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Based on Monte Carlo (MC) computer simulations we study the structure formation of a system of

magnetic nanorods. Our model particles consist of fused spheres with permanent magnetic dipole

moments, as inspired by recent experiments. The resulting system behaves significantly different from

that of a system of hard (non-magnetic) rods or magnetic rods with a single longitudinal dipole. In

particular, we observe for the magnetic nanorods a significant decrease of the percolation threshold (as

compared to non-magnetic rods) at low densities, and a stabilization of the high-density nematic phase.

Moreover, the percolation threshold is tunable by an external magnetic field.
1 Introduction

Magnetic nanoparticles1 play nowadays a key role in a number of

technological contexts from storage media and design of new

functional materials,2–6 to medical applications.7 In many cases,

the magnetic particles are suspended in a non-magnetic carrier

liquid such as water or oil, yielding a colloidal suspension often

called ‘‘ferrofluid’’. The most prominent ferrofluids involve

spherical particles with typical sizes of about 10 nanometers.

These particles can be considered as single-domain ferromagnets;

thus they have permanent magnetic dipole moments. The

resulting anisotropic and long-range dipole–dipole interactions

between the spheres play an important role for their cooperative

behavior. Indeed, already in zero field (and small packing frac-

tions) the energetic preference of head-to-tail configurations can

lead to the formation of long chains and percolating (i.e., system-

spanning) networks,8,9 while at larger packing fractions, various

ordered structures are observed.10 Application of an external

(static) magnetic field on suspensions of magnetic spheres yields

the formation of aligned chains and bundles.11,12 As a ‘‘byprod-

uct’’ one observes drastic changes of the material properties,

particularly the shear viscosity (‘‘magnetoviscous effect’’) and the

thermal conductivity.13 Thus, magnetic suspensions are prime

examples of complex fluids, whose internal structure, phase

behavior and dynamic rheological properties can be efficiently

controlled by external parameters.14,15

Within this area of research, much effort is currently devoted

to the synthesis and characterization of magnetic particles with

anisotropic shape, examples being magnetic rods16–19 and cubes.20

One key issue, e.g., in the case of rods, is to stabilize the chains

(against shear) and thus, to enhance the magnetoviscous effect

observed in ‘‘simple’’ ferrofluids. Moreover, anisotropic

magnetic particles enable per definition a broader variety of self-

assembled structures and patterns. However, compared to the
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case of magnetic dipolar spheres, the collective behavior of

anisotropic magnetic particles is much less understood.

In the present article, we investigate structure formation

phenomena in suspensions of a special class of magnetic nano-

rods (MNR) by Monte Carlo (MC) computer simulations. Our

model MNRs consist of dipolar spheres which are permanently

linked (‘‘fused’’) into a stiff chain with internal head-to-tail

alignment of the dipole moments. This model is inspired by

recent experiments of Birringer et al.16 who used a self-assembly

(aerosol-synthesis) process to produce magnetic rods composed

of aligned iron oxide spheres.

In the experimental study,16 the authors were mainly interested

in the rheological behavior of suspensions of magnetic rods. In

particular, they focused on the so-called magneto-viscous

effect,21 that is, the strong increase of the shear viscosity of

magnetic suspensions in an external magnetic field. This effect is

typically attributed to the field-induced aggregation of magnetic

particles in the external magnetic field. With the MC simulations

employed in the present work, we cannot directly calculate

rheological properties such as the shear viscosity. However, what

the MC simulations can provide is a detailed investigation of the

underlying equilibrium behavior, that is, the aggregation

behavior of the particles in and without a magnetic field.

Moreover, by tuning our model parameters we can isolate the

impact of the magnetic interactions on the structural properties.

By construction, the magnetic field created by one of our model

rods is actually a superposition of the dipolar fields of the indi-

vidual spherical particles. This is in contrast to earlier models of

rod-like particles with single longitudinal (or transversal) dipole

moments. Indeed, models of that type have already been intensely

studied more than a decade ago, both by theory and by simula-

tions.22–25 At that time, interest was mainly driven by the desire to

understand the phase behavior of polar liquid crystals. However,

as we will see in the present study, the structural behavior of our

newmodelMNRs differs strongly from that of single-dipole rods.

One main goal of our study is to explore the percolation

behavior of theMNRs. This is an interesting issue not only in the
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 Parallel side-by-side configurations of two MNRs (left) and two

single-dipole spheroids (right).
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area of magnetic fluids (recall that already simple magnetic

spheres display pronounced chain and network formation8,9).

Indeed, the question of percolation is intensively discussed also

for general rod-like, colloidal particles, including prominent

examples such as carbon nanotubes.26–28 Research in this direc-

tion is generally driven by the desire to produce lightweight and,

at the same time, highly connected materials with mechanical,

thermal or electrical properties that are enhanced relative to

their counterparts in the corresponding non-connected

systems.13,16,29–31 Thus, a general aim of these efforts is to explore

conditions under which the percolation threshold, i.e., the volume

fraction required for the formation of system-spanning clusters,

is decreased.32 It has already been shown that such as decrease

can be realized by an increase of the aspect ratio33 as well as by

other (interaction-related) factors such as depletion effects.28,34,35

In the present study we show that the superpositioned magnetic

interactions between our MNRs provide yet another mechanism

that strongly enhances the tendency for percolation.

