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PREFACE 

Note to the reader: 

Chapter 1 defines the clinical problem and provides a brief introduction to 

conventional methods of handling geometric uncertainties inherent in the delivery of 

radiation for the treatment of cancer. Chapter 1 also presents the rationale of anatomical 

motion model development for improved radiation therapy outcomes. 

Chapters 2-4 of this dissertation include patient-specific motion models based on 

standard and regularized Principal Component Analysis (PCA) approaches, and 

dosimetric outcomes that follow radiation treatments based on these models. 

Finally, Chapter 5 presents conclusions and discussion of future directions. 
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CHAPTER 1 “INTRODUCTION” 

 

Geometric Uncertainties in Radiation Therapy 

Achieving tumor control with intensity modulated radiation therapy (IMRT) is both 

a geometric and a biological problem. The geometric aspect of the problem is to deliver 

a sufficient radiation dose to the tumor to sterilize it, while constraining dose to 

surrounding normal tissues to acceptable levels. The biological aspect of the problem is 

to understand issues such as dose-response relationships for tumors and normal tissues, 

the effect of different treatment regimens (e.g., hypofractionation), and the possible 

benefits of adjuvant chemotherapeutic agents. The biological aspect is not considered in 

this work. 

In this work novel approaches to the geometric aspects of photon IMRT delivery 

to head and neck (H&N) were investigated – motion models of anatomical changes for 

H&N patients, to forecast anatomy and dose on future fractions, were constructed and 

tested. 

The geometric problem may be summarized as follows. A physician delineates the 

gross tumor volume (GTV) and expands it by an appropriate margin to encompass 

expected microscopic disease. The resulting structure, the clinical target volume (CTV), 

is defined in the patient anatomical coordinate system (i.e., the coordinate system of the 

planning computed tomography (CT) image). If, in every treatment fraction, the patient 

could be aligned to the linear accelerator (linac) with perfect accuracy, allowing the linac 

isocenter to be located exactly at its intended position in the tumor, treatment could be 

planned and delivered to the CTV.  
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In reality, even when image guidance is used to carefully align the patient to the 

linac, the patient’s intended position can still be offset from the isocenter1. Causes of 

offsets include: (i) setup errors2 (imprecisions and inaccuracies inherent in the alignment 

tools used to position the patient with respect to the linac at the start of each fraction), 

and (ii) target (CTV) motion during delivery of each fraction3, 4. The above effects are 

random — target shape and position assume different random values, characterized by 

probability distributions, for each treatment course and fraction. Both effects create 

uncertainty in the position of the isocenter, and are accordingly referred to as geometric 

uncertainties (GUs).  

Organ-at-risk (OAR) motion is a third category of GU5. At the start of a treatment 

fraction, an OAR can be offset from the isocenter by a different amount than in the 

planning CT (pCT), and can move relative to the isocenter (and CTV) during the fraction. 

The planning implications of OAR setup uncertainty and motion are different than for 

targets. One can reasonably hope to reduce target uncertainties through accurate (e.g., 

image-guided) setup. However, OAR motion is independent of the target, and cannot be 

eliminated through target alignment.  

Delineation uncertainty is a fourth category of GU6-8. Delineation of gross tumor 

and organs-at-risk (OARs) on the planning CT is typically a manual operation subject to 

physician judgment. Errors or uncertainties can occur as a result of poor quality images, 

contouring shortcuts (such as contour interpolation across CT slices), time pressure on 

physicians, or unconscious bias when e.g., the physician is overly conservative when 

contouring targets in the vicinity of an OARs. Like setup uncertainties and tissue motion, 

delineation errors create a degree of geometric uncertainty in the true position of targets 
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and OARs with respect to the linac, and can therefore be addressed using the same 

planning techniques.  Automated segmentation methods based on structure atlases9 

have the potential to reduce delineation uncertainties, but residual errors persist even 

with these methods.  

Changes in patient anatomy during the course of radiation therapy (e.g. weight 

loss, tumor shrinkage, lymph node shrinkage, etc.) represent a fifth category of GU. One 

of the major reasons for such anatomical changes is the tissues’ response to the radiation, 

causing e.g., tumor shrinkage, localized edema, etc. However, anatomical changes can 

occur for other reasons, e.g. general weight loss due to change in eating habits. 

Numerous research papers discuss importance of anatomical changes during radiation 

therapy10-14. 

The above five GUs should be considered during the treatment planning process 

in order to accurately perform radiation therapy. 

 

Conventional Method of Handling Geometric Uncertainties 

The conventional method of accounting for uncertainties in the position of the CTV 

relative to the linac (i.e., isocenter) is to expand the CTV to a planning target volume 

(PTV), and plan treatment to the PTV. Beams are configured, and IMRT inverse planning 

is performed, to ensure that in the static plan (i.e., the conventional plan generated prior 

to the start of treatment using the pCT image) the entire PTV receives the prescription 

dose (or a dose that is acceptably close to the prescription dose).  In this case the PTV 

represents a bounding envelope within which one expects to find the entire CTV for every 

treatment fraction. This framework is described in ICRU reports 50 and 6215, 16. 
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The size of the CTV-to-PTV margin controls the tradeoff between target and 

normal tissue doses. The margin needs to be large enough to ensure the CTV is covered 

most of the time, but not significantly larger, since that can result in OARs receiving 

unnecessary dose, leading to toxicity. The requirement that the CTV be covered (e.g., 

enclosed by the prescription dose isodose surface) “most of the time” is a coverage 

criterion. In the widely-used margin formula proposed by van Herk et al17, “most of the 

time” is made mathematically precise by interpreting it to mean “95% minimum dose to 

CTV in 90% of patients”. However, alternative approaches to PTV margins are possible. 

In clinical practice, margins are often set to round values such as 0.5 cm or 1.0 cm based 

on clinical conventions. In that case, the margin is justified by pointing to prior clinical 

experience that demonstrates generally acceptable treatment outcomes. There is a large 

number of published studies investigating appropriate CTV-to-PTV margin size for 

different treatment sites18-21. 

 

Conventional Method of Handling OAR Uncertainties 

In considering geometric uncertainties, much of the published literature focuses on 

target coverage and CTV-to-PTV margins. The ICRU framework15, 16 also allows for 

planning organ at risk volumes (PRVs) to be defined around OAR. The concept is similar 

to that of a PTV. The OAR-to-PRV margin is intended to create a ‘buffer zone’ around the 

OAR that can absorb geometric uncertainties. If OAR optimization criteria are applied to 

the PRV instead of the OAR, those constraints should be respected in the presence of 

geometric uncertainties.  
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 However, practical application of PRVs is not straightforward. In the case of 

targets, there is generally a single prescription dose to be applied uniformly across the 

PTV. In that case, simple treatment models of the type used by van Herk et al.22 can be 

used to estimate the amount by which the prescription dose isodose surface “pulls back” 

towards the CTV, as a result of the cumulative blurring of beams over multiple fractions. 

One can then compensate for this pull-back via the CTV-to-PTV margin. 

For OARs there are typically multiple optimization criteria at different tolerance 

doses. The effect of blurring on the corresponding isodose surfaces will vary according 

to dose. For high doses, the isodose surface will pull back into the high dose region. For 

lower doses, it may push out from the high dose region, closer to the OARs. Based on 

the van Herk model, there is consequently no single OAR-to-PRV margin that will match 

all dose-volume criteria. Stroom and Heijmen23 have investigated PRVs, concluding that 

they change the underlying OAR volume “in such a manner that dose-volume constraints 

stop making sense”. For these reasons, PRVs are not widely used in clinical practice.  

The non-use of PRVs means that the effects of geometric uncertainties (e.g., organ 

motion) on OAR are largely ignored. Failure to explicitly account for geometric 

uncertainties is thought to be one barrier to acquiring reliable and clinically useful 

biological outcomes models for OAR.  The QUANTEC report24 summarizes clinical data 

and models for a number of OAR.  QUANTEC chapter 2025 discusses the need to record 

“true dose” (i.e., dose delivered in the presence of geometric uncertainties) as opposed 

to planned dose, stating that “only careful studies that include estimates of (true dose) will 

allow us to confidently disentangle the effects of dosimetry and radiobiological sensitivity”. 
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Conventional Method of Handling Delineation Uncertainties 

In conventional clinical planning, delineation uncertainties are mostly ignored. One 

interpretation of current practice would be that delineation uncertainties are assumed to 

be sufficiently small that they are safely absorbed within current GTV-to-CTV and CTV-

to-PTV margins, i.e., there is no need to explicitly account for them. However, the 

evidence from inter- and intra-observer studies26-28 is that delineation uncertainties can 

be large relative to typical margins. Furthermore, as time goes on, advances in treatment 

delivery and imaging are reducing setup errors, and enabling organ motion to be 

quantitatively modeled more accurately than was previously possible. For these reasons, 

one can reasonably argue that delineation uncertainties need to be accurately quantified, 

and explicitly accounted for in treatment planning7. 

 

Role of Image-Guided Radiation Therapy and Adaptive Radiation Therapy in 
Handling Uncertainties 

Image-guided radiation therapy (IGRT)29 largely focuses on more accurate tumor 

targeting and tracking, and is less concerned with OAR motion. Recognizing that IGRT 

cannot mitigate the effects of changes in tumor shape, or motion of OAR with respect to 

the tumor, adaptive radiation therapy (ART)30, 31 provides a complementary strategy in 

which the treatment plan is periodically updated throughout the treatment course. Both 

IGRT and ART have the goal of reducing geometric uncertainties. ART is likely to be most 

effective in cases where inter-fraction anatomic changes are significant with respect to 

intra-fraction changes. ART can be performed offline or online, with online planning being 

more effective, but more challenging due to the requirement to re-plan and perform quality 

assurance within a narrow time window. 
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Motivation for Motion Model Development in Radiation Therapy for Head and Neck 
Patients 

IMRT in H&N cancer conforms very precisely to the three-dimensional (3D) shape 

of the tumor by modulating the intensity of the radiation beam in multiple small volumes. 

IMRT also allows higher radiation doses to be focused to regions within the tumor while 

minimizing the dose to surrounding normal critical structures32-35. Thus, the therapeutic 

index can potentially be increased by using IMRT as opposed to classical 3D conformal 

radiation therapy (RT).  

However, conformal dose distributions are sensitive to GUs presented in patients, 

like daily setup errors or changes in the anatomy during treatment course due to the 

reasons mentioned above. For positional errors, online correction strategies like IGRT 

can help to minimize the effects of systematic and random setup errors36-38. However, 

residual setup uncertainties still exist and IGRT alone cannot compensate for non-rigid 

deformations of the anatomy39. 

ART is a potential solution for this problem. Although the concept of ART was 

proposed more than a decade ago31, clinical implementation has lagged in part because 

of the inability to answer practical questions such as: What anatomical changes are 

important? How do we measure them? When to trigger re-planning? And how best to 

perform the re-planning? 

 

Statement of the Problem 

Having models of anatomical changes over the course of treatment is essential to 

answer the above questions. Models should take into account not only rigid body 

transformations but also deformations, and be capable of extracting useful information 
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about changes in patient anatomy, ideally early in the radiation therapy course. 

Several mathematical models have been proposed to account for patient motion40-

46. Among them, principal component analysis (PCA) was chosen in this study to model 

anatomical changes47. PCA is potentially a powerful and efficient method and is capable 

of identifying eigenmodes which are most responsible for the observed variations48. PCA 

compresses large multidimensional and unorganized data to a low-dimensional system 

of basis vectors (eigenvectors), representing major modes of anatomical change.  

PCA models have been used for dosimetric evaluation of virtual prostate treatment 

courses47, geometric coverage estimation49, lung deformation modeling50, automatic 

organ segmentation51 and organ shape variability analysis52. However, to date, the 

implementation of PCA models has not been utilized for extracting systematic changes in 

patient anatomy during the H&N radiation therapy course. More information and material 

about PCA will be introduced in Chapter 2. 

This work presents initial results on PCA modeling for characterizing systematic 

anatomical changes in H&N patients using daily cone-beam CT (CBCT) images. The goal 

is to reliably identify systematic anatomical changes early in the treatment course, in order 

to trigger re-planning decisions. A further goal is to capture normal tissue and tumor 

changes for treatment response assessment. 
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CHAPTER 2 “STANDARD PRINCIPAL COMPONENT ANALYSIS MODEL OF 
ANATOMICAL CHANGES IN HEAD AND NECK PATIENTS” 

 

Introduction 

The central idea of principal component analysis (PCA) is to reduce the 

dimensionality of a data set consisting of a large number of interrelated variables, while 

retaining as much as possible of the variation present in the data set48. To achieve this 

PCA performs orthonormal transformation of an original data set to a new set of variables 

called principal components (PC), which are orthonormal, and therefore uncorrelated to 

each other. The first PC is defined in such a way that it accounts for the largest possible 

variability in the data, while each succeeding PC in turn has the largest possible variability 

under the constraint that it is orthogonal to all preceding PCs. 

PCA was first introduced in 1901 by K. Pearson53. Since then it became a handy 

tool which is used widely in predictive modeling. 

This chapter discusses the develop of standard PCA (SPCA) models of anatomical 

change from daily CBCTs of H&N patients, and assesses the possibility of using these in 

adaptive radiation therapy and to extract quantitative information for treatment response 

assessment. 

