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Introduction

Atherosclerosis, a disease of blood vessel walls characterized 
by thickening of the artery walls,1)2) is a chronic inflammatory 
disease in which immunological pathways play essential roles.3)4) 
Atherosclerotic plaques contain immune cells, vascular cells (i.e. 
endothelial cells and vascular smooth muscle cells), extracellular 
matrix, cellular debris, and lipids. During the initial stage of plaque 
formation, lipids accumulate in the intima, where these lipids, 
such as low-density lipoprotein (LDL), are modified by oxidation 
or by enzymes to form oxidized LDL (oxLDL), and a chronic 
inflammatory response develops to these modified lipids. Lipid-
laden macrophages known as foam cells are the most prevalent 
cells in early atherosclerotic plaque lesions (fatty streaks), although 
these plaques also contain T cells. Inflammatory cytokines 
produced by the accumulated immune cells, which include T 

cells and antigen presenting cells (APCs), such as macrophages 
and dendritic cells (DC) that present antigenic peptides including 
oxLDL, affect the development of atherosclerosis.5-7) Over time, 
fatty streaks can progress into mature, advanced atherosclerotic 
plaques. Mature plaques generally have abundant accumulation 
of macrophages and T cells. These immune cells are activated 
and produce high levels of inflammatory cytokines such as INF-γ 
and tumor necrosis factor (TNF). When these plaques progress 
into more complex lesions, the lipid core region becomes a large 
necrotic core attributing to the death of macrophages and vascular 
smooth muscle cells (VSMCs)8)9) and elevated levels of matrix 
metalloproteinases (MMPs), which degrade the extracellular matrix, 
leading to weakened fibrous caps.10)11) Moreover, mature plaques 
are more prone to rupture, causing atherothrombotic vascular 
conditions such as a myocardial infarction. However, there are 
presently no established atherosclerotic plaque rupture murine 
models. 

CD137 is a member of tumor necrosis factor receptor 
superfamily (TNFRSF), and its alternative names are TNFRSF9, 
4-1BB, and induced by lymphocyte activation (ILA). CD137 was 
originally discovered on activated T cells, so the best characterized 
function of CD137 is its co-stimulatory activity for activated T 
cells. Interaction of CD137 and its ligand CD137L enhances T cell 
proliferation, effector function, and survival. Among the various 
animal disease models, CD137 was the most investigated target 
molecule in tumor models.12) It has been reported that CD137 is 
expressed on a wide range of tumor cells,13) and both in tumor 
vessel walls and tumor-liver tissue in patients with cancer.14)15) 
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Therefore, many investigators have studied the anti-tumor effects 
of CD137 as a therapeutic agent.

Accordingly, recent studies referred to CD137 and its ligand 
CD137L signaling as a potential biomarker between the immune 
system and cardiovascular disease including atherosclerosis. This 
signaling could be an important therapeutic target for development 
and plaque stability of atherosclerosis. Here, we discuss the 
characteristics of CD137 in immune and vascular cells, and its role 
as the diagnosis biomarker for the development of atherosclerosis.

T cells in atherosclerosis

T helper (Th) cells
T cells are present at all developmental stages of atherosclerotic 

