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Pain and stress are protective mechanisms essential in avoiding harmful or threatening

stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either

pain or stress can lead to maladaptive hormonal and neuronal modulations that can result

in chronic pain and a wide spectrum of stress-related disorders including anxiety and

depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway,

both chronic pain and stress disorders affect the rewarding values of both natural

reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids

representing the best therapeutic strategy in pain conditions, they are often misused

as a result of these allostatic changes induced by chronic pain and stress. The kappa

opioid receptor (KOR) system is critically involved in these neuronal adaptations in part

through its control of dopamine release in the nucleus accumbens. Therefore, it is likely

that changes in the kappa opioid system following chronic exposure to pain and stress

play a key role in increasing the misuse liability observed in pain patients treated with

opioids. In this review, we will discuss how chronic pain and stress-induced pathologies

can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We

will also assess how the kappa opioid system may underlie these pathological changes.

Keywords: kappa opioid receptor, dopamine, chronic pain, reward, stress, psychological

INTRODUCTION

In this mini review we will summarize the current understanding of mesolimbic dopamine
signaling adaptations in response to chronic pain and stress and how these modifications can lead
to opioid misuse liability. The dynorphin/kappa opioid receptor (KOR) system is highly involved
in both stress and chronic pain processing. Therefore, it is likely that a shared mechanism drives
these two negative affective states, which in turn alters rewarding/reinforcing properties. Here we
will discuss how pain and stress decrease reinforcer-induced dopaminergic release in the nucleus
accumbens (NAc), the role of dynorphin/kappa system in these pain/stress-induced alterations in
dopaminergic transmission and how this may contribute to opioid abuse in pain patients.
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PAIN AND STRESS DYSREGULATE THE
MESOLIMBIC REWARD PATHWAY

Pain and stress have a primary protective role that is critical for
survival. That said, these states often lead to a drastic decrease
in quality of life when their presence becomes maladaptive, such
as in chronic pain and stress disorders. The transition from
protective to pathological states is likely due to the allostatic
nature of pain and stress. Allostasis enables a physiological
system to maintain stability when exposed to stimuli that induce
changes outside the normal homeostatic range (Koob and Le
Moal, 2001; McEwen and Wingfield, 2003). However, during
prolonged exposure to such stimuli, maintaining physiological
stability can lead to maladaptive, often permanent changes that
can manifest as stress disorders and chronic pain (Narita et al.,
2004; Wang et al., 2011) (for more detail see reviews Elman et al.,
2013; Elman and Borsook, 2016).

Growing evidence has implicated the mesolimbic pathway
in the regulation of stress disorders, such as depression and
anxiety (Nestler and Carlezon, 2006; Elman et al., 2009; Russo
and Nestler, 2013; Polter and Kauer, 2014), as well as in
pain sensation (Baliki et al., 2010), anticipation of analgesia or
placebo-induced analgesia (Scott et al., 2008; Tracey, 2010) and
chronic pain (Elvemo et al., 2015; Martikainen et al., 2015). The
mesolimbic pathway is part of the principle reward-mediating
system in the mammalian brain, which is composed of neurons
projecting reciprocally from the ventral tegmental area (VTA) of
the midbrain to the nucleus accumbens (NAc) in the forebrain.
The dopaminergic neurons emerging from the VTA release
dopamine in the NAc during reinforcers, such as food, social
interaction or drugs of abuse. The NAc, in part through this
dopaminergic transmission, plays a central role in mood-related
and motivated behavior. It plays an important role in encoding
salience, integrating reinforcing and aversive values of stimuli,
and the motivation to seek or avoid these stimuli (O’Doherty,
2004; Montague et al., 2006; Schulz, 2006).

Interestingly, clinical studies link chronic pain conditions
to aberrant functioning of the circuits involved in mood
and motivation, including the mesolimbic pathway (Oluigbo
et al., 2012; Baliki and Apkarian, 2015). Different subsets
of neurons in the VTA can either be activated or inhibited
by painful stimuli, such as a noxious thermal stimulus, tail
pinch or footshock (Becerra et al., 2001; Ungless et al., 2004;
Brischoux et al., 2009; Budygin et al., 2012). This heterogeneous
response of the VTA to painful stimuli is also observed in
the NAc. Indeed, dopamine release can be decreased (Leitl
et al., 2014a), unchanged (Navratilova et al., 2012; Xie et al.,
2014) or increased (Becerra et al., 2001; Becerra and Borsook,
2008; Baliki et al., 2010) depending on the type of pain
and choice of pain paradigm. Studies using predictable pain
stimuli show increased NAc activation that is likely induced
by predictive noxious cues (Baliki et al., 2010; Becerra et al.,
2001; Becerra and Borsook, 2008). Despite clear evidence of
distinct NAc subregions (Thompson and Swanson, 2010; Castro
and Berridge, 2014; Al-Hasani et al., 2015), discrimination
between subregions of the NAc has not been directly investigated
and compared in these studies. However, it is clear that

