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In colloidal and biological systems, interactions between surfaces are often mediated by adsorbed

particles or molecules that interconnect the surfaces. In this article, we present a general relationship

between the adsorption isotherms of the particles and the effective, particle-mediated adhesion energies

of the surfaces. Our relationship is based on the analysis and modeling of detailed data from Monte

Carlo simulations. As general properties that should hold for a wide class of adsorption scenarios, we

find (i) that the particle-mediated adhesion energies of surfaces are maximal at intermediate bulk

concentrations of the particles, and (ii) that the particle coverage in the bound state of the surfaces is

twice the coverage in the unbound state at these bulk concentrations.
1. Introduction

Adhesion and adsorption are important phenomena in both

colloidal and biological systems. Characteristic aspects of these

systems are that the constituent molecules or particles typically

differ in size, and that the interactions between these constituents

are often dominated by surface interactions. Adsorption refers to

the binding of molecules or particles to the surfaces of larger

constituents and is typically characterized by adsorption

isotherms, i.e. by the surface concentrations of adsorbed mole-

cules or particles as a function of their bulk concentration or

chemical potential. Adhesion refers to the binding of two

surfaces that are typically large compared to molecular dimen-

sions and is characterized by adhesion energies per area.

Adsorption can lead to adhesion if molecules or particles bind

to two apposing surfaces, e.g. to the surfaces of two larger

particles or objects. The adhesion and aggregation of nano-

particles or microparticles, for example, can be mediated by

adsorbed proteins1–5 or polymers.6–10 Nanoparticles can affect

the adhesion of microparticles.11 The adhesion of lipid

membranes can be caused by adsorbed proteins12,13 or multiva-

lent ions14 that crosslink the membranes. Membrane adhesion

may also be mediated by soluble proteins that interconnect

receptor and ligand proteins anchored in apposing

membranes.15,16
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In this article, we consider an ensemble of particles between

two parallel surfaces in Monte Carlo simulations. The two

surfaces can be seen as surface segments in the contact zone of

two constituents in colloidal or biological systems that are

significantly larger than the particles. The particles adsorb on the

surfaces and mediate adhesion if the separation of the surfaces is

close to the diameter of the particles. In our Monte Carlo

simulations, we determine the pressure that the particles exert on

the surfaces and the area concentrations of the adsorbed particles

at different surface separations. The effective particle-mediated

adhesion energy of the surfaces is then obtained by integrating

the pressure. Interestingly, the effective adhesion energy is

maximal at intermediate bulk concentrations of the particles.

Our analysis of the Monte Carlo results indicates that the

surface concentrations of the adsorbed particles depend in good

approximation on a single parameter, the sum of the chemical

potential and the binding energy of the particles, at least for

binding energies that are significantly larger than the thermal

energy kT where k is Boltzmann’s constant and T denotes the

temperature. Integration of these surface concentrations, or

adsorption isotherms, leads to free energies of adsorption in the

bound and unbound state of the surfaces. These free energies of

adsorption provide the basis for a simple model to calculate

effective, particle-mediated adhesion energies of surfaces that can

be generalized to a wide class of adsorption isotherms. The

simple model is in good agreement with the effective adhesion

energies obtained directly from the pressure measured in our

Monte Carlo simulations. In addition, the model explains why

the particle-mediated adhesion energies of surfaces are maximal

at intermediate bulk concentrations of the particles, and why the

particle coverage in the bound state of the surfaces is twice the

coverage in the unbound state at these bulk concentrations. Our
Soft Matter, 2012, 8, 11737–11745 | 11737
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model generalizes and helps to understand previous results

obtained in the special case of Langmuir adsorption.17,18
Fig. 2 The particle–surface interaction potential Vps depends on the

distance z of the particle center from the surface. The interaction

potential attains its minimum value �U at the separation z ¼ 0.5d at

which the spherical particle is in contact with the surface. The depth U >

0 of the minimum is the binding energy of the particle with the surface.

The potential is composed of a soft repulsive and a Yukawa-like

attractive term (see eqn (12) and (13) in the Appendix section for details).
2. The simulation model

We consider spherical particles between two parallel surfaces (see

Fig. 1). The particles repel each other, but are attracted by the

surfaces. In our model, the interaction potential Vps between the

particles and the surfaces is short-ranged and decays to zero at

separations z of the particles from the surfaces close to the

particle diameter d (see Fig. 2). The interaction potential Vps

attains its minimum value �U at the separation of z ¼ d/2 at

which the particles are in close contact with the surfaces. The

depth U of the potential minimum corresponds to the binding

energy of the particles at the surfaces. The soft, pairwise repul-

sion of the particles has the form Vpp ¼ 4kT(d/r)12 where r is the

distance between two particle centers.