plaques (~10% of plaques); they and their cytokines play 
important roles in disease processes.16)17) The majority of T cells 
in mouse and human atherosclerotic plaque are CD4+ T cells that 
express the αβ T cell receptor (TCR) and have an effector T cell 
phenotype. With respect to cytokine profiles, effector T cells are 
functionally classified as T helper cell type 1 (Th1), Th2, or Th17. It 
has been demonstrated that the Th1 response in atherosclerosis 
shows predominantly pro-atherogenic potential. Th1 cells are 
characterized by their prominent production of pro-inflammatory 
cytokines, including interferon (IFN)-γ, tumor necrosis factor 
(TNF)-α, interleukin-2 (IL-2), and IL-7, which activate macrophages 
as well as other immune cells. The interaction of the T cell receptor 
(TCR) on activated Th1 cells with major histocompatibility complex II 
(MHC II)-binding antigen peptides delivered by APCs synergistically 
induces the bidirectional activation of both cell types.18-20) T cell 
activation is further enhanced by ligand binding to co-stimulatory 
receptors including CD40, CD137, and OX40, which are expressed 
on the cell surface. Enhanced T cell activation by ligand binding to 
co-stimulatory receptors significantly augments cytokine release 
by monocytes/macrophages, further exacerbating inflammation 
and promoting atherosclerosis.21)22) Th2 cells produce Th2-related 
cytokines, including IL-4, IL-5, and IL-13, which are known to 
antagonize Th1 effects and thereby produce atheroprotective 
effects.23)24) However, the role of the Th2 response during the 
development of atherosclerosis remains uncertain, seemingly 
depending on the stage of the atherosclerotic lesion formation 
or the experimental mice model employed. Recently, there has 
been research focused on IL-17-producing Th17 cells, which play 
important roles in the pathogenesis of atherosclerosis. Studies on 
atherosclerosis have led to conflicting results regarding the role of 
Th17 cells in disease development. IL17-A and IL-17A expressing T 
cells (Th17) were significantly increased in ApoE-/- mice compared 

with age-matched C57BL/6 mice. When feeding them a high fat 
diet, Th17 cells were elevated in the aorta. Blockade of IL-17A in 
ApoE-/- mice by use of adenovirus-produced IL-17 receptor A (IL-
17RA) reduced the formation of atherosclerotic plaque. In the 
study using genetically deficient IL-17A and IL-17 RA in ApoE-/- mice, 
IL-17A/IL-17RA axis increase aortic arch inflammation through the 
induction of aortic chemokines and leukocytes recruitment during 
atherogenesis.25)26) In contrast, several studies suggested that IL-
17 production protects against vascular inflammation and plaque 
formation in Ldlr-/- mice, and supplementation with IL-17 reduces 
vascular inflammation and limits development of atherosclerotic 
plaque. And IL-17A mainly produced by Th17 cells plays a anti-
atherogenic role in a myocardial injury.27)28) 

Regulatory T (Treg) cells 
As atherosclerosis is a chronic inflammatory disease, and Th1-

type cytokines dominate in mouse and human atherosclerotic 
plaques, immune homeostasis is crucial for protection and 
stabilization of atherosclerotic plaques. Two anti-inflammatory 
cytokines, interleukin-10 (IL-10) and transforming growth 
factor-β (TGF-β), are counterbalancing cytokines that dampen 
disease activity. Several cell types can produce IL-10 and TGF-β, 
including platelets, M2 macrophages, endothelial cells, vascular 
smooth muscle cells, and regulatory T (Treg) cells. CD4+CD25+ Treg 
cells constitute 5-10% of peripheral CD4+ T cells, which actively 
maintain an immunological tolerance to self-antigens, and control 
the development and progression of atherosclerosis.29-31) Treg cells 
actively suppress activation or effector functions of Teff cells, 
either directly or through effects on APCs. Foxp3, an X-linked 
transcription factor that is highly and specifically expressed in Treg 
cells, is a lineage specification factor and has a critical role in Treg 
suppressive function.32)33) CD4+CD25+ Treg cells are produced in the 
thymus as a functionally mature subpopulation of T cells (natural 
Treg, nTreg) and can also be induced from naïve T cells in the periphery 
(adaptive Treg). Deficiencies in the development or function of 
these cells are associated with severe autoimmune inflammatory 
diseases. Many studies have suggested that Treg cells are important 
regulators in the development of atherosclerosis.34) Many studies 
have suggested that Treg cells were found in both mouse and 
human atherosclerotic plaques and showed that Treg numbers are 
reduced during atherosclerosis. In a mouse study, ApoE-/- mice 
have reduced numbers of Treg cells compared with C57BL/6 mice,35) 
and feeding with a high fat diet also induced a reduction in Treg 
cells compared with mice fed a regular normal chow diet.36) Also, 
deficiency of Treg cells has been reported to increase atherosclerosis 
and plaque inflammation,37)38) and the anti-inflammatory cytokines 
produced from Treg cells, IL-10 and TGF-β, have been shown to 
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attenuate the development of atherosclerosis.39) In many studies 
of Treg cells functioning during this disease, Treg cells showed the 
ability to inhibit both IFN-γ producing Th1 and IL-17 producing Th17 
subsests of Teff cells.40) Treg cells can also inhibit pro-atherogenic 
macrophage inflammation by promoting the differentiation of 
M1 macrophages towards anti-inflammatory M2 macrophages. 
Therefore, expansion of Treg cells enhanced atherosclerotic plaque 
stability by inducing collagen producing M2 macrophages. Treg cells 
reduces the transition of macrophages into foam cells by inhibiting 
lipid accumulation via down-regulation of scavenger receptor 
class A (SR-A), and CD36.41) In addition, overexpression of IL-10 
reduces VLDL, LDL levels in Ldlr-/- mice,34) and adaptive transfer of 
Treg cells also inhibit endothelial activation, leading to reduction of 
leukocytes attachment.42)    

