Washington University School of Medicine Digital Commons@Becker

Open Access Publications

2017

Differential presynaptic ATP supply for basal and high-demand transmission

Courtney Sobieski Washington University School of Medicine

Michael J. Fitzpatrick Washington University School of Medicine

Steven Mennerick Washington University School of Medicine

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Sobieski, Courtney; Fitzpatrick, Michael J.; and Mennerick, Steven, "Differential presynaptic ATP supply for basal and high-demand transmission." The Journal of Neurosience., 2712-16. (2017). https://digitalcommons.wustl.edu/open_access_pubs/5548

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

JNeuroscience

Research Articles: Cellular/Molecular

Differential presynaptic ATP supply for basal and high-demand transmission

Courtney Sobieski^{1,4}, Michael J. Fitzpatrick^{1,5} and Steven Mennerick^{1,2,3}

^{1,2,3,4,5}Department of Psychiatry, Neuroscience, and Taylor Family Institute for Innovative Psychiatric Research, and Graduate Program in Neuroscience, Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, United States

DOI: 10.1523/JNEUROSCI.2712-16.2017

Received: 27 August 2016 Revised: 10 January 2017 Accepted: 13 January 2017

Published: 16 January 2017

Author contributions: C.S., M.F., and S.J.M. designed research; C.S. and M.F. performed research; C.S., M.F., and S.J.M. analyzed data; C.S., M.F., and S.J.M. wrote the paper.

Conflict of Interest: The authors declare no competing financial interests.

This work was supported by NIH grants MH078823, MH099658, MH104506, and MH106198. We thank Ann Benz and Amanda Taylor for technical help with cultures. We thank lab members for advice and discussion.

Correspondence to Steven Mennerick, Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8134, St. Louis, MO 63110, menneris@wustl.edu

Cite as: J. Neurosci 2017; 10.1523/JNEUROSCI.2712-16.2017

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2017 the authors

1 Differential presynaptic ATP supply for basal and high-demand 2 transmission 3 Courtney Sobieski^{1,4}, Michael J. Fitzpatrick,^{1,5}, Steven Mennerick^{1,2,3} 4 5 Department of Psychiatry¹, Neuroscience², and Taylor Family Institute for 6 Innovative Psychiatric Research,³ and Graduate Program in Neuroscience,⁴ 7 8 Medical Scientist Training Program⁵ 9 Washington University School of Medicine 10 St. Louis, MO 63110 11 **United States** 12 13 Correspondence to 14 Steven Mennerick 15 Department of Psychiatry Washington University School of Medicine 16 17 660 S. Euclid Ave., Campus Box 8134 18 St. Louis, MO 63110 19 menneris@wustl.edu 20 21 22 36 pages 23 8 Figures, 0 Tables 24 157 Abstract words, 576 Introduction words, 1396 Discussion words 25 26 Abbreviated title: Presynaptic ATP sources 27 28 29 Acknowledgements This work was supported by NIH grants MH078823, MH099658. 30

- MH104506, and MH106198. We thank Ann Benz and Amanda Taylor for technical help
- 32 with cultures. We thank lab members for advice and discussion.
- 3334 Conflict of Interest. The authors declare no competing financial interests.

36

37 Abstract

38	The relative contributions of glycolysis and oxidative phosphorylation to neuronal
39	presynaptic energy demands are unclear. In rat hippocampal neurons, ATP production
40	by either glycolysis or oxidative phosphorylation alone sustained basal evoked synaptic
41	transmission for up to 20 min. However, combined inhibition of both ATP sources
42	abolished evoked transmission. Neither action potential propagation failure nor
43	depressed Ca ²⁺ -influx explained loss of evoked synaptic transmission. Rather, inhibition
44	of ATP synthesis caused massive spontaneous vesicle exocytosis, followed by arrested
45	endocytosis, accounting for the disappearance of evoked postsynaptic currents (PSCs).
46	In contrast to its weak effects on basal transmission, inhibition of oxidative
47	phosphorylation alone depressed recovery from vesicle depletion. Local astrocytic
48	lactate shuttling was not required. Instead, either ambient monocarboxylates or neuronal
49	glycolysis was sufficient to supply requisite substrate. In summary basal transmission
50	can be sustained by glycolysis, but strong presynaptic demands are met preferentially by
51	oxidative phosphorylation, which can be maintained by bulk but not local
52	monocarboxylates or by neuronal glycolysis.
53	

56 Significance Statement

57	Neuronal energy levels are critical for proper central nervous system function, but the
58	relative roles for the two main sources of ATP production, glycolysis and oxidative
59	phosphorylation, in fueling presynaptic function in unclear. Either glycolysis or oxidative
60	phosphorylation can fuel low-frequency synaptic function, and inhibiting both underlies
61	loss of synaptic transmission via massive vesicle release and subsequent failure to
62	endocytose lost vesicles. Oxidative phosphorylation, fueled by either glycolysis or
63	endogenously released monocarboxylates, can fuel more metabolically demanding tasks
64	such as vesicle recovery after depletion. Our work demonstrates the flexible nature of
65	fueling presynaptic function to maintain synaptic function.

66 Introduction

67 Neurons are energetically demanding cells, requiring a staggering amount of 68 ATP to maintain ion gradients during signaling, and to power presynaptic vesicle cycling 69 and filling. Although postsynaptic function is especially demanding (Attwell and Laughlin, 70 2001; Harris et al., 2012), the energetic cost of presynaptic function has recently been 71 highlighted (Rangaraju et al., 2014; Pathak et al., 2015; Jang et al., 2016; Lujan et al., 72 2016). With >20,000 presynaptic ATP molecules consumed per glutamate vesicle 73 (Attwell and Laughlin, 2001; Harris et al., 2012) not including ATP used for the 74 restoration of presynaptic sodium and potassium gradients, the estimated 1 x 10⁶ 75 molecules of ATP at the presynaptic terminal would be rapidly exhausted without re-76 supply (Rangaraju et al., 2014). 77 Glucose is the predominant source of ATP in the central nervous system. After 78 crossing the blood brain barrier, glucose is utilized by neurons and astrocytes to produce 79 ATP through glycolysis and oxidative phosphorylation. Glycolysis quickly converts 80 glucose into two molecules of pyruvate and a net total of two ATP. This provides cells 81 with a rapid source of ATP for a short period of time, particularly in the absence of 82 oxygen. Mitochondrial oxidative phosphorylation produces ATP at a slower rate but has 83 a higher yield (32 ATP versus 2 produced with glycolysis; Pfeiffer et al., 2001). 84 Substrates other than metabolically derived pyruvate can also feed the TCA cycle and 85 oxidative phosphorylation. These include astrocyte-derived lactate (Schurr et al., 1988; 86 Izumi et al., 1997; Gallagher et al., 2009; Ivanov et al., 2011; Wyss et al., 2011), ketone 87 bodies (Edmond et al., 1987; Auestad et al., 1991; Izumi et al., 1998; McKenna, 2012; 88 Takahashi et al., 2014), or glutamate (Hertz et al., 1988; Sonnewald et al., 1996; 89 McKenna, 2007, 2012). 90 The relative importance of glycolysis and oxidative phosphorylation in fueling 91 presynaptic function remains unclear. Glycolysis may be particularly vital for vesicle

92	endocytosis (Rangaraju et al., 2014), localization of synaptic vesicle machinery to
93	synaptic terminals (Jang et al., 2016), and glutamate accumulation in synaptic vesicles
94	(Ikemoto et al., 2003). Recent evidence also suggests that glycolytic failure quickly alters
95	the presynaptic action potential waveform to depress transmission at the calyx of Held
96	synapse (Lujan et al., 2016). However, other studies have demonstrated a prime effect
97	of oxidative phosphorylation in powering synaptic transmission and information
98	processing (Schurr et al., 1988; Izumi et al., 1997; Ivanov et al., 2011; Wyss et al., 2011;
99	Hall et al., 2012).
100	Some of the confusion may arise because few of the above studies directly
101	queried the relative roles of glycolysis and oxidative phosphorylation on presynaptic
102	function under controlled conditions that reduce secondary explanations for transmission
103	deficits. In a reduced, controlled environment, we find that although continuous ATP
104	production is indeed important to sustain transmitter release, ablation of evoked
105	transmission requires tandem inhibition of glycolysis and oxidative phosphorylation. We
106	tracked the loss of transmission to massive vesicle exocytosis, which in the absence of
107	ATP synthesis, failed to elicit commensurate vesicle endocytosis and recovery. We also
108	found a privileged role for oxidative phosphorylation in fueling recovery of synaptic
109	transmission after rapid depolarization-induced vesicle depletion even when glycolysis
110	was inhibited, suggesting the availability of alternative substrates for oxidative
111	phosphorylation. Neurons appear to power oxidative phosphorylation with either the
112	glycolytic breakdown of glucose or the utilization of extracellular monocarboxylates,
113	presumably from surrounding astrocytes. However, inhibiting either fuel source alone did
114	not affect recovery. We conclude that evoked transmission exhibits flexibility in ATP
115	sourcing that yields resilience of presynaptic function to changes in metabolic conditions.
116	
117	Materials and Methods

118 Hippocampal Cell Culture

119 Cell cultures were produced and maintained as previously reported (Mennerick 120 and Zorumski, 1995; Moulder et al., 2007) Briefly, hippocampal (neuron) and cortical 121 (astrocyte) tissue of postnatal day 1-4 Sprague-Dawley rat pups of both sexes (85% 122 female) were harvested using protocols approved by the Washington University Animal 123 Studies Committee. The tissue was digested by 1 mg/ml papain, and mechanically 124 dispersed. First, astrocytes were plated on collagen microcultures in Eagle's medium 125 (Life Technologies) supplemented with 5% heat-inactivated horse serum, 5% fetal 126 bovine serum, 17 mM D-glucose, 400 µM glutamine, 500 U/ml penicillin, and 50 µg/ml 127 streptomycin and maintained at 37°C in a humidified incubator (5% CO₂/95% air) before 128 neuronal plating. Neurons were plated at a low density (~100 cells/mm⁻²). +/-Astrocyte 129 microcultures were prepared as previously described (Sobieski et al., 2015). Briefly, 25-130 mm glass coverslips were stamped with a polydimethylsiloxane microstamp coated with 131 0.5 mg/ml collagen to create 150-200 µm diameter microdots and backfilled with a non-132 permissive substrate poly-L-lysine grafted polyethylene glycol (PLL(20 kDa)-g[3.5]-133 PEG(2 kDa); Surface Solutions, Dübendorf, Switzerland) at a concentration of 10 µg/ml 134 in PBS for 1 hour and then washed with 1x PBS. Unless otherwise stated, experiments 135 were performed between 9-14 days in vitro.