Another goal of the study is to gain some insight into the

appearance of global orientational ordering as the density is

increased. It is well established that fluids of non-spherical parti-

cles can display entropy-driven phase transitions into nematic,

smectic, and plastic phases, as the packing fraction is increased.36

In particular, the phase diagram of hard spherocylinders has been

mapped out in detail by Bolhuis and Frenkel.37According to their

results, rods with length-to-breadth ratios T5 display both,

a nematic and a smectic-A phase, the latter being characterized by

the formation of layers in planes transversal to the global director.

Moreover, there are MC results for dipolar hard spherocylinders

and a single longitudinal point dipole.24 According to this study,

the (longitudinal) dipole tends to destabilize the nematic phase.

Instead, one observes an enhanced tendency for smectic ordering.

The stabilization of smectic-like ordering in these systems can be

understood as a consequence of the strong energetic preference of

antiparallel side-by-side configurations. Similar observations

have been made for other model systems involving elongated

particles with longitudinal dipolemoments.23,25Here we show that

the MNR interactions tend to stabilize the nematic phase in

sufficiently long MNRs. However, contrary to what has been

found in a recent analytical study of non-magnetic rods,38 the

nematic transition does not surpress the percolation. Finally, we

briefly report on the impact of an external magnetic field. It turns

out that already small magnetic fields lead to a significant decrease

of the percolation threshold.

The rest of this paper is organized as follows. In section 2.1 we

begin by defining our MNRmodel, followed by the details of the

MC simulations in section 2.2. In section 3 we present our

numerical results, starting with the effect of the dipolar interac-

tion on the cluster formation. We then proceed to a discussion of

the percolation transition and the appearance of global orien-

tational order in sections 3.2 and 3.3, respectively. In section 3.4

we show our results in presence of an external magnetic field. Our

results are summarized in section 4.

2 Model and simulations

2.1 Model

Our model system consists of stiff nanorods made out of several

identical hard spheres of diameter s with a point dipole at their
This journal is ª The Royal Society of Chemistry 2012
center (see Fig. 1 left). The positions of the spheres are fixed with

respect to the center of mass of the rod, and the orientations of

the dipoles are always aligned with the symmetry axis of the rod.

We will use l to denote the number of magnetic spheres

composing a nanorod, which is also its length in units of s,

therefore l ¼ 1 corresponds to the dipolar hard sphere (DHS)

case. The interaction energy between two rods i and j is then the

sum of the pair interactions between their respective interaction

sites (magnetic spheres). That is

uij
�
Rij ;Ui;Uj

� ¼ Xli
a¼1

Xlj
b¼1

wðrai � rbj ;m
a
i ;m

b
j Þ; (1)

where Rij is the vector joining the centers of rods i and j with

orientations Ui and Uj. Each rod is composed of li interaction

sites, with rai denoting the position of site a of particle i, andma
i is

its magnetic moment. The interaction between sites is given by

wðr;ma
i ;m

b
j Þ ¼

�
N if r\s

½ðma
i $m

b
j � 3ðma

i $r̂Þðmb
j $r̂Þ�=r3 if r. s

; (2)

with r ¼ rai � rbj . The magnetic moment has the same strength for

each sphere and is given by ~m¼ |ma
i |¼ mrvsphMsph, where mr is the

relative magnetic permeability of the solvent, and vsph and Msph

are the volume of the particles and the magnetization, respec-

tively. These parameters can, in principle, be extracted from

experiments. Here we rather consider the reduced magnetic

dipole momentsm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b ~m2=s3

q
, where b¼ (kBT)

�1 with kB and T

being Boltzmann’s constant and the temperature, respectively.

Common experimental values form (at room temperature) are of

the order 1 ( m ( 10.16,39 We also consider the effect of an

constant external field ( ~B) parallel to the ẑ axis of the simulation

box. The interaction energy between the external field and

a MNR is

uext;i ¼ �
Xli
a¼1

ma
i $
~B: (3)

The coupling strength (relative to kBT) then follows as mB ¼
b ~m ~B. This expression suggests to define

B ¼
ffiffiffiffiffiffiffiffi
bs3

p
~B: (4)
Soft Matter, 2012, 8, 7480–7489 | 7481
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Experimental values for the magnetic fields are of the order of

0.1 Tesla (implying B � 5 at room temperature with s ¼ 10 nm).

MNR ferrofluids have been found to be susceptible already to

small fields of ~B ( 10 mT (see Ref. 16), implying B ( 0.5.

