
 
 

 
 
 
 
 
 
 
 
 

Investigating the Effects of High-Intensity Interval Training on Baroreflex 

Sensitivity 

 

Austin J. Cameron, B.Sc.Kin. 

 

 

 

 

 

Submitted in partial fulfillment of the requirements for the degree of 

Master of Science in Applied Health Sciences 

(Health Sciences) 

 

 

 

 

 

 

Faculty of Applied Health Sciences, Brock University 

St. Catharines, Ontario 

 

 

© October 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/74352714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HIIT & cvBRS  Austin J. Cameron 

i 
  

ABSTRACT 

 

Cardiovagal baroreflex sensitivity (cvBRS) is known to be influenced by 

endurance exercise. In fact, endurance exercisers typically display a greater 

cvBRS compared to sedentary controls. Despite the merits of endurance training, 

adherence to exercise is a problem for many individuals. High-intensity interval 

training (HIIT) protocols generally involve less time and work completed while 

imparting similar cardiovascular responses compared to endurance training. To 

our current knowledge, the findings of HIIT and cvBRS have been equivocal. 

This study investigated the effects of 12-weeks of HIIT on cvBRS and the 

relationship between cvBRS and measures of arterial stiffness in 16 young, 

healthy males. Following HIIT, cvBRS appeared to be unchanged along with 

most measures of arterial stiffness (carotid to femoral pulse wave velocity, 

common carotid artery (CCA) distensibility, and compliance); however, CCA 

intima-media thickness (IMT) significantly improved. Systolic blood pressure, a 

major determinant of cvBRS, was unchanged, while resting heart rate appeared to 

improve following 12-weeks of HIIT. Therefore, these findings suggest that in 

this sample, 12-weeks of HIIT does not appear to influence cvBRS. 

KEY WORDS: cardiovagal baroreflex sensitivity, arterial stiffness, blood 

pressure regulation, high-intensity interval training, cardiovascular system 
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CHAPTER I: INTRODUCTION 

1.1. PREAMBLE 

 Baroreceptors are stretch-sensitive mechanoreceptors that modulate 

sympathetic and parasympathetic (vagal) activity. Arterial baroreceptors, which 

are located in the aortic arch and carotid sinus, respond to acute changes in vessel 

distension caused by changes in blood pressure (BP) on a beat-by-beat basis (La 

Rovere et al. 2008). This pathway, known as the arterial baroreflex, regulates BP 

by adjusting cardiac vagal and sympathetic outflow. Therefore, arterial pressure is 

a highly regulated cardiovascular variable (Colombari et al. 2001) and the arterial 

baroreflex is an important determinant of cardiovascular neural regulation (La 

Rovere et al. 2011). 

 The cardiovagal baroreflex is one arm of the arterial baroreflex that elicits 

reflexive alterations in R-R interval (RRI) in response to changes in BP. The 

sensitivity of the cardiovagal baroreflex (cardiovagal baroreflex sensitivity; 

cvBRS) is a measure of autonomic nervous system (ANS) function, and is defined 

as the change in RRI (ms) per unit change in BP (mmHg) (Swenne 2013). More 

specifically, cvBRS is determined as the slope of the linear portion of the 

sigmoidal relationship between RRI and BP (Parlow et al. 1995, Zamir et al. 

2014). cvBRS is therefore a measure of how efficient the cardiac baroreflex is in 

modulating heart rate (HR). cvBRS has been implicated in many cardiovascular 

diseases (CVD). A reduced cvBRS, for example, is associated with an increased 

risk of cardiac mortality and sudden cardiac death in post myocardial infarction 
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(MI) and heart failure patients (Maestri et al. 1998, La Rovere et al. 2001). As 

well, cvBRS is reduced in those with hypertension (Lage et al. 1993), diabetes 

mellitus (Frattola et al. 1997), obesity (Chobanian et al. 2003), and older adults 

(Madden et al. 2010).  Similarly, arterial stiffness has been linked to CVD 

(Benetos et al. 2002, Laurent et al. 2006), hypertension (Guimarães et al. 2010), 

diabetes (Vlachopoulos et al. 2010), obesity (Nordstrand et al. 2011, Strasser et al. 

2015) and has been shown to also increase with age (Benetos et al. 2002, 

O’Rourke et al. 2002, Vlachopoulos et al. 2010, Adji et al. 2011). In fact, a 

mechanistic link between cvBRS and arterial stiffness has been explored (Lipman 

et al. 2002). Lipman et al. (2002) observed that cvBRS and carotid artery 

distensibility, a measure of arterial elasticity and the inverse of arterial stiffness, 

demonstrates a strong inverse relationship regardless of age. In fact, the data from 

Lipman et al. (2002) demonstrates that a relationship between increased arterial 

stiffness and decreased cvBRS exists even in healthy middle-aged individuals, 

suggesting that vascular stiffening exerts a large influence on cvBRS. 

 Several factors, such as endurance exercise, have been shown to augment 

cvBRS (Halliwill et al. 1996, Monahan et al. 2000, Madden et al. 2010). Studies 

have addressed the beneficial impact of regular endurance exercise on ANS 

function. For instance, habitual rowers display a greater cvBRS compared to 

sedentary controls (Cook et al. 2006). Regular endurance exercise as an 

intervention has been shown to attenuate age-related reductions in cvBRS 

(Monahan et al. 2000, 2001), as well as partially restore the loss of cvBRS in 

healthy but previously sedentary middle-aged and older men (Monahan et al. 
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2000). Likewise, three months of regular vigorous endurance training 

demonstrated an increase in cvBRS in older adults with type 2 diabetes, 

hypertension, and hypercholesterolemia (Madden et al. 2010). Yet, despite the 

merits of endurance training, not many individuals have the time or motivation to 

partake in long endurance training sessions. Hence, high-intensity interval training 

(HIIT) may be regarded as an alternate, more time efficient strategy. 

 HIIT is defined as short, repeated bursts of vigorous exercise at an 

intensity greater than the anaerobic threshold (Laursen and Jenkins 2002) 

separated by periods of rest or low-intensity exercise (Gibala et al. 2012, Gillen et 

al. 2013). This type of training has consistently demonstrated similar 

improvements or changes in physiological responses as endurance training 

(Burgomaster et al. 2005, Gibala et al. 2006, Rakobowchuk et al. 2008, 2009, 

Little et al. 2010, Hood et al. 2011, Tjønna et al. 2013, Gillen et al. 2013, Gillen 

and Gibala 2014, Skelly et al. 2014) such as improved peripheral vascular 

structure and function in healthy men and women (Rakobowchuk et al. 2008, 

2009), reduced arterial stiffness in hypertensive patients (Guimarães et al. 2010), 

favourable changes in body composition and muscle oxidative capacity in 

overweight and obese women (Gillen et al. 2013), and decreased resting HR in MI 

patients (Moholdt et al. 2012). HIIT doesn’t appear to influence BP (Ciolac et al. 

2010);  however, ANS function by measure of heart rate variability (HRV) in MI 

patients has been shown to be improved (Munk et al. 2010). Nevertheless, ANS 

function by measure of cvBRS is equivocal (La Rovere et al. 2008) and this may 

be due to both the time of measurement and the measurement technique used. 
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 The importance of measuring cvBRS in response to HIIT is its ability to 

reflect changes in cardiovascular health (La Rovere et al. 2008), combined with 

the merits of HIIT in terms of time efficiency. The current Canadian physical 

activity guidelines suggest that an adult aged 18 – 64 years should accumulate at 

least 150 minutes of moderate-intensity physical activity per week, in bouts of 10 

minutes or more (Tremblay et al. 2011). However, a recent study evaluating 

public awareness of the Canadian physical activity guidelines for adults was 

reported to be as low as 12.9% (Dale et al. 2016). Despite the limitations in 

sample size and underrepresentation of males, the percentage of awareness was 

attributed to a lack of knowledge transfer and dissemination of the guidelines. 

Thus, in addition to one of the most cited barriers to exercise being a ‘lack of 

time’ (Trost et al. 2002), another barrier to exercise appears to be the lack of 

awareness of the current guidelines.  

 Despite a lack of time or awareness of guidelines, a growing body of 

evidence suggests that HIIT may be the most effective strategy for improving 

fitness and health (Gillen and Gibala 2014). Furthermore, the physiological 

benefits of HIIT are numerous and comparable to traditional moderate-intensity 

endurance exercise (Burgomaster et al. 2005, Gibala et al. 2006, Rakobowchuk et 

al. 2008, 2009, Little et al. 2010, Hood et al. 2011, Tjønna et al. 2013, Gillen et al. 

2013, Skelly et al. 2014). It is speculated that the high-intensity requirements of 

this type of training can stimulate the same changes induced by slower, more 

traditional endurance exercise training, in a shorter time span (Gillen and Gibala 
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2014). Thus, because ANS function plays a key role in cardiovascular regulation, 

investigating the merits of HIIT on cvBRS is warranted. 

1.2. RATIONALE 

 Traditional endurance exercise training has many benefits with regards to 

improving fitness (Nalcakan 2014), reducing CVD risk (Donnelly et al. 2009), BP 

regulation (Cornelissen and Fagard 2005), and modulating ANS function (Carter 

et al. 2003). However, adherence to exercise is a problem for many individuals 

(Allen and Morey 2010). Given that HIIT protocols generally involve less time 

and work compared to traditional endurance training, examining whether a more 

time efficient exercise has beneficial effects on ANS function is viable. 