136

137 Electrophysiology

Whole-cell electrophysiological recordings were performed at room temperature on the stage of an Eclipse TE2000-S inverted microscope. Data were collected using with a Multiclamp 700B amplifier and Digidata 1550 data acquisition board (Molecular Devices) using pClamp 10 software. During experiments in which both GABAergic and glutamatergic autaptic PSCs were studied, the intracellular pipette solution consisted of (in mM): 140 potassium chloride, 4 NaCl, 10 4-(2-hydroxyethyl)-1-

144	piperazineethanesulfonic acid (HEPES), 5 EGTA, and 0.5 $CaCl_2$. The pH was adjusted
145	to 7.25 with KOH. Experiments designed to examine excitatory postsynaptic currents
146	alone employed an internal solution containing 140 mM potassium gluconate instead of
147	potassium chloride to isolate glutamate-mediated currents. No exogenous ATP or
148	MgATP was added via the whole-cell pipette solution. Previous work on autaptic
149	hippocampal neurons has demonstrated that at least 10 min of recording time is required
150	for ~10% of the pipette contents to reach presynaptic terminals (Rosenmund and
151	Stevens, 1996). Therefore, whole-cell recordings obtained shortly after break-in should
152	rapidly establish postsynaptic ion gradients but effectively isolate presynaptic events
153	compromised by preceding metabolic manipulations.
154	Extracellular solution during voltage-clamp recordings typically consisted of (in
155	mM): 138 NaCl, 4 KCl, 10 HEPES, 10 glucose, 2 CaCl ₂ , 1 MgCl ₂ , and 0.01 D-2-amino-5-
156	phosphonovalerate (D-APV, Tocris), pH 7.25, adjusted with NaOH. Miniature PSCs and
157	experiments evoking vesicle release directly from synaptic terminals were recorded in
158	saline containing 1 μ M TTX. For current clamp recordings, saline contained 2,3-Dioxo-
159	6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX, 1 μ M) and
160	bicuculine (50 μ M). All PSCs were autaptic, recorded from single-neuron microcultures,
161	except for mPSC analysis during metabolic inhibition in Figure 3, where recordings were
162	performed on cells in multi-neuron microcultures. This was done to ensure that the
163	majority of presynaptic events arose from cells whose metabolic state was not
164	influenced by the whole-cell recording pipette over the time periods required to monitor
165	mPSCs.
166	Whole-cell recording pipettes were pulled from borosilicate glass capillary tubes
167	(World Precision Instruments) and had final open-tip resistances 2-6 $M\Omega.$ Unless
168	otherwise stated, neurons in voltage-clamp mode were held at -70 mV. Evoked autaptic
169	PSCs were elicited with a 1.5 ms depolarizing pulse to 0 mV. Data were sampled at 20

170 kHz, filtered at 10 kHz for PSC recordings. Access resistance was compensated to 90% 171 for evoked autaptic PSC recordings. Miniature PSCs were sampled at 5 kHz and filtered 172 at 1 kHz; access resistance was not compensated. For recording action potentials in current clamp mode, neurons were biased with small, tonic current injection when 173 174 necessary to hold the membrane potential near -65 mV. Depolarizing current pulses in 175 increments of 5-10 pA were applied for 1200 ms until a single action potential was 176 elicited. When solution exchange or drug delivery was performed, solutions were 177 dispensed to the target neuron by a gravity-driven local perfusion system from a 178 common tip with an exchange time of ~100 ms.

179

180 Endocytosis measurement

181 Fixable FM1-43 (FM1-43FX) dye labeling of vesicle cycling was performed as 182 previously detailed (Moulder et al., 2010). High density cell cultures were subjected 183 various metabolic conditions in the presence of $0.5 - 1 \,\mu$ M TTX and $1 \,\mu$ M NBQX, 25 μ M 184 D-APV for 20 min prior to probing for vesicle cycling with FM1-43FX. The probe was 185 conducted by challenging cells for 2 min with 5 µM FM1-43FX (Thermo Fisher Scientific) in 45 mM KCl to induce vesicle cycling. In the case of labeling in 0 Ca2+ solution, 100 µM 186 EGTA was included to chelate residual Ca²⁺ during the probe. In other experiments 187 188 FM1-43FX was included during the 20 min metabolic challenge. In all cases, non-189 internalized FM1-43FX fluorescence was removed with a brief application of saline 190 supplemented with 500 µM Advasep-7 (CyDex). Cultures were washed 5 times with 191 saline then fixed for immunostaining with 4% paraformaldehyde and 0.2% 192 glutaraldehyde in PBS for 10 min at room temperature. Cultures were then washed with 193 PBS followed by a 10 minute incubation in 4% NGS and 0.04% Triton in PBS. Primary 194 antibody, anti-synapsin I (1:1000) was applied for 3 h at RT and washed twice in PBS 195 followed by 30 minute incubation in secondary antibody Alexa Fluor 633 conjugate

196 (Thermo Fisher Scientific), and glass coverslipping with Fluoromount G (Southern

197 Biotechnology Associates).

198 FM1-43FX and anti-synapsin I images were captured on an inverted Eclipse 199 TE2000-S microscope using a 60X objective with a 1.4 numerical aperture and a C1 200 scanning confocal laser (488, and 633 nm) with EZ-C1 software (Nikon). Z-stack images 201 were acquired with alternating laser lines while all gain and acquisition settings were 202 held constant within a given experiment. Two-dimensional projected images were 203 created and analyzed using Image J software and regions of interest to measure FM1-204 43FX uptake/intensity were selected blindly using synapsin I-labeled puncta. FM1-43FX 205 fluorescence intensity was background subtracted, and puncta with intensity values 206 below background were assigned a value of 0.

207

208 Data Analysis

209 Data was analyzed and plotted using MetaMorph 7, Clampfit 10 (Molecular 210 Devices), MiniAnalysis 6 (Synaptosoft), Excel 2011 (Microsoft), Prism 6 (GraphPad), and 211 ImageJ. Unless otherwise stated, data in figures and text are given as mean ± SEM. 212 Student's two-tailed unpaired t test was used to compare 2 groups unless otherwise 213 noted. If more than 2 parameters were compared between 2 groups, a Bonferroni 214 correction was applied. A One-Way ANOVA was used if comparing more than two 215 experimental conditions and a Two-way ANOVA was implemented when comparing the 216 effects of at least two parameters over time. To test differences in variance between 217 groups, an F-test was conducted. Non-parametric data were analyzed using a Kruskal-218 Wallis one-way ANOVA followed by Dunn's multiple comparisons test. Significance was 219 defined as a corrected p-value < 0.05. The reported n refers to the number of neurons 220 in each group within a particular experiment, except in imaging experiments where it

221 refers to the number of pre-synaptic terminals. In all cases at least 3 independent

222 cultures were surveyed, each contributing equally to final N values.

223

224 Materials

225 D-APV, NBQX, TTX, were obtained from Tocris Biosciences. All materials

226 without identified suppliers above were obtained from Sigma-Aldrich. 2-Deoxy-D-glucose

227 (2DG, 10 mM), oligomycin (oligo; 1 µM), and alpha-cyano-4-hydroxycinnamic acid (4-

228 CIN, 100 µM) are key pharmacological reagents used herein. 2DG and oligo are

229 commonly used at these concentrations to inhibit glycolysis and oxidative

230 phosphorylation, respectively (5-20 minutes; Schurr et al., 1999; Rangaraju et al., 2014;

231 Pathak et al., 2015; Lujan et al., 2016). At concentrations below 250 µM, 4-CIN

232 effectively blocks lactate transport into neurons with very few off-target effects (Izumi et

233 al., 1997; Erlichman et al., 2008; Choi et al., 2012; Tang et al., 2014), although at higher

234 concentrations may have off-target effects (Chih et al., 2001). In our studies, an effect of

235 4-CIN was observed only when 4-CIN was combined with another metabolic

manipulation (2DG). This strongly suggests that 4-CIN at the concentration employedacted through the intended mechanism.