We assume that the two parallel surfaces are segments of

colloidal objects that are large compared to the particles and

surrounded by the particle solution. The number of particles

between the parallel surfaces then varies because these particles

can exchange with the surrounding bulk of particles. We further

assume that the bulk particles constitute a large particle reser-

voir, with a bulk concentration Xb of particles that is determined

by the chemical potential m of the particles (see Fig. 3). The

ensemble of particles between the two parallel surfaces consid-

ered here then corresponds to a grand-canonical ensemble with

chemical potential m.
Fig. 3 Bulk concentration Xb versus chemical potential m of the particles

in our model (data points). At small values ofXb and m, the two quantities

are related via ln(d3Xb) x 7.8kT + m (dashed line).
3. Excess pressure and effective adhesion potential

In this section, we determine the effective, particle-mediated

adhesion potential of the surfaces from the pressure that the

particles exert on the surfaces. This pressure depends on the

separation L of the surfaces and can be obtained from Monte

Carlo simulations (see Appendix for details). We consider here

the excess pressure to be

Dp(L) ¼ p(L) � p(L ¼ N) (1)

since we assume that the two surfaces are surface segments of

larger objects that are fully surrounded by the particles. There-

fore at large separations, the overall forces exerted by the

particles are zero.
Fig. 1 Monte Carlo snapshot for the surface separation L¼ 10d where d is th

by the surfaces. In this snapshot, the chemical potential of the particles is m ¼
the particles away from the surfaces. The binding energy U ¼ 10kT of the par

particles in the adsorption layers.

11738 | Soft Matter, 2012, 8, 11737–11745
The effective, particle-mediated adhesion potential Vef of the

surfaces is obtained by integration over the excess pressure

Dp(L):
e diameter of the particles. The particles repel each other, but are attracted

�12.32kT, which corresponds to a bulk concentration of Xb ¼ 0.01/d3 of

ticles at the surfaces leads to an area concentration of Xs ¼ 0.42/d2 of the

This journal is ª The Royal Society of Chemistry 2012
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VefðLÞ ¼
ðN
L

Dp
�
L

0�
dL

0
(2)

In Fig. 4, the excess pressure Dp(L) and the effective adhesion

potential Vef(L) are shown for the binding energy U ¼ 10kT and

chemical potential m ¼ �12.32kT, which corresponds to a bulk
Fig. 4 (a) Excess pressure Dp exerted by the particles and (b) effective,

particle-mediated adhesion potential Vef of the surfaces as functions of

the surface separation L in units of the particle diameter d. In this

example, the binding energy of the particles isU¼ 10kT and the chemical

potential is m ¼ �12.32kT, which corresponds to a bulk particle

concentration of Xb ¼ 0.01/d3. The dots in subfigure (a) represent the

Monte Carlo data, and the line results from interpolation. The effective

potential Vef in subfigure (b) is obtained from the excess pressure Dp via

integration. The effective potential exhibits a minimum at a surface

separation close to the particle diameter at which the particles are firmly

bound to both surfaces. The depth Uef of the potential minimum is the

effective binding of the surfaces. Because of the entropy of the confined

particles, the minimum is located at a surface separation slightly larger

than the separation L¼ d where the total binding energy to both surfaces

is minimal for a particle. In this example, the minimum is located at L x
1.01d, and the effective binding energy is Uef x 4.20kT/d2. The effective

potential exhibits a barrier of height Uba at intermediate separations at

which particles that bind to one of the surfaces obstruct the binding of

particles to the other surface. In this example, the barrier is located at

L x 1.60d and has the height Uba x 0.83kT/d2.

Fig. 5 Monte Carlo snapshots at the surface separations L ¼ 3d, 1.6d,

and d for the same parameters as in Fig. 4.

This journal is ª The Royal Society of Chemistry 2012
concentration Xb ¼ 0.01/d3 of the particles. The effective adhe-

sion potential exhibits a minimum value �Uef at surface sepa-

rations L close to the diameter d of the particles since the particles

can bind to both surfaces at this separation. The depthUef of this

minimum corresponds to the effective, particle-mediated adhe-

sion energy of the surfaces. At surface separations L around 1.6d,

the effective adhesion potential Vef has a local maximum because

particles can no longer bind to both surfaces, and because

particles that bind to one of the surfaces sterically obstruct the

binding of particles to the other surface (see Fig. 5 and 6). This

maximum of height Uba constitutes a barrier for adhesion. At

larger surface separations L T 3d, the effective potential Vef

decays to zero because the particles adsorb independently on the

two surfaces.