1.3. OBJECTIVE 

 The purpose of this investigation was to determine whether there are 

favourable improvements in ANS function by measuring cvBRS in response to a 

12-week HIIT stimulus. ANS function was assessed by cvBRS in a group of 

young, healthy males independent of BP and body composition indices. 

Furthermore, cvBRS was investigated non-invasively using transfer function 

analysis. 

1.4. HYPOTHESIS 

 First, we hypothesized that cvBRS will improve following 12-weeks of 

HIIT independent of changes in BP and body composition indices. Second, we 

hypothesized that improvements in cvBRS will be concordant with improvements 

in central arterial stiffness. 
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CHAPTER II: LITERATURE REVIEW 

2.1. PHYSIOLOGY OF THE BAROREFLEX 

2.1.1. ANATOMY OF THE ARTERIAL BAROREFLEX 

 The largest branch extending from the arch of the aorta, the arteria 

innominata or innominate artery, gives rise to the right common carotid artery 

(CCA), which lies behind the right sternoclavicular articulation (Gray 2000). The 

highest point of the arch of the aorta gives rise to the left CCA, which is longer 

and deeper relative to the right CCA. Each vessel passes obliquely upwards from 

behind the sternoclavicular articulation to the upper border of the thyroid 

cartilage, beyond which, the CCAs split into the external and internal carotid 

arteries. It is at the origin of the internal carotid arteries where the carotid sinus is 

found, the location of numerous sensory components of the baroreflex known as 

arterial baroreceptors. These sensory components are also located in the heart, 

aortic arch, great veins and blood vessels of the lungs (Fadel and Raven 2012).  

 The arterial baroreflex is crucial in maintaining homeostasis through 

neural regulation of the cardiovascular system (La Rovere et al. 2011, 2013) 

Small branches of cranial nerve X, the vagus nerve, transmit afferent signals from 

the aortic baroreceptors, while the Hering nerve (a branch of cranial nerve IX, the 

glossopharyngeal nerve) transmits carotid baroreceptor afferent signals. Although 

the aortic and carotid baroreceptor afferent signals originate and travel using 

different cranial nerves, both converge within the nucleus tractus solitarius of the 
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medulla oblongata in the brainstem (Fadel and Raven 2012), the primary site of 

cardiorespiratory reflex integration (Colombari et al. 2001).  

 The neural signals that regulate the baroreflex can be classified into two 

groups: (1) afferent signals, nerve impulses that travel toward the central nervous 

system from sensory organs or receptors; and (2) efferent signals, nerve impulses 

that travel away from the central nervous system to effector organs or receptors. 

Baroreceptors regulate sympathetic and vagal neural activity through afferent 

signaling achieved through conformational changes. It is for this reason that 

baroreceptors are often grouped together within the class of mechanoreceptors 

known as stretch receptors, as their stimulation is a result of distortion. Arterial 

wall deformation manifested from arterial pressure changes result in baroreceptor 

stimulation, altering both sympathetic and vagal activity that act to adjust 

cardiovascular parameters such as HR, contractility, and vascular resistance (La 

Rovere et al. 2011). As a result, the arterial baroreceptors primarily function as a 

feedback loop, reflexively responding to beat-by-beat changes in BP (Tzeng 

2012). 

 Cardiovascular adjustments are necessary in order to maintain mean 

arterial blood pressure (MAP). The interplay between the sympathetic and vagal 

nervous systems allow for appropriate changes to be made in order to regulate 

MAP. For instance, with a rise in BP, the baroreceptors are stretched increasing 

the rate of afferent signaling, which results in a reflex-mediated decrease in 

sympathetic nerve activity and an increase in vagal activity. This translates into a 

reduction in HR and vascular dilation to reduce BP. Conversely, with a drop in 



HIIT & cvBRS  Austin J. Cameron 

8 
 

BP, the baroreceptors decrease the rate of afferent signaling. As a result, there is a 

reflex-mediated increase in sympathetic nerve activity and decrease in vagal 

activity. Therefore, there is an increase in HR and vascular constriction to raise 

BP. This rapid reflex mechanism is done in accordance to maintain MAP and 

offers protection to the heart against arrhythmias (Swenne 2013). 

2.2. CARDIOVAGAL BAROREFLEX SENSITIVITY 

 Cardiovagal baroreflex sensitivity (cvBRS) is a measure of ANS function 

and is defined as the change in interbeat interval, or RRI (ms), per unit change in 

BP  (mmHg) (Swenne 2013). cvBRS is an integrated measure of the ability of the 

baroreflex to control HR on a beat-by-beat basis through vagal activity (La 

Rovere et al. 2008). It can be further separated into a mechanical and neural 

component. The mechanical component can be described as the transduction of 

arterial pressure into barosensory stretch, thereby activating the baroreceptors 

(Hunt et al. 2001). In contrast, the neural component can be described as the 

transduction of barosensory stretch into autonomic outflow, thereby modulating 

vagal activity to the heart (Hunt et al. 2001). In this way, integrated cvBRS is 

quantified as each unit change in RRI per unit change in BP. 

 The Oxford and modified Oxford techniques have been previously 

employed to measure cvBRS through pharmacologically-induced perturbations in 

BP. Intravenous doses of vasopressor agents, substances that evoke a change in 

BP through vasoconstriction and/or vasodilation, allow for a linear relationship 

between systolic blood pressure (SBP) and RRI to be plotted, the slope 

representing cvBRS (La Rovere et al. 2008). However, as these techniques are 
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invasive and involve the administration of vasoactive drugs like sodium 

nitroprusside and phenylephrine hydrochloride, it will not be considered as a 

suitable method of cvBRS measurement for this study. Therefore, a noninvasive 

spontaneous measurement of cvBRS using spectral analysis will be explored. 

 Unlike the invasive Oxford and modified Oxford techniques, noninvasive 

spontaneous methods rely on spontaneously occurring fluctuation in SBP and RRI 

to measure cvBRS. One such method is the spectral method, which uses transfer 

function to exploit the assumption that parallel oscillations in SBP and RRI are 

mediated by the cardiac baroreflex (Diaz and Taylor 2006). Beat-by-beat BP and 

RRI are usually collected for a period of five minutes and converted from a time 

to frequency domain measurement using the Fast Fourier Transform (FFT). FFT 

separates the signals into both low frequency (LF; 0.04 – 0.15 Hz) and high 

frequency (HF; 0.15 – 0.40 Hz) spectra. cvBRS is computed as the average 

transfer function gain between the spectra of SBP and RRI in the LF range, which 

reflects baroreflex modulation (Bonyhay et al. 2013). Furthermore, only SBP and 

RRI oscillations that have a coherence of 0.5 or greater are selected to ensure 

reliability (Saul et al. 1991). 

2.2.1. THE VALUE OF CARDIOVAGAL BAROREFLEX SENSITIVITY 

 A key study in the determination of the prognostic value of cvBRS was the 

multicenter Autonomic Tone and Reflexes After MI (ATRAMI) study. The 

objective was to provide a prognostic predictive value of cvBRS for cardiac 

mortality in post-MI patients within whom left-ventricular ejection fraction and 

ventricular arrhythmias were known (La Rovere et al. 1998). The ATRAMI 
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research team revealed that a low cvBRS (<3.0 ms/mmHg) contributes to a high 

risk of cardiac mortality after a MI. More specifically, a low or impaired cvBRS 

was associated with an altered autonomic balance characterized by high 

sympathetic activity (sympathetic overdrive) and low vagal activity, a coupling 

often termed sympathetic predominance. In fact, an impaired cvBRS is common 

in many CVD and related risk-factor states (La Rovere et al. 2008). For instance, 

physical inactivity/deconditioning (Hughson and Shoemaker 2015), adult obesity 

(Chobanian et al. 2003), dyslipidemia (Grigoropoulou et al. 2014), metabolic 

syndrome (Thorp and Schlaich 2015), type 2 diabetes (Frattola et al. 1997, 

Madden et al. 2010, Grigoropoulou et al. 2014), hypertension (Lage et al. 1993, 

Madden et al. 2010), and hypercholesterolemia (Madden et al. 2010), all have 

been shown to display impaired cvBRS. Therefore, reducing sympathetic 

predominance overdrive and improving the protective vagal flow is favourable. 

 The most important correlates of cvBRS have been determined to be age 

and BP (La Rovere et al. 2008). In addition, arterial stiffening is an important 

determinant as it is related to BRS (Lipman et al. 2002), as well as increasing 

SBP, pulse pressure (PP) and decreasing diastolic blood pressure (DBP) in our 

ageing community (O’Rourke et al. 2002). As such, the loss of arterial elasticity 

and associated increase in arterial stiffness is regarded as the main determinant of 

BRS reduction with age (La Rovere et al. 2008). Furthermore, the ATRAMI study 

determined that as age increases, vagal activity decreases and cvBRS was a 

powerful indicator of cardiac mortality below the age of 65 (Schwartz and La 

Rovere 1998). In relation to this thesis, although our population is young, healthy 



HIIT & cvBRS  Austin J. Cameron 

11 
 

and without a previous MI, the ATRAMI study supports our use of cvBRS as a 

powerful marker of ANS function. 

2.3. BAROREFLEX DYNAMICS DURING EXERCISE 

 Endurance exercise is identified as any activity that elevates HR to 60 – 

80% of maximum, for at least 20 minutes in duration (Carter et al. 2003). Various 

physiological systems govern the response to endurance exercise and can be 

categorized into neural and local factors. Neural factors include: (1) central 

command, (2) the muscle metaboreflex (exercise pressor reflex), and (3) the 

arterial baroreflex. Local factors include the endogenous chemical factors 

involved in peripheral vasoconstriction and vasodilation, namely acetylcholine 

and norepinephrine. 