238 239 <u>Results</u>

Acute inhibition of both glycolysis and oxidative phosphorylation is required to

241 interfere with evoked synaptic transmission

242 We initially tested the effect of acute inhibition of glycolysis and/or oxidative

243 phosphorylation on action potential-evoked synaptic transmission. Incubations in

244 metabolic poisons (2DG to inhibit glycolysis, oligo to inhibit oxidative phosphorylation, or

the combination) were performed 15 minutes prior to establishing whole-cell, patch-

246 clamp recordings from autaptic hippocampal neurons (Figure 1A). The whole-cell

247	recording configuration allowed direct control of postsynaptic ion gradients, so
248	presynaptic variables were effectively isolated by metabolic manipulations (see
249	Methods). Evoked postsynaptic currents (PSCs) were recorded immediately after break-
250	in and were typically measured for \sim 5 minutes at a 0.04 Hz stimulation frequency.
251	Inhibiting either glycolysis with 2DG (Figure 1B), or oxidative phosphorylation with an
252	ATP synthase inhibitor, oligo (Figure 1C), had no significant effect on the ability to evoke
253	PSCs in hippocampal neurons (Figure 1E). We observed no difference in effects on
254	glutamate- (N = 10, 7 cells, 2DG and oligo respectively) and GABA-mediated (N = 6, 10
255	cells, respectively) PSCs, so results were pooled. Average evoked PSC amplitude was
256	variable but did not differ among control (6.0 \pm 0.7 nA, N = 19), oligo (4.3 \pm 1.3 nA, N =
257	20), and 2DG conditions (6.8 \pm 3.6 nA, N = 17). However, combined oligo and 2DG
258	(2DG+oligo) treatment significantly suppressed PSC amplitude (0.15 \pm 0.02 nA, N = 16),
259	in most cases completely suppressing evoked PSCs (Figure 1D, E). PSCs were not
260	altered further during whole-cell recordings (5 min duration) in metabolic inhibitors; there
261	was no time-dependent decrement in PSCs with continued treatment with 2DG or oligo
262	alone (Figure 1F), and PSCs did not emerge during recording in the continued combined
263	presence of 2DG+oligo.
264	Interestingly, inhibition of oxidative phosphorylation alone or in the presence of
265	2DG was initially associated with suppressed axosomatic voltage-gated sodium currents
266	(Figure 1G,H), which drive presynaptic action potentials (Bekkers and Stevens, 1991;
267	Prakriya and Mennerick, 2000). This is in contrast to recent results at the calyx of Held,
268	where axonal action potentials were particularly sensitive to glycolytic inhibition (Lujan et
269	al., 2016). In our experiments the sodium currents in both oligo treatment groups grew

- 270 over time and were not significantly different from the glucose control group by 5 min
- 271 recording time, despite the lack of ATP in the pipette solution (Figure 1H). We posit that
- 272 the growth of sodium currents likely reflects the re-establishment of K⁺ and Na⁺ gradients

273	during cell dialysis with the patch pipette solution. We conclude that oxidative
274	phosphorylation is most important for maintaining these ion gradients and that glycolysis
275	alone is not sufficient.
276	To further characterize the effect of oligo on excitability, we examined somatic
277	action potentials in current-clamp recordings, using just-suprathreshold current injection
278	titrated for each cell. In this independent sample of neurons, both maximum rise rate and
279	peak amplitude of action potentials were depressed following 15 min of oligo incubation
280	compared with sibling control cells (Figure 1I). Despite initial suppression of sodium
281	currents in both oligo-treated groups (Figure 1H) and the effects of oligo on action
282	potential waveform (Figure 1I), transmission failure occurred only in neurons where both
283	glycolysis and oxidative phosphorylation were inhibited (Figure 1E). PSCs in this
284	condition did not recover despite the recovery of sodium current (Figure 1H). These
285	observations indirectly suggest that the disruption of sodium current alone is unlikely to
286	account for the depressed transmission when both glycolysis and oxidative
287	phosphorylation are inhibited.
288	
289	Inhibition of glycolysis and oxidative phosphorylation abolishes evoked vesicle
290	release.
291	To test more directly whether action potential propagation deficits solely underlie
292	suppressed evoked PSCs, we challenged 2DG+oligo-treated cells with 100 mM $\mathrm{K}^{\!\scriptscriptstyle+}$
293	(substituted for Na $^{\scriptscriptstyle \star})$ in the presence of tetrodotoxin (TTX; 0.5-1 $\mu M)$ immediately
294	following the 15 minute incubation in saline with metabolic inhibitors or glucose control.
295	This evoked vesicle exocytosis through directly depolariziation of terminals in the
296	absence of action potential firing (Prakriya and Mennerick, 2000). Direct depolarization
297	of unclamped presynaptic terminals elicited antagonist-sensitive PSCs in control

298 neurons (Figure 2A) but not in 2DG+oligo-treated cells (Figure 2B). Metabolically

300 sustained release (Figure 2C,D). 301 Both action potentials and hyperkalemia require Ca²⁺ influx for exocytosis. Depression of presynaptic Ca²⁺ influx following ATP loss could explain PSC loss. To by-302 pass Ca²⁺ influx we utilized hypertonic sucrose, a Ca²⁺ independent secretagogue 303 304 (Rosenmund and Stevens, 1996). Sucrose (0.5 M) elicited antagonist-sensitive PSCs 305 from control neurons (Figure 2E, F, black trace) but not from 2DG+oligo-treated cells 306 (Figure 2E,F, blue trace). The loss of evoked release when action potentials and Ca²⁺ 307 influx are circumvented strongly suggests that neither action potential propagation nor Ca²⁺ influx is the primary dysfunction underlying the loss of evoked PSCs after combined 308 309 inhibition glycolysis and oxidative phosphorylation. This outcome suggests that 310 releasable synaptic vesicles may be unavailable following metabolic inhibition. 311 312 Metabolic poisoning fosters massive spontaneous vesicle release 313 Although K⁺- and sucrose-evoked vesicle release was completely abolished, we 314 were surprised that spontaneous miniature PSCs (mPSC) were still present in 315 2DG+oligo-treated cells (Figure 3B,C) and were comparable to mPSCs in controls 316 (Figure 3A). We found no significant difference in the mean frequency (Figure 3D), 317 amplitude (Figure 3E), 10-90% rise time (Figure 3F), or decay time (Figure 3G) between 318 control and 2DG+oligo-treated excitatory mPSCs (mEPSCs) and inhibitory mPSCs 319 (mIPSCs). These data suggest the presence of synaptic vesicles in the terminals, at 320 least initially, despite the inability to evoke release. On closer inspection of mPSCs, we 321 realized that metabolically compromised cells exhibited significantly greater variance in 322 mPSC frequency than control cells (Figure 3D; F = 6.052, p < 0.0002). We reasoned 323 that loss of ATP production may initiate vesicle release, and the large variance in 324 release frequency may correspond to different stages of metabolic poisoning in different

poisoned neurons lost both the antagonist-sensitive peak (synchronous) release and

325 neurons.

326	We hypothesized that loss of presynaptic ATP induces massive spontaneous
327	vesicle exocytosis, which may contribute to the loss of evoked vesicle release. Thus,
328	neurons may experience increased mPSC frequency throughout incubation in the
329	metabolic poisons as presynaptic ATP levels are diminished; after 15 min incubation in
330	2DG+oligo neurons with a high mPSC frequency are still exocytosing, while cells with
331	low mPSC frequency have exhausted the ability to exocytose. Any exocytosis would be
332	independent of action potentials, as TTX was present during incubation of 2DG+oligo.
333	We directly tested whether loss of ATP affects vesicle fusion by recording
334	neurons throughout the 15 min incubation period in 2DG+oligo (Figure 3H-M) instead of
335	following the incubation period (Figure 3A-G). The protocol allowed us to observe
336	changes in mPSC frequency and evoked transmission within individual cells during
337	metabolic inhibition. We first evoked release in the presence of TTX with $K^{\scriptscriptstyle +}$ application
338	as in Figure 2A-D (Figure 3H,I black traces) and then measured mPSC frequency in the
339	presence of either glucose control or metabolic inhibitors over the course of 15 min.
340	Following 15 min of glucose (control) or 2DG+oligo treatment, we re-assessed evoked
341	PSCs. PSCs were mildly depressed in control cells, but were abolished in the
342	2DG+oligo treatment (Figure 3H-J). In the same cells, mPSC frequency was initially high
343	following the initial K^{+} challenge, reflecting residual presynaptic Ca ²⁺ (Figure 3K, L). In
344	control neurons, mPSC frequency immediately subsided, but in 2DG+oligo cells, the
345	mPSC frequency remained elevated before decreasing to near-control levels by 15 min
346	(Figure 3K-M).
347	In a separate experiment mPSC frequency was quantified over the 15 min
348	incubation in either 2DG+oligo or glucose controls without the accompanying $K^{\text{+}}$ -evoked
349	PSC challenge. We once again observed a significant increase in mPSC frequency in
350	the presence of 2DG+oligo compared to glucose controls (Figure 3N-P). Thus, the large

initial mPSC frequency elicited by K⁺ in Figure 3H-M was not necessary to initiate the
sustained elevation of mPSC frequency in metabolically poisoned cells. These
observations suggest that tandem inhibition of glycolysis and oxidative phosphorylation
produces massive synaptic exocytosis. Although some degree of spontaneous release
still persists following 15 min of poisoning, evoked release is nearly abolished.