In the present study we also compare the structure of the

magnetic nanorods consisting of l spheres (our MNRs) to the

simpler, and well studied,22,40–43 model of prolate hard spheroids

with length 2a, width 2b, and a single longitudinal point dipole

located at the center (‘‘single dipole model’’). We set the width to

2b ¼ s. Thus, the shape and volume of a spheroid is comparable

to that of a MNR if 2a ¼ ls. In order to compare the dipolar

coupling strengths within the two models, we require that the

pair interaction energies in the parallel side-by-side configuration

depicted in Fig. 1 are the same. This is

u(MNR)
ij ¼ u(sing–dip)ij (5)

Using the previous condition, and the expressions for the

interaction energies

u
ðMNRÞ
ij ¼ m2

"
l þ

Xl�1

n¼1

2ðl � nÞ 1� 2n2

ð1þ n2Þ5=2
#
; (6)

and

u(sing–dip)ij ¼ m2
e, (7)

we find that the ‘‘equivalent’’ dipole moment me, as defined

above, is given by

me ¼ m

"
l þ

Xl�1

n¼1

2ðl � nÞ 1� 2n2

ð1þ n2Þ5=2
#1=2

: (8)

2.2 Monte Carlo simulations

We carried out MC simulations in the NVT ensemble with

periodic boundary conditions for monodisperse systems of rods

with lengths l ¼ 4 and l ¼ 10, at several packing fractions h (h ¼
lNvsph/L

3, where L is the length of the simulation box). Dipolar

long range interactions were taken into account by using Ewald

summations with a conducting boundary.44

Simulations were made with N ¼ 1200 rods and N ¼ 480 rods

for l ¼ 4 and l ¼ 10 respectively. In order to compare with the

DHS case, we also simulate systems with l ¼ 1 and N ¼ 1000

particles. The points in phase space studied were averaged for 5�
104 to 2 � 105 MC cycles, depending on the strength of the

interaction. This relatively small number of steps is sufficient for

a first, exploratory study, which is the aim of this paper. To speed

up the sampling of the phase space cluster moves and inversion

moves (changing the sign of the orientation of the particle) were

used in addition to single particle moves. Cluster algorithms that

speed up the sampling of the phase space in Monte Carlo

simulations are widely used.45–52 Here we define the clusters using

a simple proximity criteria approach, in which two particles are

considered to be ‘‘bonded’’ (and part of the same cluster) if the

nearest distance between their surfaces is less than some value

d (see below).

The same cluster definition (which is based on a geometric,

rather than an energetic criterion) is used to study the
7482 | Soft Matter, 2012, 8, 7480–7489
aggregation properties of the system. One important quantity in

this context is the fraction of clustered rods,53,54 defined as

F ¼
�
Ncl

N

�
; (9)

where Ncl is the number of rods that belong to a cluster

composed of more than one rod and N is the total number of

rods. Second, we consider the percolation probability P defined

as the probability of finding at least one ‘‘infinite’’ cluster, that is,

a cluster connected to its own periodic images.

For both properties, F and P, the choice of the parameter d is

in general arbitrary. From a physical point of view d may be

thought of as the ‘‘hopping’’ distance for an excitation to go from

the surface of one particle to another.32 Depending on the

microscopic nature of this excitation, the hopping can be relevant

for, e.g., the thermal or electrical conductivity of the material.

Here we consider d essentially as an adjustable parameter.

Specifically, following previous studies on percolation of nano-

rods28,34,35 we use a value for d which is small with respect to the

dimensions of the particles (d ¼ 0.1s). In addition, to get

a somewhat less arbitrary measure of percolation, we also

calculate the geometrical ‘‘critical’’ distance dC. The latter is

defined as the averaged minimum value of d for which an infinite

cluster appears.32,33 From a physical point of view, dC can be

interpreted as an inverse measure for the conductivity of the

system.33

For studying the structure of the system we computed some of

the coefficients hmnl(r) of the expansion of the pair correlation

function in terms of rotational invariants.55 Here we present

results for the projection56

h220ðrÞ ¼ 5

4pr�r2N

*XN�1

i¼1

XN
j. i

d
�
r� Rij

�
P2

�
cosqij

�+
; (10)

where r* ¼ lvsphs
3/h is the reduced density, P2 is the

Legendre polynomial of degree 2, and Rij and qij are the center-

to-center distance and the angle between the orientations of rods

i and j.

Finally, to investigate the degree of global orientational

order we compute the degree of parallel ordering (‘‘polariza-

tion’’) and the nematic order parameters. The ‘‘polarization’’ is

defined as

G1 ¼
*
1

N

�����
XN
i

m̂i$d̂

�����
+
; (11)

with d̂ denoting the unit eigenvector associated with the largest

eigenvalue of the matrix

Qkl ¼ 1

2N

XN
i¼1

	
3m̂i

km̂
i
l � dkl



; (12)

where the i denotes the particle and the indexes k and l denote the

cartesian component of the orientation vector. The nematic

order parameter (G2) is defined as the largest eigenvalue of Q.

When applying an external field to the systems we measure

additionally the magnetization of the system, defined as

M ¼
DPN

i

Pli
am

a
i

E
L3

: (13)
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Examples of non-percolating clusters at a volume fraction h ¼
0.0524. (a)m¼ 1.5 and l¼ 4. (b)m¼ 1.5 and l¼ 10. (c)m¼ 2.4 and l¼ 4.