 Central command involves the activation of regions in the brain 

responsible for skeletal muscle motor unit recruitment. At the same time, the 

medulla is responsible for changes in the balance of sympathetic and vagal 

efferent activity which dictates increases in HR, myocardial contractility and 

peripheral vasoconstriction at the onset of exercise (Iellamo 2001, Carter et al. 

2003). The muscle metaboreflex, or exercise pressor reflex, involves the afferent 

neural signals sent to the medulla resulting from the contracting skeletal muscle 

via stretch (mechanoreceptors) and metabolic by-products (chemoreceptors) 

(Carter et al. 2003). The arterial baroreflex involves the rapid reflex adjustment of 

arterial BP via baroreceptor signaling to maintain homeostasis. Examination of 

central command, the muscle metaboreflex, and local factors fall outside the 

scope of this proposal. Therefore, we will only focus on the arterial baroreflex; 
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however, as the other mechanisms are highly related, they will be mentioned as 

needed. 

During exercise, the dynamics of the baroreflex loop are puzzling. There is a 

complex interplay between central command and the muscle metaboreflex (Fadel 

and Raven 2012). It is well known that HR and BP increase in parallel at the onset 

of dynamic exercise. However, this is in contradiction to the negative feedback 

system characteristic of the arterial baroreflex. Mancia et al. (1978) suggested that 

the arterial baroreflex was “switched off” during exercise in order to elicit the 

appropriate neural and cardiovascular responses (Mancia et al. 1978). However, 

we now know that the baroreflex functions normally during exercise as it does 

during rest. In fact, as described in a recent review (Fadel and Raven 2012), the 

baroreflex is considered to “reset” as shown in exercising dogs and leg cycling in 

humans. The cvBRS has been found to shift upward and rightward during 

exercise, which allows the baroreflex to operate normally and efficiently at 

progressively increasing BPs during exercise (Fadel et al. 2003, Raven et al. 

2006) and  is achieved primarily through vagal withdrawal rather than an increase 

in sympathetic activity (Ogoh et al. 2005). Thus, if cvBRS was measured during 

exercise, it would appear that the sensitivity is unchanged compared to rest. 

 The most recent hypothesis describes that the resetting of the baroreflex 

acts to restrain the BP response to exercise (Fadel and Raven 2012). Resetting 

occurs in an intensity-dependent manner by buffering the progressive increases in 

sympathetic nervous system activation resulting from the activation of both 

central command and muscle metaboreflexes, in order to maintain baroreflex 
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function (Fadel and Raven 2012).The significance of maintaining baroreflex 

function is seen quite clearly in pathology. For example, an impaired arterial 

baroreflex cannot maintain the appropriate neural and cardiovascular responses 

required by exercise, often resulting in an augmented BP response. This results in 

insufficient buffering of sympathetic nervous system activation, leading to 

uncontrolled vasoconstriction in the exercising skeletal muscle, limiting perfusion 

requirements, and likely causing the onset of muscle ischemia (Joyner 2006). 

 The arterial baroreflex also operates differently in response to exercise 

intensity. High-intensity endurance exercise shifts the autonomic balance towards 

sympathetic predominance from vagal predominance (Iellamo et al. 2002). This 

may seem counterintuitive, as sympathetic predominance is associated with 

detrimental and negative cardiovascular conditions; however, this phenomenon 

appears to be beneficial for endurance athletes who are training towards a peak 

performance. In one particular study, Iellamo et al. (2002) examined the 

autonomic profile of world class rowers over nine months before a world 

championship event. Measurements were collected over four time points: 

baseline, three months (75% training load), six months (75% training load), and 

nine months (100% training load), which was 20 days before the world 

championship event. Progressive bradycardia was seen as training load increased 

from baseline to 75% training load (months three and six of training) (56 

beats/min, vs. 50 beats/min, p < 0.01), concordant with an increase in HF-RRI 

variability, and a decrease in LF-RRI variability and LF-HF ratio. Likewise, 
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cvBRS increased from baseline to 75% training load (26.3 ms/mm Hg vs. 32 

ms/mm Hg), however this was nonsignificant.  

 At nine months (100% training load) opposite effects were observed. 

There was a relative increase in HR compared to baseline (56 beats/min vs. 61 

beats/min, p < 0.01), concordant with a significant decrease in HF-HRV, and an 

increase in LF-HRV and LF-HF ratio compared to baseline. cvBRS also 

significantly decreased at 100% training load compared to baseline (15.5 

ms/mmHg vs. 26.3 ms/mmHg, p < 0.01). Therefore, at 100% training load, a shift 

towards sympathetic predominance was seen as cvBRS was significantly reduced 

concordant with changes in HRV and HR. The apparent switch from vagal to 

sympathetic predominance in high-performance athletes was a unique finding 

with regards to exercise and ANS function. In fact, the negative connotation 

associated with sympathovagal imbalance may be simply a transient high-

intensity exercise training adaptation. In fact, Iellamo et al. (2002) suggested that 

this phenomenon reflects an optimal state for increasing athletic performance. 

2.3.1. ENDURANCE EXERCISE TRAINING & PHYSIOLOGICAL 

ADAPTATIONS 

 Physiological adaptations to endurance training have been well established 

and include increased total body maximal oxygen consumption (VO2max) 

(Karlsson et al. 1974, Rowell 1974, Henriksson and Reitman 1977, Hoppeler et al. 

1985, Shi et al. 1995, Amano et al. 2001, Moriguchi et al. 2005), improved 

maximal sustainable power output and work capacity (Karlsson et al. 1974, 

Gollnick and Saltin 1982, Hoppeler et al. 1985), increased capillary density 
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(Brodal et al. 1977, Hoppeler et al. 1985) and capillary-to-muscle fibre ratio 

(Hoppeler et al. 1985), increased mitochondrial density and volume of 

mitochondria per volume of muscle fibre (Hoppeler et al. 1973, 1985), increased 

skeletal muscle oxidative enzyme activity (Kiessling et al. 1974, Henriksson and 

Reitman 1977), improved fat metabolism (greater fat oxidation) (Karlsson et al. 

1974, Henriksson and Reitman 1977), and improved muscle glycogen sparing 

attributes (reduced muscle glycogen utilization, depletion and lactate production) 

(Karlsson et al. 1974, Henriksson and Reitman 1977). Long-term endurance 

training has also been known to induce positive changes in body mass and body 

mass management (Houmard et al. 1993, Amano et al. 2001, Donnelly et al. 

2009), improved glucose transporter type 4  (Houmard et al. 1993) and insulin 

action (Houmard et al. 1993, Duncan et al. 2003, Bradley et al. 2008), an 

improved lipoprotein profile (Moriguchi et al. 2005), as well as improved 

endothelial function in individuals with a high-risk for CVD (Lavrencic et al. 

2000, Green et al. 2004, Vona et al. 2004). Improved endothelial function has also 

been reported in post-menopausal women (Swift et al. 2012) and hypertensive 

individuals (Moriguchi et al. 2005) following endurance training. 

2.3.1.1. ENDURANCE TRAINING AND CARDIOVAGAL BAROREFLEX 

ADAPTATIONS 

 Two of the most prominent findings with endurance training in respect to 

ANS function is the increase in vagal activity and decrease in sympathetic activity 

to the heart at rest (Carter et al. 2003), as well as the reduction in resting HR 

(training-induced bradycardia) (Yamamoto et al. 2001). In fact, Yamamoto et al. 



HIIT & cvBRS  Austin J. Cameron 

16 
 

(2001) reported a reduction in resting HR as high as 28% (68.1 ± 3.7 to 53.2 ± 

2.8, p < 0.05) in response to a six week endurance training program when 

compared to sedentary controls. In addition, the measurement of HRV suggested 

enhanced cardiovagal activity. Yamamoto et al. (2001) speculated that the 

cardiovagal improvement contributed to the observed training-induced 

bradycardia; however, findings from Scott et al. (2004) suggested that enhanced 

cardiovagal activity does not explain training-induced bradycardia alone, even in 

endurance trained athletes (Scott et al. 2004). Despite the presence of bradycardia 

in athletes compared to controls, Scott et al. (2004) determined that HRV was 

similar between groups, suggesting that any training-induced bradycardia is likely 

due to intrinsic HR adaptations. 

 During a single bout of endurance exercise, Raczak and colleagues (2005) 

found that mild exercise (defined as 30 minutes of treadmill exercise training at 

65% maximum HR) increased cvBRS measured by transfer function analysis 

post-exercise (11.8 ± 6.1 to 16 ± 7.8 ms/mm Hg, p = 0.034). cvBRS measured by 

an intravenous bolus of phenylephrine also increased post-exercise (16 ± 8.8 to 

21.9 ± 9.3 ms/mm Hg, p = 0.022). These findings suggest that even a single short 

session of mild/moderate-intensity exercise can improve baroreflex function in a 

group of young healthy, sedentary males. Furthermore, this study was unique in 

that there was a significant increase in both the invasive (phenylephrine) and 

noninvasive (spectral) methods of measuring cvBRS. Utilization of both 

techniques allowed for the investigation of BRS under different physiologic 
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conditions. The positive change in cvBRS was attributed to an increase in vagal 

tone (Raczak et al. 2005).  

