

electronic reprint

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

(*OC*-6-13)-Difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V)

Julia Kohl and Dennis Wiedemann

Acta Cryst. (2013). C69, 1482–1484

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(OC-6-13)-Difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V)

Julia Kohl and Dennis Wiedemann*

Institut für Chemie, Technische Universität Berlin, Straße des 17 Juni 135, 10623 Berlin, Germany

Correspondence e-mail: dennis.wiedemann@chem.tu-berlin.de

Received 17 September 2013 Accepted 30 October 2013

The distorted octahedral title complex, $[V^{V}(C_{3}H_{7}O)(C_{3}H_{8}O)_{2}-F_{2}O]$, was synthesized *via* ligand exchange at $[V^{V}O(OiPr)_{3}]$ with aqueous hydrogen fluoride in propan-2-ol and crystallized from (D)chloroform at 238 K after a few weeks. Crystal structure determination shows two C_{1} -symmetric moieties to be present in the asymmetric unit, forming infinite chains along [100] *via* hydrogen bonds. The compound provides the first crystal structure containing the $[VF_{2}O(OiPr)]$ motif.

Keywords: crystal structure; vanadium complexes; alcoholates; hydrogen fluoride; hydrogen bonds.

1. Introduction

The chemistry of precursors for inorganic materials has raised considerable interest in recent years, especially with respect to application in electrodes, optical coatings, and nanomaterials (Avvakumov *et al.*, 2000). The need for soluble or vaporizable compounds has made molecular metal complexes one of the preferred target–substance classes. Exact knowledge of precursor structure is vital for a deeper understanding of deposition, decomposition and optimization potential. Vanadium oxide fluorides – and corresponding lithium compounds – are promising candidates for application as electrode materials in lithium-ion batteries (Mäntymäki *et al.*, 2012). This is based on the fact that theoretical calculations have predicted an increased redox potential through substitution of oxygen with fluorine (Koyama *et al.*, 2000).

We herein describe (*OC*-6-13)-difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V), $[V^VF_2O(OiPr)(iPrOH)_2]$, (I) (see Scheme; the mirror plane in the case of a time-averaged solution structure with ligands freely rotating around the V–O axes is identical with the paper plane), which was discovered serendipitously while synthesizing vanadium-oxide-fluoride precursors from oxidotris(propan-2-olato)vanadium(V), $[VO(OiPr)_3]$. Complex (I) is a propan-2-ol adduct of $[V^VF_2O(OiPr)]$, a compound already described in the literature (Priebsch & Rehder, 1985). Although the latter is easily prepared, no crystal structure of $[VF_2O(OiPr)]$ or a

compound containing this structure motif has been described so far. Roughly similar coordination environments around vanadium are, however, found in some polynuclear μ -pivalato or μ -methanolato complexes like (Et₂H₂N)[Cr^{III}₆(V^{IV}O)₂-F₈(OOCCMe₃)₁₅] (Larsen *et al.*, 2003) and (*n*Bu₄N)₂[V^{IV}₈O₈-(OMe)₁₆(V^{IV}OF₄)] (Spandl *et al.*, 2003).

2. Experimental

2.1. Synthesis and crystallization

All chemicals, except for $[VO(OiPr)_3]$ supplied by Strem Chemicals, were purchased from Sigma–Aldrich and used without further purification.

 $[VO(OiPr)_3]$ (1.70 g, 0.694 mol) was dissolved in propan-2ol (20 ml). To the resulting colorless solution, aqueous hydrofluoric acid (40%, 0.3 ml, 0.7 mol) was added. The yellow solution obtained was stirred for 90 min at room temperature, the color changing to orange. The solvent was evaporated in a medium vacuum, leaving an orange liquid (*ca* 5 ml).

A sample for NMR spectroscopy was prepared from the product (I) (0.01 ml) and (D)chloroform (0.05 ml). After measurement, the sample was stored at 238 K in the dark and produced clear yellow needles after a few weeks.

NMR spectra were recorded on a Bruker ARV 400 at room temperature. Chemical shifts refer to SiMe₄, CCl₃F, and VOCl₃ for ¹H, ¹⁹F, and ⁵¹V, respectively. They were calibrated with respect to the residual proton signal for ¹H (δ = 7.26) or an electronically stored frequency for the other nuclei. The ¹H NMR signal for the hydroxy H atoms was very broad; its integral suffers from problems of limit choice and thus seems too small.

¹H NMR (400 MHz, CDCl₃): δ 5.08 (*s*, 3H, CH), 3.06 (*s*, 1H, OH), 1.39–1.37 (*m*, 18H, CH₃); ¹⁹F{¹H} NMR (188 MHz, CDCl₃): δ 43.6 (*br m*); ⁵¹V{¹H} NMR (105 MHz, CDCl₃): δ –640 (*br m*).

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located on difference Fourier maps. C-bound H atoms were constrained using a riding model $[C-H = 0.98 \text{ Å} \text{ and } U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups, and C-H = 1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methine groups]. Methyl groups were considered rigid but freely rotating. O-bound H atoms were refined with restrained 1,2- [O-H = 0.84 (2) Å, final range: 0.78 (2)-0.81 (5) Å] and 1,3-distances [C-H = 0.98 Å]

	•	
metal	-organic	compounds
incua	- O'Suine	compoando

Table 1

Crystal data	
Chemical formula	$[V(C_{3}H_{7}O)(C_{3}H_{8}O)_{2}F_{2}O]$
$M_{ m r}$	284.21
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
a, b, c (Å)	9.0943 (9), 9.9151 (8), 16.4279 (13)
α, β, γ (°)	97.315 (7), 97.690 (7), 92.324 (7)
$V(\text{\AA}^3)$	1453.5 (2)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.70
Crystal size (mm)	$0.89 \times 0.20 \times 0.14$
Data collection	
Diffractometer	Agilent Xcalibur diffractometer
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Agilent 2012), based on expressions
T T	derived by Clark & Reid (1995)
I _{min} , I _{max}	0.727, 0.920
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10818, 5702, 4505
R _{int}	0.045
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.107, 1.05
No. of reflections	5702
No. of parameters	313
No. of restraints	8
H-atom treatment	H-atom parameters constrained for H on C, refined H-atom coordi- nates only for H on heteroatoms
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.44, -0.53

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and CSM website (Zayit et al., 2011).

Figure 1

A view of the two molecules in the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn with an arbitrary radius. Moieties (a) and (b) are in different orientations.

Table 2

Selected geometric parameters (Å, °).

O12-V1	1.581 (2)	O22-V2	1.586 (2)
O33-V1	2.178 (2)	O63-V2	2.139 (2)
O43-V1	2.2513 (19)	O73-V2	2.253 (2)
O53-V1	1.747 (2)	O83-V2	1.754 (2)
F10-V1	1.8423 (14)	F20-V2	1.8391 (14)
F11-V1	1.8424 (15)	F21-V2	1.8578 (15)
O12-V1-O53	99.80 (10)	O22-V2-O83	98.83 (11)
O12-V1-F10	99.20 (9)	O22-V2-F20	98.47 (9)
O53-V1-F10	97.45 (8)	O83-V2-F20	100.51 (8)
O12-V1-F11	98.62 (9)	O22-V2-F21	98.67 (9)
O53-V1-F11	97.01 (8)	O83-V2-F21	95.14 (8)
F10-V1-F11	154.73 (7)	F20-V2-F21	154.66 (8)
O12-V1-O33	94.30 (10)	O22-V2-O63	96.21 (11)
O53-V1-O33	165.77 (9)	O83-V2-O63	164.06 (10)
F10-V1-O33	78.23 (7)	F20-V2-O63	82.38 (7)
F11-V1-O33	82.71 (7)	F21-V2-O63	77.34 (7)
O12-V1-O43	172.37 (10)	O22-V2-O73	177.56 (9)
O53-V1-O43	87.31 (9)	O83-V2-O73	83.05 (9)
F10-V1-O43	82.49 (7)	F20-V2-O73	79.61 (7)
F11-V1-O43	77.61 (7)	F21-V2-O73	82.67 (7)
O33-V1-O43	78.72 (8)	O63-V2-O73	82.07 (9)

1.86 (4) Å, final range: 1.85 (2)–1.90 (3) Å], as well as constrained displacement parameters $[U_{iso}(H) = 1.2U_{eq}(O)]$.