A characteristic feature of the effective, particle-mediated

adhesion energy Uef is that it exhibits a maximum at an inter-

mediate value m ¼ m* of the chemical potential (see Fig. 7). With

increasing binding energy U of the particles, the location of this

maximum is shifted to smaller values of the chemical potential

(see Fig. 8) and, thus, to smaller bulk concentrations Xb of the

particles. In the following, we will show that the maximum of the

functionUef(m) can be understood from the adsorption isotherms

and adsorption free energies of the particles. Our starting point is

the surface concentration of adsorbed particles considered in the

next section.
4. Surface concentrations of particles

The surface concentrations of the particles in the adsorption

layers can be calculated from the concentration profiles X(z) of

the particles between the surfaces (see Fig. 6). Here, z is the

Cartesian coordinate perpendicular to the two surfaces, which

are located at z¼ 0 and z¼ L. For large surface separations LT

3d, the particle concentration X(z) has two pronounced peaks
Soft Matter, 2012, 8, 11737–11745 | 11739
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Fig. 6 Concentration profiles X(z) of the particles between the surfaces

for the same surface separations L and parameters as in Fig. 5. The two

peaks in the profiles for L ¼ 3d and L ¼ 1.6d correspond to the single

layers of particles adsorbed at the two surfaces. The peaks at the sepa-

ration L ¼ 1.6d are lower in height than the peaks at L ¼ 3d because

particles that bind to one of the surfaces sterically obstruct the binding of

particles to the other surface at this separation (see the snapshot in Fig. 5

for L ¼ 1.6d). The single peak in the concentration profile at the sepa-

ration L ¼ d corresponds to a layer of particles bound to both surfaces.

Fig. 7 Effective, particle-mediated binding energy Uef of the surfaces as

a function of the chemical potential m for the binding energies U ¼ 8, 10,

and 12kT of the particles. The effective binding energy Uef exhibits a

maximum at intermediate values of the chemical potential. The points

represent the Monte Carlo data, and the lines the simple model based on

eqn (5).

Fig. 8 Values m* of the chemical potential at which the effective binding

energy Uef of the surfaces is maximal versus binding energy U of the

particles. The data points result from an interpolation of Monte Carlo

data for Uef as a function of m (see e.g. data points in Fig. 7). The line

results from eqn (7) of the simple model with the fit function for the

adsorption isotherm Xs(m + UL) indicated as a dashed line in Fig. 9(b).

The simple model is in good agreement with the Monte Carlo results for

particle binding energies U $ 7kT, but deviates at smaller binding

energies.
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with maxima at z-values close to 0.5d and L � 0.5d where the

particle–surface interaction potential Vps is minimal. These two

peaks correspond to the single layers of adsorbed particles at the

two surfaces (see Fig. 5 and 6). At intermediate z-values in the

range d < z < L � d between the two peaks, the particle

concentration X tends towards the bulk concentration Xb

because the particle–surface potential Vps is practically 0 for

these z-values, and because packing effects of the particles

between the surfaces are negligible for the bulk concentrationsXb

< 0.1d3 considered here. For surface separations L close to the
11740 | Soft Matter, 2012, 8, 11737–11745
binding separation d, the concentration profile Xz has a single

peak that corresponds to a single layer of particles bound to both

surfaces. The surface concentration Xs of particles in the

adsorption layers is obtained by integration over the peaks in the

concentration profiles X(z):

Xs ¼
ðd
0

X ðzÞdz (3)

For large surface separations, the surface concentration Xs

defined in eqn (3) is the area concentration of the single layer of

particles adsorbed to one of the surfaces. For the surface
This journal is ª The Royal Society of Chemistry 2012
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separation L ¼ d, the surface concentration Xs is the area

concentration of the particles that are bound to both surfaces.

In Fig. 9(a), the surface concentration Xs is shown as a func-

tion of the chemical potential m at the binding separation L¼ d of

the surfaces and at the large surface separation L ¼ 10d, for the

three binding energies U ¼ 8, 10, and 12kT of the particles. The

area concentration Xs increases with m and with the binding

energy U of the particles, and is significantly larger at the surface

separation L ¼ d because the particles bind to both surfaces.

