster and that

x[a] = x[[a]+]
n∏
i=1

x
[−ai]+
i =

∏
x[b]

∏
i

x
[−ai]+
i .

Proof. If ai < 0, then there is no b satisfying bi > 0. Thus no pseudo-diagonals corresponding
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to pipelines for [a]+ will cross the diagonal Ti. Therefore, after adding Ti we still get a set

of non-crossing pseudo-diagonals, which means that x[b] and xi (ai < 0) are in the same

cluster. It then follows that x[a] = x[[a]+]
∏

i x
[−ai]+
i .

Remark 3.2.4. Assume that Q is a full subquiver of Q′. We compare cluster variables in

various cluster algebras.

For simplicity denote the vertex sets Q0 = {1, . . . , n} and Q′0 = {1, . . . , n′}. By defi-

nition, the cluster algebra with coefficients in Z[x±1
n+1, . . . , x

±1
n′ ], denoted A(Q,Q′), is gener-

ated by only those cluster variables in A(Q′) obtained from iteratively mutating the initial

cluster variables x1, . . . , xn only at vertices in {1, . . . , n}. (Vertices in {n + 1, . . . , n′} are

called frozen vertices. The coefficients are in Z[x±1
n+1, . . . , x

±1
n′ ].) Thus, there is a natural bi-

jection sending a cluster variable in A(Q,Q′) of the form x[d1, . . . , dn] to the cluster variable

x[d1, . . . , dn, 0, . . . , 0] ∈ A(Q′) of the same expression.

There is also a natural bijection sending a cluster variable x[d1, . . . , dn] ∈ A(Q,Q′) to

the cluster variable x[d1, . . . , dn] ∈ A(Q), given by setting xi to 1 for i ∈ [n + 1, n′]. More

generally, if Q is a full subquiver of P , and P is a full subquiver of Q′, then there is a natural

bijection sending a cluster variable x[d1, . . . , dn] ∈ A(Q,Q′) to x[d1, . . . , dn] ∈ A(Q,P ) given

by setting xi by 1 for i ∈ Q′0 \ P0.

If Q is a full subquiver of Q′′, and Q′ is the vertex-induced subquiver of Q′′ whose vertex

set consists of vertices in Q0 and those adjacent to Q0, then the cluster variables in A(Q,Q′)

have the same expressions as those in A(Q,Q′′).
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CHAPTER 4. CLUSTER VARIABLES

Let (Q,Q′) be a completely extended linear quiver. By relabeling vertices of Q′ if nec-

essary, we assume Q0 = {1, . . . , n}. We shall give a formula of the cluster variable x[a] of

A(Q′), where a = (a1, . . . , an′) such that ai = 1 if i ∈ [1, n] and ai = 0 if i ∈ [n+ 1, n′].

First, we recall the following definition from [10].

4.1 Globally Compatible Collections

Let (a1, a2) be a pair of nonnegative integers. Let c = min(a1, a2). The maximal Dyck

path of type a1 × a2, denoted by D = Da1×a2 , is a lattice path from (0, 0) to (a1, a2) that

is as close as possible to the diagonal joining (0, 0) and (a1, a2), but never goes above it. A

corner is a subpath consisting of a horizontal edge followed by a vertical edge.

Definition 4.1.1. Let D1 (resp. D2) be the set of horizontal (resp. vertical) edges of a

maximal Dyck path D = Da1×a2 . We label D with the corner-first index in the following

sense:

(a) edges in D1 are indexed as u1, . . . , ua1 such that ui is the horizontal edge of the i-th

corner for i ∈ [1, c] and uc+i is the i-th of the remaining horizontal ones for i ∈ [1, a1−c],

(b) edges in D2 are indexed as v1, . . . , va2 such that vi is the vertical edge of the i-th corner

for i ∈ [1, c] and vc+i is the i-th of the remaining vertical ones for i ∈ [1, a2 − c].

(Here we count corners from bottom left to top right, count vertical edges from bottom to

top, and count horizontal edges from left to right.)
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u5 u1
v1

u2
v2

u6 u3
v3

u4
v4

Figure 4: A maximal Dyck path

Definition 4.1.2. Let S1 ⊆ D1, S2 ⊆ D2, s ∈ Z≥0. We say that S1 and S2 are s-compatible

if for every 1 ≤ r ≤ s, either ur /∈ S1 or vr /∈ S2. In other words, neither of the first s corners

are contained in the subpath S1 ∪ S2.

Now for any arrow (i+ δi)→ (i+ 1− δi) of Q, we attach a Dyck path D(i) = D1×1, which

consists of one horizontal edge and one vertical edge. (Recall that δi is defined in §2.2.2.)

Definition 4.1.3. Let Si,r ⊆ D(i)
r for i ∈ [1, n − 1], r ∈ [1, 2]. We say that the collection

{Si,r} is a Globally Compatible Collection (abbreviated GCC) if

Si,1 and Si,2 are 1-compatible for i ∈ [1, n− 1],

and the following holds for i ∈ [2, n− 1],

(a) if (δi−1, δi) = (0, 0), then |Si−1,2| 6= |Si,1|;

(b) if (δi−1, δi) = (1, 1), then |Si−1,1| 6= |Si,2|;

(c) if (δi−1, δi) = (0, 1), then |Si−1,2| = |Si,2|;

(d) if (δi−1, δi) = (1, 0), then |Si−1,1| = |Si,1|.

Theorem 4.1.4. The cluster variable with d-vector a is

x[a] =

(
n∏
i=1

x−1
i

)∑(
n∏
i=0

yi

)
, (4.1)
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where the sum runs over all GCCs {Si,r}, and

yi := x
|Si,2|
i+δi

x
|Si,1|
i+1−δix

1−|Si,1|−|Si,2|
i,i+1 =


xi, if (|Si,1|, |Si,2|) = (δi, 1− δi)

xi+1, if (|Si,1|, |Si,2|) = (1− δi, δi)

xi,i+1, if (|Si,1|, |Si,2|) = (0, 0)

for i ∈ [1, n− 1], and

y0 :=


x1,0, if |S1,1+δ1| = 1− δ1,

x1,1, otherwise,

yn :=


xn,0, if |Sn−1,2−δn−1| = δn−1,

xn,1, otherwise.