(d) m ¼ 2.4 and l ¼ 10.
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3 Results

3.1 Cluster formation

Our first goal is to investigate the type of clusters formed in our

MNR system at low packing fractions h, as well as the depen-

dence of the clustering on the interaction strength (m). The

appearance of clusters in systems of MNRs is already suggested

by the well-studied system of DHS (corresponding to the case l¼
1 in our model). Indeed, DHS particles are known to form long,

head-to-tail chains at packing fractions h ( 1 and dipole

moments m > 2.57

Taking the DHS system as a reference, we here present results

from MC simulations of rods with lengths l ¼ 1, 4, and 10 and

dipole moments m ¼ 0, 1.5, and 2.4, at a packing fraction h ¼
0.0524. This packing fraction is comparable with typical exper-

imental values (h z 0.01 � 0.02) for MNR systems.16

Corresponding MC results for the fraction of clustered rods

(see eqn (9)) are given in Table 1. At m ¼ 0 (non-magnetic rods),

the value of F is generally small and there is no formation of

chains or other larger structures, regardless of the value of l. This

is expected since the packing fraction considered here is far below

the percolation threshold of that system (see Section 3.2). Atm¼
1.5, about 30–40 percent of the rods are associated into clusters

(see Table 1) which contain, however, typically two particles.

Some representative snapshots of aggregates atm¼ 1.5 and l¼ 4,

10 are shown in Fig. 2(a) and (b). It is seen that the rods already

tend to form head-to-tail arrangements, despite of the still rather

small interaction strength m. Finally, at m ¼ 2.4 essentially all

rods are associated into clusters, as seen from the fact that F is

close to one for all values of l (see Table 1). As expected, these

clusters contain on the average more rods than those at m ¼ 1.5.

The resulting structures are illustrated by the snapshots in

Fig. 2(c) and (d). These snapshots also reveal that there are

essentially three types of configurations which seem to be

preferred by strongly coupled MNRs. Type I, which is the

dominant one at l ¼ 4 (see Fig. 2(c)), is given by head-to-tail

chains or rings, similar to what is found in conventional DHS

systems (l¼ 1). Type II, which is seen in the l¼ 10 system, and, to

less extent, also in the l¼ 4 system, is a side-by-side configuration

where the dipoles point in opposite (antiparallel) direction.

Finally, Type III, which seems to be particularly important for

long MNRs (l ¼ 10), (see Fig. 2(d)) consists of a configuration

where the dipoles are oriented along the same direction (parallel),

and the rods are close to side-by-side, but somewhat shifted

against one another in longitudinal direction.
Table 1 Fraction of clustered rods at h ¼ 0.0524

l m F

1 0.0 0.147(2)
4 0.0 0.193(1)
10 0.0 0.303(1)
1 1.5 0.312(3)
4 1.5 0.349(2)
10 1.5 0.396(4)
1 2.4 0.964(1)
4 2.4 0.997(1)
10 2.4 0.954(2)

This journal is ª The Royal Society of Chemistry 2012
To better understand these configurations we take a closer

look at the energetic landscape of interacting MNRs. A first

useful insight is given by Fig. 3 which shows the interaction

energy of a pair of MNRs as a function of the ‘‘joint’’ angle g (in

units of p). The latter is defined such that g ¼ 1 and g ¼
0 correspond to the Type I and Type II configurations, respec-

tively. We see from Fig. 3 that for DHS (l ¼ 1) there is just one

energy minimum with respect to g, which corresponds to Type I.

For l ¼ 4 and l ¼ 10, on the other hand, there is a second

pronounced minimum at g¼ 0. Moreover, this second minimum

is separated from the first one by an energy barrier which

becomes larger as l is increased. This suggests that both, Type I

and Type II configurations are quite stable against (thermal)

fluctuations, a picture which is indeed confirmed in the actual

MC simulations.

Further, especially for longer MNRs (l¼ 10) it is interesting to

compare the energies related to Type II and Type III configu-

rations. This is done in Fig. 4, where we plot the interaction
Fig. 3 Interaction energy between two rods (i and j) composed of l

magnetic spheres with m ¼ 2.4, in Type I configuration as a function of

the ‘‘joint’’ angle g, in units of p. g ¼ 1 is the straight head-to-tail

configuration and g ¼ 0 is the antiparallel configuration.

