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Translational and rotational dynamics in suspensions
of magnetic nanorods†

Carlos E. Alvarez* and Sabine H. L. Klapp

Using computer simulations we investigate the translational and rotational diffusion of dilute suspensions

of magnetic nanorods with and without a (homogeneous) external magnetic field. The magnetic rods are

represented as spherocylinders with a longitudinal point dipole at their center and length-to-breadth ratios

L/D ¼ 3 or L/D ¼ 9. In the absence of a field, the rods tend to form compact clusters with antiparallel

ordering and thus behave very differently to dipolar spheres (L/D ¼ 0), which tend to form head-to-tail

chains. Furthermore, for rod-like particles the external field tends to destabilize rather than to support

cluster formation. We show that these differences in the aggregation behavior have profound

consequences not only in static material properties such as the field-induced magnetization and the

zero-frequency susceptibility, but also in the dynamics. In particular, for magnetic rods the translational

diffusion constant parallel to the field is larger than the perpendicular one, in contrast to the behavior

observed for magnetic spheres. Moreover, the rod-like character greatly affects the shape and the

density dependence of the single-particle and collective dipole–dipole time correlation functions and

their counterparts in the frequency domain.
1 Introduction

Ferrouids (FF) and magnetorheological uids (MF) are
systems composed of magnetic particles of sizes in the range of
3–15 nm (for FF) or 1–20 mm (for MF) dispersed in a carrier
liquid. The intrinsic combination of uid and magnetic prop-
erties characterising such systems makes them very interesting
and important for a multitude of technological applications
such as heat dissipation, dynamic sealing and viscous damping
as well as in biomedical applications.1–5 An important question
related to the properties of the magnetic dispersed phase
concerns the effect of the shape of the particles, as colloidal
particles are not always spherical and a rod-like shape is quite
common. Indeed, magnetic nanorods can nowadays be
synthesized from a variety of materials,6–9 and experiments of
ensembles of such particles already suggest that they display
special material properties when compared to those of ferro-
uids with spherical particles. Examples are enhancements of
the magnetoviscous effect,10 magnetic birefringence11 and the
thermal conductivity.12 However, a thorough, fundamentally
oriented understanding of these features from a microscopic
perspective is still missing.

As an approach to study such complex uid systems, we here
employ computer simulations. These are nowadays well-
, Hardenbergstraße 36, D-10623 Berlin,

.edu.co

tion (ESI) available. See DOI:

Chemistry 2013
established tools to study models which are too complicated to
be treated analytically, but that remain simple enough to
hopefully give us some insight into the mechanisms underlying
the behavior of magnetic uid systems. In this spirit, we present
here a Molecular Dynamics (MD) simulation study of a model
magnetic nanorod system composed of spherocylinders with
central, longitudinal point dipoles. Our aim is to explore the
interplay between structure formation and translational and
rotational dynamics, both in globally isotropic systems and in
the presence of an external magnetic eld. Indeed, external
elds play an important role in many experiments (see e.g.
ref. 13), and are known to strongly inuence the structure
formation already in suspensions of magnetic spheres.3

Dipolar spherocylinders (and related models involving
prolate spheroids or prolate Gay–Berne particles, plus an
internal point dipole) have been studied widely both by theory
and by computer simulations (see, e.g., ref. 14–18), including
studies based on MD simulations.19,20 However, most of these
studies focus on the role of the dipolar rod–rod interactions on
the formation of liquid-crystalline (e.g., nematic or smectic)
mesophases, which for non-dipolar rods occur for aspect ratios
L/D > 3.7.21 Therefore, most of these earlier studies concentrate
on dense systems characterized by volume fractions h > 0.1. In
contrast, typical ferrouid suspensions have volume fractions
of magnetic particles ranging between h ¼ 0.01 and 0.2,10,22,23

indicating that for real magnetic nanorod suspensions the low-
density regime is of particularly high relevance. The present
study therefore concentrates on rather dilute systems. More-
over, we restrict our simulations to low and moderate magnetic
Soft Matter, 2013, 9, 8761–8770 | 8761
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coupling strength. Within this regime, we focus on diffusive
properties with and without a magnetic eld, and on the
magnetic response.

As this is, to our knowledge, the rst study addressing the
dynamics of diluted magnetic nanorods based on computer
simulations, and due to the large parameter space that such
systems present, we have decided to leave aside, as a rst step,
hydrodynamic interactions (HI). The latter may play an
important role in experimental systems24 but add signicant
computational burden. Moreover, neglecting HI as a starting
point allows us to better understand the sole effect of dipolar
and steric interactions on the dynamics, a question, which is
also relevant for molecular systems of elongated dipolar
particles.

