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CHAPTER 1 INTRODUCTION

Survival analysis [41] [54] studies the time to event data wherein the observation

starts from a particular starting time and will continue until the occurrence of a cer-

tain event or a predefined time point. In the healthcare domain, for example, the

starting point of the observation is normally a medical intervention such as a hospital-

ization, the beginning of taking a certain medication or a diagnosis of a given disease.

The event might be death, discharge from the hospitalization or any interesting event

that can happen during the observation period. The missing trace of observation is a

key characteristic of survival data; for example, during the hospitalization some pa-

tients may change to an other hospital. Survival analysis is useful whenever someone

is interested not only in the frequency of a particular type of event, but also in the

time process underlying such an occurrence. In the healthcare field, survival predic-

tion models mainly aim at estimating the failure time distribution and point out the

prognostic evaluation of different variables, jointly or singularly considered [56], such

as biochemical, histological and clinical characteristics [52].

The prominent prediction methods in survival analysis can be categorized into

three types: Cox-based, parametric censored regression, and linear models. The Cox

proportional hazards model [18] is one of the earliest and most widely used survival

analysis methods which has garnered significant interest from researchers in both

statistics and data mining communities. To deal with high-dimensional data, some

regularization methods are proposed. These methods include LASSO-COX [70] which

introduces the L1 norm penalty in the partial log-likelihood loss function, Elastic-Net

Cox (EN-COX) [65] which uses the elastic net penalty term and the kernel elastic net

penalized Cox regression [75] which modifies the elastic net penalty using a kernel

matrix.

However, the Cox model and its extensions are built based on the proportional
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hazards hypothesis, i.e., it assumes that the hazard ratio between two instances is

constant in time. This hypothesis indicates that the survival curves of all instances

share a similar shape which is not realistic in most of the real-world applications.

Also, the Cox model does not predict the survival time directly but rather aims at

modeling the hazard ratio. To predict the survival time, a baseline hazard function

has to be estimated separately and this estimation will induce more prediction errors.

When tied observations (survival times of multiple instances is exactly the same) occur

during the study, Cox model has to use some approximation methods which suffer

from either inducing bias (Breslow’s approximation and Efron’s approximation [24])

or bad scalability (Discrete method [67]).

Apart from the Cox model, linear regression is another important branch of sur-

vival analysis. Strictly speaking, linear regression is a specific parametric censored

regression; we group linear censored regression models separately because linear re-

gression is the fundamental method in data analysis. Because of censoring, the least-

squares estimator cannot be directly used in survival analysis. The Tobit model [71]

is the earliest attempt to extend the linear regression for data analysis with censored

observations. Later, Buckley-James (BJ) estimator [12] is proposed to solve survival

prediction with the combination of the Kaplan-Meier (KM) estimator [39] (which is a

non-parametric model). Recently, Wang et al. [78] applied the elastic net penalty to

the BJ regression (EN-BJ) for efficiently handling the high-dimensional survival anal-

ysis problems. However, these approximation methods will induce bias into the final

model since the actual survival times of censored instances cannot be observed. It

induces bias because the KM estimation cannot accurately estimate the survival time

of censored instances, and this estimated inaccurate survival time will be used to train

the model. This makes the prediction problem more complex because the survival

time of censored instances are calculated using the integral of the KM estimator.
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We propose the Regularized Weighted Residual Sum-of-Squares “RWRSS” al-

gorithm to handle the survival prediction with censored instances in high-dimensional

data. In contrast to the Tobit regression model, we solve the prediction problem by

optimizing the desired objective function directly rather than doing a maximum like-

lihood estimation. The loss function that is optimized is regularized using the elastic

net penalty which can induce the required sparsity and efficiently handle the high-

dimensionality. Comparing with the BJ and EN-BJ methods, our model does not

need to compute the KM estimator to approximate the survival time of censored

instances during the training process.

Parametric censored regression provides an important alternative to the Cox-based

models. Parametric censored regression methods assume that the survival times (Case

1) or the logarithm of the survival times (Case 2) of all instances in the data follow a

particular distribution [43], and that there exists a linear relationship between the pa-

rameters of the selected distributions and the features. Thus, these regression models

can be viewed as generalized linear models. The latter case, namely Case 2, is also

termed as Accelerated failure time (AFT) models [81] because they assume that the

covariate will accelerate or decelerate the time to the event of interest. Weibull distri-

bution, logistic distribution, log-normal distribution, and log-logistic distribution [43]

are the commonly used distributions in parametric censored regression and the last

two are considered to be the AFT models. The prediction performance of parametric

censored regression is highly dependent on the choice of distribution. However, if

the distribution can be inferred the parametric methods will be very efficient. To

enable parametric models handel high-dimensional survival analysis problem we pro-

posed a Unified model for Regularized Parametric Censored Regression “URPCR”

which utilize elestic net as the regularization term and unifies the learning process of

regularized parametric censored regression with different probability distribution.
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The two models we proposed partially overcome some weaknesses of Cox-based

model. However, these two models and all parametric regression based models are

highly dependent on the choice of distribution. However, in real-world applications

there are too many complex interactions and scenarios that can affect the event

of interest in various ways; thus, in practice, choosing an appropriate theoretical

distribution to approximate survival data is very difficult, if not impossible.

To overcome these weaknesses of all the above types of methods, we propose the

“MTLSA” model, which is stands for “Multi-Task Learning model for Survival

Analysis”. We formulate the original survival time prediction problem into a multi-

task learning problem. The primary motivation of using multi-task learning is because

of its ability to learn a shared representation across related tasks and reduce the pre-

diction error of each task. Thus, the model can provide a more accurate estimation

of whether an event occurs or not at the beginning of each time interval which will

thus provide an accurate estimation of the survival time for each instance. Another

advantage of using multi-task learning for survival time estimation is because it trans-

lates the regression problem into a series of related binary classification problems, and

in each time interval the corresponding classifier only focuses on modeling the local

problem and hence provides a more accurate estimation than the regression models

which aim at modeling the entire problem at once. Our model is built without any

additional hypothesis except linear hypothesis, i.e., the feature and target exhibit a

linear relationship, unlike the Cox proportional hazards model and parametric cen-

sored regression models.

Collecting labeling information of time-to-event data is very time consuming, i.e.,

one has to wait for the occurrence of the event of interest from sufficient number of

training instances to build robust models. Moreover, in many practical applications,

appropriate feature collection can also be extremely expensive and tedious. To over-
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Model Assumption Trend
Linear Model

(RWRSS)
Survival time is linearly 
distributed

Generalized Linear Model
(URPCR)

Survival function follows a 
certain distribution

Multi-task Formulation
(MTLSA)

No assumption on survival 
time or survival function

More 
universal

Do we have 
auxiliary data ? 

Transfer 
Learning Model

(COX-𝒍𝟐,𝟏)

No Yes

Figure 1.1: The relationship of the models proposed in this thesis.

come the challenge of insufficient uncensored instances, we propose a transfer learning

based Cox method, called Cox-l2,1, which uses auxiliary data to augment learning

when there are insufficient number of training examples. The proposed method aims

to extract “useful” knowledge from the source domain and transfer it to the target

domain, thus potentially improving the prediction performance in such time-to-event

data. The proposed method uses the l2,1-norm penalty to encourage multiple pre-

dictors to share similar sparsity patterns, thus learns a shared representation across

source and target domains, potentially improving the model performance on the tar-

get task. With the help of a risk set updating method [65], the proposed Cox-l2,1

algorithm achieves a linear time complexity with respect to both training sample size

and feature dimensionality. In addition, to speedup the computation, we apply the

screening approach and extend the strong rule to sparse survival analysis models in

multiple high-dimensional censored datasets.

Figure 1.1 summarize the relationship of the four models proposed in this thesis.

There are three standard survival prediction models and one transfer learning model.

If the auxiliary data is available then the transfer learninig model, Cox-l2,1, can be

used to improve the prediction performance of the target task. However, if there
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is no avliable auxiliary data then these three proposed standard survival prediction

models can be used to predict the survival time. These three models are ordered as

they become more generalized; the RWRSS is built based on a strict assumption,

the survival time is linearly distributed; the URPCR model is built based on a little

more general assumption that the distribution of survival function follows a certain

theoretical statistical distribution; and the MTLSA is built without any specific

assumption on either survival time or survival function and hence it works well in more

number of time-to-event datasets than the RWRSS and URPCR model. However,

if the dataset happens to meet the assumptions in RWRSS or URPCR model then

they will perform better than the MTLSA model.

1.1 Contributions

The main contributions of this thesis are summarized as follows:

• Introduce some basic concepts in survival analysis and provide a comprehensive

review of different categories of survival prediction methods.

• Propose a regularized weighted linear regression model for high-dimensional

survival analysis.

• Propose a regularized parametric censored regression model for high-dimensional

survival analysis.

• Formulate the survival analysis as a multi-task learning problem and propos an

novel method for solving it.

• Propose a novel transfer learning method Cox-l2,1 for survival analysis which

can select a subset of joint features to transfer the knowledge from the source

domain to the target domain in the presence of censored data.

• Demonstrate the performance of the proposed methods using high-dimensional

gene expression datasets from various cancer patients, and comprehensively

compare our proposed models with the existing state-of-the-art methods avail-
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able in the survival analysis literature.

1.2 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 explains the basic concept

of survival analysis with some standard prediction methods in survival analysis. In

Chapter 3, we propose a regularized weighted linear regression for high-dimensional

survival analysis. In Chapter 4, we propose a regularized parametric censored regres-

sion for high-dimensional survival analysis. In Chapter 5, we propose a multi-task

learning formulation for survival analysis. In Chapter 6, we propose a transfer learning

methods for survival analysis. Chapter 7 concludes the previous work and discusses

some future research directions.
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CHAPTER 2 EXISTING METHODS IN

SURVIVAL ANALYSIS

In this chapter, we will first introduce some basic concepts and functions and then

briefly go through some popular methods used in survival analysis.

Survival analysis is an important branch of statistics which aims at predicting the

time to the event of interest, and it can simultaneously model event data and censored

data. In survival data the event of interest may not always be observed during the

study; this scenario happens because of time limits or missing traces caused by other

uninteresting events. This concept is known as censoring [41]. Let us consider a

small number of N cancer patients to predict the time to patient death, which is the

event of interest in this problem, after diagnosed date, and suppose the observation

starts at 01/01/2015 and ends at 12/31/2015. Thus, the time to the patient death is

known precisely only for those subjects who will have the event during our observation

window. For the remaining patients, it is only known that the event of interest will

happens after 12/31/2015 but not exact time. Also during this observation time, we

lose track of some patients because of moving out of the area or other reasons. Both

of these scenarios are considered as censoring in this particular example. Figure 2.1

provides a more intuitive way to describe the idea of censoring.

For each data instance, we observe either a survival time (Oi) or a censored time

(Ci), but not both. The dataset is said to be Right Censored if and only if Ti =

min(Oi, Ci) can be observed during the study [62]; otherwise, if Ti = max(Oi, Ci), it

is called as Left Censoring. Practically, in many real-world domains, the majority of

the survival data is right censored [52]. An instance in the survival data is usually

represented by a triplet (Xi, Ti, δi), where Xi is a 1 × p feature vector; δi is the

censoring indicator, i.e. δi = 1 for an uncensored instance, and δi = 0 for a censored

instance; and Ti denotes the observed time and is equal to the survival time Oi for
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Figure 2.1: Example of censoring: Figure 2.1 (a) shows the observation of four patients
during the calendar year and the Figure 2.1 (b) shows the corresponding four patients
under the study time, where the diagnosed date is the starting time. Patient 1 and 3
have died during the observation window, so they are uncensored instances. Patient 2
and 4 are still alive at the end of observation window, so they are censored instances.

uncensored instances and Ci otherwise, i.e.,

Ti =

 Oi if δi = 1

Ci if δi = 0
(2.1)

For censored instances, Oi is a latent value, and the goal of survival analysis is to

model the relationship between Xi and Oi by using the triplets (Xi, Ti, δi) for censored

and uncensored instances.

2.1 Basic Functions of Survival Analysis

In survival analysis, a subject in survival data is usually represented by a triple of

variables (Xi, Ti, δi), where Xi is the feature vector, and δi is an indicator. δi = 1 if

Ti is the time to the event of interest and δi = 0 if Ti is the censored time. The object

of primary interest of survival analysis is the survival function S(t) = Pr(O ≥ t),
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which is the probability that the time to the event of interest is no earlier than some

specified time t [41]. In contrast, the cumulative death distribution function F (t) is

defined as F (t) = 1 − S(t), which represents the probability of time to the event of

interest is less than t, and death density function f(t) is defined as f(t) = d
dt
F (t)

for continuous scenarios, and f(t) = F (t+∆t)−F (t)
∆t

, where ∆t is a short time interval,

for discrete scenarios. One other function commonly used in survival analysis is the

hazard function (λ(t)), which is also known as the force of mortality, the conditional

failure rate, or the instantaneous death rate [23]. The hazard function is not the

chance or probability of the event of interest, but instead it is the event rate at time

t conditional on survival until time t. Mathematically, the hazard function is defined

as:

λ(t) = lim
∆t→0

Pr(t ≤ O < t+ ∆t | O ≥ t)

∆t

= lim
∆t→0

F (t+ ∆t)− F (t)

∆t · S(t)

=
f(t)

S(t)
(2.2)

Consider the definition of f(t), which can also be expressed as f(t) = − d
dt
S(t), so the

hazard function can be represented as:

λ(t) =
f(t)

S(t)
= − d

dt
S(t) · 1

S(t)
= − d

dt
[lnS(t)]. (2.3)

Thus, the survival function can be rewritten as S(t) = exp(−Λ(t)), where Λ(t) =∫ t
0
λ(u)du is the cumulative hazard function (CHF) [43]. The relationship among

these functions can be clearly described in Figure 2.2.
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Figure 2.2: Relationship between f(t), F (t), and S(t).

2.2 Non-Parametric Methods for Survival Estima-

tion

Non-parametric or distribution-free methods are quite easy to understand and

apply. They are less efficient than parametric methods when survival times follow a

theoretical distribution and more efficient when no suitable theoretical distributions

are known. In this section, we will introduce non-parametric methods for estimating

the survival probabilities for censored data. Among all functions, the survival function

or its graphical presentation, the survival curve, is the most widely used one. In 1958,

Kaplan and Meier [39] developed the product-limit estimator or the Kaplan-Meier

Curve to estimate the survival function based on the actual length of observed time.

Let O1 < O2 < ... < OK , K ≤ N , is a set of distinct survival times observed in

N individuals; in a certain time Oj (j = 1, 2, ..., K), the dj ≥ 1 number of deaths

are observed, and the rj number of subjects, whose either death or censored time is

greater than or equal to Oj, are considered to be “at risk”. The obvious conditional
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probability of surviving beyond time Oj can be defined as: p(Oj) =
rj−dj
rj

, and the

survival function at t is estimated by the following product

Ŝ(t) =
∏
j:Oj<t

p(Oj) =
∏
j:Oj<t

(1− dj
rj

) (2.4)

and its variance is defined as:

V ar(Ŝ(t)) = Ŝ(t)2
∑
j:Oj<t

dj
rj(rj − dj)

(2.5)

It is worth noting that because of the censoring, rj is not simply equal to the difference

between rj−1 and dj−1; the correct way to calculate rj is rj = rj−1−dj−1−cj−1, where

cj−1 is the number of censored cases between Oj−1 and Oj.

However, if the data is already grouped into intervals, or if the sample size is

very large, it may be more convenient to perform a Clinical Life Table analysis [20].

Where the total number of N subjects are partitioned into J intervals based on the

observed time, and the survival function is estimated based on a similar way as done

in the Kaplan-Meier Curve.

2.3 Semi-Parametric Methods for Survival Esti-

mation

The Cox proportional hazard model [18] is the most commonly used model in sur-

vival analysis. Unlike parametric methods, this model does not require knowledge of

the underlying distribution, but the attributes are assumed based on an exponential

influence on the output. The baseline hazard function in this model can be an arbi-

trary nonnegative function, but the baseline hazard functions of different individuals

are assumed to be the same. The estimation and hypothesis testing of parameters in

the model can be calculated by minimizing the negative partial likelihood function
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rather than the ordinary likelihood function.

2.3.1 The Basic Cox Model

Let N be the number of subjects in the survival analysis, and each of the individual

can be represented by a triplet of variables (Xi, Ti, δi). Consider an individual specific

hazard function λ(t,Xi) in the Cox model the proportional hazard assumption is

λ(t,Xi) = λ0(t)exp(Xiβ) (2.6)

for i = 1, 2, ..., N , where the λ0(t) is the baseline hazard function, which can be an

arbitrary non-negative function of time, Xi = (xi1, xi2, ..., xip) is the corresponding

covariant vector for individual i, and βT = (β1, β2, ..., βp) is the coefficient vector.

The Cox model is a semi-parametric model since it does not specify the form of λ0(t).

In fact, the hazard ratio does not depend on the baseline hazard function; for two

individuals the hazard ratio is

λ(t,X1)

λ(t,X2)
=
λ0(t)exp(X1β)

λ0(t)exp(X2β)
= exp[(X1 −X2)β] (2.7)

Since the hazard ratio is a constant, and all the subjects share the same baseline

hazard function, the Cox model is a proportional hazard model. Based on this as-

sumption the survival function is given by

S(t) = exp(−Λ0(t)exp(Xβ)) = S0(t)exp(Xβ) (2.8)

where Λ0(t) is the cumulative baseline hazard function, and S0(t) = exp(−Λ0(t)) is

the baseline survival function.
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2.3.2 Estimation of the Regression Parameter

Since in the Cox proportional hazard model, the baseline hazard function λ0(t)

is not specified, it is impossible to fit the model based on the standard likelihood

function. To estimate the coefficient, Cox [18] proposed a partial likelihood which

represents the data only depending on the β. Consider the definition of the hazard

function, the probability that an individual with covariantX fails at time t conditional

on survival until time t can be expressed as λ(t,X)dt, dt → 0. Again, let N be the

number of subjects who have a total number of J ≤ N events of interest occurring

during the observation, and O1 < O2 < ... < OJ is the distinct ordered times to the

event of interest. Without considering the ties, let Xj be the corresponding covatiate

vector for the individual who fails at time Oj, and R(Oj) be the set of subjects at

time Oj. Thus, conditional on the fact that one individual is observed to fail at Oj,

the probability that its corresponding covariant is Xj is

λ(Oj, Xj)dt∑
i∈R(Oj)

λ(Oj, Xi)dt
(2.9)

and the partial likelihood is the product of this probability; referring to the Cox

assumption and the existence of censoring, the definition of the partial likelihood is

given by

L(β) =
N∏
j=1

[
exp(Xjβ)∑
i∈Rj exp(Xiβ)

]δj
(2.10)

It should be noted that here j = 1, 2, ..., N ; if δj = 1, the jth term in the product

is the conditional probability; otherwise, when δj = 0, the corresponding term is 1

and has no effect on the result. The estimated coefficient vector β̂ can be calculated

by maximizing this partial likelihood; to achieve a better time efficiency, it is usually
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equivalently estimated by minimizing the negative log-partial likelihood

LL(β) =
N∑
j=1

δj{Xjβ − log[
∑
i∈Rj

exp(Xiβ)]} (2.11)

2.3.3 Penalized Cox models

Currently, with the development of medical procedures and detection methods,

electronic health records (EHR) tend to have more features than before. In some case,

the number of features (P ) is almost equivalent to or even larger than the number

of subjects (N); it is unnecessary or even wrong to fit the prediction model with all

the features because of the overfitting [34]. The primary motivation of using sparsity

inducing norms is that in high dimensions, it is wise to proceed under the assumption

that most of the attributes are not significant, and it can be used to identify the vital

features in prediction [29]. In biomedical data analysis, the sparsity inducing norms

are also widely used to penalize the loss function [83]. Consider the Lp norm penalty;

the smaller the p that is chosen, the sparser the solution, but when 0 ≤ P < 1, the

penalty is not convex, and the solution is difficult and often impossible. Commonly,

the penalized methods have also been used to do feature selection in the scenarios

when N > P . In the following paragraph, we will introduce three commonly used

penalty functions and their applications in the Cox proportional hazard model.

