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Bends in the Plane with Variable Curvature

ROBERT N. SHEEHAN AND FRANK H. PETERS

Abstract. Explicit formulae for planar variable curvature bends
are constructed using Euler’s method of natural equations. The
bend paths are expressed in terms of special functions. It is shown
that the length of the different bend types varies linearly with in-
creasing radius and that the curvature of variable curvature bends
can be expressed as a multiple of the curvature of a circle.

1. Introduction

Two points in the plane can be connected via the construction
of a circle of radius R subtending an angle θ at the circle’s origin.
The curvature κ of this curve is a constant value over its length and
is given by the inverse of its radius κ = 1/R. However, there are
applications for which variable curvature paths between two points
in the plane are necessary. One such example can be found in the
field of photonic integrated circuit design where the use of variable
curvature optical waveguide bends has led to a significant reduction
in optical propagation losses [1]. Use of variable curvature paths
has also led to more compact designs for photonic devices [2, 3]
and they are also finding applications in the realm of autonomous
vehicles, e.g. in designing paths for obstacle avoidance [4].

This paper will present explicit formulae for the parameterisation
of three alternative bend paths in the plane: a linear curvature
bend, a trapezoidal curvature bend and a quadratic curvature bend.
The bend paths are constructed using Euler’s method of natural
equations [5]. The resulting formulae can be expressed in terms of
the Fresnel sine and cosine integrals in the case of the linear and
trapezoidal bends, and in terms of Gauss’ hypergeometric function
in the case of quadratic curvature bends [6].
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Figure 1. Photonic Integrated Circuit (PIC) contain-
ing curved optical waveguides [8].

The reason such formulae are necessary is that they can be used
to simplify numerical simulations in photonic integrated circuits
(PICs). To estimate the loss in optical waveguides one simulates
the propagation of a wave in that structure. If the waveguide has
no curvature along its pathlength propagation can be achieved using
standard beam propagation techniques [7]. However, if the waveg-
uide path is curved, which is often the case in compact PICs, see
Figure 1 for an example [8], then it may be necessary to develop a
numerical propagation scheme in an alternative coordinate system,
this can be quite difficult to implement. A more straightforward
approach is to include the curvature variation along the pathlength
by adapting the standard beam propagation algorithm using con-
formal mapping techniques [9]. The curvature variation along the
waveguide pathlength can be updated during simulations using the
analytical formulae in this paper, for full details see [1]. Another rea-
son explicit formulae for variable curvature bends are needed is that
they can be deployed in lithographic mask layout software [10, 11]
to define the geometry of photonic devices prior to fabrication.

Euler’s method of natural equations is described in section 2, fol-
lowed by the construction of constant, linear, trapezoidal and qua-
dratic curvature bend paths in sections 3, 4, 5 and 6 respectively. To
ensure that the variable curvature bends can be used in a practical
setting, i.e. the variable curvature path should be able to replace
a constant curvature path without changing the path endpoint lo-
cations, an algorithm for scaling variable curvature bends to the
correct endpoint locations is provided in section 7. A bend of radius
R = 500 and θ = π/3 is constructed according to the different cur-
vature schemes, the resulting bend profile is discussed in section 8.
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Figure 2. Illustration of the bending angle associated
with a curve in the plane

2. Euler’s Method of Natural Equations

The curvature κ versus path-length s profile of a curve in the
plane describes the curvature at each point along that curve. A
parametric representation of that curve can be constructed from its
curvature using Euler’s method of natural equations [5]. Euler’s
method requires the evaluation of three integrals; the first integral
yields the bending angle as a function of path-length, the second
pair of integrals yield a parametric representation of a curve that
has the prescribed curvature along its path-length.