Co-stimulatory molecules and receptors

As stated above, T cells are initially activated by the interaction 
of TCR and MHC-binding antigen peptides delivered by APCs to 
proliferate and differentiate into Teff cells. In contrast to this 
antigen-specific first signal, the second signal for T cell activation is 
antigen-non specific and generated by co-stimulatory molecules. 
At each stage, T cells are activated by the combination of these 
two signals, both delivered by APCs. Dendritic cells (DCs), major 
member of the APCs, can initiate activation of T cells by presenting 
antigens into MHC-binding peptides.43)44) Co-stimulatory pathways 
are necessary for T cell activation; many studies have suggested 
that their absence can lead to functional inactivation of T cells, and 
cause T cell death by apoptosis. Therefore, these co-stimulatory 
signals play a critical role in the induction of an adaptive response, 
and provides a mechanism to communicate immunological danger 
to the adaptive immune system.45)46) Both APCs and adaptive 
immune cells (T and B cells) respond to receptor signaling generated 
by co-stimulatory ligands. B cells also require two types of signals 
to become activated and produce antibodies. B cell binds antigens 
with its BCR (B cell receptor, a membrane-bound antibody) as a first 
signal. And activated T cells generally provide the second signal for 
B cell activation through co-stimulatory secondary signals, leading 
to mount a humoral response.47) The interaction between T cells 
and B cells mediated by this signaling pathway is responsible for 
B cell proliferation and differentiation, immunoglobulin isotype 
switching, and antibody secretion. There are two families of co-
stimulatory molecules, namely the B7 family and the tumor 
necrosis factor superfamily (TNFSF). Several members of the 
TNFRSF, including CD40, LIGHT, CD134 (OX40), and CD137, have 
been shown to carry out important immune modulatory functions 

in atherosclerosis.48-51)

CD137 and CD137L
CD137 is a 30 kDa type I transmembrane glycoprotein, and is a 

well-known T cell co-stimulatory molecule. Expression of CD137 
is activation dependent. CD137 is not detected (<3%) on resting T 
cells or naïve T cells. However, CD137 is upregulated when T cells 
are activated upon stimulation. CD137 has been reported to be 
expressed on most immune cells, including activated CD4+ and 
CD8+ T cells, natural killer (NK) cells, NKT cells, and CD4+CD25+ Treg 