Soft Matter, 2012, 8, 7480–7489 | 7483
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Fig. 5 The correlation function h220(r) for MNRs with m ¼ 2.4 at h ¼
0.0524.
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energies of two adjacent rods (see the right part of the figure for

a sketch of the configurations) with parallel rod axes and either

antiparallel (Type II) or parallel (Type III) orientation of the

dipole moments as function of the ‘‘longitudinal’’ distance d (i.e.,

the displacement of the rod centers along the direction of the rod

axes). Note that we have plotted only the minima of the inter-

action energies with respect to d. For the antiparallel configu-

rations, these minima occur at dmin ¼ ns with n being an integer,

whereas for the parallel configurations, dmin ¼ (n + 1/2)s corre-

sponding to shifted (Type III) arrangements. From the numerical

values of the two interaction energies we can see that both types

of configuration are stable (in the sense that the energies are

negative) for a broad range of displacements. Moreover, for

larger values of d the energies related to Type III become even

more attractive than those related to Type II. Finally, for the

specific values of l ¼ 10 and the specific lateral distances

considered in Fig. 4, the configurations with lowest energy are an

antiparallel one with d ¼ 0 (i.e., no displacement at all) and

a parallel one with d ¼ 2.5s.

The presence of several types of preferred structures in

strongly coupled MNR systems is also reflected by the correla-

tion function h220(r) plotted in Fig. 5. At l ¼ 1, one observes the

typical peaks at multiples of a particle diameter, reflecting the

(head-to-tail) alignment of neighboring particles in the chains.

The same type of (chain-like) structure is preferred by the system

with l¼ 4, as indicated by the large peak of h220(r) at r¼ 4s. Note,

however, that the l¼ 4 system also has a peak at r/s¼ 1 related to

an antiparallel side-by-side (Type II) configuration. At l¼ 10, the

highest peaks occur at r¼ 1s and rz
ffiffiffi
3

p
s, whereas the (expected)

peak at r ¼ 10s is already to small to be distinguished from

statistical noise. The large heights of the first two peaks reflect the

presence of both, Type II and Type III configurations.

To close this section, and to better acknowledge the specific

type of clusters formed in the present model of MNRs, we show

in Fig. 6 two typical clusters formed in systems of magnetic

prolate spheroids with a single, longitudinal (point) dipole. For

both aspect ratios considered in Fig. 6, the spheroids tend to

align in an antiparallel side-by-side configuration, similar to the

previously introduced Type II configurations with d ¼ 0. On the

other hand, configurations of Type III are essentially non exis-

tent. The presence of antiparallel configurations in the single-
Fig. 4 Left: interaction energy minima between two adjacent parallel

rods of length l ¼ 10 with antiparallel (Type II) and parallel (Type III)

dipole moments (m ¼ 2.4). Right: illustration of the configurations.

7484 | Soft Matter, 2012, 8, 7480–7489
dipole rods leads to quite compact clusters. This is consistent

with findings in earlier MC studies25 of such systems.
3.2 Percolation

As a next step we want to understand the influence of the

magnetic interaction on the percolation properties of the MNRs.

It is well known that percolation (i.e., formation of system-

spanning clusters) already occurs in non-magnetic systems of

prolate, hard-core particles, with the percolation density

decreasing upon increase of the aspect ratio of the particles.33,58

In Fig. 7 we plot our present MC results for the percolation

probability P of MNRs with l > 1 and various values of m as

function of the packing fraction. All data in Fig. 7 have been

obtained with a fixed value of the parameter d determining our

cluster criterion (see section 2.2).

Considering first the non-magnetic case, we see that both the

systems with l ¼ 4 and 10 do have a percolation transition, as

indicated by the steep increase of P from values close to zero to

values close to one (upon increase of h). A precise determination

of the percolation transition would require calculations for

different system sizes, which we did not perform in our present,

more exploratory study. Nevertheless, we can estimate from

the data in Fig. 7 that the percolation thresholds at m ¼ 0, using
Fig. 6 Sample clusters of hard spheroidal rods with a longitudinal point

dipole at their center, with me given by eqn (8) with m ¼ 2.4. The clusters

are defined with a proximity criteria using d ¼ 0.2b, and at a volume

fraction h ¼ 0.0524. (a) a/b ¼ 4. (b) a/b ¼ 10.

This journal is ª The Royal Society of Chemistry 2012
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Fig. 7 Percolation probability as a function of the volume fraction using

d ¼ 0.1s.

Fig. 8 Geometrical ‘‘critical’’ distance (in units of s) vs. volume fraction

for short (l¼ 4) and long (l¼ 10) rods with (m¼ 1.5) and without (m¼ 0)

magnetic interaction.

Table 2 Comparison of DdR for different rod models with m ¼ 2.4, h ¼
0.0524 and me given by eqn (8)

l ¼ a/b DdR (MNR) DdR (sing-dip)

4 �87.8% 16.3%
10 �83.4% 24.5%
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d ¼ 0.1s, are at hl¼4
c z 0.21 and hl¼10

