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Conjugated, microporous polymers based on a spirobifluorene core

were synthesized by Suzuki polycondensation of the tetra-

bromospirobifluorene with benzene diboronic acid and/or thiophene

diboronic acid. The optical properties (absorption and emission

spectra) and the gas sorption properties (N2 and CO2) are analyzed

and discussed.
Recently, a lot of interest was generated by the possibility to

synthesize conjugated, microporous polymers (CMPs).1–4 Such

polymers combine the specific features of conjugated polymers

(photo- and electroluminescence etc.) with those of microporous

materials (high surface area and pore volume). Consequently,

a number of potential applications have been proposed and sug-

gested, e.g. light harvesting.5 The concept presented by Jiang and

coworkers investigated the possibility of using a CMP as an anten-

na for light. The energy could be transferred to a coumarin deriva-

tive, which showed brilliant emission with enhanced intensity. As

the CMP acts as an antenna, its optical properties determine the

light-harvesting process. Hence, it would be of interest to tune the

range of operation by tuning the optical properties of the CMP. In

analogy to linear conjugated polymers this might be achieved by

copolymerization techniques to obtain polymers with tunable

properties.

Typically, most CMPs are synthesized bymetal-catalyzed coupling

reactions of two distinct monomers, typically amultifunctional cross-

linker and a bifunctional connector. Only very few studies have been

presented thus far where different linkers have been used in copoly-

merizations and their ratio was varied in a continuous fashion.6,7

Typically, the impact of the different comonomers on the observable

porosity was investigated and only limited interest was spent to the

optical properties.

Here we present the synthesis of spirobifluorene-based CMPs by

Suzuki polycondensation of 2,20,7,70-tetrabromo-9,90-spirobifluorene
(Sp, 1) with 1,4-benzene diboronic acid (Ph, 2) and 2,5-thiophene
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diboronic acid (Th, 3). Spirobifluorene was shown to be a suitable

monomer for the synthesis of microporous polymers via the ‘‘intrinsic

microporosity’’ (PIM) concept.3,8–12

The ratio between (2) and (3) was varied over a broad range. The

monomers were reacted such that an equimolar balance of the

functional groups was achieved. For example, one equivalent of (1)

was reacted with 2 equivalents of (2) to yield the material named

SpPh2; one equivalent of (1) was reacted with 1 equivalent of (2) and

with 1 equivalent of (3) to yield the material named SpPh1Th1 and so

on (see Fig. 1 and Table 1).

The synthetic protocol followed the one suggested by Jiang and

coworkers, i.e. using a DMF/water mixture as solvent, potassium

carbonate as base and tetrakis(triphenyle phosphine) palladium(0) as

catalyst.5 It is worth noting that this procedure yielded microporous

conjugated spirobifluorene networks without the need of microwave

irradiation and is superior to the routine we used formerly.3

The chemical identity of the materials was analyzed by Elemental

Analysis, FTIR and solid state CP/MAS 13C-NMR spectroscopy

(See ESI). IR spectroscopy revealed that there was indeed a true

polycondensation. For instance, the band at 810 cm�1 (which can be

ascribed to CH bending vibrations originating from phenyl rings

having two 2 neighboured hydrogen atoms, i.e. the phenyl ring

connecting two spirobifluorenes) decreases in intensity with

increasing thiophene content. On the other hand, a new band arises at

�798 cm�1 at increasing thiophene content, which is most probable

due to CH bending from the thiophene ring.

Analysis of the C–Br region (�1060 cm�1) revealed that the

polymerization did not result in a large number of bromine end-

groups, as the characteristic band at 1060 cm�1 is hardly observed.

Solid state CP/MAS 13C-NMR spectroscopy of the materials did

also support the successful copolymerization. With increasing thio-

phene content an increase of the peaks at�120, 135 and 150 ppmwas

observed. The observed spectra were in qualitative agreement with

those reported by Schmidt et al. for spirobifluorene-bisthiophene

based materials.8

Finally, we determined the C S�1 ratio by elemental analyis. A very

good agreement between the calculated ratio and the found ratio was

observed (Fig. S5, ESI†).

The porosity of the materials was analyzed by means of

nitrogen and carbon dioxide sorption (Fig 2a and S6). It was shown

previously, that CO2 sorption can be an important additional tool

for the characterization of microporous polymers, as it is only

sensitive to micropores.9 Analysis of the gas sorption isotherms was
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 (a) CO2 sorption isotherms obtained at 273 K, (b) solid state UV/Vis absorption spectra (note: the weak absorption feature between 520–600 nm

is due to the instrument setup), (c) PL spectra of the networks, (lexcitation ¼ 350 nm).
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made on the basis of the BET model and DFT and GCMC

approaches.

We found with increasing thiophene content a decrease of the

apparent BET specific surface areas from 800–870 m2g�1 (SpPh2) to

470 m2g�1 (SpTh2). This trend was also observed by CO2 sorption,

which gave specific surface areas ranging from 640 m2g�1 to

490 m2g�1 (NLDFT model). The same trend was observed for the

pore volumes. Table 1 summarizes the porosity data.

The difference in specific surface area might be due to a changed

connection geometry,6 or due to slightly less effective cross-linking in

the case of thiophene bisboronic acid. Typically, lower cross-linking

leads to slightly higher flexibility and consequently to a decrease in

porosity by elastic pore closure. Based on spectroscopic investiga-

tions, this scenario is not dominant, but can also not be excluded.