The rest of the paper is organized as follows. In Section 2.1
we specify the dipolar rod model used in the simulations and
the interaction potential between the particles. Details of the
molecular dynamics simulations are presented in Section 2.2.
Section 3.1 begins with a discussion of the structure formation
in the dipolar sphere and spherocylinder systems, followed by
the results for the orientational order of the systems presented
in Section 3.2. Sections 3.3 and 3.4 are dedicated to the trans-
lational and rotational dynamics of the systems, respectively,
and in Section 3.5 we present the results for the frequency
dependent susceptibility. Finally, Section 4 summarizes our
results.
2 Model and simulations
2.1 Model

We study monodisperse systems composed of N so magnetic
rods, where each particle is represented by a cylinder of length L
and diameter D with two hemispherical caps of diameter D
(spherocylinder), plus a longitudinal point dipolem at its center
(see Fig. 1). The short range, repulsive, so spherocylinder
potential is given by

Usr ¼
43

�
D

d

�12

�
�
D

d

�6
" #

þ 3 if d# 21=6D

0 if d. 21=6D

;

8>><
>>: (1)

where d is the closest distance between the surfaces of the two
spherocylinders and 3 is an energy parameter. Eqn (1) reduces
to a truncated-shied Lennard-Jones potential when L ¼ 0,
where D is the diameter of the sphere and r ¼ d + D is the
distance between the centers of the spheres.

In addition, two particles interact via long range dipole–
dipole interactions given by
Fig. 1 Sketch of a magnetic dipolar spherocylinder.
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Udip ¼ mi$mj

rij3
� 3

�
mi$rij

��
mj$rij

�
rij5

; (2)

in which mi is the dipole moment of particle i and rij ¼ ri � rj is
the separation vector between particles i and j.

The total Hamiltonian of the system, including kinetic and
potential parts, is then given by

H ¼
X
i

1

2

�
niui

2 þ ui
T I iui

�þX
ij

�
Usr

�
rij ;Ui;Uj

�
þUdip

�
rij ;Ui;Uj

��þX
i

mi$H ; (3)

where ni and Īi are the mass and inertia tensor of particle i, Ui is
its orientation, ui and ui are its speed and angular velocity
respectively, and H is the external eld.

Since we are aiming to describe a bulk system, we use peri-
odic boundary conditions (PBC) in three dimensions. To this
end the dipolar interactions are handled via the (three dimen-
sional) Ewald summation. The dipolar interaction takes the
form25,26

Udip ¼
X
n

0
"
1

2

X
i

X
jsi

�
mi$mj

�
A�

�
mi$~rij

��
mj$~rij

�
B

#

þ 1

V

X
ks0

4p

k2
e�k2=4a2 1

2

X
i

X
jsi

ðmi$kÞ
�
mj$k

�
e�ik$rij : (4)

In eqn (4) n ¼ (nx, ny, nz) where na can be 0 or a positive
integer, and ~rij ¼ ri � rj + �hn with

h ¼
0
@Lx 0 0

0 Ly 0

0 0 Lz

1
A; (5)

where Lx ¼ Ly ¼ Lz are the dimensions of the simulation box.
Furthermore

A ¼
erfc

�
a~rij

�
~rij

3
þ 2affiffiffiffi

p
p e�a2~rij

2

~rij
2

(6)

B ¼ �VA$
~rij

~rij
2
: (7)

The wave vectors are given by k ¼ 2p�h�1n. The forces and
torques are obtained from the potentials (1) and (4) via the
relations Fi ¼ �ViU and si ¼ �mi � vU/vmi.

To compute the dipole–dipole interactions we stick to the
minimum image convention (n ¼ 0 in the real part of the
summation), and use values of a in the range 5 ( aLi ( 7.5
and maximum wave vector values (kmax ¼ |kmax|) in the range
5 < kmax < 9, depending on the dimensions (Li) of the system.
2.2 Simulations

We performed molecular dynamics (MD) simulations of dipolar
spherocylinder systems composed of 500 # N # 1500 particles
in the canonical (N, V, T) ensemble, within a cubic simulation
box under PBC. We used the leap-frog Verlet method to solve
numerically the equations of motion with a time step 10�4 #

Dt* # 10�3 (for the denition of t* see below). Smaller time
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Configuration at h ¼ 0.01 of (a) dipolar spheres (L ¼ 0, m ¼ 2.4) and (b)
dipolar spherocylinders (L¼ 9,m¼ 4.8), in the absence of an external field (H¼ 0).

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
5 

Ju
ly

 2
01

3.
 D

ow
nl

oa
de

d 
by

 T
U

 B
er

lin
 -

 U
ni

ve
rs

ita
et

sb
ib

l o
n 

29
/0

3/
20

16
 1

0:
57

:5
8.

 
View Article Online
steps were used for longer rods to reduce the probability of
occurrence of unphysical overlaps that may introduce artifacts
in the dynamics of the system. In order to sample from the
canonical ensemble, two independent Hoover–Langevin ther-
mostats27 for the translational and rotational degrees of
freedom respectively were used.