If κ(s) is integrated along the length of the curve the result is the
bending angle for that curve. The bending angle is the angle that a
tangent drawn to any point on a curve makes with the tangent to
the curve at the point s0

1, see Figure 2. It is denoted by φ(s) and
defined by

φ(s) =

∫ s

s0

κ(u) du (1)

To determine the parametric representation of the bend consider a
short length ds along the bend. ds can be determined from horizon-
tal and vertical progressions along the bend via ds2 = dx2 + dy2,

1In this work s0 is assumed to be the origin.
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where dx and dy are given by

dx = cosφ ds (2)

dy = sinφ ds (3)

Summation over all of the dx and dy along the bend provides the
parametric representation of the bend. The horizontal coordinates
are given by

x(s) =

∫ s

s0

cosφ(u) du (4)

the vertical coordinates are given by

y(s) =

∫ s

s0

sinφ(u) du (5)

Equations (1), (4) and (5) are used to construct parametric repre-
sentations of curves having curvature κ(s) assuming the curve starts
at the origin.

3. Constant Curvature

Two points in the plane can be connected by a circle of radius R,
with angle θ at its centre. We call this curve the equivalent circle.
The equivalent circle has constant curvature (CC) κCC = 1/R, see
Figure 3 for illustration of the CC curvature profile

κcc(s) =
1

R
, 0 ≤ s ≤ Lcc (6)

The bending angle for this curve is found by integrating (6) accord-
ing to (1). The result, upon integration, shows that for a CC bend
the bending angle varies linearly along its length.

φcc(s) =
s

R
, 0 ≤ s ≤ Lcc (7)

The parameterisation of CC curve is obtained with the application
of (4) and (5) to equation (7) to yield (xcc(s), ycc(s)) valid on [0, Lcc].

xcc(s) = R sin
( s
R

)
(8)

ycc(s) = R
(

1− cos
( s
R

))
(9)
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Figure 3. Curvature profile associated with a constant
curvature bend

4. Linear Curvature

The next case to be considered is a curve with a linear curvature
(LC) profile. The curvature varies as

κlc(s) =


αl s, 0 ≤ s ≤ Llc

2

αl (Llc − s),
Llc
2
< s ≤ Llc

(10)

This “tent”-like profile ensures that the curve is symmetric about
its midpoint, see Figure 4.

The slope αl is chosen to ensure that the LC bend will turn through
the same angle as an equivalent CC bend, this is called the equal
angle condition. If a CC bend must turn through some angle θ, then
αl is determined by solving∫ Llc/2

0

αl u du =
θ

2
⇒ 1

8
αl L

2
lc =

θ

2
(11)

Assuming Llc = Lcc = Rθ, then αl = 4/RLlc
2. With this def-

inition for αl the peak curvature of the linear curvature bend is
roughly twice that of an equivalent circle, κlc(Llc/2) ≈ 2/R, where
it is required that κlc(s) be a continuous function of path-length.

2It will be seen in Section 7 how the lengths for bends having different curvature
profiles are determined
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Figure 4. Curvature profile associated with a linear
curvature bend

The bending angle for the LC bend is determined by evaluating (1)
with κ(s) defined by equation (11).

φlc(s) =


∫ s

0

αl u du, 0 ≤ s ≤ Llc
2∫ s

Llc/2

αl (Llc − u) du,
Llc
2
< s ≤ Llc

(12)

To ensure continuity of φlc(s) at the midpoint of the bend the value
φlc(−)(Llc/2), i.e. φlc(Llc/2) evaluated on 0 ≤ s ≤ Llc/2, is added
to the second branch of the bend. The bending angle for a linear
curvature bend is then given by

φlc(s) =


2s2

RLlc
, 0 ≤ s ≤ Llc

2

2s2

RLlc
− 4s

R
+
Llc
R
,

Llc
2
< s ≤ Llc

(13)

φlc(s) is zero at the start of the waveguide, continuous at the mid-
point and equals θ at the end.
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The parameterisation of the LC bend can be computed from the
integrals

xlc(s) =


∫ s

0

cos

(
2u2

RLlc

)
du, 0 ≤ s ≤ Llc

2∫ s

Llc/2

cos

(
2u2

RLlc
− 4u

R
+
Llc
R

)
du,

Llc
2
< s ≤ Llc

(14)

ylc(s) =


∫ s

0

sin

(
2u2

RLlc

)
du, 0 ≤ s ≤ Llc

2∫ s

Llc/2

sin

(
2u2

RLlc
− 4u

R
+
Llc
R

)
du,

Llc
2
< s ≤ Llc

(15)