When plotted as a function of m + UL with UL ¼ U for large L

and UL ¼ 2U for L ¼ d, the six curves of Fig. 9(a) fall onto a

single curve (see Fig. 9(b)), which indicates (i) that the surface

concentration Xs depends on the sum of the chemical potential

and binding energy of the particles, and (ii) that the binding

energy at the surface separation L ¼ d is approximately twice the

binding energy at large separations, which is plausible since the
Fig. 9 (a) Surface concentration Xs of particles in the adsorption layers

as a function of the chemical potential m at the large surface separation

L¼ 10d (three bottom lines) and at the binding separation L¼ d at which

the particles strongly bind to both surfaces. At both separations, the

surface concentration Xs increases with the chemical potential m and with

the binding energy U of the particles. (b) Same surface concentrations Xs

as a function of the rescaled chemical potential m + UL with UL ¼ U for

L ¼ 10d and UL ¼ 2U for L ¼ d. In this rescaled plot, the six curves of

subfigure (a) fall onto a single curve. The dashed line represents a 9th-

order polynomial fit to the Monte Carlo data (see Appendix).

Fig. 10 Height Uba of the barrier in the effective potential Vef as a

function of the surface concentration Xs of adsorbed particles at the large

surface separation L ¼ 10d for the binding energies U ¼ 8, 10, and 12kT

of the particles.

This journal is ª The Royal Society of Chemistry 2012
particles bind to both surfaces at this separation. The small

deviations between the curves in Fig. 9(b) presumably result from

small differences in the entropies of bound particles at L ¼ d and

at large L, which appear to be negligible compared to the binding

energies, at least for the binding energies U much larger than the

thermal energy kT considered here. Because of the soft repulsive

interactions of the particles, the surface concentration Xs does

not saturate at large values of m + UL. A scaling argument

indicates that Xs increases proportional to (m + UL)
1/6 for large

values of m +UL at which the adsorbed particles are arranged in a

hexagonal lattice (see Appendix).

The surface concentration Xs of the particles at large surface

separation determines the height Uba of the barrier in the effec-

tive potential Vef. In Fig. 10, the barrier height Uba of the

effective potential is shown as a function of this surface

concentration for the three binding energies U ¼ 8, 10, and 12kT

of the particles. The values of Xs here correspond to the values in

Fig. 9(a) at the large surface separation L ¼ 10d. For a given

binding energy U, different values of Xs in Fig. 10 result from

different values of the chemical potential m of the particles. The

three curves shown in Fig. 10 fall onto a single curve since the

steric interactions between the two adsorbed layers of particles

that lead to the potential barrier only depend on the concentra-

tions of the particles in these layers.
5. Adsorption free energies

In the grand-canonical ensemble, particle concentrations can be

expressed as derivatives of the grand-canonical potential, or ‘‘free

energy’’ with respect to the chemical potential m. The concen-

tration profile X(z) thus can be related to a z-dependent grand-

canonical potential f(z) via X(z) ¼ �vf(z)/vm, and the surface

concentrations Xs defined in eqn (3) can be associated with a

surface potential, or ‘‘free energy’’ of adsorption fs. In the

previous section, we have shown that the surface concentrations

Xs at the surface separation L ¼ d and at large separations

depend in good approximation on a single parameter, the

rescaled chemical potential m + UL with UL ¼ 2U for L ¼ d and
Soft Matter, 2012, 8, 11737–11745 | 11741
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Table 1 Surface concentrations Xs at the values m* of the chemical
potential that maximize the effective binding energy Uef (see Fig. 7)

U [kT] m* [kT] Xs (L ¼ d)[1/d2] 2Xs (L ¼ 10d)[1/d2]

8 �12.24 � 0.03 0.62 � 0.01 0.63 � 0.01
10 �13.76 � 0.03 0.67 � 0.01 0.68 � 0.01
12 �15.44 � 0.03 0.71 � 0.01 0.71 � 0.01
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UL¼U for large L (see Fig. 9). Therefore, we consider here a free

energy of adsorption fs(m + UL) that depends on m + UL and is

defined via Xs(m + UL) ¼ �vfs(m + UL)/vm, or alternatively via

fsðmþULÞ ¼ �
ð ​
XsðmþULÞdm (4)

up to an integration constant.