Remark 4.1.5. Note that the above theorem induces a formula for the cluster variables of

any type A quiver. Indeed, let Q̃ be any type A quiver and non-initial x[a] be a cluster variable

with d-vector a = (a1, . . . , añ) (here ñ = |Q̃0|). Then the subset of vertices {i | ai = 1} is

equal to the set of vertices Q0 of a linear full subquiver Q. By relabeling vertices if necessary,

we assume Q0 = {1, . . . , n} (thus a1 = · · · = an = 1 and an+1 = · · · = añ = 0 and for

convenience we denote a = 1n0ñ−n. By removing vertices in Q̃0 but not in or adjacent to Q0,

we get an extended linear quiver (Q,P ); from this extended linear quiver we can obtain a

completely extended linear quiver Q′. Define n′ = |Q′0|, m = |P0|. Thanks to Remark 3.2.4, a

formula for cluster variable x[1n0n
′−n] ∈ A(Q,Q′) induces a formula for x[1n0m−n] ∈ A(Q,P )

by setting xi to 1 for i ∈ Q′0 \ P0, which is also a formula for x[a] = x[1n0ñ−n] ∈ A(Q̃). (See

Example 6.1.)

4.2 A bijection between perfect matchings and GCCs

In this section, we first recall the construction of snake diagram and the formula of cluster

variables using perfect matching as in [14], then give a bijective proof of Theorem 4.1.4 via

perfect matching.
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Associated to a completely extended linear quiver (Q,Q′), we recursively construct the

snake diagram by gluing n-tiles together as follows: we first put the 2nd-tile to the right side

of the 1st-tile; suppose the ith-tile is placed, we add the (i + 1)th-tile to the right side or

on top of the ith-tile such that the (i − 1)th, (i)th and (i + 1)th-tiles are in the same row or

column if and only if δi−1 6= δi.

Next, we label the edges as follows.

• The common edge of the ith-tile and the (i+ 1)th-tile is labeled Ti,i+1.

• Denote by Pl(i) the parallelogram bounded by the main diagonals of the ith-tile and

the (i+ 1)th-tile and two boundary edges. Any edge forming an angle of 135◦ with the

main diagonal of the ith-tile will be labeled T
(j)
i (where j indicates the parallelogram

to which the edge belongs).

T
(i−2)
i−2

T
i−

1
,i

T
(i−1)
i

i− 1

T
(i−1)
i−1

T
(i)
i+1

Ti,i+1

i

T
(i+1)
i+2

T
(i)
i

i+ 1

δi−1 = δi

T
i−

1
,i

T
(i−1)
i

i− 1

T
(i−1)
i−1

T
i,i+

1

T
(i)
i+1

i

T
(i)
i

i+ 1

δi−1 6= δi

Figure 5: Labels of edges in (i− 1)th, ith and (i+ 1)th-tiles in two cases

For convenience, we let Pl(0) be the right triangle with legs T1,0 and T1,1, and let Pl(n)

the right triangle with legs Tn,0 and Tn,1. The edges of the first and the last tiles are labeled

as in Figure 6.
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T1,δ1

T1,2

T
(1)
2

T1,1−δ1 1

First tile Last tile

or

T
(n−1)
n−1

Tn,δn−1

Tn,1−δn−1

Tn−1,n n

Tn−1,n

Tn,1−δn−1

Tn,δn−1

T
(n−1)
n−1

n

Figure 6: Labels of edges in the first and last tiles

Example 4.2.1. Associated to the completely extended quiver in Example 2.2.1, we have

the following snake diagram.

T5

T7

T
(1)
2T6

T
(1)
1

T
(2)
3

T8

T
(3)
4

T9

T
(2)
2

T10

T11

T
(3)
3

Figure 7: A snake diagram

A perfect matching of the snake diagram is a set of edges such that each vertex is incident

to exactly one edge in the set.

For the fixed completely extended linear quiver (Q,Q′), let M be the set of all perfect

matchings in the associated snake diagram, and G be the set of all GCCs. We shall construct

a bijective map ψ1 :M→ G and its inverse ψ2. First we prove a simple lemma.

Lemma 4.2.2. For any perfect matching γ and i ∈ [0, n], there is exactly one edge of γ that

lies in Pl(i).
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Proof. The statement is obviously true for i = 0 and i = n. Suppose the statement is false

for some i ∈ [1, n−1]. Since γ is a perfect matching, we are in one of the following two cases.

Case 1: both T
(i)
i , T

(i)
i+1 are in γ. If we remove Pl(i) (4 vertices and 3 edges), then the

rest of the graph has two components which have odd number of vertices and have perfect

matchings. This is a contradiction.

Case 2: none of the three edges T
(i)
i , T

(i)
i+1, Ti,i+1 lies in γ. Then we remove the three edges

(but do not remove the vertices) and apply the same argument as in Case 1.

Remark 4.2.3. Thanks to the above lemma, we can write a perfect matching γ as {γ1, . . . , γn}

where γi ∈ Pl(i).

Definition 4.2.4. (i) We define a map ψM,G : M → G by sending γ ∈ M to {Si,r} ∈ G

such that for i ∈ [1, n− 1],

(|Si,1|, |Si,2|) =



(δi, 1− δi), if T
(i)
i ∈ γ,

(1− δi, δi), if T
(i)
i+1 ∈ γ,

(0, 0), if Ti,i+1 ∈ γ.

(By Lemma 4.2.2, exactly one of the three cases occurs.)

(ii) We define a map ψG,M : G → M by sending {Si,r} ∈ G to the set of edges γ =

{γ0, γ1, . . . , γn} such that

γi =


T

(i)
i , if (|Si,1|, |Si,2|) = (δi, 1− δi)

T
(i)
i+1, if (|Si,1|, |Si,2|) = (1− δi, δi)

Ti,i+1, if (|Si,1|, |Si,2|) = (0, 0)

for i ∈ [1, n− 1], and
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γ0 =


T1,0 if |S1,1+δ1| = 1− δ1,

T1,1 otherwise,

γn =


Tn,0 if |Sn−1,2−δn−1| = δn−1,

Tn,1 otherwise.