 

Materials and Methods 

Clinical and Simulated Image Data 

Ten H&N patients with daily CBCT imaging were retrospectively selected under an 

Institutional Review Board (IRB) approved protocol. Each patient experienced different 

systematic changes during the course of radiotherapy, like parotid shrinkage, weight loss, 
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tumor shrinkage in the oropharynx area, lymph node shrinkage in the left neck area, and 

base of tongue shrinkage. In Figure 2.1 patients which experienced such systematic 

changes are presented: parotid shrinkage (patient A), parotid shrinkage plus weight loss 

(patient B), tumor shrinkage in the oropharynx area (patient C) and lymph node shrinkage 

in the left neck area (patient D). Arrows indicate the region of change. 

Figure 2.1 Blended  pCT and wCT images of four (out of ten) patients; A - 

parotid gland shrinkage, B - parotid gland shrinkage and weight loss, C - 

Tumor shrinkage in the oropharynx, D - lymph node shrinkage in the left 

neck. 
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For each patient, a synthetic warped CT (wCT) was generated from the pCT image 

using an in-house developed interactive software tool. The interface of this tool is shown 

in Figure 2.2.  

The goal of the warping was to simulate the predominant localized systematic 

anatomical change over the duration of the patient treatment (Figure 2.1, arrows). So, for 

patient A, for example, the sole difference between the pCT and wCT was the deformation 

of the parotids and immediately adjacent tissue. Away from the parotids, the pCT and 

wCT matched exactly. The interactive warping tool was developed in Matlab® 

(MathWorks Inc., Natick, MA). It incorporated the barrel distortion function54 and pencil 

tool, and allowed the user to iteratively expand, contract and shape a region of the pCT 

anatomy using a computer mouse. The generated wCTs were inspected by a radiation 

oncologist with expertise in H&N to ensure clinical realism.  

The generated wCTs constitute digital phantoms, allowing PCA results to be 

evaluated in a controlled setting where the exact nature of anatomical change is known 

Figure 2.2 In-house developed interactive software tool (Matlab®) to perform warping of the 

images 
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a priori. Results below compare PCA’s ability to extract anatomical change from digital 

phantoms (specifically, synthetic CBCTs generated from the wCT), as well as from real 

patients (i.e., clinical CBCTs). For clinical images, anatomical change is not known a priori 

and likely contains a variety of random components due to fraction-to-fraction setup 

uncertainties, posture variations, etc. Clinical images and deformation vector fields 

(DVFs) are therefore expected to be a greater challenge for the PCA technique. 

 

Deformation Vector Fields Data 

Prior to DVF generation, clinical or synthetic CBCT images were rigidly aligned 

with pCTs using bony skull and C2-C3 cervical vertebrae, to ensure all DVFs were relative 

to the fixed skull. The pCTs acted as reference imaged. DVFs were generated and 

manipulated in the Pinnacle® Treatment Planning System (TPS), utilizing Pinnacle 

plugins in conjunction with the open source GNU Scientific Library (GSL)55 for matrix 

operations. DVFs for all patients were generated using Pinnacle’s diffeomorphic demons 

algorithm56-58. A compression factor (CF) of 7 was used, meaning that a single DVF voxel 

covers 7 CT voxels (~ 7 mm)  in the coronal and sagittal (X and Y) directions. This was 

done in order to keep PCA model generation numerically feasible. DVF voxel size in the 

axial (Z) direction was 3mm independent of the CF.  

DVFs were restricted to a bounding box of the approximate size of the patient head 

and neck in order to speed up calculation. Bounding boxes were set sufficiently large to 

accommodate all anatomies. DVF values were set to zero for voxels outside the (pCT) 

patient body to avoid spurious deformations that are an artifact of the deformable image 

registration (DIR) algorithm. Given the number of voxels M, a DVF in 3D space is 
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represented as a vector of length 3M, representing X, Y and Z displacements.  

It is worth noting the mathematical conventions that apply to DVFs. Each DVF is 

defined between a fixed image and a moving image. In the present case, the fixed image 

is the pCT, and the moving image is the wCT or CBCT. The DVF is defined on (i.e., is the 

same size as) the voxel grid in the fixed image. However, as explained by Yang59, the 

DVF is a pull-back motion field. Each element of the DVF is a 3D vector (arrow) from a 

point in the fixed image to the matching point in the moving image. Consequently, one 

‘applies’ the DVF to the moving image (wCT or CBCT) to recover the fixed image (pCT). 

In visual terms, given the moving image, one “pulls back” tissue volumes at arrow tips to 

the corresponding arrow bases, to recover the fixed image.  

 

Clinical Deformation Vector Fields 

In the following description a patient’s ith CBCT is denoted CBCTi. Clinical DVFs 

were generated as follows:   


�,� = 
�����→����� 

DC,i denotes the clinical DVF from pCT to CBCTi. It models systematic plus random 

change from planning to fraction i. The differential DVF, which models the motion 

difference between two successive fractions, is defined as follows: 



�,� = 
�,� − 
�,��� 

In the case of clinical images, the final available CBCT for the patient was regarded 

as the end-of-treatment anatomy (similar to the wCT). 

 

Synthetic Deformation Vector Fields 
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Synthetic DVFs were generated using the following process: 


� = 
�����→��� 

DW denotes the DVF from pCT to synthetic wCT. It models systematic change from 

planning to end of treatment, based on the artificial deformation in the wCT. For a 

simulated treatment course of 35 fractions, let 
�,� denote the systematic DVF (i.e., the 

DVF including only systematic change)  from planning to the ith fraction, i = 1,...,35. 

Systematic DVFs were calculated using 3 different time models of patient response, 

linear, early and late: 

 
�,� =  
�  ����
 ! " linear 

 
�,� =  
�  �1 − �
 !# $35 − &'(" early 

 
�,� =  
�  � �
 !# $& − 1'(" late 

In the above equations, the quantity in square brackets is the fraction of overall 

systematic change relative to the start of treatment. It ranges from zero in fraction 1 to 

one in fraction 35. This quantity is plotted in Figure 2.3. In the early (late) model, 

approximately 75% (25%) of change has occurred by the middle of treatment. These 

models are used to test PCA’s ability to extract systematic motion from DVFs early in the 

treatment. For example, if PCA is asked to estimate systematic change from the first 5 

treatment fractions, the late model presents PCA with much smaller systematic change 

(i.e., less information) from which to generate its model. The visual results of this test, 

averaged for SPCA and regularized PCA will be presented in the Results section of 

Chapter 3 to avoid repetitiveness in the Chapters, since this test showed almost identical 

behavior for both approaches. 
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Random changes were added to the synthetic DVFs as follows. Random DVFs DR 

were modeled as  scaled linear combinations of the DDC,i : 
) =  * ∑ ,� 

�,�� , where 

,�- .0,10 are uniformly distributed random weights summing to one, which vary from 

fraction to fraction, and * is a scaling parameter taking the values 1, 3 or 5, that is fixed 

for each treatment course. The case  * = 1 approximates the magnitude of random 

motion present in clinical CBCTs. Cases * = 3  12 5 artificially increase the magnitude of 

random motion, to test PCA’s ability to extract systematic changes in the presence of 

increased random motion. 

Finally, the synthetic DVF DSR,i for fraction i, incorporating both systematic and 

Figure 2.3 Early, linear and late models of patient response 
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random changes, was defined as follows: 

 
�),�  =  
�,� +  
)  =   
�,�  +  *  ∑ ,� 

�,��    (2.1) 

Note that DR varies from fraction to fraction and between simulated treatment 

courses, as determined by the random number generator. In equation 2.1, the + symbol 

indicates element-by-element addition of DVFs. 

 

PCA Models – Standard PCA 

This section describes the generation of a patient-specific SPCA model. Let D = 

[D1, ..., DF] be an 3M x F matrix, whose column Df  is a DVF of length 3M, where M is the 

total number of voxels. In a clinical scenario, Df is the DVF from the planning CT to the 

fraction f CBCT, f = 1, 2, ..., f ≤ N, where N is the number of fractions in the treatment 

course. Input data for PCA modeling is typically made zero-mean by first subtracting the 

mean DVF. Without loss of generality, we assume that the mean DVF 
4 has already been 

subtracted from each of the Df . DVFs from the first F fractions are used to build a model 

that can be used to predict anatomical changes for the remaining fractions. Let E = [E1, 

..., EF] be an 3M x F matrix, whose columns Ef  are eigenvectors, here referred as 

eigenDVFs (EDVFs). PCA solves the following constrained optimization problem for E: 

 min8 ‖ : − ;;<: ‖     subject to ;<; = => (2.2) 

where IF is the F x F identity matrix and, for arbitrary matrix ? = @A��B, ‖∙‖ is the Frobenius 

norm: ‖?‖ =  DE2F G∑ A��(�,� H. The solution of equation 2.2 is a set of orthonormal EDVFs 

Ef, each of which is derived from an eigenvector of the covariance matrix I = :<:/M. The 

solution E can be obtained by using standard matrix operations to find the eigenvalues 

and eigenvectors of C. Further details about matrix operations used in this work to build 
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SPCA model are given in the Appendix. The resulting SPCA model is fully specified by 

the pair (
4,E). An arbitrary DVF D (3M x 1 column vector) may be expressed in matrix 

form 

 
 =  
4  +  ;� +  - (2.3) 

where w is a (F x 1) column vector of EDVF weights wj, and - is an 3M x 1 column vector 

of errors -K. The error vector - represents any variation present in D that is not 

expressible using a linear combination of the F EDVFs.  

In the case of simulated treatment courses, SPCA models were generated from 

the first F = 5, 18 or 34 synthetic DVFs DSR,i . These scenarios simulate the situation 

where a PCA model is generated after the first week of treatment (F=5), the first half of 

the 35-fraction course (F=18), and the complete course, except for the final fraction 

(F=34). In the case of clinical images, SPCA models were generated from the available 

15 – 35 DC,i ,  utilizing the initial 5, approximately half, and all but the final DC,i.  

 

Predictive Model 

The magnitude of a PCA eigenvalue reflects the degree of variation in the DVF 

dataset that is contributed along the direction of the corresponding EDVF. EDVFs with 

the largest eigenvalues should account for the major modes of anatomical change. If PCA 

is successful, the expectation is that systematic components will be captured in the 

leading EDVFs. Random components will be captured in trailing EDVFs, or in the error 

vector - in equation 2.3.  

Once a PCA model has been generated using the first F DVFs, producing F 

EDVFs, one has the option of using a subset of K leading EDVFs (K ≤ F) to predict the 
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major mode of anatomical change for subsequent fractions. If, for example, there is only 

one major mode of anatomical change (e.g., tumor shrinkage), and that mode is captured 

in the first EDVF, then a satisfactory predictive model may be achieved using K = 1.  

Additionally, the PCA modeling process makes no assumptions regarding how 

major modes of motion evolve during treatment. PCA EDVFs capture the direction but 

not the time-varying magnitude of anatomical changes. After generation of the PCA 

model, observed DVFs can be expressed as a linear combination of EDVFs (equation 

(2.3), where the weights w will in general vary as treatment progresses. The trajectory of 

weights w will indicate whether treatment response is early, linear or late, as in Fig. 2.3. 

The default predictive model given below makes the assumption that evolution is linear. 

However, this approach can be generalized to model early or late response, provided one 

has sufficient knowledge to justify those models.  

The following step-wise procedure was adopted to build a linear predictive model: 

M1. Using equation 2.3, estimate the weight vector ��� (F x 1 column vector of 

weights ���,�) corresponding to each of the input DVFs Df  from which the PCA model was 

generated: ��� =   G
� − 
4H< ;.  Weight  ���,�  for f = 1, ..., F represents the evolving 

contribution of EDVF  L�  to anatomical change over fractions 1, ..., F.  

M2. Separately for each value of j = 1, ..., F, perform a linear regression of 

weights ���,� versus fraction number f.  (For DVFs generated from clinical CBCTs, omit 

points for fractions where the CBCT is missing.) The intercept and slope of the linear fit 

to ���,� are denoted by M� and N� respectively.  

M3. Estimate the DVF at fraction f, F < f ≤ N, by  

 
O�  =  
4  +  ;P $M + N ∙ Q' (2.4) 



19 
 

 
 

where M and N are the K x 1 column vectors of M� and N�, and EK is the 3M x K 

matrix, whose columns Ej  are the first K EDVFs.  

The relationship between measured DVFs (i.e., input DVFs Df  in step M1) and 

predicted DVFs (output DVFs from equation 2.4) is illustrated in Figure 2.4. The 

orientation of DVF arrows is from fixed image to moving image, enabling CBCTs to be 

mapped to the pCT. In principle, these DVFs can be inverted to give DVFs that will map 

the pCT to predicted CBCTs for fractions F+1, ..., N. PCA-predicted DVFs are evaluated 

using criteria outlined in the next section.  

Model Evaluation 

A hypothesis of this study is that the PCA model can successfully separate 

systematic from random anatomical changes, capturing systematic changes in a few 

leading EDVFs. One indicator of success is that, in step M2 above, the weights ���,� 

associated with leading EDVFs exhibit non-zero slopes N�,  high R2 values and, more 

pCT 

CBCT1 . . . CBCTF 

CBCTF+1 CBCTN 
. . . 

wCT 

PCA model from first F 

clinical DVFs 

Measured 

DVFs 

PCA predicted 

DVFs & CBCTs 

Figure 2.4 Relationship between measured and predicted DVFs 

CBCTF+1 CBCTN 

clinical CBCTs 
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generally, smooth and consistent evolution with fraction number f. Conversely, weights 

���,� associated with trailing EDVFs should exhibit near-zero slopes, low R2, and purely 

random variation with fraction number f.  A further qualitative indicator of PCA success is 

that the areas where leading EDVFs are non-zero are restricted to localized parts of the 

anatomy where systematic changes are occurring.  