the relief of ongoing pain and/or termination of a painful
state increases dopamine transmission leading to negative
reinforcement behaviors (Kalivas and Duffy, 1995; Seymour
et al., 2005; Budygin et al., 2012; Navratilova et al., 2012; Xie
et al., 2014). In summary, the dysregulation of dopaminergic
transmission in the presence of chronic pain can lead to an
imbalance in allostasis, which may underlie changes in the
reinforcing properties of rewards. Indeed, patients experiencing
chronic pain show reducedNAc activity and alterations in reward
evaluation, decision making, and motivation tasks (Apkarian
et al., 2004; Verdejo-García et al., 2009; Walteros et al., 2011).
Furthermore, the termination of pain is negatively associated
with NAc activity in chronic pain patients (Baliki et al.,
2010) suggesting a dysregulation of dopaminergic function.
These allostatic changes can alter the encoding of reinforcing
values of further rewards, which in turn may lead to drug
misuse.

Much research has been devoted to the interactions between
stress and drug intake/reward. These studies have clearly
identified interactions between stress, glucocorticoids and
mesolimbic dopaminergic neurons, which all drive vulnerability
to drugs of abuse. Stress, like drugs of abuse, activates the
mesolimbic pathway. Exposure to acute stress, such as restraint
and shock (Copeland et al., 2005; Ling et al., 2009) have been
shown to induce dopamine release in the NAc (Thierry et al.,
1976; Herman et al., 1982; Abercrombie et al., 1989; Kalivas and
Duffy, 1995). Substance P and endogenous opioids, through the
activation of dopaminergic neurons in the VTA, underlie this
stress-induced dopamine release (Bannon et al., 1983; Kalivas and
Abhold, 1987). Recent evidence shows that the stress-induced
dopamine release in the NAc is inhibited when corticotrophin
releasing hormone (CRH) receptor antagonists are injected into
the VTA (Holly et al., 2015), confirming the involvement of
stress-induced hormones in the control of dopamine efflux from
the VTA to the NAc. Importantly, the hypothalamic-pituitary-
adrenal (HPA) axis and glucocorticoid system indirectly alter
dopamine transmission through enhancement of glutamate
activity in the VTA (Härfstrand et al., 1986). Furthermore,
glucocorticoids modulate the transmission of other stress-related
neuropeptides, such as dynorphin, enkephalin, tachykinin, and
neurotensin, particularly in the basal ganglia and nucleus
accumbens (Chao and McEwen, 1990; Ahima et al., 1992;
Schoffelmeer et al., 1996); for review, see (Angulo and
McEwen, 1994). Conversely, chronic stress decreases dopamine
transmission in the NAc (Quintero et al., 2000; da Silva Torres
et al., 2003; Wood, 2004). These changes in dopaminergic tone
following chronic stress are further confirmed by a reduction
in the number of DAT bindings sites (Scheggi et al., 2002).
It has also been shown that chronic drug exposure engages
brain stress systems (Koob, 2013) such as noradrenaline,
adrenocorticotrophic hormone, corticosterone, and CRH (Delfs
et al., 2000; Koob, 2013). These different stress systems converge
in the VTA to modulate its neuronal activity and consequently
dopamine release regulation in the NAc. Activation of brain
reward systems with concomitant activation of the HPA axis
ultimately increases activity of brain stress systems. These actions
may contribute to abuse potential through a negative affective
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state that increases over time and with repeated administration
of drugs.

The distinction between how acute and chronic stress
regulate dopamine transmission is particularly important in pain
perception. Synaptic changes in VTA dopaminergic neurons
occur in chronic stress conditions and these modifications may
underlie allostatic adaptations to the persistence of pain. Such
changes may induce or perpetuate stress-related disorders, such
as anxiety and depression (da Silva Torres et al., 2003; Wood,
2004). It has been shown that prolonged exposure to stress
results in hyperalgesia and it is postulated that this is due to the
attenuation in dopaminergic activity in the NAc (Quintero et al.,
2000; da Silva Torres et al., 2003; Wood, 2004).

Thus, far we have highlighted the critical role of the
mesolimbic dopaminergic pathway in both pain and stress
behaviors, which potentially contribute to changes in the
reinforcing properties of drugs or natural rewards. In the
following section we will discuss the role of the dynorphin/ KOR
system in the regulation of the mesolimbic pathway during these
pathological states.