cells. CD137 is also expressed on myeloid cells, such as monocytes, 
neutrophils, mast cells, eosinophils, and dendritic cells.52-54) In 
vascular cells such as endothelial cells and vascular smooth muscle 
cells, CD137 is expressed in an activation-dependent manner. 
CD137L, a ligand for CD137, is a type II membrane glycoprotein of 
the TNF superfamily that is expressed on APCs such as monocytes, 
macrophages, dendritic cells, and activated B cells. In general, 
TNFRSF members are initiators of inflammatory diseases. CD137-
deficient mice have been used in an attempt to define the role of 
CD137 in the immune system and in immune-related diseases. 
CD137-deficient mice have been shown to exhibit an enhanced T 
cell response, but have normal T cell development.55)56) Vinay and 
colleagues also showed that CD137-deficient mice have a reduced 
number of natural killer cells and natural killer T cells, which leads 
to a resistance to lipopolysaccharide-induced shock syndrome.57) 
In a dendritic cell study, CD137 was found to be a crucial survival 
factor58) and to control certain regulatory activities by promoting 
production of retinal dehydrogenase.59) Therefore, CD137 appears 
to play a variety of roles in the immune system.

CD137 and CD137L in atherosclerosis
With regard to the formation of atherosclerotic plaque lesions, a 

few studies have reported that CD137 and CD137L play critical roles 
in this process. For example, Olofsson and colleagues observed 
clear CD137 expression in human atherosclerotic plaques.50) They 
also showed that CD137 was expressed on T cells and endothelial 
cells in human atherosclerotic plaque lesions. CD137 is inducible 
in vascular cells, including endothelial cells and vascular smooth 
muscle cells, in vitro. In clinical studies, CD137 expression is 
known to be involved in the stability of coronary atherosclerotic 
plaques.60)61) Patients with ACS (acute coronary syndromes) 
showed both increased levels of CD137 expression in monocytes 
and soluble CD137 in serum compared with control and SA (stable 
angina) group, deriving a conclusion of positive relationship 
between CD137 expression and increase in serum MMP-3, and 
MMP-9 in patients with ACS. In addition, Patients with ACS 
showed an increase in both soluble and membrane-bound CD137 
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expression, leading to a positive correlation with the CRP level in 
patients with ACS. Therefore, we speculate that CD137 could be a 
typical marker for instability of atherosclerotic plaques in patients 
with ACS. CD137-CD137L interaction induces activation of the 
phospholipase C (PLC) signaling a pathway in human umbilical 
vein endothelial cells (HUVECs).62) Both plasma-soluble CD137L and 
CD137L expression on monocytes were upregulated in patients 
with atherothrombotic stroke63) and acute coronary syndrome.64) 
Based on results of a study using an atherosclerotic mouse model, 
it has been suggested that CD137-CD137L interaction regulates 
atherosclerosis via cyclophilin A.65) Our group previously showed 
that CD137 deficiency reduced the formation of atherosclerotic 
plaque lesions in a mouse atherosclerosis model.51) Briefly, we 
found the molecular mechanisms whereby CD137-CD137L 
interaction induces activation of macrophages and Teff cells 
through bidirectional signaling. Activated Teff cells produce more 
IFN-γ, which leads to recruitment and activation of macrophages. 
The activated macrophages produce more TNF-α and MCP-1, 
which cause endothelial CD137 expression. This endothelial CD137 
signaling induces the production of MCP-1 and cell adhesion 
molecules, probably leading to enhancement of leukocyte 
recruitment to the lesion (Fig. 1).

Advanced, vulnerable plaque 

During the progression of atherosclerosis, lipids and leukocytes 
accumulate in the intima, causing activation of the immune 
system. Inflammatory cytokines produced by the accumulated 
immune cells, including T cells and APCs, affect the development of 
atherosclerosis. Over time, mature plaques develop into vulnerable 
plaques, which are more prone to rupture, causing subsequent 
atherothrombotic vascular conditions such as myocardial infarction. 
Therefore, lesion growth in advanced plaques differs significantly 
from early lesions.