We assign a weight w(u) for each edge u of the snake diagram as follows for all i, j:

w(T
(i)
j ) = xj, w(Tj,j+1) = xj,j+1 (4.2)

For a perfect matching γ = (γ0, . . . , γn), define its weight w(γ) =
∏n

i=0w(γi). In [14] it is

proved that the cluster variable with d-vector a is

x[a] =

(
n∏
i=1

x−1
i

)∑
γ

w(γ) (4.3)

(compare with 4.1.)

Theorem 4.2.5. The maps ψM,G and ψG,M are well-defined and are inverses of each other.

Moreover, w(γi) = yi, thus ψM,G induces a bijective proof of Theorem 4.1.4 using (4.3).

Proof. (i) We show that ψM,G is well-defined, that is, ψM,G(γ) = {Si,r} satisfies the condition

(4.1.3). It’s clear from the construction that for every i ∈ [1, n − 1], (|Si,1|, |Si,2|) 6= (1, 1).

Next, we prove (a) and (c) of (4.1.3), since (b) and (d) can be proved similarly.

For (a), we suppose (δi−1, δi) = (0, 0) and need to show that T
(i−1)
i−1 ∈ γ ⇔ T

(i)
i+1 /∈ γ. This

is true because the two edges T
(i−1)
i−1 and T

(i)
i+1 are incident to the same deg-2 vertex, thus

exactly one of them is in γ. (See the left diagram in Figure 5.)

For (c), we suppose (δi−1, δi) = (0, 1) and need to show that T
(i−1)
i−1 ∈ γ ⇔ T

(i)
i+1 ∈ γ.

These two edges are opposite edges of a tile which is the middle of three tiles in a row or a

column. Deleting these two edges will separate the snake diagram into two graphs with even

number of vertices each. Thus the two edges must be both in γ or not in γ. (See the right

diagram in Figure 5.)
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(ii) We show that ψG,M is well-defined, that is, ψG,M({Si,r}) = γ is a perfect matching. Since

the snake diagram has 2n + 2 vertices and γ has n + 1 edges, it suffices to show that all

edges in γ are disjoint. We assume the contrary that γc shares a vertex with γd for some

0 ≤ c < d ≤ n. Since γc ∈ Pl(c) and γd ∈ Pl(d), Pl(c) and Pl(d) much be consecutive, thus

d = c+ 1.

We first assume 1 ≤ c ≤ n − 2. We shall discuss two cases (δc, δc+1) = (0, 0) and (0, 1),

and omit the other two cases (1, 0) and (1, 1) since the proof is similar.

Case (δc, δc+1) = (0, 0): since {Si,r} is a GCC, we must have (|Sc,1|, |Sc,2|, |Sc+1,1|, |Sc+1,2|) =

(0, 1, 0, 1), (0, 1, 0, 0), (1, 0, 1, 0, or (0, 0, 1, 0). Correspondingly,

(γc, γc+1) = (T (c)
c , T

(c+1)
c+1 ), (T (c)

c , Tc+1,c+2), (T
(c)
c+1, T

(c+1)
c+2 ), or (Tc,c+1, T

(c+1)
c+2 ).

It is obvious from Figure 8 that γc and γc+1 are disjoint, a contradiction as expected.

T
c,c+

1

T
(c)
c+1

T
(c)
c

T
(c+1)
c+2

Tc+1,c+2

T
(c+1)
c+1

T
c,c+

1

T
(c)
c+1

T
(c)
c

T
c+

1
,c+

2

T
(c+1)
c+2

T
(c+1)
c+1

Figure 8: Left: (δc, δc+1) = (0, 0) and Right: (δc, δc+1) = (0, 1)

Case (δc, δc+1) = (0, 1): similar as the above case,

(γc, γc+1) = (T (c)
c , T

(c+1)
c+2 ), (T

(c)
c+1, T

(c+1)
c+1 ), (T

(c)
c+1, Tc+1,c+2), (Tc,c+1, T

(c+1)
c+1 ) or (Tc,c+1, Tc+1,c+2).

We get the expected contradiction by observing Figure 8.

The cases of c = 0 and c = n− 1 are proved by a similar argument.
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(iii) The fact that ψM,G and ψG,M are inverses of each other, and w(γi) = yi, follows easily

from their definitions.

Example 4.2.6. We put a perfect matching γ = {T1, T3, T6, T8, T10} on the snake diagram

in Example 4.2.1. Applying the map ψM,G to γ, we get ψM,G(γ) = ((0, 1), (0, 0), (1, 0)).

T5

T7

T
(1)
2

T6

T
(1)
1

T
(2)
3

T8

T
(3)
4

T9

T
(2)
2

T10

T11

T
(3)
3

ψM,G

x2

x1

x3

x2 x4

x3

Figure 9: An example of the map ψM,G

4.3 A bijection between T -paths and GCCs

In this section, we give an alternative proof of Theorem 4.1.4 via a model called T -paths.

We first recall the construction of T -paths and the formula of cluster variables using T -paths

as in [16], then give the bijective proof of the theorem.

The quiver being considered here is still a completely extended linear quiver (Q,Q′). Let

P be a convex polygon with n+ 3 vertices. A diagonal of P is a line segment connecting two

non-adjacent vertices. Two diagonals are said to be crossing if they intersect in the interior

of P . A triangulation T of P is a maximal set of non-crossing diagonals together with the

boundary edges of P . Any triangulation has n diagonals and n+ 3 boundary edges.

Our initial triangulation of P will consist of the set T = {T1, . . . , Tn}∪{T1,0, T1,1, Tn,0, Tn,1}∪
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{Ti,i+1 : i ∈ [1, n − 1]}, where the first set is the set of diagonals and the last two sets con-

stitute the set of boundary edges.