c z 0.14. To check the effect

of d we performed calculations using d ¼ 0.2s and obtained

hl¼4
c z 0.15 and hl¼10

c z 0.09. When comparing the multiple-

sphere rods with spherocylinders is important to remember two

things: i) the length l of our rods is related to the aspect ratio of

the spherocylinderts via l ¼ L/D + 1, where L is the length of the

cylinder and D the diameter of the spherical cap of the spher-

ocylinder. ii) At the same aspect ratio, the volume fraction of the

multiple-sphere rod is lower than that of the spherocylinder. This

means we have to multiply the volume fraction obtained for

the multiple-sphere rod by a factor vspcyl/vmsph, where vspcyl is the

volume of the spherocylinder and vmsph is the volume of the

multiple-sphere rod with l ¼ L/D + 1. Taking into account these

considerations, our results for m ¼ 0 are in agreement with those

reported for hard spherocylinders.35 Coming back to the

behaviour of MNRs, we note that the trend of longer rods

percolating at lower densities, persists when we ‘‘switch on’’ the

magnetic interactions, as revealed by the data for m ¼ 1.5. More

importantly, we also see that the corresponding thresholds are

smaller than those for m ¼ 0, indicating that the magnetic

interactions promote the percolation transition. This effect

becomes even more pronounced for m ¼ 2.4. For the latter case,

we also see that the percolation thresholds seem to saturate for

different rod lengths at hc z 0.03.

Having obtained the percolation transition(s) for a fixed value

of the cluster parameter d, it is interesting to look at the perco-

lation phenomenon from a less ‘‘biased’’ perspective, that is,

without making any assumptions on particle distances within

clusters. To this end we now consider the parameter dC, defined

in section 2.2 as the minimum value of d for which a percolating

cluster appears in the system. Results for dC as function of h are

plotted in Fig. 8. As expected, all systems exhibit a decrease of dC
as the density increases. More importantly, we see that already

for m ¼ 0, the values of dC for the shorter rods (l ¼ 4) are

consistently larger than those for l ¼ 10, indicating that the

tendency for percolation is enhanced upon increasing the rod

length. The same trend appears when we ‘‘switch on’’ the

magnetic interactions, as shown by the data form¼ 1.5 in Fig. 8,

where the curves for fixed l are shifted to the left (i.e., to lower

packing fractions) relative to the corresponding ones at m ¼ 0.
This journal is ª The Royal Society of Chemistry 2012
Thus, the magnetic interactions have the same supportive effect

on the percolation. These findings are qualitatively consistent to

the ones obtained for fixed d plotted in Fig. 7.

Finally, it is interesting to briefly compare the percolation

behavior of MNRs system to that of systems of single-dipole

spheroids. To this end, we consider the parameter

DdR ¼ dc � drefc

drefc

� 100; (14)

which measures, for fixed values of h and m, the value of dC
obtained for magnetic (MNR or single-dipole) particles relative

to the corresponding ones for m ¼ 0 (drefc ). Results for DdR
obtained for m ¼ 2.4 and a low density are given in Table 2. The

systems have then been equilibrated for �3 � 105 MC steps. We

see from Table 2 that for the MNR model the magnetic inter-

action produces negative values of DdR and thus, a decrease of dC
relative to the non-magnetic case, consistent with the results

plotted in Fig. 8. For the single-dipole model, one the other hand,

DdR is positive, meaning that the magnetic interactions rather

hinder the percolation.

This remarkable difference in the behaviors of the two models

can be attributed to the different structure of the corresponding

clusters. Whereas the MNRs tend to form open, elongated

structures (see Fig. 2), the single-dipole spheroids rather tend to

compact clusters with antiparallel local ordering (see Fig. 6).
3.3 Nematic ordering

Apart from percolation, another focus of our study is the

appearance of global orientational ordering. As stated already in

the introduction, Bolhuis and Frenkel37 performed MC
Soft Matter, 2012, 8, 7480–7489 | 7485
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simulations for pure hard spherocylinders for a broad range of

length-to-breadth ratios L/D (where we recall that L/D ¼ l � 1).

According to their results, rods with L/D > 3.7 display both,

a nematic phase (which is translationally disordered) and

a smectic-A phase (which is characterized by one-dimensional

translational ordering). Another important finding was reported

in a MC study of dipolar hard spherocylinders with L/D ¼ 5 and

a single longitudinal point dipole.24 These simulations suggest

a destabilization of the nematic phase with respect to the smectic

phase due to the dipole moment.

In the present study we investigate the occurrence of liquid-

crystalline (specifically, nematic) ordering via the orientational

order parameter G2 defined in section 2.2. Results for G2 as

function of the packing fraction h are plotted in Fig. 9.

For the case l ¼ 4, the order parameter has negligible values

regardless of the dipole moment, indicating that there is no

orientational ordering within the density range considered (h (

0.25). Indeed, for the particular case m ¼ 0, this result is

consistent with the MC study of Bolhuis and Frenkel37 who

showed that hard spherocylinders with L/D + 1 ¼ 4 do not

present an isotropic to nematic phase transition.

On the other hand, we find from Fig. 9 that the systems with

l ¼ 10 clearly do exhibit ordered phases, as reflected by the

pronounced increase of G2 (upon increasing h) towards values

close to 1. At the same time, the corresponding values of the

‘‘ferromagnetic’’ order parameter G1 defined in eqn (11) are

negligible, indicating that we indeed observe an ordering of the

rod axes, without the appearance of ferromagnetic ordering. Due

to the relatively small systems sizes in our simulations, the

G2-curves in Fig. 9 are rather rounded (in fact, a thorough

determination of the packing fraction related to the ordering

transition would require a systematic finite-size study). Never-

theless, we can extract two important findings from these curves.

