
Two-step synthesis of Fe2O3 and Co3O4 nanoparticles: towards a general
method for synthesizing nanocrystalline metal oxides with high surface
area and thermal stability{

Junjiang Zhu,*ab Xiaoying Ouyang,c Ming-Yung Lee,b Ryan C. Davis,c Susannah L. Scott,*bc Anna Fischera

and Arne Thomasa

Received 2nd August 2011, Accepted 11th October 2011

DOI: 10.1039/c1ra00552a

A simple, two-step method using activated carbon (AC) as a

support/scaffold was developed to synthesize metal oxide

nanocrystalline materials (NCMs). In the first step, metal nitrate

precursors were deposited by wet impregnation onto the AC,

then heated in argon at 350 uC to immobilize the metal oxides. In

the second step, the AC was removed by calcination in air at

500 uC, to obtain the unsupported metal oxide NCMs.

Characterization by N2-sorption isotherms, TGA, XPS and

EXAFS reveals that the metal oxide particles are crystalline and

nanometre-sized, with surface areas up to 148 m2 g21. Moreover,

the TEM images show particle sizes in the range 5–10 nm, even

after calcination at 500 uC for 2 h. Their thermal stability and high

surface areas, together with the nanometre-sized structures, make

them promising materials for catalytic applications (e.g., CO

oxidation).

Introduction

Nanocrystalline materials (NCMs) have attracted much attention in

recent years because of a wide variety of potential applications,

including catalysis, optics and chemical sensors.1–8 In catalysis, it is

generally believed that, in addition to enhanced surface areas, NCMs

often display interesting and unexpected properties that are

qualitatively different from those of the corresponding bulk

materials, or of the atomic or molecular species from which they

are derived.9 One well-known example is the use of gold for low

temperature CO oxidation: bulk gold shows no activity, while gold

nanoparticles (NPs) show high reactivity even at 77 K.10–12

Defining and understanding the origin of the novel properties of

NCMs has stimulated much research, and consequently, methods to

prepare them have been extensively reported, both for metal

oxides13–18 and for noble metals.19–23 Compared to the preparation

of noble metal-based materials, the synthesis of metal oxide NCMs

can be more complex, because some metals are very reactive toward

oxygen, and agglomeration of oxide NPs occurs readily at moderate

temperatures. Straightforward, versatile routes for the synthesis of

thermally stable metal oxide NCMs are therefore of considerable

practical interest.

Activated carbon (AC) has long been recognized as a good

support for both noble and base metal catalysts, due to its

microporosity, multifunctional surface groups and high surface

area.24–28 For a noble metal such as gold, Prati et al.29,30 found that

when Au3+ is first reduced to Au0 in the presence of polyvinyl

alcohol (PVA) and then immobilized on AC, small gold particles

(y6 nm) can be obtained after removing the PVA at 350 uC. We

found that very small Co3O4?NPs (y5 nm) are obtained when a

metal nitrate-impregnated AC is heated in argon at 350 uC.31,32 AC

has also been used to prepare unsupported metal oxides with high

surface areas and designed structures.33–39 For example, Schüth

et al.37 obtained metal oxides with surface areas ranging from 50 to

200 m2 g21 by calcining metal nitrates deposited on AC in air at 450–

800 uC. They reported better results for some metals (e.g., Cu) by

heating in the presence of a limited amount of air, and suggested that

slowing metal nitrate-catalyzed AC combustion reduces particle

sintering. These observations inspired us to prepare metal oxide NPs

using a prior immobilization step. By removing the AC scaffold in

air in a subsequent step, we hoped to obtain unsupported, metal

oxide NCMs with small particle sizes and high surface areas.

Results and discussion

For preparation of the metal oxide NCMs, a metal nitrate was first

deposited by wet impregnation onto a microporous AC. The

resulting material (denoted M/AC-1, where M is Co, Fe) was then

dried and heated in a stream of argon at 350 uC, to generate and

immobilize the metal oxide NPs on AC, denoted M/AC-2.