 Likewise, Halliwill et al. (1996) found that immediately following a single 

bout of moderate-intensity exercise (60 minutes of cycling at 60% VO2peak), 

cvBRS was augmented (4.7 ± 0.7 to 6.1 ± 0.9 ms/mmHg, p < 0.05). However, 

despite the attribution to increases in vagal tone reported by Raczak et al. (2005), 

Halliwill et al. (1996) observed that MAP was reduced for up to 75 minutes (86 ± 

2 to 81 ± 2 mmHg, p < 0.05) while HR stayed elevated for up to 30 minutes post-

exercise (p < 0.05). Stroke volume (SV) and spectral analysis of tonic cardiac 

vagal control revealed no changes. As well, because HR was elevated and 

estimated vagal tone was unchanged, it was speculated that sympathetic activity 

remained elevated. The post-exercise increase in plasma norepinephrine (253 ± 23 

to 1591 ± 262 pg/ml, p < 0.05) along with a consistent SV, despite an increased 

HR, provides further support. These results suggest that the augmented baroreflex 

response may be working against the induction of post-exercise hypotension 

(Halliwill et al. 1996).  

 Hart et al. (2010) reported similar findings in BP, despite both the 

intensity (low) and modality of exercise (rowing) being different. Post-exercise 

(four hours of ergometer rowing at 10 – 15% below the individuals lactate 

threshold), left ventricular systolic and diastolic function decreased. 

Correspondingly, MAP was reduced (98 ± 4 to 86 ± 4 mmHg, p < 0.05), while 

HR remained elevated (60 ± 2 to 81 ± 1 beats/min, p < 0.05) and cvBRS did not 

change. Therefore, it appears that differing intensities and duration of exercise 
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need to be investigated as intensity may influence the acute response of cvBRS to 

exercise. Both Raczak et al. (2005) and Halliwill et al. (1996) observed increases 

in sensitivity following a single bout of moderate-intensity endurance exercise, 

whereas Hart et al. (2010), who utilized an exercise protocol that was largely low-

intensity, showed no change in cvBRS.  

 The effects of regular low- versus high-intensity endurance exercise 

training in sedentary middle-aged males (aged 35 – 55 years) over a period of five 

months has been investigated (Loimaala et al. 2000). Low-intensity exercise was 

described as walking or jogging four to six times per week at a HR corresponding 

to 55%VO2max. High-intensity exercise was described as jogging four to six 

times per week at a HR corresponding to 75%VO2max. In contrast, the control 

group had no supervised exercise sessions during the intervention and was 

allowed a maximum of two exercise sessions per week. Following the exercise 

intervention, HR decreased significantly from pre- to post-exercise only in the 

high-intensity group (-6 beats/min). VO2max also significantly increased only in 

the high-intensity group compared to the control group (+2.4 ml/kg/min). There 

were non-significant changes in measures of cvBRS and HRV in all three groups 

(control, low-intensity and high-intensity groups). These results suggest that, 

despite an improvement in fitness, five months of endurance training at either a 

low- or high-intensity did not have a significant effect on cardiac autonomic 

function. However, in light of the lack of significance, changes in BRS and HRV 

were trending toward higher values in the high-intensity group compared to 



HIIT & cvBRS  Austin J. Cameron 

19 
 

controls, further suggesting that intensity may influence how cvBRS responds to 

exercise. 

 Compared to Loimaala et al. (2000), Monahan et al. (2000) conducted a 

two-part study to observe the effects of regular endurance exercise in age-

associated declines in cvBRS. In the first cross-sectional study, cvBRS was not 

associated with physical activity status among young men, but was similar 

between the young and middle-aged men in the moderate exercise and endurance-

trained groups. In contrast, when compared to their age-matched sedentary peers, 

middle-aged and older men who were either endurance trained or regularly 

participated in moderate-intensity endurance exercise, displayed a greater cvBRS 

(p < 0.05). These findings suggest that cvBRS is maintained in middle-aged and 

older men who regularly participate in moderate-intensity endurance exercise. In 

the second study, a three-month endurance exercise intervention in 13 middle-

aged and older men (56 ± 1 years) resulted in an increase in cvBRS of  ~25% (7.9 

± 0.8 to 9.8 ± 0.9 ms/mm Hg, p < 0.05), a reflection that the exercise prescription 

was effective in attenuating the age-related decline in cvBRS. Taken together, 

these two studies demonstrate that regular endurance exercise training can 

improve cvBRS in previously sedentary middle-aged and older men (Monahan et 

al. 2000). 

 In support of Monahan et al. 2000, long-term endurance training has been 

associated with increases in vagal activity and decreases in sympathetic activity. 

Sympathetic and vagal activities were favourably altered in response to 12-weeks 

of endurance training in 18 middle-aged obese men and women who trained three 
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times per week for 30 minutes per session (Amano et al. 2001). Similarly, a cross-

sectional sample of 80 young/middle-aged males and females displayed 

augmented vagal and reduced sympathetic indicators in the trained (defined as 

being physically active for <45 min/day at least 5 days/week) versus untrained 

group (Gregoire et al. 1996). In eight young men, eight months of endurance 

training (45 minutes of walking/jogging, four times per week, at HR ~1% below 

their anaerobic threshold) significantly decreased resting HR and increased vagal 

tone (Shi et al. 1995). The difference in resting HR was abolished with a selective 

vagal blockade (atropine), as well as combined vagal and β1-receptor blockade 

(atropine and metoprolol). In contrast, the difference remained apparent with β1-

receptor blockade only (Shi et al. 1995). The results of Shi and colleagues (1995) 

suggest that eight months of endurance training increases the dominance of vagal 

control of HR.  

 Finally, ANS adaptations from long-term endurance training was 

investigated between athletes and non-athletes in response to a dynamic 

exhaustive exercise test (Shin et al. 1995). Both groups displayed attenuated LF 

and HF spectral markers of HRV during exercise. However, in the athlete group 

(endurance training for a period longer than three years), the lower resting and 

rapid recovery of HR post-exercise was attributed to their relatively higher HRV 

compared to non-athletes. Therefore, the enhanced vagal activity was a result of 

adaptive neural changes produced by long-term endurance training. 
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2.4. ARTERIAL STIFFNESS 

 Arterial stiffness is a general term that describes the changes in the 

mechanical properties of the arterial tree and its elasticity. Specifically, arterial 

stiffness refers to the decreased capacity of a vessel to distend in response to 

increases in pressure or volume. Pathologically, arterial stiffness is one of the 

earliest detectable signs of changes within the structural and cellular components 

of the vessel wall, resulting in functional changes (Cavalcante et al. 2011). 

Arterial stiffening occurs naturally within the arterial tree, and increases 

with increasing age (Lee and Oh 2010). In fact, within young, healthy individuals, 

there is a certain degree of heterogeneity of stiffness. As PP’s are amplified 

throughout the arterial tree, a natural stiffness gradient is created, which results in 

more elastic central arteries and stiffer peripheral arteries (Koelwyn et al. 2012). 

However, despite the presence of a natural gradient in young, healthy individuals, 

age-related arterial stiffening tends to affect the central arteries more (aorta and 

carotid) while sparing peripheral arteries. The amplification of stiffness in the 

central arteries with age is largely attributed to changes in the balance of elastin 

and collagen, the structural proteins in the vascular wall (Zieman et al. 2005). 

Elastin fibers are predominantly located within the intimal and medial 

layers of the arterial wall. The two layers are separated from each other by 

fenestrated elastin fibres of the internal elastic lamina (Kohn 2015). The media is 

composed of vascular smooth muscle cells, collagen fibres, a mucopolysaccharide 

viscoelastic gel, along with the presence of elastin (Stary et al. 1992). In contrast 

to the intimal and medial layers, the adventitia, the outermost layer of the arterial 
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wall, is composed mainly of circumferentially arranged collagen fibrils 

intermixed with elastin, surrounded by loose but supportive connective tissue 

(Kohn 2015). As such, there are distinct layer-specific properties present in the 

arterial wall, with differing load-bearing properties, and different mechanical 

properties with varying levels of deformation (Kohn 2015). For example, at low 

levels of deformation, elastin dominates the mechanics, whereas at higher levels, 

elastin displays significantly less load-bearing capabilities (Schriefl et al. 2012). 

The load bearing is shifted towards the high tensile strength of collagen 

intermixed with elastin, which serves to allow for both distension, but also 

protection against rupture (Kohn 2015). 

 A balance of elastin and collagen maintain the integrity of the vascular 

wall through dynamic processes of production and degradation (Zieman et al. 

2005). When this balance is offset, elastin content tends to diminish while 

collagen is overproduced (Johnson et al. 2001), which may contribute to the 

development and progression of vascular stiffness (Zieman et al. 2005). Arterial 

stiffening is thought to occur by the fragmentation of elastin and accumulation of 

collagen in the medial and adventitial layers of the artery wall (Zieman et al. 

2005). In this way, the artery becomes more rigid and is less likely to distend. 

Central artery stiffening is also associated with increased luminal pressure, 

inflammation, hypertension, as well as extrinsic factors including hormones, salt, 

and glucose regulation (Zieman et al. 2005). 

 Since arterial stiffness is associated with a myriad of CVDs (Benetos et al. 

2002, O’Rourke et al. 2002, Laurent et al. 2006, Guimarães et al. 2010, 
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Vlachopoulos et al. 2010, Adji et al. 2011, Nordstrand et al. 2011, Strasser et al. 