PCA models may also be evaluated quantitatively. This can be done by using the 

PCA model to warp the end-of-treatment anatomy to the predicted anatomy at the time 

of simulation. In this way one obtains an estimated planning CT, or epCT. Then one can 

compare epCT with the true planning CT (pCT) to assess how well the PCA model 

reproduces anatomical changes during treatment. The specific steps for generating epCT 

are:  

S1. For simulated treatments, apply 
O R  from equation 2.4 to the wCT to get 

epCT.  

S2. For clinical CBCT images, let fE denote the fractions of the final CBCT 

image. Apply 
O�S from equation (4) to CBCT�Sto get epCT.  

Agreement between the pCT and epCT quantifies the difference between the real 

and estimated planning anatomies ‖pCT − epCT‖. Note that the PCA model is intended 

to capture only systematic anatomical changes. The end-of-treatment anatomy, from 

which epCT is generated, will also incorporate random changes. Consequently, the 

difference metric  ‖pCT − epCT‖ will reflect how well PCA does at extracting the 

systematic component of anatomical change, but it will also reflect the effect of random 

anatomical changes not included in the model, and DIR uncertainties inherent in the DVFs 

used to construct the PCA model. Finally, in the case of the clinical CBCT images, epCT 
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is obtained by applying a modeled DVF to the end-of-treatment CBCT. Consequently, in 

this case epCT will include an increased level of noise inherent in CBCT (versus CT) 

images. This also will tend to increase the value of ‖pCT − epCT‖.  

We define images error vector LY as the difference between pCT and epCT 

images:  

LY = Z[\ − ]Z[\Y               (2.5) 

where epCTF  is the estimated CT obtained from the PCA model that is generated from 

the first F fractions DVFs. LY is a vector of length M. Each element of LY is the error in 

the estimated CT number for the corresponding voxel.  

For PCA models based on clinical CBCTs, where one is limited to the available 

CBCTs, we define the patient-specific distance metric to be the root mean square CT 

number difference: 

‖Z[\ − ][\Y‖  =  ^ �
_   ∑ $LY'(_̀a�                (2.6) 

For PCA models based on synthetic CBCT images generated from wCT, it is 

possible to perform S simulations, where each simulation generates a different realization 

of random changes throughout the treatment course. In this case we define the patient-

specific distance metric to be the root mean square CT number difference, averaged over 

simulations: 

‖Z[\ − ][\Y‖  =  �
�   ∑ ^ �

_   ∑ $LY'(_̀a��ba�                (2.7) 

In addition to these distance metrics, 3D gamma indices60 were calculated 

between pCT and epCT images using 3% / 3mm criteria (3% difference in Hounsfield 

Units (HU), and 3mm distance-to-agreement). ‖pCT − epCT‖ and gamma values were 
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calculated for PCA models generated using the first five fractions, half of the treatment 

fractions, and all but last treatment fraction. 

Results 

Qualitative Evaluation 

Table 2.1 shows that for both simulated (linear, * = 1) and clinical cases, the 

correlation coefficient R2 of EDVF weights are significant only for the first EDVF — in 

Table 2.1, cases where R2 > 0.6 are shaded.  

 Simulated SPCA (linear) 
cases 

Clinical cases 

 

EDVF1 

Fx_5 0.38 ± 0.34 0.24 ± 0.07 

Fx_half 0.82 ± 0.39 0.62 ± 0.19 

Fx_all_but_last 0.89 ± 0.14 0.65 ± 0.21 

 

EDVF2 

Fx_5 0.51 ± 0.32 0.01 ± 0.01 

Fx_half 0.03 ± 0.05 0.03 ± 0.04 

Fx_all_but_last 0.11 ± 0.20 0.01 ± 0.02 

 

EDVF3 

Fx_5 0.36 ± 0.34 0.21 ± 0.05 

Fx_half 0.14 ± 0.21 0.06 ± 0.08 

Fx_all_but_last 0.01 ± 0.02 0.04 ± 0.05 

 

EDVF4 

Fx_5 0.43 ± 0.30 0.10 ± 0.03 

Fx_half 0.05 ± 0.07 0.13 ± 0.08 

Fx_all_but_last 0.01±0.02 0.14 ± 0.19 

 

EDVF5 

Fx_5 0.38 ± 0.29 0.05 ± 0.07 

Fx_half 0.09 ± 0.10 0.07 ± 0.08 

Fx_all_but_last 0.01 ± 0.01 0.05 ± 0.01 

Table 2.1 SPCA: R2 correlation coefficient of performed linear regression of weights c� d,e 
versus fraction number f, averaged for all 10 patients (Step M2, Materials and Methods). 
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For EDVFs 2-5, R2 coefficients are generally much lower. For simulated cases, R2 

values for EDVFs 2-5 in the 5-fraction PCA models (Fx_5) are higher (0.36 – 0.51). But 

those R2 values drop substantially when more DVFs (fractions) are included in the PCA 

models, indicating that EDVFs 2-5 are not reliably capturing systematic changes. Based 

on Table 2.1, PCA models in this work utilize only one, or at most several, leading EDVFs. 

For synthetic CBCTs, the estimated anatomy epCT at the time of simulation was 

reconstructed by applying 
O R  (equation 2.4) to the wCT image. Figure 2.5 shows results 

for patient D, for whom PCA gave the best results (out of the 10 patients studied). Figure 

2.6 shows results for patient A, for whom PCA gave the worst results. In each case, top 

panels show pCT (red) overlaid on the epCT (green). The left-most panel (A) is for a PCA 

Figure 2.5 SPCA: Results of SPCA models generated from synthetic DVFs for patient D, for 

whom PCA modeling gave the best results 
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model constructed from the first 5 treatment fractions. The middle panel (B) is for a PCA 

model constructed from the first 18 treatment fractions. The right-most panel (C) is for a 

PCA model constructed from all but the last treatment fraction. Lower panels in Figures 

2.5 and 2.6 show the projections of all 35 simulated DVFs onto the leading EDVF. The 

error bars represent ± one standard deviation of EDVF weight values across simulated 

treatment courses having different random motion components. To generate these 

results, 10 different treatment courses were simulated for each patient. 

 

Quantitative Evaluation 

Figure 2.7 plots mean lengths of the image error vectors,‖pCT − epCT‖, equations 

(2.6) and (2.7), as a function of the number of fractions F from which the PCA model is 

generated: Patient A, PCA model generated from clinical CBCTs and DVFs; patient D, 

Figure 2.6 SPCA: Results of SPCA models generated from synthetic DVFs for patient A, for 

whom PCA modeling gave the worst results 
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PCA model generated from clinical CBCTs and DVFs; patient A, PCA model generated 

from synthetic wCT and DVFs; patient D, PCA model generated from synthetic wCT and 

DVFs. 

Although plotted against F = 5, 18, 34, clinical PCA models utilized the first 5 

CBCTs, approximately half of available CBCTs, and all but the final CBCT. Vector lengths 

are scaled by 1/√	  and plotted points are shifted slightly horizontally to avoid overlap of 

the error bars. 

 Table 2.2 shows results of gamma analysis of epCT versus pCT. Specifically, it 

shows the percentage of gamma values exceeding one, using 3%/3mm criteria for the 

Figure 2.7 SPCA: Mean lengths of the image error as a function of the number of fractions 

F. Vector lengths are scaled by f/√g. Both the mean and standard deviation of the lengths 

of the image error vectors decrease as F increases 
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simulated and clinical cases of patients D (best case out of 10 patients) and patient A 

(worst case out of 10) for the SPCA models generated from first 5 fractions, half of the 

treatment fractions and all-but-last fraction.  

 

 Patient D (best case 
out of 10 patients) 

Patient A (worst case 
out of 10 patients) 

 

Simulated 

5 FX 0.25 0.50 

HALF 0.14 0.24 

ALL_BUT_LAST 0.11 0.18 

 

Clinical 

5 FX 2.39 4.15 

HALF 1.33 2.07 

ALL_BUT_LAST 1.15 2.02 

Discussion 

Qualitative Evaluation 

Table 2.1 shows that R2 coefficients for the simulated linear cases for the first 

EDVF have values ~1, while for EDVFs 2-5 values are much less. This result shows that 

the leading first EDVF can capture the simulated linear major mode of anatomical change, 

while succeeding EDVFs capture residual errors and noise. The R2 coefficient is a good 

metric to check if EDVFs captured the major anatomical change only if you expect these 

changes to be linear. This is not always the case during radiation therapy in real patients 

– changes could be non-linear and could appear early or late in the treatment.  

But as stated in the Materials and Methods section above, the PCA modeling 

process makes no assumptions regarding how major modes of motion evolve during 

Table 2.2 SPCA: Results of gamma analysis of epCT versus pCT: percent gamma values 

exceeding one, using 3%/3mm criteria 
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treatment – it’s just metric we use to evaluate it (like R2 for the linear changes). PCA 

EDVFs capture the direction but not the magnitude of anatomical changes. Therefore, 

using proper metrics (i.e. splines or polynomials) it is possible to check if EDVFs captured 

major anatomical changes for non-linear cases. The results and discussion supporting 

this statement are presented in Chapter 3. 

Figure 2.5 shows that, given the right conditions, SPCA modeling is capable of 

extracting the major mode of anatomical change during head and neck radiation therapy. 

The leading EDVF coefficients show a smooth progression during treatment, and the 

more CBCTs that are included in the SPCA model, the better the model becomes. This 

is indicated by a progressive tightening of the standard deviations of EDVF weights as 

one moves from model A (5 fractions), to model B (18 fractions), to model C (34 fractions).  

In Figure 2.5 the modeled anatomical change, left neck lymph node shrinkage, is 

large — it affects a relatively large volume of the patient’s anatomy. SPCA searches for 

EDVFs that can explain variability across CBCT images. If the modeled anatomical 

change is large, the SPCA technique is more easily able to ‘extract’ the major deformation 

mode(s) from noisy data. This explains why patient D has the best PCA model across the 

ten sampled patients.  

In Figure 2.6 (patient A), the modeled anatomical change, bilateral parotid 

shrinkage, is relatively small — it affects a localized volume around the parotids. In this 

case SPCA finds it more difficult to isolate the anatomical change from other random 

variations that are present in the CBCT images. For this reason, the SPCA model is not 

as good as for patient D. The PCA models for F=5 and F=18 fractions show a fairly weak 

linear progression of the leading EDVF coefficient, and the standard deviation of the 
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coefficients is large, indicating that the SPCA technique is having a difficult time ‘locking 

onto’ the major deformation mode. Only when the treatment course is almost complete 

(column C, F=34) does the SPCA model become good enough to predict the anatomy, 

with a higher level of confidence.  

One of the conclusions of this study is that SPCA — i.e., PCA applied directly to 

DVFs without any further enhancement or refinement — will find it difficult to extract 

smaller systematic anatomical changes from daily CBCT images. Where changes are 

small, SPCA will tend to be confused by other random motion present in the images, and 

the resulting PCA models will have diminished ability to predict or extrapolate anatomical 

changes.  

 

Quantitative Evaluation 

Figure 2.7 shows that larger HU errors occur for the SPCA models generated from 

clinical CBCTs (lines (a) and (b)), than those generated from synthetic images and DVFs 

(lines (c) and (d)). Synthetic DVFs were generated artificially by inserting one known 

anatomical change into the planning CT. Regions of the patient anatomy that were not 

affected by the change were identical throughout the treatment course, except for added 

random changes. This represents a best-case scenario for SPCA modeling. Having only 

one systematic change present in the images makes it easier for the SPCA method to 

capture that change within the leading EDVF.  

Clinical CBCTs may include several types of systematic anatomical change — for 

example, lymph node shrinkage in conjunction with weight loss. Clinical CBCTs can also 

include random motion of the anatomy outside of the region directly involved in the 
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systematic change. Finally, evolution of the systematic change in clinical CBCTs may not 

follow a simple linear progression, as was the case with the synthetic DVFs. For these 

reasons, SPCA finds it more difficult to extract useful models from clinical CBCT images.  

This conclusion is reinforced by the gamma results in Table 2.2. Those results 

show that the number of voxels in epCT that disagree with pCT by more than 3% or 3 

mm is fairly modest for the SPCA models generated from synthetic DVFs, but much larger 

in models generated from clinical CBCTs. 

Quantitative results shown in Figure 2.7 and Table 2.2 may be used as an indirect 

way of testing the accuracy of DVFs, or the accuracy of the reconstructed epCT (acquired 

by applying the last-fraction DVF from equation 2.4 to the pCT image) versus the pCT 

image. Although thorough testing of DVFs accuracy was out of the scope of this work, 

results of the quantitative analysis give an idea of how the number of fractions used to 

build a model and random changes presented in simulated and clinical data affect the 

quality of the last-fraction DVF and overall accuracy of the epCT with respect to the pCT 

image.  

Within this work we evaluated whether SPCA models generated from clinical 

CBCTs could potentially be improved by including more than one leading EDVF. That is, 

using K ≥ 2 as explained in the Predictive Model section above. However, for clinical 

SPCA models the R2 coefficient was moderately good for the leading EDVF, but quite 

poor for EDVFs 2-5  (see Table 2.1), indicating that there was no improvement derived 

by including any EDVFs beyond the first. The conclusion of this work is that, particularly 

for smaller anatomical changes, SPCA becomes ‘confused’ by the variety of deformations 

and noise in clinical CBCT images, and therefore fails to extract major modes of 
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systematic change that are known to be present. In order to successfully model 

anatomical change in clinical CBCT images, the basic SPCA technique will need to be 

refined. 

