
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2017

Animal models of Zika virus infection,
pathogenesis, and immunity
Thomas E. Morrison
University of Colorado School of Medicine

Michael S. Diamond
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Morrison, Thomas E. and Diamond, Michael S., ,"Animal models of Zika virus infection, pathogenesis, and immunity." Journal of
Virology.91,8. e00009-17. (2017).
https://digitalcommons.wustl.edu/open_access_pubs/5579

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/74358407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5579&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Animal Models of Zika Virus Infection,
Pathogenesis, and Immunity

Thomas E. Morrison,a Michael S. Diamondb,c,d,e

Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado,
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ABSTRACT Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that
now causes epidemics affecting millions of people on multiple continents. The virus
has received global attention because of some of its unusual epidemiological and
clinical features, including persistent infection in the male reproductive tract and
sexual transmission, an ability to cross the placenta during pregnancy and infect the
developing fetus to cause congenital malformations, and its association with
Guillain-Barré syndrome in adults. This past year has witnessed an intensive effort by
the global scientific community to understand the biology of ZIKV and to develop
pathogenesis models for the rapid testing of possible countermeasures. Here, we re-
view the recent advances in and utility and limitations of newly developed mouse
and nonhuman primate models of ZIKV infection and pathogenesis.

KEYWORDS Zika virus, animal models, flavivirus, viral pathogenesis

Zika virus (ZIKV) is a mosquito-transmitted flavivirus in the Flaviviridae family of
positive-stranded RNA enveloped viruses. ZIKV is related to several other patho-

gens of public health importance, including Dengue virus (DENV), yellow fever virus
(YFV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne enceph-
alitis virus (TBEV). ZIKV was isolated in 1947 from the blood of a sentinel rhesus monkey
in the Zika forest of Uganda (1). Historically, cases in humans were rare, and ZIKV
infection reportedly caused a mild syndrome characterized by self-limiting fever,
headache, myalgia, rash, and conjunctivitis (2). However, the magnitude of recent
outbreaks, including the 2007 outbreak in Micronesia (3), the 2013-2014 outbreak in
French Polynesia (4, 5), and the outbreak from 2015 to the present in the Americas
(6–8), revealed that ZIKV infections cause more severe clinical consequences, including
Guillain-Barré syndrome (GBS) in adults and microcephaly and congenital malforma-
tions in fetuses and newborn infants. Unlike most other flaviviruses, ZIKV has the
potential for significant human-to-human transmission through sexual and vertical
routes (7, 9–11). The differences in epidemiology and disease presentation during these
outbreaks have prompted researchers to develop animal models of ZIKV infection and
pathogenesis using contemporary virus strains (Tables 1 and 2). Despite the relatively
short time interval, animal models have been established to investigate mechanisms of
dissemination, pathogenesis, and host immune response to ZIKV in adults, pregnant
mothers, and developing fetuses (Fig. 1). Moreover, these models already are being
utilized to evaluate novel therapeutics and vaccines for possible protection and control
of ZIKV infection.

ANIMAL MODELS OF ZIKV INFECTION
Mouse models. Prior to the recent epidemics, few animal models of ZIKV infection

existed. The first isolated ZIKV strain (MR 766, Uganda 1947) was passaged serially in the
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brains of mice more than 100 times (1). Inoculation of ZIKV MR 766 via an intracranial
route caused neurological disease in suckling or adult mice (12). In comparison,
infection of adult immunocompetent inbred or outbred mice with ZIKV MR 766 via a
peripheral inoculation route did not cause disease. The extensive passage history of
ZIKV MR 766 has raised concern about the utility of this strain and its relationship to
contemporary clinical isolates due to the likely accumulation of mutations that adapt
the virus to specific cell types.

Within the last 2 years, efforts have focused on generating new mouse models with
more contemporary ZIKV isolates (Tables 1 and 2). Initial peripheral inoculation studies
showed no disease signs and little to no infectious virus or viral RNA in tissues of
wild-type (WT) C57BL/6, BALB/c, or CD-1 mice infected with African and Asian ZIKV
isolates, including strains from French Polynesia, Brazil, or Puerto Rico (13–15). Consis-
tent with these mouse experiments, biochemical analysis showed that ZIKV antago-
nizes the human type I interferon (IFN) response, in part through its NS5 protein, which
promotes degradation of STAT2 (16, 17), a transcription factor that mediates signaling
by the type I IFN receptor, IFNAR. However, ZIKV NS5 did not promote degradation of
mouse STAT2 (16), which may explain why immunocompetent strains of mice generally
are resistant to ZIKV infection and disease.