Subsequently, the solid was allowed to cool to room temperature

and heated again to 500 uC in air for 2 h, to remove the AC scaffold

and recover the unsupported, nanocrystalline metal oxide.
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Fig. 1(A) and (B) show the thermal behavior of the materials at

each stage during their synthesis, as monitored by thermogravimetric

analysis (TGA). AC is thermally stable up to approx. 560 uC in

oxygen (see Fig. S1{), and as expected no appreciable weight loss was

observed for the AC at T , 500 uC in the inert atmosphere (curve

‘‘a’’). Co/AC-1 (curve ‘‘b’’) shows a stepwise weight loss during

thermal treatment in the inert atmosphere. Stage (1), at T , 120 uC,

is ascribed to loss of water and other adventitious adsorbates

acquired during sample storage; stage (2), at 120 , T , 180 uC, is

caused by transformation of [Co(OH2)6](NO3)2 introduced in the

impregnation step to [Co3[NO3]2(OH)4]; stage (3), at 180 , T ,

240 uC, corresponds to the decomposition of [Co3[NO3]2(OH)4] to a

cobalt oxide (Co3O4).
31 These transformations are similar to those

observed previously in the synthesis of supported NiO nanoparti-

cles.2 After formation of the supported metal oxide, the AC scaffold

was removed in O2, as represented by curve ‘‘c’’. It shows that (i) no

appreciable weight loss occurs at 120 , T , 240 uC, confirming that

most of the nitrate was removed during the first thermal treatment

step; and (ii) AC is fully removed at T , 400 uC, suggesting that the

final product calcined at 500 uC should not contain any residual AC

scaffold. This is further evidenced by the TGA behavior of the

product (curve ‘‘d’’), which shows a weight loss of less than 5% at T

= 510 uC in O2. Similar changes were observed for M = Fe, except

that the temperature required for complete removal of the AC

scaffold (curve ‘‘f’’) was slightly higher than 500 uC. Nevertheless, the

minor weight loss observed for Fe2O3 (,5%, curve ‘‘g’’) suggests that

AC had been completely removed from the final product.

Thus the characterization and reactivity results below are

considered to pertain exclusively to the unsupported metal oxides.

By comparing the weight losses of samples Co/AC-2 and Fe/AC-2

with that of the unmodified AC, we estimate the loadings of Co3O4

and Fe2O3 prior to calcination to be 22 and 14 wt%, respectively.

Results obtained by X-ray photoelectron spectroscopy (XPS)

confirm our conclusions based on TGA measurements. Fig. 1(C)

shows that the N 1s signal is no longer present after the sample has

been heated in Ar at 350 uC for 2 h, indicating that the metal nitrate

decomposes completely to the metal oxide. Also, the intensity of the

C 1s signal is strongly attenuated in the final product compared to

the sample prior to calcination, indicating that AC is indeed removed

in the second step. (The weak residual C 1s signal observed for the

metal oxide arises due to the carbon tape used to hold the sample in

place.) The small amount of S is presumably due to impurities in the

AC scaffold: ca. 11 wt% non-combustible impurities are present

according to the TGA of AC recorded in air, and may include S, Al,

Si, etc.

In the powder X-ray diffraction (XRD) patterns of the metal

oxide NCMs, the reflections are very weak and broad (see Fig. S3{),

complicating their assignment and implying that the particle sizes are

very small. This agrees with observations made previously for AC-

supported cobalt oxide (Co3O4/AC), in which peak intensities were

very low due to the small particle size (ca. 5 nm).31 Thus, we infer

that the metal oxide NPs formed during the first preparation step do

not grow appreciably when the AC support is removed. Low peak

intensities could also indicate that the metal oxides are in an

amorphous state, however, this possibility can be excluded since well-

resolved lattice fringes are observed in the high resolution

transmission electron microscopy (HR-TEM) images (Fig. 2(C)),

typical of a crystalline structure. Consequently, phase assignment

was carried out using extended X-ray absorption fine structure

(EXAFS). The results shown in Fig. 1(D) and (E) are consistent with

spinel Co3O4
40 and a-Fe2O3

41 for the cobalt and iron oxides,

respectively. The ratio of peak heights for the M–O and M–M

scattering paths is a reflection of the particle size.42 We estimate that

the Fe2O3 particles are in the range 2–10 nm, by comparison to

Fig. 1 TGA curves for Co-containing (A) and Fe-containing samples (B), as well as XPS spectra for the Co-containing samples (C), before and after removal