The free energy of adsorption fs(m + UL) is related to the

effective, particle-mediated binding energy Uef via

Uef(m,U) x �(fs(m + 2U) � 2fs(m + U)) (5)

because Uef can be understood as the difference between the

adsorption free energies at the binding separation L ¼ d and at

large separations L of the surfaces. The factor 2 in the second

term on the right-hand side of eqn (5) results from the fact that

we have two adsorption layers of particles at large surface

separations L. In Fig. 7, the simple model based on eqn (5) is

compared to the Monte Carlo data. The function fs(m + UL) here

has been obtained by integrating the dashed fitting function of

Fig. 9(b), with an integration constant determined from a fit to

the Monte Carlo data (see Appendix for details).

According to eqn (4), the chemical potential m* at which the

effective binding energyUef is maximal follows from the equation

vUef

vm
xXsðmþ 2UÞ � 2XsðmþUÞ ¼ 0 (6)

An interesting consequence of eqn (4) thus is that we have

Xs(m* + 2U) x 2Xs(m* + U) (7)

at m ¼ m*, i.e. the surface concentration Xs of particles at the

binding separation L ¼ d is twice the surface concentration Xs at

large separations L. Within the numerical accuracy, this is indeed

the case for our MC results at the binding energiesU¼ 8, 10, and

12kT (see Table 1). The location m ¼ m* of the maximum of the

effective binding energyUef(m) obtained from eqn (7) is in a good

agreement with Monte Carlo results for particle binding energies

U$ 7kT (see Fig. 8). The deviation at the smaller binding energy

U ¼ 6kT presumably results from contributions of the binding

entropies of the particles, which are neglected in the simple model

based on eqn (5). For binding energies U # 5kT of the particles,

the effective binding energy Uef determined from Monte Carlo

simulations does not exhibit a maximum at an intermediate value

m* of the chemical potential.
6. Generalization to other adsorption isotherms

Our arguments in the previous section can be generalized to

adsorption scenarios with particle–surface interactions Vps and

particle–particle interactions Vpp different from our simulation
11742 | Soft Matter, 2012, 8, 11737–11745
model, provided the particles adsorb in single layers in these

scenarios, with binding energiesU that are significantly larger than

the thermal energy kT. Adsorption scenarios are typically char-

acterized by adsorption isotherms, i.e. by the surface concentration

Xs of adsorbed particles as a function of the bulk concentrationXb

of the particles, or alternatively, as a function of the chemical

potential m of the particles. For binding energies U [ kT of the

particles, it seems plausible that Xs is a function of the rescaled

chemical potentialm+ULwithUL¼U for single surfaces andUL¼
2U for two surfaces with ‘‘binding separation’’ L close to the

particle diameter, as in our simulation model. In general, the

adsorption isotherms Xs(m + UL) are monotonously increasing

functions, with a more or less pronounced S-shape as shown in

Fig. 9(b).For such isotherms, it seems likely that there are valuesm*

of the chemical potential that satisfy eqn (7) for given binding

energies U, which implies that the effective, particle-mediated

adhesion energyUef defined in eqn (5) ismaximal at these valuesm*.

In the Langmuir adsorption scenario, for example, the parti-

cles are assumed to bind independently to ‘‘adsorption sites’’ at

the surfaces, which leads to the surface concentration:17,18

XsðmþULÞx 1

d2

qeðmþULÞ=kT

1þ qeðmþULÞ=kT (8)

with a numerical factor q and the area d2 per binding site for

binding energies U much larger than the thermal energy kT.

Here, d2Xs simply is the probability that a binding site is occupied

by a particle. The surface concentration Xs in the Langmuir

model ‘saturates’ for large values of m + UL, i.e. it tends towards

the limiting value 1/d2, in contrast to the surface concentration Xs

of the soft particles in the model considered here, which increases

proportional to (m + UL)
1/6 for large values of m + UL according

to a scaling argument (see Appendix). From eqn (4) and (5), we

obtain the Langmuir free energy of adsorption

fsx� kT

d2
ln
�
1þ qeðmþULÞ=kT� (9)

and the effective, particle-mediated adhesion energy

Uefx
kT

d2
ln

1þ qeðmþ2UÞ=kT

ð1þ qeðmþUÞ=kTÞ2
(10)

which is maximal at the value

m* x �U � kTln q (11)

of the chemical potential.
7. Discussion and conclusions

In this article, we have derived a general relationship between the

surface concentration, or adsorption isotherm, Xs, of adsorbed

particles and the effective, particle-mediated adhesion energy Uef

of two surfaces that are bound together by the adsorbed parti-

cles. The derivation of this relationship is based on a detailed

analysis of Monte Carlo results. Our main results are:

(1) The surface concentration Xs of the adsorbed particles

depends in good approximation on the single parameter m + UL

with UL ¼ 2U in the bound state of the surfaces and UL ¼ U in

the unbound state, for binding energies U that are large

compared to the thermal energy U (see Fig. 9). An integration of
This journal is ª The Royal Society of Chemistry 2012
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the adsorption isotherms Xs(m + UL) leads to free energies of

adsorption fs(m + UL) (see eqn (4)).