Lasso [68] is a L1 norm penalty which can select at most K = min(N,P ) features

while estimating the regression coefficient. In [70], the Lasso penalty was used along

with the log-partial likelihood to obtain the Cox-Lasso algorithm.

β̂lasso = min
β
− 2

N

 N∑
j=1

δjXjβ − δjlog

∑
i∈Rj

eXiβ

+ λ
P∑
p=1

|βp| (2.12)

Elastic Net is a combination of the L1 and squared L2 norm penalties to obtain
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both sparsity and handle correlated feature spaces [86]. For Cox-Elastic Net, Noah

Simon et al. [65] implemented the Elastic Net to penalize the log-partial likelihood

function

β̂elastic net = min
β
− 2

N

 N∑
j=1

δjXjβ − δjlog

∑
i∈Rj

eXiβ


+ λ

[
α

P∑
p=1

|βp|+
1

2
(1− α)

P∑
p=1

β2
p

]
(2.13)

where 0 ≤ α ≤ 1. Different from Cox-Lasso, Cox-Elastic Net can select more than N

features if N ≤ P .

Ridge regression was proposed by Hoerl and Kennard [32] and introduced to Cox

regression by verweij et al. [74]. It is a L2 norm regularization that tends to select all

the correlated variables, and shrink their values towards each other. The regression

parameters of Cox-Ridge can be estimated by

β̂ridge = min
β
− 2

N

 N∑
j=1

δjXjβ − δjlog

∑
i∈Rj

eXiβ

+
λ

2

P∑
p=1

β2
p (2.14)

In all the three equations (2.12, 2.13, 2.14), λ ≥ 0 is used to adjust the influence

introduced by the penalty. The performance of these penalized estimator depends

strongly on λ, and the optimal λopt can be chosen via cross-validation.

2.3.4 CoxBoost

CoxBoost was proposed in [7] to estimate parameter vector (β) in the Cox pro-

portional hazards model. In each boosting step, the CoxBoost adaptively selects

a flexible subset of covariates to update the corresponding parameters. In the kth

boosting step, the Newton-Raphson step will be separately used for gk predetermined

candidate sets of covariates and the corresponding elements of β will be updated
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based on the candidate set which maximizes the improvement of the overall fit of the

log-partial likelihood. Let us denote the chosen set using φ, the updated estimated

coefficient β̂(k) of kth boosting step can be calculated as:

β̂(k) =


β̂

(k−1)
j + γ̂

(k)
j j ∈ Φ

β̂
(k−1)
j j 6∈ Φ

∀j = 1, · · · , p (2.15)

where γ̂
(k)
j is the element of the Newton-Raphson updating in kth boosting step. In

addition, the chosen set Φ will not be considered as candidate set in the next boosting

step. Thus, in the (k + 1)st boosting step, β will be updated based on the remaining

(gk − 1) predetermined candidates sets of covariates.

2.4 Parametric Methods

Parametric methods for estimating the survival probability are efficient and accu-

rate when survival times follow a particular distribution. Unlike the Cox proportional

hazard model, in parametric methods, a complete likelihood function can be solved

directly, and the parameters can be estimated using maximum-likelihood estimation

(MLE) [43]. We now discuss the generic MLE procedure [19] used for survival data

with censored observations.

Consider a set of N instances out of which there are c censored observations

and (N − c) uncensored observations. For convenience, we use the general notation

b = (b1, b2, · · · , bp) to represent a set of parameters and assume that the survival

times follow a probability distribution with survival function S(t,b) and death den-

sity function f(t,b). If the ith instance is a censored observation, then it is not

possible to obtain the actual survival time; however, it can be concluded that the

event of interest did not occur until the censored time Ci, so S(Ci,b) should be a

probability value that is close to 1. On the contrary, if the ith instance is an uncen-
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sored observation with survival time Oi, then f(Oi,b) should be a high probability

value. Thus, we can use
∏

δj=1 f(Ti,b) to represent the joint probability of the (N−c)

uncensored observations and
∏

δj=0 S(Ti,b) to represent the joint probability of the

c right-censored observations. Therefore, the likelihood function of all N instances is

given by

L(b) =
∏
δi=1

f(Ti,b)
∏
δi=0

S(Ti,b) (2.16)

Note that b is not the feature coefficient vector but the parameters of the assumed

distribution. These models assume that there is a linear relationship between the

feature vector and the theoretical distribution parameters, in other words, bk = Xβ

where bk is a theoretical distribution parameter and β is the coefficient vector. We can

see that the parametric censored regression methods can be viewed as an extension of

the standard parametric regression methods; if there are no censored observations, the

censored regression methods will automatically reduce to the corresponding standard

regression methods.

Choosing an appropriate theoretical distribution to approximate the success curve

is a critical component of the parametric methods [44]. However, since the distribution

is not known apriori, one has to fit different models to the data in the best possible

manner. Table 1 shows the density, survival, and hazard functions of some commonly

used distributions for parametric survival regression. We will discuss their details in

subsequent paragraphs.

Weibull Distribution: The Weibull model is the most widely used parametric

survival model. It’s hazard function is in the form of

h(t) = λptp−1 (2.17)

where λ > 0. p is a shape parameter and determines the shape of the hazard function.
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Table 2.1: Density, Survival and Hazard functions for commonly used distributions.

Distribution PDF f(t) Survival S(t) Hazard h(t)

Weibull λk(λt)k−1exp(−(λt)k) exp((−λt)k) λktk−1

Exponential λexp(−λt) exp(−λt) λ

Log-logistic λptp−1(1 + λtp)−2 1
1+λtp

λptp−1

1+λtp

Log-normal 1√
2πσt

exp(− (ln(t)−µ)2

2σ2 ) exp(µ+ σ2

2
) exp(2µ+ σ2)(exp(σ2)− 1)

Gamma λktk−1e−λt

Γ(k)
1−

∫ t
0 σ

k−1e−σdσ

Γ(k)
λktk−1e−λt

(1−
∫ t
0 σ

k−1e−σdσ
Γ(k)

)Γ(k)

If p = 1, the hazard is constant and the Weibull model will become the exponential

model with h(t) = λ. If p < 1, the hazard decreases over time. The Weibull model is

more flexible than the exponential model due to the shape parameter p.

There are two important properties for Weibull model. One is that if the AFT

assumption holds then the PH assumption also holds. In addition, based on the

survival function S(t) = exp(−λtp) for Weibull model, we can have

ln[−lnS(t)] = ln(λ) + pln(t) (2.18)

where t denotes time. It means that for Weibull model ln[−lnS(t)] is a linear function

of ln(t) with slope p and intercept ln(λ). By this key property, we can also evaluate

the Weibull model by plotting this linear relationship.

Exponential Distribution: Exponential model is the simplest parametric sur-

vival model in that the hazard is constant over time, which means h(t) = λ. However,

the assumption that the hazard is constant for each pattern of covariates is a much

stronger assumption than the PH assumption. If the hazards are constant, then the

ratio of the hazards will remain constant as well. However, the hazard ratio being

constant does not necessarily mean that each hazard is constant. In other words, the

baseline hazard function in Cox model is not specified, but it is a PH model.
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The regression coefficients are estimated using maximum likelihood estimation

(MLE), and are asymptotically normally distributed.

It should be noted that, parametric survival models need not to be PH models.

Many parametric models are acceleration failure (AFT) models rather than PH mod-

els. The exponential and Weibull distributions can accommodate both the PH and

AFT assumptions. The interpretation of the estimated results, it also differs for AFT

models and PH models. The goal to compare the hazards for PH model, while AFT

is applicable for a comparison of survival times.

Log-logistic Distribution: Log-logistic distribution parametric censored regres-

sion model accommodates an AFT model but not a PH model. In contrast to Weibull

model, its hazard function allows for some non-monotonic behavior in the hazard

function, which is in the form of

h(t) =
λptp−1

1 + λtp
(2.19)

where p > 0 is the shape parameter. If p ≤ 1, the hazard decreases over time. If

p > 1, however, the hazard increases to a maximum point and then decreases over

time, which means that the hazard function is unimodal if p > 1.

The Log-logistic AFT model is a proportional odds (PO) model instead of a PH

model. For a PO survival model, the odds ratio is assumed to remain constant over

time.

Here, we introduce two new definitions for Log-logistic model. The survival odds

(SO) is defined as the odds of surviving beyond time t in the form of

S(t)

1− S(t)
=
P (T > t)

P (T ≤ t)
(2.20)

and the failure odds (FO), which is the reciprocal of survival odds, means the odds
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of getting the event by time t in the form of

1− S(t)

S(t)
=
P (T ≤ t)

P (T > t)
(2.21)

According to the Log-logistic survival function in Table 1, the failure odds equals

to λtp, which indicates a linear relationship between the log odds of the failure and

the log of time. This is also helpful for the evaluation by plotting log(FO) against

ln(t). The plots will be a line with slope p if the survival time in the data follows a

Log-logistic distribution.

log(FO) = ln(λ) + pln(t) (2.22)

Log-normal Distribution: The Log-normal model has a relatively complicated

hazard and survival function that can only be expressed in terms of integrals. The

shape of the Log-normal distribution is very similar to the Log-logistic distribution

and yields similar results.

Generalized Gamma Distribution: The hazard and survival function of gen-

eralized Gamma model is also complicated. It has three parameters allowing more

flexibility in its shape. Actually, the Weibull and Log-normal distributions are two

special cases of the generalized gamma distribution.

2.5 BoostCI

The concordance index (C-index), or concordance probability, is the most com-

monly used evaluation metric in survival analysis [28]. Considering a pair of bivariate

observations (y1, ŷ1) and (y2, ŷ2), where yi is the actual observation, and ŷi is the

predicted one, the concordance probability is defined as

c = Pr(ŷ1 > ŷ2|y1 ≥ y2). (2.23)
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Thus, we can see that concordance index is a pairwise ranking based evaluation metric.

Boosting concordance index (BoostCI) [53] is an approach which aims at directly

optimizing the C-index. In BoostCI, the sigmoid function is used to approximate

the indicator function and hence make the C-index smooth, and a gradient boosting

based algorithm is proposed to solve the optimization problem.

The goal of BoostCI is to estimate the optimal prediction function y∗ that maxi-

mizes the C-index by minimizing the empirical risk function using gradient boosting

algorithms. The C-index used in this algorithm is defined by Uno et al. [72], which

is formulated as:

C =

∑
i,k(Ĝ

L
n(T̃i))

−2I(T̃i < T̃k)I(η̂i > η̂k)δi∑
i,k(Ĝ

L
n(T̃i))−2I(T̃i < T̃k)δi

(2.24)

where ĜL
n(t) is the Kaplan-Meier estimator, η̂i and η̂k are the predicted risk marker

values for instance i and k, respectively. By introducing the sigmoid function, K(u) =

1/(1 + exp(−u/σ)), the smoothed C-index function will be in the form of

Csmooth =
∑
i,k

wik
1

1 + exp( η̂k−η̂i
σ

)
(2.25)

where σ is a tuning parameter that control the smoothness of the approximation, and

wik =
δi(Ĝ

L
n(T̃i))

−2I(T̃i < T̃k)∑
i,k δi(Ĝ

L
n(T̃i))−2I(T̃i < T̃k)

(2.26)

The negative of the Eq.(2.25) can be minimized via a standard component-wise gra-

dient boosting algorithm.

2.6 Survival Trees

Survival Trees are one form of classification and regression trees which are tailored

to handle censored data. The basic intuition behind the tree models is to recursively



23

partition the data based on a particular splitting criterion, and the objects which

belong to the same node are similar to each other based on the event of interest.

The earliest attempt at using tree structure analysis for survival data was made

in [15]. The primary difference between a survival tree and the standard decision

tree is the choice of splitting criterion, where the splitting methods should be able

to measure the difference between the survival distributions. Commonly, the survival

distribution difference can be measured by either non-parametric methods, semi-

parametric methods, or parametric methods. And this is the reason why we cannot

classify the survival trees into any of the three categories above.

The splitting criteria used for survival trees can be grouped into two categories:

minimizing within-node homogeneity or maximizing between-node heterogeneity. The

first class of approaches minimizes a loss function based on within-node homogeneity

criterion. Gordon and Olshen [27] measured the homogeneity using LP , LP Wasser-

stein metric, and Hellinger distances (non-parametric method) between estimated dis-

tribution functions. Davis and Anderson [22] employed an exponential log-likelihood

loss function in recursive partitioning based on the sum of residuals from the Cox

model (semi-parametric method). Leblanc and Crowley [42] measured the node de-

viance based on the first step of a full likelihood estimation procedure (parametric

method); Cho and Hong [14] proposed an L1 loss function to measure the within-node

homogeneity. In the second category of splitting criteria, Ciampi et al. [17] employed

log-rank test statistics for between-node heterogeneity measures. Later, Ciampi et

al. [16] proposed a likelihood ratio statistic (LRS) to measure the dissimilarity be-

tween two nodes. Based on the Tarone-Ware class of two-sample statistics, Segal [64]

introduced a procedure to measure the between-node dissimilarity.

To overcome the instability of a single tree, bagging [9] and random forests [10],

proposed by Breiman, are commonly used to perform the ensemble based model build-



24

ing. Hothorn et al. [33] proposed a general bagging method which was implemented

in the R package “ipred”. In 2008, Ishwaran et al. introduced a general random

forest method, called random survival forest (RSF) [36] and implemented it in the R

package “randomSurvivalForest”.
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CHAPTER 3 REGULARIZED WEIGHTED

LINEAR REGRESSION

3.1 Motivation and Overview

Due to the emergence of a wide range of data acquisition technologies, it has

become a common practice in many domains to monitor subjects over a period of

time in order to tell if there are any interesting events (such as device failure, disease

occurrence, etc.) that occur. Such monitoring typically starts from a particular time

point and lasts until a certain event of interest occurs [43]. Due to time limitations or

loss of data traces, however, the event of interest may not always be observed during

the study period. This phenomenon is known as censoring and makes this problem

more challenging for any standard regression methods. For the instances where the

event of interest is observed, the time to the event of interest is known as the failure

time (or event time); while for the remaining (censored) instances, the last observed

time is known as the censored time.

Figure 3.1 shows three timelines to demonstrate the relationship between the

estimated survival time and the censored time in the right censored case. Based on

the definition of right censoring, the timeline can be separated into two parts, the

range of impossible survival time and the range of possible survival time using the

censored time (Figure 3.1(a)). Hence, there are two cases that can arise. Case 1:

when the estimated survival time is lesser than the censored time, then it falls within

the range of impossible survival time and the real difference between the estimated

survival time and the actual survival time is definitely greater than the difference

between the estimated survival time and the observed censored time (Figure 3.1(b)).

Thus, the model should give more emphasis to this case with assigning more weight

in the loss function for this case in order to reduce such an occurrence. Case 2: If the

estimated survival time is greater than the censored time, then it falls into the range
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survival time

(a)

(b)

(c)

Figure 3.1: Relationship between estimated survival time and censored time for a
right censored observation.

of possible survival time (Figure 3.1(c)), and hence, in the loss function, the model

should assign less weight for this case.

Motivated by this observation, in this chapter, we propose a Regularized Weighted

Residual Sum-of-Squares (RWRSS) algorithm which imposes more penalty to the first

case and less penalty to the second case [46]. Thus, the proposed RWRSS is able to

effectively handle the censored instances. Additionally, we also employ the elastic

net as a penalty to sparsity the learned coefficients, so that the RWRSS is able to

avoid overfitting and deal more efficiently with high-dimensional datasets. We pro-

pose a linear model because it is simple, effective and scalable. In survival analysis,

linear regression for data analysis with censored observations is an alternative re-

search direction that has attracted broad attention in the fields of data mining and

biostatistics [12,78,80].

Some linear models such as Tobit regression [71] and Buckley-James (BJ) regres-
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sion [12] were proposed to handle censored observations. These methods employ the

Kaplan-Meier (KM) estimator [39] (in the case of BJ) and the Gaussian distribu-

tion (in the case of Tobit regression) to approximate the survival times of censored

instances for satisfying the least-squares principle. However, these approximation

methods will induce bias into the final model since the actual survival times of cen-

sored instances cannot be observed. It induces bias because the KM estimation can-

not accurately estimate the survival time of censored instances, and this estimated

inaccurate survival time will be used to train the model. This makes the prediction

problem more complex because the survival time of censored instances are calculated

using the integral of the KM estimator.

In contrast to these existing methods, in our work, we do not approximate the

survival times of censored instances. RWRSS aims at directly minimizing the differ-

ence between the estimated survival time and the actual survival time of uncensored

instances and ensures that the estimated survival time of censored instances is longer

than the censored time. Thus, compared to the existing linear censored regression

models, our proposed model simplifies the prediction problem. In this chapter, we

demonstrate that such a simplification improves the prediction performance of the

proposed model. The concordance index (C-index) [28] is the most commonly used

performance metric in survival analysis which measures the concordance between the

orderings of the survival times and the predicted marker values. Since the actual

survival time of censored instances are unknown, it is infeasible to calculate the con-

cordance between a pair of censored instances. Hence, an accurate estimation of the

survival time of censored instances is not possible or needed.

From the viewpoint of traditional data mining, survival analysis can also be viewed

as a semi-supervised learning problem, where the uncensored instances can be viewed

as labeled data and the censored instances can be viewed as unlabeled data. However,
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different from most of the existing semi-supervised algorithms which are focused on

classification, survival analysis deals with a regression problem. Motivated by self-

training [61], which uses the confidence estimated labels of unlabeled data in the next

training round, we develop a framework which uses the proposed RWRSS model to

infer the survival time of censored instances.

However, different from the traditional self-training approaches, in the first train-

ing round RWRSS is trained from both labeled (uncensored) and unlabeled (cen-

sored) instances. In the right censoring scenario, for certain censored instances, the

censored time should be equal to or less than the survival time. Thus, once the

estimated survival time is greater than the censored time, we will use the estima-

tion to approximate the survival time of censored instances and train a new model

based on the updated training instances in the next training round. Experimental

results over high-dimensional biomedical datasets indicate that our model outper-

forms other related competing methods and attains very competitive C-index values

on high-dimensional datasets.

The main contributions of this proposed work can be summarized as follows:

• Propose a novel weighted linear regression method, RWRSS, for prediction prob-

lems with censored observations which avoids the use of approximate survival

time of censored data during the training phase.

• Develop a self-training framework which involves both uncensored and censored

instances in each training round and is able to improve the prediction perfor-

mance of the proposed RWRSS model.

• Demonstrate the performance of the proposed censored regression method using

real-world high-dimensional cancer gene expression survival benchmark datasets

and compare it with several existing survival estimation methods.
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3.2 Regularized Weighted Linear Regression for

Survival Analysis

In this section, we will explain the details of the proposed regularized weighted linear

regression model for predicting survival times. We will first discuss the proposed

weighted loss function along with its main intuition. Later, the regularized weighted

linear regression and the optimization procedure will be explained in detail. Finally,

a self-training framework for handling survival data with right censored instances

will be discussed. This self-training framework is used with our regularized weighted

linear regression as the base learning algorithm.

3.2.1 Objective Function

For censored observations, the exact difference between the estimated outcome and

the actual target value cannot be measured. The estimated survival time for a right

censored instance should be either equal to or larger than its censored time. For the

ith instance, if δi = 1, then the estimated survival time of the proposed model should

be as close as possible to yi = Ti = Oi, and hence the standard squared residual can

be used as loss function for uncensored instances; however, if δi = 0, the estimated

survival time should be greater than yi = Ti = Ci, and hence, in the loss function, we

should give more weight to the censored instances whose estimated survival time is

lesser than censored time and less weight to the censored instances whose estimated

survival time is greater than censored time. Thus, we propose the following weighted

residual sum-of-squares (WRSS) as the objective function to minimize.