In the present study we focus on the system's behavior at low
densities below the onset of a nematic (or otherwise liquid-
crystalline) phase. To get an idea about the corresponding range
of densities, we note that non-dipolar spherocylinders with
L/D ¼ 9 (which is the largest aspect ratio considered here) order
nematically at hz 0.25.21 The addition of a central longitudinal
dipole to the spherocylinders reduces the stability of the
nematic phase in favor of the smectic-A phase, while the density
at which the transition from the isotropic to the ordered phase
occurs does not change too much.16,17 Here we perform simu-
lations at h ¼ 0.01 and 0.05, which should be well within the
isotropic regime. In some cases simulations were carried out at
a higher volume fraction (h ¼ 0.2), which is still lower than the
onset of the transition to a nematic phase, to probe for the
density dependence of the system's behavior.

We use here the following reduced units: distance (d*¼ d/D),
time (t* ¼ t=

ffiffiffiffiffiffiffiffiffiffi
bD2n

p
), energy (E* ¼ bE), temperature (T* ¼ b/b ¼

1), magnetic dipole moment (m* ¼ ffiffiffiffiffiffiffiffiffiffiffi
b=D3

p
m), and magnetic

external eld (H* ¼ ffiffiffiffiffiffiffiffi
bD3

p
H), where b ¼ (kBT)

�1 and n is the
mass of the L*¼ L/D¼ 9 spherocylinder (themass density for all
the particles was equal). Note that we have chosen to normalize
the energies by b instead of the energy parameter 3�1, appearing
in the short range potential (1). This choice was made as the
physical interpretation of 3 in colloidal particles is not clear. We
also note that m*2 ¼ l and m*H* ¼ x are the commonly used
dimensionless parameters measuring the coupling between the
particles and with the external eld respectively.28 For the sake
of simplicity we will omit the asterisk of the reduced variables
from now on, so for example the aspect ratio will be denoted
just by L.

Three aspect ratios for the spherocylinders were considered
in this study: L ¼ 0 (spheres), L ¼ 3 and L ¼ 9. Concerning the
interaction strength we consider two regimes: a high coupling
regime in which the particles form aggregates (m T 2 in the
spherical case) and a low coupling regime in which almost no
aggregation is observed at the low densities considered here.29

To characterize these regimes we employ the degree of poly-
merization, dened by30,31

F ¼
	
Ncl

N



; (8)

where Ncl is the number of particles that belong to a cluster and
N is the total number of particles. Further, the brackets h/i
stand for an average in the canonical ensemble, that is,

h/i ¼ Z�1
Ð
/e�bHdG, (9)

where Z is the canonical partition function and G represents
the canonical coordinates and momenta of the system. For
the sake of simplicity, the clusters are dened by a simple
proximity criterion,3 in which two particles are considered to be
This journal is ª The Royal Society of Chemistry 2013
clustered if theminimum distance between their surfaces is less
than 0.1D.

Specically, we choose for the spherical case the values m ¼
1.5 for the low coupling regime (corresponding to F < 0.1) and
m ¼ 2.4 for the high coupling case (F > 0.9). However, using the
same values of m for the elongated particles we do not nd the
required clustering properties, the reason being that the effec-
tive dipolar coupling strength in rods is reduced due to their
shape (this holds especially in the head-to-tail conguration).
Therefore we use here a different criterion to choosem such that
the spherocylinders display strong agglomeration in the high
coupling regime and almost none at low coupling. Specically,
we followed the approach suggested in ref. 32 in the context of a
related model of dipolar rods. The criterion consists in
choosing the value for the dipole moment m0 such that the
interaction strength between two adjacent, parallel single
dipole rods is the same as that between two parallel rods con-
taining L + 1 longitudinal dipolesm. Using this criterion we nd
the values m0 ¼ 2.29 (low coupling) and m0 ¼ 3.66 (high
coupling) for the L ¼ 3 case, and m0 ¼ 2.8 (low coupling) and
m0 ¼ 4.48 (high coupling) for the L ¼ 9 case.
3 Results
3.1 Structural properties

Before analyzing the dynamic behavior we will present in this
section results pertaining to the structure formation in the
systems. This structural analysis complements and helps us to
understand part of the dynamic behavior and orientational
order presented in later sections.

At the low densities considered here and in the absence of an
external eld (H ¼ 0) the low coupling regime is characterized
by a homogeneous distribution of the magnetic particles,
independently of the aspect ratio. In the high coupling regime,
the systems of magnetic particles display strong aggregation
into clusters. However, the nature of such clusters does depend
on the aspect ratio. For spherical magnetic particles it is well
known that the aggregates formed correspond to head-to-tail
chain structures,5,29,33 for an illustration see Fig. 2(a). For
magnetic rods we rather observe the formation of compact
clusters of parallel rods32 (as visible in the inset of Fig. 2(b)). We
note here again that our denition of high and low coupling
regimes stems from these aggregation behavior.
Soft Matter, 2013, 9, 8761–8770 | 8763
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Table 1 Degree of polymerization as a function ofH in the high coupling regime
at h ¼ 0.01