356

357 Endocytic failure after metabolic poisoning

358 Because vesicles are recycled, mass exocytosis alone would not account for the 359 loss of evoked vesicle release following incubation in 2DG+oligo. Recent work has 360 shown that ATP levels also influence vesicle endocytosis, with glycolysis playing a 361 particularly important role (Rangaraju et al., 2014; Pathak et al., 2015; Jang et al., 2016). 362 To test whether endocytosis was arrested in metabolically poisoned neurons, we 363 measured vesicle cycling with FM1-43FX to label vesicle internalization at presynaptic 364 terminals, identified with synapsin I (Figure 4A). Cultures were incubated for 20 minutes 365 in the indicated conditions. Following incubation, vesicle cycling was probed by adding 366 FM1-43FX and 45 mM K⁺ for 2 min. Neither 2DG (Figure 4C,G burgundy bar) nor oligo 367 (Figure 4,D,G teal bar) altered vesicle cycling, but co-administration of 2DG+oligo 368 significantly reduced vesicle cycling during the probe period (Figure 4E,G blue bar). 369 To confirm that diminished cycling resulted from metabolic poisoning and not 370 from prolonged vesicle exocytosis, we simulated the extended exocytosis observed in 371 2DG+oligo-treated cells using 45 mM K⁺ (substituted for Na⁺) present for 20 min with 372 TTX but without any metabolic inhibition. Exposure to 45 mM K⁺ produced a similar 373 steady-state mPSC frequency compared with 2DG+oligo treatment (25.74 ± 11.72 Hz, n 374 = 5 K⁺-challenged cells), but vesicle cycling during a subsequent 2 min probe in FM1-375 43FX was not significantly affected (Figure 4B,G orange bar). Finally, we measured 376 FM1-43FX labeling in a control group lacking Ca²⁺ in the probe condition to diminish

378 gray bar), comparable to when neurons were metabolically poisoned. This control 379 condition also confirms the synaptic nature of labeling. 380 Experiments in Figure 4 confirm that vesicle cycling, rather than vesicle filling or 381 other potential explanations, is associated with the loss of evoked transmission during 382 combined 2DG+oligo treatment. However, the experiments do not specifically determine 383 whether arrested endocytosis contributes. To test this, we incubated cells in FM1-43FX 384 throughout the entire 20 min period of poisoning, during which massive exocytosis 385 occurs (Figure 3M). As a control, we again depolarized cells in the presence of TTX to 386 produce a comparably stimulated rate of exocytosis, but without metabolic inhibition. The 387 net FM1-43FX labeling during the 20 min incubation in 2DG+oligo (Figure 5A-B, blue 388 bar) was no different than control (Figure 5A-B, black bar), while K⁺ stimulation produced 389 the FM1-43FX labeling expected of ongoing vesicle cycling (Figure 5A-B, orange bar). 390 The lack of staining in the unstimulated control (Figure 5A, left panel; Figure 5B, black 391 bar) presumably reflects the low rate of mPSCs per synapse in the 15 min incubation. 392 Overall, the results demonstrate that the massive exocytosis during metabolic inhibition 393 is not followed by compensatory endocytosis. Thus, arrested endocytosis likely explains 394 the loss of evoked vesicle release. The results demonstrate an important role for 395 continuous ATP production, flexibly driven by either glycolysis or oxidative 396 phosphorylation, in synaptic vesicle cycling. 397 398 Oxidative phosphorylation powers recovery following intense presynaptic 399 transmission. 400 Although either glycolysis or oxidative phosphorylation proved capable of 401 sustaining basal transmission (Figure 1), we wondered if a more energetically 402 demanding stimulus would reveal a privileged role for presynaptic glycolysis or oxidative

vesicle cycling during FM1-43FX loading. Cycling was significantly reduced (Figure 4F,G

403	phosphorylation. We examined the recovery of excitatory PSCs (EPSCs) after a brief,
404	strong depolarization designed to empty all recycling vesicles (Sara et al., 2002; Chung
405	et al., 2010). Glutamate synaptic signaling and uptake may be more energetically
406	demanding than GABA signaling (Waldvogel et al., 2000; Chatton et al., 2003), so we
407	focused on EPSCs. As schematized in Figure 6A, we measured baseline evoked
408	EPSCs, applied 90mM $K^{\scriptscriptstyle +}$ for 30s to deplete the vesicle pool, and then measured the
409	recovery of EPSCs with action potential stimulation every 25 s for \sim 2 min.
410	2DG incubation did not significantly affect EPSC recovery after vesicle depletion
411	compared to glucose-incubated controls (Figure 6B,D). However, oligo alone
412	significantly diminished recovery (Figure 6C,E). Slower recovery did not result from
413	action potential deficits because sodium action currents remained at pre-challenge levels
414	for both oligo treated cells and control cells (Figure 6G). These data suggest that
415	glycolysis alone cannot adequately sustain presynaptic recovery following a high-
416	demand stimulus. Rather, oxidative phosphorylation, perhaps because of its larger ATP
417	yield, has a privileged role in fueling recovery of presynaptic function after vesicle
418	depletion. Further, the lack of a 2DG effect implies that on-demand glycolysis is not
419	necessary to supply pyruvate for oxidative phosphorylation during the challenge. This
420	suggests that neurons power presynaptic function with reserve or alternative substrates
421	for oxidative phosphorylation when glycolysis is inhibited.
422	
423	Endogenous monocarboxylate powers oxidative phosphorylation when glycolysis
424	is inhibited
425	Attractive candidates for alternative metabolic substrates during glycolytic
426	inhibition include monocarboxylates, such as lactate (Schurr et al., 1988; Izumi et al.,
427	1997; Ivanov et al., 2011; Wyss et al., 2011). Extracellular recording solutions do not

428 contain exogenous monocarboxylates, so based on prevailing views lactate would be

429	shuttled on demand from astrocytes to neurons during increased glutamate signaling
430	(e.g., following vesicle depletion) to supply the TCA cycle with pyruvate (Pellerin and
431	Magistretti, 1994, 2012). Microcultures provide a unique opportunity to test local
432	shuttling, and we tested the local shuttle hypothesis by culturing neurons in the absence
433	of contact with an astrocyte bed (Sobieski et al., 2015). We previously showed that
434	neurons without astrocyte contact exhibit altered synchrony of evoked glutamate release
435	(-astrocyte; Figure 7B) compared to astrocyte-supported controls (+astrocyte; Figure
436	7A), but many other facets of evoked transmission are intact (Sobieski et al., 2015).
437	Recovery of EPSCs following the vesicle depletion challenge was slightly depressed in -
438	astrocyte neurons compared with +astrocyte neurons when recorded in control medium
439	(Figure 7C), but this effect was not statistically significant. Furthermore,
440	incubation/recording in saline with lactate (1.5 mM) in place of glucose did not increase
441	EPSC recovery after vesicle depletion (Figure 7D). Therefore, any deficit in the recovery
442	of -astrocyte EPSCs cannot be accounted for by the loss of astrocyte-derived lactate.
443	Although these observations exclude a strong role for local, on-demand
444	monocarboxylate shuttling as envisioned by the astrocyte-neuron lactate shuttle
445	hypothesis (Pellerin and Magistretti, 1994, 2012), it is possible that bulk lactate levels
446	derived from the summed contributions of surrounding astrocytes participates in fueling
447	recovery from vesicle depletion. We tested the importance of global lactate efflux by
448	pharmacologically inhibiting monocarboxylate transport with the monocarboxylate
449	transport inhibitor 4-CIN, 100 μM for 15 min. 4-CIN had no effect on EPSC recovery after
450	total vesicle depletion (Figure 8A,C). These results suggest that either neuronal
451	glycolysis or perhaps the breakdown of alternative fuel reserves can support synaptic
452	transmission when lactate shuttling alone is inhibited.
453	Reducing either neuronal glycolysis (Figure 6D) or monocarboxylate transport
454	(Figure 8C) to diminish supply of substrates to the TCA cycle yielded little effect on

455	EPSC recovery after vesicle depletion. These data suggest two sources of fuel for
456	oxidative phosphorylation, either of which can support EPSC recovery following
457	depletion. We next examined the combined effects of inhibition of monocarboxylate
458	transport and glycolysis. Co-administration of 2DG and 4-CIN significantly reduced
459	EPSC recovery after vesicle depletion (Figure 8B,D). Thus, although inhibition of neither
460	monocarboxylate transport (Figure 8A,C) nor neuronal glycolysis alone (Figure 6B,D)
461	altered recovery, combined inhibition of both partially arrested EPSC recovery,
462	equivalent to the effect of oligo (Figure 6C,E). These data suggest that oxidative
463	phosphorylation continuously supplies ATP necessary for synaptic vesicle recovery after
464	depletion, and substrate for oxidative phosphorylation can originate from either
465	extracellular monocarboxylates or from neuronal glycolysis.
466	
467	Discussion
467 468	<u>Discussion</u> In this study, we investigated the sources of ATP synthesis that drive basal
468	In this study, we investigated the sources of ATP synthesis that drive basal
468 469	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work
468 469 470	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work shows that ongoing ATP production, either through glycolysis or oxidative
468 469 470 471	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work shows that ongoing ATP production, either through glycolysis or oxidative phosphorylation, sustains evoked synaptic transmission for up to 20 min. Only the
468 469 470 471 472	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work shows that ongoing ATP production, either through glycolysis or oxidative phosphorylation, sustains evoked synaptic transmission for up to 20 min. Only the combined inhibition of glycolysis and oxidative phosphorylation abolished PSCs evoked
468 469 470 471 472 473	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work shows that ongoing ATP production, either through glycolysis or oxidative phosphorylation, sustains evoked synaptic transmission for up to 20 min. Only the combined inhibition of glycolysis and oxidative phosphorylation abolished PSCs evoked at low frequency. The loss of evoked transmission likely results from massive
468 469 470 471 472 473 474	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work shows that ongoing ATP production, either through glycolysis or oxidative phosphorylation, sustains evoked synaptic transmission for up to 20 min. Only the combined inhibition of glycolysis and oxidative phosphorylation abolished PSCs evoked at low frequency. The loss of evoked transmission likely results from massive spontaneous vesicle release and subsequent failure to endocytose vesicles. Our data
468 469 470 471 472 473 474 475	In this study, we investigated the sources of ATP synthesis that drive basal presynaptic function and recovery of function following high energetic demand. Our work shows that ongoing ATP production, either through glycolysis or oxidative phosphorylation, sustains evoked synaptic transmission for up to 20 min. Only the combined inhibition of glycolysis and oxidative phosphorylation abolished PSCs evoked at low frequency. The loss of evoked transmission likely results from massive spontaneous vesicle release and subsequent failure to endocytose vesicles. Our data also suggest that oxidative phosphorylation has a privileged role in powering the rapid

479 work elucidates the sources of presynaptic ATP during basal and high-demand activity.