In Chapter 3 more extensive discussion about SPCA model and its comparison to 

more advanced regularized PCA (RPCA) model will be presented. 

 

Conclusion 

For the H&N patients treated with external beam radiation therapy, a SPCA model 

is a potential tool to identify patient anatomy changes early in the treatment course, and 

to make educated adaptive re-planning decisions. This study used synthetic (but realistic) 

DVFs, as well as clinical CBCTs, to evaluate the ability of the SPCA method to extract 

useful models of anatomical change. In particular, a primary goal of this work was to 

evaluate the ability of SPCA to separate systematic from random changes present in 

CBCT images.  

The study shows that under the right conditions, SPCA can capture the major 

mode of systematic anatomical deformation in the leading EDVF. However, SPCA is most 

successful at identifying large changes (e.g., significant lymph node shrinkage), and less 

successful at identifying small changes (e.g., smaller changes in parotid glands). 

Additionally, SPCA is challenged by the variety of deformations and noise in clinical CBCT 

images, and therefore fails to extract major modes of systematic change that are known 

to be present. In order to successfully model anatomical change in clinical CBCT images, 

the basic SPCA technique will be refined using the regularized approach described in 

Chapter 3.  
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CHAPTER 3 “REGULARIZED PRINCIPAL COMPONENT ANALYSIS MODEL OF 
ANATOMICAL CHANGES IN HEAD AND NECK PATIENTS” 

 

Introduction 

The purpose of this Chapter is to reveal, building on the Materials and Methods 

section presented in Chapter 2, the details of developing regularized PCA (RPCA) models 

of anatomical changes from daily CBCTs images of H&N patients, and assess their 

potential use in ART, and for extracting quantitative information for treatment response 

assessment. 

The general motivation to build the RPCA model is the same as for the SPCA (i.e., 

modeling of anatomical change, see the Introduction section in Chapter 2). The specific 

motivation is to improve on the SPCA results given in Chapter 2. 

 

Materials and Methods 

The dataset, DVFs and predictive model used to build the RPCA model are the 

same as described in Chapter 2. The difference is in the constraint optimization problem 

(equation 2, Chapter 2) one needs to solve to get EDVFs. 

 

PCA Models – Regularized PCA 

For reasons discussed below, standard PCA (SPCA) can produce EDVFs that are 

noisy and not physically meaningful. RPCA offers a solution for this problem. The method 

of generation of a patient-specific regularized RPCA model is similar to the SPCA model 

described earlier. The difference lies in the constrained optimization problem for E that 

PCA needs to solve for the regularized PCA approach: 
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min8 { ‖: − ;;<: ‖( + i� ∑ j$]`' +Ỳa� i( ∑ ∑ ]`$D�' _�a�Ỳa�  } (3.1) 

subject to ;<; = => 

where IF is the F x F identity matrix, D� = $A� , l� , m�'′, i� ≥ 0 is a smoothness parameter 

and the corresponding term j$]`' is a roughness penalty designed to enhance 

smoothness of EDVFs ]`, i( ≥ 0 is a sparseness parameter and the corresponding term 

is the L1 Lasso penalty designed to promote sparse patterns in EDVFs by shrinking some 

principal component loadings to zero. The explanation of the methods used to solve the 

constrained optimization problem for sparse data sets could be found in Wang and 

Huang61.  

RPCA models are dependent on the choices of smoothing parameter i� and 

sparseness parameter i(. Both parameters were empirically chosen with the assumption 

in mind that DVFs are intrinsically smooth, so the smoothness parameter was chosen to 

be less significant than the sparseness parameter. After experimentation, the following 

rules were adopted to set i� and i(:  i� =  _∗Y
�qqq   and i( =  _∗Y

�qq .  

As before, the resulting PCA model is fully specified by the pair (
4, E), and an 

arbitrary DVF may be again expressed using equation 2.3. As for SPCA, RPCA models 

were generated from the first F = 5, 18 or 34 synthetic DVFs DSR,i . In the case of clinical 

images, RPCA models were generated from the available 15 – 35 DC,i ,  utilizing the initial 

5, approximately half, and all but the final DC,i.  

 

Results 

Qualitative Evaluation 

Table 3.1 shows that for both simulated (linear, * = 1) and clinical cases, the 
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correlation coefficient R2 of EDVF weights are significant only for the first EDVF — in 

Table 3.1, cases where R2 > 0.6 are shaded. 

For EDVFs 2-5, R2 coefficients are generally much lower. For simulated cases, R2 

values for EDVFs 2-5 in the 5-fraction RPCA models (Fx_5) are higher (0.16 – 0.39). But 

those R2 values drop substantially when more DVFs (fractions) are included in the RPCA 

models, indicating that EDVFs 2-5 are not reliably capturing systematic changes.  

 Simulated RPCA 
(linear) cases 

Clinical cases 

 

EDVF1 

Fx_5 0.57 ± 0.24 0.54 ± 0.21 

Fx_half 0.87 ± 0.19 0.77 ± 0.22 

Fx_all_but_last 0.94 ± 0.19 0.81 ± 0.18 

 

EDVF2 

Fx_5 0.39 ± 0.13 0.27 ± 0.10 

Fx_half 0.14 ± 0.05 0.11 ± 0.05 

Fx_all_but_last 0.21 ± 0.11 0.29 ± 0.05 

 

EDVF3 

Fx_5 0.16 ± 0.27 0.10 ± 0.05 

Fx_half 0.15 ± 0.22 0.15 ± 0.17 

Fx_all_but_last 0.07 ± 0.19 0.12 ± 0.12 

 

EDVF4 

Fx_5 0.27 ± 0.20 0.14 ± 0.09 

Fx_half 0.32 ± 0.11 0.20 ± 0.18 

Fx_all_but_last 0.10±0.12 0.12 ± 0.06 

 

EDVF5 

Fx_5 0.30 ± 0.17 0.04 ± 0.09 

Fx_half 0.12 ± 0.11 0.09 ± 0.11 

Fx_all_but_last 0.04 ± 0.07 0.09 ± 0.15 

Table 3.1 RPCA: R2 correlation coefficient of performed linear regression of weights c� d,e 
versus fraction number f, averaged for all 10 patients (Chapter 2, Step M2, Materials and 

Methods). 
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The estimated anatomy epCT at the time of simulation was reconstructed by 

applying 
O R  (equation 2.4) to the wCT image. Figures 3.1 and 3.2 show result for the 

same patients as for SPCA model. Figure 3.1 shows results for the patient D, for whom 

RPCA gave the best results (out of the 10 patients studied). Figure 3.2 shows results for 

patient A, for whom RPCA gave the worst results. In each case, top panels show pCT 

(red) overlaid on the epCT (green). The left-most panel (A) is for a RPCA model 

constructed from the first 5 treatment fractions. The middle panel (B) is for a RPCA model 

constructed from the first 18 treatment fractions. The right-most panel (C) is for a RPCA 

model constructed from all but the last treatment fraction. Lower panels in Figures 3.1 

and 3.2 show the projections of all 35 simulated DVFs onto the leading EDVF. The error 

bars represent ± one standard deviation of EDVF weight values across simulated 

treatment courses having different random motion components. To generate these 

results, 10 different treatment courses were simulated for each patient. 

Figure 3.1 RPCA: Results of RPCA models generated from synthetic DVFs for patient D, for 

whom PCA modeling gave the best results 
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Quantitative Evaluation 

Figure 3.3 plots mean lengths of the image error vectors,‖pCT − epCT‖, equations 

(2.6) and (2.7), as a function of the number of fractions F from which the RPCA model is 

generated: Patient A, RPCA model generated from clinical CBCTs and DVFs; patient D, 

RPCA model generated from clinical CBCTs and DVFs; patient A, RPCA model 

generated from synthetic wCT and DVFs; patient D, RPCA model generated from 

synthetic wCT and DVFs. 

Although plotted against F = 5, 18, 34, clinical RPCA models utilized the first 5 

CBCTs, approximately half of available CBCTs, and all but the final CBCT. Vector lengths 

are scaled by 1/√	  and plotted points are shifted slightly horizontally to avoid overlap of 

Figure 3.2 RPCA: Results of RPCA models generated from synthetic DVFs for patient A, for 

whom PCA modeling gave the worst results 
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the error bars. SPCA model results (similar to the Figure 2.7) also plotted on Figure 3.3 

as a grey dashed lines for comparison. 

 

 Table 3.2 shows results of gamma analysis of epCT versus pCT. Specifically, it 

shows the percentage of gamma values exceeding one, using 3%/3mm criteria for the 

simulated and clinical cases of patients D (best case out of 10 patients) and patient A 

(worst case out of 10) for the RPCA models generated from first 5 fractions, half of the 

treatment fractions and all-but-last fraction. Gamma analysis results for the SPCA models 

are shown in the parentheses. 

Figure 3.3 RPCA: Mean lengths of the image error as a function of the number of fractions 

F. Vector lengths are scaled by f/√g. Both the mean and standard deviation of the lengths 

of the image error vectors decrease as F increases. SPCA results are represented by dashed 

grey lines. 
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 Patient D (best case 
out of 10 patients) 

Patient A (worst case 
out of 10 patients) 

 

Simulated 

5 FX 0.15 (0.25) 0.42 (0.50) 

HALF 0.08 (0.14) 0.17 (0.24) 

ALL_BUT_LAST 0.06 (0.11) 0.10 (0.18) 

 

Clinical 

5 FX 2.13 (2.39) 3.83 (4.15) 

HALF 1.13 (1.33) 1.91 (2.07) 

ALL_BUT_LAST 0.97 (1.15) 1.64 (2.02) 

Table 3.2 RPCA: Results of gamma analysis of epCT versus pCT: percent gamma values 

exceeding one, using 3%/3mm criteria. Gamma analysis results for the SPCA models are 

shown in the parentheses. 
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Figure 3.4 shows averaged 

results for RPCA models 

generated from synthetic DVFs for 

a patient with parotid shrinkage. In 

these models, * (equation (2.1)) is 

equal to one. Each panel shows 

the projection of synthetic DVFs 

onto the leading EDVF (i.e., weight 

���,� from step M1 Chapter 2, 

Materials and Methods). The top 

panel shows results for PCA 

models built from the first 5 of 35 

CBCTs; middle panel, 18 CBCTs; 

bottom panel, 34 CBCTs.  

Each panel in Figure 3.4 

shows weights for the linear, early 

and late response models (section 

2.4). To generate each curve, 

RPCA models were created for 5 

simulated treatment courses. 

Plotted data points are mean 

Figure 3.4 Leading EDVF weight averaged for 

SPCA and RPCA models generated from 

synthetic DVFs for a patient who experienced 

parotid shrinkage. Results are shown for the PCA 

models generated from first 5 fractions (top), half 

of the fractions (middle) and all-but-last fraction 

(bottom) 
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weights. The error bars represent ± one standard deviation around the mean. 

Figure 3.5 RPCA:  1st and 2nd EDVF weights for RPCA models generated from synthetic 

DVFs for a patient who experienced parotid shrinkage. A linear response model was 

assumed (Chapter 2, Materials and Methods), and r = s  in equation 2.1, ensuring that 

DVFs incorporated approximately 5 times the level of random motion seen in clinical 

CBCTs 
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Figure 3.5 shows results for RPCA models generated from synthetic DVFs for a 

patient who experienced parotid shrinkage.  Left and right columns show the projections 

of synthetic DVFs onto the two leading EDVFs. A linear response model was assumed 

and * was equal to 5, ensuring that the magnitude of fraction-to-fraction random motion 

was exaggerated to approximately 5 times the level seen in clinical CBCTs, making it 

more difficult for PCA to extract systematic change from the random background. 

As in Figure 3.4, plotted points on Figure 3.5 are the means of 5 simulated courses, 

and error bars represent ± one standard deviation. Orange points show the EDVF weights 

for the first F fractions, synthetic DVFs for which were included in the RPCA model (first 

5, half and all-but-last). Blue points show weights for fractions F+1,..., N, synthetic DVFs 

for which were excluded from the RPCA model. The orange line is the regression line for 

orange points. The blue line is the regression line for all points, orange and blue. Orange 

regression lines match the intercept M and slope N in equation 2.4. No blue linear 

regression line is shown for the RPCA model generated from all-but-last fraction. 

Figure 3.6 shows results for the RPCA models generated from clinical DVFs for a 

patient who experienced weight loss in the left neck.  In this case, plotted points are 

projections of the clinical DVFs onto the first three EDVFs. Higher EDVFs (4+) were 

omitted since they accounted for <10% of the total variation. Since clinical data is being 

used, there is only one treatment course, and no error bars are plotted. Orange and blue 

points and lines are as in Figure 3.5.  
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Figure 3.7 shows additional results — predicted DVFs and eigenimages —   for 

the same patient and clinical DVF data as in Figure 3.6. Columns 1 and 2 give results for 

SPCA models, columns 3 and 4 for RPCA models. DVFs (green arrows, columns 2 and 

4) were generated using equation (5) with K = 3 EDVFs, and the same orange regression 

lines as shown in Figure 3.7.  

In Figure 3.7, DVF arrow directions represent pull-back displacement fields from 

the planning anatomy (pCT) to the final treatment fraction. DVFs are superimposed on 

Figure 3.6 RPCA: 1st, 2nd and 3rd EDVF weights for RPCA models generated from clinical 

DVFs for a patient who experienced weight loss in the left neck 
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the pCT image set to facilitate visual evaluation. Figure 3.7 shows DVFs for the same 

axial slice through the patient anatomy.  