WRSS =
N∑
i=1

(yi −Xiβ)2wi (3.1)
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Figure 3.2: wi is a step function for censored instances.

where weight wi is defined as follows:

wi =


1 if δi = 1

τ if δi = 0 and yi ≥ Xiβ

0 if δi = 0 and yi < Xiβ

(3.2)

From Eqs.(3.1) and (3.2), we can see that the WRSS calculates the standard residual

value (yi −Xiβ) for uncensored observations (δi = 1). However, for censored obser-

vations, it ignores the difference between the estimated output and the censored time

when the estimated output is greater than the censored time. For the right censored

observations, we know that the actual survival time is equal to or greater than the

censored time; therefore, when the estimated output is lesser than the censored time,

then the difference between the actual survival time and the estimated survival time

is indeed greater than (yi−Xiβ). Hence, τ is a constant which should be greater than

1 and is a parameter of the model that needs to be empirically determined, because

it is infeasible to measure the true difference between the estimated output and the

actual survival time of the corresponding censored instance.

In our proposed model, the elastic net [86] is used as the penalty term. The
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corresponding optimization problem is formulated as follows:

argmin
β

1

N

N∑
i=1

(yi −Xiβ)2wi + λ

(
α‖β‖1 +

1− α
2
‖β‖2

2

)
(3.3)

where λ ≥ 0 is the regularization parameter, and 0 ≤ α ≤ 1 is used to adjust the

weights of the L1 and L2 norm penalties.

3.2.2 Optimization

From Eq. (3.2), we can see that wi is a constant when δi = 1 and it is a step

function when δi = 0 (see Figure 3.2). To handle this discontinuity in Eq. (3.3) due to

the presence of the step function, we propose an iterative optimization method based

on coordinate descent method. Coordinate descent minimizes a multi-variate function

by minimizing it along only one direction at a time. Let us assume, except βk, all

other β̃l (l = 1, 2, 3, · · · , p and l 6= k) have already been estimated, and we would like

to partially optimize with respect to βk. The coordinate-wise updating [25] is done

as follows:

β̃k ←
S( 1

N

∑N
i=1wixik(yi − ỹik̄), λα)

1
N

∑N
i=1wix

2
ik + λ(1− α)

(3.4)

where ỹik̄ =
∑

l 6=k xilβ̃l is the fitted value excluding the contribution from xik, S(Z, γ) =

sign(Z)·(|Z|−γ)+ is the soft-thresholding operation; in addition, sign(·) is the signum

function, and (|Z| − γ)+ refers to the positive part, which is |Z| − γ if (|Z| − γ) > 0

and 0 otherwise. This update is simply the univariate regression coefficient of the

partial residual sum of squares (yi − ỹik̄) on the kth variable. In each iteration, all of

the p coefficient variables are repeatedly updated until convergence.

Now, one of the problems that arise during this optimization is the determination

of wi for each observation in each iteration. From Eq. (3.2), we can see that the value

of wi is determined by δi, yi, and Xiβ, where for a particular ith observation, δi, yi,

and Xi will not change during the coordinate decent process, but each element of β
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will be updated one by one based on the coordinate-wise method. In the optimization

process, we use the latest updated coefficient vector to approximate β; thus, in the

dth iteration before updating the coefficient of kth feature, the latest updated βd,k−1

can be represented by

β(d,k−1) = {βd1 , . . . , βd(k−1), β
d−1
k , βd−1

(k+1), . . . , β
d−1
p }

and we have

Xiβ ≈ Xiβ
(d,k−1)

= Xiβ
(d,k−2) +Xi,k−1 · βd(k−1) −Xi,k−1 · βd−1

(k−1) (3.5)

Algorithm 1 outlines the basic learning methodology for the proposed RWRSS

model. In line 1, we initialize the estimator of the parameter β̂ to be the zero vector.

In lines 4-7, we calculate the updated wi for each training instance, and each element

of the coefficient vector is updated using the coordinate-wise update in line 8. Eq.(3.5)

can be updated in O(1) based on the previous result; thus, for N instances, a complete

cycle costs O(Np) operations where p is the number of features. Hence, the overall

time complexity of the proposed model is O(Np).

3.2.3 Theoretical Analysis

We will now provide the convergence analysis of Algorithm 1. Since wi is updated

iteratively based on the approximation made in Eq.(3.5) (line 6 of Algorithm 1),

the proposed objective function is an iteratively re-weighted least squares (IRLS)

which is different from the standard weighted update of coordinate descent. Thus,

the analysis of the descent property is needed to ensure that the proposed RWRSS

algorithm indeed converges.
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Algorithm 1: Regularized weighted residual sum-of-squares (RWRSS)

Input: Training data (X, δ, y), Regularization parameter λ, Adjustment
Weight α

Output: β̂

1 Initialize: β̂ ← 0;
2 repeat
3 for k = 1 to p do
4 for i = 1 to N do
5 Calculate Xiβ using Eq.(3.5);
6 Update wi using Eq.(3.2);

7 end

8 β̃k ←
S( 1

N

∑N
i=1 wixik(yi−ỹik̄), λα)

1
N

∑N
i=1 wix

2
ik+λ(1−α)

;

9 end

10 β̂ ← β̃;

11 until Convergence of β;

Lemma 1. The optimum value of Eq.(3.3) with iteratively updated wi is upper bounded

by the optimum value of Eq.(3.3) with constant initial wi (denoted by w
(0)
i ).

Proof. Since β is initialized by a zero vector, we have Xiβ = 0 ≤ yi for all i. Then

based on Eq.(3.2), we have

w
(0)
i =

 1 if δi = 1

τ if δi = 0

Let w
(f)
i denote the final updated weight of ith instance, then we have

w
(0)
i ≥ w

(f)
i for all i (3.6)

Let L(w
(0)
i , β̂(0)) be the optimum value of Eq.(3.3) with constant initial wi, where β̂(0)

is the corresponding learned coefficient. Similarly, let L(w
(f)
i , β̂(f)) be the optimum

value of Eq.(3.3) with an iteratively updated wi, where β̂(f) is the corresponding
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learned coefficient. Thus, we have

L(w
(0)
i , β̂(0)) ≥ L(w

(f)
i , β̂(0)) ≥ L(w

(f)
i , β̂(f))

where the first inequality is based on Eq.(3.6), and the second inequality is because

β̂(f) is the learned optimal coefficient with respect to w
(f)
i . Therefore, the optimum

value of Eq.(3.3) with iteratively updated wi is upper bounded.

Theorem 1. The objective function given in Eq.(3.3) converges during the learning

process.

Proof. In the dth iteration of coordinate descent, the kth coefficient is updated by

βdk ← min
βk

L(w
(d,k−1)
i , βd1 , . . . , β

d
(k−1), βk, β

d−1
(k+1), . . . , β

d−1
p ) (3.7)

where w
(d,k−1)
i is the latest updated weight of ith instance based on β(d,k−1). Similarly,

as discussed in Lemma (1) we have w
(0)
i ≥ w

(d,k−1)
i , and

L(w
(0)
i , βd1 , . . . , β

d
(k−1), β

d(0)
k , βd−1

(k+1), . . . , β
d−1
p )

≥ L(w
(d,k−1)
i , βd1 , . . . , β

d
(k−1), β

d(0)
k , βd−1

(k+1), . . . , β
d−1
p )

≥ L(w
(d,k−1)
i , βd1 , . . . , β

d
(k−1), β

d
k , β

d−1
(k+1), . . . , β

d−1
p )

where β
d(0)
k is the optimal value of the kth coefficient in dth iteration if the weight of

the instances is initialized as w
(0)
i . Thus, we can say that in each step of the learning

process, the value of the objective function is upper bounded by the constant weighted

(w
(0)
i ) objective function. Based on the convergence of coordinate descent we know

that the value of constant weighted objective function is monotonically decreasing

during the learning process and converges to an optimal value. Therefore, the value

of the objective function in Eq.(3.3) is upper bounded by a monotonic decreasing con-
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model

Estimate survival 
time

Approximate the 
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censored instances

Update the training 
dataset

Stop the training round when 
the number of uncensored 

instances does not increase

Figure 3.3: A self-training framework for right censored data.

vergence sequence, and we can conclude that the objective function converges during

the learning process.

3.2.4 Self-training Framework for Right Censored data

As pointed in the previous sections, mining from dataset with censored observa-

tions is closely related to semi-supervised learning. The censored observations can

be considered as unlabeled instances since the event of interest can take place in the

future. Most of the existing semi-supervised learning methods focus on classification

rather than regression, and unlabeled observations do not contain any labeling in-

formation at all. However, in survival analysis, for each censored instance we can

observe a lower bound of the target value. In this section, we propose a self-training

framework for right censored data (STC). The goal of this framework is to infer the

correct event labels for the given censored instances. In our proposed framework, we

employ the RWRSS as our base learning method and label the censored instances

based on both the prediction and the corresponding censored time.

Figure 3.3 shows the diagram of the proposed STC framework. In survival data,

it is evident that the actual (unobserved) survival time of any right censored instance
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should be no less than the observed censored time. Thus, in the tth self-training

learning round of the STC framework, if the estimated survival time of a censored

instance is greater than or equal to the censored time, it will fall within the range

of possible survival time, and it will be viewed as a correct prediction. Then in the

t+1th learning round, this instance will be interpreted as an uncensored object whose

survival time will be the estimated output in the tth round and its corresponding

censored indicator will be changed from 0 to 1. Therefore, in the t + 1th learning

round, the updated training data will contain more uncensored instances than the

training data in the tth round, and hence a robust model can be learned in the t+ 1th

learning round.

Algorithm 2 describes the STC framework for right censored data. In line 3, we

estimate the coefficients based on the proposed RWRSS algorithm. In lines 4-11, the

objective values and the δ values for censored instances in the training dataset will

be updated based on the predicted and the observed time. The training rounds will

stop when the status (δ) and observed times (y) of the training data are not updated

any further.

3.3 Experimental Results

In this section, we will first describe the datasets used in our evaluation and then

provide the performance results along with the implementation details.

3.3.1 Dataset Description

For our evaluation, we used several publicly available high-dimensional gene ex-

pression cancer survival benchmark datasets which can be downloaded from 1. Here

are the list of datasets that are used in our experiments.

• Norway/Stanford Breast Cancer Data (NSBCD).

• Van de Vijver’s Microarray breast cancer (VDV).

1http://user.it.uu.se/~liuya610/download.html
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Algorithm 2: Self-Training framework for right Censored Data (STC)

Input: Training data (X, δ, y), Regularization parameter λ, Adjustment
weight α

Output: β

1 Initialize: c← 0, β̂ ← 0;
2 repeat

3 β̂ = RWRSS (X, y, δ, λ, α);
4 for i = 1 to N do
5 if δi == 0 then

6 ŷi = Xiβ̂;
7 if ŷi > yi then
8 yi = ŷi; δi = 1;
9 end

10 end

11 end

12 until δ and y are not updated ;

• Lung adenocarcinoma (Lung).

• Mantle Cell Lymphoma (MCL) 2.

• The Dutch Breast Cancer Data (DBCD).

• Diffuse Large B-Cell Lymphoma (DLBCL).

All these datasets measure cancer survival using gene expression levels. Table 3.1

provides the details of the datasets that are being used. In this table, the column

titled “# Censored” corresponds to the number of censored instances in each dataset.

We used 5-fold cross validation when the number of instances is greater than 150 and

3-fold cross validation otherwise.

3.3.2 Evaluation Metrics

Concordance index (C-index) or the concordance probability, is used to measure

the performance of prediction models in survival analysis [28]. Let us consider a pair

of bivariate observations (y1, ŷ1) and (y2, ŷ2), where yi is the actual observation, and

2http://llmpp.nih.gov/MCL/
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Table 3.1: Details of the datasets used in this work.

Dataset # Instances # Features # Censored
NSBCD 115 549 77
VDV 78 4705 44
Lung 86 7129 62
MCL 92 8810 28
DBCD 295 4919 216
DLBCL 240 7399 102

ŷi is the predicted one. The concordance probability is defined as:

c = Pr(ŷ1 > ŷ2|y1 ≥ y2) (3.8)

By definition, the C-index has the same scale as the area under the ROC (AUC) in

binary classification, and if yi is binary, then the C-index is same as the AUC. In the

hazards ratio based regression models, the instances with a low hazard rate should

survive longer, and the C-index will be calculated as follows:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I[Xiβ̂ > Xjβ̂] (3.9)

where num denotes the number of comparable pairs and I[·] is the indicator function.

The C-index in other censored regression methods, which directly target the survival

time, should be calculated as:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I[S(ŷj|Xj) > S(ŷi|Xi)] (3.10)

where S(ŷi|Xi) is the predicted target value for Xi.
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3.3.3 Implementation Details

All of the seven methods used for comparisons are implemented in R. The Cox

and Tobit regression models are obtained from the survival package [67]. In the

survival package, the coxph function is employed to train the Cox model and the

Efron’s method [24] is used to handle the tied observations. The Tobit regression

methods are trained using the survreg function with Gaussian distributions. Three

sparse regression methods, namely, LASSO-COX, EN-COX, and EN-BJ, which are

penalized versions using lasso and elastic net penalty terms are also used for our

comparisons. LASSO-COX and EN-COX are built using the cocktail function in

the fastcox package [82], while EN-BJ is implemented using the bujar package [80].

Boosting concordance index (BoostCI) [53] for survival data is an approach where the

concordance index metric is modified to an equivalent smoothed criterion using the

sigmoid function. In addition to the above mentioned six survival analysis methods,

we also compared with the ordinary least squares (OLS) linear regression which has

a similar form to the proposed methods. Note that, the OLS is only learned using

the uncensored instances rather than the entire set of training instances since it

cannot handle the censored instances, while the other methods are trained using

both uncensored and censored instances.

In our experiments, we use the C-index of the training dataset as the training error

rate to monitor the training round of the STC framework and terminate the learning

round when the C-index decreases. In this scenario, the output of STC(RWRSS) is

the model learned in the penultimate learning round.

3.3.4 Results and Discussion

Table 3.2 provides the C-index values obtained using various censored regression

and OLS methods on the real-world high-dimensional cancer microarray datasets.

The results show that our proposed model obtains higher C-index in most of the
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datasets and the STC framework is able to further improve the prediction performance

of RWRSS in some of the cases.

Figure 3.4 provides the histogram plots of the AUC values for each dataset at four

different time points corresponding to 25%, 50%, 75%, and 100% of events in each

dataset. To demonstrate the time-dependent prediction capability of various survival

analysis methods, the original problem has been reformulated into four classification

problems which indicates the survival status of a patient at each time point. The

prediction performance of each classifier is evaluated using AUC [13]; we exclude

OLS model since it is not a censored regression method. The AUC values for our

proposed models are higher than or close to those of the existing survival analysis

methods indicating that the time-dependent prediction capability of our proposed

models is higher than or as good as that of the other six survival models. It should

be noted that the AUC values of the original RWRSS and the STC version of it are

same for MCL and DLBCL datasets, because the STC framework did not improve the

discriminative power of RWRSS for these two datasets, and hence the learning process

is terminated after the second round. The AUC values of our proposed model on five

datasets (NSBCD, VDV, Lung, MCL, and DBCD) are higher than or around 0.8,

which indicates our proposed model is able to effectively predict the patient survival

status at various time points.

Figure 3.5 presents the C-index values of the proposed RWRSS algorithm by

varying the parameter τ from 1 to 3 in step of 0.2. We can see that the C-index values

of all six datasets does not vary much when τ is greater than 1.6, and this phenomenon

demonstrates that the RWRSS is not sensitive to the value of the parameter τ chosen.

Note that the RWRSS does not reduce to the standard OLS model when τ equals to

1, because the weight of some censored instances is 0 according to Eq.(3.2).
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Figure 3.4: AUC values for different survival regression methods at different points
of survival time. For each plot, T1, T2, T3, and T4 are the time points corresponding
to the 25%, 50%, 75%, and 100% of events occurred, respectively.
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CHAPTER 4 REGULARIZED PARAMETRIC

REGRESSION

4.1 Motivation and Overview

Parametric regression is one of the fundamental tools in statistics and data anal-

ysis. In survival analysis, both the Cox proportional hazards model and parametric

censored regression models are important foundational techniques for survival time

prediction. Although not as widely studied as the Cox model, parametric censored

regression has several advantages compared with the Cox model.

First, parametric censored regression models are more easily interpretable com-

pared to the Cox model. In parametric censored regression, the probability of oc-

currence of an event of interest at a certain time is directly described by the density

function of the selected distribution, and the probability of non-occurrence of the

event of interest until a certain time is represented straightforwardly by a survival

function. On the other hand, the Cox model does not model the probability of oc-

currence directly but learns it by maximizing the hazard ratio between the censored

instances and their corresponding risk set.

Second, parametric censored regression is more efficient than the Cox model when

tied observations (when survival times of multiple instances are exactly the same)

occur during the study. Parametric censored regression can be directly used without

any modification, while the Cox model has to use some approximation methods that

suffer from either inducing bias (Breslow’s approximation and Efron’s approximation

[24]) or bad scalability (Discrete method [67]).

To enable regularized parametric censored regression to handle high-dimensional

censored datasets, in this chapter, we propose the “URPCR” model, which stands

for “Unified model for Regularized Parametric Censored Regression”. Our proposed

model unifies the learning process of regularized parametric censored regression with
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different probability distributions; thus it improves the efficiency of model learning

on an arbitrary probability distribution [48]. This efficiency is important because the

performance of parametric censored regression is highly dependent on the choice of

distribution.

In our proposed URPCR model, the elastic net is employed as the regularization

term because it can both induce a sparse coefficient vector and handle correlated

features. To unify the learning process of the proposed model with different distri-

butions, we use a second-order Taylor expansion to approximate the log-likelihood;

in this way, the URPCR model can be solved as a penalized iteratively reweighted

least squares (IRLS). However, different from the standard linear model, a bias scale

parameter has to be learned in addition to the coefficient vector in our proposed

generalized linear model. Motivated by coordinate descent, in our learning scheme,

this scale parameter is viewed as one coordinate and is iteratively updated based on

Newton’s method. Finally, the model is learned via a cyclical coordinate descent

scheme.

In our empirical evaluation using several real-world high-dimensional cancer gene

expression survival benchmark datasets, our model attains very competitive C-index

values and outperforms most of the competing methods available in the literature

of survival analysis. Additionally, we also demonstrate that our model outperforms

most of the competing methods for the task of classifying whether or not a subject

is alive at various time points in the observed study period. This is accomplished by

our URPCR model without the need to re-train a new classifier for each time point,

which is one of the main advantages of this work.

4.2 Proposed Model

In this section, we will discuss the proposed URPCR model in detail, along with

an efficient optimization approach to learn the model. The URPCR employs the basic
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notion of generalized linear models (GLMs) and the framework of cyclical coordinate

descent to solve the elastic net penalized parametric censored regression. Thus, the

URPCR enables the parametric censored regressions to perform feature selection and

handle high-dimensional data sets in survival analysis.

4.2.1 Objective Function

The URPCR aims at learning the relationship between the feature vectors and

the target value in the same manner as done in the generalized linear model, which

can be formulated as follows:

v = Xβ + σε, ε ∼ f (4.1)

for some distribution f , where β is the coefficient vector, ε is the error term, and

σ > 0 is an unknown bias scalar. For the ith instance, vi can either be the survival

time (vi = Oi) or the logarithm of the survival time (vi = log(Oi)). When vi = Oi,

Eq.(4.1) becomes an extended linear regression with a self-selected bias distribution;

when vi = log(Oi), then Eq.(4.1) represents an AFT model [81], which is a commonly

used prediction method in survival analysis. Thus, the URPCR encompasses these

two models within a unified framework, which can be solved with exactly the same

learning process. This is the primary novel aspect of the proposed work.

Under this linear hypothesis, the likelihood function of all N instances can be

represented as

L =
∏
δi=1

f(εi/σ)
∏
δi=0

(1− F (εi)) (4.2)

where εi = yi−Xiβ
σ

, yi = Ti for extended linear regression, and yi = log(Ti) for AFT

model. The log-likelihood can be written in the form

ll =
∑
δi=1

g1(εi)− log(σ) +
∑
δi=0

g2(εi) (4.3)
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where g1 = log(f(·)) and g2 = log(1− F (·)).