480	Our work adds mechanistic details to previous studies that have highlighted the
481	energetic demand of neurons in brain slices. Excitatory postsynaptic potentials in
482	hippocampal slices are very sensitive to glucose deprivation (Schurr et al., 1988; Izumi
483	et al., 1994, 1997). However, the roles of presynaptic and postsynaptic factors and of
484	glycolysis versus oxidative phosphorylation have been unclear. In slices, energetic
485	depression leads to accumulation of neurotransmitters and other secondary changes. It
486	can be difficult to know whether changes to transmission are a direct consequence of
487	changes to ATP levels or to these secondary consequences. Further, the trauma of
488	tissue preparation can cause important metabolic changes that affect results (Takano et
489	al., 2014). Although cultures have their own limitations, they allow experimental control
490	not possible in situ, including our isolation of local versus global astrocyte contributions.
491	Several of our observations appear to conflict with other recent studies. Figure
492	1H suggests that ion gradients are rapidly compromised by inhibition of ATP produced
493	by oxidative phosphorylation. Other recent work found that the Na $^+/K^+$ ATPase is a
494	relatively light burden on presynaptic ATP levels (Rangaraju et al., 2014). One
495	reconciliation could be that ATP demands are compartmentalized, with more ATPase
496	burden near the soma, where our whole-cell recordings of sodium currents and action
497	potentials were made. However, another complication is that at the calyx of Held
498	synapse, presynaptic axonal action potential waveform is quite sensitive to glycolytic
499	inhibition due to collapse of ion gradients (Lujan et al., 2016). There are two surprising
500	things about these results compared with ours. First, we found that inhibition of oxidative
501	phosphorylation alone, rather than glycolysis alone, produced changes to sodium current
502	and action potential waveform. Second, because hippocampal glutamate release is
503	quite sensitive to changes in action potential waveform (Prakriya and Mennerick, 2000;
504	Meeks and Mennerick, 2004; Sobieski et al., 2015; Lujan et al., 2016), if the somatic
505	action potential waveform changes we observed following oligo treatment alone were

506 propagated to terminals, we would have expected strong alteration of transmitter 507 release. Instead, we found that the changes to excitability produced by oligo alone were 508 not associated with deficits in evoked PSCs. 509 Our results also differ from others with regard to the role of glycolysis on 510 endocytosis. Previous work suggests that endocytosis relies heavily on glycolysis 511 (Rangaraju et al., 2014; Pathak et al., 2015). In contrast, we observed that vesicle 512 endocytosis, measured by FM1-43FX fluorescence (Figure 4C, G burgundy bar), and 513 PSCs recovered well following sole inhibition of glycolysis (Figure 6D). The reasons for 514 the discrepancies are unclear, but could relate to use of different methods to measure 515 presynaptic activity. 516 Our observations uncovered massive vesicle exocytosis during combined 517 glycolytic and oxidative phosphorylation inhibition. Similar effects have been observed 518 following oxygen-glucose deprivation (Allen et al., 2004; Fujimoto et al., 2004) or 519 pharmacological manipulation of glycolysis and oxidative phosphorylation (Lujan et al., 520 2016). Endocytic failure following the mass vesicle exocytosis appears sufficient to 521 explain the loss of evoked PSCs (Figure 5); however, we cannot exclude other 522 contributing mechanisms, such as ATP-dependent vesicle filling or vesicle priming, to 523 the loss of evoked PSCs. The precise cause of the massive exocytosis remains unclear. 524 Collapse of ion gradients and consequent depolarization-dependent calcium influx or 525 mitochondrial efflux could participate (Lujan et al., 2016). Other Ca²⁺-independent 526 possibilities include electrostatic effects of ATP on synaptogatmin-1 function and ATP 527 dependent SNARE complex disassembly (Park et al., 2012). 528 The persistence of spontaneous mPSCs following metabolic inhibition could 529 suggest differential sensitivity of vesicle pools underlying spontaneous and evoked 530 neurotransmission (reviewed in Crawford and Kavalali, 2015). It is tempting to speculate 531 that the different molecular identities of the two pools afford them different energetic

532 sensitivity, or that ATP depletion shifts the evoked pool of vesicles into a spontaneous-533 only mode of release. Alternatively, the residual mPSCs during the period of abolished 534 evoked transmission could simply reflect a few remaining functional terminals that were 535 not readily detected in our measures of evoked release. In the future it will be important 536 to explore the differential neuroenergetics of spontaneous and evoked release in more 537 detail.

An important conclusion from our work is that oxidative phosphorylation plays a more prominent role than glycolysis in fueling recovery of transmission following brief, intense metabolic challenge. Vesicle endocytosis, as probed by FM1-43FX uptake (Figure 4D, G teal bar), was unperturbed by pre-treatment with oligo. This suggests that the depression of recovery of evoked EPSCs following depolarizing challenge (Figure 6C, E) likely results from a mechanism other than endocytic arrest, such as a deficit in replenishment of vesicles from the reserve pool or vesicle filling.

545 The importance of oxidative phosphorylation for EPSC recovery after a strong 546 presynaptic stimulus could implicate the astrocyte-neuron lactate shuttle (Pellerin and 547 Magistretti, 1994; Takahashi et al., 1995; Bittner et al., 2010). However, neither 548 pharmacological inhibition of monocarboxylate transport (Figure 8A,C) nor removal of 549 local astrocyte support (Figure 7A-C) altered EPSC recovery. Thus, local, on-demand 550 lactate shuttling from astrocytes in response to increased activity does not account for 551 presynaptic recovery. In fact, EPSC recovery after vesicle depletion was only reduced by 552 obstructing both glycolysis and monocarboxylate transport to neurons (Figure 8B,D), 553 effectively cutting off two main fuel supplies for oxidative phosphorylation. These findings 554 suggest that oxidative phosphorylation fueling presynaptic recovery can be effectively 555 sourced by either neuronal glycolysis or by ambient, global monocarboxylates. 556 Interestingly, basal synaptic transmission was not ablated with co-incubation of 557 2DG and 4-CIN as it was with 2DG and oligo (Figure 1D,E). The inability of combined

558	2DG/4-CIN to depress basal evoked synaptic transmission most likely results from
559	incomplete inhibition of monocarboxylate transport by 4-CIN. Alternatively, additional
560	substrates for oxidative phosphorylation could maintain basal function. One alternative is
561	glutamate, which can be converted to alpha-ketoglutarate, an important TCA
562	intermediate and potential source of pyruvate (McKenna, 2007). Ketone bodies
563	represent another alternative fuel and direct source for acetyl-Co-A (Izumi et al., 1998).
564	Typically ketone bodies are derived peripherally, with questionable relevance to
565	dissociated cultures, but they also may be produced by astrocytes (Takahashi et al.,
566	2014). In future work, it would be intriguing to query to roles of these fuel sources in
567	fueling synaptic transmission and presynaptic function.
568	The relative importance of oxidative phosphorylation over glycolysis is also
569	interesting because of the presynaptic compartmentalization of glycolysis and oxidative
570	phosphorylation within the neuron. Early and more recent work have found that glycolytic
571	machinery in the presynaptic cytosol maintains $K^{\scriptscriptstyle +}$ homeostasis by fueling Na $^{\scriptscriptstyle +}\!/K^{\scriptscriptstyle +}\!-$
572	ATPase activity (Knull, 1978; Lipton and Whittingham, 1982; Lujan et al., 2016).
573	Mitochondria, on the other hand, reside in only 25-40% of presynaptic terminals (Chavan
574	et al., 2015; Pathak et al., 2015). Despite the sporadic localization of mitochondria to
575	presynaptic terminals, our work as well as others demonstrate that oxidative
576	phosphorylation is important for presynaptic function (Verstreken et al., 2005; Kang et
577	al., 2008; Hall et al., 2012; Sun et al., 2013; Pathak et al., 2015). Thus, sparse
578	mitochondria apparently produce sufficient ATP to supply neighboring boutons (Pathak
579	et al., 2015).
580	In conclusion, synaptic transmission is surprisingly resilient to changes in
581	metabolic substrate availability. Either glycolysis or oxidative phosphorylation suffices to
582	fuel basal synaptic transmission, but loss of both leads to a massive release of synaptic
583	vesicles, diminished vesicle endocytosis, and evoked PSC loss. Further metabolic

584	challenges, such as strong depolarization, reveal a preferential role of oxidative
585	phosphorylation in producing the ATP required for presynaptic recovery. In turn oxidative
586	phosphorylation is fueled by either neuronal glycolysis or by transport of ambient
587	monocarboxylates, likely from astrocytes. Impeding both fuel supplies weakens EPSC
588	recovery. Taken together, our data showcase the flexibility of neurons to changes in
589	metabolic substrate availability in order to maintain presynaptic function.
590	