Standard PCA

Figure 3.7 RPCA: Predicted DVFs and corresponding eigenimages (heat map 

representation of DVF vector magnitudes) for the same patient as in Figure 3.7. DVF 

arrow directions represent pull-back displacement fields from the planning anatomy 

(pCT) to the final treatment fraction. The magnitude of displacements is at the same scale 

as the background image. 
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The eigenimages in columns 1 and 3 of Figure 3.7 are heat-map representations 

of the DVFs’ vector magnitude. Colors range from white (large magnitude displacements) 

to red (intermediate magnitude displacements) to black (small or zero displacements). 

The eigenimages are for the same axial slice as the DVFs. 

Figure 3.8 shows the results similar to that shown on Figure 3.7, but for the patient 

with parotid shrinkage and weight loss as a major anatomical change during radiotherapy. 

Figure 3.8 RPCA: Predicted DVFs and corresponding eigenimages (heat map 

representation of DVF vector magnitudes) for the patient with parotid shrinkage and 

weight loss as a major anatomical change during radiation therapy. 
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Discussion 

 

Qualitative Evaluation 

Table 3.1 shows that R2 coefficients for the simulated linear cases for the first 

EDVF have values close to 1, while EDVFs 2-5 produce much lower R2 values. This result 

shows that the leading first EDVF can capture the simulated linear major mode of 

anatomical change, while succeeding EDVFs capture residual errors and noise.  

Figure 3.1 shows that RPCA modeling is capable of extracting the major mode of 

anatomical change during head and neck radiation therapy. The leading EDVF 

coefficients show a smooth progression during treatment, and the more CBCTs that are 

included in the PCA model, the better the model becomes. This is indicated by a 

progressive tightening of the standard deviations of EDVF weights as one moves from 

model A (5 fractions), to model B (18 fractions), to model C (34 fractions).  

In Figure 3.1 the modeled anatomical change, left neck lymph node shrinkage, is 

large — it affects a relatively large volume of the patient’s anatomy. RPCA searches for 

EDVFs that can explain variability across CBCT images. The modeled anatomical change 

is large, and, similar to SPCA, the RPCA technique is easily able to ‘extract’ the major 

deformation mode(s) from noisy data.  

In Figure 3.2 (patient A, worst case for SPCA model), the modeled anatomical 

change, bilateral parotid shrinkage, is relatively small — it affects a localized volume 

around the parotids. In this case, as with the case on Figure 3.1, RPCA also successfully 

isolates systematic anatomical change from other random variations. This is the opposite 

of the SPCA modeling results, which had more difficulty in isolating the anatomical 
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change from other random variations that are present in the CBCT images. The RPCA 

model is successful for patient D. The RPCA models for F=5 fraction show a fairly weak 

linear progression of the leading EDVF coefficient, and the standard deviation of the 

coefficients is large, indicating that the RPCA technique is having a difficult time ‘locking 

onto’ the major deformation mode. But for the case F=18 and 35 the RPCA model become 

good enough to predict the anatomy, with a higher level of confidence.  

One of the conclusions of this study is that RPCA could successfully extract 

smaller systematic anatomical changes from daily CBCT images.  

 

Quantitative Evaluation 

Figure 3.3 shows that larger HU errors occur for the RPCA models generated from 

clinical CBCTs (lines (a) and (b)), than those generated from synthetic images and DVFs 

(lines (c) and (d)). Comparing to SPCA, RPCA is more successful in extracting useful 

models from synthetic cases and clinical CBCT images.  

This conclusion is reinforced by the gamma results in Table 3.2. Those results 

show that the number of voxels in epCT that disagree with pCT by more than 3% or 3 

mm is fairly modest for the RPCA models generated from synthetic DVFs, but much larger 

in models generated from clinical CBCTs. And in all cases RPCA models have a smaller 

number of voxels which fail the 3% and 3mm gamma criteria than the SPCA models.  

As for the SPCA models, quantitative results shown in Figure 3.3 and Table 3.2 

may be used as an indirect way of testing the accuracy of DVFs, or the accuracy of the 

reconstructed epCT versus the pCT image. Results of the quantitative analysis give an 

idea of how the number of fractions used to build a model and random changes presented 
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in simulated and clinical data affect the quality of the last-fraction DVF and overall 

accuracy of the epCT with respect to the pCT image. 

 

PCA Performance 

Figure 3.4 illustrates SPCA and RPCA performance under favorable conditions. 

Figure 3.4 results are for a synthetic DVF set, where by design only one type of systematic 

change is present in the patient data, and the magnitude of random changes is 

comparable to clinical CBCTs. As a consequence, the error bars in Figure 3.4 are 

relatively small, indicating consistent results across multiple simulated treatment courses. 

Under these conditions, the bottom panel in Figure 3.4 shows that PCA can successfully 

extract systematic motion using the leading EDVF. In the bottom panel, the curves for 

early, linear and late response models mirror the profiles in Figure 2.3 (Chapter 2), as 

one might hope. Figure 3.4 confirms that under favorable conditions — i.e., given 

sufficient patient data to enable extraction of mean trends in the presence of random 

background — PCA modeling can accurately extract the time-profile of anatomical 

change.  

For all response models, SPCA and RPCA perform well when able to build a model 

from 34 fractions (Figure 3.4 bottom panel). When it is limited to half of the fractions 

(middle panel), or the first 5 fractions (top panel), PCA continues to perform well for the 

early and linear response models  —  the red and blue curves in the top 2 panels mirror 

those in the bottom panel. However, it fails for the late response model in that the profile 

of the late response weights in Figure 3.4, top and middle panels, does not mirror the late 

response model of anatomical changes as shown in Figure 2.3. This illustrates an 



47 
 

 
 

intuitively obvious fact. PCA can only be successful if it is given sufficient motion data 

from which to build a model. In the late response model, there is simply not enough 

information present in early fractions for PCA to build a valid model.  

The ability of SPCA and RPCA to generate patient-specific models from initial 

treatment fractions for late-responding patients will depend on factors such as the size of 

anatomical change relative to random motion, and will likely need to be evaluated on a 

treatment site-by-site basis. A possible alternative is to develop population-based PCA 

models of anatomical change, and use these as a starting point for all patients. Each 

patient’s motion model could then be refined as patient-specific data is acquired over the 

course of treatment. This work considers only patient-specific SPCA and RPCA models, 

generated from a single patient’s data. Population based models represent a direction for 

future research, and are not considered here. However, one might hope that population-

based models, based on large volumes of clinical data, could approach the PCA results 

shown in the bottom panel of Figure 3.4.  

Figure 3.5 illustrates (only) RPCA performance under challenging conditions. 

Figure 3.5 results are for a synthetic DVF set, where by design only one type of systematic 

change is present in the patient data, but where the magnitude of random changes is 

exaggerated with respect to clinical CBCTs. As a consequence, the error bars Figure 3.5 

are large, indicating a high degree of variability in DVFs across simulated treatment 

courses. Under these conditions, the bottom two rows of Figure 3.5 show that RPCA is 

still able to successfully extract systematic change when it has access to 18 of 35, or 34 

of 35, fractions. Note that the regression lines in row 2 agree with those in row 3, 

suggesting that RPCA is consistently identifying the same mode of motion in each EDVF. 
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What is new in this scenario is that RPCA now captures motion in more than one leading 

EDVF. Figure 3.5 column 2 shows that the 2nd EDVF weight has non-zero slope, 

indicating that it plays a role in modeling motion. For realistic motion scenarios, it is 

expected that PCA will require more than one EDVF in order to faithfully model anatomical 

motion.  

The top row of Figure 3.5 shows that RPCA breaks down when it only has 5 

fractions of data. In this scenario, the orange regression lines based on the first 5 fractions 

do not match the blue regression lines based on 34 fractions. The blue lines agree with 

lower plots, and so can be assumed to represent the ‘true’ EDVF weights. Predicted DVFs 

based on the orange regression lines would be wildly inaccurate for later fractions, and 

so produce erroneous predictions of anatomical change, cumulative radiation dose, etc. 

This reinforces the conclusion that patient-specific PCA models may have limited utility 

when based on a small number of initial fractions. As noted above, it may be desirable to 

investigate population-based models to address this limitation.  

Figure 3.5 shows results only for a linear response model. The size of error bars 

in Figure 3.5 will make it difficult to reliably predict non-linear trends. One could fit different 

non-linear curves to patient-specific EDVF coefficients, but the confidence intervals 

around the fits may be large. If, however, one were to generate population PCA models 

based on large volumes of H&N patient data, one could reasonably hope that average 

trends could be extracted. Use of regularized PCA to generate population models remains 

a subject for future research.  

Figure 3.6 illustrates PCA performance for a clinical case, where the motion that is 

present in the H&N CBCT image set is not known a priori. Figure 3.6 results are 
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qualitatively similar to those in Figure 3.5. They exhibit similar levels of noise (scatter of 

plotted points around the trend lines) as seen in Figure 3.5. As in Figure 3.5, the orange 

and blue trend lines in the lower two rows of Figure 3.6 are in good agreement, suggesting 

that RPCA is consistently identifying the same mode of motion in each EDVF. The orange 

trend lines in row 2 are in reasonable agreement with the blue lines in rows 2 and 3, 

showing that an RPCA model based on 18 of 35 fractions can accurately predict EDVF 

weight trends for remaining fractions. Note that the trend line associated with each EDVF 

can reasonably be interpreted as systematic anatomical change, while the scatter of 

points around the trend line represents the superimposed effect of random fraction-to-

fraction motion. The consistent trend lines in rows 2 and 3 show that RPCA is consistently 

identifying the systematic component of anatomical change.  

The top row of Figure 3.6 shows that PCA performs poorly when the model is 

based on only the first 5 fractions. The orange trend lines do not agree with the blue trend 

lines for EDVFs 1 and 2. This conclusion is consistent with the results for simulated DVFs 

in Figures 3.4 and 3.5:  patient-specific PCA models may have limited utility when based 

on a small number of initial fractions. 

In practice, weights on Figure 3.6, acquired from the projection of the clinical DVFs 

onto the calculated EDVFs, are used to build a patient-specific RPCA model using 

equation 2.4. For the RPCA models generated from the first F fractions (e.g., first 5 

fractions, half of the fractions, or all-but-last fraction), subsequent weights of the F+1,…, 

N fractions are calculated using a linear fit, and these weights are then used in equation 

2.4 to model future fractions DVFs and corresponding anatomy. 
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Figures 3.7 and 3.8 provide a visual comparison of the SPCA and RPCA models 

which were used to calculate the last fraction DVFs from the first 5, half, and all-but-last 

fraction, and visual confirmation that RPCA is better than SPCA at identifying the 

systematic component of H&N anatomical change. For reasons discussed below, SPCA 

tends to produce noisy EDVFs, which are difficult to relate to clinically observable 

changes. In Figures 3.7 and 3.8, SPCA EDVFs are non-zero across the whole patient 

anatomy, even though dominant change is clearly confined to the left neck. In contrast, 

at least when RPCA models are based on 18+ fractions, RPCA is successful at isolating 

the dominant mode of change to the left neck area.  RPCA’s ability to identify and 

reproduce clinically observed change creates the potential to use RPCA to anticipate and 

trigger adaptive re-planning decisions, and for quantitative treatment response 

assessment.  

 

Prior Applications of PCA 

The idea of using PCA in radiotherapy is not novel. For example, the PCA 

techniques were used to model patient-specific inter-fractional organ deformations in 

prostate/rectum/bladder45. The results of that work showed that geometric variability is 

governed by only the first few patient-specific eigenmodes, and using first 4 eigenmodes 

to model organ deformations reduces residual errors to ≤2 mm. The results were later 

used to assess the dosimetric detrimental effects that inter-fractional organ deformations 

can have on a planned dose distribution47. Coverage-based treatment planning 

techniques for prostate cases were also proposed based on the PCA organ deformation 

model62. Furthermore, a population-based PCA model was developed and applied to 
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prostate cases40, showing that using the first 7 eigenmodes for patients in a database, 

and first 15 eigenmodes for patients not in a database, reduces residual errors to ≤1 mm.  

The main difference between this research and those described above is that this 

work is focused on separating systematic changes in patients’ anatomy from random 

changes. While this may not be necessary for the prostate/bladder/rectum cases, since 

these areas don’t experience major systematic change during the radiotherapy, this 

separation is important for H&N cases, since the anatomy could change significantly 

during the treatment course. 

The PCA model in H&N patients was also described and performed to create an 

organ sample generator (OSG) for expected treatment dose construction63. The OSG 

generated random samples of organs of interest during the treatment course to evaluate 

dosimetric effects of the organ variations/deformations. The accuracy of the OSG 

improved with the number of treatment fractions used for the PCA model, showing 

discrepancy of the dose estimation within 1% for most organs after the first 3 weeks of 

treatment. The OSG is a useful tool for dose accumulation estimation during the 

treatment, but since it’s not trying to separate systematic changes in anatomy from 

random changes, it could not be used in the prediction of the end-of-treatment anatomy. 

 

Potential for Regularized PCA 

ART promises to improve the quality of treatment received by radiation therapy 

patients. However, adoption of ART has been held back by some practical considerations. 

Repeatedly re-planning patient treatments can be costly, in terms of physician and 

dosimetrist time and physics resources to check and QA treatment plans. There is 
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consequently a need for measurement-based models of anatomical change and 

treatment response that would allow physicians to make educated decisions about when 

to re-plan, which patients will benefit, etc.  