2015), several surrogate markers and estimations have been designed and 

implemented which include invasive methods, such as intravascular ultrasound, as 

well as non-invasive methods such as surface ultrasound imaging and pulse wave 

velocity (PWV). In regards to non-invasive methods, ultrasonography is a 

common tool utilized in the assessment of local arterial wall elasticity (Koelwyn 

et al. 2012). The elasticity can be gauged by calculating arterial compliance, the 

change in arterial cross-sectional area for a given change in PP, and arterial 

distensibility, which is arterial compliance normalized to diastolic diameter. In 

regards to PWV, applanation tonometry is a technique used to non-invasively 

assess local PP waveforms with a high fidelity strain gauge transducer to 

approximate regional arterial stiffness (Koelwyn et al. 2012). Measurement of 

PWV with applanation tonometry is measured as the physical distance between 

the common carotid artery and femoral artery measurement sites divided by the 

pulse transit time, defined as the time delay between the arrival of the pulse wave 

between the two arterial sites (Koelwyn et al. 2012). Carotid to femoral (aortic) 

PWV is currently considered the gold standard for the non-invasive measurement 

of arterial stiffness. 

2.4.1. VALUE OF ARTERIAL STIFFNESS 

 Arterial aging is a degenerative process primarily caused by the 

fragmentation of elastin fibres (Nichols and O’Rourke 2005). Although arteries 

stiffen naturally with age (Tanaka et al. 2000), there is a significant relationship 

between ageing, increased BP (Wang et al. 2010), and CVD (Benetos et al. 2002). 
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Indeed, the progressive stiffening of arteries over a lifetime impart crippling 

effects on cardiac metabolism and function (Nichols and O’Rourke 2005). As 

such, age is often considered a primary risk factor for CVD (Benetos et al. 2002). 

Causes of normal age-related arterial stiffening include changes in collagen and 

elastin, the structural proteins of the arterial wall (Kohn 2015). As elastin fibres 

become fragmented, they shift their load-bearing capacity onto the stiffer collagen 

fibres, which is thought to increase arterial stiffness (Kohn 2015). Fragmentation 

of elastin has been attributed to the exposure of pulsatile wall stress over a 

lifetime (Greenwald 2007). Taken together, the structural change incurred over 

the vascular tree is known as arterial remodeling.  

 Overweight and obesity are known independent risk factors for CVD 

morbidity and mortality (Chobanian et al. 2003), atherosclerosis-related diseases 

including coronary artery disease (CAD), MI, and stroke (Barton et al. 2012). 

Additionally, overweight and obesity are considered risk factors in accelerated, 

premature vascular aging (Barton et al. 2012). Arterial stiffness and its 

relationship to measures of whole-body fat and visceral obesity appear to be 

strong in obese middle-aged adults (Strasser et al. 2015). For example, after 

adjusting for age and sex, Strasser and colleagues (2015) found a significant 

positive association between carotid to femoral PWV, body mass index (BMI) (p 

= 0.005), waist circumference (p < 0.0001), and visceral fat mass (p < 0.0005) 

(Strasser et al. 2015).  Likewise, distensibility has also been observed to be altered 

with obesity status (Moore et al. 2013). Moore et al. (2013) conducted a study to 

examine indices of arterial elasticity in highly obese, middle-aged males and 
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females. Compared to age- and sex-matched non-obese controls, carotid IMT and 

distensibility were significantly increased (p < 0.0002) and reduced (p < 0.05), 

respectively. Moreover, both carotid IMT and distensibility were significantly 

correlated with age, SBP, BMI, and waist-to-hip ratio. The findings of Moore et 

al. (2013) reveal that changes in both carotid IMT and distensibility correspond 

well with traditional cardiovascular risk factors, which further strengthens the 

parameters of arterial stiffness as early markers for CVD development.   

There is no question that arterial stiffness and increased BP are highly 

linked. SBP, DBP, and MAP have been shown to be significantly correlated with 

carotid to femoral PWV in both individuals with and without at least one risk 

factor for CVD (Amar et al. 2001). BP has also been linked to arterial 

distensibility. Laurent and colleagues (1994) found that carotid artery 

distensibility decreased as BP increased in both hypertensive subjects and age- 

and sex-matched controls (Laurent et al. 1994). Furthermore, increased BP has 

been noted to be a major determinant of increases in carotid IMT (Puato et al. 

2008). Thus, it is clear that BP is a major determinant of arterial stiffness and 

thickness in the central vessels (O’Rourke 1990).  

2.5. ARTERIAL STIFFNESS, BRS, AND ENDURANCE TRAINING 

2.5.1. ARTERIAL STIFFNESS & BRS 

 Arterial stiffness and cvBRS are highly linked, as activation of the 

baroreceptor-reflex loop is a function of arterial deformation. Baroreflex function 

is therefore linked to the mechanical properties of vessels at which they are found. 
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For instance, in order to increase afferent firing of signals from the baroreceptors 

to the cardiovascular centres in the brain, deformation of the baroreceptor-

harbouring vessels must occur. In a way, baroreceptors sense the changes in BP 

indirectly, by that of wall deformation of barosensitive vessels. Ultimately, 

changes in afferent signaling transmitted to the central nervous system trigger the 

appropriate adjustments to buffer or oppose the change in BP in order to maintain 

homeostasis (Lanfranchi and Somers 2002). Loss of distensibility, or stiffening of 

barosensitive vessels, has been suggested to limit stretch and relaxation, which 

affects BP modulation (Mattace-Raso et al. 2007). Therefore, many factors can 

influence the structural and mechanical determinants of stiffness, all of which 

directly influence arterial deformation. It would be plausible that anything that 

results in changes in deformation of a baroreceptor-harbouring vessel would alter 

the baroreflex loop. Thus, arterial health, and in particular arterial stiffness, is 

irrefutably a large component of baroreflex function. 

 Measures of arterial stiffness have been shown to have a strong 

relationship with cvBRS (Bonyhay et al. 1996, Monahan et al. 2000, 2001, 

Steinback et al. 2005, Cook et al. 2006). Steinback and colleagues (2005) found 

that rapid changes in the mechanical properties of the carotid artery elicited by 

head-up tilt, in particular reductions in carotid artery diameter and carotid artery 

distensibility, coincide with reductions in cvBRS. Correspondingly, a reduction in 

maximal carotid artery distensibility following head-up tilt correlated with a 

reduction in cvBRS (r = 0.75, p < 0.05). 
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 To further emphasize the importance of arterial stiffness and its 

relationship to cvBRS, Bonyhay and colleagues (1996) found cvBRS, measured 

using the invasive Oxford method, to be significantly associated with carotid 

artery distensibility (r = 0.78, p < 0.001). In fact, 61% of the variance in cvBRS 

was explained by the inter-individual variability of carotid artery distensibility. 

These results suggest that cvBRS is directly related to carotid artery distensibility. 

 Likewise, cvBRS determined from the noninvasive Valsalva maneuver 

method has also been found to be significantly related to carotid artery 

compliance (r = 0.71, p < 0.001) (Monahan et al., 2001). Among the correlates of 

percent body fat, DBP, resting HR, and VO2max, carotid artery compliance was 

the strongest independent correlate of cvBRS, explaining 51% of the variance, 

while resting HR accounted for an additional 20% of variance. When carotid 

artery compliance was accounted for in the relationship between cvBRS and age, 

age only explained 14% of the variance in cvBRS. When the influence of age was 

removed from the relationship between cvBRS and carotid artery compliance, the 

model remained significant (r = 0.44, p < 0.05). Similarly, Monahan et al. (2001) 

found carotid artery compliance to be the strongest independent correlate of 

cvBRS, explaining 36% of the variance (p < 0.01) in middle-aged healthy males 

and females. When the influence of DBP and HR were controlled for, the 

relationship between cvBRS and carotid artery compliance remained significant (r 

= 0.45, p < 0.05). Therefore, these results suggest that cvBRS is strongly related 

to carotid artery compliance, which is both a function of carotid distensibility and 

a measure of arterial stiffness.  
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 Higher carotid artery compliance has also been associated with a greater 

cvBRS in rowers compared to sedentary controls (r = 0.54, p < 0.005) (Cook et al. 

2006). The results of Cook et al. (2006) suggest that habitual exercise has a 

positive impact on both cvBRS and arterial stiffness.  

2.5.2. ARTERIAL STIFFNESS & ENDURANCE TRAINING 

 Regular moderate-intensity endurance exercise is known to increase 

central artery elasticity in recreationally active and endurance trained middle-aged 

and older men (Tanaka et al. 2000, Sugawara et al. 2006) and young, healthy 

untrained males and females (Rakobowchuk et al. 2008). In post-menopausal 

women, 12-weeks of moderate- and high-intensity physical activity favourably 

improved carotid arterial stiffness measured by β-stiffness index (moderate-

intensity: 13.5 ± 4.4 to 9.5 ± 4.2, p < 0.05; vigorous intensity: 12.3 ± 4.6 to 8.2 ± 

3.6, p < 0,05), a clinically-used marker of stiffness derived from regional 

diameters similar to distensibility (Sugawara et al. 2006). The β-stiffness index 

was also significantly associated with the duration of physical activity (moderate: 

r = -0.25, p < 0.05; vigorous: r = -0.27, p < 0.01) after adjusting for age, height, 

BMI, and MAP, indicating that the effects of moderate- and high-intensity 

physical activity do not differ from each other. 