(2) The effective, particle-mediated adhesion energy Uef of the

surfaces can be calculated as a difference of adsorption free

energies fs(m + 2U) and 2fs(m + U) in the bound and unbound

state of the surfaces (see eqn (5)). This calculation is in good

agreement with values for the effective adhesion energy deter-

mined from the pressure on the surfaces measured in our Monte

Carlo simulations (see Fig. 7).

(3) The effective adhesion energy Uef is maximal at an inter-

mediate value m* of the chemical potential. This intermediate

value follows from eqn (7) for the adsorption isotherms Xs(m +

2U) and Xs(m + U) in the bound and unbound state of the

surfaces (see Fig. 8).

(4) At the optimal chemical potential m* for adhesion, the

surface concentration in the bound state of the surfaces is twice

the surface concentration in the unbound state. This is a direct

consequence of eqn (7).

In our model, the general relationship between the adsorption

isotherm Xs of the particles and the effective adhesion energy Uef

of the surfaces described by eqn (4) and (5) holds for binding

energies U $ 7kT of the particles (see Fig. 8). For these binding

energies, the differences between the binding entropies of the

particles in the bound and unbound state of the surfaces

apparently can be neglected. These differences arise since parti-

cles bound to both surfaces experience the superposition Vps(z) +

Vps(L � z) of particle–surface interaction potentials, which has a

different shape than the potential Vps experienced by a particle

bound to one of the surfaces. The threshold for the particle

binding energies U beyond which eqn (4) and (5) hold may be

different for other particle–surface interaction potentials Vps,

which in general will lead to other binding entropies.

At the optimal chemical potential m ¼ m* for adhesion, the

binding of the surfaces requires only a local rearrangement of

particles since the surface concentrationXs(m* + 2U) in the bound

state of the surfaces is equal to the sum 2Xs(m* +U) of the surface

concentrations in the unbound state.At larger or smaller values of

m, in contrast, the equilibration of the surface concentrations

during binding requires a global transport of particles in or out of

the contact zone. For large contact zones, the shear strain in the

bound particle layer19,20 may impede such a transport and, thus,

may lead to even larger differences between the effective adhesion

energies at m ¼ m* and at values of m smaller or larger than m*.

In experiments, maxima in adhesion strength have been

observed for intermediate concentrations of proteins that inter-

connect receptors and ligands in apposing membranes,16,21 and

for intermediate concentrations of nanoparticles that affect the

adhesion of microparticles.11 In principle, the effective surface

interactions induced by adsorbed particles can be measured

directly, e.g. via the surface-force apparatus,12,22 or can be

inferred from the phase behavior of colloidal systems.23,24 In

colloidal systems, changes in the particle concentrations may

lead to reentrant transitions in which surfaces or colloidal objects

first bind with increasing concentration of adhesive particles, and

unbind again when the concentration is further increased beyond

the optimum concentration at which the effective adhesion

energy is maximal.

In this article, we have focused on particles that exhibit purely

repulsive pair interactions Vpp and a short-ranged attraction Vps
This journal is ª The Royal Society of Chemistry 2012
to the surfaces (see Fig. 2). However, as argued in Section 6, our

general relationship between the adsorption isotherm of the

particles and the effective adhesion energy of the surfaces should

also hold for other particle–particle interactions Vpp or particle–

surface interactions Vps at least as long as these interactions do

not lead to adsorption in multilayers. This is the case for weakly

attractive particle–particle interactions Vpp and other short-

ranged particle–surface interactions Vps. For more strongly

attractive particle–particle interactions Vpp or long-ranged

particle–surface interactions Vps that lead to multilayers of

adsorbed particles, the effective adhesion potential Vef will

exhibit several minima that correspond to one, two, or more

layers of particles between the surfaces.

Layers of particles can also arise if the bulk of particles in

contact with the surfaces is quite dense, or ‘liquid-like’, not dilute

as assumed here. Such a ‘layering’ has been known from

computer simulation studies of ‘simple’ fluids composed of

spherically symmetric molecules or particles that have just three

translational degrees of freedom.25 Layering manifests itself as

periodic oscillations of the particle concentration X(z) along the

normal of the surfaces, with a spacing between neighboring

peaks that approximately matches the diameter of the spherical

particles. The oscillations are damped as one moves away from

the surfaces because the particle–surface interaction potential

decays to zero with increasing distance from the substrate.