RPCA has the potential to solve some of these challenges. RPCA is designed to 

extract major modes of deformation from noisy imaging data, in principle allowing one to 

discriminate real changes in the anatomy from background noise. If successful, RPCA 

could be used to predict the future anatomy, and make re-planning decisions based on 

dosimetric impact to the tumor and normal tissues.   

SPCA is a well-known tool to find the major modes of variations in real-world 

datasets. However, it was developed for datasets where the dimension of the problem is 

less than the number of available data samples. In the present problem, the dimension of 

the problem is 3M (i.e., 3 times the number of DVF voxels), which is on the order of 104-

105 for H&N voxel grids, and therefore much larger than the number of available CBCTs.  

In this scenario SPCA models are extremely under-determined.  As a result, SPCA has 

a tendency to produce EDVFs than are noisy, and difficult to relate to clinically observable 

anatomical changes.  

RPCA addresses the problem of under-determination by supplementing SPCA 

with additional constraints on eigenvectors. In the present work, RPCA adds smoothness 

and sparseness constraints to SPCA. This has the effect of forcing EDVFs to be smooth 

(i.e., physically realistic) and sparse (i.e., confined to localized regions of anatomy where 

change is detected). Together, these constraints have a tendency to concentrate detected 

anatomical change into a smaller number of leading EDVFs, which in turn makes it easier 
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to relate the EDVFs to clinically observable response. The application of regularized PCA 

to adaptive radiation therapy is a novel contribution of this work.  

This work can be considered to fall within radiomics, which studies how to extract 

quantitative information from the medical images in order to characterize treatment 

response. In the present case, RPCA is being used to reduce high-dimensional imaging 

data to a small number of anatomical motion modes. Detecting tumor deformation during 

treatment will permit assessment of treatment response. Similarly, detecting the response 

of normal tissues, such as parotid glands, may permit quantitative evaluation of 

radiotherapy-related complications.  

 

Study Limitations 

Acquiring accurate DVFs between patient images is a key step in this study 

because the results of PCA modeling are dependent on the quality of input DVFs. 

Therefore, the choice of DIR algorithm and its registration parameters is one of the most 

important factors for accurate modeling. In this study Pinnacle’s diffeomorphic demons 

algorithm58 was used for deformable registrations. Although we visually verified the 

registration results, use of a different algorithm may produce slightly different results from 

those presented in this study. In this work other DIR algorithms were not used apart from 

those implemented in Pinnacle®, since all the codes for DVFs manipulations were 

implemented considering Pinnacle’s® DVF internal structure and performed using 

Pinnacle® plugin functionality. One of our intended future works is to use different 

commercial and open-source DIR algorithms to understand the effects on the resultant 

PCA models.  
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Quantification of DIR/DVF accuracy is a major challenge for adaptive radiation 

therapy, on which much research is being expended. It is outside the scope of this work 

to attempt to quantify the accuracy of DIR algorithms. Instead, we expect that reliable DIR 

algorithms will emerge from ongoing research and clinical use. Although DVF accuracy 

will have an impact on the accuracy of PCA models, we note that regularized PCA may 

be part of the answer to this issue. RPCA has the potential to extract smooth and 

physically meaningful EDVFs from noisy CBCT data, including the noise introduced by 

DVF uncertainties. One can reasonably hope that RPCA models will be insensitive to 

small scale uncertainties present in DVFs, and instead extract larger scale anatomical 

changes corresponding to observable clinical change. 

One other important study limitation is the CF used to acquire DVFs. In this study, 

CF of 7 was used, which reduces the precision of acquired DVFs compared to non-

compressed DVFs. This, in turn, reduces the precision of the motion model and could 

underestimate the effects of anatomical motion presented in the patient. This effect can 

be seen in Figures 3.1 and 3.2 – on the left neck lymph node shrinkage (Figure 3.1) and 

parotid shrinkage (Figure 3.2). RPCA does not precisely capture these anatomical 

changes due to the large CF used, and epCT is not completely matched to the pCT image, 

even though it still shows better performance than SPCA, giving an advantage of better 

smoothness and sparseness due to the regularized approach.  

The regularized approach in PCA requires a calculation of penalty matrix of very 

large size, ~ (3M) 2, which puts very high requirements on computational resources. In 

this work, CF of 7 was used, and random-access memory (RAM) of ~ 100-120 GB 

(depending on the patient) was required, and calculation time was ~ 7 days on the Wayne 
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State University High Performance Computing Grid. The calculation time potentially could 

be improved by using a parallel computing – dividing the calculation of the penalty matrix 

for RPCA models between multiple processes. 

 

Conclusion 

For H&N patients treated with external beam radiation therapy, a PCA model (both 

standard and regularized) is a potential tool to identify patient anatomy changes early in 

the treatment course, and use these to make educated adaptive re-planning decisions. 

This study used synthetic (but realistic) DVFs, as well as clinical CBCTs, to evaluate the 

ability of the PCA method to extract useful models of anatomical change. In particular, a 

primary goal of this work was to evaluate the ability of PCA to separate systematic from 

random changes present in CBCT images.  

The study shows that both SPCA and RPCA can capture the major mode of 

systematic anatomical deformation in the leading EDVF. However, the SPCA approach 

is most successful at identifying large changes (e.g., significant lymph node shrinkage), 

and less successful at identifying small changes (e.g., smaller changes in parotid glands). 

SPCA is challenged by the variety of deformations and noise in clinical CBCT images, 

and therefore fails to extract major modes of systematic change that are known to be 

present. Conversely, the RPCA approach is able to identify smaller systematic changes 

in the presence of the random fraction-to-fraction changes. The current drawback of the 

RPCA approach is the time of the calculation and memory requirements. 
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CHAPTER 4 “DOSIMETRIC ASSESSMENT OF EFFECTS OF SYSTEMATIC AND 
RANDOM FRACTION-TO-FRACTION ANATOMICAL CHANGES IN HEAD AND 

NECK PATIENTS” 

 

Introduction 

Decisions about whether to perform ART for a specific H&N patient could be made 

by the physician by either comparing the patient’s daily anatomical images (like CBCT) 

with the pCT image and deciding if anatomical changes are large enough to significantly 

alter the planned dose distribution, or by evaluating the mask used for patient 

immobilization and positioning, or using other subjective indicators, such as the 

physician’s experience in such cases. Currently, there are no clear quantitative indicators 

regarding whether or not perform ART for a specific patient64. 

Using advanced treatment techniques like IGRT, one of the potential quantitative 

indicators for ART in H&N patients could be the measuring of the actual dose delivered 

to date to targets and OARs, which could be done by calculating “dose of the day” onto 

re-sampled CT images using DIR and then accumulating it back onto the pCT65. Such 

“dose of the day” calculations, which would give accumulated dose up to but not beyond 

the current fraction, can be used in the clinic for tracking the dose delivered to the patient 

in each fraction and comparing it with the planned dose distributions. The drawback of 

this method is that it is retrospective: one can react to OAR overdoses or target 

underdoses once they have happened, but there is no good basis for anticipating them 

and correcting them in advance, while one still has maximum flexibility to re-plan and 

correct the dose distribution. 

In this work one of the potential solutions to this problem is presented. Using 

developed motion models based on RPCA approach (Chapter 3), not only “dose of the 
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day” is calculated and accumulated, but also dose of the future fractions is calculated on 

re-sampled “future CT” images. The predicted cumulative dose is then compared to the 

planned dose, enabling re-planning decisions to be made earlier in the treatment course. 

Additionally, at the end of the course, the predicted cumulative dose can be compared 

with the true cumulative dose, to evaluate the accuracy of the RPCA-based dose 

predictions. 

There are two main hypotheses in this study: 

H1: RPCA models can quantify deviations between planned and delivered 

cumulative dose caused by systematic anatomical changes. 

H2: RPCA models can quantify deviations between planned and delivered 

cumulative dose caused by both systematic and random anatomical changes. 

This study provides a testing framework to evaluate the accuracy of RPCA-based 

anatomical models at predicting cumulative dose. Within this framework it is instructive to 

separately calculate the dosimetric effects of systematic versus random changes. In this 

way one can assess the relative contributions of systematic versus random changes. One 

can then make reliable re-planning decisions based on detected systematic changes, and 

determine PTV margins to absorb residual random changes.  

 

Materials and Methods 

Two H&N patients from the dataset described in Chapter 2, who experienced large 

systematic changes during the course of radiation therapy, were chosen in order to 

conduct a dosimetric study. The first of the selected patients experienced parotid 

shrinkage, and was treated with 70Gy in 33 fractions. The second selected patient 
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experienced parotid shrinkage and weight loss during the course of radiation therapy, and 

was also treated with 70Gy in 33 fractions. The following work was performed using 

synthetic DVFs containing known localized anatomical changes, derived from the warped 

CT (wCT), as described in the “Synthetic Deformation Vector Fields” section of Chapter 

2. The corresponding eigenimages and last-fraction DVFs for the second patient are 

shown in Figure 3.8.  

For the purpose of getting the pCT image, the patients were set up head-first 

supine on a CIVCO H&N board (CIVCO Medical Solutions, Coralville, IA) using a 9-point 

thermoplastic mask with individually modeled pillow for immobilization. The treatment 

plan was prepared and optimized within the Eclipse TPS (Varian Medical Systems, Palo 

Alto, CA) using the Analytical Anisotropic Algorithm (AAA). For daily CBCT images, the 

following parameters were used: 120 kVp, 20 mA, 150 cm source-to-detector distance. 

For the hypothesis H1, the cumulative dose was calculated for the systematic 

change only using the RPCA models described in Chapter 3: 

(i) Synthetic DVFs, based on the linear response model, and containing the 

systematic component only (random excluded) were taken (equation 2.1, with DR=0) for 

each of 33 fractions. These DVFs were inverted using the ITK66 software library: the 

synthetic DVFs map coordinates from a space of pCT into a space of daily anatomy (i.e. 

CBCT), and the inverse synthetic DVFs map coordinates from the space of daily anatomy 

into the space of pCT. These inverse DVFs are then used to get day-of–treatment 

anatomy from the pCT for each of 33 fractions, which in turn are used to get cumulative 

dose (dose A). This data simulates anatomies, bi-directional DVFs, and daily CTs for a 

full treatment course. 
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(ii) Using the RPCA model (Chapter 3, Materials and Methods) and synthetic DVFs 

from step (i), predicted DVFs were calculated using first 5, half and all but last treatment 

fractions. Inverse DVFs and predicted CT images for each of 33 fractions were acquired 

and used to predict cumulative dose (dose B) at the final fraction.  

(iii) The above procedure generates three dose distributions: 

- Planned dose: This is the original planned dose distribution generated on 

the planning CT 

- Dose A: For a simulated treatment course, this is the “true” cumulative dose 

at the end of the course, assuming zero random changes.  

- Dose B: For a simulated treatment course, this is the dose predicted by an 

RPCA model, where the model could be derived from the first 5, half, or all but last 

simulated fractions, assuming zero random changes.  

For relevant structures, Dose Volume Histograms (DVHs) for 3 scenarios were 

compared: planned dose, dose A, and dose B. If H1 is correct, the expectation is to see 

dose A similar to dose B. In this study “similarity” was checked by comparing the 

maximum and the mean dose deviations between doses A and B which were expected 

to be close enough to be clinically equivalent. We also expect that doses A and B can 

differ significantly from the planned dose, depending on structure, due to the presence of 

significant anatomical changes over the treatment course. 

For hypothesis H2, the cumulative dose was calculated for both systematic and 

random changes using the RPCA models: 

(iv) Synthetic DVFs, based on the linear response model, and containing both 

systematic component and 10 different simulations of random components were taken 
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(equation 2.1) for each of 33 fractions. Using the same procedure as in step (i), these 

DVFs were inverted and then used to get cumulative dose in the presence of systematic 

and random components (dose C). 

(v) Using RPCA model and synthetic DVFs with simulated random components 

from step (iv), predicted DVFs were calculated using first 5, half and all but last treatment 

fractions, inverse DVFs and predicted CT images for each of 33 fractions were acquired 

and used to get cumulative dose (dose D). 

(vi) The above procedure generates three dose distributions: 

- Planned dose: This is the original planned dose distribution generated on 

the planning CT 

- Dose C: For a simulated treatment course, this is the “true” cumulative dose 

at the end of the course, assuming non-zero random changes.   

- Dose D: For a simulated treatment course, this is the dose predicted by an 

RPCA model, where the model could be derived from the first 5, half, or all but last 

simulated fractions, assuming non-zero random changes. 

In the same manner as above, for relevant structures, DVHs for 3 scenarios were 

compared: planned dose, dose C, and dose D. If H2 is correct, the expectation is to see 

dose C similar to dose D, and both of these different from the planned dose.  

A CF of 7 was used for this study for the reasons discussed in Chapter 3 – 

generation of RPCA models using our current method is numerically and memory 

intensive, so it was necessary to adopt a CF of 7 in order to keep computing resources 

and execution times within acceptable limits. 

However, aggregation of DVF voxels has the effect of smoothing DVFs, reducing 
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their spatial resolution, at least in the XY-plane. As shown in Chapters 2 and 3 (Figures 

2.5, 2.6, 3.1, 3.2), using large CF for the acquisition of the DVFs could underestimate the 

anatomical motion in the patient even if it was captured correctly in the CBCTs.  