3. Results and discussion

Experiments to synthesize precursors for the preparation of vanadium oxide fluorides were performed with $[VO(OiPr)_3]$. It was reacted with different amounts of hydrofluoric acid in organic solvents, giving air- and light-sensitive products. Single crystals of the title compound, (I), were obtained *via* reaction of $[VO(OiPr)_3]$ with aqueous hydrofluoric acid in propan-2-ol $(V-HF-H_2O = 3:3:5)$. They formed by recrystallization from (D)chloroform in the refrigerator over a period of a few weeks.

The electroneutral complex (I) crystallized in the triclinic space group $P\overline{1}$ with two molecules in the asymmetric unit (Fig. 1). Coordinative V—O bond lengths (Table 2) fall in the common range for vanadium alcoholates, the bonds to the propan-2-olate ligands being by 0.4–0.5 Å shorter than those to the propan-2-ol ligands (Spandl *et al.*, 2000). Furthermore,

Figure 2

Superposition of the two molecules in the asymmetric unit. The moiety containing V2 (grey) has been inverted. Atoms are drawn with arbitrary radii and C-bound H atoms have been omitted for clarity.

metal-organic compounds

Table 3

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O33-H33\cdots F10^{i}$	0.78 (2)	1.90 (2)	2.674 (2)	171 (3)
$O43-H43\cdots F11^{ii}$	0.80(2)	1.90 (2)	2.690 (2)	168 (3)
$O63-H63\cdot\cdot\cdot F21^{iii}$	0.81(2)	1.85 (2)	2.655 (3)	175 (4)
$O73 - H73 \cdot \cdot \cdot F20^{iv}$	0.80(2)	1.97 (2)	2.765 (2)	175 (3)

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 2, -y + 1, -z + 1.

Figure 3

Hydrogen bonds (grey lines) forming infinite chains in (I), viewed along [010]. [Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y + 1, -z + 1.]

the *trans* effect caused by the strong oxido donor results in an elongation of the opposing bond to a propan-2-ol ligand compared to the other (0.07 Å for V1–O43 and 0.11 Å for V2–O73). The coordination angles (Table 2) differ notably from the ideal values of 90 (*cis*) and 180° (*trans*) for an undistorted octahedron. The continuous symmetry measure (CSM), which 'quantifies the minimal distance movement that the points of an object have to undergo in order to be transformed into a shape of the desired symmetry' (Zabrodsky *et al.*, 1992), corroborates this view: with $S(O_h) = 0.84$ and 0.97 (moieties containing V1 and V2, respectively), the deviation is considerable for a complex of only monodentate ligands.

In the distorted octahedron, the propan-2-ol ligands adopt a *cis* configuration in plane with the oxide and propan-2-olato ligands. The fluoride ligands are *trans*-coordinated in apical

positions with respect to this plane. In solution, this configuration would lead to an achiral molecule in the time average (see Scheme) because of the ligands freely rotating around the V-O axes. As this is not the case in the crystal, a considerable degree of chirality is found in the complex moieties, as defined by continuous chirality measures (CCM): $S(C_s) = 2.93$ and $S(C_s) = 3.99$ for the moiety containing V1 and V2, respectively (Zabrodsky & Avnir, 1995). In the chosen asymmetric unit, the two molecules in the asymmetric unit are of opposite chirality sense; an element of pseudosymmetry was not found. In addition, all organic ligands are twisted around the O-C axis with respect to the other moiety (Fig. 3), making the molecules pseudo-enantiomorphic.

Each molecule takes part in four intermolecular $O-H\cdots F$ hydrogen bonds. Two neighboring moieties – crystallog-raphically identical to the central hydrogen bond – are each connected by donating and accepting one bond (Table 3). In this manner, infinite chains of (I) propagate along [100] (Fig. 3). These interact *via* van der Waals forces by means of the alkyl residues.

The authors thank Ms Paula Nixdorf for collecting the diffraction data.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3138). Services for accessing these data are described at the back of the journal.

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Avvakumov, E., Senna, M. & Kosova, N. (2002). Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies. Boston: Kluwer Academic Publishers.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Koyama, Y., Tanaka, I. & Adachi, H. (2000). J. Electrochem. Soc. 147, 3633– 3636.
- Larsen, F. K., Overgaard, J., Parsons, S., Rentschler, E., Smith, A. A., Timco, G. A. & Winpenny, E. P. (2003). Angew. Chem. Int. Ed. 42, 5978–5981.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Mäntymäki, M., Ritala, M. & Leskelä, M. (2012). Coord. Chem. Rev. 256, 854–877.
- Priebsch, W. & Rehder, D. (1985). Inorg. Chem. 24, 3058-3062.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spandl, J., Brüdgam, I. & Hartl, H. (2000). Z. Anorg. Allg. Chem. 626, 2125– 2132.
- Spandl, J., Brüdgam, I. & Hartl, H. (2003). Z. Anorg. Allg. Chem. 629, 539–544.Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Zabrodsky, H. & Avnir, D. (1995). J. Am. Chem. Soc. 117, 462-473.
- Zabrodsky, H., Peleg, S. & Avnir, D. (1992). J. Am. Chem. Soc. 114, 7843-7851.
- Zayit, A., Pinsky, M., Elgavi, H., Dryzun, C. & Avnir, D. (2011). *Chirality*, 23, 17–23.

supplementary materials

Acta Cryst. (2013). C69, 1482-1484 [doi:10.1107/S0108270113029776]

(OC-6-13)-Difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V)

Julia Kohl and Dennis Wiedemann

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2008), *PLATON*/MOLFIT (Spek, 2009), *PLATON/PLUTON* (Spek, 2009) and CSM website (Zayit *et al.*, 2011).

(OC-6-13)-Difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V)

Crystal data	
$\begin{bmatrix} V(C_{3}H_{7}O)F_{2}O(C_{3}H_{8}O)_{2} \end{bmatrix}$ $M_{r} = 284.21$ Triclinic, $P1$ a = 9.0943 (9) Å b = 9.9151 (8) Å c = 16.4279 (13) Å a = 97.315 (7)° $\beta = 97.690$ (7)° $\gamma = 92.324$ (7)° V = 1453.5 (2) Å ³	Z = 4 F(000) = 600 $D_x = 1.299 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2615 reflections $\theta = 3.5-32.6^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 150 K Coloumn, clear yellow $0.89 \times 0.20 \times 0.14 \text{ mm}$
Data collection	
Agilent Xcalibur diffractometer Radiation source: fine-focus sealed tube, Agilent Enhance Graphite monochromator Detector resolution: 16.3031 pixels mm ⁻¹ ω scans Absorption correction: analytical [<i>CrysAlis PRO</i> (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]	$T_{\min} = 0.727, T_{\max} = 0.920$ 10818 measured reflections 5702 independent reflections 4505 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.045$ $\theta_{\max} = 26.0^{\circ}, \theta_{\min} = 3.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 11$ $l = -17 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.107$ S = 1.05 5702 reflections 313 parameters 8 restraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map Heteroxyz $w = 1/[\sigma^2(F_o^2) + (0.0393P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