H

F

L ¼ 0 L ¼ 3 L ¼ 9

Fig. 3 Configuration at h ¼ 0.01 of (a) dipolar spheres (L ¼ 0, m ¼ 2.4) and (b)
dipolar spherocylinders (L¼ 9,m¼ 4.8), in the presence of an external field (H¼ 5).
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In the presence of a relatively strong eld (H ¼ 5) the
spherical magnetic particles form chains that align with
the external eld34,35 (see Fig. 3(a)). This chaining can be further
analyzed via suitable projections of the correlation function

hðr12;U1;U2Þ ¼
X
l

X
m

X
n

hlmnðr12ÞF̂lmn

00

�
r̂12;U1;U2

�
: (10)

expanded in terms of rotational invariants (F̂lmn
mn ).36 Of particular

importance in our analysis is the projection14

2

3
h112ðr12Þ ¼ 1

ð4pÞ2
ð ​
hðr12;U1;U2ÞF̂112

00

�
r̂12;U1;U2

�
dU1dU2; (11)

where

F̂112
00 (r̂12,U1,U2) ¼ 3(m̂1$r̂12)(m̂2$r̂12) � m̂1$m̂2. (12)

When the particles are oriented by an external eld the
projection h112(r) is positive for parallel dipoles in a head-to-tail
conguration, and negative when they are side by side. Thus it
allows us to differentiate between chain formation and parallel
congurations.

The formation of chains is signaled by the pair correlation
function as a series of peaks separated by a distance of roughly
the diameter D. As an example, the inset of Fig. 4 shows h112

for dipolar spheres in the low and high coupling regimes
under the effect of an external eld. For the case m ¼ 2.4 chain
Fig. 4 h112(r) function for dipolar spherocylinders under the effect of an external
field (H ¼ 5, h ¼ 0.05). The spherical case is shown in the inset.

8764 | Soft Matter, 2013, 9, 8761–8770
formation is evident from snapshots, and h112 presents clear
positive peaks at roughly integer multiples of D and negative
valleys in between. In the case m ¼ 1.5 the formation of chains
is not evident from the congurations because at this coupling
the clusters do not last long, however the h112 function pres-
ents a couple of peaks at r ¼ 1 and r ¼ 2, signaling at the
formation of small (less than 4 particles) chains, which are not
as stable as the ones formed at high coupling. For the cases L
¼ 3 (m ¼ 3.66) and L ¼ 9 (m ¼ 4.48) we observe that the
external eld dissolves the aggregates formed by the magnetic
rods, as the particles are forced to align their dipole moments
with the external eld (see Fig. 3(b)). This effect can be quan-
tied by looking at the polymerization degree (F). Numerical
data for F vs. H are presented in Table 1, where it is observed
that in the spherical case the polymerization degree increases
as the external eld strength is increased, while in the case of
the spherocylinders the external eld hinders the formation of
aggregates.

Dipolar rod systems at high enough values of both H and m
may present the formation of head-to-tail alignments in the
direction of the eld. The plots of h112(r) in Fig. 4 for rods with L
¼ 3 at high coupling (m ¼ 3.66) show two clear positive peaks
located at r x 2 and r x 4. The peak at r x 4 corresponds to
head-to-tail congurations (Fig. 5(a)), while the one at r x 2
corresponds to parallel but shied congurations like the one
shown in Fig. 5(b). In the L ¼ 9 case there is a single peak at rx
2 that corresponds to shied congurations like the ones
observed in the L ¼ 3 case. However, no evidence of head-to-tail
conguration was observed in the correlation functions or the
snapshots for this last case, meaning that the dipole moment is
still not strong enough to form chains of rods with such a
relatively large aspect ratio.
0.0 0.939(3) 0.355(4) 0.920(2)
0.1 0.942(2) 0.376(5) 0.936(3)
0.5 0.962(2) 0.255(4) 0.907(2)
1.0 0.971(2) 0.077(2) 0.772(3)
5.0 0.985(1) 0.040(2) 0.039(2)

Fig. 5 Cluster of dipolar spherocylinders at h¼ 0.05 with aspect ratio L ¼ 3,m¼
3.66 and H ¼ 5. (a) Head-to-tail configuration. (b) Shifted configuration.

This journal is ª The Royal Society of Chemistry 2013
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3.2 Orientational order

In this section we investigate how the external eld affects the
global orientational order of the system, as measured by the
order parameter G1

G1 ¼
*
1

N

�����
XN
i

m̂i$d̂

�����
+
: (13)

In eqn (13) d̂ denotes the unit eigenvector associated with the
largest eigenvalue of the matrix

Qkl ¼ 1

2N

XN
i¼1

3m̂k
im̂l

i � dkl
� �

; (14)

where i denotes the particle and the indexes k and l denote the
cartesian component of the orientation vector.

The orientational order parameter is plotted in Fig. 6(a–c) as
a function of the strength of the external eld.

We can see that the spheres and the spherocylinders
behave differently. As the dipole moment is increased, the
dipolar spheres become more susceptible to the external eld,
resulting in higher values of G1. This is not so for the
spherocylinders. Already for particles of aspect ratio L ¼ 3 we
see that the curves for the two different values of m are closer
to each other as compared to the spherical case. For the
longest rods (L ¼ 9) the behavior inverses: the system
with a lower m value is more susceptible to the external
eld than the strongly coupled system, except for the highest
value of H.