To assess this effect, the predicted dose from RPCA models (where anatomical 

motion could be underestimated due to DVF compression) was compared to the “real” 

accumulated dose and to the planned dose. “Real” dose accumulation (dose R) was 

performed in VelocityAI (version 3.2.0, Varian Medical Systems) using the method 

described in Kumarasiri et al67. Acquiring dose R does not require DVFs compression, 

and therefore it accounts for all anatomical motion, subject to the DIR precision and 

uncertainty. 

Dose R is then compared to planned dose, and doses A, B, C and D. If compressed 

DVFs in fact underestimate the anatomical changes in the patient, dose R is expected to 

be different from the planned dose, and the DVHs associated with doses A, B, C and D 

are expected to be in between the DVH of the planned dose and DVH of the dose R. 

The percent differences between the planned dose and simulated (dose A, C), 

modeled (dose B, D), or accumulated dose (dose R) was calculated using the following 

equation: 

∆
 = $uv�w/wxyz{/|}}~w�u�{|��zy
u�{|��zy

' × 100                                                                 (4.1) 

 

Results 

Figures 4.1 and 4.2 show the DVHs for the left parotids of patients 1 and 2. On 

these figures, planned DVH (blue) is compared to the calculated DVHs of patients 1 and 

2 with the systematic only (Figure 4.1, dose A, green) and systematic and random 
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components (Figure 4.2, dose C, green) superimposed on this patient during the course 

of radiation therapy. The anatomy of these patients was also predicted using the RPCA 

models for the first 5, half and all but last treatment fractions and corresponding predicted 

DVHs are shown on Figures 4.1 (dose B) and 4.2 (dose D) as purple, dark blue and brown 

dashed lines respectively. 

  

Figure 4.1 DVHs for the left parotids of the patients 1 and 2. Planned DVH (blue) is 

compared to the simulated DVH (dose A) of the patient with the systematic only 

component superimposed on the patient’s anatomy during the course of radiation therapy, 

and also compared to the modeled DVHs (doses B) for the predicted anatomies from the 

RPCA models built using the first 5 (purple), half (dark blue) and all but last treatment 

fractions (brown). 
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Figure 4.3 and 4.4 show the DVHs for the right parotids of the patients 1 and 2. 

The information is similar to that shown in Figures 4.1 and 4.2. 

  

Figure 4.2 DVHs for the left parotids of the patients 1 and 2. Planned DVH (blue) is 

compared to the simulated DVHs (dose C) of the patient with the systematic and random 

components superimposed on the patient’s anatomy during the course of radiation 

therapy, and also compared to the modeled DVHs (doses D) for the predicted anatomies 

from the RPCA models built using the first 5 (purple), half (dark blue) and all but last 

treatment fractions (brown). Grey dotted lines represent the standard deviation of the 

green line. 
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Figure 4.3 DVHs for the right parotids of the patients 1 and 2. Planned DVH (blue) is 

compared to the simulated DVH (dose A) of the patient with the systematic only component 

superimposed on the patient’s anatomy during the course of radiation therapy, and also 

compared to the modeled DVHs (doses B) for the predicted anatomies from the RPCA 

models built using the first 5 (purple), half (dark blue) and all but last treatment fractions 

(brown). 

Figure 4.4 DVHs for the right parotids of the patients 1 and 2. Planned DVH (blue) is 

compared to the simulated DVHs (dose C) of the patient with the systematic and random 

components superimposed on the patient’s anatomy during the course of radiation 

therapy, and also compared to the modeled DVHs (doses D) for the predicted anatomies 

from the RPCA models built using the first 5 (purple), half (dark blue) and all but last 

treatment fractions (brown). Grey dotted lines represent the standard deviation of the 

green line. 
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Figures 4.5 and 4.6 show the DVHs for the spinal cords of the patients 1 and 2. 

The information is similar to that shown in Figures 4.1, 4.2, 4.3 and 4.4. 

  

Figure 4.5 DVHs for the spinal cords of the patients 1 and 2. Planned DVH (blue) is 

compared to the simulated DVH (dose A) of the patient with the systematic only component 

superimposed on the patient’s anatomy during the course of radiation therapy, and also 

compared to the modeled DVHs (doses B) for the predicted anatomies from the RPCA 

models built using the first 5 (purple), half (dark blue) and all but last treatment fractions 

(brown). 
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Figure 4.7 (A) shows the pCT image (red) overlaid on the resampled CBCT image 

of the last treatment fraction for the patient 2 who experienced parotid shrinkage and 

weight loss during the course of radiation therapy. The CBCT is resampled using the 

diffeomorphic demons DVF compressed with a CF of 7. Figure 4.7 (B) shows the pCT 

image (red) overlaid on the epCT (green) for this patient; the epCT image is acquired 

using equation 2.4 from Chapter 2. Red arrows show the underestimation of the parotids 

movement due to the large CF used for the DVFs. Figure 4.7 (C) shows the pCT image 

(red) overlaid on the last fraction CBCT image. 

Figure 4.6 DVHs for the spinal cords of the patients 1 and 2. Planned DVH (blue) is 

compared to the simulated DVHs (dose C) of the patient with the systematic and random 

components superimposed on the patient’s anatomy during the course of radiation 

therapy, and also compared to the modeled DVHs (doses D) for the predicted anatomies 

from the RPCA models built using the first 5 (purple), half (dark blue) and all but last 

treatment fractions (brown). Grey dotted lines represent the standard deviation of the 

green line. 
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Figures 4.8, 4.9 and 4.10 show the results of the movement underestimation of the 

patients anatomy by the DVFs by comparing the planned (blue) and modeled (green and 

brown) DVHs presented above with the “real” accumulated DVH (red) for the left and right 

parotids, and spinal cord.  

Figure 4.7 Patient 2: (A) pCT (red) overlaid on the resampled CBCT of the last treatment 

fraction. CBCT is resampled using the diffeomorphic demons DVF compressed with the 

factor 7; (B) pCT (red) overlaid on the epCT (green). Red arrows show the 

underestimation of the parotids movement due to the large CF used for the DVFs; (C) pCT 

(red) overlaid on the last fraction CBCT (green). 

Figure 4.8 Patients 1 and 2: Comparison of the planned DVHs (blue) for the left parotid 

glands vs. the simulated DVHs (green, brown) vs. “real” cumulative DVH. 
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Table 4.1 summarizes the cumulative dosimetric parameters of the OARs for 

both patients 1 and 2. Mean and maximum doses for the parotid glands, and maximum 

dose for the spinal cord are compared between planned, simulated (using both 

systematic and random components), modeled (using both systematic and random 

Figure 4.9 Patients 1 and 2: Comparison of the planned DVHs (blue) for the right parotid 

glands vs. the simulated DVHs (green, brown) vs. “real” cumulative DVH. 

Figure 4.10 Patients 1 and 2: Comparison of the planned DVHs (blue) for the spinal cords 

vs. the simulated DVHs (green, brown) vs. “real” cumulative DVH. 
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components) and cumulative cases. The relative difference from the planned dose 

(equation 4.1) is presented in parentheses. 

  Patient 1 Patient 2 

  Dmean Dmax Dmean Dmax 

Left 

parotid 

Planned 23.5 51.0 44.6 74.4 

Simulated, dose C 25.1  

(6.8%) 

54.1  

(6.1%) 

49.8 

(11.7%) 

75.9  

(2.0%) 

 

Modeled, 

dose D 

5fx 23.7  

(0.9%) 

52.5  

(2.9%) 

46.6  

(4.5%) 

74.9  

(0.7%) 

Half 25.1  

(6.8%) 

53.9  

(5.7%) 

49.3 

(10.5%) 

75.6  

(1.6%) 

All 25.7  

(9.4%) 

54.3  

(6.5%) 

50.5 

(13.2%) 

75.7  

(1.7%) 

Cumulative 27.0  

(14.9%) 

55.9  

(9.6%) 

52.5 

(17.7%) 

76.6  

(3.0%) 

Right 

Parotid 

Planned 23.0 51.8 41.7 65.2 

Simulated, dose C 24.5  

(6.5%) 

54.3  

(4.8%) 

47.9 

(14.9%) 

67.9  

(4.1%) 

 

Modeled, 

dose D 

5fx 23.5  

(2.2%) 

51.0  

(-1.5%) 

44.5  

(6.7%) 

66.3  

(1.7%) 

Half 24.9  

(8.3%) 

54.8  

(5.8%) 

47.1 

(12.9%) 

67.8  

(4.0%) 

All 24.4  

(6.1%) 

54.3  

(4.8%) 

48.6 

(16.5%) 

68.7  

(5.4%) 

Cumulative 25.7 

 (11.7%) 

55.1  

(6.4%) 

50.1 

(20.1%) 

69.8  

(7.1%) 

  Dmax Dmax 

Spinal 

Cord 

Planned 42.1 45.2 

Simulated, dose C 43.9 (4.3%) 45.2 (0%) 

 

Modeled, 

dose D 

5fx 42.9 (1.9%) 44.9 (-0.7%) 

Half 43.3 (2.9%) 45.3 (0.2%) 

All 43.5 (3.3%) 45.3 (0.2%) 

Cumulative 45.2 (7.4%) 45.4 (0.4%) 

 

Table 4.1 Planned, simulated, modeled and accumulated dosimetric parameters for the 

patients (in Gy). The relative percentage difference from the planned dose presented in 

parentheses. 
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Discussion 

Figures 4.1, 4.3 and 4.5 show the DVHs for the simulated and modeled left parotid, 

right parotid and spinal cord respectively when only systematic changes are introduced 

in patients 1 and 2 with parotid shrinkage, and parotid shrinkage and weight loss as a 

major mode of anatomical change during radiation therapy, respectively. These are 

compared to the planned DVH. It can be seen qualitatively that the planned dose to the 

parotids is different from the simulated (Figures 4.1, 4.3, dose A) and modeled doses 

(Figures 4.1, 4.3, dose B). Due to the shrinkage, the parotids are shifted into the area of 

higher dose and accumulate more dose than was planned. However, changes in the 

parotids did not affect the movement of the spinal cord of the patient 2 during the radiation 

therapy course, and the dose to the spinal cord didn’t change for the simulated course 

compared to the planning course. On the other hand, as shown in Table 4.1, patient 1 

experienced dose escalation from the planned (42.1Gy) to simulated (45.2Gy) treatment 

course. While in this case this unintended 3 Gy increase in the dose to a critical OAR 

would likely be acceptable24, this is not always the case. For example, if the modeled 

maximum dose to the spinal cord had been 55 Gy, additional dose in such case would 

predict a substantial increase in Normal Tissue Complication Probability (NTCP).  

For the patients 1 and 2, RPCA anatomy modeling when using DVFs from the first 

5 fractions qualitatively showed larger deviation from the simulated treatment course for 

the parotids, especially in the areas of higher doses (Figures 4.1, 4.3). RPCA models 

when using DVFs from the half and all-but-last fraction show good conformity with the 

simulated treatment course. This means that when using enough data for building the 

model, RPCA can identify and capture the major mode of anatomical change and it can 
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be used to model the anatomy of the future fractions. For the case of the spinal cord the 

planned, simulated (dose A), and modeled (doses B) DVHs didn’t show much qualitative 

(Figure 4.5) or quantitative (Table 4.1) difference compared to the parotid glands for 

patient 2. For patient 1, the DVHs show an increase in dose for both simulated (dose A) 

and modeled (doses B) cases. The results in figures 4.1, 4.3, 4.5 and Table 4.1 support 

the hypothesis H1, which means that RPCA models can quantify deviations between 

planned and delivered cumulative dose caused by systematic anatomical changes given 

sufficient patient data to enable extraction of mean trends in the presence of random 

background. 

Figures 4.2, 4.4 and 4.6 show the DVHs for the simulated (dose C) and modeled 

(doses D) left parotid, right parotid and spinal cord respectively when systematic and 

random changes are introduced in the patients 1 and 2. These are compared to the 

planned DVHs. As demonstrated above, qualitatively the planned dose to the parotids is 

different from the simulated (Figures 4.2, 4.4, dose C) and modeled ones (Figures 4.2, 

4.4, dose D). Quantitative differences between these doses are presented in Table 4.1. 

Similarly to the case with only systematic changes applied, due to the shrinkage, the 

parotids are shifted into the area of the higher dose and accumulate more dose than was 

planned. Even when random changes are introduced to the patients 1 and 2, this did not 

affect the movement of the spinal cord in patient 2 during the radiation therapy course, 

and the dose to the spinal cord of the patient 2 didn’t change (Table 4.1) for the simulated 

course compared to the planning course. This means that even in the presence of noise, 

RPCA is able to differentiate it from the systematic anatomical changes and such random 

changes are mostly ignored by the model due to the use of the sparseness parameter i(. 
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RPCA anatomy modeling when using DVFs from the first 5 fractions showed larger 

deviation from the simulated treatment course for both parotids (Figures 4.2, 4.4, Table 

4.1), especially in the areas of higher doses. But RPCA models built using DVFs from the 

half and all-but-last fraction show good conformity with the simulated treatment course. 

That also means that RPCA can identify and capture the major mode of anatomical 

change even in the presence of the random changes and it can be used to model the 

anatomy of the future fractions. For the spinal cord of the patient 1 (Figure 4.6), planned, 

simulated (dose C) and modeled (doses D) showed the difference of up to 3.3% (Table 

4.1) from the planned DVH. For the spinal cord of the patient 2 (Figure 4.6), planned, 

simulated (dose C) and modeled (doses D) DVHs didn’t show much difference (<1%, 

Table 4.1) from planned DVH compared to the parotid glands. The results in figures 4.2, 

4.4 and 4.6 support the hypothesis H2, which means that RPCA models can quantify 

deviations between planned and delivered cumulative dose caused by both systematic 

and random anatomical changes. 