To avoid overfitting the model, it may not be appropriate to build a prediction

model that includes all of the features. This becomes even more important when the

feature dimension (p) is either close to or larger than the sample size (N). Sparsity-

inducing penalization is an effective method which can perform model estimation and

feature selection simultaneously. The elastic net [86] is one of the most commonly used

penalty terms in the data mining and machine learning communities and consists of a

mixture of the L1 (lasso) and L2 (ridge regression) penalties. Therefore, it can obtain

both sparsity in the coefficients and handle correlated feature spaces simultaneously.

Mathematically, it is defined as follows:

P (β) = α‖β‖1 +
1− α

2
‖β‖2

2 (4.4)

where 0 ≤ α ≤ 1 is used to adjust the weights of the L1 and L2 norm penalties.

Hence, the Lagrangian of the penalized negative log-likelihood becomes

min
β,σ

[
− 2

N

(∑
δi=1

g1(εi)− log(σi) +
∑
δi=0

g2(εi)

)
+ λP (β)

]
(4.5)

where λ ≥ 0 is the Lagrangian multiplier.

4.2.2 Optimization

To minimize the objective function proposed in Eq.(4.5), we use a second-order

Taylor expansion to approximate the log-likelihood and a cyclical coordinate descent-

based method, which solves a penalized iteratively reweighted least squares (IRLS)

problem in each iteration [65], to solve the generalized linear model.

If we treat σ as fixed and let η = Xβ, a two-term Taylor series expansion of the
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log-likelihood centered at β̃ has the following form.

ll(β) ≈ ll(β̃) + (β − β̃)T ll
′
(β̃) + (β−β̃)T ll

′′
(β̃)(β−β̃)

2
(4.6)

= ll(β̃) + (Xβ − η̃)T ll
′
(η̃) + (Xβ−η̃)T ll

′′
(η̃)(Xβ−η̃)

2

where η̃ = Xβ̃; ll
′
(β̃), ll

′′
(β̃), ll

′
(η̃), and ll

′′
(η̃) denote the gradient and Hessian of

the log-likelihood with respect to β̃ and η̃, respectively. By some simple algebra, we

obtain

ll(β) ≈ 1

2
(z(η̃)−Xβ)T ll

′
(η̃)(z(η̃)−Xβ) + C(η̃, β̃), (4.7)

where z(η̃) = η̃ − ll
′
(η̃)/ll

′′
(η̃) is the adjusted dependent variable, and C(η̃, β̃) is a

constant term that does not depend on β. To speedup the algorithm, rather than using

the full N ×N ll
′′
(η̃) matrix, we use the diagonal elements of ll

′′
(η̃) in our algorithm.

The ith diagonal element is denoted as ll
′′
(η̃)i. We define z(η̃)i = η̃i − ll

′
(η̃)i/ll

′′
(η̃)i.

Therefore, Eq.(4.5) can be simplified as a penalized IRLS:

min
β
− 1

N

N∑
i=1

ll
′′
(η̃)i(z(η̃)i −Xiβ)2 + λP (β) (4.8)

The partial derivative of the IRLS with respect to the kth coordinate, k = 1, 2, · · · , p,

can be calculated as:

− 1

N

N∑
i=1

ll
′′
(η̃)ixik(z(η̃)i −Xiβ) + λα · sgn(βk) + λ(1− α)βk (4.9)

where sgn(·) is the signum function. Hence, the coordinate-wise update of the penal-

ized IRLS will take the following form:

β̂k =
S(− 1

N

∑N
i=1 ll

′′
(η̃)ixik(z(η̃)i −

∑
j 6=k xijβj), λα)

− 1
N

∑N
i=1 ll

′′(η̃)ix2
ik + λ(1− α)

(4.10)
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where S(Z, γ) = sgn(Z) · (|Z| − γ)+ is the soft-thresholding operation, and ll
′
(η̃)i

and ll
′′
(η̃)i can be calculated as follows:

ll
′
(η̃)i =


∂g1

∂η̃i
= − 1

σ
· f
′
(εi)

f(εi)
if δi = 1

∂g2

∂η̃i
= − 1

σ
· −f(εi)

1−F (εi)
if δi = 0

ll
′′
(η̃)i =


∂2g1

∂η̃2
i

= 1
σ2 · f

′′
(εi)

f(εi)
−
(
∂g1

∂η̃i

)2

if δi = 1

∂2g2

∂η̃2
i

= 1
σ2 · −f

′
(εi)

1−F (εi)
−
(
∂g2

∂η̃i

)2

if δi = 0

where f(·) is the density function of the selected distribution, F (·) is the correspond-

ing cumulative distribution function, and f
′
(·) and f

′′
(·) denote the gradient and

Hessian of the density function [67], respectively. In this work, we choose the Gaus-

sian distribution, Logistic distribution, and Extreme value distribution as the baseline

distributions. It should be noted that, besides these three distributions that are being

described in this work, our framework is suitable for all other parametric distributions

once the corresponding functions for the distributions are calculated.

All the analysis until this point has assumed a fixed σ. We will also vary the

value of σ in our learning scheme by making σ another coordinate that is updated

once all of the coefficient variables are updated. In the proposed algorithm, we use

the Newton-Raphson method to update log σ, which can be written in the following

form:

log σ = log σ̃ − ll′(log σ̃)/ll
′′
(log σ̃) (4.11)

where σ̃ is learned in the previous iteration, ll
′
(log σ̃) = 1

N

∑
ll
′
(log σ̃)i, and ll

′′
(log σ̃) =
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1
N

∑
ll
′′
(log σ̃)i. Additionally, ll

′
(log σ̃)i and ll

′′
(log σ̃)i can be calculated as follows:

ll
′
(log σ̃)i =


∂g1

∂ log σ̃i
= − εif

′
(εi)

f(εi)
if δi = 1

∂g2

∂ log σ̃i
= −−εif(εi)

1−F (εi)
if δi = 0

ll
′′
(log σ̃)i =


∂2g1

∂(log σ̃i)2 =
ε2i f
′′

(εi)+εif
′
(εi)

f(εi)
−
(

∂g1

∂ log σ̃i

)2

if δi = 1

∂2g2

∂(log σ̃i)2 =
−ε2i f

′
(εi)

1−F (εi)
− ∂g1

∂ log σ̃i
·
(

1 + ∂g1

∂ log σ̃i

)
if δi = 0

Good initial values of the coefficients and σ turn out to be vital for successful optimiza-

tion, especially in a high-dimensional data set. In coordinate descent, the coefficient

vector usually starts with the zero vector because the L1 norm penalty induces lot

of zero elements in the coefficient vector. For σ, a clever starting point is introduced

in [67], where the model is fit starting with the mean and variance of each feature. As

the normalization makes the values of each feature and the target value in the dataset

have zero mean and unit variance, the initial values of the iteration only depend on

the mean and variance of the selected distribution, denoted as µ and s2, respectively.

The µ and s2 of the selected baseline distributions can be summarized as follows:

• Gaussian distribution:

µ = 0 s2 = 1

F (x) = Φ(x) f(x) = 1√
2π
exp(−x2/2)

f
′
(x) = −xf(x) f

′′
(x) = (x2 − 1)f(x)
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• Logistic distribution:

µ = 0 s2 = π2/3

F (x) = ex

1+ex
f(x) = ex

(1+ex)2

f
′
(x) = f(x) · 1−ex

1+ex
f
′′
(x) = f(x) · (ex)2−4ex+1

(1+ex)2

• Extreme value distribution:

µ = 0.5722 s2 = π2/6

F (x) = 1− exp(−ex) f(x) = ex · exp(−ex)

f
′
(x) = (1− ex) · f(x) f

′′
(x) = [(ex)2 − 3ex + 1] · f(x)

4.2.3 The URPCR Algorithm

Algorithm 3 outlines the overall steps involved in the proposed model including the

main optimization method. In lines 1-5, the dependent variable is calculated based

on the user setting. In line 6, the coefficient vector and σ̂ are initialized by a zero

vector and s (the standard deviation of the selected distribution), respectively. In

lines 9-14, the weight and adjusted dependent variables of the IRLS for each training

instance are calculated. In line 15, one coordinate is updated based on coordinate

descent. In lines 17-21, the updated formulas are calculated after all the p coefficients

have been updated. Finally, in lines 22-24, the σ is updated based on these new

updated equations. Note that, at each time, only one variable in the vector β̃ is

being updated, and hence η̃i can be updated based on the previous iteration’s result

in O(1). Thus, one complete cycle of coordinate descent through all p variables costs

O(Np) operations, and the σ can be updated in O(N) operations. Hence the total

computation cost for each optimization step of the proposed algorithm is O(Np).

Usually, in the learning process, the model has to be trained based on a series of
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Algorithm 3: URPCR Algorithm

Input: Training data (X, T , δ), Regularization parameter λ, Adjustment
Weight α, Selected Distribution, flag AFT

Output: β̂, σ̂

1 if AFT==TRUE then
2 y = log(T );
3 else
4 y = T ;
5 end

6 Initialize: β̂ ← 0, σ̂ ← s;
7 repeat
8 for k = 1 to p do
9 for i = 1 to N do

10 Calculate η̃i = Xiβ̃, εi = yi−η̃i
σ̃

;

11 Calculate f(εi), F (εi), f
′
(εi), and f

′′
(εi);

12 Calculate ll
′
(η̃)i and ll

′′
(η̃)i;

13 Update z(η̃)i = η̃i − ll
′
(η̃)i/ll

′′
(η̃)i;

14 end

15 β̃k ←
S(− 1

N

∑N
i=1 ll

′′
(η̃)ixik(z(η̃)i−

∑
j 6=k xij β̃j),λα)

− 1
N

∑N
i=1 ll

′′ (η̃)ix2
ik+λ(1−α)

;

16 end
17 for i = 1 to N do

18 Calculate η̃i = Xiβ̃, εi = yi−η̃i
σ̃

;

19 Calculate f(εi), F (εi), f
′
(εi), and f

′′
(εi);

20 Calculate ll
′
(log σ̃)i and ll

′′
(log σ̃)i;

21 end

22 Calculate ll
′
(log σ̃) and ll

′′
(log σ̃) ;

23 Update log σ based on Eq.(4.11);
24 σ̃ = exp(log σ);

25 until Convergence of β̃ and σ̃;

26 β̂ ← β̃, σ̂ ← σ̃;

values for λ, and the best λ is selected via cross-validation. In this work, we build a

pathwise solution similar to the approach given in [65]; initialize λ to a sufficiently

large number, which forces β to a zero vector, and then gradually decrease λ in each

learning iteration. For a new λ, the initial values of β and σ are the estimated β and

σ learned from the previous λ as a warm start, so the initial values of β and σ are

not far from the optimal value, and the algorithm can converge in few iterations. The



53

convergence of the Newton step in the algorithm is not guaranteed; it may become

unstable if the initial parameter is far from the optimal value. However, in a pathwise

solution, the warm start is not far from the optimal value, so it solves the convergence

problem to a large extent.

4.3 Experimental Results

In this section, we will first describe the datasets used in our evaluation and then

provide the performance results along with the implementation details.

4.3.1 Dataset Description

For our evaluation, we used several publicly available high-dimensional gene ex-

pression cancer survival benchmark datasets1. The datasets we used in our experi-

ments are as follows:

• The Norway/Stanford Breast Cancer Data (NSBCD) contains gene expression

measurements of 115 women with breast cancer. The missing values are im-

puted using 10-nearest neighbor imputation (which is a common practice in the

biomedical domain).

• Lung adenocarcinoma (Lung) is a dataset containing observations of 86 early-

stage lung adenocarcinoma patients.

• The Dutch Breast Cancer Data (DBCD) contains information on 4919 gene ex-

pression levels of a series of 295 women with breast cancer. Measurements were

taken from the fresh-frozen-tissue bank of the Netherlands Cancer Institute.

• Diffuse Large B-Cell Lymphoma (DLBCL) is a dataset that contains Lym-

phochip DNA microarrays from 240 biopsy samples of DLBCL tumors.

All of these datasets measure cancer survival using gene expression levels. Table 4.1

provides the details of the datasets that are being used in this work. In this table,

the column titled “# Censored” corresponds to the number of censored instances in

1http://user.it.uu.se/~liuya610/download.html
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Table 4.1: Details of the datasets used in this work.

Dataset # Instances # Features # Censored
NSBCD 115 549 77
Lung 86 7129 62
DBCD 295 4919 216
DLBCL 240 7399 102

each dataset. We used 5-fold cross validation when the number of instances is greater

than 150 and 3-fold cross validation otherwise.

4.3.2 Implementation Details

The proposed model is implemented using C++ with the Eigen library2, and in

each iteration, the weight updates for all N instances (lines 9-14 and lines 17-21 of

Algorithm 3) are calculated in parallel.

All of the methods used in our comparisons are implemented in R. The Cox and

unregularized parametric censored regression are obtained from the survival package

[67]. In the survival package, the coxph function is employed to train the Cox model.

The Tobit regression is trained using the survreg function. The parametric censored

regressions are trained using the survreg function with Normal, Log-normal, Logistic,

Log-logistic, and Weibull distributions. Three sparse regression methods, namely,

LASSO-COX, EN-COX, and EN-BJ, which are penalized versions using lasso and

elastic net penalty terms, are also used for our comparisons. LASSO-COX and EN-

COX are built using the cocktail function in the fastcox package [82], while EN-BJ is

implemented using the bujar package [80].

Boosting concordance index (BoostCI) [53] for survival data is an approach where

the concordance index metric is modified to an equivalent smoothed criterion using

the sigmoid function. In addition to the above survival methods, we also compared

our methods with ordinary least squares (OLS) because URPCR is a generalized

2http://eigen.tuxfamily.org/
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linear model. In our experiments, the Gaussian distribution, Logistic distribution,

and Extreme value distribution are chosen as the baseline distributions. For each

dataset, the validation data is used to select the appropriate distribution and to decide

whether the dependent variable y should be the observed time T or the logarithm of

the observed time log(T ).

4.3.3 Results and Discussion

Table 4.2 provides the C-index values obtained by various regression methods on

the real-world high-dimensional micro-array cancer datasets. The results show that

our proposed URPCR model obtains higher C-index in most of the datasets.

Table 4.3 provides the C-index values obtained from the original censored regres-

sion and the URPCR regularized parametric censored regression methods based on

different distributions, where Log-normal and Log-logistic denote that the logarithm

of the observed time is assumed to follow the normal distribution and logistic distribu-

tion, respectively. It should be noted that Weibull distribution is a special case of the

generalized extreme value distribution. The results show that, with sparsity-inducing

penalization, our proposed model is able to improve the prediction performance of the

parametric censored regression on the high-dimensional datasets for different kinds

of distributions.

Figure 4.1 provides histogram plots of the AUC values for the binary classification

task on each dataset with four different time splits corresponding to the time points

when 25%, 50%, 75%, and 100% of events have occurred. The AUC values for our

proposed models are higher than those of the existing survival prediction methods

in all but one task, which further reinforces the accuracy of our proposed model

compared to the other survival prediction methods; we exclude OLS in the plots

since it is not a survival regression method. These results demonstrate that our

proposed model is able to predict temporal event occurrence at different time points
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effectively without the need to re-train a new classifier at each time point.
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4.3.4 Scalability Experiments

We also empirically evaluate the scalability of the proposed algorithm with re-

spect to sample size (N) and the number of features (p). All synthetic datasets are

generated using the function “simple.surv.sim” in survsim package [55] with different

sample sizes and feature dimensionality. All the features are generated based on the

uniform distribution, and each of them have a different randomly set interval. The

coefficient vector is also randomly generated and remain within [−1, 1]. The observed

time is assumed to follow a Log-logistic distribution, and time to censorship follows a

Weibull distribution. All timing calculations are carried out on an Intel Xeon 3 GHz

processor with 16 cores (32 threads). Figure 4.2(a) shows runtimes for fixed N and

varying p, and Figure 4.2(b) shows runtimes for fixed p and varying N . These two

plots suggest that the runtime of URPCR is close to being linear in both N and p.

Notice that the lines in Figure 4.2(b) increase more slowly than the lines in Figure

4.2(a), which indicates that our proposed URPCR model has better scalability with

respect to N than with respect to p. This is because, in our implementation, the

weight updates of all N instances (lines 9-14 and lines 17-21 of Algorithm 3) are

calculated in parallel.
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Figure 4.1: AUC values for binary classification of survival times for four different time
thresholds. The URPCR is compared to six different survival regression methods. For
each plot, T1, T2, T3, and T4 are the time thresholds corresponding to the timepoints
at which 25%, 50%, 75%, and 100% of events have occurred, respectively.
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Figure 4.2: Scalability results : Plots of the runtimes of URPCR with the extreme
value distribution. The times denote total runtimes for ten λ values averaged over
five trials.
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CHAPTER 5 A MULTI-TASK LEARNING

FORMULATION

5.1 Motivation and Overview

In survival analysis, the Cox proportional hazards model and parametric censored

regression models are important foundational techniques for survival time prediction.

These two methods (and their extensions) have been extensively studied in the fields

of statistical learning and data mining. However, they are both suffer from some

strict assumptions and hypotheses that are not realistic in most of the real-world

applications. To overcome the weaknesses of these two types of methods, which have

been discussed in detail in the introduction of this thesis, we reformulate the survival

analysis problem as a multi-task learning problem and propose a new multi-task

learning based formulation, MTLSA, to predict the survival time by estimating the

survival status at each time interval during the study duration.

As the survival status of a censored instance is unknown after the corresponding

censored time, the target labeling matrix is not complete; therefore, the standard

multi-task learning methods fail to handle the censored instances. To overcome this

problem, we propose to use an additional indicator matrix which allows the model to

learn from both uncensored and censored instances (details can be found in Section

5.2.1) and hence the proposed model can simultaneously take advantage of both

uncensored and censored instances. We notice that in survival analysis with non-

recurring events, the survival status of instances naturally follows the non-negative

non-increasing list structure, i.e., once the event occurs then it will not occur again.

Since the l2,1-norm encourages multiple predictors to share similar sparsity patterns,

it will not only select important features and alleviate over-fitting in high-dimensional

feature spaces but will also learn a shared representation across all tasks at different

time intervals. In MTLSA, we incorporate the non-negative non-increasing constraint
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and the l2,1-norm with the loss function and propose an Alternating Direction Method

of Multipliers (ADMM) [8] algorithm for coefficient estimation. In the proposed

ADMM method, the non-negative non-increasing list constraint optimization has

been transformed into an Euclidean projection problem that can be learned efficiently

[47].

In our empirical evaluation using various real-world gene expression cancer sur-

vival benchmark datasets, our model attains very competitive prediction performance

and outperforms state-of-the-art methods in survival analysis. Additionally, we also

demonstrate that our model outperforms most of the competing methods for the task

of classifying whether or not a subject is alive at the beginning of each time interval

in the observed study period.

5.2 The Proposed method

In this section, we will first transform the original survival analysis problem into

a multi-task learning problem by decomposing the regression component into related

classification tasks. Then we will propose a new objective function that can solve

the transformed problem and develop an ADMM based algorithm to optimize the

objective function. We also provide a detailed algorithmic analysis in terms of con-

vergence and complexity and then discuss a variant of the algorithm by relaxing

certain constraints.

5.2.1 Transform to multi-task learning problem

In practice, time is considered as countable time intervals rather than a real num-

ber (a number with a fraction). We translate the original label into a k-column

target matrix Y , where k = max(Ti),∀i = 1, 2, · · · , n, is the maximum followup time

of all the instances. Each element in the target matrix indicates whether the event

occurred (“0”) or not (“1”), and the original survival prediction problem can thus

be transformed into a multi-task learning problem. The primary motivation of trans-
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ID Day1 Day2 Day3 Day4 Day5 Day6 Day7
1 1 1 1 0 0 0 0
2 1 1 1 1 1 1 ?
3 1 1 ? ? ? ? ?
4 1 1 1 1 1 1 1
5 1 1 1 1 1 0 0
6 1 1 1 1 1 1 0

ID Day1 Day2 Day3 Day4 Day5 Day6 Day7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 0
3 1 1 0 0 0 0 0
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

Original(label
Y

W

ID Time Status
1 3 1
2 6 0
3 2 0
4 7 1
5 5 1
6 6 1

Figure 5.1: Illustration of generating Y and W from the original label in a simple
survival dataset.

forming the survival analysis into a multi-task learning problem is that the dependency

between the outcomes at various timepoints are accurately captured through a shared

representation across related tasks in this multi-task transformation which will reduce

the prediction error on each task. Note that, for censored instances, we know that

the event did not occur until the corresponding observed times, but we do not know

whether the event occurs or not afterwards.