Pathological features of vulnerable plaques
Vulnerable plaques generally have a large necrotic core, which is 

attributed to the death of macrophages and vascular smooth muscle 
cells (VSMCs). Ruptured plaques are characterized by a necrotic 
core with an overlying thin fibrous cap infiltrated by macrophages 
and lymphocytes. The extracellular matrix, which includes collagen 
fibers, normally confers biochemical stability to the fibrous cap 
of the atherosclerotic plaque. Vulnerable plaques have elevated 
levels of matrix metalloproteinases (MMPs), which may degrade 
the extracellular matrix, leading to weakened fibrous caps. These 
proteolytic enzymes released from macrophages in atherosclerotic 

Ⅰ. Normal vessel

Lumen

Ⅱ.  Initiation, progression Ⅲ.  Advanced, vulnerable plague
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Fig. 1. Proposed model for CD137 signaling in the development of mouse atherosclerosis and maintenance of plaque stability therein. Teff: effector T, EC: 
endothelial cell, VSMC: vascular smooth muscle cell, TCR: T cell receptor, MHCII: major histocompatibility complex II, VCAM-1: vascular cell adhesion 
molecule-1, ICAM-1: intercellular adhesion molecule-1, TNF-α: tumor necrosis factor alpha, MCP-1: monocyte chemo-attractant protein-1, IL: interleukin, 
IFN-γ: interferon gamma, MMP: matrix metalloproteinase protein.
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plaques exacerbate matrix degradation, leading to lesion 
instability.66) Previous studies in a mouse model of atherosclerosis 
suggested that levels of MMP-2 and MMP-9 increase during 
atherosclerosis, and that MMP-2 and MMP-9 expression largely 
depends on bone marrow-derived macrophages.67-69) Furthermore, 
it has been suggested that over expression of MMP-2 and MMP-
9 in macrophages induces vulnerable features of plaques.70)71) 
Cathepsins, a subset of cysteine proteinases, have pivotal roles 
during atherosclerosis. Previous mouse studies have suggested 
that cathepsin L stimulates autophagy and inhibits endothelial cell 
apoptosis.72) Deficiency in either cathepsin L or cathepsin S reduces 
the development of atherosclerosis.73)74) Leukocyte cathepsin K is an 
important factor in atherosclerotic plaque vulnerability and vascular 
remodeling.75-77) It has been suggested that the pro-inflammatory 
cytokine IFN-γ secreted from activated T cells (Th1) inhibits the 
synthesis of new collagens by VSMCs in advanced vulnerable 
plaques, and also inhibit the proliferation and expression of 
smooth muscle alpha actin of VSMCs.78)79) In this pro-inflammatory 
condition, VSMCs could be main targets for pro-inflammatory 
mediators, and growth factors like platelet-derived growth factor 
(PDGF) as well as injured vascular endothelial cells (ECs) and VSMCs 
themselves, leading to quiescent healthy VSMCs into a proliferative 
synthetic form, a so called “phenotype change”.80)81)

TNFSF/TNFRSF and vulnerable plaques
A recent study suggested that ligation of CD40 (TNFRSF5) 

expressed on macrophages to CD40L (TNFSF5) expressed on T cells 

causes overproduction of matrix-degrading proteases, including 
MMP-1, 8, and 13, that induce collagen breakdown.82) A recent 
mouse study found that CD40 is involved in atherosclerotic plaque 
stability.48) Deficiency of CD40 reduced atherosclerosis and led 
to a stable atherosclerotic plaque phenotype by inducing plaque 
fibrosis and the M2 macrophage phenotype. However, deficiency 
of CD40 did not affect apoptosis of cells in atherosclerotic plaque 
lesions. In addition, OX40 (TNFRSF4) and its ligand OX40L (TNFSF4) 
in CD4 T+ lymphocytes were highly upregulated,83) and both OX40L 
on platelets and soluble OX40L in serum were increased in patients 
with acute coronary syndrome.84) It has been suggested that LIGHT 
(TNFSF14) and LIGHTR (LIGHT receptor, TNFRSF14) are expressed in 
atherosclerotic plaques, and decrease plaque stability by inducing 
the expression of TNF-α, IL-8, and MMPs.85) Furthermore, activation 
of TNFRSF12 induces MMP expression, leading to destabilization of 
atherosclerotic plaques.86)