electronic reprint

$$(\Delta/\sigma)_{\rm max} < 0.001$$

 $\Delta\rho_{\rm max} = 0.44 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Oxygen-borne hydrogen atoms were refined with restrained 1,2- and 1,3- distances as given by the _restr_distance_[] items. Their U_{iso} were constrained to be $1.2 \times U_{eq}$ of the bearing atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C30	0.8503 (4)	0.3139 (4)	-0.0785 (2)	0.0415 (9)
H30A	0.9509	0.3527	-0.0568	0.062*
H30B	0.7922	0.3827	-0.1038	0.062*
H30C	0.8560	0.2352	-0.1204	0.062*
C31	0.7763 (3)	0.2691 (3)	-0.00849 (18)	0.0251 (7)
H31	0.6740	0.2291	-0.0309	0.030*
C32	0.7665 (4)	0.3851 (4)	0.0593 (2)	0.0416 (9)
H32A	0.7269	0.3497	0.1056	0.062*
H32B	0.7004	0.4519	0.0377	0.062*
H32C	0.8657	0.4288	0.0787	0.062*
C40	0.6679 (4)	-0.3120 (4)	-0.0916 (2)	0.0432 (9)
H40A	0.6861	-0.3383	-0.0358	0.065*
H40B	0.7073	-0.3796	-0.1307	0.065*
H40C	0.5608	-0.3077	-0.1082	0.065*
C41	0.7441 (3)	-0.1747 (3)	-0.09197 (17)	0.0257 (7)
H41	0.8530	-0.1814	-0.0748	0.031*
C42	0.7232 (4)	-0.1247 (4)	-0.17588 (18)	0.0363 (8)
H42A	0.6171	-0.1158	-0.1935	0.054*
H42B	0.7620	-0.1901	-0.2165	0.054*
H42C	0.7769	-0.0359	-0.1720	0.054*
C50	0.5413 (4)	-0.2150 (5)	0.2175 (2)	0.0653 (15)
H50A	0.4750	-0.1436	0.2029	0.098*
H50B	0.5331	-0.2327	0.2741	0.098*
H50C	0.5131	-0.2985	0.1788	0.098*
C51	0.6989 (3)	-0.1691 (3)	0.21226 (17)	0.0265 (7)
H51	0.7284	-0.0867	0.2540	0.032*
C52	0.8081 (4)	-0.2747 (4)	0.2266 (2)	0.0449 (10)
H52A	0.7798	-0.3562	0.1861	0.067*
H52B	0.8089	-0.2984	0.2827	0.067*
H52C	0.9075	-0.2390	0.2202	0.067*
O12	0.8434 (2)	0.0957 (2)	0.18653 (11)	0.0262 (5)
O33	0.8619 (2)	0.1671 (2)	0.02944 (12)	0.0215 (5)
H33	0.910 (3)	0.128 (3)	-0.0003 (15)	0.026*
O43	0.6905 (2)	-0.0755 (2)	-0.03202 (11)	0.0239 (5)
H43	0.6025 (19)	-0.070 (3)	-0.0444 (16)	0.029*
O53	0.7037 (2)	-0.1323 (2)	0.13039 (11)	0.0236 (5)