(i) Pathogenesis in immunocompromised adult mice. Mice with genetic deficien-
cies in the type I IFN signaling pathway display enhanced susceptibility to infection by
flaviviruses (18–23). Accordingly, after the failure of immunocompetent mice to sustain
ZIKV infection, several groups evaluated the capacity of mice with innate immune
deficiencies to support ZIKV replication and disease. Mice lacking the Ifnar1 gene,
including A129 mice and Ifnar1�/� C57BL/6 mice, or mice deficient in Irf3, Irf5, and Irf7
(Irf3�/� Irf5�/� Irf7�/� triple knockout [TKO]) transcription factors developed severe
disease, including hind limb weakness, paralysis, and death, following subcutaneous,

FIG 1 Use of newly developed mouse and NHP models of ZIKV infection and pathogenesis. The utility
of currently described animal models of ZIKV infection is illustrated. Models are being employed for the
investigation of basic features of ZIKV infection and pathogenesis and to investigate unusual features of
ZIKV biology, including sexual transmission, transplacental transmission, and congenital malformations
in developing fetuses. In addition, these models are being used to evaluate candidate vaccines and
therapeutics for the prevention and treatment of ZIKV disease in individuals and in fetuses during
infection of pregnant hosts.
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intraperitoneal, or intravenous inoculation of African (MR 766 or Dakar 1984), Asian
(H/PF/2013), or American (Brazil Paraiba_2015) ZIKV strains (14, 15, 24, 25). Similar
results were observed following intraperitoneal inoculation of ZIKV Dakar 1984 in WT
C57BL/6 mice treated with a blocking anti-IFNAR1 monoclonal antibody (MAb) at time
points both prior to and after virus inoculation (26).

ZIKV-infected A129 Ifnar1�/� mice of all tested ages supported infection and
developed disease (15, 24). However, lethality was age dependent, with 100% of
3-week-old, 50% of 5-week-old, and 0% of 11-week-old A129 mice succumbing to
infection (15). Consistent with these data, the outcome of ZIKV infection in Ifnar1�/�

C57BL/6 mice also was age dependent, with 3-, 4-, and 6-month-old mice displaying
enhanced survival rates compared with those of 5- to 6-week-old mice (14).

Mice lacking both the type I and type II IFN receptors (AG129) showed greater
susceptibility and more severe disease following ZIKV infection (15, 27–31). By intrad-
ermal, subcutaneous, or intraperitoneal inoculation routes, infection with contempo-
rary ZIKV strains from Cambodia, French Polynesia, or Puerto Rico was uniformly fatal
in AG129 mice (15, 27, 31). Subcutaneous inoculation of as little as one PFU of ZIKV
resulted in 100% lethality in three- to four-week-old AG129 mice (27). The severe
outcomes of ZIKV infection in A129 and AG129 mice, including tremors, ataxia, and
paralysis, were associated with extensive pathology in the central nervous system as
well as high viral loads in the brain, spinal cord, spleen, and testes (15, 24, 27, 30, 31).

ZIKV infection in adult humans results in conjunctivitis in �50% of symptomatic
infections (32–34), with uveitis having been diagnosed in multiple patients (35, 36).
ZIKV replication in eye-associated tissues has been reported in infected humans, with
confirmation of viral RNA and infectious virus in conjunctival fluid (37). ZIKV RNA also
was detected in lacrimal fluid of infected rhesus macaques (38). Ifnar1�/� mice infected
with French Polynesian or Brazilian ZIKV strains developed conjunctivitis and panuve-
itis, and these disease manifestations were associated with ZIKV RNA in the cornea, iris,
optic nerve, and ganglion and bipolar cells in the retina (28). Thus, Ifnar1�/� mice may
be useful for investigating the pathogenesis of eye disease associated with ZIKV
infection.