The integrals (14) and (15) can be computed in terms of the Fresnel
cosine and sine integrals, specifically using formulae (7.3.1), (7.3.2),
(7.4.38) and (7.4.39) of [6]. Upon evaluation of (14) it is seen that
the horizontal coordinates of a LC bend are determined by

xlc(s) = c1


C

(
s

c1

)
, 0 ≤ s ≤ Llc

2

P
(x)
lc (s),

Llc
2
< s ≤ Llc

(16)

where

P
(x)
lc (s) = cos

(
Llc
R

)(
C

(
s − Llc
c1

)
+ C(c2)

)
+ sin

(
Llc
R

)(
S

(
s − Llc
c1

)
+ S(c2)

)
+ C(c2)

(17)

Similarly, the parameterisation of the vertical coordinates is given
by

ylc(s) = c1


S

(
s

c1

)
, 0 ≤ s ≤ Llc

2

P
(y)
lc (s),

Llc
2
< s ≤ Llc

(18)
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where

P
(y)
lc (s) = sin

(
Llc
R

)(
C

(
s − Llc
c1

)
+ C(c2)

)
− cos

(
Llc
R

)(
S

(
s − Llc
c1

)
+ S(c2)

)
+ S(c2)

(19)

In (16) - (19) C(·), S(·) represent the Fresnel cosine and sine inte-
grals respectively and the following constants are used

c1 =
1

2

√
π RLlc, c2 =

√
Llc
π R

C(·), S(·) are numerically evaluated for real arguments using the C
routine frenel provided in [12]. The functions for xlc(s) and ylc(s) are
discontinuous at s = Llc

2 when the integrals are initially evaluated.

To ensure continuity of xlc(s) and ylc(s) at s = L
2 the value of the

limit of the function to the left of s = Llc

2 must be added to the

function on the right of s = Llc

2 for each of xlc(s) and ylc(s), this
ensures that the linear curvature bend is a continuous function of
path-length. Equations (16) and (18) have already been adjusted to
ensure continuity at s = Llc/2.

5. Trapezoidal Curvature

The trapezoidal curvature (TC) bend has a three-part curvature
profile defined by equation (20) see Figure 5.

κtc(s) =


αt s, 0 ≤ s ≤ σ

κt, σ < s ≤ ν

αt (Ltc − s), ν < s ≤ Ltc

(20)

where σ defines the length of the linear portion of the bend and ν
is defined by σ. The parameters αt, κt, σ and ν must be chosen so
that the curvature profile is continuous and that the area under the
curve equals the bend angle for an equivalent circle.

The locations of the points σ and ν define the length of the linear
curvature portion of the curve. To start with, choose 0 < σ < Ltc

2 .
If σ = 0 the CC profile is recovered, if σ = Ltc/2 the LC profile
is recovered. The curvature must satisfy κtc(0) = κtc(Ltc) = 0 and
κtc(σ) = κtc(ν) = κt. To ensure continuity at s = σ the limits
from the left and the right must be calculated. By defining σ = κt

αt

the curvature profile (20) is continuous at s = σ. This defines the
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Figure 5. Curvature profile associated with a trape-
zoidal curvature bend

parameter ν to be ν = Ltc−σ. With σ defined the curvature profile
is also continuous at s = ν. The curvature of the equivalent circle is
given by κcc = 1

R . As was seen in section 4 the maximum curvature

of a linear curvature waveguide is κlcmax = 2
R , here the maximum

value of the trapezoidal curvature bend must lie above that of the
equivalent circle and below that of the linear waveguide, therefore
κt = γ

R , by choosing γ ∈ (1, 2) the curvature profile will maintain
its trapezoidal shape3.