First, considering our model rods with l ¼ 10 and m ¼ 0, the

behavior of the corresponding G2 appears to be consistent with

the fact that the isotropic–nematic transition for pure hard

spherocylinders (of aspect ratio L/D + 1 ¼ 10) occurs at h z
0.2537 (indeed, taking into account the same considerations made

in section 3.2 concerning the comparison of spherocylinders and

multi-sphere rods, the packing fraction related to the onset of
Fig. 9 Nematic order parameter as a function of the volume fraction for

several lengths and dipole moments.

7486 | Soft Matter, 2012, 8, 7480–7489
nematic ordering follows from Ref. 37 as hz 0.17). The second,

and in the present context more important, finding concerns the

influence of magnetic interactions. Indeed, we see that the

functionsG2(h) are shifted towards lower packing fractions when

m is increased from zero. In other words, the nematic phase is

stabilized (relative to the isotropic phase) due to magnetic

interactions. This is a strong contrast to the behavior found in

systems of dipolar spherocylinders24,25 (and other elongated

particles with single, longitudinal dipoles23), where the nematic

state is rather suppressed.

In an attempt to understand these differences, it is useful to

consider the actual structure of the present MNR systems within

their nematic state. A simulation snapshot is shown in Fig. 10

(left). Closer inspection reveals that there are both, antiparallel

(Type II) configurations and shifted parallel (Type III) configu-

rations, consistent with our considerations concerning the energy

landscape in section 3.1. The ‘‘coexistence’’ of these configura-

tions is also illustrated by the sketch in the right part of Fig. 10.

We suspect that it is particularly the presence of the shifted-

parallel configurations, which could stabilize the nematic against

the smectic-A phase formed in dense systems of (antiparallel

oriented) single-dipolar elongated particles.24,25
3.4 Effect of an external field

In this last section we briefly discuss the impact of a homoge-

neous, external magnetic field B ¼ Bẑ on the structure of our

MNR systems. We start by considering the norm of the field-

induced magnetization (M ¼ |M|, see eqn (13)). Results for the

functions M(B) at two packing fractions, various rod lengths and

a fixed reduced dipole moment of m ¼ 1.5 are plotted in Fig. 11.

For both values of h considered, the longer rods are seen to be

more susceptible than the shorter rods, in the sense that the

magnetization rises more sharply with the field and reaches

earlier its saturation value. We also see that a decrease of B to

zero leads to a vanishing of the magnetization in all cases

considered, consistent with our result in section 3.3 that the G1

order parameter is zero (no spontaneous magnetization).

A further interesting question is to what extent the external

field influences the percolation phase transition. Some repre-

sentative results in this context are shown in Fig. 12. Specifically,

in Fig. 12(a) we have plotted the percolation probability in a field

of strength B ¼ 5 as a function of h for rods of length l ¼ 10 and
Fig. 10 Left: sample configuration of a system with l ¼ 10, m ¼ 2.4 and

h ¼ 0.1676 (G2 ¼ 0.699). Right: illustration of one way in which the

magnetic interaction could stabilize the nematic phase.

This journal is ª The Royal Society of Chemistry 2012
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Fig. 11 Magnetization of the ferrofluid withm¼ 1.5 as a function of the

external field strength (B) for two volume fractions: (a) h¼ 0.0524 and (b)

h ¼ 0.1676.
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dipole moment m ¼ 1.5. Comparing this curve with the corre-

sponding zero-field result (B ¼ 0, also included in Fig. 12(a)) we

find that the percolation threshold is shifted towards lower

packing fractions. In other words, the magnetic field supports the

percolation transition in this system. In Fig. 12(b) we present

data for the percolation probability P as function of B at a fixed

packing fraction. An increase of B enhances the percolation

probability, consistent with our finding from Fig. 12(a). One also

sees from Fig. 12(b) that the actual value of P in the presence of

a field strongly depends on the rod length (consistent with the

zero-field situation) as well as on the parameter d (determining

our cluster criterion). To complement the discussion, we present

in Fig. 12(c) results for the ‘‘critical’’ distance dC as function of

the field and different rod length, l. For all lengths studied the

value of dC decreases upon an increase of B. This suggests that

the percolation threshold is indeed reduced by the presence of an

external field, regardless of the specific choice of d.

Finally, it is worth briefly commenting on the particle struc-

tures observed in an external field. One general observation was

that the structures of Type II (antiparallel local ordering)

disappear, as expected from our results for the magnetization
Fig. 12 (a) Percolation probability vs. volume fraction for l ¼ 10 and

m ¼ 1.5 using d ¼ 0.1s. (b) Percolation probability vs. field strength for

different values of l and d. (c) The parameter dC vs. field strength. In parts

(b) and (c), the packing fraction h ¼ 0.0524.