Hematospermia and prostatitis have been described in ZIKV-infected men (39–41).
Recently, mouse models have investigated the consequences of ZIKV infection in the
male reproductive tract (42, 43). In one of these studies, male WT C57BL/6 mice were
treated with a single dose of a blocking anti-IFNAR1 MAb, followed by subcutaneous
inoculation of a mouse-adapted African strain (Dakar 41519) of ZIKV (42). ZIKV infection
was detected in several cells of the male reproductive tract, including spermatogonia,
spermatocytes, mature sperm, and Sertoli cells, and ZIKV infection in the testis and
epididymis persisted for weeks. Infection in the seminiferous tubules of the testis was
associated with inflammatory cell infiltrates, cell death of Sertoli and male germ cells,
reduced production of male sex hormones, diminished sperm counts and mobility, and
decreased male fertility (42). Similar studies were performed by another group in male
Ifnar1�/� C57BL/6 mice inoculated intraperitoneally with a contemporary ZIKV strain
isolated in China (43). Here, ZIKV infection also led to inflammation and injury in tissues
of the male reproductive tract, including the testes and epididymis, and ZIKV infection
was detected in spermatogonia and testicular peritubular-myoid cells. Prostate infec-
tion by ZIKV was not observed in this model. Ifnar1�/� mice surviving acute ZIKV
infection displayed severe damage in the testes out through day 60 postinfection (43).
Similar outcomes, including testicular inflammation and injury, were observed follow-
ing direct testicular inoculation of ZIKV of WT C57BL/6 mice; while this inoculation
model was nonphysiological, it bypassed the restriction of ZIKV replication and dis-
semination by the innate immune response (43). Collectively, these models will allow
for further investigation of ZIKV pathogenesis and persistence in the male reproductive
tract.

In addition to facilitating the investigation of ZIKV pathogenesis, blockade of type I
IFN signaling in WT C57BL/6 mice, by administration of a blocking anti-IFNAR1 MAb
prior to infection, also has been used to map H-2b-restricted CD8� T cell receptor
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epitopes across the proteomes of both African (MR766) and Asian (FSS13025) strains
(44).

ZIKV infection also has been performed in BALB/c mice with acquired immune
deficiencies (45). Mice were treated with the immunosuppressing steroid dexametha-
sone for 3 days prior to and 9 days after intraperitoneal inoculation with a Puerto Rican
ZIKV strain (PRVABC59). ZIKV infection of dexamethasone-treated mice resulted in
weight loss, viremia, and a disseminated infection, with viral RNA and antigen detected
in many tissues, including the brain, kidney, testis, and spleen. Dexamethasone with-
drawal 9 days after infection led to rapid deterioration of the mice that was associated
with inflammation and injury in the brain, kidney, and testis (45). Using this model, the
authors showed that administration of exogenous type I IFN could improve clinical
outcome. This dexamethasone-induced immunosuppression model may have utility for
investigating mechanisms of host immune response-associated damage and counter-
measures for ZIKV infection.

(ii) Pathogenesis in immunocompetent neonatal mice. ZIKV infection has been
studied in WT neonatal mice (14, 28, 46, 47). Neonatal mice may be useful models as
key brain developmental processes in rodents occur postnatally, in contrast to the case
for humans, where they occur during the third trimester of fetal development (48).
Infection of 7- to 8-day-old WT C57BL/6 mice with ZIKV Dakar 41519 or ZIKV H/PF/2013
by subcutaneous or intraperitoneal injection resulted in central nervous system pathol-
ogy and partial lethality (14, 28). In comparison, subcutaneous inoculation of 1-day-old
WT C57BL/6 mice with ZIKV PRVABC59 resulted in nonfatal neurological disease
characterized by tremors, ataxia, and seizures that developed 2 weeks later (46). These
disease signs were associated with ZIKV infection in the brain, neurodegeneration in
the cerebellum, and infiltration of brain tissue with CD4� and CD8� T cells. One-day-old
neonatal outbred Swiss mice inoculated via a subcutaneous or intracranial route with
ZIKV strain SPH 2015, a Brazilian clinical isolate (49), also displayed lethargy, ataxia, and
paralysis with evidence of ZIKV infection in the brain (47). Thus, ZIKV infection of
neonatal mice can be used to define mechanisms of pathogenesis as an alternative to
studying immunocompromised adult mice. In addition, ZIKV infection of neonatal WT
mice, in which a subset survive, may permit the evaluation of long-term neurodevel-
opmental and behavioral sequelae associated with ZIKV infection of the maturing brain.

(iii) Infection during pregnancy and fetal pathogenesis. ZIKV infection of preg-
nant women can lead to fetal microcephaly and other disorders, including fetal growth
restriction, ocular disorders, and fetal demise (8, 11, 50–57). To date, 29 countries and
territories have confirmed cases of ZIKV congenital syndrome, with the bulk of these
occurring in Brazil (58). Accordingly, significant effort has been made to develop
models of ZIKV pathogenesis in developing fetuses. ZIKV infection of pregnant mice
and nonhuman primates (NHPs) has been reported to cause pathological changes in
the placenta and brains of developing fetuses, which is consistent with many of the
congenital malformations observed in humans (59, 60).