The slope of the linear curvature region αt needs to be deter-
mined. This is done by invoking the equal bend-angle condition.
By symmetry, only the first half of the bend need be considered.
The trapezoidal curvature bend will turn through the correct angle
if the condition ∫ Ltc/2

0

κtc(s) ds =
θ

2
(21)

is valid. Substitution of (20) in (21) results in

θ

2
=

∫ σ

0

αt s ds+

∫ Ltc/2

σ

κt ds

=
1

2
αtσ

2 +
1

2
κt Ltc − κt σ

Working through the algebra results in the following expression for
the slope of the linear curvature region

αt =
κ2t

κt Ltc − θ
(22)

3If γ = 1 then κtc(s) ≡ κcc(s), γ = 2 then κtc(s) ≡ κlc(s)
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At this point only the curvature scaling parameter γ remains un-
known4. To determine γ the fraction of the total bend length to be
given over to linear curvature must be decided. Assume that the
linear portion is some fraction f of the total length of the bend,
σ = fLtc, where 0 < f < 1

2 . Taking αt as it’s defined by (22), σ
can be written in terms of Ltc and γ.

σ =
κt
αt

= Ltc

(
1− 1

γ

)
(23)

Since this must equal σ = fLtc the curvature scaling parameter can
be defined in terms of the fraction of the bend whose curvature is
linear.

γ =
1

1− f
(24)

Choosing f between 0 and 1/2 will ensure the profile maintains its
trapezoidal shape. For the moment a value of f = 1/4 is chosen,
this means that 50% of each TC bend has linear curvature, and 50%
has constant curvature and also that for TC bends γ = 4/3.

Now that the curvature profile parameters are defined, the bending
angle, and hence the parameterisation of the trapezoidal curvature
bend can be computed. Computation of the bending angle requires
the evaluation of three integrals, and confirmation of continuity at
the points σ and ν. The integrals that define the bending angle are

φtc(s) =



∫ s

0

αt u du, 0 ≤ s ≤ σ∫ s

σ

κt du, σ < s ≤ ν∫ s

ν

αt (Ltc − u) du, ν < s ≤ Ltc

(25)

The result upon integration is a discontinuous function of path-
length, but it can be made continuous at s = σ by adding φlc(−)(σ) =
κ2t
2αt

to the portion defined on σ ≤ s ≤ ν. Similarly, at s = ν add

φlc(−)(ν) = κt Ltc − 3κ2t
2αt

to the portion defined on ν ≤ s ≤ Ltc.

The resulting function satisfies φtc(0) = 0, φtc(Ltc) = θ and is

4Leaving aside the fact that Ltc 6= Lcc, which we will come to in Section 7
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continuous at s = σ and s = ν.

φtc(s) =


1

2
αt s

2, 0 ≤ s ≤ σ

κt

(
s− κt

αt

)
+

κ2t
2αt

, σ < s ≤ ν

Ftc(s), ν < s ≤ Ltc

(26)

where

Ftc(s) =
1

2αt
(κ2t − α2

t (Ltc − s)2) + κt Ltc −
3κ2t
2αt

(27)

The parameterisation of the trapezoidal curvature bend can be
computed by substituting (26) into equations (4) and (5). The in-
tegrals on [0, σ] can be evaluated in terms of the Fresnel cosine and
sine integrals, see (7.3.1), (7.3.2) in [6]. The integrals on (σ, ν] can
be evaluated exactly because the argument of the cosine and sine
function in each case is a linear function of u. The integrals (ν, Ltc]
are evaluated using (7.4.38), (7.4.39) in [6]. After ensuring that the
parameterisation is continuous at positions s = σ and s = ν the
horizontal coordinates of the TC bend are provided by

xtc(s) =


d1C

(
s

d1

)
, 0 ≤ s ≤ σ

P
(x)
tc (s), σ < s ≤ ν

Q
(x)
tc (s), ν < s ≤ Ltc

(28)

where

P
(x)
tc (s) =

2

κt
sin

(
1

2

(
κt s−

κ2t
αt

))
cos

(
1

2
κt s

)
+ d1C (d2) (29)

Q
(x)
tc (s) = d1

{
cos (d3)