For now, we represent those unknown cells using “question marks” and later we

will discuss the details of converting them into a more viable form. Figure 5.1 shows

an example of generating a target matrix Y from the original labels. For the four

uncensored instances (ID ∈ 1, 4, 5, 6), the cells of the corresponding rows in the target

matrix Y are labeled as “1” until the observed time (T1 = 3, T4 = 7, T5 = 5, T6 = 6)

and as “0” for the remaining cells; for the censored instances (ID ∈ 2, 3), the cells of

the corresponding rows in the target matrix Y are labeled as “1” until the censored

time (T2 = 6, T3 = 2) and as “?” for the remaining cells.

In this work, we only focus on the non-recurring event scenario which means once

the event occurs then it will not occur again. Hence, for a given row in the target
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matrix Y , once the label becomes “0” it cannot change back to “1”. Thus, we can

see that each row of Y will have a non-negative non-increasing list structure:

P = {Y ≥ 0, Yij ≥ Yil|j ≤ l,∀j = 1, · · · , k, ∀l = 1, · · · , k} (5.1)

where i = 1, 2, · · · , n.

An intuitive approach for solving this multi-task learning based formulation is as

follows:

minimize
XB∈P

1

2
‖ Y −XB ‖2

F +R(B) (5.2)

where B ∈ Rm×k is the estimated coefficient matrix, ‖ · ‖F denotes Frobenius norm,

and R(B) denotes the regularization term that prevents over-fitting and incorporates

the additional constraints imposed by this problem. Note that Y is not a complete

n × k target matrix (from the previous discussion). Now, we propose an indicator

matrix W to handle the question marks in Y . W is an n × k binary matrix; we

set Wij = 1 if the exact labeling information of Yij is known, and Wij = 0 if Yij =

“?”. In Figure 5.1, we also show the corresponding W for the example survival data

considered. The optimization problem in Eq.(5.2) is re-defined as:

minimize
XB∈P

1

2
‖ ΠW (Y −XB) ‖2

F +R(B) (5.3)

where

(ΠW (U))ij =

 Uij if Wij = 1

0 if Wij = 0

5.2.2 Objective function

Let us now briefly discuss two unique characteristics of the proposed model and

then design suitable regularization terms to incorporate other additional constraints.

The proposed model in Eq.(5.3) has two unique properties, Non-negative non-increasing
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and Temporal smoothness, which are desired to match the nature of the non-recurring

events survival analysis.

• Non-negative and non-increasing: As discussed above, each row of the target

matrix follows the non-negative non-increasing list structure. To preserve this

characteristic, a corresponding structure constraint is added in Eq.(5.3) to en-

sure that the estimated output XB also follows the non-negative non-increasing

list structure.

• Temporal smoothness: Since many works in the survival data deal with non-

recurring events, i.e., for a certain row in the target matrix Y , once the label

becomes “0” it cannot change back to “1” (or any other value), and this label

change will occur at most once. Hence, in most cases, the adjacent labels of

each instance are the same; thus, for all the N instances, the label vectors of

adjacent tasks are similar. This is the temporal smoothness characteristic which

will be modeled in the proposed multi-task learning formulation.

In this work, the non-negative max-heap projection [51] is employed to ensure that

XB follows the non-negative non-increasing list structure. This projection approxi-

mates each element of every selected set of target values by their corresponding mean

values (please refer to the section 5.2.4 for more details), and hence all elements in

each selected set (a sublist in our case) share a same estimated target value; therefore,

the non-negative max-heap projection also induces the temporal smoothness of XB.

Apart from the two characteristics discussed above, our model should also alleviate

over-fitting and induce sparsity in the estimated coefficients.

• Sparsity: The goal here is to learn a shared representation across all the tasks;

thus, the model can select important common hidden features and reduce the

prediction error of each task. The l2,1-norm is chosen to be an additional regu-

larization term for our model because it encourages multiple predictors to share

similar sparsity patterns. Thus, the l2,1-norm regularized regression model is
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able to select some common features across all the tasks [2]. In addition, such

a sparsity inducing penalty will be able to help our model effectively handle

high-dimensional datasets.

• Overfitting: A Frobenius norm regularization on the coefficient matrix B is

introduced to alleviate the over-fitting problem for high-dimensional data.

Incorporating all of the above additional constraints in the form of regularizers

into the proposed multi-task learning model, MTLSA, the following minimization

problem is formulated:

minimize
XB∈P

1

2
‖ ΠW (Y −XB) ‖2

F +
λ1

2
‖ B ‖2

F +λ2 ‖ B ‖2,1 (5.4)

where ‖ · ‖2,1 denotes the l2,1-norm, and λ1 ≥ 0 and λ2 ≥ 0 are two regularization

parameters.

5.2.3 The proposed MTLSA algorithm

The solution of the optimization problem proposed in Eq.(5.4) is not trivial since it

contains non-negative and non-increasing constraints along with the fact that the l2,1-

norm is a non-smooth penalty. We propose an ADMM based algorithm to solve the

optimization problem proposed in Eq.(5.4). By introducing a new matrix M = XB,

Eq.(5.4) can be rewritten in ADMM form as

minimize
M∈P

1

2
‖ ΠW (Y −M) ‖2

F +
λ1

2
‖ B ‖2

F +λ2 ‖ B ‖2,1

subject to M = XB

(5.5)
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Using the scaled dual variable µ and penalty parameter ρ > 0, the resulting aug-

mented Lagrangian of Eq.(5.5) is

Lρ(M,B, µ) =
1

2
‖ ΠW (Y −M) ‖2

F +
λ1

2
‖ B ‖2

F

+ λ2 ‖ B ‖2,1 +
ρ

2
‖M −XB + µ ‖2

F (5.6)

Thus, the scaled form of ADMM algorithm can be written as:

M t+1 := arg min
M∈P

(
1

2
‖ ΠW (Y −M) ‖2

F

+
ρ

2
‖M −XBt + µt ‖2

F

) (5.7)

Bt+1 := arg min
B∈Rp×k

(
λ1

2
‖ B ‖2

F +λ2 ‖ B ‖2,1

+
ρ

2
‖M t+1 −XB + µt ‖2

F

) (5.8)

µt+1 := µt +M t+1 −XBt+1 (5.9)

Now the main task of our model is to solve the optimization problems proposed

in Eq.(5.7) and Eq.(5.8). Next we will present the algorithm for solving Eq.(5.7) and

Eq.(5.8) in detail.

Step 1: Update M t+1 given Bt and µt (solve Eq.(5.7))

The updating of M t+1 is a constrained smooth convex optimization problem which

can be expressed as a generalized form:

min
M∈P

g(M) (5.10)

where g(M) = 1
2
‖ ΠW (Y−M) ‖2

F +ρ
2
‖M−XBt+µt ‖2

F is a smooth function and P is

the non-negative non-increasing list structure defined in Eq.(5.1). Let S = µt−XBt.
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The objective function can be reformulated as:

g(M) =
1

2
‖ ΠW (Y −M) ‖2

F +
ρ

2
‖M + S ‖2

F

=
1

2

n∑
i=1

k∑
j=1

Wij(Yij −Mij)
2 +

ρ

2

n∑
i=1

k∑
j=1

(Mij + Sij)
2

=
1

2

n∑
i=1

k∑
j=1

[
(Wij+ρ)M2

ij+2(ρSij−YijWij)Mij+WijY
2
ij+ρS

2
ij

]
=

1

2

n∑
i=1

k∑
j=1

(Wij + ρ)

[
M2

ij +
2(ρSij − YijWij)Mij

Wij + ρ

+

(
ρSij − YijWij

Wij + ρ

)2

−
(
ρSij − YijWij

Wij + ρ

)2

+
WijY

2
ij+ρS

2
ij

Wij + ρ

]

=
1

2

n∑
i=1

k∑
j=1

(Wij + ρ)

[(
Mij −

YijWij − ρSij
Wij + ρ

)2

+Qij

]

where Qij =
WijY

2
ij+ρS

2
ij

Wij+ρ
−
(
ρSij−YijWij

Wijρ

)2

does not depend on Mij. Therefore, the

optimization problem in Eq.(5.10) equals to an Euclidean projection

M t+1 = min
M∈P

1

2

n∑
i=1

k∑
j=1

(
Mij − M̃ij

)2

(5.11)

which projects M̃ij =
YijWij−ρSij

Wij+ρ
onto the set P and thus ensures Mi1 ≥Mi2 ≥ · · · ≥

Mik ≥ 0. The Euclidean projection in Eq.(5.11) is a special case of the non-negative

max-heap projection which can be efficiently solved [51], and some details of the non-

negative max-heap projection can be found in section 5.2.4.

Step 2: Update Bt+1 given M t+1 and µt (solve Eq.(5.8))

The updating of Bt+1 in Eq.(5.8) can be considered as a standard l2,1-norm regular-

ization problem:

arg min
B∈Rp×k

(
1

2
‖ L −XB ‖2

F +ρL2 ‖ B ‖2
F +ρL1 ‖ B ‖2,1

)
(5.12)
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where L is the corresponding label matrix. To solve Eq.(5.8), we just need to set

L = M t+1 +µt, ρL1 = λ2

ρ
, and ρL2 = λ1

2ρ
. Then Eq.(5.8) can be solved via alternating

minimization algorithm proposed in [2] or Nesterov’s method with efficient Euclidean

projection [50]. In this work, we choose the method proposed in [50] as the l2,1 solver

because it only requires O( 1√
ε
) iterations to achieve an accuracy of ε.

Combining all of the above components, the proposed method can be summarized

as shown in Algorithm 4. We initialize the M0 to be the target matrix, and then

updating M t and Bt based on the two steps we discussed above, accordingly.

Algorithm 4: Proposed MTLSA Algorithm

Input: Feature matrix X, Target matrix Y , Weight matrix W , ρ, λ1, λ2

Output: B̂

1 Initialize: t = 0,M t = Y, µt = 0, Bt = 0;
2 repeat
3 Compute M t+1 by solving Eq.(5.11);

4 Let L = M t+1 + µt, ρL1 = λ2

ρ
, and ρL2 = λ1

2ρ
;

5 Compute Bt+1 via solving Eq.(5.12) by standard l2,1 solvers;
6 Compute µt+1 = µt +M t+1 −XBt+1 ;
7 t = t+ 1;

8 until Convergence;

9 B̂ = Bt;

5.2.4 Projection onto A Non-negative Max-Heap

A non-negative max-heap is an ordered tree where the values of the nodes are all

non-negative and the value of any parent node is no less than the value(s) of its child

node(s). It can be mathematically defined as:

P = {X ≥ 0, xi ≥ xj|∀(xi, xj) ∈ Et} (5.13)

where T t = (V t, Et) is a target tree with V t = {x1, x2, · · · , xp} containing all the

nodes and Et denotes all the edges. The non-negative non-increasing list structure
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defined in Eq.(5.1) is a special case of non-negative max-heap where the T t is a

sequential list.

In [51], a maximal root-tree based algorithm (Atda) was proposed to solve the

non-negative max-heap projection

πP (V ) = min
X∈P

1

2
‖ X − V ‖2 (5.14)

Before describing the algorithm itself, we first introduce some definitions to help

understand the maximal root-tree.

Definition 1. For a non-empty tree T = (V,E), its root-tree is any non-empty tree

T̃ = (Ṽ , Ẽ) that satisfies: (1) Ṽ ⊆ V , (2) Ẽ ⊆ E, and (3) T̃ shares the same root as

T .

Definition 2. For a non-empty tree T = (V,E), R(T ) is defined as the root-tree set

which contains all root-trees of T .

Definition 3. For a non-empty tree T = (V,E), we define m(T ) = max
(∑

vi∈V
vi

|V | , 0
)

,

which equals to the mean of all the nodes in T if such mean is non-negative, and 0

otherwise.

Definition 4. For a non-empty tree T = (V,E), we define its maximal root-tree as:

M(T ) = arg max
T̃=(Ṽ ,Ẽ),T̃∈R(T ),m(T̃ )=mmax(T )

|Ṽ | (5.15)

where mmax(T ) = maxT̃∈R(T ) m(T̃ ) is the maximal value of all the root-trees of T ,

and if some root-trees share the same maximal value then M(T ) is the one with the

largest tree size.

The key idea of Atda is that, in the ith call, we find Ti = M(T ), the maximal

root-tree of T , set its corresponding nodes to m(Ti), then remove Ti from the tree T ,
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and apply Atda to the resulting trees one by one in a recursive manner. The detailed

discussion to justify the working of Atda along with feasible solution of Eq.(5.14)

is given in [51], and for the non-negative non-increasing list structure Atda has a

(worst-case) linear time complexity.

5.2.5 Algorithm analysis

In this section we will provide the details about the convergence and the time

complexity of the proposed MTLSA algorithm.

Convergence analysis

The problem proposed in Eq.(5.5) follows the standard ADMM form:

minimize
M∈P, B∈Rp×k

f1(M) + f2(B)

subject to M = XB

(5.16)

where f1(M) = 1
2
‖ ΠW (Y −M) ‖2

F and f2(B) = λ1

2
‖ B ‖2

F +λ2 ‖ B ‖2,1 are convex

functions, P and Rp×k are closed convex sets. Due to space constraints, we do not

provide the proof of convergence and the readers are referred to [8,30] which provide

the details of the convergence of the standard ADMM form (5.16). Based on the

analysis in [30], the Algorithm 4 requires O(1
ε
) iterations to achieve an accuracy of ε.

Complexity analysis

We first analyze the time complexity of Step 1. In Eq.(5.11) M̃ij can be calculated

with a time complexity of O(p) because Sij = µtij −XiB
t
(,j) where Xi (the ith row of

X) and Bt
(,j) (the jth column of Bt) all have p elements. For one instance (row), the

Euclidean projection in Eq.(5.11) can be efficiently calculated with a worst-case com-

plexity of O(k) [51], so for all n instances the Euclidean projection can be calculated
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in O(nk). Therefore, the updating of M t+1 needs in total O(npk) calculations, where

n, p, and k denote the training sample size, feature dimensionality, and the number

of tasks, respectively.

From [50], we know that in Step 2 standard l2,1-norm regularized multi-task least

squares problem in Eq.(5.12) with a time complexity of O( 1√
ε
(npk+pk)) = O( 1√

ε
npk)

to achieve an accuracy of ε. Moreover, based on the convergence rate of Algorithm 4,

we can conclude that the total time complexity of the proposed method is O( 1
ε
√
ε
npk)

for achieving an ε-level optimal solution.

5.2.6 Adaptive variant of MTLSA model

We also develop a variant of the MTLSA model in order to be able to effectively

handle large number of tasks. The MTLSA model proposed earlier strictly enforces

that the estimated output follows the non-negative non-increasing structure which

is the inherent nature of the target matrix Y . However, when the problem has a

large number of tasks, this constraint may become too strict that may lead to model

overfitting. The new variant, MTLSA.V2 will just employ the indicator matrix W

proposed in Section 5.2.1 to handle the censored instances and the l2,1-norm for sparse

learning, in the training phase. Mathematically, MTLSA.V2 is defined as:

arg min
B∈Rp×k

1

2
‖ ΠW (Y −XB) ‖2

F +
λ1

2
‖ B ‖2

F +λ2 ‖ B ‖2,1 (5.17)

This problem can be efficiently solved using the fast iterative shrinkage thresholding

algorithm (FISTA) algorithm with l2,1 projection [50] by incorporating the ΠW (·)

when calculating the objective function and its gradient. However, in the testing

phase of MTLSA.V2, the non-negative non-increasing list structure regularization

will be used to enforce the estimated output to follow the property of nonrecurring

event survival analysis.
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5.3 Experimental Results

In this section, we will first describe the datasets used in our evaluation and

then provide the performance results along with the implementation details. We also

demonstrate the scalability of the proposed method.

5.3.1 Dataset description

For our evaluation, we used several publicly available high-dimensional gene ex-

pression cancer survival benchmark datasets 1. The datasets used in our experiments

are as follows:

• The Norway/Stanford breast cancer data (NSBCD) [66] contains gene expres-

sion measurements of 115 women with breast cancer. These women are observed

for 188 months to monitor the death time.

• Van de Vijver’s Microarray Breast Cancer data (VDV) [73] contains gene expres-

sion profile information which can be used for predicting the clinical outcome

of breast cancer. It contains 4,707 gene expression values on 78 patients with

survival information for 13 years.

• Adult myeloid leukemia (AML) data contains gene expression profiles of 116

AML patients with a maximum follow-up time of 1,625 days. In our experi-

ments, we transform the observation time from daily basis to monthly basis and

hence the observation lasts for 54 months.

• Gene-expression profiles of lung adenocarcinoma (Lung) [6] is a dataset contain-

ing observations of 86 early-stage lung adenocarcinoma patients for a period of

110 months.

• Mantle Cell Lymphoma (MCL) 2 [63] is the data collected from 92 MCL patients

with survival information for 14 years.

• The Dutch Breast Cancer Data (DBCD) from van Houwelingen et al. [35] con-

1http://user.it.uu.se/~liuya610/download.html
2http://llmpp.nih.gov/MCL/
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Table 5.1: Details of the datasets used in this work.

Dataset # Instances # Features # Censored # Tasks
NSBCD 115 549 77 188
VDV 78 4705 44 13
AML 116 6283 49 54
Lung 86 7129 62 110
MCL 92 8810 28 14
DBCD 295 4919 216 18
DLBCL 240 7399 102 21

tains information on 4,919 gene expression levels for 295 women with breast

cancer. The maximum follow-up time of these patients was 18 years.

• Diffuse Large B-Cell Lymphoma (DLBCL) is a dataset that contains Lym-

phochip DNA microarrays from 240 biopsy samples of DLBCL tumors for study-

ing the survival status of the corresponding patients and the observation lasts

21 years.

Table 5.1 provides the details of the datasets that are used in our experiments. In

this table, the column titled “# Censored” corresponds to the number of censored

instances in each dataset. In cancer survival prediction, the event of interest is patient

death; therefore, an uncensored instance corresponds to the death of the patient

during the study, while a censored instance corresponds to the patient being still

alive at the last observed time (censored time). Based on the study duration of each

dataset, we translate the survival prediction problem to a corresponding multi-task

problem as described in Section 5.2.1. The number of tasks for each data is given

in the column titled “# Tasks” in the table. For model evaluation, we used 5-fold

cross validation when the number of instances is greater than 150 and 3-fold cross

validation otherwise.
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5.3.2 Comparison methods

We comprehensively compare our proposed methods with several popular state-

of-the-art related methods. We now summarize the comparison methods into five

categories, and we will briefly describe the basic idea and provide the implementation

details.

• Cox based models: The Cox proportional hazards model [18] is the most

commonly used semi-parametric model in survival analysis. The hazard function

has the form λ(t,Xi) = λ0(t)exp(Xiβ), where the λ0(t) is the common baseline

hazard function for all instances and β is the coefficient vector which can be

estimated by minimizing the negative log-partial likelihood function. The Cox

model can be trained by using the coxph function in the survival package [67].

The l1-norm penalized Cox model “LASSO-COX” and elastic net penalized

Cox model “EN-COX” can be learned using the cocktail function in the fastcox

package [82].

• Parametric censored regression models: In parametric models, the joint

probability of the uncensored instances can be formulated as a product of death

density functions and the joint probability of the censored instances can be

formulated as a product of survival functions. Thus, a standard likelihood

function can be built by combining these two components and the corresponding

model parameters are estimated by the maximum-likelihood estimation (MLE)

procedure [43]. In our experiments, the parametric censored regression methods

are trained using the survreg function in the survival package with Weibull,

Logistic, Loglogistic, and Loggaussian distributions.