For experiments in mice, ZIKV has been inoculated into pregnant mice or directly
into the brain of the developing fetus using WT mice or mice with genetic deficiencies
in innate antiviral responses. Infection of pregnant Ifnar1�/� C57BL/6 mice at embry-
onic day 6.5 (E6.5) and E7.5 with ZIKV strain H/PF/2013 via subcutaneous inoculation
led to placental infection, fetal brain injury with accompanying neuronal cell death, and
fetal demise (61). For these experiments, Ifnar1�/� female mice were mated with WT
sires, resulting in fetuses that were heterozygous for Ifnar1. Thus, despite the fetuses
having the ability to respond to type I IFN, severe outcomes still were observed,
suggesting that a type I IFN response in the fetus is not sufficient to protect from
ZIKV-induced injury. In a parallel set of experiments, pregnant WT C57BL/6 mice were
treated with anti-IFNAR1 MAb prior to ZIKV inoculation (61). Fetuses from these
anti-IFNAR1-treated pregnant mice displayed intrauterine growth restriction and high
levels of ZIKV infection in the placenta and fetal head. This study also detected ZIKV
infection in trophoblasts and endothelial cells at the maternal-fetal interface (61),
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suggesting that this model can be exploited to define cellular tropism and mechanisms
of transplacental transmission of ZIKV to the fetus.

In contrast to data obtained after intravenous and subcutaneous inoculation of ZIKV
into pregnant WT C57BL/6 mice, where no fetal defects occurred in the absence of
blockade of innate immunity, intravenous inoculation of pregnant WT SJL mice with a
Brazilian ZIKV strain caused intrauterine growth restriction of developing fetuses,
cortical malformations, a reduction of cortical neurons in fetal brains, and fetal ocular
abnormalities (62). These effects were associated with the presence of ZIKV RNA in the
brains of the fetuses. Although this model required inoculation of unusually high doses
of ZIKV (4 � 1010 PFU per animal) via an intravenous route (which technically is
challenging to achieve), it may have utility for investigating mechanisms of ZIKV
teratogenicity in more immunocompetent animals. Another limitation is that SJL mice
are not fully immunocompetent, as they have elevated levels of certain T cell subsets,
a higher susceptibility to experimental autoimmune encephalomyelitis and several
different viral infections, and an increased incidence of Hodgkin’s lymphoma (63, 64).

Other models have assessed the impact of ZIKV infection on the developing fetus in
mice. In contrast to the experimental model systems described above, which result in
transplacental transmission, some groups have injected ZIKV directly into the devel-
oping fetus. Direct injection of ZIKV (Asian lineage strain SZ01) into the cerebroven-
tricular space of fetuses developing in WT ICR or C57BL/6 mice at E13.5 resulted in
decreased brain size, thinning of cortical layers, reduced numbers of cortical neural
progenitors, and death of immature and mature neurons within 3 to 5 days postinfec-
tion (65, 66).

(iv) Models of sexual transmission. Unlike most flaviviruses, which are transmitted
virtually exclusively by mosquito vectors, sexual transmission of ZIKV has been reported
and is estimated to explain about 3 to 23% of the current infections (10, 39, 40, 67–71).
In most of these reported cases, transmission has occurred from infected males to
female partners, which may be due to the long-term persistence of ZIKV in testis and
semen (67, 72, 73), as modeled by studies in mice (42, 43). To investigate the conse-
quences of sexual transmission of ZIKV to females and developing fetuses, three groups
have reported intravaginal ZIKV transmission in mice (74–76). Following intravaginal
inoculation of contemporary Cambodian (FSS10325) or Puerto Rican (PRVABC59) ZIKV
strains into WT C57BL/6 mice, synchronized to the diestrus phase of the estrous cycle
by injection of the hormone medroxyprogesterone acetate, replication of ZIKV was
detected in vaginal washes or tissues, demonstrating that the female reproductive tract
of immunocompetent mice can support ZIKV replication (74, 76). Intravaginal ZIKV
inoculation of Ifnar1�/� mice pretreated with medroxyprogesterone acetate resulted in
a disseminated infection with high viral burdens in the vagina, uterus, and ovary, as
well as the spleen and brain (74). Intravaginal inoculation of Tlr7�/�;Mavs�/� or
Irf3�/�;Irf7�/� double knockout (DKO) mice also resulted in elevated viral loads in the
female reproductive tract (74), indicating that these innate immune recognition and
signaling pathways control ZIKV replication in these tissues. Although mice with
genetic defects in type I (e.g., Ifnar1�/� mice) or type I and II (e.g., AG129 mice) IFN
signaling display markedly enhanced susceptibility to lethal ZIKV infection following
subcutaneous, intraperitoneal, or intravenous inoculation routes, severe ZIKV infection
following intravaginal inoculation of immunocompromised mice occurred only during
the diestrus phase (75). Additionally, mice lacking expression of Ifnar1 only in myeloid
cells (LysMcre�Ifnar1f/f mice) developed disseminated infection when inoculated dur-
ing diestrus. Thus, through a mechanism that remains to be elucidated, type I IFN
signaling in myeloid cells contributes to the control of ZIKV infection following intra-
vaginal inoculation.