591 References

592 Allen NJ, Rossi DJ, Attwell D (2004) Sequential release of GABA by exocytosis and 593 reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal 594 slices. J Neurosci 24:3837–3849. 595 Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the 596 brain. J Cereb Blood Flow Metab 21:1133–1145. 597 Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and 598 ketogenesis by astrocytes in primary culture. J Neurochem 56:1376–1386. 599 Bekkers JM, Stevens CF (1991) Excitatory and inhibitory autaptic currents in isolated 600 hippocampal neurons maintained in cell culture. Proc Natl Acad Sci U S A 88:7834-601 7838. 602 Bittner CX, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T, Gutiérrez R, Córdova A, 603 Valdebenito R, Frommer WB, Barros LF (2010) High resolution measurement of the 604 glycolytic rate. Front Neuroenergetics 2. 605 Chatton J-Y, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not 606 associated with significant metabolic cost: implications for brain imaging of 607 inhibitory transmission. Proc Natl Acad Sci U S A 100:12456-12461. 608 Chavan V, Willis J, Walker SK, Clark HR, Liu X, Fox MA, Srivastava S, Mukherjee K 609 (2015) Central presynaptic terminals are enriched in ATP but the majority lack 610 mitochondria. PLoS One 10:e0125185. 611 Chih C-P, He J, Sly TS, Roberts EL (2001) Comparison of glucose and lactate as 612 substrates during NMDA-induced activation of hippocampal slices. Brain Res 613 893:143-154. 614 Choi HB, Gordon GRJ, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, 615 McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic 616 communication between astrocytes and neurons via bicarbonate-responsive

617 soluble adenylyl cyclase. Neuron 75:1094-1104. 618 Chung C, Barylko B, Leitz J, Liu X, Kavalali ET (2010) Acute dynamin inhibition dissects 619 synaptic vesicle recycling pathways that drive spontaneous and evoked 620 neurotransmission. J Neurosci 30:1363-1376. 621 Crawford DC, Jiang X, Taylor A, Mennerick S (2012) Astrocyte-derived thrombospondins 622 mediate the development of hippocampal presynaptic plasticity in vitro. J Neurosci 623 32:13100-13110. 624 Crawford DC, Kavalali ET (2015) Molecular underpinnings of synaptic vesicle pool 625 heterogeneity. Traffic 16:338-364. 626 Edmond J, Robbins RA, Bergstrom JD, Cole RA, de Vellis J (1987) Capacity for 627 substrate utilization in oxidative metabolism by neurons, astrocytes, and 628 oligodendrocytes from developing brain in primary culture. J Neurosci Res 18:551-629 561. 630 Erlichman JS, Hewitt A, Damon TL, Hart M, Kurascz J, Li A, Leiter JC (2008) Inhibition 631 of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the 632 astrocyte-neuron lactate-shuttle hypothesis. J Neurosci 28:4888–4896. 633 Fujimoto S, Katsuki H, Kume T, Kaneko S, Akaike A (2004) Mechanisms of oxygen 634 glucose deprivation-induced glutamate release from cerebrocortical slice cultures. 635 Neurosci Res 50:179-187. 636 Gallagher CN et al. (2009) The human brain utilizes lactate via the tricarboxylic acid 637 cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance 638 study. Brain 132:2839-2849. 639 Hall CN, Klein-Flugge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not 640 glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain 641 information processing. J Neurosci 32:8940-8951. 642 Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762643 777.

644	Hertz L, Drejer J, Schousboe A (1988) Energy metabolism in glutamatergic neurons,
645	GABAergic neurons and astrocytes in primary cultures. Neurochem Res 13:605–
646	610.
647	Ikemoto A, Bole DG, Ueda T (2003) Glycolysis and glutamate accumulation into synaptic
648	vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-
649	phosphoglycerate kinase. J Biol Chem 278:5929–5940.
650	Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y (2011) Lactate effectively covers
651	energy demands during neuronal network activity in neonatal hippocampal slices.
652	Front Neuroenergetics 3:2.
653	Izumi Y, Benz AM, Katsuki H, Zorumski CF (1997) Endogenous monocarboxylates
654	sustain hippocampal synaptic function and morphological integrity during energy
655	deprivation. J Neurosci 17:9448–9457.
656	Izumi Y, Benz AM, Zorumski CF, Olney JW (1994) Effects of lactate and pyruvate on
657	glucose deprivation in rat hippocampal slices. Neuroreport 5:617–620.
658	Izumi Y, Ishii K, Katsuki H, Benz AM, Zorumski CF (1998) beta-Hydroxybutyrate fuels
659	synaptic function during development. Histological and physiological evidence in rat
660	hippocampal slices. J Clin Invest 101:1121–1132.
661	Jang S, Nelson JC, Bend EG, Rodríguez-Laureano L, Tueros FG, Cartagenova L,
662	Underwood K, Jorgensen EM, Colón-Ramos DA (2016) Glycolytic enzymes localize
663	to synapses under energy stress to support synaptic function. Neuron 90:278–291.
664	Kang J-S, Tian J-H, Pan P-Y, Zald P, Li C, Deng C, Sheng Z-H (2008) Docking of
665	Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term
666	Facilitation. Cell 132:137–148.
667	Knull HR (1978) Association of glycolytic enzymes with particulate fractions from nerve
668	endings. Biochim Biophys Acta 522:1–9.

669	Lipton P, Whittingham TS (1982) Reduced ATP concentration as a basis for synaptic
670	transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J Physiol
671	325:51–65.
672	Lujan B, Kushmerick C, Das Banerjee T, Dagda RK, Renden R (2016) Glycolysis
673	selectively shapes the presynaptic action potential waveform. J Neurophysiol. In
674	Press.
675	McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: Fates of
676	glutamate in brain. J Neurosci Res 85:3347–3358.
677	McKenna MC (2012) Substrate competition studies demonstrate oxidative metabolism of
678	glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes
679	from rat brain. Neurochem Res 37:2613–2626.
680	Meeks JP, Mennerick S (2004) Selective effects of potassium elevations on glutamate
681	signaling and action potential conduction in hippocampus. J Neurosci 24:197–206.
682	Mennerick S, Zorumski CF (1995) Paired-pulse modulation of fast excitatory synaptic
683	currents in microcultures of rat hippocampal neurons. J Physiol 488:85–101.
684	Moulder KL, Jiang X, Taylor AA, Benz AM, Mennerick S (2010) Presynaptically Silent
685	Synapses Studied with Light Microscopy. J Vis Exp:e1676–e1676.
686	Moulder KL, Jiang X, Taylor AA, Shin W, Gillis KD, Mennerick S (2007) Vesicle pool
687	heterogeneity at hippocampal glutamate and GABA synapses. J Neurosci 27:9846–
688	9854.
689	Park Y, Hernandez JM, van den Bogaart G, Ahmed S, Holt M, Riedel D, Jahn R (2012)
690	Controlling synaptotagmin activity by electrostatic screening. Nat Struct Mol Biol
691	19:991–997.
692	Pathak D, Shields LY, Mendelsohn BA, Haddad D, Lin W, Gerencser AA, Kim H, Brand
693	MD, Edwards RH, Nakamura K (2015) The role of mitochondrially derived ATP in
694	synaptic vesicle recycling. J Biol Chem 290:22325–22336.

695	Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic
696	glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl
697	Acad Sci U S A 91:10625–10629.
698	Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab
699	32:1152–1166.
700	Pfeiffer T et al. (2001) Cooperation and competition in the evolution of ATP-producing
701	pathways. Science 292:504–507.
702	Prakriya M, Mennerick S (2000) Selective depression of low-release probability
703	excitatory synapses by sodium channel blockers. Neuron 26:671–682.
704	Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required
705	for synaptic function. Cell 156:825–835.
706	Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at
707	hippocampal synapses. Neuron 16:1197–1207.
708	Sara Y, Mozhayeva MG, Liu X, Kavalali ET (2002) Fast vesicle recycling supports
709	neurotransmission during sustained stimulation at hippocampal synapses. J
710	Neurosci 22:1608–1617.
711	Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain
712	tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci
713	19:34–39.
714	Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat
715	hippocampal slice preparation. Science 240:1326–1328.
716	Sobieski C, Jiang X, Crawford DC, Mennerick S (2015) Loss of local astrocyte support
717	disrupts action potential propagation and glutamate release synchrony from
718	unmyelinated hippocampal axon terminals in vitro. J Neurosci 35:11105–11117.
719	Sonnewald U, White LR, Ødegård E, Westergaard N, Bakken IJ, Aasly J, Unsgård G,
720	Schousboe A (1996) MRS study of glutamate metabolism in cultured neurons/glia.