Finally, it is also possible that there are changes in finer details of

phase separation, when switching from benzene bisboronic acid to

thiophene bisboronic acid. It was shownpreviously, that the details of

phase separation can have severe impact on the observable porosity.13

For some materials a strong swelling upon N2 sorption was

observed, which was manifested by a linear increase of the adsorbed

volume in the intermediate pressure regime together with

a pronounced hysteresis upon desorption (see ESI†). This points to

the fact that the pores have some dynamic character and might have

different sizes in the dry state and the (solvent) swollen state,

respectively.9 Comparing the pore volumes determined by CO2 and

N2 sorption, it can be observed that N2 analysis results in larger pore

volumes. As CO2 can only probe subnanometer sized pores

(R< 0.6 nm), this gives evidence for the presence of some larger pores
Table 1 Porosity data and band gap energies of the networksa

Entry
SBET
[m2g�1]

Vp, N2
a)

[cm3 g�1]
SCO2

[m2 g�1]
Vp, CO2

[cm3 g�1]
band
gap [eV]

SpPh2 800 0.27 640 0.22 2.86
SpPh1.75Th0.25 870 0.33 650 0.21 2.59
SpPh1.25Th0.75 601 0.23 520 0.15 2.55
SpPh1Th1 560 0.2 490 0.18 2.53
SpTh2 467 0.18 488 0.16 2.53

a N2 pore volume determined from total uptake at p/p0 ¼ 0.1.
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together with ultramicropores, which seem to make up the major

porosity. The observed swelling finally indicates that the pores get

even larger when filled with solvent. In summary, all materials

showed significant permanent microporosity.

The optical properties of the polymers were analyzed by solid state

UV/Vis spectroscopy and photoluminescence (PL) measurements

(Fig. 1b and 1c). From the absorption edge of the UV/Vis spectra it

was possible to estimate the band gap energies (Table 1). The blue

fluorescent SpPh2 has a band gap of approx. 2.86 eV, upon intro-

duction of thiophene this can be lowered to ca. 2.5 eV (SpTh2).

Even the introduction of a low degree of thiophene units

(SpPh1.75Th0.25) leads to a significant redshift of the absorption

spectrum. Finally, the absorption spectra of SpPh1Th1 and SpTh2 are

almost identical. As the thiophene units are the low-energy places, i.e.

they will trap the excitons, they will dominate the absorption spectra

already at low concentrations.14 At higher concentrations, they

completely dominate the observed spectrum.

The PL spectra of the thiophene free material SpPh2 shows

maximum emission at l ¼ 450 nm, which is slightly blueshifted to

comparable networks.3 As those have however surface areas which

are lower by a factor of two, it is possible that finer details of the

network morphology can have influences on the emission wave-

length. Upon introduction of 0.25 eq. thiophene (SpPh1.75Th0.25), we

observed a redshift of the spectrum by� 30 nm. A further increase of

the thiophene content results in an additional redshift and the

maximum emission of SpTh2 is found at l ¼ 495 nm. The polymer

emits greenish, which is in agreement with reports on related spi-

robifluorene-thiophene polymers.15 The PL curve of SpTh2 does also

show a shoulder at ca. 513 nm. This effect could only be observed for

SpTh2 and the origin of the shoulder is not perfectly clear. It could

either be due to interchain interaction between thiophene units or due

to the vibronic structure.
Scheme 1 Synthesis of spirobifluorene based CMPs, (i) Pd(PPh3)4,

DMF, K2CO3, 150
�C, 24h.
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Finally, we were interested, whether the pores are accessible and

could be loaded with active materials. As a proof of principle, we

loaded the SpTh2 network with Rhodamine 6G (R6G). At high

loadings (see ESI† for details), the resulting polymer powder had an

orange colour. Upon irradiation (lexcitation ¼ 350 nm), dark green-

yellow fluorescence was observed by eye, although this was not very

strong. The PL spectrum showed a new shoulder at around 560 nm,

while the shape of the peak at 490 (combined with the shoulder at

513 nm) changed significantly. At low loadings, the polymer powder

had a bright greenish-yellow colour. Upon irradiation, the resulting

PL spectrum was in between that of the parent network and the one

with high loading of R6G, i.e the intensity of the new shoulder at 560

nm was less intense compared to high R6G loadings. This is in

accordance with reports by Jiang et al., where the PL intensity of the

dye loaded in the network also increased with increasing concentra-

tion.5 Interestingly, themaximumof themost intense emission peak is

slightly blue-shifted upon R6G introduction. Also, we observe

a change in the shape of the broad emission peak at 500 nm and the

shoulder at 513 nm becomes clearer. The photophysical details of the

network-dye interactions, i.e. whether re-absorption is active or

whether the network acts as antenna is not yet clarified, but will be

subject to further studies.

In summary, we have presented the possibility of band gap tuning

of CMPs by simple copolymerization of tetrabromospirobifluorene

with various diboronic acids. The PL emission maximum could be

shifted by ca. 50 nm by replacing benzene diboronic acid with thio-

phene diboronic acid, while maintaining permanent microporosity.

The pores are accessible for guests as exemplarily demonstrated by

loading with Rhodamine 6G. Future research targets the use of these

materials in sensing applications, making use of the optical activity

and the pronounced porosity.
1952 | Polym. Chem., 2011, 2, 1950–1952
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