T1,0 = T5

T1,2 = T7

T2,3 = T8

T4,1 = T11

T4,0 = T10

T3,4 = T9

T1,1 = T6
T1

T2

T3

T4

Figure 10: The initial triangulation of the quiver (Q,Q′) in Example 2.2.1.

The process of constructing the initial triangulation starts with placing the diagonal T1.

We obtain T1,0 by rotating T1 in the counterclockwise direction. The edge T1,1 is obtained

by rotating T1 in the clockwise direction. Let v be the common vertex of T1,0 and T1,1.

Suppose that the diagonal Ti (i ∈ [1, n− 1]) is drawn. The diagonal Ti+1 is obtained by

rotating Ti in the counterclockwise direction if δi = 0, in the clockwise direction if δi = 1.

The boundary edge between Ti and Ti+1 is labeled Ti,i+1.

When i = n then Tn,1 is the boundary edge clockwise from Tn and Tn,0 is the boundary

edge counterclockwise from Tn. Denote the common vertex of Tn,0 and Tn,1 by w.
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v

T1,0
T

1,1

T1
w

Tn
T
n,1 Tn,

0

Ti

Ti,i+1

Ti+1

δi = 0

Ti

Ti+1
Ti,i+1

δi = 1

Figure 11: Labels of boundary edges and diagonals of the polygon P

We can view both the snake diagram and the triangulation T as graphs. Then there is a

natural graph homomorphism p between them that sends an edge of the snake diagram to

an edge of the triangulation as follows:

p(T
(i)
j ) = Tj, p(Tj,j+1) = Tj,j+1 (4.4)

In [7], Fomin and Zelevinsky showed that the cluster variables of A(Q) are in bijection

with the diagonals of the polygon P where the initial set of cluster variables {x1, . . . , xn}

corresponds to {T1, . . . , Tn}.

Let Mv,w be the diagonal connecting v and w, thus crossing the diagonals T1, . . . , Tn. For

i ∈ [1, n], let pi be the intersection of Mv,w and Ti.

Definition 4.3.1. [16] A T -path α from v to w is the sequence

α = w0

Ti1−→ w1

Ti2−→ · · ·
Til(α)−→ wl(α)

such that

(1) v = w0, w1, . . . , wl(α) = w are vertices of P .

(2) ik ∈ {0, 1, . . . , 2n + 2} such that Tik connects the vertices wk−1 and wk for each k =
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1, 2, . . . , l(α).

(3) ij 6= ik if j 6= k.

(4) l(α) is odd.

(5) Tik crosses Mv,w if k is even.

(6) If j < k and both Tij and Tik cross M then pij is closer to v than pik is to v.

Let P be the set of all T -path from v to w. For any α ∈ P , let

x(α) =
∏
k odd

xik
∏
k even

x−1
ik
. (4.5)

Let a = (a1, . . . , an′) ∈ {0, 1}n
′

such that ai = 1 if and only if i ∈ Q. The following formula

of the cluster variable x[a] is proved in [16]:

x[a] =
∑
α∈P

x(α) (4.6)

Definition 4.3.2. We define a map ψG,P : G → P by sending {Si,r} ∈ G to the T -path α

obtained by first constructing a path α′1α
′
2 . . . α

′
2n+1 from v to w where α′2i = Ti for i ∈ [1, n],

α′2i+1 =


Ti, if (|Si,1|, |Si,2|) = (δi, 1− δi)

Ti+1, if (|Si,1|, |Si,2|) = (1− δi, δi)

Ti,i+1, if (|Si,1|, |Si,2|) = (0, 0)

for i ∈ [1, n− 1], and

α′1 =


T1,0 if |S1,1+δ1| = 1− δ1,

T1,1 otherwise,

α′2n+1 =


Tn,0 if |Sn−1,2−δn−1| = δn−1,

Tn,1 otherwise,

then define α to be the path obtained from α′ by canceling duplicate pairs.

We shown in the theorem below, ψG,P is a bijection. Then we define ψP,G = ψ−1
G,P : P → G.
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Theorem 4.3.3. The maps ψG,P is a well-defined bijection. Moreover, for α = ψG,P({Si,r}),

n∏
i=1

x−1
i

n∏
i=0

yi = x(α),

thus ψG,P induces a bijective proof of Theorem 4.1.4 using (4.6).

Proof. In order to prove Theorem 4.3.3, we shall show that all maps below are bijective, and

that their composition is ψG,P :

G
ψG,M−→ M L−→ {complete T -paths from v to w} π−→ P .

(i) We first define L, which is exactly the folding map in [14, §4.3]. As defined in [14, 18],

a complete T -path α from v to w is similar to a T -path from v to w defined in Definition

4.3.1, in the sense that we require 1), 2), and

5’) the 2j-th edge Ti2j = Tj (i.e., i2j = j),

6’) Ti1 ≤ Ti2 ≤ · · · ,

where we use the order

T1,0 < T1,1 < T1 < T1,2 < T2 < T2,3 < · · · < Tn < Tn,0 < Tn,1. (4.7)

Note that we do not require edges to be distinct in α. It is easy to see that a complete T -path

has length 2n+ 1. For simplicity, we denote α using its edge sequence. For γ ∈M, we define

(recall that p is defined in (4.4)):

L(γ) = L1L2 · · ·L2n+1, where L2j = Tj for j ∈ [1, n], L2j+1 = p(γj) for j ∈ [0, n]. (4.8)

Note that the starting point of each Li is determined by L1 · · ·Li−1. The union of a perfect

matching γ with diagonals of all tiles form a path α′γ in the snake diagram. If we consider the

quotient map from the snake diagram to the triangulation of P , by identifying the diagonal
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edge i with T (i) and identifying diagonal edge i + 1 with T
(i)
i+1, then the image of α′γ is the

complete T -path L(γ).

(ii) We show that L has a well-defined inverse map L−1 (which is the unfolding map

in [14, §4.5]), thus L is bijective. Indeed, L−1 sends a complete T -path θ = L1 · · ·L2n+1

to γ = {γ1, γ2, . . . , γn}, where γj is the unique edge in Pl(j) ∩ p−1(L2j+1), that is, γ1 = L1,

γn = L2n+1, and γj = T
(j)
j (resp. T

(j)
j+1, Tj,j+1) if L2j+1 is Tj (resp. Tj+1, Tj,j+1) for j ∈ [1, n−1].