Some of these models have been used to investigate the impact of sexual trans-
mission of ZIKV on the developing fetus. Intravaginal inoculation of pregnant WT
C57BL/6 mice with ZIKV strain FSS13025 resulted in viral antigen in fetal brain that was
associated with a small reduction in fetal weight (74). Intravaginal infection of pregnant
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Ifnar1�/� mice at E4.5 or E8.5 resulted in severe consequences for the fetus, including
resorption (74). These intravaginal infection models likely will have additional utility for
testing whether candidate countermeasures can prevent congenital malformations or
fetal injury in the context of sexual transmission of ZIKV.

(v) Use of murine models for the evaluation of vaccines and therapeutics. The
rapid development of mouse models of ZIKV pathogenesis has facilitated preclinical
studies assessing the protective efficacy of candidate therapeutics and vaccines against
ZIKV infection and disease. Studies designed to evaluate the utility of therapeutic
murine and human MAbs for the prevention and treatment of ZIKV-induced disease
have been an intense area of investigation. For example, mice deficient in type I IFN
signaling by treatment with anti-IFNAR1 MAb (14) or by genetic deletion of type I, or
type I and type II, IFN receptor subunits (14, 15, 24) have been used to evaluate the
protective capacity of human and mouse anti-ZIKV MAbs (77–81). When administered
as prophylaxis, neutralizing mouse MAbs targeting the lateral ridge of E domain III (77)
or human MAbs targeting interdimer and intradimer epitopes in the E domain II
(ZIKV-117 and Z20, respectively) (80) or separate epitopes in domains I, II, and III (Z3L1
and Z23) (81) all protected vulnerable mice from lethal ZIKV infection. Analogously, a
cross-reactive human MAb targeting the envelope dimer epitope of dengue virus (EDE1
C10) (79) and an Fc mutant form of a ZIKV-specific human MAb (ZKA64) targeting E
domain III, which cannot bind FcyRs or C1q (78), also protected mice from lethal ZIKV
infection. Although MAb prophylaxis protected against ZIKV-induced morbidity and
mortality, viremia, although reduced, remained detectable (77). These susceptible
mouse models also have been used to demonstrate that human MAbs can protect from
lethal ZIKV infection when administered as a postexposure therapeutic (78, 80, 81). The
Fc mutant form of human MAb ZKA64 or WT forms of the neutralizing human MAbs
Z23 and Z3L1 (81) protected Ifnar1�/� mice against lethality when administered 1 day
after ZIKV inoculation (78, 81), and a single dose of human MAb ZIKV-117 protected WT
C57BL/6 mice treated with anti-IFNAR1 MAb from lethal mouse-adapted ZIKV-Dakar
infection when administered as late as 5 days after virus inoculation (80).

Antibody-based therapies also have been evaluated for their capacity to protect
against ZIKV-induced teratogenicity. Treatment of Ifnar1�/� pregnant dams mated to
WT sires with human MAb ZIKV-117 1 day prior to subcutaneous inoculation of
ZIKV-Brazil (Paraiba 2015) reduced maternal infection and fetal mortality (80). In addi-
tion, therapeutic administration (at day �1) of ZIKV-117 to WT pregnant dams treated
with anti-IFNAR1 MAb reduced ZIKV infection levels in the fetal placenta and brain, and
these effects were associated with transport of ZIKV-117 across the maternal-fetal
placental barrier (80). Consistent with a possible role for antibody-based therapies for
the treatment or prevention of ZIKV fetal disease, human convalescent-phase serum
injected on day 1 and 2 after direct inoculation of ZIKV into the fetal brains of pregnant
ICR mice reduced the number of ZIKV-infected cells and the thinning of the cortical
plate and ventricular zone/subventricular zone in the fetal brain (82).