• Linear models: Tobit model [71] is an extension of the linear regression

yj = Xjβ + εj, εj ∼ N(0, σ2), but the parameter is estimated by the maxi-

mum likelihood method rather than using the least squares error. It can be
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trained using the survreg function with Gaussian distributions. The elastic net

penalized Buckley-James regression “EN-BJ” is implemented using the bujar

package [80]. We also compared our proposed methods with the ordinary least

squares (OLS) linear regression since the loss function in our model has a similar

form to the OLS. Note that, the OLS is not a censored regression method and

hence it is learned using only the uncensored instances rather than the entire

set of training instances.

• Pairwise ranking based models: Boosting concordance index (BoostCI) [53]

is an approach where the concordance index metric is modified into an equivalent

smoothed criterion using the sigmoid function and the resulting optimization

problem is solved using a gradient boosting algorithm. The implementation of

BoostCI (using R code) can be found in the supporting file of [53] 3.

• Multi-task learning models: We compared our proposed methods with the

standard multi-task learning models, multi-task Lasso (Multi-LASSO) and l2,1-

norm based multi-task feature learning method (Multi-l2,1). In MALSAR pack-

age, these two models are learned via “Lest L21” and “Lest Lasso” functions,

respectively [85]. Note that, these two methods cannot deal with censored in-

stances, so the model is learned using only the uncensored instances rather than

the entire set of training instances, and the labeling matrix is generated based

on the scheme presented in Section 5.2.1.

5.3.3 Performance comparison

Due to the presence of censoring in the data, the standard evaluation metrics for

regression such as root of mean square error and R2 are not suitable for measuring the

performance in survival analysis [31]. Instead, the concordance index (C-index), or

the concordance probability, is used to measure the performance of prediction models

3files.figshare.com/1339232/Text_S1.pdf
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in survival analysis [28]. Let us consider a pair of bivariate observations (y1, ŷ1)

and (y2, ŷ2), where yi is the actual observation, and ŷi is the predicted one. The

concordance probability is defined as:

c = Pr(ŷ1 > ŷ2|y1 ≥ y2) (5.18)

By definition, the C-index has the same scale as the classical area under the ROC

(AUC) in binary classification, and if yi is binary, then the C-index is same as the

AUC. In the Cox based models, the instances with a low hazard rate should survive

longer, and the C-index will be calculated as follows:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I(Xiβ̂ > Xjβ̂) (5.19)

where num denotes the number of comparable pairs and I[·] is the indicator function.

The C-index in other methods which aim at directly learning the survival time should

be calculated as:

c =
1

num

∑
i∈{1···N}δi=1

∑
yj>yi

I[S(ŷj|Xj) > S(ŷi|Xi)] (5.20)

where S(ŷi|Xi) is the predicted target value. Multi-task learning models cannot

directly predict the survival time but they can determine whether an instance is alive

or not at each time interval (or task); thus, based on this information, we can predict

the survival time.

In Table 5.2, we provide the performance results of C-index values of different al-

gorithms on various real-world high-dimensional micro-array cancer survival datasets.

The best results are highlighted in bold. The results show that our proposed models
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outperform the other state-of-the-art models4.

The C-index measures the model performance in regression problems. In addition

to it, we also evaluate the model performance in classification problems which corre-

sponds to whether a patient can survive at each time interval or not. Since censoring

occurs, the number of patients, who have a known survival status label (“1” or “0”

in target matrix Y ), will reduce during the observation, (as shown in Figure 5.1, all

6 instances are labeled in Day1 and Day2, and only 5 instances are labeled in Day3).

Thus, in Table 5.3, we present the comparison of weighted average AUC values of

different tasks (time intervals). The weighted average AUC is defined as

AUCavg =

∑k
i=1 AUC(i)n

(i)
c̄∑k

i=1 n
(i)
c̄

(5.21)

where AUC(i) is the AUC value of the ith task, and n
(i)
c̄ is the number of instances who

have a known survival status label in the ith time interval. The results in Table 5.3

show that the proposed models obtain higher AUCavg in most of the datasets. This

demonstrates that our proposed methods have a better time-dependent prediction

capability than other related methods.

5.3.4 Scalability experiments

We empirically evaluate the scalability of the proposed MTLSA method with

respect to the sample size (n), the number of features (p) and the number of tasks

(k). The synthetic datasets are generated using the the function “simple.surv.sim”

in survsim package [55] with different sample sizes, feature dimensionality, and max-

imum follow-up times (which corresponds to tasks). All the features are generated

based on a uniform distribution, and each of them have a different randomly set in-

terval. The coefficient vector is also randomly generated and remains within [−1, 1].

4The method described in [49] was not able run on our high-dimensional datasets and hence we
were not able to obtain any results for that method.
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The observed time is assumed to follow a Log-logistic distribution and the time to

censorship follows a Weibull distribution (which is a standarded practice in survival

analysis). Figure 5.2(a) shows the runtimes for fixed p-k combination and varying n,

Figure 5.2(b) shows the runtimes for fixed n-k combination and varying p, and Figure

5.2(c) shows the runtimes for fixed n-p combination and varying k. These three plots

clearly demonstrate that the runtime of MTLSA is close to being linear with respect

to n, p and k.
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Table 5.2: Performance comparison of the proposed methods and other existing re-
lated methods using C-index values (along with their standard deviations).

NSBCD VDV AML Lung MCL DBCD DLBCL

COX
0.4411 0.5973 0.5515 0.5158 0.5773 0.5539 0.4553

(0.0589) (0.1097) (0.0683) (0.1333) (0.0591) (0.1233) (0.0718)

COX
LASSO-COX

0.5910 0.6484 0.5995 0.6698 0.6824 0.6880 0.6344

based (0.1086) (0.0276) (0.0307) (0.0910) (0.0701) (0.0429) (0.0421)

EN-COX
0.6046 0.6422 0.5715 0.6652 0.6734 0.7214 0.6488

(0.1000) (0.0681) (0.0596) (0.0702) (0.0733) (0.0306) (0.0394)

Logistic
0.3787 0.5276 0.4544 0.5714 0.4827 0.4908 0.4840

(0.0195) (0.1404) (0.0772) (0.0942) (0.0682) (0.0872) (0.0496)

Weibull
0.3045 0.3159 0.5286 0.4287 0.4735 0.4555 0.2507

Para- (0.1528) (0.1321) (0.0546) (0.1023) (0.0747) (0.1046) (0.0627)

metric
Log-gaussian

0.4435 0.5210 0.4048 0.4122 0.2564 0.4875 0.3167

models (0.0539) (0.1653) (0.0651) (0.0754) (0.0715) (0.0553) (0.0914)

Log-logistic
0.2378 0.5267 0.4677 0.5924 0.4802 0.5257 0.4246

(0.0500) (0.1071) (0.0800) (0.0655) (0.0724) (0.0232) (0.1243)

OLS
0.6333 0.5206 0.4555 0.5743 0.5007 0.5690 0.5024

(0.1108) (0.0163) (0.0595) (0.0658) (0.1059) (0.0744) (0.1023)

Linear
Tobit

0.3733 0.5192 0.4726 0.4689 0.4591 0.4869 0.4969

based (0.0214) (0.1581) (0.0759) (0.1358) (0.0322) (0.0762) (0.0527)

BJ-EN
0.6215 0.6081 0.6500 0.6646 0.7234 0.7094 0.6285

(0.0924) (0.0646) (0.0585) (0.1324) (0.1099) (0.0391) (0.0726)

Ranking
Boost-CI

0.6263 0.6650 0.5817 0.5713 0.7049 0.7103 0.6082

based (0.0831) (0.0594) (0.0501) (0.0926) (0.0956) (0.0426) (0.0296)

Multi-LASSO
0.6117 0.5293 0.5088 0.4410 0.6539 0.6256 0.6104

(0.1493) (0.1083) (0.0952) (0.1655) (0.0140) (0.0749) (0.0510)

Multi-l2,1
0.6100 0.5973 0.5246 0.5248 0.6912 0.6899 0.6115

Multi- (0.1700) (0.1440) (0.0285) (0.1130) (0.0602) (0.0720) (0.0512)

task
MTLSA.V2

0.6858 0.6727 0.6592 0.6769 0.7079 0.7515 0.6545

based (0.0834) (0.0429) (0.0554) (0.0271) (0.0963) (0.0625) (0.0600)

MTLSA
0.6820 0.7008 0.7145 0.6327 0.7274 0.7581 0.6527

(0.0446) (0.0330)(0.0493) (0.0753) (0.1257)(0.0304) (0.0713)
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Table 5.3: Performance comparison of the proposed methods and other existing re-
lated methods using weighted average of AUC (along with their standard deviations).

NSBCD VDV AML Lung MCL DBCD DLBCL

COX
0.4611 0.6352 0.5351 0.5464 0.4695 0.5334 0.4480

(0.1893) (0.1666) (0.0814) (0.1632) (0.1701) (0.1620) (0.1079)

COX
LASSO-COX

0.5986 0.6857 0.7277 0.7499 0.7401 0.7068 0.7104

based (0.1589) (0.0456) (0.0346) (0.1780) (0.0166) (0.0292) (0.0533)

EN-COX
0.6479 0.6770 0.6819 0.7540 0.7350 0.7497 0.7260

(0.0970) (0.0978) (0.0790) (0.1398) (0.0025) (0.0189) (0.0618)

Logistic
0.4597 0.5917 0.4918 0.6301 0.2986 0.4840 0.5011

(0.1742) (0.1433) (0.0417) (0.0924) (0.0501) (0.1086) (0.0489)

Weibull
0.4575 0.3177 0.5227 0.4379 0.3240 0.4707 0.4320

Para- (0.2622) (0.1369) (0.0393) (0.1018) (0.0484) (0.0809) (0.1080)

metric
Log-gaussian

0.4992 0.5647 0.4718 0.4182 0.4457 0.4742 0.4270

models (0.2378) (0.2026) (0.0206) (0.0680) (0.0161) (0.0763) (0.0977)

Log-logistic
0.3304 0.5573 0.4984 0.5822 0.2983 0.5302 0.4712

(0.1057) (0.0627) (0.0521) (0.1544) (0.0505) (0.0298) (0.0627)

OLS
0.6599 0.5268 0.4457 0.5677 0.5594 0.5998 0.4934

(0.1042) (0.0887) (0.0339) (0.1120) (0.1191) (0.1096) (0.1952)

Linear
Tobit

0.4567 0.5680 0.5042 0.4708 0.5074 0.4668 0.5243

models (0.1812) (0.1778) (0.0412) (0.1422) (0.0283) (0.1021) (0.0691)

BJ-EN
0.6376 0.6664 0.7633 0.7494 0.8567 0.7344 0.6574

(0.1262) (0.0953) (0.0393) (0.1544) (0.0306) (0.0393) (0.0388)

Ranking
Boost-CI

0.6483 0.7151 0.6664 0.6497 0.7660 0.7380 0.6626

based (0.0972) (0.0788) (0.1293) (0.2193) (0.0417) (0.0493) (0.0553)

Multi-LASSO
0.6495 0.5166 0.4802 0.4410 0.6079 0.6402 0.5876

(0.1226) (0.0502) (0.1090) (0.1655) (0.0696) (0.0572) (0.1047)

Multi-l2,1
0.6501 0.6463 0.5247 0.5589 0.6476 0.7125 0.6001

Multi- (0.1314) (0.1510) (0.0316) (0.1486) (0.0653) (0.0775) (0.0528)

task
MTLSA.V2

0.6822 0.7441 0.7401 0.8076 0.7639 0.7569 0.7405

based (0.0576) (0.0437) (0.0658) (0.0559) (0.0651) (0.0645) (0.0719)

MTLSA
0.7032 0.7659 0.8098 0.7169 0.8095 0.8003 0.7385

(0.0427)(0.0286)(0.0077) (0.0964) (0.0367) (0.0425) (0.0638)
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Figure 5.2: Scalability results of the MTLSA model. The times denote total runtime
for 100 λ values averaged over three trials.
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CHAPTER 6 TRANSFER LEARNING FOR

SURVIVAL ANALYSIS

6.1 Motivation and Overview

Collecting labeling information of survival analysis is very time consuming, i.e.,

one has to wait for the occurrence of the event of interest from sufficient number of

training instances to build robust models. Moreover, in many practical applications,

appropriate feature collection can also be extremely expensive and tedious. A naive

solution for this insufficient data problem is to merely integrate the data from related

tasks into a consolidated form and build prediction models on such integrated data.

However, such approaches often show poor performance since the target task (where

the prediction needs to be done) will be overwhelmed by auxiliary data with different

distributions. In such scenarios, knowledge transfer between related tasks will usually

produce much better results compared to a mere integration scheme. Transfer learning

methods have been extensively studied to solve classification and standard regression

problems. However, transfer learning for survival analysis has not been studied in the

literature so far in spite of the clear practical need for this problem. In this thesis,

we employ the Cox proportional hazards model, one of the most popular survival

analysis methods, for modeling time-to-event data.

The main objective of this work is to improve the prediction performance of the

Cox model in the target domain through knowledge transfer from the source domain

in the context of survival models built on multiple high-dimensional datasets. The

key component of our transfer learning method called Cox-l2,1 is to identify the “use-

ful” knowledge that can potentially improve the performance on the target data and

transfer knowledge into the model to be learned on the target domain. Specifically,

we propose to employ the l2,1-norm to penalize the sum of the loss functions (Cox

proportional hazards model) for both source and target domains [2,50]. The l2,1-norm
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Figure 6.1: The concept map of the proposed transfer learning method for survival
analysis

penalty encourages multiple predictors to share similar sparsity patterns; thus, it can-

not only select important features but also learn a shared representation across source

and target domains to improve the model performance on the target task. Figure 6.1

presents the concept map of the proposed model. The proposed transfer learning for-

mulation is solved via the fast iterative shrinkage thresholding algorithm (FISTA) [5],

where ψ(·) denotes a survival prediction model. In addition, with the help of a risk

set updating method [65], the proposed Cox-l2,1 algorithm achieves a linear time

complexity with respect to both training sample size and feature dimensionality.

We demonstrate the prediction performance of our Cox-l2,1 model using real-

world high-dimensional microarray gene expression datasets which include patients

from various cancer types. Our results demonstrate the power of the proposed Cox-

l2,1 model in transferring knowledge from the related cancer types to improve the

survival prediction for one particular cancer type. Although the proposed algorithm

is efficient, it is still time consuming due to the high dimensionality of the dataset

(19, 171 features). To this end, we adapt the idea of screening so that it is applicable

to censored data by utilizing the strong rules [69]. Screening is a state-of-the-art tech-

nology which is able to efficiently identify the number of features whose corresponding
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coefficients are guaranteed to be zero. Removal of these features will dramatically re-

duce the dimensionality of the feature space. In this thesis, we extend the strong rule

to sparse survival analysis models with multiple datasets and significantly increase

the efficiency of the algorithm without compromising the prediction performance.

The main contributions of this work are summarized as follows:

• Propose a novel transfer learning method Cox-l2,1 for survival analysis which

can select a subset of joint features to transfer the knowledge from the source

domain to the target domain in the presence of censored data.

• Develop screening mechanism for censored data by extending the strong rule to

sparse survival models with multiple datasets and use it to improve the efficiency

of the algorithm without compromising the prediction performance.

• Demonstrate the performance of the proposed transfer learning method using

several synthetic and high-dimensional microarray gene expression benchmark

datasets, and compare it with state-of-the-art survival analysis methods.

6.2 Related Work on Transfer learning

In this section, we present the related works in the area of transfer learning and

highlight the primary distinctions of the proposed work compared to the existing

methods that are available in the literature.

Transfer learning methods have been successfully applied in many real-world ap-

plications such as text mining [57], collaborative filtering [59] and biomedical data

analysis [45]. In transfer learning, the primary goal is to adapt a model built on

source domain DS (or distribution) for performing prediction on the target domain

DT. Pan et al. [58] categorized transfer learning methods into three different types,

namely, inductive, transductive and unsupervised transfer learning, based on different

settings for transfer. The model we propose in this thesis belongs to the inductive

transfer learning approach, more specifically, similar to multi-task learning [2]. In
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Table 6.1: Relationship between the proposed model and traditional multi-task learn-
ing related inductive transfer learning methods.

Tasks Source & Target Labels Related Literatures

Classification Categorical / Fully informative [21], [37], [57], · · ·
Regression Numeric / Fully informative [2], [60], [26], · · ·
Survival analysis Numeric / Partially informative Our work

multi-task learning different tasks are learned simultaneously and equally weighted,

while in the case of transfer learning, one set of data is selected as the target domain

and the remaining is used as the source domains. Furthermore, it is very convenient

to adapt a multi-task learning algorithm to transfer learning algorithm by merely

enhancing the importance (weight) of the target task [58].

In all the methods described above and other related works (refer to [58]), the

source and target tasks are either classification or regression problems. However, in

this thesis, the source and target tasks are the corresponding regression-based loss

functions which include censored information. We propose a proportional hazards [18]

based transfer learning model to transfer the useful and relevant knowledge from the

source to the target domain. Our approach can effectively handle censored infor-

mation based on the partial likelihood function which makes it unique. Table 6.1

summarizes the relationship between traditional multi-task learning related induc-

tive transfer learning methods and the proposed model. It should be noted that in

survival analysis, the label information is available but is partially informative for

censored instances. Hence, techniques like self-taught learning [61] and transductive

learning [3] which handle scenarios with missing label information are not suitable

for handling such partially imformative label information.

Based on the underlying learning mechanism, transfer learning methods can be

grouped into four categories [58]: instance-based, feature-based, parameter-based, and

relational knowledge-based. Our proposed model is a feature-based transfer learning
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paradigm, which employs the l2,1-norm [2,50] to penalize the sum of the loss functions

(Cox proportional hazards model) of both source and target tasks. The l2,1-norm

encourages multiple predictors to share similar sparsity patterns; thus, it cannot only

select important features and alleviate over-fitting in high-dimensional datasets but

also learn a shared representation across source domain and target domain to improve

the model performance on the target task.

6.3 Proposed Model

In this section, we will first introduce some basic concepts of survival analysis

and Cox proportional hazard regression. Then we will propose the transfer learning

methods based on l2,1-norm regularized Cox model and the optimization approach.

6.3.1 Preliminaries

In survival analysis, for each data instance, we observe either a failure time (Oi)

or a censored time (Ci), but not both. The dataset is said to be right-censored if and

only if yi = min(Oi, Ci) can be observed during the study. An instance in the survival

data is usually represented by a triplet (Xi, Ti, δi), where Xi is a 1× p feature vector;

δi is the censoring indicator, i.e. δi = 1 for an uncensored instance, and δi = 0 for a

censored instance; and Ti denotes the observed time and is equal to the failure time

Oi for uncensored instances and Ci otherwise, i.e.

Ti =

 Oi if δi = 1

Ci if δi = 0
(6.1)

For censored instances, Oi is a latent value, and the goal of survival analysis is to

model the relationship between Xi and Oi by using the triplets (Xi, Ti, δi) for censored

and uncensored instances.