Next we show that γ is indeed a perfect matching, it suffices to prove that the edges in

γ are disjoint, because it has the correct number (= n+ 1) of edges.

For j, j′ ∈ [0, n − 2] with j < j′, γj and γj′ are disjoint if j′ > j + 1 because Pl(j) and

Pl(j
′) are disjoint. So we assume j′ = j + 1. We shall only discuss the case δj = δj+1 = 0

since other cases can be proved similarly.

Tj

Tj+1

Tj+2

Tj,j+1

Tj+1,j+2

T
j,j+

1

T
(j)
j+1

T
(j)
j

T
(j+1)
j+2

Tj+1,j+2

T
(j+1)
j+1

Figure 12: Parts of the polygon and the snake diagram corresponding to the subquiver

j → j + 1→ j + 2

The subpath L2j+1L2j+2L2j+3L2j+4 of L(α) is one of the following:

TjTj+1Tj+1Tj+2, TjTj+1Tj+1,j+2Tj+2, Tj,j+1Tj+1Tj+2Tj+2, Tj+1Tj+1Tj+2Tj+2.

By looking at Figure 12, we see that γj and γj+1 are disjoint in each case.
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(iii) We show that π is bijective by giving its inverse π−1. Suppose that α = Ti1Ti2 · · ·Til(α)

is a T -path from v to w. If n = 1, then α is already a complete T -path, so we define

π−1(α) = α. Now assume n > 1. The sequence π−1(α) = L = L1L2 · · ·L2n+1 is obtained as

a result of the following algorithm.

1. Initialize L := α.

2. Let j run from 1 to n: if L2j 6= Tj, then insert TjTj to L so that the resulting L is

nondecreasing with the order given in (4.7).

3. Define π−1(α) := L.

We claim that L is a complete T -path. Conditions 1) 2) 6’) are obviously satisfied, and

5’) can be proved by induction.

Combining (i)(ii)(iii) and Theorem 4.2.5, we have proved that ψG,P is bijective.

Finally, we show that
∏n

i=1 x
−1
i

∏n
i=0 yi = x(α). By the construction of π−1(α) in (iii),

x(α) remains unchanged if we replace α by the complete T -path π−1(α) = Ti1Ti2 · · ·Ti2n+1 ;

this is because each time we insert the pair TjTj, the extra contribution to the product (4.5)

is xjx
−1
j = 1. So it suffices to show

n∏
i=1

x−1
i

n∏
i=0

yi =
∏
k even

x−1
ik

∏
k odd

xik .

By 5’),
∏

k even x
−1
ik

=
∏n

i=1 x
−1
i , so it suffices to show

∏n
i=0 yi =

∏
k odd xik , or to show that

yj = xi2j+1
for j ∈ [0, n]. Indeed, Ti2j+1

= L2j+1 = p(γj) by (4.8), thus xi2j+1
= w(γj) by the

definition of the weight w in (4.2). Moreover, Theorem 4.2.5 asserts that w(γj) = yj. Thus

yj = xi2j+1
.

Example 4.3.4. With the T -path α = T5T1T9T4T11, the complete T -path is π−1(α) =

T5T1T2T2T3T3T9T4T11. Then ψP,G(α) = ((1, 0), (1, 0), (0, 0)) as you can see in Figure 13.
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T5

T7

T8

T11

T10

T9

T6
T1

T2

T3

T4

ψP,G

x2

x1

x3

x2 x4

x3

Figure 13: An example of the map ψP,G
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CHAPTER 5. CLUSTER MONOMIALS

In this chapter, we give three equivalent formulas for computing the cluster monomial

x[a] for a ∈ W .

First we reduce to a special case. Lemma 3.2.3, we can replace a by [a]+, thus can assume

ai ≥ 0. Moreover, for any edge i→ j of Q that is not in a 3-cycle, we can add a vertex k and

two arrows j → k and k → i (the vertex k is a frozen vertex). Indeed, assume the modified

quiver is Q′. Then by Remark 3.2.4, once we have a formula for cluster monomials for Q′,

we can set xi = 1 for all i ∈ Q′0 \Q0 and obtain a formula for cluster monomials of A(Q). In

the rest of the thesis, we assume that a = [a]+ and

Q is of type A with more than one vertex, and every edge of Q is in a 3-cycle. (5.1)

For every 3-cycle i → j → k → i, σijk is a nonnegative integer by Proposition 3.2.1, and it

is not hard to verify that σkij + σijk ≤ ai.

5.1 A formula using 0-1 sequences

Fix a deg-2 vertex i0 of Q (which exists because of (5.1)). For i ∈ Q0, denote by

d(i) the distance (i.e., the length of the shortest directed path) from i0 to i. Let si =

(si,1, si,2, . . . , si,ai) ∈ {0, 1}ai be a 0-1 sequence, and define

|si| =
ai∑
r=1

si,r , |s̄i| =
ai∑
r=1

(1− si,r) = ai − |si|.

We say that a sequence of 0-1 sequences s := (s1, . . . , sn) is a globally compatible sequence

(abbreviated GCS) if the following holds for any 3-cycle i→ j → k → i:

• If d(i) < d(j) < d(k), then (si,t, sj,t) 6= (1, 0) for 1 ≤ t ≤ σijk;

• If d(j) < d(k) < d(i), then (si,ai+1−t, sj,aj+1−t) 6= (1, 0) for 1 ≤ t ≤ σijk;
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• If d(k) < d(i) < d(j), then (si,ai+1−t, sj,t) 6= (1, 0) for 1 ≤ t ≤ σijk.