F10 $0.9527(16)$ $-0.0579(17)$ $0.07061(9)$ $0.0251(4)$ F11 $0.60516(15)$ $0.0997(18)$ $0.0797(10)$ $0.0251(4)$ V1 $0.78003(5)$ $0.01389(5)$ $0.0989(3)$ $0.01807(13)$ C60 $0.7591(4)$ $0.2460(5)$ $0.4456(2)$ $0.0567(12)$ H60A 0.3345 0.2659 0.4548 0.085^* H60C 0.6683 0.2060 0.4212 0.085^* C61 $0.7257(3)$ $0.3742(4)$ $0.37068(19)$ $0.0321(8)$ C61 0.8224 0.4141 0.3566 0.039^* C62 $0.6148(4)$ $0.3516(4)$ $0.2929(2)$ $0.0488(11)$ H62B 0.6530 0.2883 0.2510 0.073^* H62B 0.6530 0.3132 0.3053 0.073^* H62C 0.5985 0.4387 0.2718 0.073^* C70 $0.422(3)$ $0.5670(4)$ $0.73560(19)$ $0.399(9)$ H70A 1.0157 0.4988 0.7273 0.606^* H70B 0.9076 0.5630 0.7893 0.660^* H70B 0.9076 0.5530 0.7893 0.606^* H71 0.7383 0.6088 0.6773 0.029^* C71 $0.8115(3)$ $0.359(4)$ 0.6103 0.077^* H72A 0.6934 0.3302 0.6593 0.077^* H72A 0.6934 0.3981 0.7178 0.029^* C72 $0.739(4)$ $0.398(4)$ 0.0716^* $0.494(10)$ H80A 0.92451 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
F11 0.60516 (15) 0.09967 (18) 0.07997 (10) 0.0251 (4) V1 0.78003 (5) 0.01389 (5) 0.09899 (3) 0.01507 (12) G60 0.7591 (4) 0.2460 (5) 0.4568 (2) 0.0557 (12) H60A 0.8345 0.2659 0.4548 0.085* H60B 0.7966 0.1817 0.3640 0.085* C61 0.7257 (3) 0.3742 (4) 0.37068 (19) 0.0321 (8) H61 0.8204 0.4141 0.3566 0.039* C62 0.6148 (4) 0.3516 (4) 0.2292 (2) 0.04488 (11) H62A 0.5205 0.3132 0.3053 0.073* H62D 0.6530 0.2883 0.2510 0.073* C70 0.9422 (3) 0.5670 (4) 0.73560 (19) 0.0399 (9) H70A 1.0157 0.4988 0.7273 0.660* C71 0.815 (3) 0.5382 (3) 0.6669 (17) 0.0241 (7) H70B 0.9076 0.5382 (3) 0.6773 0.294*	F10	0.95277 (16)	-0.05790 (17)	0.07061 (9)	0.0238 (4)	
V10.78003 (5)0.01389 (5)0.09899 (3)0.01807 (13)C600.7591 (4)0.2460 (5)0.4056 (2)0.0557 (12)H60A0.83450.26590.45480.085*H60B0.79660.18170.36400.085*C610.7257 (3)0.3742 (4)0.37068 (19)0.0321 (8)H610.82040.41410.35660.039*C620.6148 (4)0.3516 (4)0.2529 (2)0.04488 (11)H62B0.65300.28330.25100.073*H62C0.59850.43870.27180.073*C700.9422 (3)0.5670 (4)0.7350 (19)0.0399 (9)H70A1.01570.49880.72730.060*H70B0.90760.56300.78930.660*C710.8115 (3)0.5382 (3)0.66699 (17)0.0211 (7)H710.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72C0.80490.3020.6090 (17)0.0241 (7)H72A0.65290.38590.61920.077*H72C0.80490.3020.65930.077*H72C0.80490.3020.65930.074*H80B0.92711.12970.60780.074*H80B0.92711.12970.60780.036*H82A0.7593 (3)0.5526 (2)0.536 (3)0.66*H82B0.63911.08200.59560.063*H82A<	F11	0.60516 (15)	0.09967 (18)	0.07997 (10)	0.0251 (4)	
C600.7591 (4)0.2460 (5)0.4056 (2)0.0567 (12)H60A0.83450.26590.45480.085*H60C0.66830.20600.42120.085*C610.7257 (3)0.3742 (4)0.37068 (19)0.0321 (8)H610.82040.41410.35660.039*C620.6148 (4)0.3516 (4)0.2929 (2)0.0488 (11)H62A0.52050.31320.30530.073*H62B0.65300.28830.25100.073*H62C0.59850.43870.27180.073*C700.9422 (3)0.5670 (4)0.73560 (19)0.3999 (9)H70A1.01570.49880.72730.060*H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.2214 (7)H710.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*H72D0.80490.33020.65930.074*H80A0.94451.01630.66900.074*H80A0.993 (3)0.9530 (3)0.5622 (2)0.026 (7)H810.79730.828 (4)0.5978 (2)0.036*C720.63930.974*1.01630.6675C720.80490.3020.59560.63*H72D0.60780.074*1.0240.5973H72D0.60780.	V1	0.78003 (5)	0.01389 (5)	0.09899 (3)	0.01807 (13)	
H60A0.83450.26590.45480.085*H60B0.79660.18170.36400.085*H60C0.66830.20600.42120.085*C610.7257 (3)0.3742 (4)0.37068 (19)0.0321 (8)H610.82040.41410.35660.039*C620.6148 (4)0.3516 (4)0.2929 (2)0.0488 (11)H62A0.52050.31320.30530.073*H62B0.65300.28830.25100.073*H62C0.59850.43870.27180.0399 (9)H70A1.01570.49880.72730.060*C700.9422 (3)0.5670 (4)0.73560 (19)0.0399 (9)H70A1.01570.49880.72730.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H71A0.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6557 (2)0.0151 (10)H72A0.65240.33520.66930.077*H72B0.69340.33020.65930.077*H72C0.80490.33020.65930.074*H80B0.92711.12970.60780.0244H80B0.92711.12970.60780.0244H80B0.92711.12970.60780.0266 (7)H810.78870.97260.50360.063*H82A0.57600.04230.94880.5978 (2)0.0266 (7)H810.7930 (2)0	C60	0.7591 (4)	0.2460 (5)	0.4056 (2)	0.0567 (12)	
H60B 0.7966 0.1817 0.3640 $0.085*$ H60C 0.6683 0.2060 0.4212 $0.085*$ C61 0.7257 (3) 0.3742 (4) 0.37068 (19) 0.0321 (8)H61 0.8204 0.4141 0.3566 $0.039*$ C62 0.6148 (4) 0.3516 (4) 0.2929 (2) 0.0488 (11)H62A 0.5205 0.3132 0.3053 $0.073*$ H62B 0.6530 0.2883 0.2510 $0.073*$ H62C 0.5985 0.4387 0.2718 $0.073*$ H62D 0.5985 0.4387 0.2718 $0.060*$ H70A 1.0157 0.4988 0.7273 $0.060*$ H70B 0.9076 0.5530 0.7893 $0.060*$ H70C 0.9878 0.6579 0.7346 0.0241 (7)H71 0.7383 0.6688 0.6773 0.0241 (7)H71 0.7383 0.6688 0.6773 0.0241 (7)H72A 0.6529 0.3352 0.6593 $0.077*$ H72C 0.8049 0.3302 0.6593 $0.077*$ H72C 0.8049 0.3302 0.6593 $0.077*$ H72C 0.8049 0.3302 0.6593 $0.074*$ H80D 0.9271 1.1297 0.6078 $0.074*$ K81 0.7887 0.9788 0.5653 $0.063*$ H82B 0.6391 0.9288 0.5555 $0.063*$ H82B 0.6391 0.9288 0.5555 $0.063*$ H82B <td>H60A</td> <td>0.8345</td> <td>0.2659</td> <td>0.4548</td> <td>0.085*</td> <td></td>	H60A	0.8345	0.2659	0.4548	0.085*	
H60C 0.6683 0.2060 0.4212 $0.085*$ C61 $0.7257 (3)$ $0.3742 (4)$ $0.37068 (19)$ $0.0321 (8)$ H61 0.8204 0.4141 0.3566 $0.039*$ C62 $0.6148 (4)$ $0.3516 (4)$ $0.2292 (2)$ $0.0488 (11)$ H62A 0.5205 0.3132 0.3053 $0.073*$ H62B 0.6530 0.2883 0.2510 $0.073*$ H62C 0.5985 0.4387 0.2718 $0.073*$ C70 $0.9422 (3)$ $0.5670 (4)$ $0.73560 (19)$ $0.3399 (9)$ H70A 1.0157 0.4988 0.2713 $0.660*$ H70B 0.9076 0.5630 0.7893 $0.660*$ H70C 0.9878 0.6579 0.7346 $0.060*$ C71 $0.8115 (3)$ $0.5382 (3)$ $0.66699 (17)$ $0.0241 (7)$ H71 0.7383 0.6088 0.6773 $0.029*$ C72 $0.7339 (4)$ $0.4012 (4)$ $0.6657 (2)$ $0.0515 (10)$ H72A 0.6529 0.3859 0.6192 $0.077*$ C80 $0.9360 (4)$ $1.0323 (4)$ $0.5110 (3)$ $0.4944 (10)$ H80A 0.9445 1.0163 0.6690 $0.074*$ H80B 0.9271 1.1297 0.6078 $0.074*$ H81 0.7887 $0.9788 (4)$ $0.5978 (2)$ $0.423 (9)$ H82A $0.593 (3)$ 0.5555 $0.663*$ H82B 0.6391 1.0820 $0.5978 (2)$ $0.0336 (6)$ C71 $0.9888 (4)$ 0.59	H60B	0.7966	0.1817	0.3640	0.085*	
C61 0.7257 (3) 0.3742 (4) 0.37068 (19) 0.0321 (8) H61 0.8204 0.4141 0.3566 0.039* C62 0.6148 (4) 0.3132 0.3053 0.073* H62A 0.5205 0.3132 0.3053 0.073* H62B 0.6330 0.2883 0.2510 0.0399 (9) C70 0.9422 (3) 0.5670 (4) 0.73560 (19) 0.399 (9) H70A 1.0157 0.4988 0.7273 0.060* H70B 0.9076 0.5630 0.7893 0.060* C71 0.8115 (3) 0.5382 (3) 0.66699 (17) 0.0241 (7) H71 0.7339 (4) 0.4012 (4) 0.6657 (2) 0.0515 (10) H72A 0.5529 0.3859 0.6192 0.077* H72B 0.6934 0.392 0.6593 0.077* H72B 0.5934 0.392 0.6593 0.077* H72B 0.5934 0.392 0.6593 0.077* H72B 0.5930 (3) <td>H60C</td> <td>0.6683</td> <td>0.2060</td> <td>0.4212</td> <td>0.085*</td> <td></td>	H60C	0.6683	0.2060	0.4212	0.085*	
H610.82040.41410.35660.039*C620.6148 (4)0.31320.30530.0488 (11)H62A0.52050.31320.30530.073*H62B0.65300.28830.25100.073*H62C0.59850.43870.27180.073*C700.9422 (3)0.5670 (4)0.73560 (19)0.399 (9)H70A1.01570.49880.72730.060*H70B0.90760.56300.78930.060*H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.3920.65930.077*H72C0.80490.3020.65930.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.074*H80C1.02460.0210.5978 (2)0.423 (9)H82A0.575 (3)0.9858 (4)0.5978 (2)0.423 (9)H82A0.5740.96780.65550.663*C820.6575 (3)0.9858 (4)0.5978 (2)0.423 (9)H82A0.57400.92880.55530.063*C820.6575 (3)0.96780.55550.663*C830.693 (2)0.5506 (2)0.5879	C61	0.7257 (3)	0.3742 (4)	0.37068 (19)	0.0321 (8)	
C62 0.6148 (4) 0.3516 (4) 0.2929 (2) 0.0488 (11)H62A 0.5205 0.3132 0.3053 $0.073*$ H62B 0.6530 0.2883 0.2510 $0.073*$ H62C 0.5985 0.4387 0.2718 $0.073*$ C70 0.9422 (3) 0.5670 (4) 0.73560 (19) 0.0399 (9)H70A 1.0157 0.4988 0.7273 $0.060*$ H70B 0.9076 0.5630 0.7893 $0.060*$ C71 0.8115 (3) 0.5382 (3) 0.66699 (17) 0.0241 (7)H71 0.7383 0.6088 0.6773 $0.029*$ C72 0.7339 (4) 0.4012 (4) 0.6657 (2) 0.0515 (10)H72A 0.6529 0.3859 0.6192 $0.077*$ H72B 0.6934 0.3981 0.7178 $0.077*$ H72C 0.8049 0.3302 0.6593 $0.074*$ H80A 0.9445 1.0163 0.6690 $0.074*$ H80B 0.9271 1.1297 0.6078 $0.074*$ H80C 1.0246 1.0021 0.5876 $0.036*$ C81 0.7993 (3) 0.9530 (3) 0.5652 $0.063*$ H82A 0.5740 0.9288 0.5655 $0.063*$ H82B 0.6591 0.9778 0.6575 $0.063*$ H82B 0.5912 0.7978 0.5555 $0.063*$ H82B 0.593 (2) 0.9788 0.4936 0.3727 (6)H82A 0.5932 0.5756 $0.063*$	H61	0.8204	0.4141	0.3566	0.039*	
H62A0.52050.31320.30530.073*H62B0.65300.28830.25100.073*H62C0.59850.43870.27180.073*C700.9422 (3)0.5670 (4)0.73560 (19)0.0399 (9)H70A1.01570.49880.72730.660*H70B0.90760.56300.78930.660*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*H72C0.80490.33020.66990.074*H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.074*H80C1.02460.99280.50560.036*C810.7993 (3)0.9828 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.55550.063*H82B0.63911.08200.59560.063*H82B0.63911.08200.59560.063*H82B0.63911.08200.59560.063*H82B0.63910.442 (3)0.43103 (14)0.372 (6)H82A0.576 (2)0.4712 (3)0.43103 (14)0.0372 (6)H82B0.63910.5506 (2)0.58	C62	0.6148 (4)	0.3516 (4)	0.2929 (2)	0.0488 (11)	
H62B0.65300.28830.25100.073*H62C0.59850.43870.27180.073*C700.9422 (3)0.5670 (4)0.73560 (19)0.0399 (9)H70A1.01570.49880.72730.060*H70B0.90760.56300.78930.060*H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.6699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*K810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*C820.66780.96780.65550.063*C930.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)C930.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H82B0.65780.9578 (12)0.0260 (5)C840.593 (2)0.5506 (2)0.5878 (12)0.0260 (5)C93<	H62A	0.5205	0.3132	0.3053	0.073*	
H62C0.59850.43870.27180.073*C700.9422 (3)0.5670 (4)0.73560 (19)0.0399 (9)H70A1.01570.49880.72730.060*H70B0.90760.56300.78930.060*H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*H72C0.80490.33020.66900.074*K80A0.9360 (4)1.0323 (4)0.6110 (3)0.4944 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*K80B0.92711.12970.60780.074*C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.663*C820.6798 (2)0.7502 (2)0.41889 (12)0.0336 (6)C630.6762 (2)0.7502 (2)0.41889 (12)0.0336 (6)C630.593 (2)0.5506 (2)0.58788 (12)0.0260 (5) <td< td=""><td>H62B</td><td>0.6530</td><td>0.2883</td><td>0.2510</td><td>0.073*</td><td></td></td<>	H62B	0.6530	0.2883	0.2510	0.073*	
C70 0.9422 (3) 0.5670 (4) 0.73560 (19) 0.0399 (9) $H70A$ 1.0157 0.4988 0.7273 $0.060*$ $H70B$ 0.9076 0.5630 0.7893 $0.600*$ $H70C$ 0.9878 0.6579 0.7346 $0.060*$ $C71$ 0.8115 (3) 0.5382 (3) 0.66699 (17) 0.0241 (7) $H71$ 0.7383 0.0088 0.6773 $0.029*$ $C72$ 0.7339 (4) 0.4012 (4) 0.6657 (2) 0.0515 (10) $H72A$ 0.6529 0.3859 0.6192 $0.077*$ $H72B$ 0.6934 0.3981 0.7178 $0.077*$ $H72C$ 0.8049 0.3302 0.6690 $0.074*$ $H72C$ 0.9360 (4) 1.0323 (4) 0.6110 (3) 0.4944 (10) $H80A$ 0.9445 1.0163 0.6690 $0.074*$ $H80B$ 0.9271 1.1297 0.6078 $0.074*$ $H80C$ 1.0246 1.0021 0.5876 $0.074*$ $K81$ 0.7993 (3) 0.9530 (3) 0.5622 (2) 0.0423 (9) $H81$ 0.7887 0.9726 0.5036 $0.063*$ $K82B$ 0.6391 1.0820 0.5956 $0.63*$ $K82B$ 0.6793 (2) 0.4712 (3) 0.4189 (12) 0.0336 (6) $C81$ 0.5793 (2) 0.4712 (3) 0.4189 (12) 0.0336 (6) $C82$ 0.6775 (2) 0.4742 (3) 0.43103 (14) 0.372 (6) $H80B$ 0.591 (2) 0.5506 (2) 0.58	H62C	0.5985	0.4387	0.2718	0.073*	