 Tanaka and colleagues (2000) demonstrated that regular low- to moderate-

intensity endurance exercise attenuates age-related increases in central arterial 

stiffness (carotid artery compliance) in healthy middle-aged and older men 

(Tanaka et al. 2000). Likewise, high-volume moderate-intensity endurance 

training has also been shown to improve arterial health by improving peripheral 
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artery distensibility and endothelial function, a surrogate measure of vascular 

health in both young, healthy males and females (Rakobowchuk et al. 2008). 

However in contrast to Tanaka et al. (2000), Rakobowchuk and colleagues found 

that carotid artery distensibility remained unchanged (p = 0.29) (Rakobowchuk et 

al. 2008). This conflicting finding may possibly be explained by the differences in 

measurement (carotid artery compliance, an absolute measure, versus carotid 

artery distensibility, a normalized measure), the sample characteristics, and the 

modality of exercise. For the latter, Rakobowchuk et al. (2008) utilized a cycling 

protocol whereas Tanaka et al. (2000) utilized a walking/jogging protocol. 

 In contrast to the aforementioned positive effects of endurance exercise on 

a number of arterial stiffness indices, two long-term investigations, the 

Atherosclerosis Risk in Communities (ARIC) (Schmitz et al. 2001) and the Swiss 

Cohort Study on Air Pollution and Lung and Heart Diseases in Adults 

(SAPALDIA) 3 (Caviezel et al. 2015), revealed findings that physical activity and 

carotid artery distensibility do not necessarily demonstrate a strong association. In 

a population of males and females aged 45 – 64 years and free of CVD, carotid 

artery distensibility was not associated with work physical activity (p = 0.58), 

sport physical activity (p = 0.17), or leisure physical activity (p = 0.45), which all 

constitute non-vigorous (low- to moderate-intensity) regular physical activity 

(Schmitz et al. 2001). In previous ARIC publications, regular physical activity 

was defined as reporting a given sport activity for at least 1 hr/wk for 10 or more 

months of the past year, while vigorous physical activity was defined as those 

with an intensity greater than 5 metabolic equivalents (Schmitz et al. 2001). 
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Likewise, in an a population of males and females aged 50 – 81 years also free of 

CVD, no association of self-reported physical activity with carotid artery 

distensibility was observed with moderate-intensity physical activity (p = 0.45) 

and total physical activity (p = 0.08) (Caviezel et al. 2015). 

 In a more clinical population where carotid artery distensibility is known 

to be significantly reduced, it was unchanged following 16-weeks of endurance 

training in elderly males with heart failure and preserved ejection fraction 

compared to controls (Kitzman et al. 2013). The endurance training involved with 

this study consisted of walking on a track, ergometer cycling, and isolated arm 

ergometry, for one hour, three times per week at low- to moderate-intensity 

(<70% heart rate reserve). VO2max increased substantially from baseline (14.2 ± 

2.8 vs. 15.8 ± 3.3 ml/kg/min, p = 0.0001) despite the lack of improvement in 

arterial stiffness, suggesting that physical fitness improvements were largely from 

microvascular and skeletal muscle adaptations, and not due to improvements in 

cardiac output and large artery function.  

 It is possible that for noticeable improvements in carotid artery 

distensibility, higher intensity exercise rather than low- to moderate-intensity 

exercise may likely need to be utilized. In fact, while both the ARIC (Schmitz et 

al. 2001) and SAPALDIA 3 (Caviezel et al. 2015) cohort studies reported a lack 

of significance between physical activity and carotid artery distensibility, a 

systematic break down of intensity revealed that carotid artery distensibility was 

positively associated with only high intensity physical activity. 
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 In the Amsterdam Growth and Health Longitudinal Study, a younger, 

healthy cohort were examined at eight time points between the ages of 13 and 36 

years (van de Laar et al. 2010). Across the age group, participants in the lowest 

carotid artery stiffness tertile accrued, on average, 25.3 and 31.9 min/wk more 

high-intensity physical activity compared to participants in the intermediate and 

highest tertiles, respectively (van de Laar et al. 2010). Multivariate regression 

analysis revealed that more time spent in habitual physical activity, particularly 

high-intensity, was favourably associated with all cardiovascular risk factors 

(MAP, skinfold ratio, total-to-high-density lipoprotein cholesterol ratio, resting 

HR, sex, height), even after adjusting for lifestyle risk factors (i.e. alcohol 

consumption, smoking behaviour, and total energy intake). The main results of 

the Amsterdam Growth and Health Longitudinal Study identified that high-

intensity physical activity imparts the greatest beneficial impact on not only 

carotid artery distensibility, but other measures of carotid artery stiffness as well 

(van de Laar et al. 2010). 

2.5.3. RELATIONSHIP BETWEEN ARTERIAL STIFFNESS, 

ENDURANCE TRAINING, & BRS 

 As mentioned, cvBRS is strongly associated with central artery elasticity 

in healthy, sedentary males (Monahan et al. 2001, Cook et al. 2006). Age is also 

associated with declines in cvBRS (Bristow et al. 1969, Monahan et al. 2000), but 

these reductions can be attenuated with regular endurance exercise (Monahan et 

al. 2000). Monahan et al. (2001) revealed that improvements in cvBRS are 

strongly associated with corresponding increases in carotid artery compliance 
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following an endurance exercise intervention, where cvBRS increased 27% (7.8 ± 

0.8 to 9.9 ± 0.9 ms/mmHg, p < 0.01), and carotid artery compliance increased 

29% (1.07 ± 0.09 to 1.38 ± 0.12 × 10-2 mm2/mmHg, p < 0.01). These results 

indicate that reduced central artery elasticity has an important mechanistic role in 

the age-associated reduction in cvBRS. Thus, interventions that could potentially 

decrease the stiffness of large elastic arteries may be effective in attenuating age-

related reductions in cvBRS. However, given the findings of Schmitz et al. (2001) 

and Caviezel et al. (2015), it is unclear whether the moderate-intensity endurance 

training protocol used by Monahan et al. (2001) could improve carotid artery 

distensibility. Therefore, investigating the relationship between higher intensity 

endurance exercise on carotid artery distensibility is warranted. 

2.5.4. THE ROLE OF EXERCISE INTENSITY  

 The findings with ANS function, arterial stiffness, and endurance training 

are mixed, especially when considering the role of exercise intensity. For 

instance, cvBRS has been observed to improve in younger, healthy individuals 

(Raczak et al. 2005), and in middle-aged and older sedentary men who partake in 

a three month moderate-intensity exercise program (Monahan et al. 2000). In 

contrast, cvBRS did not appear to be improved in sedentary middle-aged men 

following either a low or high intensity five month endurance training program 

(Loimaala et al. 2000). However, in the five month endurance training study led 

by Loimaala et al. (2000), high intensity was defined as 75% VO2max, despite 

high-intensity being defined by the American College of Sports Medicine as 

exercise between 80 to 85% of heart rate max. It is possible that the prescribed 
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intensity was not enough of a stimulus to exert significant changes in cvBRS; 

however, this would not explain the findings by Monahan et al. (2000) who 

reported favourable changes in cvBRS with moderate-intensity exercise. Loimaala 

et al. (2000) does suggest that the lack of improvement in ANS function could be 

due to the lack of randomization and differences in measurement protocols. 

 Results with elite athletes and differing training intensities have also been 

interesting in terms of sympathetic predominance (Iellamo et al. 2002). 

Sympathetic predominance has been reported in recreational marathon runners 

(Manzi et al. 2009). In the studies by Halliwill et al. (1996) and Hart et al. (2010), 

the effect of a single bout of moderate- and low-intensity exercise, respectively, 

may not have been a strong enough stimulus to induce a change in cardiovagal 

tone. In fact, autonomic adaptations have been revealed to have a dose-response 

relationship in athletes (Manzi et al. 2009). Therefore, it is worth investigating the 

effects that a combination of high-intensity over more than a single bout may have 

on cvBRS. 

2.6. HIGH-INTENSITY INTERVAL TRAINING 

 High-intensity interval training (HIIT) is identified by short, repeated 

bursts of vigorous exercise at an intensity greater than the anaerobic threshold 

(Laursen and Jenkins 2002) separated by periods of rest or low-intensity exercise 

(Gibala et al. 2012, Gillen et al. 2013). Low-volume HIIT is characterized as 

training sessions that are relatively brief. Intense exercise makes up ≤10 minutes 

within a ≤30 minute training session, including a warm-up, recovery periods, and 

cool-down (Gillen et al. 2013).  
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2.6.1. PURPOSE OF HIIT 

 The purpose of HIIT is two-fold: (1) improve performance, by repeatedly 

stressing the physiological systems beyond that which is actually required for a 

specific endurance exercise (Laursen and Jenkins 2002); and (2) improve health, 

by eliciting favourable changes in physiological and health-related markers 

comparable to that of traditional endurance exercise (Gibala et al. 2012). Therein 

the advantage of HIIT becomes apparent—physiological changes that rival 

endurance training despite the drastic reduction in time commitment and volume. 

2.6.2. RATIONALE FOR HIIT 

 HIIT protocols generally involve less time and work compared to 

traditional endurance training while evoking similar physiological responses 

(Burgomaster et al. 2005, Gibala et al. 2006, Rakobowchuk et al. 2008, 2009, 

Little et al. 2010, Hood et al. 2011, Tjønna et al. 2013, Gillen et al. 2013, Gillen 

and Gibala 2014, Skelly et al. 2014). However, limited studies have examined 

how a more time efficient exercise affects cvBRS.  