The explanation of the phenomena just presented comes
from the clustering behavior of the particles. As discussed in
Section 3.1, dipolar spheres tend to form chain-like clusters
which, under the presence of a homogeneous constant eld,
align in the direction of the eld, and the effect is more
pronounced as H increases. In the case of dipolar spherocy-
linders the alignment imposed by the external eld competes
with the dipole–dipole interactions. As a consequence, the
orientational order at high coupling is lowered compared with
that at low coupling.
Fig. 6 Orientational order parameter G1 as a function of Hwith h¼ 0.01. (a) L ¼
0, (b) L ¼ 3 and (c) L ¼ 9.

This journal is ª The Royal Society of Chemistry 2013
3.3 Translational dynamics

We now turn to the discussion of the single-particle trans-
lational diffusion properties. For systems of magnetic nano-
spheres, it has been observed experimentally and in
simulations that the dipolar interactions lead to a decrease of
the translational diffusion constant as compared to the
predictions of the Stokes–Einstein theory for non-dipolar
spheres.37,38 Further, simulations have shown that under the
effect of an external eld the diffusion coefficients of magnetic
spheres in the directions parallel and perpendicular to the eld
are different (diffusion anisotropy) with the degree of anisot-
ropy varying with the eld strength.35,38

In this section we investigate how the translational diffusion
is affected by the shape of the particles. We focus on systems at
a volume fraction of h ¼ 0.05. Our target quantity is the mean
square displacement (MSD) of the particles, which in the
diffusive regime obeys Einstein's relation

hDxa2i ¼ 2Dat (15)

in the long time limit, where Dxa denotes the a cartesian
component of the displacement.

The diffusion coefficients Da can be computed whenever the
linear relation (15) holds. However, at the low densities
under consideration it may happen that the diffusive regime
is not reached within the simulation time (Dt ¼ 600), and
thus the diffusion coefficient cannot be obtained. In the
remaining cases, we compute the parallel and perpendicular
diffusion coefficients, relative to the direction of the external
eld (H ¼ Hẑ), as35,38

D0 ¼ 1

3

�
Dx þDy þDz

�
; (16)

Dk ¼ Dz and (17)

Dt ¼ 1

2

�
Dx þDy

�
; (18)

as well as the diffusion anisotropy ratio A ¼ (Dk � Dt)/D0. The
resulting values for the diffusion coefficients are shown in
Table 2. In all cases we have checked that the values are
consistent with those obtained from a Green–Kubo relation
involving the velocity autocorrelation function.39
Table 2 Diffusion constant obtained via the Einstein relation. Asterisk (*) indi-
cates that the diffusive regime was not reached within the simulation time

L m H D0 Dk Dt A

0 1.5 0 5.6 — — —
5 5.5 3.2 6.7 �0.64

3 2.29 0 3.6 — — —
5 4.1 5.1 3.6 0.37

3.66 0 * — — —
5 3.0 2.5 3.3 �0.27

9 2.8 0 2.2 — — —
5 * * 1.9 *

4.48 0 1.3 — — —
5 2.1 2.6 1.8 0.38

Soft Matter, 2013, 9, 8761–8770 | 8765
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Fig. 7 Single particle dipole–dipole time autocorrelation function at h ¼ 0.01
and H ¼ 0.
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We start by considering the dipolar spheres at low coupling.
In this case the average diffusion coefficient (D0) is almost
independent of the external eld, consistent with the results of
previous works.38 Furthermore, the diffusion constant perpen-
dicular to the eld is observed to be larger than the parallel one
(A < 0). In order to better understand this behavior of the
anisotropy we look at the results presented in Section 3.1, where
it was observed that dipolar spheres with m ¼ 1.5 under an
external eld of magnitude H ¼ 5 have the tendency to form
short chains. A simple explanation for the negative diffusion
anisotropy is that while forming the head-to-tail alignments the
amplitude of the uctuations of the position of the particles
reduced in the direction of the eld, compared with the direc-
tion perpendicular to the eld.

The MSD at high coupling presents a more complicated
behavior involving sub- and superdiffusion, produced by the
formation of rigid chains. We will not go further into its analysis
here, as this has been previously discussed by Jordanovic et al.35

For the rods we observe in most cases that Dk > Dt, consis-
tent with previous ndings in systems of oriented rods.40–42

However, the system of rods with L ¼ 3 and m ¼ 3.66 is an
exception. Here we nd a negative value for the anisotropy.
Indeed, we observed in Section 3.1 that in this case the dipolar
rods can also form small, loose chains, which can reduce the
diffusion in the direction parallel to the eld. In contrast, the
case L¼ 9,m¼ 4.48 does not present such chain formation and
its diffusion anisotropy is positive.
Fig. 8 Frequency response of the particle orientation for dipolar spheres (m ¼
1.5), spherocylinders with L ¼ 3 (m ¼ 2.29) and spherocylinders with L ¼ 9 (m ¼
2.8). Dotted lines represent raw data. Continuous and dashed lines are spline
fittings to the data.
3.4 Rotational dynamics

In the present section we explore the effects of the dipole–dipole
interaction and the external eld on the rotational dynamics of
individual particles.