H70A1.01570.49880.72730.060*H70B0.90760.56300.78930.060*H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.036*C820.6575 (3)0.9588 (4)0.5978 (2)0.0229 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9588 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.55530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.43103 (14)0.0372 (6)C630.6726 (2)0.4712 (3)0.43192 (19)0.454*C730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*C830.8222 (2)0.8103 (2)0.56364 (11)0.0220 (4)C840.53803 (16)0.63762 (18)0.53906 (10)0.0277	C70	0.9422 (3)	0.5670 (4)	0.73560 (19)	0.0399 (9)	
H70B0.90760.56300.78930.060*H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*K800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*K80C1.02461.00210.58760.074*K810.78870.97260.50360.036*K82A0.575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82B0.63911.08200.59560.063*K82B0.66780.96780.65550.063*K82C0.66780.96780.65550.063*K82B0.593 (2)0.442 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*C830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44093 (9)0.0250 (4)F210.5830 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3) <td>H70A</td> <td>1.0157</td> <td>0.4988</td> <td>0.7273</td> <td>0.060*</td> <td></td>	H70A	1.0157	0.4988	0.7273	0.060*	
H70C0.98780.65790.73460.060*C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*H72C0.80490.33020.65930.077*C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.63*H82B0.63911.08200.59560.063*C920.6793 (2)0.7502 (2)0.41899 (12)0.0336 (6)C630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*C830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.6276 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5) </td <td>H70B</td> <td>0.9076</td> <td>0.5630</td> <td>0.7893</td> <td>0.060*</td> <td></td>	H70B	0.9076	0.5630	0.7893	0.060*	
C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)H710.73830.60880.67730.029*C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)H72A0.65290.38590.61920.077*H72B0.69340.39810.71780.077*H72C0.80490.33020.65930.077*C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.0246 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.59750.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*H82C0.66780.96780.43103 (14)0.0372 (6)H82C0.6793 (2)0.412 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56396 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44093 (9)0.0250 (4)F210.5803 (16)0.67038 (5)0.49047 (3)0.02055 (14)	H70C	0.9878	0.6579	0.7346	0.060*	
H71 0.7383 0.6088 0.6773 $0.029*$ C72 $0.7339 (4)$ $0.4012 (4)$ $0.6657 (2)$ $0.0515 (10)$ H72A 0.6529 0.3859 0.6192 $0.077*$ H72B 0.6934 0.3981 0.7178 $0.077*$ H72C 0.8049 0.3302 0.6593 $0.077*$ C80 $0.9360 (4)$ $1.0323 (4)$ $0.6110 (3)$ $0.0494 (10)$ H80A 0.9445 1.0163 0.6690 $0.074*$ H80B 0.9271 1.1297 0.6078 $0.074*$ H80C 1.0246 1.0021 0.5876 $0.074*$ K81 $0.7993 (3)$ $0.9530 (3)$ $0.5622 (2)$ $0.0296 (7)$ H81 0.7887 0.9726 0.5036 $0.036*$ C82 $0.6575 (3)$ $0.9858 (4)$ $0.5978 (2)$ $0.0423 (9)$ H82A 0.5740 0.9288 0.5653 $0.063*$ H82B 0.6391 1.0820 0.5956 $0.063*$ H82C 0.6678 0.9678 0.6555 $0.063*$ O22 $0.6793 (2)$ $0.7502 (2)$ $0.41889 (12)$ $0.0336 (6)$ O63 $0.6726 (2)$ $0.4712 (3)$ $0.4392 (19)$ $0.045*$ O73 $0.8580 (2)$ $0.5506 (2)$ $0.58798 (12)$ $0.0260 (5)$ H73 $0.918 (3)$ $0.496 (3)$ $0.5773 (17)$ $0.031*$ O83 $0.8222 (2)$ $0.8103 (2)$ $0.56364 (11)$ $0.0240 (5)$ F20 $0.92143 (16)$ $0.62287 (18)$ $0.44693 (9)$ $0.02205 (4)$ <td>C71</td> <td>0.8115 (3)</td> <td>0.5382 (3)</td> <td>0.66699 (17)</td> <td>0.0241 (7)</td> <td></td>	C71	0.8115 (3)	0.5382 (3)	0.66699 (17)	0.0241 (7)	
C72 0.7339 (4) 0.4012 (4) 0.6657 (2) 0.0515 (10) $H72A$ 0.6529 0.3859 0.6192 $0.077*$ $H72B$ 0.6934 0.3981 0.7178 $0.077*$ $H72C$ 0.8049 0.3302 0.6593 $0.077*$ $C80$ 0.9360 (4) 1.0323 (4) 0.6110 (3) 0.0494 (10) $H80A$ 0.9445 1.0163 0.6690 $0.074*$ $H80B$ 0.9271 1.1297 0.6078 $0.074*$ $H80C$ 1.0246 1.0021 0.5876 0.0296 (7) $H81$ 0.7993 (3) 0.9530 (3) 0.5622 (2) 0.0296 (7) $H81$ 0.7887 0.9726 0.5036 $0.036*$ $C82$ 0.6575 (3) 0.9858 (4) 0.5978 (2) 0.0423 (9) $H82A$ 0.5740 0.9288 0.5653 $0.063*$ $H82B$ 0.6391 1.0820 0.5956 $0.063*$ $D22$ 0.6793 (2) 0.7502 (2) 0.41889 (12) 0.0336 (6) $O63$ 0.6726 (2) 0.7502 (2) 0.41889 (12) 0.0336 (6) $O63$ 0.6726 (2) 0.5506 (2) 0.5878 (12) 0.0206 (5) $H73$ 0.918 (3) 0.496 (3) 0.5773 (17) $0.031*$ $O83$ 0.8222 (2) 0.8103 (2) 0.56364 (11) 0.0240 (5) $F20$ 0.92143 (16) 0.62287 (18) 0.44939 (9) 0.02050 (4) $F21$ 0.58303 (16) 0.63762 (18) 0.33906 (10) 0.277 (4) $V2$ </td <td>H71</td> <td>0.7383</td> <td>0.6088</td> <td>0.6773</td> <td>0.029*</td> <td></td>	H71	0.7383	0.6088	0.6773	0.029*	
H72A 0.6529 0.3859 0.6192 0.077^* H72B 0.6934 0.3981 0.7178 0.077^* H72C 0.8049 0.3302 0.6593 0.077^* C80 0.9360 (4) 1.0323 (4) 0.6110 (3) 0.0494 (10)H80A 0.9445 1.0163 0.6690 0.074^* H80B 0.9271 1.1297 0.6078 0.074^* H80C 1.0246 1.0021 0.5876 0.074^* C81 0.7993 (3) 0.9530 (3) 0.5622 (2) 0.0296 (7)H81 0.7887 0.9726 0.5036 0.036^* C82 0.6575 (3) 0.9858 (4) 0.5978 (2) 0.0423 (9)H82A 0.5740 0.9288 0.5653 0.063^* H82B 0.6391 1.0820 0.5956 0.063^* O22 0.6793 (2) 0.7502 (2) 0.41889 (12) 0.0336 (6)O63 0.6726 (2) 0.4712 (3) 0.43103 (14) 0.0372 (6)H63 0.593 (2) 0.5506 (2) 0.5773 (17) 0.031^* O73 0.8580 (2) 0.5506 (2) 0.5773 (17) 0.031^* O83 0.8222 (2) 0.8103 (2) 0.56364 (11) 0.0240 (5)F20 0.92143 (16) 0.62287 (18) 0.430947 (3) 0.02055 (14)V2 0.75177 (5) 0.67038 (5) 0.49047 (3) 0.20255 (14)	C72	0.7339 (4)	0.4012 (4)	0.6657 (2)	0.0515 (10)	
H72B 0.6934 0.3981 0.7178 $0.077*$ H72C 0.8049 0.3302 0.6593 $0.077*$ C80 0.9360 (4) 1.0323 (4) 0.6110 (3) 0.0494 (10)H80A 0.9445 1.0163 0.6690 $0.074*$ H80B 0.9271 1.1297 0.6078 $0.074*$ H80C 1.0246 1.0021 0.5876 $0.074*$ C81 0.7993 (3) 0.9530 (3) 0.5622 (2) 0.0296 (7)H81 0.7887 0.9726 0.5036 $0.036*$ C82 0.6575 (3) 0.9858 (4) 0.5978 (2) 0.0423 (9)H82A 0.5740 0.9288 0.5653 $0.063*$ H82B 0.6391 1.0820 0.5956 $0.063*$ V22 0.6793 (2) 0.7502 (2) 0.41889 (12) 0.0336 (6)O63 0.6726 (2) 0.4712 (3) 0.43103 (14) 0.0372 (6)H63 0.593 (2) 0.5406 (2) 0.5773 (17) $0.031*$ O73 0.8580 (2) 0.8103 (2) 0.56364 (11) 0.0240 (5)H73 0.918 (3) 0.496 (3) 0.5773 (17) $0.031*$ O83 0.8222 (2) 0.8103 (2) 0.56364 (11) 0.0240 (5)F20 0.92143 (16) 0.62287 (18) 0.430947 (3) 0.02055 (14)V2 0.75177 (5) 0.67038 (5) 0.49047 (3) 0.02055 (14)	H72A	0.6529	0.3859	0.6192	0.077*	
H72C0.80490.33020.65930.077*C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.6702 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H72B	0.6934	0.3981	0.7178	0.077*	
C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.074*C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H72C	0.8049	0.3302	0.6593	0.077*	
H80A0.94451.01630.66900.074*H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.074*C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*C920.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.5803 (16)0.67038 (5)0.49047 (3)0.02055 (14)	C80	0.9360 (4)	1.0323 (4)	0.6110 (3)	0.0494 (10)	
H80B0.92711.12970.60780.074*H80C1.02461.00210.58760.074*C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.5634 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.2055 (14)	H80A	0.9445	1.0163	0.6690	0.074*	
H80C1.02461.00210.58760.074*C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H80B	0.9271	1.1297	0.6078	0.074*	
C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)H810.78870.97260.50360.036*C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H80C	1.0246	1.0021	0.5876	0.074*	
H81 0.7887 0.9726 0.5036 0.036^* C82 $0.6575 (3)$ $0.9858 (4)$ $0.5978 (2)$ $0.0423 (9)$ H82A 0.5740 0.9288 0.5653 0.063^* H82B 0.6391 1.0820 0.5956 0.063^* H82C 0.6678 0.9678 0.6555 0.063^* O22 $0.6793 (2)$ $0.7502 (2)$ $0.41889 (12)$ $0.0336 (6)$ O63 $0.6726 (2)$ $0.4712 (3)$ $0.43103 (14)$ $0.0372 (6)$ H63 $0.593 (2)$ $0.442 (3)$ $0.4392 (19)$ 0.045^* O73 $0.8580 (2)$ $0.5506 (2)$ $0.58798 (12)$ $0.0260 (5)$ H73 $0.918 (3)$ $0.496 (3)$ $0.5773 (17)$ 0.031^* O83 $0.8222 (2)$ $0.8103 (2)$ $0.56364 (11)$ $0.0240 (5)$ F20 $0.92143 (16)$ $0.62287 (18)$ $0.44693 (9)$ $0.0250 (4)$ F21 $0.58303 (16)$ $0.67038 (5)$ $0.49047 (3)$ $0.02055 (14)$	C81	0.7993 (3)	0.9530 (3)	0.5622 (2)	0.0296 (7)	
C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)H82A0.57400.92880.56530.063*H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H81	0.7887	0.9726	0.5036	0.036*	
H82A 0.5740 0.9288 0.5653 0.063^* H82B 0.6391 1.0820 0.5956 0.063^* H82C 0.6678 0.9678 0.6555 0.063^* O22 0.6793 (2) 0.7502 (2) 0.41889 (12) 0.0336 (6)O63 0.6726 (2) 0.4712 (3) 0.43103 (14) 0.0372 (6)H63 0.593 (2) 0.442 (3) 0.4392 (19) 0.045^* O73 0.8580 (2) 0.5506 (2) 0.58798 (12) 0.0260 (5)H73 0.918 (3) 0.496 (3) 0.5773 (17) 0.031^* O83 0.8222 (2) 0.8103 (2) 0.56364 (11) 0.0240 (5)F20 0.92143 (16) 0.62287 (18) 0.44693 (9) 0.0250 (4)F21 0.58303 (16) 0.67038 (5) 0.49047 (3) 0.02055 (14)	C82	0.6575 (3)	0.9858 (4)	0.5978 (2)	0.0423 (9)	
H82B0.63911.08200.59560.063*H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.67038 (5)0.49047 (3)0.02055 (14)	H82A	0.5740	0.9288	0.5653	0.063*	
H82C0.66780.96780.65550.063*O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.67038 (5)0.49047 (3)0.02055 (14)	H82B	0.6391	1.0820	0.5956	0.063*	
O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.67038 (5)0.49047 (3)0.02055 (14)	H82C	0.6678	0.9678	0.6555	0.063*	
O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)H630.593 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	O22	0.6793 (2)	0.7502 (2)	0.41889 (12)	0.0336 (6)	
H630.593 (2)0.442 (3)0.4392 (19)0.045*O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	O63	0.6726 (2)	0.4712 (3)	0.43103 (14)	0.0372 (6)	
O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H63	0.593 (2)	0.442 (3)	0.4392 (19)	0.045*	
H730.918 (3)0.496 (3)0.5773 (17)0.031*O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	073	0.8580 (2)	0.5506 (2)	0.58798 (12)	0.0260 (5)	
O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	H73	0.918 (3)	0.496 (3)	0.5773 (17)	0.031*	
F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	083	0.8222 (2)	0.8103 (2)	0.56364 (11)	0.0240 (5)	
F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)	F20	0.92143 (16)	0.62287 (18)	0.44693 (9)	0.0250 (4)	
V2 0.75177 (5) 0.67038 (5) 0.49047 (3) 0.02055 (14)	F21	0.58303 (16)	0.63762 (18)	0.53906 (10)	0.0277 (4)	
	V2	0.75177 (5)	0.67038 (5)	0.49047 (3)	0.02055 (14)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C30	0.050 (2)	0.034 (2)	0.050 (2)	0.0146 (17)	0.0211 (17)	0.0222 (18)
C31	0.0236 (15)	0.0228 (19)	0.0315 (17)	0.0078 (13)	0.0063 (13)	0.0088 (14)
C32	0.055 (2)	0.023 (2)	0.049 (2)	0.0054 (17)	0.0167 (18)	0.0049 (17)
C40	0.055 (2)	0.024 (2)	0.054 (2)	0.0129 (17)	0.0149 (18)	0.0065 (18)