CD137 and vulnerable plaques
Olofsson and colleagues50) suggested that CD137 was induced in 

VSMCs by proinflammatory cytokines in atherosclerotic plaques, and 
that stimulation of these VSMCs with CD137L reduced proliferation. 
These results indicated that CD137 signaling may contribute to 
the destabilization of atherosclerotic plaques. Recently, our group 
determined the CD137-mediated molecular mechanisms whereby 
activation of CD137 signaling decreases the stability of advanced 
atherosclerotic plaques via its combined effects on Teff cells, VSMCs, 
and macrophages.87) Briefly, CD137 increases the infiltration 

Immune cells +CD137 signaling in atherosclerotic plaque

Vascular cells
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Fig. 2. Functional effects of CD137 signaling in immune cells and vascular cells involved in atherosclerotic plaques. Teff: effector T, Treg: regulatory T, EC: 
endothelial cell, VSMC: vascular smooth muscle cell, DC: dentritic cell, VCAM-1: vascular cell adhesion molecule-1, ICAM-1: intercellular adhesion 
molecule-1, TNF-α: tumor necrosis factor alpha, MCP-1: monocyte chemo-attractant protein-1, IL: interleukin, IFN-γ: interferon gamma, MMP: matrix 
metalloproteinase protein.
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of Teff cells into plaque lesion sites, resulting in increased IFN-γ 
expression. Teff cell-derived IFN-γ then inhibits collagen synthesis 
in atherosclerotic plaques. Furthermore, CD137 activation leads 
to increased apoptosis of VSMCs, possibly by decreasing the anti-
apoptotic regulator, Bcl-2, and subsequently upregulating a cleaved 
caspase-3. In macrophages, activation of CD137 signaling boosts 
the oxidized low-density lipoprotein-induced expression of MMP-
9 via the p38 mitogen-activated protein kinase and extracellular 
signal-regulated kinase 1/2 signaling pathways (Fig. 1).

Future directions

Many human and mouse studies have indicated that CD137 is 
a pivotal atherosclerosis-promoting factor. It is not surprising 
that CD137 functions not only in T cells but also in most immune 
and vascular cells. Recent studies have begun to address the 
roles of different DC subtypes in mouse atherosclerosis. Choi and 
colleagues evaluated DC populations in the mouse aorta. They 
showed that there are two DC subsets, CD11b+F4/80+CD14+DC-
SIGN+ monocyte-derived DCs (Mo-DCs) and Flt3-dependent 
CD11b-F4/80-CD103+Langerin+ classical DCs (cDCs), in the normal 
mouse aorta. They also found that Flt3-dependent cDCs play a 
protective role in the development of atherosclerosis by regulating 
the homeostasis of Treg cells, via studies using Flt3-/-Ldlr-/- mice.88) 
CD137 signaling has been extensively studied in both DCs and Treg 
cells. It has been suggested that CD137 is expressed on follicular 
DCs (FDC) in germinal centers, and mediates the activation of B 
lymphocytes.89) CD137 increases DC survival, and promotes both 
antigen-specific CD4+ T cell responses90) and the production 
of inflammatory cytokines.91) Studies on the gut mucosa have 
revealed that CD137 regulates retinal dehydrogenase (RALDH) 
expression and activity in DCs.92) Although there have been 
numerous studies investigating the functional effects of CD137 on 
DCs and Treg cells, limited information is available on the precise 
roles of CD137-mediated functions of specific subsets of DCs that 
regulate the homeostasis of Treg cells in a steady state and during 
the development of atherosclerosis. Future studies may elucidate 
the mechanisms of cross-talk between DC subpopulations and Treg 
cells, which constitutes a promising therapeutic target (Fig. 2).
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