Experimentally, layering near solid surfaces can be detected as

oscillations in the force profile measured with the surface forces

apparatus. In this apparatus, one brings a thin film composed of,

e.g. nearly spherical octamethylcyclotetrasiloxane (OMCTS)

molecules between the surfaces of a pair of macroscopic cylinders

coated with a thin mica sheet.22,26 The cylinders are arranged

such that their axes form a right angle. By varying the distance h

between the cylinders, one can measure the pressure p(h) exerted

by the confined film on the cylinders with molecular resolution.

Like the particle concentration X(z), p(h) also exhibits damped

oscillations with a wavelength that is equal to the bulk correla-

tion length.27

If the confined fluid is composed of particles or molecules that

also possess rotational degrees of freedom, interesting orienta-

tional effects may arise. In the case of confined liquid crystals, for

example, prewetting phenomena arise at a solid surface that are

driven by the precise anchoring of individual particles at the

surface.28 Here, ‘anchoring’ refers to an energetic preference of a

molecule’s orientation with respect to the plane of the solid

surface. In addition to these static effects, diffusion of liquid

crystals in nanoconfinement is also quite unique.29

We have focused here on planar surfaces. An interesting aspect

of flexible surfaces such as lipid membranes is that they can wrap

around adhesive particles.30–33 A partial wrapping can lead to

effective, surface-mediated interactions between the adsorbed

particles34–36 and, thus, to different adsorption isotherms of the

particles, compared to planar surfaces.
Appendix

Interactions

In our model, the spherical particles are confined between two

planar and parallel surfaces separated by a distance L along the
Soft Matter, 2012, 8, 11737–11745 | 11743
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z-axis. The interaction potential of the particles and the surfaces

is the sum of a soft repulsive and a Yukawa-like attractive term:

Vps ¼ U

"
a1

 
d

ẑ

!10

�a2

exp
�
�h

���ẑ�������ẑ���
#

(12)

here, ẑ¼ z + d/2, and z is the distance of the particle center from a

surface. The parameters

a1 ¼ � hd þ 1

hd � 9
and a2 ¼ �10dehd

hd � 9
(13)

are chosen such that the minimum of the potential Vps is located

at z¼ d/2, with minimum value�UwhereU is the binding energy

of the particle. The interaction range of the potential depends on

the parameter h. We have chosen the value h ¼ 7d for which the

interaction potential decays to zero at separations z of the

particles from the surfaces close to the particle diameter d (see

Fig. 2).

The particle–particle interaction is purely repulsive:

Vpp ¼ 4kT

�
d

r

�12

(14)

here, r is the distance between the two particle centers.

Pressure calculations

In the grand-canonical ensemble, equilibrium states correspond

to minima of the grand potential whose exact differential may be

given as

dF ¼ �SdT � Ndm � PkLdA � PzzAdL (15)

where S denotes entropy, T is temperature, m is the chemical

potential of the particles, A is the area of the surface, and Pk h
½(Pxx + Pyy) and Pzz are diagonal components of the pressure

tensor P. Because the particle–surface interaction depends only

on distances from the surfaces in the z-direction, properties of

our model are translationally invariant in the x- and y-directions.

To make contact with a microscopic level of description we

introduce the expression:25

F ¼ �kT ln X (16)

where k is Boltzmann’s constant and

XðT ;m;A;LÞ ¼
X
N

expðbmNÞQ ðT ;N;A;LÞ (17)

is the grand-canonical partition function with b ¼ 1/kT. In

eqn (17)

Qh
Z

N!L3N
(18)

is the partition function of the canonical ensemble for a system

with 3N translational degrees of freedom, Lh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bh2=2pm

p
is the

thermal de Broglie wavelength of a particle of mass m, h is

Planck’s constant, and

Z ¼
ð
dRexp½�bVðRÞ� (19)
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is the configuration integral with the configurational energy

VðRÞ ¼ 1

2

XN
i¼1

XN
jsi
j¼1

Vpp

�
rij
�þX2

k¼1

XN
i¼1

Vpsðzi;kÞ (20)

Here, R h {r1, r2, ., rN} is a short-hand notation for the

configuration of the N particles, rij h |ri � rj| is the distance

between the particles i and j, and zi,1 ¼ zi and zi,2 ¼ L � zi are the

distances of particle i from the two walls located at z ¼ 0 and z ¼
L, respectively.