C41	0.0205 (15)	0.029 (2)	0.0268 (16)	0.0079 (13)	0.0045 (12)	-0.0036 (14)
C42	0.0443 (19)	0.035 (2)	0.0290 (18)	-0.0025 (16)	0.0118 (15)	-0.0013 (16)
C50	0.035 (2)	0.116 (5)	0.057 (3)	-0.001 (2)	0.0141 (18)	0.051 (3)
C51	0.0301 (16)	0.030 (2)	0.0209 (15)	0.0016 (14)	0.0077 (13)	0.0069 (14)
C52	0.058 (2)	0.045 (3)	0.0355 (19)	0.0183 (19)	0.0110 (17)	0.0109 (18)
012	0.0270 (11)	0.0274 (14)	0.0234 (11)	-0.0014 (9)	0.0009 (8)	0.0033 (9)
O33	0.0172 (10)	0.0195 (12)	0.0314 (11)	0.0052 (8)	0.0092 (8)	0.0093 (9)
O43	0.0151 (10)	0.0339 (14)	0.0212 (10)	0.0052 (9)	0.0018 (8)	-0.0024 (9)
O53	0.0284 (11)	0.0240 (13)	0.0199 (10)	-0.0013 (9)	0.0071 (8)	0.0057 (9)
F10	0.0195 (8)	0.0253 (11)	0.0294 (9)	0.0065 (7)	0.0067 (7)	0.0095 (8)
F11	0.0165 (8)	0.0263 (11)	0.0337 (9)	0.0043 (7)	0.0069 (7)	0.0036 (8)
V1	0.0152 (2)	0.0193 (3)	0.0207 (3)	0.00082 (19)	0.00436 (19)	0.0043 (2)
C60	0.052 (2)	0.059 (3)	0.056 (2)	0.019 (2)	0.004 (2)	-0.002 (2)
C61	0.0216 (15)	0.033 (2)	0.0394 (19)	-0.0045 (14)	0.0168 (14)	-0.0148 (16)
C62	0.051 (2)	0.060 (3)	0.0324 (19)	0.012 (2)	0.0068 (17)	-0.0066 (19)
C70	0.0351 (18)	0.055 (3)	0.0322 (18)	0.0092 (17)	0.0117 (15)	0.0058 (17)
C71	0.0263 (15)	0.0231 (18)	0.0259 (16)	0.0037 (13)	0.0123 (13)	0.0050 (13)
C72	0.054 (2)	0.040 (3)	0.064 (3)	-0.0123 (19)	0.025 (2)	0.013 (2)
C80	0.042 (2)	0.024 (2)	0.078 (3)	-0.0068 (16)	0.0098 (19)	-0.006 (2)
C81	0.0373 (18)	0.0179 (19)	0.0348 (18)	0.0023 (14)	0.0090 (14)	0.0038 (14)
C82	0.040 (2)	0.028 (2)	0.060(2)	0.0085 (16)	0.0119 (17)	0.0023 (18)
O22	0.0333 (12)	0.0422 (16)	0.0239 (11)	0.0092 (11)	0.0013 (9)	-0.0001 (10)
O63	0.0235 (11)	0.0395 (16)	0.0441 (13)	-0.0110 (10)	0.0187 (10)	-0.0225 (11)
O73	0.0278 (11)	0.0255 (14)	0.0296 (11)	0.0101 (9)	0.0160 (9)	0.0071 (10)
083	0.0247 (10)	0.0200 (13)	0.0275 (11)	0.0000 (9)	0.0064 (8)	0.0011 (9)
F20	0.0202 (8)	0.0280 (11)	0.0276 (9)	-0.0011 (7)	0.0092 (7)	0.0012 (8)
F21	0.0203 (8)	0.0297 (11)	0.0320 (9)	-0.0023 (7)	0.0116 (7)	-0.0073 (8)
V2	0.0173 (2)	0.0216 (3)	0.0223 (3)	0.0003 (2)	0.0054 (2)	-0.0014 (2)