[
C

(
s− Ltc
d1

)
+ C (d2)

]
+ sin (d3)

[
S

(
s− Ltc
d1

)
+ S (d2)

]}
(30)

+
1

κt
sin (d4)−

1

κt
sin

(
κ2t

2αt

)
+ d1C (d2)
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and the vertical coordinates are given by

ytc(s) =


d1 S

(
s

d1

)
, 0 ≤ s ≤ σ

P
(y)
tc (s), σ < s ≤ ν

Q
(y)
tc (s), ν < s ≤ Ltc

(31)

where

P
(y)
tc (s) =

2

κt
sin

(
1

2

(
κt s−

κ2t
αt

))
sin

(
1

2
κt s

)
+ d1S (d2) (32)

Q
(y)
tc (s) = d1

{
sin (d3)

[
C

(
s− Ltc
d1

)
+ C (d2)

]
− cos (d3)

[
S

(
s− Ltc
d1

)
+ S (d2)

]}
(33)

− 1

κt
cos (d4) +

1

κt
cos

(
κ2t

2αt

)
+ d1 S (d2)

In equations (28) - (33) the following constants are used

d1 =

√
π

αt
, d2 =

κt√
π αt

, d3 = κt Ltc−
κ2t
αt
, d4 = κt Ltc−

3κ2t
2αt

6. Quadratic Curvature

The quadratic curvature (QC) bend has the following curvature
profile, see Figure 6.

κqc(s) = αq (Lqc s − s2) (34)

κqc(s) satisfies the equal bending angle constraint, i.e. the total area
under κ(s) equals θ, when the parameter αq is defined by

αq =
6 θ

L3
qc

(35)

Lqc is the length of the bend with quadratic curvature profile. The
bending angle formula is found to be

φqc(s) =

∫ s

0

κqc(u) du = αq

(
Lqc s

2

2
− s3

3

)
(36)

Equation (36) satisfies the constraint that φqc(Lqc) = θ, αq is de-
fined in (35).
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Figure 6. Curvature profile associated with a qua-
dratic curvature bend

The parameterisations of the horizontal and vertical coordinates
of the quadratic curvature bend can be determined by substitution
of (36) into equations (4) and (5). The integrals that result from
the application of equations (4) and (5) with (36) cannot be com-
puted in terms of elementary functions. Hence, it is necessary to
make an approximation. By replacing the cosine and sine functions
by their Taylor series approximations it becomes possible to con-
struct power series approximations to the necessary integrals. The
resulting formulae are

xqc(s) =
∞∑
k=0

(−1)k

(2 k)!
α2k
q

∫ s

0

(
Lqc u

2

2
− u3

3

)2k

du (37)

yqc(s) =
∞∑
k=0

(−1)k

(2 k + 1)!
α2k+1
q

∫ s

0

(
Lqc u

2

2
− u3

3

)2k+1

du (38)

To evaluate the integrals in (37) and (38) proceed by defining the
integral

Im =

∫ s

0

u2m
(
Lqc
2
− u

3

)m
du (39)

To evaluate (39) make the substitution u = t/µ ⇒ du = (1/µ) dt,
this changes the limits of integration in (39) from [0, s] to [0, µ s],
where µ is defined by

µ =
2

3Lqc
(40)
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The integral Im can be written as

Im =
32m+1 L3m+1

qc

23m+1

∫ µ s

0

t2m (1 − t)m dt (41)

The integral in (41) is the incomplete beta function Bµs(2m+1, m+
1) defined by formula (6.6.1) in [6]. It is possible to express the
incomplete beta function in terms of Gauss’ hypergeometric function
using the transformation (6.6.8) in [6]

Bx(a, b) =
xa

a
2F1(a, 1− b; a+ 1;x) (42)

where 2F1(·, ·; ·; ·) is defined by formula (15.1.1) in [6]. Integral (39)
with m = 2k, after application of the transformation (42), is given
by

I2k =

(
Lqc
2

)2k (
s4k+1

4k + 1

)
2F1(4k + 1,−2k; 4k + 2;µ s) (43)