Theorem 5.1.1. For any d-vector a = (a1, . . . , an) ∈ Zn≥0 (i.e., a ∈ W ∩ Zn≥0), we have the

following formula for the corresponding cluster monomial:

x[a] =

(
n∏
l=1

x−all

)∑
s

(∏
i

xeii

)
, where ei =

∑
i→j

| s̄j |+
∑
k→i

|sk| −
∑

i→j→k→i

σjki, (5.2)

here s runs through all GCSs. (Note that because of the rotational symmetry, each 3-cycle

contributes three terms σjki, σkij and σijk to the last sum.)

This formula specializes to the formula given in [10] for a linear quiver.

5.2 A formula using Dyck paths

In §4.1, we defined global compatibility in the case linear quivers. Now a more general

definition of global compatibility in the case type A quivers shall be given.

Definition 5.2.1. Let a = (a1, . . . , an) ∈ Zn≥0 be a d-vector. For each pair i → j in Q, let

D(i,j) be a maximal Dyck path Dai×aj . We label D(i,j) with the corner-first index (described

in Definition 4.1.1), whose horizontal edges are denoted u
(i,j)
1 , . . . , u

(i,j)
ai and vertical edges are

denoted by v
(i,j)
1 , . . . , v

(i,j)
aj . We say that the collection

{
S

(i,j)
` ⊆ D(i,j)

`

∣∣∣ i→ j is an arrow, ` ∈ {1, 2}
}

is a GCC if and only if for any k → i→ j in Q:

• if j → k is also an arrow in Q, then S
(i,j)
1 and S

(i,j)
2 are σijk-compatible, and

v(k,i)
r ∈ S(k,i)

2 ⇐⇒ u
(i,j)
ai+1−r 6∈ S

(i,j)
1 , for all r ∈ [1, ai];

• otherwise,

v(k,i)
r ∈ S(k,i)

2 ⇐⇒ u(i,j)
r 6∈ S(i,j)

1 , for all r ∈ [1, ai].
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Theorem 5.2.2. Assume n > 1. For any d-vector a = (a1, . . . , an) ∈ Zn≥0, we have the

following formula for the corresponding cluster monomial:

x[a] =

(
n∏
l=1

x−all

)∑(∏
i→j

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j

)
·
∏

i→j→k→i

x
−σjki
i , (5.3)

where the sum runs over all GCCs. (Note that because of the rotational symmetry, each

3-cycle contributes three terms to the last product.)

5.3 A method using decomposition of denominator vectors

The third method of computing the cluster monomial with given d-vector a is to first

decompose a into a sum of 0-1 sequences b’s using pipelines. By Remark 4.1.5, for each

d-vector b, we can find the cluster variable x[b] of A(Q). Then x[a] is computed as

x[a] =
∏

x[b].

5.4 Proof of Main Theorems

In order to compute cluster variables, we have explained in §5.3 that it suffices to have the

formula for a completely extended linear quiver, namely Theorem 4.1.4. This theorem follows

from Theorem 4.2.5. In this section, we show how to derive Theorem 5.1.1 and Theorem 5.2.2

from Theorem 4.1.4.

5.4.1 Proof of Theorem 5.2.2

Let x′[a] be the right hand side of the formula in Theorem 5.2.2. We shall show that (i)

the GCCs for the d-vector a are in one-to-one correspondence with the collections of GCCs

for the d-vectors b’s described in (3.1); (ii) x′[a] =
∏

b x
′[b]; and (iii) x′[b] = x[b] using

Theorem 4.1.4. It then follows that x′[a] = x[a].

(i) Let {S(i,j)
` } be any GCC for the d-vector a. For each pipeline Λ, let b = bΛ, we
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construct a GCC {S(i,j),Λ
` } for the d-vector b by requiring the following for each arrow

i→ j:

− if Λ intersects the edge i at the r-th marking point, then |S(i,j),Λ
1 | = 1 if and only if

u
(i,j)
r ∈ S(i,j)

1 ,

− if Λ intersects the edge j at the r-th marking point, then |S(i,j),Λ
2 | = 1 if and only if

v
(i,j)
r ∈ S(i,j)

2 ,

(in both case the marking points are ordered in the increasing distance from the common

endpoint of i and j).

To verify that {S(i,j),Λ
` } is a GCC for the d-vector b, we need to check the conditions in

Definition 5.2.1. The only nontrivial condition to check is that for a 3-cycle k → i→ j → k,

S
(i,j),Λ
1 and S

(i,j),Λ
2 are σb

ijk-compatible. That reduces to showing that (|S(i,j),Λ
1 |, |S(i,j),Λ

1 |) 6=

(1, 1) in the case (bi, bj, bk) = (1, 1, 0). In this case, Λ intersects edges i and j at the r-th

marking points for some r ≤ σa
ijk. Then either u

(i,j)
r /∈ S(i,j)

1 or v
(i,j)
r /∈ S(i,j)

2 . In the former

case, |S(i,j),Λ
1 | = 0; in the latter case, |S(i,j),Λ

2 | = 0. Therefore (|S(i,j),Λ
1 |, |S(i,j),Λ

2 |) 6= (1, 1).

It is easy to see that a unique GCC {S(i,j)
` } is determined if we take any collection of

GCCs {S(i,j),Λ
` } for all pipelines Λ. So we have the desired one-to-one correspondence.

(ii) We show that
∏

b x
′[b] = x′[a]. Since

∑
b = a, it suffices to show that, for each GCC

{S(i,j)
` }, letting {S(i,j),Λ

` } be defined as in (i), the following holds (recall that b = bΛ depends

on Λ):

∏
Λ

(∏
i→j

x

∣∣S(i,j),Λ
2

∣∣
i x

∣∣S(i,j),Λ
1

∣∣
j ·

∏
i→j→k→i

x
−σb

jki

i

)
=
∏
i→j

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j ·

∏
i→j→k→i

x
−σa

jki

i .
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Since the left hand side is equal to

∏
i→j

x
∑

Λ

∣∣S(i,j),Λ
2

∣∣
i x

∑
Λ

∣∣S(i,j),Λ
1

∣∣
j ·

∏
i→j→k→i

x
−

∑
Λ σ

b
jki

i ,

it suffices to show that
∑

Λ |S
(i,j),Λ
2 | = |S(i,j)

2 |,
∑

Λ |S
(i,j),Λ
1 | = |S(i,j)

1 |, and
∑

Λ σ
b
jki = σa

jki. The

first two are clear. To show the last equality: first note that if Λ is disjoint from the edge

j, then bj = 0 and thus σb
jki = 0. So we only need to consider those Λ that intersect j. Let

Λr (1 ≤ r ≤ aj) be the pipeline that intersects j at the r-th marking point (ordered in the

increasing distance to the common endpoint of j and k). If r ≤ σa
jki, then (bj, bk, bi) = (1, 1, 0),

thus σb
ijk = 1; otherwise, either bj = 0 or bk = 0, thus σb

ijk = 0. Therefore
∑

Λ σ
b
jki = σa

jki.