721	Neurochem Res 21:987–993.
722	Sun T, Qiao H, Pan P-Y, Chen Y, Sheng Z-H (2013) Motile axonal mitochondria
723	contribute to the variability of presynaptic strength. Cell Rep 4:413–419.
724	Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions
725	in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A
726	92:4616–4620.
727	Takahashi S, lizumi T, Mashima K, Abe T, Suzuki N (2014) Roles and regulation of
728	ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia.
729	ASN Neuro 6.
730	Takano T, He W, Han X, Wang F, Xu Q, Wang X, Oberheim Bush NA, Cruz N, Dienel
731	GA, Nedergaard M (2014) Rapid manifestation of reactive astrogliosis in acute
732	hippocampal brain slices. Glia 62:78–95.
733	Tang F et al. (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain.
734	Nat Commun 5:ra26.
735	Verstreken P, Ly C V, Venken KJT, Koh T-W, Zhou Y, Bellen HJ (2005) Synaptic
736	mitochondria are critical for mobilization of reserve pool vesicles at Drosophila
737	neuromuscular junctions. Neuron 47:365–378.
738	Waldvogel D, van Gelderen P, Muellbacher W, Ziemann U, Immisch I, Hallett M (2000)
739	The relative metabolic demand of inhibition and excitation. Nature 406:995–998.
740	Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate
741	as a neuronal energy source. J Neurosci 31:7477–7485.
742	
743	

744 Figure Legends.745

746 Figure 1. Acute inhibition of glycolysis and oxidative phosphorylation impairs evoked 747 vesicle release. A-D. Representative evoked autaptic EPSCs elicited in each of the 748 indicated conditions, after 15 min pre-incubation in the conditions prior to establishing 749 the whole-cell recording. '2DG' designates substitution of 2DG (10 mM) for glucose. 750 Oligo was applied at 1 µM. The dashed boxes indicate presynaptic stimulation currents, 751 including an inward sodium current highlighted in panel G. E. Neurons exhibiting PSCs 752 or no detectable PSC, from the four conditions, color-coded according to the text labels 753 in A-D (n = 16-20 neurons per condition). 2DG+oligo exhibited significantly more 754 neurons lacking evoked PSCs than control glucose (chi-square, $X^2 = 30.35$, p <0.0001). 755 F. Summary of evoked PSCs obtained following 5 min stimulation (0.04 Hz), normalized 756 to initial currents obtained on membrane break-in. There was no significant difference in 757 PSC peak size of glucose, 2DG, or oligo alone after 5 min of recording compared to 758 immediate break-in (p > 0.05 for all conditions; two-way repeated measures ANOVA with 759 Bonferroni corrections performed on raw data). No PSCs were evident at time 0 or 5 min 760 after break-in in the 2DG+oligo condition, hence the lack of bar. G. Representative 761 sodium currents measured immediately on break-in in the four experimental conditions 762 taken from the time period indicated by the dashed boxes in A-D. Colors correspond to 763 the text labels in A-D. H. Summary of sodium current obtained immediately after break-in 764 and after 5 min of stimulation, normalized to 0 min glucose sodium current. At 0 min, the 765 oligo and 2DG+oligo conditions were significantly smaller than glucose controls (p < 766 0.01, 0.0001 for oligo and 2DG+oligo, respectively; two-way repeated measures ANOVA 767 with Bonferroni corrections performed on raw data) At 5 min there was no significant 768 difference between glucose and the three remaining conditions (p > 0.05 for all 769 conditions, two-way repeated measures ANOVA with Bonferroni corrections performed

770	on raw data). Data are represented as mean \pm SEM. **p \leq 0.01. ***p \leq 0.001. n.s, non-
771	significant. I. Action potential waveform changes resulting from oligo-only treatment.
772	Current-clamp recordings were established after incubations as above, and a family of
773	depolarizing currents (5-10 pA increment, 1200 ms) was injected to elicit a just-
774	suprathreshold action potential. Peak and maximum rate of rise were measured in 27
775	control neurons and 25 oligo-treated neurons. The inset shows an exemplar action
776	potential from one cell in each condition superimposed.
777	
778	Figure 2. Presynaptic vesicle release is also impaired when action potentials and
779	calcium influx are by-passed. A,B. Representative autaptic currents evoked by 100 mM
780	$K^{\scriptscriptstyle +}$ for 3 s, as indicated by the horizontal bar. Red traces indicate the same treatment,
781	but in the presence of a cocktail of postsynaptic receptor blockers (1 μM NBQX, 50 μM
782	bicuculline), revealing non-synaptic currents elicited by K^{+} . C,D. Summary of
783	antagonist-sensitive peak PSC amplitude and total charge transfer for the two conditions
784	(n=12,12; p < 0.001, 0.01, respectively, unpaired, two-tailed Student's <i>t</i> -test with
785	Bonferroni corrections) measured from the antagonist-subtracted currents. E.
786	Representative traces of hypertonic sucrose (0.5 M) used to elicit exocytosis of
787	releasable vesicles from neurons in the glucose control (black trace) and 2DG+oligo-
788	treated (blue trace) neurons. F. Summary of sucrose-elicited charge transfer from
789	glucose-treated (n=5 neurons) and 2DG+oligo-treated (n=5 neurons) cells (p < 0.05 ,
790	unpaired, two-tailed Student's t test). Individual data points represent single neurons,
791	bars represent mean \pm SEM. *p \leq 0.05. **p \leq 0.01. ***p \leq 0.001.
792	
793	Figure 3. Metabolically compromised neurons exhibit high variance in mPSC frequency
794	and display gradual, massive exocytosis. A-C. Representative traces of the indicated
795	experimental conditions, drug concentrations as in Figures 1 and 2. Examples B and C

796	represent different cells in the same condition with different spontaneous mPSC release
	frequency. D. Summary of pooled mPSC frequency in the two conditions, revealing the
797	
798	higher variance in mPSC frequency in 2DG+oligo (n=21, 22 neurons in glucose and
799	2DG+oligo conditions, respectively; p=0.0002, F-test). The difference between
800	conditions was not significantly different (p > 0.05, unpaired, two-tailed Student's t-test
801	with Bonferroni corrections). E-G. Summary of mPSC parameters, separated by
802	mEPSCs (n=9, 7 neurons in glucose and 2DG+oligo conditions, respectively) and
803	mIPSCs (n=8, 8 neurons in glucose and 2DG+oligo conditions, respectively). No
804	significant differences were found on any of the parameters between glucose and
805	2DG+oligo (p > 0.05, unpaired, two-tailed Student's t-test with Bonferroni corrections).
806	H, I. Representative traces documenting the effect of control (glucose) or 2DG+oligo
807	application on evoked and spontaneous release during recordings from a neuron on a
808	multi-neuron island. During recordings in TTX, K^{+} was applied as in Figure 2 to elicit
809	transmitter release from surrounding terminals. Shown are antagonist-subtracted
810	currents at baseline (black) and following 15 min of control or 2DG+oligo application. J.
811	Summary of the change in total antagonist-subtracted (receptor-generated) charge
812	following 15 min incubation. Some depression in control K^* -evoked PSCs (n = 7) was
813	noted. However, 2DG+oligo (n = 6) caused a complete loss of evoked PSC. A repeated
814	measures ANOVA revealed a significant interaction between treatment condition and
815	time (*p<0.01). K, L. mPSC recordings from the neurons shown in H and I. The traces
816	document mPSCs at three 30-s epochs following the baseline $K^{\scriptscriptstyle +}$ application, as labeled.
817	Initially (time =0), mPSC frequency is high in both cells, a residual effect of K^{*}
818	application. M. Summary of mPSC frequency change from 30-s epochs during
819	incubation in 2DG+oligo. Same 13 cells represented in panel J. 2DG+oligo elicited a
820	significantly more sustained mPSC frequency than control (*p < 0.005 main effect of
821	treatment and interaction between time and treatment). N-P. The increased mPSC

822 frequency increase was not the result of interaction with K⁺ stimulation. N,O. Sample 823 records from control and poisoned neurons, without preceding K^{+} stimulation. **P**. 824 Summary data from multiple cells at early and late time points. A two-way, repeated-825 measures ANOVA revealed a main effect of poison and a drug by time interaction 826 (p<0.05). Asterisks indicate Bonferroni corrected post-hoc testing, ****p ≤ 0.0001. n.s, 827 not significant. Individual data points represent neurons, and bars represent mean ± 828 SEM. 829 830

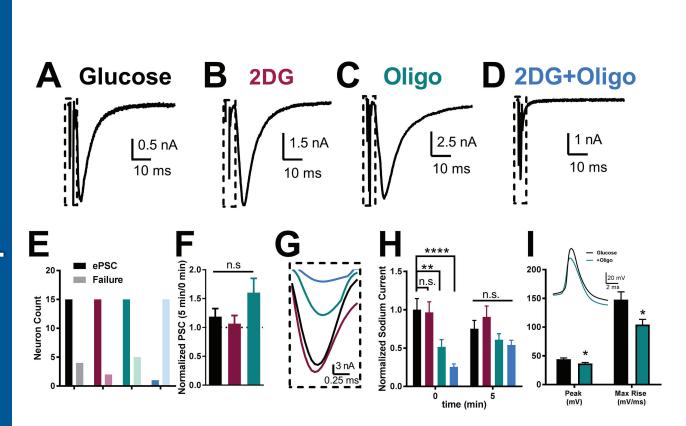
831 Figure 4. Synaptic vesicle cycling is impaired following combined inhibition of glycolysis 832 and oxidative phosphorylation. A. Representative images of presynaptic terminals 833 immunopositive for synapsin I (left, magenta) after induced vesicle cycling in the 834 presence of FM1-43FX (center, green), and merged (right, white) showing the 835 internalization of FM1-43FX during vesicle endocytosis in the presence of glucose. B-F. 836 Example merged images after 20 min pre-incubation in solution containing 45 mM KCI 837 (B), 2DG (C), oligo (D), 2DG+oligo (E), or 0 mM Ca²⁺ (F). G. Summary of cycling (A; n 838 =150 presynaptic terminals for each condition from three replications). Scale bar, 10 µm. 839 *p < 0.05 for all the comparisons between each of the 45 mM KCl, 2DG, and oligo 840 conditions and either the 2DG+oligo or 0 mM Ca²⁺ condition (45 mM KCl vs. 2DG + 841 oligo, p = 0.0127; 2DG vs. 2DG+oligo, p < 0.0001; oligo vs. 2DG + oligo, p = 0.0026; 45 mM KCl vs. 0 mM Ca²⁺, p < 0.0001; 2DG vs. 0 mM Ca²⁺, p < 0.0001; oligo vs. 0 mM 842 843 Ca^{2+} , p < 0.001). The 2DG+oligo condition was not significantly different from the 0 mM Ca²⁺ condition (NS, p = 0.0746, Kruskal-Wallis one-way ANOVA followed by Dunn's 844 845 multiple comparisons test). Data are represented as mean \pm SEM. *p \leq 0.05. n.s, non-846 significant. 847