In survival analysis, one of the most important concepts in modeling such censored
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data is the hazards function hi(t) = lim
∆t→0

Pr(t≤Oi<t+∆t|Oi≥t)
∆t

, which is the event rate at

time t conditional on survival until time t or later. In the Cox model, the proportional

hazards assumption is

h(t,Xi) = h0(t) exp(Xiβ) (6.2)

for i = 1, 2, ..., N , where the h0(t) is the baseline hazard function, which can be an

arbitrary non-negative function of time, and β is a p×1 regression coefficient vector of

the Cox proportional hazards model. The Cox model is a semi-parametric model since

all the instances share a same baseline hazard function and the coefficient estimation

is independent of the form of h0(t). Let O1 < O2 < · · · < OK be the increasing list

of unique failure times of all N instances; given the fact that an event occurs at Oi,

the conditional probability of the individuals corresponding covariate is Xi can be

formulated as

Pr(Xi|Oi) =
h(Oi, Xi)∆t∑
j∈Ri h(Oi, Xj)∆t

=
exp(Xiβ)∑
j∈Ri exp(Xjβ)

(6.3)

where Ri is the risk set at Oi which consists of all instances whose failure times are

equal to or greater than Oi. Thus, the β can be learned via maximizing the partial

likelihood:

L(β) =
K∏
i=1

exp(Xiβ)∑
j∈Ri exp(Xjβ)

(6.4)

6.3.2 L2,1-norm regularized Cox model

In this thesis, we propose a feature-based transfer learning method which aims at

finding “good” features to transfer knowledge from source domain to target domain

and miminize the prediction error of target task. In standard transfer learning the

source and target tasks are either classification or standard regression, but in survival
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analysis the source and target tasks are censored regression. Cox model is the most

widely used survival analysis method, and we employ it as the loss function for both

source and target tasks. However, Eq.(6.4) fails to handle the tied failures, i.e., two or

more failure events that occur at same time. In this work, the Breslow approximation

[11] is used to deal with the tied failures. The partial likelihood is reformulated as

follows:

L(β) =
K∏
i=1

exp(
∑

j∈Di Xjβ)

[
∑

j∈Ri exp(Xjβ)]di
(6.5)

where Di contains all instances whose failure time is Oi and di = |Di| is the size

of Di. Therefore, the coefficient vector can be learned via minimizing the negative

log-partial likelihood.

l(β) = −
K∑
i=1

{∑
j∈Di

Xjβ − di log

[∑
j∈Ri

exp(Xjβ)

]}
(6.6)

To find “good” features for knowledge transfer, we propose a model which is

able to learn a shared representation across source and target tasks. The l2,1-norm is

chosen to be one penalty term for our model because it encourages multiple coefficient

vectors to share similar sparsity patterns. Therefore, the regularized model learns a

shared representation across source and target tasks. In addition, a sparsity inducing

penalty also helps the model deal with high-dimensional datasets and alleviate model

over-fitting. The proposed transfer learning model “Cox-l2,1” can be learned via

solving the following minimization problem.

min
B

∑
t∈{S,T}

−wt
Nt

l(βt) +
µ

2
‖ B ‖2

F +λ ‖ B ‖2,1 (6.7)

where S and T denote the tasks in the source domain and target domain, respectively.
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B = (βS, βT ), B ∈ Rp×2, NS and NT are the number of training instances in the source

domain and target domain, respectively. wS and wT are two empirically determined

weight parameters, and usually wS < wT which induces the model focusing more on

the target task. The l2 regularization on the coefficient matrix B is introduced to

further reduce the variance of B and alleviate model over-fitting.

6.3.3 Optimization

The optimization problem proposed in Eq.(6.7) follows the standard l1,2-norm

regularization problem:

min
B∈Rp×2

g(B) + λ ‖ B ‖2,1 (6.8)

where λ > 0 is the regularization parameter, and

g(B) =
∑

t∈{S,T}

−wt
Nt

l(βt) +
µ

2
‖ B ‖2

F

is a smooth convex loss function, and its first order derivative can be calculated as:

g
′
(B) =

[
wS
NS

l
′
(βS) + µβS,

wT
NT

l
′
(βT ) + µβT

]
(6.9)

where l
′
(βS) and l

′
(βT ) are the gradient of the negative log-partial likelihood as shown

in Eq.(6.6), and these two terms share the same formulation

l
′
(β) = −

K∑
i=1

{∑
j∈Di

Xj − di

∑
j∈Ri Xj exp(Xjβ)∑
j∈Ri exp(Xjβ)

}
(6.10)

coresponding to the source and target datasets, respectively.

The optimization problem in Eq.(6.8) can be solved efficiently via the FISTA
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based algorithm with the general updating step,

B(i+1) = πP (S(i) − 1

γi
g
′
(S(i))) (6.11)

where S(i) = B(i) + αi(B
(i) −B(i−1)) = [S

(i)
S , S

(i)
T ] are two search points of the source

task and target task, respectively. αi is the combination scaler, g
′
(S(i)) is the gradient

of g(·) at point S(i), 1
γi

is the possible biggest stepsize which is chosen by line search,

and πP (·) is the l1,2-regularized Euclidean projection:

πP (G(S(i))) = min
1

2
‖ B −G(S(i))) ‖2

F +λ ‖ B ‖2,1 (6.12)

where G(S(i)) = S(i) − 1
γi
g
′
(S(i)). An efficient solution (Theorem 2) of Eq.(6.12) has

been proposed in [50].

Theorem 2. Given λ, the primal optimal point B̂ of Eq.(6.12) can be calculated as:

B̂j =



(
1− λ

‖G(S(i))j‖2

)
G(S(i))j if λ > 0, ‖ G(S(i))j ‖2> λ

0 if λ > 0, ‖ G(S(i))j ‖2≤ λ

G(S(i))j if λ = 0

(6.13)

where G(S(i))j is the jth row of G(S(i)), and B̂j is the jth row of B̂.

Algorithm 5 outlines the learning procedure of FISTA algorithm to solve optimiza-

tion problem in Eq.(6.7). In lines 4-11, the optimal γi is chosen by the backtracking

rule; thus, based on [5, Lemma 2.1, page 189], γi is greater than or equal to the

Lipschitz constant of g(·) at S(i), which means γi is satisfied for S(i) and 1
γi

is the

biggest possible stepsize. In line 7, Qγ(S
(i), B(i+1)) is the tangent line of g(·) at S(i),



93

Algorithm 5: FISTA algorithm for Cox-l2,1

Input: Source dataset DS, Target dataset DT , Initial coefficient matrix B(0),
w, µ, λ

Output: B̄

1 Initialize: B(1) = B(0), d−1 = 0, d0 = 1,γ0 = 1,i = 1;
2 repeat

3 Set αi = di−2−1
di−1

, S(i) = B(i) + αi(B
(i) −B(i−1));

4 for j = 1, 2, · · · do
5 Set γ = 2jγi−1;

6 Calculate B(i+1) = πP (S(i) − 1
γ
g
′
(S(i)));

7 Calculate Qγ(S
(i), B(i+1));

8 if g(B(i+1)) ≤ Qγ(S
(i), B(i+1)) then

9 γi = γ, break ;
10 end

11 end

12 di =
1+
√

1+4d2
i−1

2
;

13 i = i+ 1;

14 until Convergence of B(i);

15 B̄ = B(i);

which can be calculated as

Qγ(S
(i), B(i+1)) (6.14)

= g(S(i)) +
γ

2
‖ B(i+1) − S(i) ‖2 +〈B(i+1) − S(i), g

′
(S(i))〉

6.3.4 Complexity Analysis

The main cost per iteration of our optimization scheme is the computation of g(·)

and g
′
(·), more specifically, the computation of the negative log-partial likelihood and

its gradient. From Eq.(6.6) and Eq.(6.10), we can see that, at each failure time point

Oi, one needs to calculate
∑

j∈Ri e
Xjβ and

∑
j∈Ri Xje

Xjβ; thus, for all failure times, it

needs O(N2p) calculations, because Ri has O(N) elements. To speedup the training

process, we employ the risk set updating method proposed in [65] which is given as
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follows.

∑
j∈Ri+1

eXjβ =
∑
j∈Ri

eXjβ −
∑

j∈(Ri−Ri+1)

eXjβ (6.15)

∑
j∈Ri+1

Xje
Xjβ =

∑
j∈Ri

Xje
Xjβ −

∑
j∈(Ri−Ri+1)

Xje
Xjβ

Here, we only need to calculate
∑

j∈R1
eXjβ and

∑
j∈R1

Xje
Xjβ. Then for the subse-

quent failure time point Oi, we subtract the contribution from instances which are

failed or censored between Oi−1 and Oi. Therefore, the calculations of l(β) and l
′
(β)

are both reduced to O(Np), and the computation cost of g(·) and g
′
(·) are both

O((NS +NT )p).

In our transfer learning problem, there are only two tasks (source and target tasks),

so the Euclidean projection in Eq.(6.12) can be efficiently calculated in O(2p) = O(p).

Therefore, the optimization procedure solves the optimization problem in Eq.(6.7)

with a time complexity of O( 1√
ε
(NS +NT )p) for achieving an accuracy of ε.

6.3.5 Solution Path and Strong Rule

Usually, in the learning process, the model has to be trained based on a series

of values for λ, and the best λ is selected via cross-validation. In this thesis, we

employ the warm-start approach given in [25] to build the solution path; initialize λ

to a sufficiently large number, which forces B to a zero matrix, and then gradually

decreases λ in each learning iteration. For a new λ, the initial value of B is the

estimated B learned from the previous λ, so the initial value of B is not far from the

optimal value, and the algorithm will converge within a few iterations.

Firstly, λmax, the smallest tuning parameter value which forces B to a zero matrix,

needs to be calculated. From Eq.(6.13) we can see that if ‖ G(S(0))j ‖2< λ for all j,
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then B = 0 is the optimal solution. Thus, we set

λmax = max
j
‖ G(S(0))j ‖2 (6.16)

= max
j
‖ S(0)

j −
1

γ0

g
′
(S(0))j ‖2= max

j
‖ g′(0)j ‖2

to be the first λ, where g
′
(·)j is the jth row of g

′
(·). If min(NS, NT ) ≥ p we set

λmin = 0.0001λmax, else we set λmin = 0.05λmax. In our experiments, we search m

different λ values in total, and for the kth step λk = λmax(λmin/λmax)
k/m.

The FISTA based learning scheme is an efficient method to solve the transfer

learning problems proposed in Eq.(6.7). However, if the feature dimensionality (p) is

extremely large, the proposed optimization approach will still take substantial amount

of time. Screening is a state-of-the-art technology which is able to efficiently identify

features whose corresponding coefficients are guaranteed to be zero. Removal of

these features will dramatically reduce the feature dimension; thus, screening is able

to improve the efficiency of many sparse models [77]. Our optimization problem in

Eq.(6.7) can be rewritten as

min
B
g(B) + λ

p∑
j=1

‖ Bj ‖2 (6.17)

where Bj stands for the jth row of B. Eq.(6.17) belongs to the general Lasso-type

problems, and based on the the Karush-Kuhn-Tucker (KKT) conditions, Tibshirani

et al. proposed the strong rules for this type of problems [69]. The KKT conditions

for Eq.(6.17) are

g
′
(B̂)j = λθj for j = 1, 2, ..., p (6.18)

where B̂ is the optimal solution and θj is a subgradient of ‖ B̂j ‖2, which satisfies
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‖ θj ‖2≤ 1 and ‖ θj ‖2< 1 implies B̂j = 0. Based on the above KKT conditions

and [69, Section 6, page 17], for our problem the sequential strong rule for Eq.(6.17)

to discard inactive features (corresponding coefficients are zero) is as follows.

Theorem 3. Given a sequence of parameter values λmax = λ0 > λ1 > · · · > λm, and

suppose the optimal solution B̂(k−1) at λk−1 is known. Then for any k = 1, 2, · · · ,m

the jth feature will be discarded if

‖ g′(B̂(k − 1))j ‖2< 2λk − λk−1 (6.19)

and the corresponding coefficient B̂(k)j will be set to 0.

However, based on the experimental analysis in [69], we know that, Theorem 3

might mistakenly discard active features (corresponding coefficients are nonzero), so

we need to check KKT conditions of the discarded features. Let V d and V s denote

the index set of discarded features and selected features, respectively. From Theorem

3, we get B̂(k)j = 0, ∀j ∈ V d, and based on Eq.(6.13) we know that if

‖ g′(B̂(k))j ‖2≤ λk ∀j ∈ V d

is true, then B̂(k) is the optimal solution at λk. Otherwise, V s need to be updated

via V s = V s ∪ V v where

V v =
{
j
∣∣∣j ∈ V d, ‖ g′(B̂(k))j ‖2> λk

}
(6.20)

is the index set of mis-discarded features.

Above all, Figure 6.2 summarizes our proposed model with solution path and

strong rule. Firstly, λmax will be calculated by Eq.(6.16) as the starting searching

point. Next, the strong rule will be used to discard inactive features, and the model
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will be trained with the selected features. To prevent mis-discarding, we then have to

check the KKT conditions. If there are any mis-discarded features, we have to update

the set of selected features and retrain the model; if not, we can train a model based

on a new λ.

6.4 Experimental Results

In this section, we will first describe the datasets used in our evaluation and demon-

strate the prediction performance of the proposed Cox-l2,1 model. Then we will ex-

perimentally demonstrate the efficiency of the screening methods and the scalability

of the proposed algorithm. Finally, we perform a detailed study on the biomarkers

selected by the proposed algorithm on different cancer types and show their biological

significance as well.

6.4.1 Dataset Description

For our model evaluation, we use publicly available 1 high-dimensional gene ex-

pression cancer survival benchmark datasets from The Cancer Genome Atlas (TCGA)

[38]. In this thesis, we perform knowledge transfer in survival analysis by analyzing

the microarray gene expressions for different cancer types. We have labeled data in

all cancer types. The dataset contains somatic mutational profiles for 3, 096 cancer

patients with survival information, and for each patient the relative activity of 19, 171

genes are measured. These gene values are considered to be the features in our data.

The cancer patients belong to one of the 12 major cancer types: bladder urothelial

carcinoma (BLCA), breast adenocarcinoma (BRCA), colon carcinoma (COAD), rec-

tal carcinoma (READ), glioblastoma multiforme (GBM), head and neck squamous

cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), acute myeloid

leukaemia (LAML), lung adenocarcinoma (LUAD), lung squamous cell carcinoma

(LUSC), ovarian serous carcinoma (OV) and uterine corpus endometrial carcinoma

1Downloaded from https://cran.r-project.org/web/packages/dnet/index.html
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Let k = 0, B̂(0) = 0, calcu-
late λ0 = λmax by Eq.(6.16)

k = k+1

k > m StopRecord B̂(k)

Calculate λk and let B(0) = B̂(k−1)

Discard inactive features by
Theorem 3, get V s and V d

Call Algorithm 5 based on features
in V s with initial B(0), get B̄

Compute V v by Eq.(6.20)
to check KKT conditions

V v = ∅
Update
B̂(k) = B̄

Update
V s = V s ∪ V v

Update
B(0) = B̄

yes

no

yes

no

Figure 6.2: Flowchart for Cox-l2,1 algorithm with strong rule.
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Table 6.2: Basic statistics of the selected 8 cancer types.

Data # Instances # Uncensored # Censored

BRCA 763 90 673

GBM 275 176 99

HNSC 300 119 181

KIRC 417 136 281

LAML 185 117 68

LUAD 155 50 105

LUSC 171 68 103

OV 315 181 134

(UCEC).

In our experiments, the goal is to improve the performance of survival prediction

for a particular cancer type. Hence, in our transfer learning setting, this specific cancer

type would be considered to be the target domain and the data from remaining types

is considered to be the source domain. Table 6.2 shows the basic statistics of the

cancer types considered for our analysis. The number of uncensored instances in four

cancer types are too small and hence these four cancer types were eliminated for our

evaluation. In our experiments, for the remaining 8 cancer types, each of them will

be considered as the target domain and the data from the remaining cancer types will

be considered as the source domain. In this table, the columns titled “# Uncensored”

and “# Censored” correspond to the number of uncensored and censored instances in

each cancer type, respectively. For these cancer types, the event of interest is patient

death; therefore, an uncensored instance refers to the corresponding patient is dead

during the study, while a censored instance refers to the corresponding patient is still

alive at the last observed time (censored time).

6.4.2 Performance Comparison

To the best of our knowledge, neither transfer learning nor multi-task learning for

survival analysis have been studied in the literature. Hence, we can only compare our
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proposed Cox-l2,1 with standard related survival analysis methods. As our Cox-l2,1

is a Cox-based model and l2,1-norm is a Lasso-type penalty, we choose Cox model and

other two popular regularized Cox models: LASSO-COX and EN-COX as comparison

methods. In our experiments, these three survival analysis methods are applied both

on the target dataset (the specified cancer type) and the entire dataset. For simplicity,

they are referred to as “Local” models and “Global” models, respectively. It should be

noted that, in “Global” models, although each model is built on the entire dataset, the

performance is measured only on the target dataset. For a “Local” model, the training

and testing are performed only on the target cancer type (using cross validation). For

a global model, the training is done on the source+target samples and the testing is

done on the target cancer samples.

The concordance index (C-index), or concordance probability, is used to measure

the performance of prediction models in survival analysis [28]. Let us consider a pair

of bivariate observations (y1, ŷ1) and (y2, ŷ2), where yi is the actual observation, and

ŷi is the predicted one. The concordance probability is defined as

c = Pr(ŷ1 > ŷ2|y1 ≥ y2). (6.21)

By definition, the C-index has the same scale as the area under the ROC curve (AUC)

in binary classification, and if yi is binary, then the C-index is same as the AUC. In

the standard Cox model and regularized Cox models, the hazard ratio is modeled to

describe the time-to-event data. The instances with a low hazard rate should survive

longer, so the C-index is calculated as follows:

c =
1

num

∑
i∈{1···N |δi=1}

∑
yj>yi

I[Xiβ̂ > Xjβ̂] (6.22)

where num denotes the number of comparable pairs and I[·] is the indicator function.
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Table 6.3: Performance comparison of the proposed Cox-l2,1 method and other ex-
isting related methods using C-index values (along with their standard deviations).

Dataset
Local Global

Cox-l2,1
COX LASSO-COX EN-COX COX LASSO-COX EN-COX

BRCA
0.4348 0.3868 0.4055 0.5547 0.5822 0.5811 0.5869

(0.0756) (0.0418) (0.0426) (0.0238) (0.0394) (0.0411) (0.0456)

GBM
0.5064 0.5741 0.5613 0.5592 0.5841 0.5842 0.6136

(0.0677) (0.0181) (0.0260) (0.0243) (0.0131) (0.0130) (0.0300)

HNSC
0.5663 0.5591 0.5788 0.5794 0.5528 0.5542 0.6157

(0.0759) (0.0527) (0.0491) (0.0059) (0.0776) (0.0789) (0.0379)

KIRC
0.5689 0.6001 0.6061 0.5553 0.5903 0.5908 0.6255

(0.0322) (0.0206) (0.0216) (0.0603) (0.0401) (0.0386) (0.0393)

LAML
0.5599 0.6861 0.6838 0.6057 0.6591 0.6580 0.6939

(0.0887) (0.0189) (0.0227) (0.0397) (0.0103) (0.0141) (0.0305)

LUAD
0.3832 0.5327 0.5435 0.4463 0.5354 0.5378 0.5877

(0.1371) (0.0840) (0.0337) (0.0443) (0.1026) (0.1040) (0.0409)

LUSC
0.5250 0.4670 0.4861 0.5520 0.5798 0.5770 0.5905

(0.0719) (0.1009) (0.0598) (0.0426) (0.0465) (0.0584) (0.0374)

OV
0.5132 0.4991 0.4971 0.5438 0.5708 0.5697 0.6167

(0.0260) (0.1043) (0.0911) (0.0826) (0.0850) (0.0825) (0.0342)

In Table 6.3, we show the performance results of C-index values of different algo-

rithms using 5-fold cross validation. The best results are highlighted in bold. The

results show that our proposed Cox-l2,1 model outperforms the other state-of-the-

art models. We also notice that for 7 out of the 8 cancer types, the “Global” Cox

model performs better than the “Local” Cox model, which indicates that having more

samples from other cancer types will help in generalization and alleviate over-fitting.

However, for 4 cancer types in the “Local” regularized Cox models perform better

than the “Global” regularized Cox models; this phenomenon reflects that, from the

genetics perspective, the preventable factors and reflections of different cancer types

are clearly different.
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Figure 6.3: Efficiency of strong rule: Plots of the rejection ratio and screen ratio on
gene expression data for 4 cancer types.

6.4.3 Empirical Analysis of Efficiency

In this section, we will demonstrate the efficiency of the strong rule and also show

the scalability performance of the proposed Cox-l2,1 algorithm.
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Figure 6.4: Efficiency of strong rule (Cont.): Plots of the rejection ratio and screen
ratio on gene expression data for 4 remaining cancer types.