of the AC scaffold; R-space EXAFS at the Co K-edge for unsupported Co3O4_NSMs (D), and at the Fe K-edge for unsupported Fe2O3_NSMs (E), and N2-

sorption isotherms for Co3O4_NSMs and Fe2O3_NSMs (F). ‘‘M/AC-1’’ and ‘‘M/AC-2’’ represent materials before and after treatment in the inert atmosphere,

respectively.
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spectra reported by Kitagami et al.43 These observations confirm our

idea that the two-step synthesis method leads to nanometre-sized,

crystalline metal oxide particles.

N2-sorption isotherms were also recorded, in order to assess the

porosity of the unsupported metal oxides (see Fig. 1(F)). Both show

type II isotherms with a hysteresis loop, indicating a porous structure

(presumably due to interparticle porosity). The surface areas

calculated by the Brunauer–Emmett–Teller method are 60 and

148 m2 g21 for Co3O4 and Fe2O3?NCMs, respectively. These high

surface areas are consistent with the porous structures, as shown by

Fig. 2(B)).

The morphology and average particle size of the metal oxide

NCMs are directly accessible from the TEM images shown in Fig. 2.

For the AC-supported metal oxides obtained in the first step, the

particles are very small and difficult to see in bright-field mode,

therefore the dark-field mode was also used. Fig. 2(A) shows that the

metal oxide particles are highly dispersed, and that the particle size is

generally ¡5 nm. A few large particles (,15 nm) are also present.

They are attributed to concentration of the deposited metal ions on

the support surface during the drying process, which is an

unavoidable consequence of the impregnation method. After

removal of the AC scaffold, agglomerated metal oxide nanoparticles

are observed, however the small particle sizes from 5 to 10 nm show

that they have not sintered to a larger extent. This is also seen by the

porous morphology evident in Fig. 2B even after calcination at

500 uC for 2 h. This suggests that metal oxide NCMs prepared by

this route have high thermal stability. The porous structure and small

particle size are in agreement with those inferred by N2-sorption

isotherms and EXAFS (Fig. 1).

These results indicate that AC-supported metal oxide NCMs

formed by heating in an inert atmosphere during the first synthesis

step retain their structure when the AC support is removed in the

second step. In order to demonstrate the advantage of prior metal

oxide formation and immobilization by the two-step method,

Fe2O3?NPs were also prepared using the one-step method (direct

calcination of the supported metal nitrate) according to Schüth

et al.37 The product is denoted as ‘‘Fe2O3_NCM_I’’, and its

properties are compared with those of Fe2O3_NCM_II (prepared

using the two-step method) in Table 1. Clearly, the latter has a higher

surface area and pore volume, as well as a smaller particle size,

indicating that immobilization in an inert atmosphere is indeed

beneficial for the preparation of unsupported metal oxide NPs with

high surface area and porosity. Presumably decomposition of the

nitrate ions in the absence of air limits the exotherm in the

subsequent calcination step, as proposed by Schüth et al.37 The

resulting metal oxide NPs dispersed on AC are stable enough to

resist agglomeration.

The high calcination temperature (500 uC) suggests that the

NCMs may be robust enough for catalytic applications that require

elevated temperatures, which represent a challenge for NCMs.

Furthermore, the higher surface areas of metal oxides obtained using

the two-step synthesis method described here should be beneficial for

their catalytic activity. The catalytic performance of Fe2O3_NCM_II

was studied in CO oxidation, a reaction that is often required to

operate at elevated temperatures.44,45 For comparison, the catalytic

performance of ‘‘Fe2O3_NCM_I’’ and an additional Fe2O3 sample

prepared by an organic solution method without the AC scaffold

(denoted as Fe2O3_Org, see SI{) were also studied. The results are

shown in Fig. 3.