In addition to antibody-based therapeutics, immunocompromised mice are being
used to evaluate small molecules for antiviral efficacy. Three studies have used sus-
ceptible AG129 or A129 mice to demonstrate that compounds targeting the viral
RNA-dependent RNA polymerase (RdRp) can reduce the viral burden in tissues and
reduce or delay virus-induced morbidity and mortality following inoculation of ZIKV
(29, 30, 83). In addition, treatment for 1 week with sofosbuvir, an RdRp inhibitor
approved by the Food and Drug Administration for the treatment of hepatitis C virus
infection (84), beginning 1 day after infection with a mouse-adapted strain of ZIKV-
Dakar 41519 improved the survival rate of C57BL/6 mice treated with an anti-IFNAR1
MAb (85).

Although efforts are under way to develop a ZIKV vaccine (reviewed in reference 86),
limited studies have evaluated ZIKV vaccine candidates in mice, perhaps due to the
general resistance of immunocompetent strains to ZIKV infection and disease. Never-
theless, immunocompetent mice have been used to assess the immunogenicity of
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vaccine candidates as well as their protective efficacy against viremia. For example,
intramuscular immunization of BALB/c and SJL mice with plasmid DNA encoding the
ZIKV M and E proteins prevented viremia following intravenous inoculation of Brazilian
(Paraiba 2015) or Puerto Rican (PRVABC59) ZIKV strains (13). In analogous studies,
intramuscular or subcutaneous immunization of BALB/c mice with a purified, inacti-
vated ZIKV vaccine also prevented viremia. In both cases, protection was mediated by
ZIKV-specific antibodies, as efficacy correlated with the levels of ZIKV E protein-specific
antibody, and passive transfer of purified IgG from vaccinated animals prevented
viremia following an intravenous challenge (13).

Collectively, these studies illustrate that mouse models of ZIKV pathogenesis in
immunocompromised and immunocompetent neonatal, adult, and pregnant mice can
be utilized to evaluate rapidly and in a cost-effective manner candidate therapies and
vaccines for efficacy against ZIKV replication and control of spread, persistence, lethal-
ity, and teratogenicity.

NHP models. (i) Pathogenesis in immunocompetent adult macaques. Nonhu-
man primates (NHPs) also are being used to evaluate aspects of ZIKV biology and
pathogenesis (38, 87–90). Several groups have characterized ZIKV infection in pregnant
and nonpregnant rhesus, cynomolgus, and pigtail macaques. In each study, either the
African ZIKV strain MR 766 or more contemporary ZIKV strains were administered
subcutaneously at doses comparable to those inoculated by infected mosquitoes, and
a breadth of clinical, virological, and immunological parameters were assessed. Inocu-
lation of rhesus macaques with an Asian lineage ZIKV strain (H/FP/2013) resulted in mild
weight loss, development of a mild rash around the injection site, and elevated serum
creatine kinase and alanine aminotransferase in some animals (87). Although weight
loss and rash were not observed across all studies, elevated liver enzymes at early times
postinfection were a consistent feature of ZIKV infection of rhesus macaques (38, 87,
88). In some experiments, ZIKV infection also resulted in elevated body temperature for
up to 10 days postinfection (38, 88). ZIKV-infected rhesus macaques developed viremia
that peaked at 2 to 6 days after infection and typically became undetectable by day 10
(38, 87–89). ZIKV RNA was detected in the urine, saliva, and cerebrospinal fluid of some
animals, suggesting that dissemination can occur. ZIKV RNA also was detected in the
seminal fluid and vaginal secretions, albeit more sporadically (87, 88). Using multiple
approaches, including in situ hybridization for the ZIKV genome, immunohistochemis-
try with a cross-reactive flavivirus-specific MAb, and quantitative reverse transcription-
PCR (RT-PCR) analysis for viral RNA in tissues, ZIKV infection was detected in a several
tissues of rhesus and cynomolgus macaques, including secondary lymphoid organs, the
male reproductive tract, the intestines, and the brain and spinal cord (38, 88, 90). These
studies support the use of rhesus and cynomolgus macaques as models for improving
our understanding of the cellular and tissue tropism of ZIKV infection. Infected rhesus
macaques also developed ZIKV-specific humoral and cell-mediated immune responses
(38, 87–89) that protected against challenge with homologous and heterologous
viruses (87–89), indicating that this model will be useful for the evaluation of ZIKV
adaptive immunity.