Efficiency of strong rule

To measure the efficiency of applying strong rule, we measure the rejection ratio

and screen ratio which are defined as follows:

rejection ratio =
number of identified inactive features

number of true inactive features

screen ratio =
number of selected features

original feature dimension
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Figure 6.4 shows the rejection ratio and screen ratio of the strong rule on gene ex-

pression data of 8 cancer types. In Figure 6.3 and Figure 6.4 (a)–(b) the λmin is set

equal to 0.05λmax, as mentioned in Section 6.3.5. However, under this setting, less

than one hundred features will be selected as active features in “LUSC” and “OV”,

so we set λmin = 0.01λmax and draw the screening ratio in Figure 6.4(c) and Figure

6.4(d), for these two cancer types. All plots in Figure 6.3 and Figure 6.4 reflect that

the strong rule in the proposed Cox-l2,1 model can successfully identify a majority

of the inactive features (high rejection ratio) and dramatically decrease the feature

dimensionality (low screen ratio) in the learning phase.

Table 6.4 presents the running time of the Cox-l2,1 with and without strong

rule and the speedup achieved. All the timing calculations are based on running the

experiments on an Intel Xeon 3 GHz processor with 12 cores (24 threads). Speedup is

the ratio of the running time of Cox-l2,1 without screening to it’s running time with

screening. We only show the result on one cancer type “LUAD” because without

screening the computation of Cox-l2,1 takes very long (more than one day). In

addition to this cancer data, we also generated two synthetic datasets “Syn1” and

“Syn2” using the the function “simple.surv.sim” in survsim package [55]. These two

datasets have 500 instances in the source domian, 100 instances in the target domian,

and a maximum follow-up time of 1, 000 days. All the features are generated based

on the uniform distribution, and each of them have a different random setted value

range. The coefficient vector is also randomly generated and remain in [−1, 1]. The

observed time is assumed to follow a Log-logistic distribution and time to censorship

follows a Weibull distribution. The datasets in scalability analysis are also generated

in the same manner with different sample size and feature dimension. The results

show that the screening method can dramatically speed up the algorithm and become

more effective as the feature dimension increases (see Table 6.4).
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Table 6.4: Running time comparison for the Cox-l2,1 model with and without screen-
ing rule for 100 λ values with default setting (λmin = 0.05λmax).

Data p
With Without

speedup
screening screening

Syn 1 5,000 768 (s) 2944 (s) 3.83

Syn 2 10,000 1286 (s) 6084 (s) 4.73

LUAD 19,171 3.59 (hrs) 35.13 (hrs) 9.78
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Figure 6.5: Scalability resuts : Plots of the runtimes for the Cox-l2,1 model. The
times correspond to the total runtimes for 100 λ values averaged over five trials.

Scalability of Cox-l2,1

We empirically evaluate the scalability of the proposed Cox-l2,1 model with re-

spect to the sample size (N = NS + NT ) and the number of features (p). In this

experiment, we did not use strong rule as it will influence the the scalability analysis

of Cox-l2,1 with respect to p. This is because the strong rule will discard features and

make p unstable with different λ values, which is clearly shown in Figure 6.4. Figure

6.5(a) shows runtimes for fixed N and varying p, and Figure 6.5(b) shows runtimes

for fixed p and varying N . These two plots suggest that the runtime of Cox-l2,1 is

close to being linear with respect to both N and p.
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6.4.4 Biomarker Discovery

Biomarkers are important indicators used to diagnose a particular disease in a

clinical setting. From the clinical perspective, it is known that different cancer types

should share some common significant biomarkers such as one particular anticarcino-

gen, chemotherapy dose, and radiotherapy dose. However, at the genetic level, the

preventable factors and reflections of different cancer types are clearly different. In

Table 6.5 and Table 6.6, we show a list of top 10 gene expression features for each

cancer type based on their contributions (coefficient weights) in the Cox-l2,1 model

and find that most of the top-ranked gene expression features are usually related to

the genetics of the corresponding cancer types. For example, in BRCA, CD6 is het-

erotypic adhesion with activated leukocyte cell adhesion molecule which is in breast

cancer lines acting in melanoma tumor progression and resected breast tumors [40].

In GBM, AK5 affects the cyclophilin B depletion on GBM cell line2. In HNSC, the

content of MRPL48 is one of the high expression genes to influence the HNSC as one

essential mitochondrial ribosomal protein3. ITGB4 is the high expression of cell ad-

hesion models as heterogeneous immunohistochemical feature in KIRC [1]. The lack

of GSTM1 will increase the risk of LAML when GSTM1 gene is null genotype among

LAML patients [4]. For LUSC, APOA1BP is in human serum, cerebrospinal and

spinal fluid to help body’s transport and metabolism related to lung cancer cell lines

reported in human body fluids in pathological conditions [84]. For LUAD, MIR655

is one of the discovered class of small RNS which is linked to the development and

progression of cancer in lung [79]. For OV, ST14 is in the papillary serous subtype of

ovarian tumors reported by cytogenetic analysis of primary ovarian carcinomas and

ovarian cancer cell lines [76]. It should be noted that some of the remaining features

listed can be strong potential candidates for further biological testing for generat-

2http://www.ncbi.nlm.nih.gov/geoprofiles/104754733
3http://amp.pharm.mssm.edu/Harmonizome/gene/MRPL48
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ing new hypotheses in the future. From this analysis, it is clear that the proposed

Cox-l2,1 algorithm not only provides better results in an efficient manner, but also

inherently provides insights about the critical features for further analysis.
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CHAPTER 7 CONCLUSION

In this thesis, we briefly review the basic concepts in survival analysis and compre-

hensively go through multiple categories of survival prediction methods. We analyze

the weakness of commonly used survival prediction methods and propose several new

regularized regression methods for high-dimensional survival analysis.

By using the notion that the latent survival time of censored instances should be

no earlier than censored time, we proposed a weighted scheme, Regularized Weighted

Residual Sum-of-Squares (RWRSS), which induces more penalty for the incorrectly

predicted censored instances. The elastic net penalty is used to induce sparseness

into the resulting coefficients thus alleviate over-fitting the data especially in high-

dimensional datasets. In addition, we also developed a self-training framework for

censored regression based on this linear model.

We developed a unified model, unified model for Regularized Parametric Cen-

sored Regression (URPCR), for regularized parametric censored regression that is

able to efficiently handle high-dimensional (right) censored data. In order to unify

the learning scheme for various popular distributions, we used Taylor expansion to

approximate the objective function as a generalized linear model and solved the penal-

ized iterative reweighted least squares problem via a cyclical coordinate descent-based

method.

In addition, we also formulated the survival analysis problem as a multi-task learn-

ing problem and proposed a new multi-task learning algorithm, Multi-Task Learning

model for Survival Analysis (MTLSA), which is able to handle censored instances

in time-to-event data. The MTLSA algorithm explicitly models the critical proper-

ties of single event survival analysis by imposing the non-negative and non-increasing

list structural constraint. In addition, the l2,1-norm penalty is used to enable the

model learn a shared representation across related tasks and hence select important
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features thus alleviating over-fitting in the high-dimensional feature space. We also

develop an adaptive variant, MTLSA.V2, which relaxes the structural constraints

and produces better results when the number of tasks is large.

Finally, we developed a novel transfer learning model for survival analysis. The

proposed COX-l2,1 is a regularized Cox regression model that is able to efficiently

select common hidden features in high-dimensional (right) censored data to transfer

knowledge from the source domain to the target domain. The l2,1-norm penalty is

used to induce common sparseness into both source and target domains thus learning

a shared low-dimensional feature representation for knowledge transfer and alleviating

over-fitting the data, especially in high-dimensional scenarios. In order to speedup

the learning scheme, we use the idea of screening and extend the strong rule to the

proposed COX-l2,1 model. Thus, our model is able to efficiently identify most of the

inactive features, and the computational cost of learning COX-l2,1 is dramatically

reduced by the removal of the inactive features in the training phase.

We extensively compared the performance of the proposed algorithms with state-

of-the-art survival analysis methods using several publicly available high-dimensional

microarray gene expression datasets using both regression and classification based

standard evaluation metrics.
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trees. Statistics in medicine 23(1), 77–91 (2004)

[34] van Houwelingen, H., Putter, H.: Dynamic Prediction in Clinical Survival Anal-

ysis. CRC Press, Inc. (2011)

[35] van Houwelingen, H.C., Bruinsma, T., Hart, A.A., van’t Veer, L.J., Wessels, L.F.:

Cross-validated cox regression on microarray gene expression data. Statistics in

medicine 25(18), 3201–3216 (2006)

[36] Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival

forests. The Annals of Applied Statistics pp. 841–860 (2008)

[37] Jebara, T.: Multi-task feature and kernel selection for svms. In: Proceedings of

the twenty-first international conference on Machine learning, p. 55. ACM (2004)

[38] Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M.,

Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., et al.: Mutational landscape

and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

[39] Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observa-

tions. Journal of the American statistical association 53(282), 457–481 (1958)

[40] King, J.A., Ofori-Acquah, S.F., Stevens, T., Al-Mehdi, A.B., Fodstad, O., Jiang,

W.G.: Activated leukocyte cell adhesion molecule in breast cancer: prognostic

indicator. Breast Cancer Res 6(5), R478–R487 (2004)

[41] Klein, J.P., Zhang, M.J.: Survival analysis, software. Wiley Online Library

(2005)



116

[42] LeBlanc, M., Crowley, J.: Relative risk trees for censored survival data. Biomet-

rics pp. 411–425 (1992)

[43] Lee, E.T., Wang, J.: Statistical methods for survival data analysis, vol. 476.

Wiley. com (2003)

[44] Li, Y., Rakesh, V., Reddy, C.K.: Project success prediction in crowdfunding

environments. In: Proceedings of the Ninth ACM International Conference on

Web Search and Data Mining, WSDM ’16, pp. 247–256 (2016). URL http:

//doi.acm.org/10.1145/2835776.2835791

[45] Li, Y., Vinzamuri, B., Reddy, C.K.: Constrained elastic net based knowledge

transfer for healthcare information exchange. Data Mining and Knowledge Dis-

covery 29(4), 1094–1112 (2015)

[46] Li, Y., Vinzamuri, B., Reddy, C.K.: Regularized weighted linear regression for

high-dimensional censored data. In: Proceedings of SIAM International Confer-

ence on Data Mining, pp. 45–53 (2016)

[47] Li, Y., Wang, J., Ye, J., Reddy, C.K.: A multi-task learning formulation for

survival analysis. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16 (2016)

[48] Li, Y., Xu, K.S., Reddy, C.K.: Regularized parametric regression for high-

dimensional survival analysis. In: Proceedings of SIAM International Conference

on Data Mining, pp. 765–773 (2016)

[49] Lin, H.c., Baracos, V., Greiner, R., Chun-nam, J.Y.: Learning patient-specific

cancer survival distributions as a sequence of dependent regressors. In: Advances

in Neural Information Processing Systems, pp. 1845–1853 (2011)

[50] Liu, J., Ji, S., Ye, J.: Multi-task feature learning via efficient l 2, 1-norm mini-

mization. In: Proceedings of the twenty-fifth conference on uncertainty in arti-

ficial intelligence, pp. 339–348. AUAI Press (2009)



117

[51] Liu, J., Sun, L., Ye, J.: Projection onto a nonnegative max-heap. In: Advances

in Neural Information Processing Systems, pp. 487–495 (2011)

[52] Marubini, E., Valsecchi, M.G.: Analysing survival data from clinical trials and

observational studies; e. marubini & mg valsecchi published by john wiley & sons

414 pages isbn 0–971-93987-0. British Journal of Clinical Pharmacology 41(1),

76–76 (1996)

[53] Mayr, A., Schmid, M.: Boosting the concordance index for survival data–a uni-

fied framework to derive and evaluate biomarker combinations. PloS one 9(1),

e84,483 (2014)

[54] Miller Jr, R.G.: Survival analysis, vol. 66. John Wiley & Sons (2011)

[55] Morina, D., Navarro, A.: The R package survsim for the simulation of simple

and complex survival data. Journal of Statistical Software 59(2), 1–20 (2014)

[56] Padhukasahasram, B., Reddy, C.K., Li, Y., Lanfear, D.E.: Joint impact of clin-

ical and behavioral variables on the risk of unplanned readmission and death

after a heart failure hospitalization. PloS one 10(6), e0129,553 (2015)

[57] Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer

component analysis. Neural Networks, IEEE Transactions on 22(2), 199–210

(2011)

[58] Pan, S.J., Yang, Q.: A survey on transfer learning. Knowledge and Data Engi-

neering, IEEE Transactions on 22(10), 1345–1359 (2010)

[59] Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative

filtering for sparsity reduction. In: Proceedings of the Twenty-Fourth AAAI

Conference on Artificial Intelligence, AAAI (2010)

[60] Pardoe, D., Stone, P.: Boosting for regression transfer. In: Proceedings of

the 27th international conference on Machine learning (ICML-10), pp. 863–870

(2010)



118

[61] Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: trans-

fer learning from unlabeled data. In: Proceedings of the 24th international

conference on Machine learning, pp. 759–766. ACM (2007)

[62] Reddy, C.K., Li, Y.: A review of clinical prediction models. In: C.K. Reddy,

C.C. Aggarwal (eds.) Healthcare Data Analytics. Chapman and Hall/CRC Press

(2015)

[63] Rosenwald, A., Wright, G., Wiestner, A., Chan, W.C., Connors, J.M., Campo,

E., Gascoyne, R.D., Grogan, T.M., Muller-Hermelink, H.K., Smeland, E.B.,

et al.: The proliferation gene expression signature is a quantitative integrator

of oncogenic events that predicts survival in mantle cell lymphoma. Cancer cell

3(2), 185–197 (2003)

[64] Segal, M.R.: Regression trees for censored data. Biometrics pp. 35–47 (1988)

[65] Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for

coxs proportional hazards model via coordinate descent. Journal of statistical

software 39(5), 1–13 (2011)

[66] Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J., Nobel, A., Deng, S.,

Johnsen, H., Pesich, R., Geisler, S., et al.: Repeated observation of breast tumor

subtypes in independent gene expression data sets. Proceedings of the National

Academy of Sciences 100(14), 8418–8423 (2003)

[67] Therneau, T.: A package for survival analysis in s. r package version 2.37-4.

URL http://CRAN. R-project. org/package= survival. Box 980032, 23,298–

0032 (2013)

[68] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)

[69] Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., Tibshi-

rani, R.J.: Strong rules for discarding predictors in lasso-type problems. Journal



119

of the Royal Statistical Society: Series B (Statistical Methodology) 74(2), 245–

266 (2012)

[70] Tibshirani, R., et al.: The lasso method for variable selection in the cox model.

Statistics in medicine 16(4), 385–395 (1997)

[71] Tobin, J.: Estimation of relationships for limited dependent variables. Econo-

metrica: journal of the Econometric Society pp. 24–36 (1958)

[72] Uno, H., Cai, T., Pencina, M.J., D’Agostino, R.B., Wei, L.: On the c-statistics for

evaluating overall adequacy of risk prediction procedures with censored survival

data. Statistics in medicine 30(10), 1105–1117 (2011)

[73] van’t Veer, L.J., Dai, H., Van De Vijver, M.J., He, Y.D., Hart, A.A., Mao, M.,

Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al.: Gene

expression profiling predicts clinical outcome of breast cancer. nature 415(6871),

530–536 (2002)

[74] Verweij, P.J.M., Van Houwelingen, H.C.: Penalized likelihood in cox regression.

Statistics in Medicine 13(23-24), 2427–2436 (1994)

[75] Vinzamuri, B., Li, Y., Reddy, C.K.: Active learning based survival regression

for censored data. In: Proceedings of the 23rd ACM International Conference

on Conference on Information and Knowledge Management, pp. 241–250. ACM

(2014)

[76] Wan, M., Sun, T., Vyas, R., Zheng, J., Granada, E., Dubeau, L.: Suppression of

tumorigenicity in human ovarian cancer cell lines is controlled by a 2 cm fragment

in chromosomal region 6q24-q25. Oncogene 18(8), 1545–1551 (1999)

[77] Wang, J., Zhou, J., Wonka, P., Ye, J.: Lasso screening rules via dual polytope

projection. In: Advances in Neural Information Processing Systems, pp. 1070–

1078 (2013)

[78] Wang, S., Nan, B., Zhu, J., Beer, D.G.: Doubly penalized buckley–james method



120

for survival data with high-dimensional covariates. Biometrics 64(1), 132–140

(2008)

[79] Wang, Y., Zang, W., Du, Y., Ma, Y., Li, M., Li, P., Chen, X., Wang, T.,

Dong, Z., Zhao, G.: Mir-655 up-regulation suppresses cell invasion by targeting

pituitary tumor-transforming gene-1 in esophageal squamous cell carcinoma. J

Transl med 11, 301 (2013)

[80] Wang, Z., Wang, C.: Buckley-james boosting for survival analysis with high-

dimensional biomarker data. Statistical Applications in Genetics and Molecular

Biology 9(1) (2010)

[81] Wei, L.: The accelerated failure time model: a useful alternative to the cox

regression model in survival analysis. Statistics in medicine 11(14-15), 1871–

1879 (1992)

[82] Yang, Y., Zou, H.: A cocktail algorithm for solving the elastic net penalized cox’s

regression in high dimensions. Statistics and its Interface 6(2), 167–173 (2012)

[83] Ye, J., Liu, J.: Sparse methods for biomedical data. ACM SIGKDD Explorations

Newsletter 14(1), 4–15 (2012)

[84] Yousefi, Z., Sarvari, J., Nakamura, K., Kuramitsu, Y., Ghaderi, A., Mojtahedi,

Z.: Secretomic analysis of large cell lung cancer cell lines using two-dimensional

gel electrophoresis coupled to mass spectrometry. Folia Histochemica et Cytobi-

ologica 50(3), 368–374 (2012)

[85] Zhou, J., Chen, J., Ye, J.: MALSAR: Multi-tAsk Learning via StructurAl Reg-

ularization. Arizona State University (2011). URL http://www.public.asu.

edu/~jye02/Software/MALSAR

[86] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

67(2), 301–320 (2005)



121

ABSTRACT

NOVEL REGRESSION MODELS FOR HIGH-DIMENSIONAL
SURVIVAL ANALYSIS

by

Yan Li

August 2016

Advisor: Dr.Chandan Reddy

Major: Computer Science

Degree: Doctor of Philosophy

Survival analysis aims to predict the occurrence of specific events of interest at

future time points. The presence of incomplete observations due to censoring brings

unique challenges in this domain and differentiates survival analysis techniques from

other standard regression methods. In this thesis, we propose four models for survival

analysis in high-dimensional data. Firstly, we propose a regularized linear regression

model with weighted least-squares to handle the survival prediction in the presence

of censored instances. We employ the elastic net penalty term for inducing sparsity

into the linear model to effectively handle high-dimensional data. As opposed to the

existing censored linear models, the parameter estimation of our model does not need

any prior estimation of survival times of censored instances. The second model we

proposed is a unified model for regularized parametric survival regression for an ar-

bitrary survival distribution. We employ a generalized linear model to approximate

the negative log-likelihood and use the elastic net as a sparsity-inducing penalty to

effectively deal with high-dimensional data. The proposed model is then formulated

as a penalized iteratively reweighted least squares and solved using a cyclical coor-

dinate descent-based method. The widely used survival analysis methods such as
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Cox proportional hazard model and parametric survival regression suffer from some

strict assumptions and hypotheses that are not realistic in many real-world applica-

tions. To address these drawbacks, we reformulate the survival analysis problem as

a multi-task learning problem in the third model which predicts the survival time by

estimating the survival status at each time interval during the study duration. We

propose an indicator matrix to enable the multi-task learning algorithm to handle

censored instances and incorporate some of the important characteristics of survival

problems such as non-negative non-increasing list structure into our model through

max-heap projection. The proposed formulation is solved via an Alternating Di-

rection Method of Multipliers (ADMM) based algorithm. Besides the above three

methods which aim at solving standard survival prediction problem, we also propose

a transfer learning model for survival analysis. Obtaining sufficient labeled training

instances for learning a robust prediction model is a very time consuming process

and can be extremely difficult in practice. To tackle this problem, we also proposed

a Cox based model which uses the l2,1-norm penalty to encourage source predictors

and target predictors share similar sparsity patterns and hence learns a shared repre-

sentation across source and target domains to improve the model performance on the

target task. We demonstrate the performance of the proposed models using several

real-world high-dimensional biomedical benchmark datasets and our experimental re-

sults indicate that our models outperform other state-of-the-art related competing

methods and attain very competitive performance on various datasets.
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