 To our present knowledge, only seven studies have looked at the effects of 

high-intensity exercise on ANS function (Cottin, Médigue, & Papelier, 2008; 

Currie, Rosen, Millar, Mckelvie, & Macdonald, 2013c; Heydari, Boutcher, & 

Boutcher, 2013a, 2013b; Pichot et al., 2000, 2005; Stuckey et al., 2012); however, 

only three specifically measured cvBRS and are within the realm of low-volume 

HIIT or sprint interval training protocols (Heydari et al., 2013a, 2013b; Stuckey et 

al., 2012). Of these three, two were long-term exercise prescriptions, which lasted 
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12-weeks (Heydari et al. 2013a, 2013b). Therefore, examining the long-term 

effects of HIIT on cvBRS warrants further investigation. 

2.6.3. GENERAL PHYSIOLOGICAL ADAPTION OF HIIT 

 The physiological adaptations following HIIT include improved VO2max 

(Gibala et al. 2006, Rakobowchuk et al. 2008, Tjønna et al. 2013), increased 

skeletal muscle oxidative capacity (Burgomaster et al. 2005, Gibala et al. 2006, 

Little et al. 2010, Hood et al. 2011), increased resting muscle glycogen content 

(Burgomaster et al. 2005, Gibala et al. 2006, Little et al. 2010), increased total 

glucose transporter type 4 content (Little et al. 2010, Hood et al. 2011), improved 

insulin sensitivity (Hood et al. 2011), and improved peripheral vascular structure 

and function (Rakobowchuk et al. 2008, 2009), in healthy men and women. 

Interval training has been examined in a population of overweight and obese 

women, revealing favourable changes in body composition and muscle oxidative 

capacity (Gillen et al. 2013). Furthermore, HIIT has been recently revealed to 

elicit a similar 24-hour energy expenditure post-exercise compared to moderate-

intensity endurance exercise, despite having a lower energy expenditure during 

exercise (Skelly et al. 2014).  

 The merits of HIIT have also been explored in athletes. Notably, for 

athletes that are already well-trained, HIIT can substantiate further increases in 

endurance performance (Laursen and Jenkins 2002). In well-trained cyclists, six 

to seven weeks of HIIT sessions every third day (a total of 12 sessions) 

significantly improved peak power output and 40 km time trial performance 

(Westgarth-Taylor et al. 1997). In well-trained middle distance runners, four 
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weeks of HIIT (8 x 2 – 3 min at VO2max running speed), two times per week, 

resulted in significant improvements in 3000 m running performance (Smith et al. 

2003). Four weeks of HIIT, two times per week, produced faster times in constant 

distance trials, power production over the constant distance trials, and relative 

VO2peak in young, healthy rowers (Driller et al. 2009). As such, with well-

documented improvements in performance, it is no surprise that HIIT is typically 

an integral component of athletic training programs (Gibala and Jones 2013). 

2.6.4. ACUTE ARTERIAL & BRS ADAPTATIONS FOLLOWING HIIT 

 The acute effects of HIIT on carotid artery distensibility appear to be 

similar to those seen in resistance exercise training (Rakobowchuk et al. 2009). 

One hour following either a single bout or four bouts of Wingate testing, carotid 

artery distensibility was transiently reduced. Comparatively, this same repeated 

Wingate testing design elicited an increase in popliteal artery distensibility, 

revealing that sprint interval training, a form of HIIT, has differential effects on 

local artery distensibility (Rakobowchuk et al. 2009). Likewise, the transient 

reduction in carotid artery distensibility is concordant with the observed increase 

in carotid to femoral PWV (p < 0.001), and the transient increase in popliteal 

artery distensibility is concordant with the decrease in exercised lower limb PWV 

(p < 0.001) (Rakobowchuk et al. 2009). 

 Cottin et al. (2008) used spectral methods to analyze autonomic control of 

HR and BP. Low frequency SBP (LF-SBP) variability reflects sympathetic 

activity, whereas high frequency (HF-SBP) variability reflects the mechanical 

effect of breathing on SBP (Kohl et al. 1999). LF-HRV reflects both sympathetic 
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and vagal activity, whereas HF-HRV reflects only vagal activity. During high-

intensity exercise, there was a decrease in LF-BRS and the maintenance of HF-

BRS when ventilatory thresholds were exceeded. Cottin et al. (2008) 

hypothesized that HF-BRS would progressively decrease as exercise load 

increased from ventilatory threshold one (moderate-intensity exercise) to 

ventilatory threshold two (high-intensity exercise). However, this study revealed 

that, despite vagal withdrawal due to high-intensity exercise, there were increases 

in both HF-SBP variability and HF-HRV when ventilatory threshold two was 

exceeded, which allowed the gain in HF-BRS to be maintained while the LF 

components decreased. Cottin et al. (2008) speculate that when the second 

ventilatory threshold was exceeded, HF-SBP variability likely increased due to 

exercise-induced hyperpnea, which increased the respiratory modulations of BP. 

Likewise, HF-HRV likely increased in a non-neural pathway via mechanoelectric 

feedback, the mechanical effect of breathing and stretching of the sinus node 

(Kohl et al. 1999). Thus, SBP variations driven by mechanoelectric feedback to 

provide a baroreflex response should be taken with caution.  

 Autonomic recovery following sprint interval exercise, measured by HRV, 

BP variability, and cvBRS, was assessed in 10 young, healthy, recreationally 

active males (Stuckey et al. 2012). Following both single and multiple Wingate 

tests, HRV and BP variability indices indicated a decrease in vagal tone that 

returned to resting levels two hours post-exercise. Comparatively, cvBRS 

remained depressed even after two hours of recovery, but only following multiple 

and not a single Wingate test. In response to a standing orthostatic challenge, 
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cvBRS remained depressed following both the single and multiple Wingate tests. 

The results of Stuckey et al. (2012) support the notion that autonomic balance is 

not fully recovered within two hours of passive recovery following sprint interval 

exercise. It was speculated that an augmented metaboreflex may have a greater 

role in BP control post-exercise and that metabolites may be responsible for 

attenuating cvBRS.  

2.6.5. CHRONIC ARTERIAL & BRS ADAPTATIONS FOLLOWING HIIT 

Pichot et al. (2000) assessed ANS function using HRV in seven middle-

distance runners during their usual four-week training cycle to monitor physical 

performance and fatigue. A typical training cycle in this particular group of 

athletes consisted of three weeks of high-intensity training sessions (6 – 10 

sessions per week) and one week of low-intensity training sessions. HR was 

monitored weekly using an ambulatory Holter monitor one hour after both a high- 

and low-intensity training session. Findings from Pichot et al. (2000) indicate that 

there was a progressive decrease in HRV with the three weeks of high-intensity 

training, displaying a tendency of lower vagal and higher sympathetic drive. 

During the recovery week however, there was an increase in HRV associated with 

a relative increase in vagal activity and decrease in sympathetic drive. Despite the 

merits of this study, ANS function was assessed during periods of high- and low-

intensity exercise, and not necessarily HIIT. Furthermore, Pichot et al. 2000 

assessed ANS function using HRV, and not cvBRS. However, the results of 

Pichot et al. (2000) support the findings of Iellamo et al. (2002), where a 

progressive transition into a state of sympathetic predominance was seen with 
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higher intensity training. In another study by Pichot et al. (2005), ANS activity 

was assessed by HRV and cvBRS before and after a 14 week intensive cycling 

intervention in elderly men. LF- and HF-HRV increased, while LF/HF ratio 

decreased. cvBRS also improved following the intervention (7.0 ± 1.8 to 9.8 ± 2.1 

ms/mmHg, p < 0.01), demonstrating an increase in vagal activity in response to 

14-weeks of endurance training. However, similar to a previous study by Pichot et 

al. (2000), although the exercise prescription was high-intensity, the 40 minute 

sessions, four times per week, consisting of four minutes of moderate-intensity 

cycling and one minute of high-intensity sprinting, would not be considered a 

low-volume HIIT protocol. 

 Currie and colleagues (2013c) investigated the effects of 12-weeks of 

moderate-intensity endurance exercise and low-volume HIIT on measures of HR 

recovery and HRV in older males with documented CAD. Following the training 

protocol, neither group (endurance vs. HIIT) displayed differences in HR 

recovery 1-minute or 2-minutes post-exercise. One of the main mechanisms of 

HR recovery improvements following exercise is improved vagal modulation; 

however, there was no apparent change in HRV in either group. The lack of 

change in HR recovery was attributed to the high pre-training HR recovery values 

in the sample, which were comparable to values reported in healthy individuals. 

Similarly, the lack of change in HRV was attributed to the lower risk CAD status, 

normative cardiac autonomic function of the sample, time from post-CAD event, 

and small sample size. As Currie et al. (2013c) noted, the sample of CAD patients 

began the exercise training 140 – 171 days (5 – 6 months) after their CAD event, 



HIIT & cvBRS  Austin J. Cameron 

40 
 

it is likely that the time between the cardiac event and the training program was 

too long and therefore, the patients were less likely to experience improvements 

with training.  