(ii) Infection during pregnancy and fetal pathogenesis. ZIKV infection studies in
pregnant NHPs are deemed particularly important because the placental barrier and
gestational development more closely resembles those of humans relative to mice,
where there are differences in morphological, spatial, and temporal placentation and in
utero brain development (59). Pregnant rhesus macaques infected with ZIKV strain
H/PF/2013 developed viremia lasting 30 to 55 days (87). As persistent viremia has been
reported in pregnant women (91), these observations suggested that rhesus macaques
mimic at least some features of ZIKV infection of pregnant humans. A successful NHP
model of in utero transmission was established after subcutaneous inoculation of a
pregnant pigtail macaque with a Cambodian ZIKV strain (FSS13025) at a time point
corresponding to �28 weeks of human pregnancy (60). Infection resulted in reduced
growth of the fetal brain, white matter deficiency and gliosis, and axonal damage. ZIKV
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RNA was detected in the chorionic villous tissue of the placenta as well as the fetal brain
and liver, suggesting transplacental transmission followed by ZIKV invasion and injury
to the fetal brain. Although clinically apparent infection of the pigtail macaque dam
was not observed, ZIKV RNA was detected in the maternal brain, eyes, spleen, and liver
(60). This study suggests that pregnant pigtail macaques can serve as a primate model
to investigate ZIKV pathogenesis in the developing fetus and possibly that asymptom-
atic infected mothers can still transmit ZIKV to fetuses in utero.

(iii) Use of NHP models for the evaluation of vaccines and therapeutics. Rhesus
macaques have been used to evaluate the immunogenicity and protective efficacy of
active ZIKV immunization, including inactivated virus, DNA plasmid-based, and vector-
based vaccines, as well as the protective efficacy of passive immunization against ZIKV
challenge (92, 93). In these studies, the primary endpoints of protective efficacy were
virological in nature. Rhesus macaques were immunized twice (weeks 0 and 4) with a
formalin-inactivated ZIKV strain PRVABC59 adjuvanted with alum (ZPIV), a DNA plasmid
vaccine encoding the M and E proteins from ZIKV strain BeH815744, or a rhesus
adenovirus M-E vectored vaccine (92). Each of these vaccines generated ZIKV-specific
neutralizing antibody responses and completely protected against subcutaneous chal-
lenge with 103 PFU of Brazilian (Paraiba 2015) or Puerto Rican (PRVABC59) ZIKV strains
administered 4 weeks after the final immunization (92). Furthermore, passive transfer of
purified IgG from ZPIV-vaccinated rhesus macaques to naive WT BALB/c mice or rhesus
macaques conferred dose-dependent protection against viremia following intravenous
(mice) or subcutaneous (macaques) inoculation of ZIKV Paraiba 2015 (92). In analogous
studies, rhesus macaques also were used to evaluate the immunogenicity and protec-
tive capacity of DNA plasmid vaccines carrying full-length prM-E genes derived from
ZIKV strain H/PF/2013 with the prM signal sequence replaced with one from the related
Japanese encephalitis virus (JEV) to improve expression of subviral particles (93). In
these experiments, rhesus macaques immunized intramuscularly with two doses
(weeks 0 and 4) developed ZIKV-specific neutralizing antibody responses, and 17/18
animals were protected completely against viremia following a subcutaneous chal-
lenge with ZIKV stain PRVABC59. These studies highlight how NHP models of ZIKV
infection and immunity are being utilized to evaluate ZIKV vaccine candidates, several
of which already are in phase I clinical trials in humans.

Other models. While efforts have focused on the development and characterization
of models of ZIKV pathogenesis in mice and NHPs, less work has been performed with
other model animals. One group evaluated the utility of chicken embryos (94). In these
experiments, different doses of ZIKV strain MEX1-44 were injected through the chicken
amniotic membrane on day E2.5 or E5. Injected embryos became infected with ZIKV,
and dose-dependent mortality was observed by day 3 after infection. Inoculation of
embryos at a later stage of development, E13, resulted in active ZIKV infection but no
mortality. Magnetic resonance imaging (MRI) of ZIKV-infected chicken embryos at E15
and E20 revealed brain malformations, reduced brain growth, and increased ventricular
volumes, particularly in the cerebral cortex regions. Thus, experimental infection of
chicken embryos may provide a complementary system to investigate mechanisms of
ZIKV pathogenesis in developing embryos and test possible interventions.