DOPAMINE AND KAPPA OPIOID SYSTEM
IN CHRONIC PAIN AND STRESS
DISORDERS

It is well documented that positive reinforcement is decreased in
the presence of chronic pain (Shippenberg et al., 1988; Martin
et al., 2004; Cahill et al., 2013; Leitl et al., 2014a,b; Hipólito
et al., 2015). This chronic pain-induced alteration has been linked
to a decrease in reinforcer-induced dopaminergic transmission
(Niikura et al., 2010; Loggia et al., 2014; Hipólito et al., 2015;
McDougle et al., 2015). Despite this evidence only few studies
have assessed the impact of pain on opioid intake in preclinical
studies. Most studies have used a conditioned place paradigm to
test the reinforcing properties of opioids in rodents undergoing
neuropathic or chronic pain (Ozaki et al., 2002; Narita et al.,
2005; Cahill et al., 2013; Taylor et al., 2015). Interestingly,
Wu et al. (2014) revealed that the known reinforcing doses of
morphine were unable to induce a place preference under painful
conditions. However, animals exposed to chronic pain developed
a clear preference for the morphine-paired side when the dose
of morphine was increased (Wu et al., 2014). In line with these
findings, rodents self-administering opioids while experiencing
pain show a decrease in their drug consumption of low doses,
compared to controls (Lyness et al., 1989;Martin and Ewan, 2008;
Wade et al., 2013; Hipólito et al., 2015; Taylor et al., 2015). This
opioid consumption was, however, increased when high doses
were accessible (Hipólito et al., 2015). Together these important
results suggest a rightward-shift in the dose-response for opioid
consumption in conditions of chronic pain. Importantly, this
correlates with modifications in dopaminergic transmission from
the VTA to the NAc (Hipólito et al., 2015). Dopaminergic release
in the NAc is highly controlled by the opioid system, andHipólito
et al. (2015), demonstrated that pain induces a desensitization
of mu-opioid receptors in the VTA during inflammatory pain
(Hipólito et al., 2015). These changes in opioid receptor function

led to decreased heroin- and DAMGO-induced dopamine release
in the NAc.

The KOR system, may also be involved in these changes
in dopamine release. Evidence points toward a role for the
KOR system in many of the changes induced by chronic pain
(Cahill et al., 2014). The dynorphin/KOR system is composed
of prodynorphin peptides and KOR, a seven-transmembrane
spanning Gi/o protein-coupled receptor (GPCR) are expressed
throughout the brain (Le Merrer et al., 2009; Cahill et al., 2014).
KOR are expressed on presynaptic terminals of dopaminergic
neurons in the NAc (Werling et al., 1988; Ebner et al., 2010;
Al-Hasani and Bruchas, 2011). Activation of these receptors
decreases dopamine release (Spanagel et al., 1992; Margolis et al.,
2003) (Figure 1), a phenomenon known to modulate aversive
and negative emotional states (Wadenberg, 2003; Cahill et al.,
2014; Wise and Koob, 2014).

In conjunction with the data showing that inflammatory
pain decreases morphine- and heroin-induced NAc dopamine
release and impairs the rewarding effects of morphine (Narita
et al., 2005; Hipólito et al., 2015), Narita et al. (2005) showed
that pain-induced attenuation in place preference can be
reversed by systemic or local NAc blockade of KOR using
norbinaltorphimine (NorBNI), a highly selective antagonist for
KOR. The aversive component of exogenous KOR stimulation,
measured by place preference conditioning, is also suppressed
when animals are experiencing inflammatory pain conditions
(Shippenberg et al., 1988) suggesting the presence of a kappa

FIGURE 1 | Schematic representation of dynorphin/kappa opioid

receptor system regulation on dopamine release in the nucleus

accumbens in (A) physiological conditions and (B) chronic pain and

stress disorders conditions.
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opioid tone during painful conditions that induces a sustained
dysphoric state (Figure 1).

There is, however, some controversy regarding the role of
the dynorphin/kappa opioid system in regulating the reinforcing
properties of rewards during pain. Some studies showed that
KOR antagonism during pain did not reverse the pain-induced
decrease in intracranial self-stimulation of mesolimbic pathway
in rats (Leitl et al., 2014a,b). These discrepancies could be
explained by the presence of hot and cold spots, two distinct areas
in the NAc shell in which activation of KOR can drive either
aversive or reinforcing behaviors (Castro and Berridge, 2014; Al-
Hasani et al., 2015). Systemic application of KOR antagonists
likely targets both of these discrete areas while microinjections
of KOR agonists/antagonists specifically target discrete areas
within the NAc, yielding opposing behaviors and potential
interpretations.