We focus on systems at low coupling and in the absence of
an external eld. In order to see the effect of the dipolar inter-
actions we will compare dipolar spherocylinders with their
respective reference systems (m ¼ 0). Our target quantity is the
single particle time correlation function for the dipole moment
(dipole–dipole autocorrelation function)

CmðtÞ ¼ 1

3N

*XN
i¼1

m̂iðtÞ$m̂ið0Þ
+
; (19)

which are shown in Fig. 7.
In the case L¼ 0,m¼ 0 (see the inset of Fig. 7) the correlation

function does not present any decay as there are effectively no
angle-dependent interactions. Nevertheless the interaction of
the individual dipole moments with the thermostat produces
uctuations around an equilibrium value determined by the
kinetic temperature. This changes at m > 0 (L ¼ 0), where we
observe a minimum of Cm(t) at early times, followed by an
increase and a subsequent decay to zero (see the inset of Fig. 7).
For rod-like particles, in contrast, the behavior of Cm(t) at m ¼
0 and m > 0 is very similar. In particular we observe in all cases
that Cm(t) does not decay monotonically, and there is again a
minimum at early times. It is instructive to look additionally at
the corresponding frequency dependent response function
8766 | Soft Matter, 2013, 9, 8761–8770
jðuÞ ¼
ðN
0

�
� d

dt
CmðtÞ

�
e�iutdt; (20)

whose denition is inspired by that used commonly in linear
response theory for the time correlation functions of the
magnetization. Results for the imaginary part of j(u) are
plotted in Fig. 8 for the weak coupling case, where the position
of the peaks indicates the frequency at which the orientation of
the particles is changing.

As the rst minimum in the correlations Cm(t) is present in
systems with and without dipolar interactions at a density in
which collisions between particles are not frequent, it could be
assumed that this minimum is mostly the product of the iner-
tial rotation of the particles. To check the conjecture about the
presence of inertial effects we briey discuss the rotational
motion of a rigid body as described by the Euler equations.43 In
the spherical case (L ¼ 0) and in the absence of external torques
the Euler equations reduce to I _u ¼ 0, where I is the moment of
inertia of the sphere and u its angular velocity, which is
constant. We estimate the rotation frequency of the particles by
This journal is ª The Royal Society of Chemistry 2013
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the corresponding root mean square value in the canonical
ensemble. From the equipartition theorem then we obtain
urms ¼ hu2i1=2 ¼ ffiffiffiffiffiffiffiffi

T=I
p ¼ 12:04.

For the case of spherocylinders we compute the root mean
square frequency of precession of the non-magnetic rods about
the axis parallel to their angular momenta h _f2i1/2 (see Appendix
5), and obtain the values _frms ¼ 2.26 for L ¼ 3 and _frms ¼ 0.51
for L ¼ 9. Indeed, by looking at Fig. 8 it can be seen that the
positions of the peaks for the imaginary part of j(u) are
comparable to the values obtained for the root mean square
rotation frequency of non-dipolar rods at the low density limit.

In Fig. 9 we present results for Cm(t) at higher volume frac-
tions. It is seen that the inertial minimum disappears with
increasing density, as the average strength of the interactions
increases by virtue of the shorter inter-particle distances. These
interactions with neighboring particles produce an effective
rotational friction, which in turn “smears out” the inertial
effect. Indeed, for a volume fraction of h¼ 0.2 the decay of Cm(t)
is already monotonic for systems of spherical particles and
spherocylinders (L ¼ 3). We note that the results obtained in
this section for systems at low density are in agreement with
those obtained for the dipole correlation functions using a
rotational diffusion model that allows for large angle reor-
ientation of the particles.44 The latter model predicts a damped
oscillatory behavior for Cm(t), rather than a monotonic decay.
These considerations show that inertial effects are indeed
important at low densities, at least if hydrodynamic interactions
are neglected (as is done in our study). However, even in the
presence of such interactions, inertial effects could still be
relevant. We also note that inertial effects are surely important
in the context of molecular liquids.45
3.5 Frequency-dependent magnetic response

In this section we present results for the collective rotational
dynamics. Specically, we concentrate on the frequency-
dependent magnetic susceptibility in the low coupling regime.
In the framework of linear response theory the change in
magnetization M ¼ P

i
mi induced by a weak external eld

H(t) ¼ H0 cos(u0t) is given by46,47
Fig. 9 Dipole–dipole autocorrelation function for several volume fractions. (a) L
¼ 0, m ¼ 1.5. (b) L ¼ 3, m ¼ 2.29.

This journal is ª The Royal Society of Chemistry 2013
hDMðtÞib ¼ �b

ðN
0

�
d

dt0
�
Maðt0ÞMbð0Þ


�
Haðt� t0Þdt0; (21)

where the sub indexes a and b indicate cartesian
components.