LIMITATIONS OF ANIMAL MODELS AND FUTURE DIRECTIONS

Using contemporary ZIKV strains, a variety of animal models that mimic aspects of
ZIKV infection in humans have been developed in mice, NHPs, and other species. Their
development has led to new knowledge regarding the biology and pathogenesis of
ZIKV. However, each of these systems has limitations that must be considered in the
design and interpretation of experimental findings.

Limitations of mouse models. Limitations of mouse models include the following.
(i) The mouse placenta is structurally and immunologically distinct from the human
placenta, and efficient transmission may require higher maternal viremia (95), which is
achieved experimentally by a deficiency of type I IFN signaling or the use of excep-
tionally high inoculating doses. (ii) As ZIKV is not naturally adapted to replicate in
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immunocompetent mice, likely due to an absence of species-specific immune
evasion mechanisms, most pathogenesis models in adult animals have required the
use of some type of acquired or genetic immunodeficiency, which affects the
relevance of the findings to humans. (iii) Some disease manifestations associated
with ZIKV infection in humans have not been observed in mice. For example, GBS
is an autoimmune disorder characterized by weakness, sensory abnormalities, and
autonomic dysfunction due to damage to peripheral nerves. Although ZIKV infec-
tion of humans has been linked to GBS (5, 96, 97), no animal model (mice or NHPs)
to study this aspect of ZIKV pathogenesis has yet been described. (iv) In contrast to
many other mammalian species, mice lack expression of the neonatal Fc receptor
(FcRn) on their trophoblasts in the chorioallantoic placenta (98). Instead, FcRn is
expressed in the mouse yolk sac endoderm (98), and the transfer of IgG in mice
occurs predominantly at the suckling stage (99). As reduced levels of transport of
maternal or exogenous IgG into the fetus occur in mice, protection by a given
antibody or vaccine may be underestimated.

Limitations of NHP models. Limitations of NHPs include the following. (i) The cost
is high, and throughput is low. Experiments with individual NHPs under animal bio-
safety level 2 (A-BSL2) or A-BSL3 (in European countries) conditions cost greater than
$15,000 per animal, including purchase, housing, infection, bodily fluid sampling, and
tissue analysis. Studies with pregnant NHPs are even more expensive (�$25,000 per
animal). Beyond the availability issue, the cost limits the number of animals that can be
infected and observed at a given site and thus impacts the statistical power of the study
and the ability to resolve differences in a given experimental parameter. (ii) Although
the placenta and fetal development of NHPs more closely resemble those of humans
than those of mice, accordingly, the gestational period is much longer (e.g., 164 and
183 days for rhesus and pigtail macaques, respectively), which lengthens the time of
experiments and subsequent analysis. (iii) There are only a limited number of NHP
colonies that have the expertise and size to perform experiments with enough animals
to show vaccine or antiviral protection.

CONCLUSIONS

An intensive effort during the past year by the global scientific community has
resulted in the rapid development, characterization, and deployment of animal models
for the study of multiple aspects of ZIKV biology. Although great progress already has
been made, it is anticipated that the use and refinement of these animal models will
lead to greater knowledge of the many remaining questions, including (i) the mecha-
nisms of ZIKV persistence in the male reproductive tract, eyes, and other sites, (ii) the
molecular basis for cellular tropism in vivo, (iii) the viral and host factors that facilitate
or restrict transplacental transmission, invasion of the fetal brain, and fetal develop-
mental malformations during ZIKV infection of pregnant hosts, (iv) the relationship
between the timing of ZIKV infection of pregnant hosts and effects on the infection
and injury to the developing fetus, (v) the immune mechanisms that mediate ZIKV
clearance and correlates of protection, (vi) possible roles for immunopathogenesis
in disease severity, and (vii) the roles of strain variation and sequence polymor-
phisms in ZIKV pathogenesis. The continued development and characterization of
animal models, including models that may reflect better the influence of host
genetic variation (e.g., Collaborative Cross mice) (100), immune status, and comor-
bidities on the diverse clinical manifestations of ZIKV infection, remain an important
priority.
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