(iii) We show that x′[b] = x[b]. By Remark 3.2.4, it suffices to show that, in the setting

of Theorem 4.1.4, the right hand side of (4.1) is equal to x′[a]. It breaks down to show that,

for i′ ∈ [0, n], the following equality holds for the i′-th 3-cycle i → j → k → i in Q′ (for

i′ ∈ [1, n − 1], the i′-th 3-cycle is the one that contains vertices vi, vi+1 and vi,i+1; the 0-th

3-cycle is v1 → v1,0 → v1,1 → v1; the n-th 3-cycle is vn → vn,0 → vn,1 → vn):

(
x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j

)(
x

∣∣S(j,k)
2

∣∣
j x

∣∣S(j,k)
1

∣∣
k

)(
x

∣∣S(k,i)
2

∣∣
k x

∣∣S(k,i)
1

∣∣
i

)
· x−σjkii x

−σkij
j x

−σijk
k = yi′ (5.4)

We shall only prove the case when i′ ∈ [1, n − 1] and δi′ = 0, because other cases can be

proved in a similar way. In this case, the i′-th 3-cycle is vi → vi+1 → vi,i+1 (where i = i′),

and the left hand side of (5.4) is equal to

(
x

∣∣Si,2∣∣
i x

∣∣Si,1∣∣
j

)(
x0
jx

1−
∣∣Si,2∣∣

k

)(
x

1−
∣∣Si,1∣∣

k x0
i

)
· x−1

k = x

∣∣Si,2∣∣
i x

∣∣Si,1∣∣
j x

1−
∣∣Si,1∣∣−∣∣Si,2∣∣

k = yi′ .

So (5.4) holds.
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5.4.2 Proof that Theorem 5.2.2 implies Theorem 5.1.1

We give a bijection between GCSs and GCCs. Let s be a GCS. Consider a 3-cycle i →

j → k → i, labeled in the way that d(k) < d(i) < d(j). Then we define

S
(k,i)
1 = {ur ∈ D(k,i)

1

∣∣sk,r = 1}, S
(k,i)
2 = {vr ∈ D(k,i)

2

∣∣si,r = 0}

S
(i,j)
1 = {ur ∈ D(i,j)

1

∣∣si,ai+1−r = 1}, S
(i,j)
2 = {vr ∈ D(i,j)

2

∣∣sj,r = 0}

S
(j,k)
1 = {ur ∈ D(j,k)

1

∣∣sj,aj+1−r = 1}, S
(j,k)
2 = {vr ∈ D(j,k)

2

∣∣sk,ak+1−r = 0}

It is then easy to check that the conditions of GCSs and GCCs, as well as the two theorems,

are equivalent under this bijection.
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CHAPTER 6. EXAMPLES

In this chapter, we give two examples to illustrate the computation of cluster variables

and cluster monomials using methods introduced in previous sections.

6.1 All cluster variables of a type A quiver

We compute some cluster variables of A(Q), where Q is the following type A quiver.

2

1

5

6

3 4

7

As observed in Remark 4.1.5, the set of non-initial cluster variables is in one-to-one

correspondence with the set of d-vectors a = (a1, . . . , an), where ai ∈ {0, 1} and {i | ai = 1}

is the vertex set of a linear full subquiver of Q. So we can compute all cluster variables using

Theorem 4.1.4.

For example, we consider the d-vector a = (1, 1, 1, 0, 0, 0, 0). Then the subset of vertices

{i|ai = 1} is equal to the set of vertices Q0 of the full linear subquiver Q = 1→ 2← 3. It is

a subquiver of an extended linear subquiver P and after completing P , we get a completely

extended linear quiver Q′ as shown in Figure 14.

1

5

2 3

6

4

1

8

9
5

2 3

6

4

10

Figure 14: P and its completed version Q′

In P , we have v1,2 = 5, v2,3 = 6, v3,0 = 4. Two 3-cycles are added and the new vertices are

v1,0 = 8, v1,1 = 9 and v3,1 = 10.
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All GCCs are described as follows.

β1 =
x2

x1 x3

x2

, x(β1) = (x5x6x9x10)/(x1x2x3)

β2 =
x2

x1 x3

x2

, x(β2) = (x2x4x5x9)/(x1x2x3)

β3 =
x2

x1 x3

x2

, x(β3) = (x2x6x8x10)/(x1x2x3)

β4 =
x2

x1 x3

x2

, x(β4) = (x2
2x4x8)/(x1x2x3)

β5 =
x2

x1 x3

x2

, x(β5) = (x1x3x9x10)/(x1x2x3)

The cluster variable of A(Q′) with d-vector (1, 1, 1, 0, 0, 0, 0, 0, 0) is

5∑
i=1

x(βi) =
x5x6x9x10 + x2x4x5x9 + x2x6x8x10 + x2

2x4x8 + x1x3x9x10

x1x2x3

.

Setting x8 = x9 = x10 = 1, we get the following cluster variable of A(Q):

x[1, 1, 1, 0, 0, 0, 0] =
x5x6 + x2x4x5 + x2x6 + x2

2x4 + x1x3

x1x2x3

.

The table below shows some d-vectors and their corresponding cluster variables of A(Q).