By Fourier transforming into the frequency domain one
obtains

hDM(u)ib ¼ cab(u)Ha(u), (22)

with the cartesian components of the susceptibility tensor

cabðuÞ ¼ b

ðN
0

�
�
d

dt

�
MaðtÞMbð0Þ


�
e�iutdt: (23)

As the systems studied here are orientationally disordered at
H ¼ 0, it is sufficient to consider the susceptibility of an
isotropic medium,

cðuÞ ¼ b

ðN
0

�
� d

dt
CMðtÞ

�
e�iutdt: (24)

where

CMðtÞ ¼ 1

3

�
MðtÞ$Mð0Þ
: (25)

In Fig. 10 we plot numerical results for the frequency-
dependent susceptibility in the low coupling regime at h ¼
0.01. We rst consider the static limit, u/ 0. In this limit, the
magnetic susceptibility is larger for the magnetic rods than
for the magnetic spheres, consistent with the larger slope of
the parameter G1 as a function of H observed in Fig. 6. The
larger value of Re[c(u / 0)] is due to the fact that we have
employed larger values of m to investigate the low-coupling
regime at L > 0.

Increasing the frequency from zero the functions Re[c(u)]
rst remain positive but then cross zero, followed by a range
where they attain negative values. These negative values indi-
cate the presence of oscillations of the magnetisation that are
out of phase with the driving eld, a behaviour which can also
Fig. 10 Frequency-dependent susceptibility for dipolar spheres (m ¼ 1.5),
spherocylinders with L¼ 3 (m¼ 2.29) and spherocylinders with L¼ 9 (m¼ 2.8), at
h ¼ 0.01. The curves are spline fittings to the data.

Soft Matter, 2013, 9, 8761–8770 | 8767

http://dx.doi.org/10.1039/c3sm51549d


Fig. 12 Frequency dependent susceptibility for dipolar spheres ((a) and (b)) and
spherocylinders of aspect ratio L ¼ 3 ((c) and (d)), at low coupling. The curves are
spline fittings to the data.
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be related to inertial effects.48 We also note that the observed
behaviour deviates markedly from the Debye-like relaxation
seen in systems governed by rotational Brownian motion.
Regarding the imaginary part of the susceptibility, it is observed
that the absorption peaks in Im[c(u)] occur at frequencies that
are lower, while the aspect ratio of the particles is larger.
Moreover, these peaks are located in the same frequency
regions as their single particle counterparts (Fig. 8). Since the
latter are dominated by inertial effects we conclude that such
effects also determine the collective response at the low density
and coupling strength considered.

We now turn to the role of density. To this end we plot in
Fig. 11 the correlation function CM(t), which represents the
kernel in eqn (24), at several volume fractions. As in the case of
single particle rotational dynamics, we observe that by
increasing the density inertial effects on the susceptibility
become less pronounced. In particular, for magnetic spheres at
a relatively high volume fraction (h ¼ 0.2) the function CM(t)
presents a Debye-like behavior in the sense that it can be tted
as having a single decay time (i.e. by a function of the type
exp(�t/s)). However, at lower densities, there are clear devia-
tions from such behavior. Importantly, this also holds in the
case of spherocylinders, where CM(t) is non-exponential at all
densities considered.

We look now at the frequency-dependent susceptibility for
the systems at higher densities. Fig. 12 plots the real and
imaginary parts of c(u) for systems of spheres and spherocy-
linders (L ¼ 3) in the low coupling regime at three different
volume fractions. In both the spherical and spherocylinder
cases it is seen that at the lowest volume fraction (h ¼ 0.01) the
absorption peaks in Im[c(u)] are located at frequencies close
to those of free particle rotation, computed in Section 3.4. As
the density increases the peaks widen and shi towards lower
frequencies, an effect which can be attributed to the increas-
ingly important role of interactions between particles.
However, these collective effects manifest differently in the
system of spheres and that of spherocylinders. In the spherical
case the height of the absorption peak increases with the
density, meaning that the applied oscillating eld H(t) needs
Fig. 11 Autocorrelation functions of the magnetisation for (a) dipolar spheres
and (b) spherocylinders with L ¼ 3 at low coupling.

8768 | Soft Matter, 2013, 9, 8761–8770
to do a higher amount of work DW(u) f H0
2Im[c(u)] on the

system through an oscillation.49 At the same time, the
susceptibility of the system in the static limit Re[c(u / 0)]
increases. In the case of the spherocylinder the opposite
behavior is observed. As the density is increased the amount of
work done by the external eld per cycle in the frequency
region of the absorption peak as well as the susceptibility in
the static limit both decrease. The fundamental difference
between the sphere and spherocylinder systems lies in their
shape: while steric interactions play no role in the rotational
motion of the spheres, the spherocylinders at high densities
will collide frequently with each other as they rotate,
hindering their capacity to reorient and follow the external
eld. It is plausible that this reduces the susceptibility of
the system.
4 Summary and conclusions

In this paper we have explored the structural and dynamical
behavior of amodel suspension of magnetic nanorods, focusing
on densities below the isotropic–nematic transition. Our MD
simulation results reveal that the system's behaviour differs
markedly from that of magnetic spheres, both with and without
a magnetic eld. The main results can be summarized as
follows:

� In the absence of a eld dipolar rods favor compact, side-
by-side congurations with antiparallel ordering of the dipole
moments. A sufficiently strong external eld tends to dissolve
these clusters. As a consequence, an increase of the coupling
strength (m) yields a decrease of the zero-frequency suscepti-
bility of magnetic rod suspensions. This is in strong contrast to
the behaviour of magnetic spheres: here, the particles form
chain-like head-to-tail clusters at zero eld which are rather
stabilised by an external eld (yielding an increase of the
susceptibility with m).