Geometric parameters (Å, °)

1 512 (4)	C60—C61	1 486 (5)
0.9800	C60—H60A	0.9800
0.9800	С60—Н60В	0.9800
0.9800	С60—Н60С	0.9800
1.453 (3)	C61—O63	1.437 (3)
1.510 (4)	C61—C62	1.505 (4)
1.0000	C61—H61	1.0000
0.9800	C62—H62A	0.9800
0.9800	С62—Н62В	0.9800
0.9800	С62—Н62С	0.9800
1.503 (5)	C70—C71	1.515 (4)
0.9800	C70—H70A	0.9800
0.9800	С70—Н70В	0.9800
0.9800	С70—Н70С	0.9800
1.448 (3)	C71—O73	1.436 (3)
1.514 (4)	C71—C72	1.502 (5)
1.0000	C71—H71	1.0000
0.9800	С72—Н72А	0.9800
0.9800	С72—Н72В	0.9800
	1.512 (4) 0.9800 0.9800 0.9800 1.453 (3) 1.510 (4) 1.0000 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.514 (4) 1.0000 0.9800 0.9800 0.9800 0.9800	1.512 (4)C60—C61 0.9800 C60—H60A 0.9800 C60—H60B 0.9800 C60—H60C $1.453 (3)$ C61—C62 $1.510 (4)$ C61—C62 1.0000 C61—H61 0.9800 C62—H62A 0.9800 C62—H62B 0.9800 C62—H62C $1.503 (5)$ C70—C71 0.9800 C70—H70A 0.9800 C70—H70B 0.9800 C71—C72 $1.514 (4)$ C71—C72 1.0000 C72—H72A 0.9800 C72—H72B