The RPCA models in this work used DVFs acquired using a large CF value (7), 

and using such compressed DVFs usually underestimates the anatomical changes 

present in the patients. Figure 4.7 (A) shows the pCT image (red) overlaid on the 

resampled CBCT image of the last treatment fraction. CBCT is resampled using the 

diffeomorphic demons DVF compressed with a factor of 7. Figure 4.7 (B) shows the pCT 

image (red) overlaid on the epCT (green) of the patient. Figure 4.7 (C) shows the pCT 

image (red) overlaid on the last fraction CBCT image (green). Ideally, it is expected that 

pCT and epCT images would be exactly the same, but as can be seen in Figure 4.7 (B), 

motion of the parotids is underestimated by the model due to the large CF of the DVFs. 
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Such effects are not only seen on the epCT image acquired from the modeled DVFs, but 

also on resampled last fraction CBCT image acquired using real clinical DVFs 

compressed with the same CF, as seen on Figure 4.7 (A). This means that even though 

RPCA could capture the correct major mode of anatomical changes in the patient from 

compressed DVFs, it is possible that these changes would be underestimated and the 

model will show less movement in the anatomy than in the real case. Another challenge 

of using the compressed DVFs is that they can’t capture the movement on a “wiggly” 

edge, like those on the parotids in Figure 4.7. So using a large CF will suppress the 

smaller and “wigglier” anatomical changes in the DVFs, and therefore RPCA would not 

be able to extract such changes form this dataset. In general, the quality of the RPCA 

models is dependent on the quality of the input data, the DVFs.  

Such underestimation of the anatomical changes could lead to the underestimation 

of the dose distribution changes in the patient. This effect is shown for the parotids and 

spinal cords of the patients 1 and 2 on Figures 4.8, 4.9 and 4.10. On these figures, 

planned DVH (blue) is compared to the simulated DVH, acquired from the anatomy 

resampled with the compressed DVFs (green, brown), and in turn compared to the “real” 

accumulated DVH (red) for the patient. As can be seen, the “real” DVH is shifted to the 

right with respect to the modeled DVHs. This means that underestimation of the parotid 

shrinkage in the modeled cases leads to the underestimation of the dose received by 

parotids due to their shift into the high dose region.  

Based on the visual examination of the performance of the compressed DVFs 

(Figure 4.7), and subsequent dosimetric DVHs’ deviations calculated based on these 

corresponding DVFs (Table 4.1), future work on RPCA models requires use of DVFs with 
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smaller CF in order to capture smaller changes in the anatomy. 

 

Conclusion 

This work showed that RPCA has the potential to identify the major mode of 

anatomical changes during the radiotherapy course in which allows the prediction of 

dose for the course of treatment. There are some challenges presented with the DVFs 

compressed using a large CF, so use of smaller CF should be considered for the future 

work. There is a hope, that using RPCA modeling could provide a roadmap for how to 

use PCA in ART: (i) RPCA models are generated based on initial fractions, (ii) dose 

deviations due to underlying systematic change are projected for future fractions to 

trigger re-planning decisions, (iii) effects of random changes are superimposed to guide 

what margins should be used. 
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CHAPTER 5 “CONCLUSIONS AND FUTURE WORK” 

 

Summary of Findings 

As discussed in Chapter 1, the modeling of anatomical changes over the course 

of head-and-neck treatment is essential to answer practical questions such as: What 

anatomical changes are important? How do we measure them? When to trigger re-

planning? And how best to perform the re-planning? Such models should take into 

account not only rigid body transformations but also deformations, and be capable of 

extracting useful information about changes in patient anatomy, ideally early in the 

radiation treatment course. 

PCA was chosen as a core element of this work because of its use in developing 

motion models of anatomical changes during the radiation therapy course. PCA has been 

used in many previous applications, specifically in the field of radiation therapy47, 49-52. 

However, the implementation of PCA models has not been utilized for extracting 

systematic changes in patient anatomy during a H&N radiation therapy course. 

Two approaches to the PCA were implemented: a standard approach to PCA 

(SPCA, Chapter 2) and a more advanced regularized approach (RPCA, Chapter 3). 

The results showed that for the H&N patients treated with external beam radiation 

therapy included in this cohort, a SPCA model was a potential tool for identifying patient 

anatomy changes early in the treatment course, and making educated adaptive re-

planning decisions. The study showed that under the right conditions, SPCA can capture 

the major mode of systematic anatomical deformation in the leading EDVF. However, 

SPCA is most successful at identify large changes (e.g., significant lymph node 
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shrinkage), and less successful at identifying small changes (e.g., smaller changes in 

parotid glands). Additionally, SPCA is challenged by the variety of deformations and noise 

in clinical CBCT images, and therefore fails to extract major modes of systematic change 

that are known to be present.  

In order to successfully model anatomical changes in clinical CBCT images, the 

basic SPCA technique has been refined using a regularized approach to the PCA, RPCA 

(Chapter 3). Using a regularized approach, we have shown that the RPCA model is a 

potential tool for identifying patient anatomy changes early in the treatment course. In 

contrast to SPCA, the RPCA approach was able to identify smaller changes compared to 

the random fraction-to-fraction changes. The drawback of the RPCA approach is the time 

necessary for the calculation, memory requirements and use of large CF for the DVFs. 

The dosimetric study (Chapter 4) showed that PCA models have the potential to 

identify the major mode of anatomical changes during the radiotherapy course which 

allow the prediction of dose for the treatment course. There were some challenges 

presented with the DVFs compressed using a large CF, so using smaller CF should be 

considered in future work. In summary, the work presented provides direction for the 

implementation of RPCA modeling in ART. 

 

Future Work 

One of the main directions of the current research going forward is the 

accumulation of the H&N patient datasets in order to create population-based models of 

anatomical changes. Population based models will be generated from large numbers of 

patients, and should therefore capture modes of anatomical change that apply to most 
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patients, even if the relative weighting of those modes differs across individuals. 

Population-based models should therefore provide a good starting point for predicting 

anatomical changes that are expected during the course of treatment, for the majority of 

patients. For many patients, it may be necessary to make only minor changes to the 

population model, in order to model the patient-specific anatomical change.  

For patients who do not fall into the above category, projection of early fractions 

onto the population-based EDVFs should allow one to detect significant deviations from 

the population-based model. That is, it should allow one to identify the minority of ‘outlier’ 

patients whose major modes of anatomical change differ significantly from the majority of 

patients. This in turn will trigger one to develop a patient-specific model, and carefully 

model changes within outlier patients, for unexpected dosimetric consequences. 

Population-based models will be useful for triggering customized treatment strategies for 

outlier patients. 

DVFs which are used as an input for the PCA define an overall quality of the model. 

It has been showed in Chapter 4 that using DVFs with large CF could underestimate the 

effects of anatomy motion in the patients, and moreover limit the ability to detect the 

movement on “wiggly” edges. Therefore PCA also is unable to detect such changes, 

which potentially could be important. So, in the future, the use of less compressed or non-

compressed DVFs should be considered. The regularized approach requires a calculation 

of very large penalty matrices which in turn requires a lot of time, so the compromise 

between DVF’s CF and time of calculation should be found. The hope is that with further 

advancement in computing technologies, calculations of such large datasets will be faster 

and cheaper. 
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  The quality of the DIR is also closely related to the quality of the PCA models. 

DVF accuracies have an impact on the accuracies of PCA models, but one can 

reasonably hope that RPCA models will be insensitive to small scale uncertainties present 

in DVFs, and instead extract larger scale anatomical changes corresponding to 

observable clinical change. Even though checking the quality of the DIR was not an aim 

of this work, using different DIR algorithms with different parameters and assessing their 

effects on the quality of the PCA models should be considered in future studies. 

Another area of the research pertains to improving RPCA, particularly in optimizing 

the smoothness (i�) and sparseness (i() parameters, while solving the constrained 

optimization problem (equation 3.1). In this work these parameters were optimized 

empirically with the assumption that sparseness parameter should have a larger weight 

than the smoothness parameters due to intrinsic smoothness of the DVFs acquired with 

the large CF. However, future work should include further study of these parameters in 

order to find which ones are optimal, especially in light of population-based model 

developments. 
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APPENDIX 

STANDARD PRINCIPAL COMPONENT ANALYSIS MATRIX OPERATIONS 

Each column in a set of DVFs � =  .
�, … , 
Y0 form a vector 
� ∈  � _, where i is 

the treatment fraction number, and M is the number of voxel elements in DVF. Each DVF 

(column) could be represented as follows: 


� = $A�,�, A(,�, … , A_,�, l�,�, l(,�, … , l_,�, m�,�, m(,�, … , m_,�'�        (A.1) 

where x, y, and z are the displacement vector field components in each direction for each 

DVF voxel, and ()T is denoted the transpose of the vector, making it 3M x 1 DVF vector. 

Each vector 
� then could be composed into a matrix �$�' ∈ � _×�, where n 

corresponds to a number of initial treatment fractions used for PCA analysis, with the 

minimum of 2 initial fraction, and a maximum of the whole number of fractions, i.e. 35, or 

n=2÷35: 

�$�' = $
�, 
(, … , 
�'          (A.2) 

The PCA analysis and predictive model is built using this �$�' matrix. 

The larger the number of treatment fractions n used as input data for PCA, the 

larger the chance that the model could capture systematic changes in the patient. 

Therefore, one faces an important trade-off here: the purpose of the model is to reliably 

capture systematic changes, which is more likely when the number n of treatment 

fractions used to build a model is high, but the other purpose is to capture these changes 

early enough, so ART can still be applied to that patient. 

Covariance matrix for �$�' represented as: 

� = �
� �$�'�$�'�                   (A.3) 

which generalizes the variance to 3M x 3M dimension. Determining 3M 
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eigenvalues and 3M corresponding eigenvectors is a complex, intractable and, after all, 

unnecessary task. There are computationally more feasible and much faster methods to 

find these. This alternative method is useful when the number of measurements is much 

less than number of dimensions, or n<<M. 

First, substitute A.3 into the eigenvector equation: 

�
� �$�'�$�'��$�' = ��$�'            (A.4) 

�$�' represent eigenvectors for the covariance matrix C, and � are the 

corresponding eigenvalues.  

Multiplying both sides of A.4 by �$�'� and defining �$�' = �$�'��$�' gives us: 

�
� �$�'��$�'�$�' = ��$�'             (A.5) 

A.5 is a reformed equation which gives us eigenvalues and eigenvectors of smaller 

matrix of the size n x n: �$�'��$�'. 

Multiplying both sides of A.5 by �$�': 

�
� �$�'�$�'�$�$�'�$�'' = �$�$�'�$�''         (A.6) 

Thus from A.5 it follows that eigenvectors for the covariance matrix С defined in 

A.3: 

��$�' = �
���� �$�'��$�'                (A.7) 

Where the factor 
�

���� is used to renormalize the eigenvector ��$�', such as 

‖��$�'‖ = 1. 

These eigenvectors ��$�' are defined as EDVFs in this work and they represent 

mutually independent vector fields with the maximum number of meaningful EDVFs n-1 

(one of the EDVFs corresponds to the zero eigenvalue and is not meaningful).  
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Thus, the matrix of meaningful EDVFs has the form �$�' ∈ ��g×$��f', where each 

column represents each EDVFi, and the EDVF1 corresponds to the largest eigenvalue 

positioned at the first column of �$�', the EDVF2 corresponds to the second largest 

eigenvalue, etc. 
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Purpose: To develop standard and regularized principal component analysis 

(PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and 

neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and 

to extract quantitative information for treatment response assessment. 

Methods: Planning CT (pCT) images of H&N patients were artificially deformed to 

create “digital phantom” images, which modeled systematic anatomical changes during 

Radiation Therapy (RT). Artificial deformations closely mirrored patients’ actual 

deformations, and were interpolated to generate 35 synthetic CBCTs, representing 

evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired 

between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical 

CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models 

were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs 

(EDVFs), having the largest eigenvalues were hypothesized to capture the major 
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anatomical deformations during treatment. Modeled anatomies were used to assess the 

dose deviations with respect to the planned dose distribution. 

Results: PCA models achieve variable results, depending on the size and location 

of anatomical change. Random changes prevent or degrade SPCA’s ability to detect 

underlying systematic change. RPCA is able to detect smaller systematic changes 

against the background of random fraction-to-fraction changes, and is therefore more 

successful than SPCA at capturing systematic changes early in treatment. SPCA models 

were less successful at modeling systematic changes in clinical patient images, which 

contain a wider range of random motion than synthetic CBCTs, while the regularized 

approach was able to extract major modes of motion. For dose assessment it has been 

shown that the modeled dose distribution was different from the planned dose for the 

parotid glands due to their shrinkage and shift into the higher dose volumes during the 

radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage 

due to the large compression factor (CF) used to acquire DVFs. 

Conclusion: Leading EDVFs from both PCA approaches have the potential to 

capture systematic anatomical changes during H&N radiotherapy when systematic 

changes are large enough with respect to random fraction-to-fraction changes. In all 

cases the RPCA approach appears to be more reliable than SPCA at capturing 

systematic changes, enabling dosimetric consequences to be projected to the future 

treatment fractions based on trends established early in a treatment course, or, 

potentially, based on population models. This work showed that PCA has a potential in 

identifying the major mode of anatomical changes during the radiotherapy course and 
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subsequent use of this information in future dose predictions is feasible. Use of smaller 

CF values for DVFs is preferred, otherwise anatomical motion will be underestimated. 
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