A key quantity in this article is the pressure tensor component

Pzz. From eqn (15) and (16), it is easy to verify that

Pzz ¼ kT

A

vln X

vL

¼P
N

1

N!L3N

�
vZ
vL

�
T ;m;A

¼ Pid þ Pp
zz

(21)

where the ideal-gas contribution is Pid ¼ hNikT/V with V ¼ AL

and h.i denotes an average in the grand-canonical ensemble.

The contribution from particle interactions is given by

Pp
zz ¼ � 1

2V

XN
i¼1

XN
jsi
j¼1

D
V

0
pp

�
rij
�
rij

�
r̂ij$êz

�2E
� 1

2V

X2
k¼1

�
XN
i¼1



V

0
psðzi;kÞzi;k

�
(22)

where the first and second terms on the right side arise because of

particle–particle and particle–surface interactions, respectively,

Vpp
0 ¼ dVpp/drij, Vps

0 ¼ dVps/dzi, r̂ij ¼ rij/rij, and êz is a unit vector

pointing along the z-axis. In the limit L/N, we have Pzz / Pb

where the bulk pressure is given by

Pb ¼ Pid � 1

6V

XN
i¼1

XN
jsi
j¼1

D
V

0
pp

�
rij
�
rij

E
(23)

The pressure p in eqn (1) that the particle exerts on the surfaces

is identical to the pressure tensor component Pzz and calculated

from eqn (21) and (22) in our Monte Carlo simulations.
Monte Carlo simulations

In our Monte Carlo (MC) simulations, we numerically realize a

Markov process with a limiting distribution in configuration

space proportional to exp{�b[U(R) � mN] � ln N! � 3Nln L}.

To achieve this we employ an algorithm originally proposed by

Adams for a simple Lennard-Jones fluid.37 It proceeds in a

sequence of pairs of steps where particles are displaced and

created or destroyed.

We refer to a MC cycle as a sequence ofN attempts to displace

a molecule and N attempted creations of new or removals of

already existing molecules where N is the actual number of

molecules present at the beginning of a new cycle. To avoid

biasing the generation of configurations, displacements and

rotations as well as creation and removal are attempted with

equal probability. Our simulations are based upon 6 � 103 cycles

for equilibration followed by 105 cycles to compute ensemble

averages. To save computing time we employ a combination of a
This journal is ª The Royal Society of Chemistry 2012
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conventional Verlet with a link-cell neighborlist as described in

Allen and Tildesley’s book.38 A particle is considered as a

neighbor of a reference particle if it is located within a sphere of

radius rN ¼ 3.5d. In addition, fluid–fluid interactions are cut off

beyond an intermolecular separation of rc ¼ 3d which we use

throughout this work; no such cutoff is applied to fluid–substrate

interactions.

Curve fitting

The dashed line in Fig. 9(b) represents the 9th-order polynomial

fit XsðmþULÞxð1=d2ÞP9
n¼0cnx

n with x ¼ (m + UL)/kT and fit

parameters c0¼ 0.513, c1¼ 0.0335, c2¼�0.00212, c3¼ 0.000311,

c4 ¼ �3.03 � 10�5, c5 ¼ �2.914 � 10�6, c6 ¼ 6.42 � 10�7, c7 ¼
�1.13 � 10�8, c8 ¼ �2.63 � 10�9, and c9 ¼ 1.13 � 10�10.

Integration of Xs(m + UL) leads to the adsorption free energy

fsðmþULÞxðkT=d2Þðcint �
P9

n¼0cnx
nþ1=ðnþ 1ÞÞ (see eqn (4)).

We have determined the value cint ¼ �2.69 for the integration

constant from a fit of eqn (5) to the Monte Carlo data for the

effective binding energy Uef shown in Fig. 7.

Asymptotic limit of large surface concentration

At large surface concentrations, the particles in the adsorption

layers are packed in a hexagonal lattice. To determine the

scaling form of the surface concentration Xs in this limit, we

consider a surface area A with N adsorbed particles arranged in

a hexagonal lattice. The adsorption energy of the particles is

Ead ¼ N(m + UL), and the sum of the repulsive interactions of

the particles is Erep ¼ 3NVpp(r(N)) ¼ 12N(d/r(N))12 with the N-

dependent distance rðNÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=N

p
=31=4 between neighboring

particles. Minimization of the total energy Ead + Erep with

respect to the particle number N leads to a particle density of

Xs x (0.55/d2)(m + UL)
1/6.
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