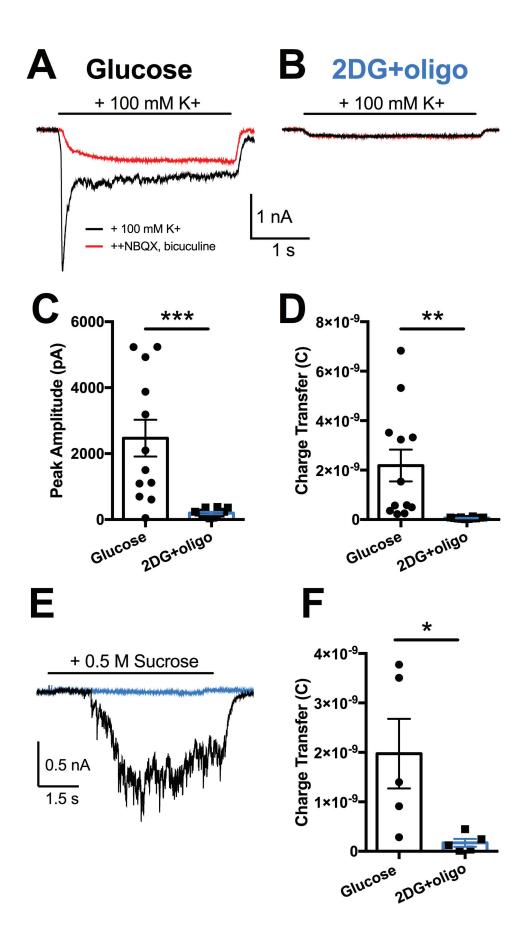
Figure 5. Endocytosis is inhibited during metabolic arrest despite continued exocytosis.
FM1-43FX incubation occurred during 20 min glucose (control), sustained
depolarization, or 2DG+oligo. A. Representative images show merged fluorescence of
synapsin labeling (magenta) and FM1-43 uptake (green). Scale bar 10 $\mu m.~\textbf{B.}~$ Summary
of 150 terminals from 3 independent experiments reveals that while continued cycling is
evident with sustained depolarization, FM1-43 uptake is lost during metabolic arrest,
despite strong, prolonged exocytosis evident in Figure 3 (***p < 0.001)
Figure 6. Oxidative phosphorylation plays a privileged role in recovery from intense
presynaptic activity. A. Schematic and representative data showing autaptic EPSCs
evoked by action potentials in normal glucose solution before (left) and after (right)
vesicle depletion with strong, sustained depolarization with 90 mM K * for 30 sec.
Stimulus action currents in this figure and subsequent figures are blanked for clarity. B ,
C. Representative recovery traces from 2DG (B) and oligo alone (C) treatments,
showing poor recovery from vesicle depletion in the oligo alone condition. D, E.
Summary of recovery of action potential-evoked EPSCs following the depletion protocol
for 2DG compared to glucose control (D, $P > 0.05$, two-way ANOVA), and glucose saline
in the presence (+oligo) or absence (-oligo) of 1 μ M oligomycin (E, p < 0.05 two-way
ANOVA). F, G. Summary of axosomatic sodium currents following the depletion protocol
for 2DG compared to glucose control (F, p > 0.05, two-way ANOVA), and glucose saline
in the presence or absence of oligomycin (G, p > 0.05, two-way ANOVA). Data are
represented as mean \pm SEM. *p \leq 0.05. n.s, non-significant.
Figure 7. Local, on-demand monocarboxylate shuttling does not support the oxidative
phosphorylation required for recovery. A, B. Recovery of evoked EPSCs after 30 sec of
90 mM $\mathrm{K}^{\!\!+}$ from microcultures containing (+astrocyte) or missing (-astrocyte) a local

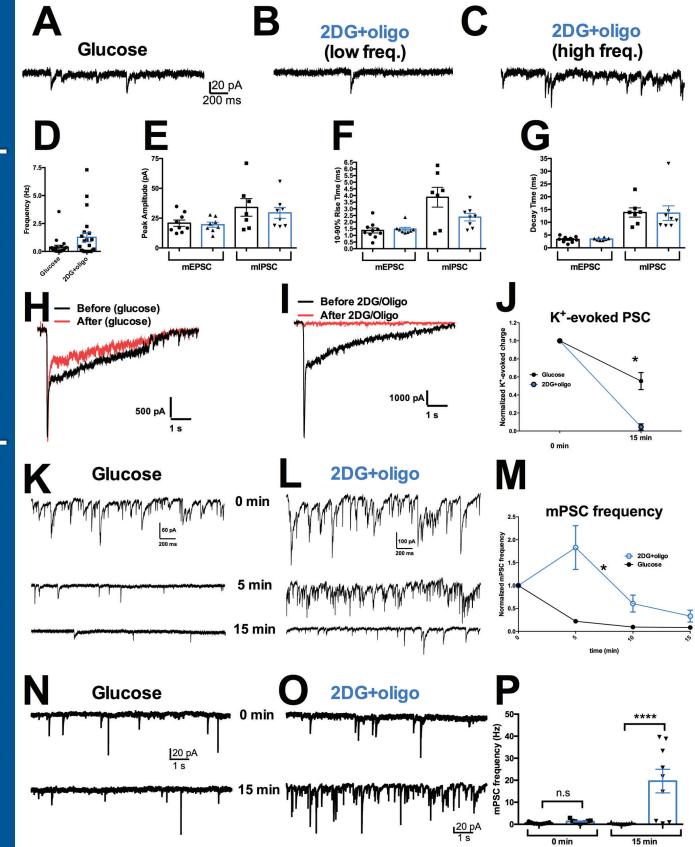
astrocyte bed. Note that both +astrocyte and -astrocyte microcultures were obtained from the same plates. **C.** Summary of recovery following vesicle depletion in +astrocyte (black) and –astrocyte (red) microcultures (p > 0.05, two-way ANOVA). **D.** Summary of recovery of sibling -astrocyte EPSCs incubated in control medium (light red) or in lactate (dark red, 1.5 mM, 15 min; p > 0.05, two-way ANOVA). Data are represented as mean ± SEM. n.s, non-significant.

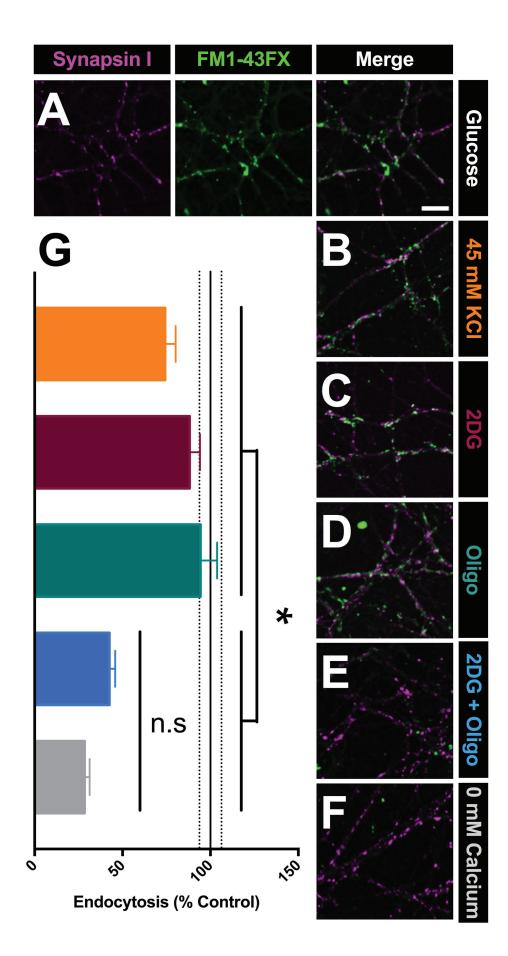
880

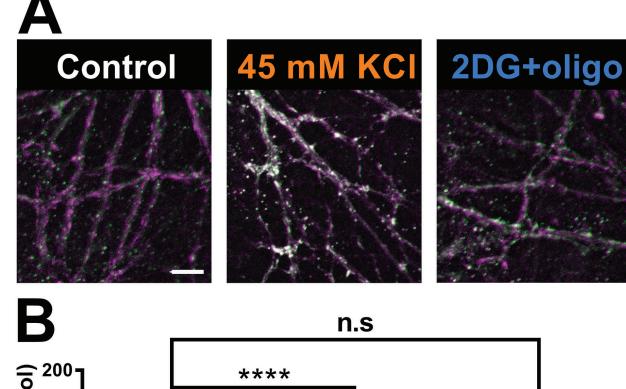
881	Figure 8. Oxidative phosphorylation fueling presynaptic recovery is flexibly supplied by
882	neuronal glycolysis or by monocarboxylate transport. A, B. Representative traces of


883 EPSC recovery following monocarboxylate transport inhibition alone (A; 4-CIN, 100 μM)


884 or combined inhibition of glycolysis and monocarboxylate transport (B; 2DG+4-CIN) for


15 min. C, D. Summary of recovery after 30 sec of 90 mM K⁺ following incubation in 4-


886 CIN alone (C, p > 0.05, two-way ANOVA) or combined 2DG+4-CIN (D, p < 0.05, two-


887 way ANOVA). Data are represented as mean ± SEM. *p ≤ 0.05. n.s, non-significant