� In the presence of a magnetic eld, the translational
diffusion of magnetic rods becomes anisotropic with respect to
the directions parallel and perpendicular to the eld. Similar
anisotropic behaviour is seen in systems of dipolar spheres.35,38
This journal is ª The Royal Society of Chemistry 2013
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Fig. 13 Sketch of the rotational motion of a spherocylinder in the absence of
external torque.
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However, in contrast to the spherical case the diffusion constant
along the eld (Dk) is generally larger than the perpendicular
one (Dt), consistent with the behavior of non-polar, oriented
rods.40–42 An exception is a system of relatively short rods (L ¼ 3)
with strong dipole moments: here, application of a large
external eld can enforce the particles to form head-to-
tail clusters, yielding a behaviour similar to that of spheres
(i.e., Dt < Dk).

� The rotational diffusion of magnetic rods in the absence of
an external eld and under dilute, low-coupling conditions is
dominated by inertial effects. The latter generate a minimum in
the time correlation function of the particle orientation Cm(t) or,
equivalently, a peak in the corresponding Fourier spectrum.
The location of this peak can be estimated analytically by
considering ensembles of non-interacting particles. By
increasing the density, interaction effects between the particles
become more relevant. As a result, the effects of inertia are
reduced until the decay of Cm(t) becomes monotonic for the
largest density considered. We note, however, that one would
expect additional effects if the density is increased towards
values pertaining to a nematic phase.

� For low densities, the behaviour of the collective dipole–
dipole correlation function and the frequency-dependent
susceptibility is similar to that observed in the single-particle
dynamics, in that all functions are dominated by inertial effects.
At higher densities, the collective response strongly depends on
the particle's shape: for spheres, one eventually observes an
exponentially decaying correlation function CM(t) characterised
by a single relaxation time, leading to a Debye-like response
function in the frequency domain. For the dipolar-rod systems,
however, the behaviour of CM(t) is more complex at all densities
considered, presumably due to the increasing importance of
steric interactions.

To conclude, our MD simulation results indicate that,
compared to conventional ferrouid composed of spherical
particles, suspensions of magnetic nanorods can display a
markedly distinct structural and dynamical behaviour.
Clearly, the present study represents just a rst step towards a
full microscopic understanding of the material properties of
such systems; more detailed future investigations should
explore a broader region of parameters as well as the role of
hydrodynamic interactions. Moreover, given the different
behaviour of time correlation functions it seems very inter-
esting to explore the impact of these dynamical features on
rheological and transport properties. Work in these directions
is in progress.
Appendix A – rotation frequency of torque
free spherocylinders

In this appendix we derive an expression for the root mean-
squared frequency of rotation for a spherocylinder without
external torque. A sketch of the situation is given in Fig. 13. The
particle with orthonormal body axes (ê1,ê2,ê3) spins around its
symmetry axis and undergoes precession around the direction
of its angular momentum (L) at an angle q.43 Assume now a gas
of such non-interacting spherocylinders with diameter D,
This journal is ª The Royal Society of Chemistry 2013
length L and mass density r (see Fig. 1). For each particle, the
tensor of moments of inertia in the body reference frame is
given by

I ¼
0
@ It 0 0

0 It 0

0 0 Ik

1
A; (26)

where

Ik ¼ rp

�
LD4

32
þD5

60

�
(27)

and

It ¼ rp

�
L3D2

48
þ L2D3

24
þ LD4

64
þD5

60

�
: (28)

We now want to obtain the average precession frequency
of the spherocylinders when the system is in the canonical
ensemble. The squared angular momentum of a symmetric
top in terms of the Euler angles (f, q, j)43 and their time
derivatives is

L2 ¼ It
2( _q2 + _f2sin2 q) + Ik

2( _f cos q + _j)2. (29)

We now take _q ¼ 0 and the relation _f cos q + _j ¼ u3, where
u3 is the component of the angular velocity parallel to ê3 (L3) in
the body reference frame. This yields

L2 ¼ It
2 _f2 sin2 q + Ik

2u3
2. (30)

Now we note that

Ik
2u3

2 ¼ L3
2 ¼ (L$ê3)

2 ¼ L2 cos
2 q. (31)

Combining eqn (30) and (31) we get43

_f
2 ¼ L2

It
2
: (32)

Finally we take the average of (32) in the canonical ensemble
to obtain

D
_f
2
E
¼ It

2
�
u1

2

þ It

2
�
u2

2

þ Ik

2
�
u3

2



It
2

¼ 2It þ Ik
It

2
kBT (33)
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