(1,0,0,0,0,0,0)
x2 + x5

x1

(1,1,0,0,0,0,0)
x1x3 + x2x6 + x5x6

x1x2

(0,1,0,0,0,0,0)
x1x3 + x5x6

x2

(0,1,1,0,0,0,0)
x1x3 + x2x4x5 + x5x6

x2x3

(0,0,1,0,0,0,0)
x2x4 + x6

x3

(0,0,1,1,0,0,0)
x2x4 + x3x6 + x6

x3x4

(0,0,0,1,0,0,0)
1 + x3

x4

(1,0,0,0,1,0,0)
x1 + x2 + x5

x1x5

(0,0,1,0,0,1,0)
x2x4 + x6 + x3x4x7

x3x6
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(1,1,1,0,0,0,0)
x5x6 + x2x4x5 + x2x6 + x2

2x4 + x1x3

x1x2x3

(0,1,1,0,1,0,0)
x1x3 + x2x3 + x2x4x5 + x5x6

x2x3x5

(0,1,1,1,0,0,0)
x1x3 + x1x

2
3 + x2x4x5 + x5x6 + x3x5x6

x2x3x4

(0,0,1,1,0,1,0)
x2x4 + x6 + x3x6 + x3x4x7

x3x4x6

(1,1,1,1,0,0,0)
x1x3 + x1x

2
3 + x2

2x4 + x2x4x5 + x2x6 + x2x3x6 + x5x6 + x3x5x6

x1x2x3x4

6.2 A cluster monomial of a type A quiver

We compute x[2, 2, 2], the cluster monomial with d-vector (2, 2, 2) of A(Q), where

21

3
Q =

– Using formula (5.2): choose i0 = 1. Then d(1) = 0, d(2) = 1, d(3) = 2, σ123 = σ231 =

σ312 = 1. A GCS s = (s1, s2, s3) satisfies

(s1,1, s2,1), (s3,2, s1,2), and (s2,2, s3,1) 6= (1, 0).

For instance, such a GCS can be

s = (s1, s2, s3) =

 1

1

,
0

1

,
1

1

 .

Doing some computations, we have

|s1| = 2, |s̄1| = 0,

|s2| = 1, |s̄2| = 1,

|s3| = 2, |s̄3| = 0.
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That implies

e1 = |s̄2|+ |s3| − σ231 = 2,

e2 = |s̄3|+ |s1| − σ312 = 1,

e3 = |s̄1|+ |s2| − σ123 = 0.

Hence

∏
i

xeii = x2
1x2.

Computing all possible GCSs gives x[2, 2, 2] = x−2
1 x−2

2 x−2
3 (x1 + x2 + x3)3. (It’s not hard

to see that x[2, 2, 2] has 27 terms; indeed, since each pair has 3 choices (0, 0), (1, 1), (0, 1),

the total number of GCSs is 3× 3× 3 = 27.)

– Using formula (5.3): Corresponding to each arrow 1 → 2, 2 → 3, or 3 → 1, we have a

Dyck path of size 2× 2.

u1
v1

u2
v2

A GCC is chosen by following the rules:

• we do not choose both u1 and v1 in each Dyck path,

• we choose vr in the i-th Dyck path if and only if we do not choose u3−r in the (i+1)-th

Dyck path for r = 1, 2 (by convention, the 4th Dyck path is the 1st one).

For example, we have a GCC.

x1

x2
x1

x2
x1

x3
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Now we compute the corresponding product of this GCC. We have

∏
i→j

x

∣∣S(i,j)
2

∣∣
i x

∣∣S(i,j)
1

∣∣
j = x

|S(1,2)
2 |

1 x
|S(1,2)

1 |
2 · x|S

(2,3)
2 |

2 x
|S(2,3)

1 |
3 · x|S

(3,1)
2 |

3 x
|S(3,1)

1 |
1

= x2
1x2 · x2 · x1x3

= x3
1x

2
2x3

and

∏
i→j→k→i

x
−σjki
i = x−σ231

1 x−σ312
2 x−σ123

3 = x−1
1 x−1

2 x−1
3 .

Hence (∏
i→j

x

∣∣S(i,j)
2

∣∣
i

)
·
∏

i→j→k→i

x
−σjki
i = x3

1x
2
2x3 · x−1

1 x−1
2 x−1

3 = x2
1x2.

Computing on all possible GCCs gives

x[2, 2, 2] = x−2
1 x−2

2 x−2
3 (x1 + x2 + x3)3.

– Using formula (4.1): first observe that there are 3 pipelines as shown in Figure 15.

1 2

3

Figure 15: Pipelines

According to §5.3, x[2, 2, 2] is decomposed as the product of x[1, 1, 0], x[0, 1, 1] and

x[1, 0, 1]. Now we compute x[1, 1, 0] using Theorem 4.1.4. The pair (|S1,1|, |S1,2|) can be

(1, 0), (0, 1) or (0, 0). Correspondingly, we have (y1, y0, y2) = (x1, x1,0, x2,0), (x2, x1,1, x2,1) or
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(x1,2, x1,1, x2,0). Then

x[1, 1, 0] = (x−1
1 x−1

2 )
∑

y0y1y2

= (x−1
1 x−1

2 )(x1x1,0x2,0 + x2x1,1x2,1 + x1,2x1,1x2,0)

= (x−1
1 x−1

2 )(x1 + x2 + x3)

where the last equality is obtained by setting x1,2 = x3 and x1,0 = x1,1 = x2,0 = x2,1 = 1.

Similarly,

x[0, 1, 1] = (x−1
2 x−1

3 )(x1 + x2 + x3),

x[1, 0, 1] = (x−1
1 x−1

3 )(x1 + x2 + x3).

Thus x[2, 2, 2] = x−2
1 x−2

2 x−2
3 (x1 + x2 + x3)3.
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Lots of research focuses on the combinatorics behind various bases of cluster algebras.

This dissertation studies the natural basis of a type A cluster algebra, which consists of

all cluster monomials. We introduce a new kind of combinatorial formulas for the cluster

monomials in terms of the so-called globally compatible collections. We give bijective proofs

of these formulas by comparing with the well-known combinatorial models of the T -paths

and of the perfect matchings in a snake diagram.
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