Dynorphin is considered a mediator of dysphoria-like
behavior and, as a result, a primary mediator of the anti-reward
effects that occur during drug withdrawal, drug craving, and
relapse to drug seeking. During stress, dynorphin activates KOR
on dopaminergic cell bodies and terminals to decrease striatal
dopamine levels and inhibit the firing of dopamine neurons.
In particular, several reports demonstrate that KOR agonists
inhibit dopamine release specifically via action within the NAc
(Shippenberg et al., 2007; Ebner et al., 2010; Graziane et al., 2013;
Tejeda et al., 2013). These stress-induced cellular alterations in
turn produce reinstatement, aversion, and negative affective-like
behavioral states (Land et al., 2008; Bruchas et al., 2011; Graziane
et al., 2013; Tejeda et al., 2013; Van’t Veer and Carlezon, 2013).
Chronic stress leads to prolonged activation of KORs, which
may contribute to reduced dopamine function, and is correlated
with negative affective states (Koob, 2013). Furthermore, stress
is known to increase drug and alcohol self-administration, and
KOR activation potentiates this effect. Blocking KOR, however,
inhibits stress-induced escalations in cocaine self-administration,
alcohol intake, and preference for nicotine (Redila and Chavkin,
2008; Sperling et al., 2010). Prolonged activation of KORs causes
a significant elevation in ICSS thresholds, a behavior indicative of
anhedonia (Chartoff et al., 2016). It is this anhedonia and negative
affective state that motivates increased drug taking (Baarendse
and Vanderschuren, 2012).

In order to understand these mechanisms, recent neural
circuitry studies have focused on projections into the NAc, and
how these may be involved in the modulation of dopamine
during aversive behaviors. Specifically, projections from the
basolateral amygdala (BLA) to the NAc have been shown to
modulate dopamine-mediated neuronal responses to both stress
and opioid reward salience (Lintas et al., 2011, 2012; Stuber
et al., 2011; Namburi et al., 2015). Interestingly, opioid exposure
and withdrawal are associated with marked hypofunction of
dopaminergic transmission (Diana et al., 1995), which may
ultimately drive the need for higher doses of opioid analgesics.
Stress-induced changes in plasticity have been extensively studied
for mood disorders, but these adaptations are poorly understood
in the context of chronic pain, despite evidence that clearly
suggests that stress plays a key role in exacerbating pain
symptomology.

Though this review has primarily focused on the VTA and
the NAc, it is important to acknowledge the role of other brain
regions critical in the regulation of pain, stress and reward
responses. The amygdala is very much involved in the processing
of both positive and negative valence (see review Janak and
Tye, 2015). Specifically the BLA and the central nucleus of the
amygdala play important roles in affective pain in addition to
better studied roles in the processing of mood and fear disorders
and reinforcement (Pare and Duvarci, 2012; Veinante et al.,
2013). More recently it has been shown that habenula to NAc
dopaminergic neurons drive inhibitory anti-reward tone during
stress and pain conditions (Lee and Goto, 2011). The lateral
hypothalamus, a region critical to positive reinforcement also
plays a role in the pain response through sensory mechanisms
(Ezzatpanah et al., 2015). These structures also contribute to
increases in norepinephrine, CRH, vasopressin, hypocretin, and
substance P, driving a stress-like emotional state.

FUTURE DIRECTIONS

The alterations in the dopaminergic system induced by either
pain or stress can generate long-term modifications in the
reinforcing values of opioids and thus lead to misuse. Therefore,
it is important to elucidate how these modifications are
manifested at the cellular level in the mesolimbic pathway.
To date, few studies have assessed the impact of pain and
stress together on opioid intake in rodent models. One critical
factor that is particularly pertinent when studying chronic
pain-induced disorders is experimental/sampling time. Many
preclinical models used previously were deemed as failures
(Yalcin and Barrot, 2014), but this may have been simply due to
timing. For example many of the same studies carried out during
the first 3 weeks of pain induction vs. after the first 3 weeks show
strikingly opposite results (see review Yalcin and Barrot, 2014).

In addition to the importance of improving models of
chronic pain and stress to assess their involvement in misuse
liability, a deeper understanding on the intricate details of
neuromodulation and signaling within key brain structures is
critical. Recently, two studies revealed that KOR activation in
discrete regions of the NAc is not only anhedonic and aversive
but can also be reinforcing (Castro and Berridge, 2014; Al-Hasani
et al., 2015). Remarkably, these studies revealed the presence of
both a hedonic and anhedonic KOR areas in theNAc in bothmice
and rats (Castro and Berridge, 2014; Al-Hasani et al., 2015). These
findings further enhance the complexity of the KOR system in
regulating the rewarding and aversive components of external
stimuli and demands further study for how these newly identified
systems modulate the pain experience.

There is clear co-morbidity between chronic pain and stress-
induced pathologies. Concomitant dysregulation of mesolimbic
dopaminergic transmission is thought to increase opioid abuse
vulnerability. To reduce the abuse potential of opioid analgesics a
better understanding of the interactions between pain and stress
systems is required. In these efforts, stress-related systems, such
as the kappa opioid system have been identified as a key system
in the regulation of dopamine release during pain and stress
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(Figure 1). This system may be crucially involved in driving the
pathological changes that result in misuse and potential fatalities.
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