Although the temperatures for onset of reactivity are similar for all

three iron oxide catalysts (ca. 200 uC), the conversion increases most

rapidly with temperature for Fe2O3_NCM_II, and at 330 uC, the

CO2 yield (100%) is far higher than for ‘‘Fe2O3_NCM_I’’ or

Fe2O3_Org (both ca. 50%). Comparison of the TEM images for

Fe2O3_NCM_II before and after its use in CO oxidation shows no

appreciable change in the particle size (Fig. S6{), confirming its

stability as a high-temperature catalyst. Even more interesting, the

Co3O4?NCMs show much better catalytic activity than

Fe2O3?NCMs, to be discussed in our forthcoming work.

Conclusions

In summary, we have synthesized crystalline, nanometre-sized iron

and cobalt oxides by a two-step method using activated carbon (AC)

as a support/scaffold, resulting in particle sizes ranging from 5 to

10 nm and surface areas up to 148 m2 g21. The metal oxide NCMs

Fig. 2 HR-TEM images for AC-supported Co3O4?NCMs, obtained in the first step (A), dark-field; and unsupported Co3O4?NCMs obtained in the second

step (B), (C), bright-field. Note: for results involving Fe2O3, see the ESI.{

Table 1 Comparison of the textural properties of Fe2O3?NPs, prepared
by one- and two-step methods

Catalyst S.A./m2 g21a P.V./cm3 g21b P.S./nmc

Fe2O3_NCM_II 148 0.43 5–10
Fe2O3_NCM_I 59 0.28 y20
a Surface area determined by BET method (5-points). b Pore volume
calculated at p/p0 = 0.99. c Particle size evaluated from TEM images.
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persist at temperatures up to 500 uC without significant agglomera-

tion, thus ensuring their stability under most reaction conditions.

Furthermore, because the synthesis method described here is very

simple, we expect it to be a general method for the preparation of

metal oxide NCMs. The only requirement is that the metal precursor

be soluble, so that it can be deposited on the AC support by wet

impregnation.
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2002, 14, 3913.
38 S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. Orfao, M. F. R. Pereira, J. L.

Delgado and J. L. Figueiredo, Appl. Catal., A, 2010, 381, 150.
39 S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. Orfao, M. F. R. Pereira, J. J.

Delgado and J. L. Figueiredo, Catal. Lett., 2010, 134, 217.
40 B. Ernst, A. Bensaddik, L. Hilaire, P. Chaumette and A. Kiennemann,

Catal. Today, 1998, 39, 329.
41 F. Jiao, A. Harrison, J. C. Jumas, A. V. Chadwick, W. Kockelmann and

P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 5468.
42 T. Liu, L. Guo, Y. Tao, T. D. Hu, Y. N. Xie and J. Zhang, Nanostruct.

Mater., 1999, 11, 1329.
43 M. Kitagami, T. Konishi, T. Kaneko, M. Sakamaki, L. Lin, J. G. Lin,

D. Arvanitis and T. Fujikawa, Photon Factory Activity Report 2006 #24
Part B, 2007, 12C/2006G356.

44 Y. H. Zheng, Y. Cheng, Y. S. Wang, F. Bao, L. H. Zhou, X. F. Wei, Y. Y.
Zhang and Q. Zheng, J. Phys. Chem. B, 2006, 110, 3093.

45 P. Li, D. E. Miser, S. Rabiei, R. T. Yadav and M. R. Hajaligol, Appl.
Catal., B, 2003, 43, 151.

Fig. 3 Temperature-programmed reaction profiles for CO oxidation over

three unsupported Fe2O3 catalysts, as well as over Co3O4?NCMs.

Conditions: 0.4 vol% CO + 10 vol% O2 in Ar; 50 mg catalyst; total flow

rate 50 mL min21. Temperature ramp 5 uC min21.

124 | RSC Adv., 2012, 2, 121–124 This journal is � The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 0
8 

N
ov

em
be

r 
20

11
. D

ow
nl

oa
de

d 
on

 3
1/

03
/2

01
6 

08
:4

1:
06

. 
View Article Online

http://dx.doi.org/10.1039/c1ra00552a