This journal is ª The Royal Society of Chemistry 2012
(see Fig. 11). At the same time, structures of Type III become

prevalent, along with a certain amount of Type I structures. The

clusters that percolate under the effect of the external field do so

in the direction of the field, that is, the system essentially

percolates along one direction. This is in contrast to the zero-field

situation, where the percolating clusters tend to span the simu-

lation box in all three spatial directions. As a consequence,

percolation in field leads to a strongly anisotropic network. This

feature might become important e.g. for the design of systems

with conductance anisotropy.
4 Summary

Based on MC computer simulations we have explored structure

formation phenomena in systems of model magnetic nanorods

composed of l fused dipolar spheres. The particle model has been

inspired by recent experiments,16 where MNRs have been

produced via a self-assembly process. Compared to the experi-

mental systems, we note that the longest rods considered in our

simulations (l ¼ 10) have about half the length of their experi-

mental counterparts (l z 24). This is because simulating longer

rods would have required larger system sizes and thus much

longer simulation (equilibration) times. Nevertheless, we are

already in the realistic range. The same holds true for the range of

reduced dipole moments (m # 2.4) used in our simulations,

which approaches the experimental value of m z 2.6 (for rods

composed of iron nanospheres at room temperature16). Con-

cerning the packing fractions, on the other hand, only the lowest

value considered here (hz 0.05) is close to current experiments16

(hz 0.01 � 0.02). However, it is just the advantage of computer

simulations that one can explore much larger parameter ranges.

We recall in this context that the aforementioned experiments16

were targeting the rheological properties of magnetic nanorod

suspensions rather than structural properties considered in the

present work. Therefore, we could not perform any direct

comparison with experimental data. We would like to stress,

however, that the percolation and ordering behavior analyzed in

our study is an essential ingredient for any thorough under-

standing for the rheological behavior.

One focal point of our study was the comparison of the

behavior of our model MNRs with that of other models of

(magnetic) nanoparticles. Indeed, our simulation results gener-

ally reveal that the MNRs behave strongly different not only

from systems of individual magnetic spheres, but also from non-

magnetic rods or rod-like particles with single dipoles. Most of

our results refer to systems in zero field. Compared to the case of

magnetic spheres with central point dipoles (l ¼ 1), we have

found that the percolation threshold for l > 1 is lowered towards

significantly lower packing fractions. At the same time, the

percolation thresholds are also much lower than those of non-

magnetic rods of comparable lengths. These findings indicate

that the MNRs could be promising candidates as building blocks

of lightweight nanocomposites, i.e., connected materials with

novel mechanical and conductivity properties. Moreover, for

sufficiently large l and densities beyond the percolation

threshold, the MNRs display an isotropic-to-nematic transition,

but no long-range ferromagnetic ordering, which is again in

contrast to magnetic spheres. These differences regarding the

percolation and ordering behavior can be explained, on
Soft Matter, 2012, 8, 7480–7489 | 7487
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a microscopic level, from the fact that the present MNRs display

a larger variety of cluster structures. In particular, in addition to

the usual head-to-tail ordering of dipolar spheres, we observe

formation of local antiparallel ordering, as well as of parallel

side-by-side ordering with shifted positions.

The presence of the latter type of clusters also represents one

main difference to systems of rod-like particles with single

(central, longitudinal) dipole moments. Indeed, this simpler

model mainly exhibits compact clusters with local antiparallel

ordering.25 As a consequence, these single-dipolar rods rather

exhibit smectic (instead of nematic) phases.24,25 From a more

general perspective, our simulations results therefore suggest that

the distribution of dipoles within the nanorods is of crucial

importance for both their percolation behavior and for the

nature of ordered phases.

Finally, we have briefly discussed the impact of a static

magnetic field. Our main conclusion in this context is that

already relatively weak fields (with a strength of about 2 mT) can

again significantly lower the percolation threshold compared to

the zero-field situation. This finding could be very important also

in the context of future studies of the rheological behavior.

Indeed, experiments16 have already shown that the magneto-

viscous effect, that is, the enhancement of the shear viscosity in

the magnetic field, is much more pronounced in suspensions of

magnetic rods than it is in conventional ferrofluids composed of

spherical particles. The suspected reason is that the chains

formed by nanorods are more stable against mechanical distor-

tions than the flexible chains formed by dipolar spheres.

Although we did not investigate this point directly, our simula-

tions do show that the aggregation tendency of the rod-like

magnetic particles is strongly enhanced (as compared to spheres).

The above considerations clearly suggest one main direction

along which the present research, that was concerned (only) with

structural phenomena, could be extended. Indeed, from an

experimental point of view, it would be very interesting to

explore the impact of these structural phenomena on the single-

particle dynamics (e.g., the translational and rotational diffu-

sion) and the rheological properties of the suspension (in

particular its shear viscosity). Clearly, an investigation of these

phenomena requires theMC simulations employed in the present

work to be supplemented by computer simulations targeting the

time-dependent behavior, such as Brownian dynamics. Work in

these directions is in progress. Another promising route of

research would be an investigation of the consequences of the

percolation due to magnetic interactions on the microscopic

properties, such as the tunneling conductivity.33,59
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