Similarly, integral (39) with m = 2k + 1, after application of the
transformation (42), is given by

I2k+1 =

(
Lqc
2

)2k+1(
s4k+3

4k + 3

)
2F1(4k+3,−2k−1; 4k+4;µ s) (44)

Using (43) and (44) the coordinates for the QC bend can be com-
puted. The result is a sum over a set of hypergeometric functions.
The necessary formulae are

xqc(s) =
N∑
k=0

(−1)k

(2 k)!
α2k
q I2k (45)

yqc(s) =
N∑
k=0

(−1)k

(2 k + 1)!
α2k+1
q I2k+1 (46)

The series (45) and (46) give accurate results when the sums are
truncated after N = 10 terms. Gauss’ hypergeometric function

2F1(·, ·; ·; ·) is numerically evaluated for complex arguments using
the C routine hypser provided in [12].

7. Bend Construction Algorithm

Given an input bend radius R, bend angle θ and a curvature pro-
file, equations (1) - (5) can be evaluated to return N positions,
(xi, yi), 1 ≤ i ≤ N , that represent the central path of a curve of
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assumed length L = Rθ. The first point on the curve is the origin,
(x1, y1) = (0, 0), the last point (xN , yN) is generally unknown. If a
variable curvature curve is to replace the CC bend then the first and
last points of each bend must be the same, otherwise different bends
will end at different positions. All bends can be constructed from
the same starting point, so the final position of the equivalent bend
is used as a control point, this will ensure that all bends start and
finish at the same position. The location of the control point, la-
belled (xc, yc), will cause the length of each bend to be determined,
since the coordinates along the bend will all be scaled to ensure that
(xN , yN) = (xc, yc) for each of the different curvature schemes.

The algorithm for computing the coordinates of a variable curva-
ture bend that must replace a CC bend described by an equivalent
circle is described by Algorithm 1. The algorithm proceeds by com-
puting the path followed by an equivalent circle, using the routine
define eqc coords(). This provides the location of the control point
(xc, yc). The routine define bend coords() computes the positions of
the centre of a bend with a specified curvature profile using (1) -
(5) initially assuming a length Lbend = Rθ. Once the coordinates
of the new bend are known the endpoint control test is applied by
the routine re scale coords(). The routine compares (xN , yN) from
the computed bend positions with the known endpoint from the
equivalent circle (xc, yc). Scaling parameters for the horizontal and
vertical coordinates are defined in re scale coords(). For the hor-
izontal coordinates the scaling parameter is xs = xc/xN , for the
vertical coordinates use ys = yc/yN . If xs = ys = 1, the algorithm
is complete because the initial and final positions of the variable
curvature bend and the equivalent circle match. If xs and ys are not
both equal to one, the horizontal coordinates are scaled by xs, and
the vertical coordinates are scaled by ys. The length of the bend is
then computed using

Lbend =

∫
ds =

∫ √
dx2 + dy2 (47)

Since xs 6= ys 6= 1 the loop starts again by computing the bend
coordinates assuming the newly computed bend length Lbend. The
scaling is also repeated, and another bend length is computed from
the new set of coordinates. This process is repeated until the bend
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Figure 7. Curvature profiles for the constructed CC,
LC, TC and QC curves. κcc = 0.002, κmaxlc =
0.004, κmaxtc = 0.0027, κmaxqc = 0.0029.

length has converged to within a specified tolerance, ε. Upon con-
vergence of the bend length the horizontal and vertical scaling pa-
rameters will be very close to unity and the result will be a set of
coordinates that describe a curve that has a specified curvature pro-
file. A C++ implementation of the code required to generate the
various curves is provided and can be found at [13].

Once the bend-length is known, curvature and bend-angle profiles
can be computed from the analytical formulae for a particular bend
type, or numerically from the bend coordinate data.