C42—H42C	0.9800	С72—Н72С	0.9800
C50—C51	1.503 (4)	C80—C81	1.516 (4)
С50—Н50А	0.9800	C80—H80A	0.9800
C50—H50B	0.9800	C80—H80B	0.9800
С50—Н50С	0.9800	C80—H80C	0.9800
C51—O53	1.443 (3)	C81—O83	1.441 (4)
C51—C52	1.492 (4)	C81—C82	1.515 (4)
C51—H51	1.0000	C81—H81	1.0000
С52—Н52А	0.9800	C82—H82A	0.9800
С52—Н52В	0.9800	C82—H82B	0.9800
С52—Н52С	0.9800	C82—H82C	0.9800
O12—V1	1.581 (2)	O22—V2	1.586 (2)
O33—V1	2.178 (2)	O63—V2	2.139 (2)
O33—H33	0.778 (16)	O63—H63	0.805 (17)
O43—V1	2.2513 (19)	O73—V2	2.253 (2)
O43—H43	0.804 (16)	O73—H73	0.800 (17)
O53—V1	1.747 (2)	O83—V2	1.754 (2)
F10—V1	1.8423 (14)	F20—V2	1.8391 (14)
F11—V1	1.8424 (15)	F21—V2	1.8578 (15)
			· · · ·
C31—C30—H30A	109.5	C61—C60—H60A	109.5
C31—C30—H30B	109.5	C61—C60—H60B	109.5
H30A—C30—H30B	109.5	H60A—C60—H60B	109.5
C31—C30—H30C	109.5	С61—С60—Н60С	109.5
H30A—C30—H30C	109.5	H60A—C60—H60C	109.5
H30B-C30-H30C	109.5	H60B—C60—H60C	109.5
O33—C31—C32	106.8 (2)	O63—C61—C60	110.6 (3)
O33—C31—C30	109.9 (2)	O63—C61—C62	109.6 (3)
C32—C31—C30	112.4 (3)	C60—C61—C62	112.8 (3)
O33—C31—H31	109.2	O63—C61—H61	107.9
C32—C31—H31	109.2	C60—C61—H61	107.9
C30—C31—H31	109.2	С62—С61—Н61	107.9
C31—C32—H32A	109.5	С61—С62—Н62А	109.5
C31—C32—H32B	109.5	С61—С62—Н62В	109.5
H32A—C32—H32B	109.5	H62A—C62—H62B	109.5
C31—C32—H32C	109.5	С61—С62—Н62С	109.5
H32A—C32—H32C	109.5	H62A—C62—H62C	109.5
H32B—C32—H32C	109.5	H62B—C62—H62C	109.5
C41—C40—H40A	109.5	С71—С70—Н70А	109.5
C41—C40—H40B	109.5	С71—С70—Н70В	109.5
H40A—C40—H40B	109.5	H70A—C70—H70B	109.5
C41—C40—H40C	109.5	С71—С70—Н70С	109.5
H40A—C40—H40C	109.5	Н70А—С70—Н70С	109.5
H40B—C40—H40C	109.5	H70B—C70—H70C	109.5
O43—C41—C40	109.7 (2)	O73—C71—C72	110.5 (3)
O43—C41—C42	109.0 (3)	O73—C71—C70	110.6 (2)
C40—C41—C42	113.7 (3)	C72—C71—C70	112.5 (3)
O43—C41—H41	108.1	O73—C71—H71	107.7
C40—C41—H41	108.1	С72—С71—Н71	107.7

C42—C41—H41	108.1	С70—С71—Н71	107.7
C41—C42—H42A	109.5	С71—С72—Н72А	109.5
C41—C42—H42B	109.5	С71—С72—Н72В	109.5
H42A—C42—H42B	109.5	H72A—C72—H72B	109.5
C41—C42—H42C	109.5	С71—С72—Н72С	109.5
H42A - C42 - H42C	109.5	H72A—C72—H72C	109.5
H42B— $C42$ — $H42C$	109.5	H72B—C72—H72C	109.5
С51—С50—Н50А	109.5	C81—C80—H80A	109.5
С51—С50—Н50В	109.5	C81—C80—H80B	109.5
H50A—C50—H50B	109.5	H80A—C80—H80B	109.5
С51—С50—Н50С	109.5	С81—С80—Н80С	109.5
H50A—C50—H50C	109.5	H80A—C80—H80C	109.5
H50B—C50—H50C	109.5	H80B—C80—H80C	109.5
O53—C51—C52	108.4 (2)	O83—C81—C80	107.4 (3)
O53—C51—C50	107.8 (2)	O83—C81—C82	108.7 (3)
C52—C51—C50	114.0 (3)	C80—C81—C82	113.2 (3)
O53—C51—H51	108.9	O83—C81—H81	109.2
С52—С51—Н51	108.9	С80—С81—Н81	109.2
С50—С51—Н51	108.9	С82—С81—Н81	109.2
С51—С52—Н52А	109.5	C81—C82—H82A	109.5
С51—С52—Н52В	109.5	C81—C82—H82B	109.5
H52A—C52—H52B	109.5	H82A—C82—H82B	109.5
С51—С52—Н52С	109.5	С81—С82—Н82С	109.5
H52A—C52—H52C	109.5	H82A—C82—H82C	109.5
H52B—C52—H52C	109.5	H82B—C82—H82C	109.5
C31—O33—V1	126.82 (15)	C61—O63—V2	133.84 (18)
С31—О33—Н33	113 (2)	С61—О63—Н63	108 (2)
V1—O33—H33	105 (2)	V2—O63—H63	118 (2)
C41—O43—V1	133.21 (16)	C71—O73—V2	126.96 (15)
C41—O43—H43	109 (2)	С71—О73—Н73	111 (2)
V1—O43—H43	114.6 (19)	V2—O73—H73	121 (2)
C51—O53—V1	130.57 (19)	C81—O83—V2	129.26 (19)
O12—V1—O53	99.80 (10)	O22—V2—O83	98.83 (11)
O12—V1—F10	99.20 (9)	O22—V2—F20	98.47 (9)
O53—V1—F10	97.45 (8)	O83—V2—F20	100.51 (8)
O12—V1—F11	98.62 (9)	O22—V2—F21	98.67 (9)
O53—V1—F11	97.01 (8)	O83—V2—F21	95.14 (8)
F10—V1—F11	154.73 (7)	F20—V2—F21	154.66 (8)
O12—V1—O33	94.30 (10)	O22—V2—O63	96.21 (11)
O53—V1—O33	165.77 (9)	O83—V2—O63	164.06 (10)
F10—V1—O33	78.23 (7)	F20—V2—O63	82.38 (7)
F11—V1—O33	82.71 (7)	F21—V2—O63	77.34 (7)
O12—V1—O43	172.37 (10)	O22—V2—O73	177.56 (9)
O53—V1—O43	87.31 (9)	O83—V2—O73	83.05 (9)
F10—V1—O43	82.49 (7)	F20—V2—O73	79.61 (7)
F11—V1—O43	77.61 (7)	F21—V2—O73	82.67 (7)
O33—V1—O43	78.72 (8)	O63—V2—O73	82.07 (9)
			110 ((2)
C32 - C31 - O33 - V1	81.7 (3)	C60—C61—O63—V2	118.6 (3)

supplementary materials

C30—C31—O33—V1	-156.1 (2)	C62—C61—O63—V2	-116.6 (3)
C40—C41—O43—V1	98.4 (3)	C72—C71—O73—V2	104.5 (3)
C42—C41—O43—V1	-136.6 (2)	C70—C71—O73—V2	-130.3 (2)
C52—C51—O53—V1	-105.7 (3)	C80—C81—O83—V2	-151.4 (2)
C50-C51-O53-V1	130.4 (3)	C82—C81—O83—V2	85.8 (3)
C51—O53—V1—O12	0.1 (2)	C81—O83—V2—O22	8.3 (2)
C51—O53—V1—F10	100.8 (2)	C81—O83—V2—F20	108.7 (2)
C51—O53—V1—F11	-100.0 (2)	C81—O83—V2—F21	-91.4 (2)
C51—O53—V1—O33	172.1 (3)	C81—O83—V2—O63	-152.2 (3)
C51—O53—V1—O43	-177.1 (2)	C81—O83—V2—O73	-173.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O33—H33…F10 ⁱ	0.78 (2)	1.90 (2)	2.674 (2)	171 (3)
O43—H43…F11 ⁱⁱ	0.80 (2)	1.90 (2)	2.690 (2)	168 (3)
O63—H63…F21 ⁱⁱⁱ	0.81 (2)	1.85 (2)	2.655 (3)	175 (4)
O73—H73…F20 ^{iv}	0.80 (2)	1.97 (2)	2.765 (2)	175 (3)

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1.