8. Results

A bend of radius R = 500 turning through an angle of θ = π/3
was computed. The resulting curvature profile is shown in Figure 7.
The profiles for the quadratic and trapezoidal bends are very similar.
The maximum curvature in the quadratic case, κmaxqc = 0.0029, is
less than the maximum in the linear curvature case, κmaxlc = 0.004,
but greater than that in the trapezoidal curvature case, κmaxtc =
0.0027. The bend angle profile for the constructed bend, shown in
Figure 8, shows similarities between the quadratic and trapezoidal
bends. The actual path of the constructed bend in the plane is
shown in Figure 9, where the similarities between the trapezoidal
and quadratic curvature bend paths can be observed.
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Algorithm 1 Algorithm for computing the coordinates of a variable
curvature bend that replaces an equivalent constant curvature bend

1: {Input bend radius, bend angle, bend type}
Require: R← Rbend, T ← θbend, BT ← type

2:

3: {Define the coordinates that make up the equivalent circle}
4: {This step corresponds to evaluating (8) and (9) for a circle of

radius R, and bend angle θ}
5: define eqc coords()
6:

7: {Proceed with variable curvature bend calculation}
8: Lbend ← RT , Lbendold ← 0.0
9: niter ← 1, maxiter ← 30

10: while niter < maxiter do
11: {Initialise the convergence condition}
12: Lbendold ← Lbend
13:

14: {Evaluate the appropriate integrals depending on the value
of BT}

15: define bend coords()
16:

17: {Rescale the coordinate positions if necessary}
18: re scale coords()
19:

20: {Compute the bend length from (47)}
21: Lbend ← 0.0
22: for i = 2 to N do
23: Lbend ← Lbend + ((X[i]−X[i− 1])2 + (Y [i]− Y [i− 1])2)1/2

24: end for
25:

26: {Apply convergence test}
27: if |Lbend − Lbendold| < ε then
28: print Algorithm has converged
29: else
30: niter ← niter + 1
31: end if
32:

33: end while
34:

35: {Output the positions of the centre of the bend}
36: return X[], Y []
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Figure 8. Bend angle profiles for the constructed CC,
LC, TC and QC curves. All bends start at θ = 0 and
end at θ = π/3.

If bends of different radii are plotted it is seen that the lengths of
the different bend types increase linearly. For θ = π/3 it is observed
that Llc = 1.02777Lcc, Ltc = 1.02106Lcc and Lqc = 1.02182Lcc,
where Llc = Rθ. This tells us that as the bend radius increases the
LC bend will be longer than the other bend types and that TC and
QC bends will have similar lengths. Bends at different radii have
a maximum curvature that is proportional to the inverse radius,
see Figure 10. In fact the data shows that for different bend radii
κmaxlc = 2κcc, κ

max
tc = 4

3 κcc and κmaxqc = 527
359 κcc, where κcc = 1/R.

The reader will observe that for the TC bend κmaxtc = γ κcc, where γ
is given by (24) on page 70, hence it should be possible to construct
a TC bend whose maximum curvature approaches that of a CC bend
if we let γ → 1, this is done by decreasing the fraction of the TC
bend whose curvature is linear, i.e. let f take a value closer to zero
to get a TC bend with lower curvature.

9. Conclusion

Explicit formulae for variable curvature curves in the plane were
constructed using Euler’s method of natural equations. Curves
whose curvature varies linearly were found to be represented by
the Fresnel sine and cosine integrals, curves whose curvature varies
quadratically were found to be expressible in terms of Gauss’ hy-
pergeometric function. The constructed curves are continuous, and
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Figure 9. Bend paths for the constructed CC, LC, TC
and QC curves. All bends start and finish at the same
position. The variable curvature bends have slightly
longer path-lengths Lcc = 523.6, Llc = 538.1, Ltc =
534.6, Lqc = 535.0.

Figure 10. Variation of κmax with R for θ = π/3.

when the coordinates of the variable curvature curves are scaled
appropriately their endpoints match those of a circle of radius R
with θ at the origin. The shape of the trapezoidal curvature bend
is very similar to that of a quadratic curvature bend. A linear rela-
tionship between bend path length has been observed for each bend
type. The maximum curvature of the different bend types can be
expressed as a multiple of the curvature of the CC bend.
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