 Low-volume HIIT and the effects on arterial health have been investigated 

with interesting results (Currie 2013a). Despite the significant improvements in 

VO2max, resting hemodynamic indices, and absolute endothelial function, carotid 

artery distensibility remained unchanged following 12-weeks of either endurance 

training or HIIT in a CAD sample, although this is not a surprise since there were 

no training-induced changes in carotid artery pulse pressure or carotid artery 

lumen diameter (Currie 2013a). The lack of findings in arterial elasticity is 

supported by Rakobowchuk et al. (2008) who also observed no changes in carotid 

artery distensibility following six weeks of sprint interval training in young, 

healthy males and females. As both these studies employ protocols of higher 

intensity, intensity itself does not appear to be a major influence on carotid artery 

distensibility. For instance, the protocol employed by Rakobowchuk et al. (2008) 

is of lower volume but higher intensity compared to Currie (2013a), yet both 

observed no changes in carotid artery distensibility. Therefore, further research is 

required to elucidate the amount of volume required to elicit such changes at near 

maximal to supramaximal intensities, as it appears that 12-weeks of HIIT or six 

weeks of sprint interval training does not affect arterial elasticity.  

 Heydari et al. (2013a) investigated the effects of 12-weeks of high-

intensity exercise on ANS function in young overweight/obese males. Participants 

in the intervention group performed HIIT three times per week for 12-weeks at a 
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workload of 80 – 90% maximal HR. After the intervention, resting HR was 

reduced (67.4 ± 9.7 to 61.2 ± 8.9 beats/min, p < 0.05) while SV increased (77.2 ± 

24.9 to 90.4 ± 26.3 ml, p < 0.05) in the intervention group compared to the control 

group. SBP, DBP, and MAP were significantly improved (119.6 ± 9.9 to 115.5 ± 

9.7; 63.7 ± 7.3 to 59.2 ± 7.5; 83.1 ± 8.2 to 78.7 ± 8.0 mmHg, p < 0.05, 

respectively) in the intervention group compared to the control group. Carotid to 

femoral PWV was significantly reduced in the intervention group compared to the 

control group. Additionally, HRV increased in both the LF and HF components in 

the intervention group, and cvBRS significantly increased by 12%. Hence, the 

overall, findings of Heydari and colleagues (2013a) demonstrated improvements 

in cardiac, vascular, and ANS function following a 12 week HIIT intervention. 

The observed improvement in arterial stiffness replicates results from previous 

investigations (Tanaka et al. 2000, Sugawara et al. 2006). Likewise, the increase 

in cvBRS is supported by similar findings by Monahan et al. (2000), although the 

exercise modality was different. Lastly, Heydari and colleagues (2013b) also 

investigated cvBRS following a 12 week HIIT exercise intervention in young 

healthy males. As expected, resting HR and BP decreased, and SV improved 

following the intervention. cvBRS also significantly increased (18.3±2.9 vs. 

23.8±3.8 ms/mmHg, p < 0.05), while arterial stiffness, measured by augmentation 

index, significantly decreased in the intervention group (8.2±2.9 vs. 5.1±2.7%, p 

< 0.05) compared to controls. It is generally understood that with increases in 

arterial stiffness, there is disengagement of the stretch-sensitive baroreceptors 

(Lipman et al. 2002), and in this way, the decrease in arterial stiffness and 
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seemingly concordant increase in cvBRS would appear to be related. However, an 

association was not apparent for either group . While cvBRS is known to be 

highly influenced by vascular stiffness (Lipman et al. 2002), the results of 

Heydari et al. (2013b) would suggest that the increase in cvBRS following a 12 

week HIIT intervention was not influenced by a decrease in arterial stiffness.  

While there is merit in the two investigations led by Heydari et al. (2013a, 

2013b), the HIIT protocol utilized is questionable. Both studies defined HIIT as 

20 minutes of eight seconds of sprinting at 80 – 90% of age-predicted HR 

maximum followed by 12 seconds of rest. While another study has employed a 

similar protocol (Trapp et al. 2008), the majority of HIIT protocols vary between 

low-volume HIIT and sprint interval training protocols where the intervals are 

upwards of one minute long (Gillen and Gibala 2014). In addition, in both studies 

by Heydari et al. (2013a & 2013b), cvBRS was determined using the sequence 

method. Although this method has been shown to be both valid and reproducible, 

this method should be taken with caution as it may inherently miss measuring part 

of the sympathetic component of the baroreflex (Swenne 2013).  

2.6.6. APPLICATION OF HIIT IN CLINICAL & AGEING 

POPULATIONS 

 The merits of HIIT have recently been extended into many diverse clinical 

populations. 12-weeks of HIIT, three times per week, has been shown to decrease 

HR, increase SV, and increase cvBRS both at rest and during a cognitive 

challenge (Stroop task) in young, overweight males (Heydari et al. 2013b). 10-

weeks of HIIT, three times per week, has been shown to improve VO2max and 
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reduce BP and fasting glucose levels, in middle-aged, healthy and previously 

inactive males (Tjønna et al. 2013). Six weeks of HIIT, three times per week, 

improved body composition, as evidenced by increases in abdominal and leg 

region fat-free mass, and muscle oxidative capacity, as evidenced by the maximal 

activities of citrate synthase and ß-hydroxyacyl-CoA from muscle biopsies, in 

young, overweight and obese women (Gillen et al. 2013). Compared to moderate-

intensity endurance exercise, Currie and colleagues (2013b) revealed that HIIT 

elicits similar improvements in peak exercise capacities and brachial artery 

endothelial function, a noninvasive surrogate of coronary artery endothelial 

function, in a CAD population. Finally, although clinically a “healthy” group of 

individuals, 14-weeks of high-volume HIIT, four times per week, elicited greater 

vagal predominance in active, elderly men, enhancing HRV and cvBRS (Pichot et 

al. 2005).  

2.6.7. CURRENT EXERCISE RECOMMENDATIONS 

 An impaired cvBRS increases the risk of stroke and CVD morbidity and 

mortality. In addition, post-MI patients with a low cvBRS are more likely to die 

from fatal arrhythmias (La Rovere et al. 1998). As described earlier, reductions in 

cvBRS can be attenuated with regular endurance exercise (Monahan et al. 2000).  

There is no doubt that traditional endurance exercise has a positive impact on 

CVD. For instance, three months of endurance training in subjects with multiple 

cardiac risk factors (greater than 65 years of age, type II diabetes, hypertension, 

and dyslipidemia) increased cvBRS without any significant changes in 

anthropometrics (Madden et al. 2010). However, traditional endurance exercise 
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training is undoubtedly time demanding. Even though endurance exercise training 

reduces all-cause cardiovascular mortality by modifying the traditional CVD risk 

factors (Taylor et al. 2004), participation and adherence rates remain low, even 

within cardiac rehabilitation patients (Barbour and Miller 2008). 

 The American College of Sports Medicine currently recommends an 

exercise prescription of 30 – 60 min/day (150 min/wk) of moderate-intensity 

endurance exercise ≥ 5 days/wk, or 20 – 60 min/day (75 min/wk) of high-intensity 

endurance physical activity ≥ 3 – 5 days/wk (Garber et al. 2011). In comparison, 

the guidelines initiated jointly by the Canadian Society for Exercise Physiology 

and ParticipACTION recommend that adults aged 18 – 64 years should 

accumulate ≥ 150 min/wk of moderate to vigorous intensity endurance physical 

activity in bouts of 10 min or more (Tremblay et al. 2011), further supporting the 

notion of shorter duration, but higher intensity endurance physical activity. 

Despite the current recommendations, adherence to an exercise program is 

challenging for many people (Allen and Morey 2010). Specifically, a ‘lack of 

time’ remains the most commonly cited barrier to exercise (Trost et al. 2002). One 

major advantage of HIIT compared to traditional endurance exercise is the 

associated time efficiency. As well, because HIIT has been shown to elicit similar 

physiological adaptations compared with traditional endurance exercise training, 

implementing HIIT as a training program is becoming increasingly popular. 
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CHAPTER III: METHODS 

3.1. STUDY PARTICIPANTS 

 Sixteen young, healthy, non-smoking, normotensive males (23.8±3.0 

years, 18 – 28 years) gave informed written consent to participate in this study. 

Participants were excluded if they had any cardiovascular conditions, a BMI < 

18.5 kg/m2 (underweight) or ≥ 30 kg/m2 (obese), currently involved in a rigorous 

training program (training more than three times per week at high-intensity), were 

allergic to dairy/soy products, and/or if they had a baseline VO2peak ≥ 56 

mL/kg/min, as a VO2max greater than 56 mL/kg/min is indicative of a highly-fit 

individual. Further improvements in variables of interest may not be as apparent 

with a group of highly trained individuals. The study was performed in 

accordance with the Helsinki Declaration on the use of human subjects and met 

the ethical standards of the Brock University Research Ethics Board, receiving 

approval (Appendix A). 

3.2. EXPERIMENTAL DESIGN 

 Participants reported to the Human Hemodynamics Laboratory at Brock 

University to participate in the experimental protocol. Prior to the experimental 

protocol, participants were invited to attend a familiarization session, which 

included a description of the experimental details, protocol, benefits, and risks. At 

this time, participants filled out the medical history questionnaire (Appendix B), 

in addition to reviewing and signing the informed consent form (Appendix C). 

Participants were also asked to complete a three day food diary (Appendix D) in 
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the days leading up to their first testing session. They were instructed to eat 

similar meals before all future testing sessions. This was to control for within-

subject meal intake prior to testing sessions. Testing occurred at the same time 

each day for each participant, after a minimum of a four hour fast. Participants 

refrained from light exercise, and consuming alcohol and caffeine for a minimum 

of 12 hours prior to testing, and heavy exercise for at least 24 hours. On the day of 

testing, participants voided their bladder prior to data collection to prevent the 

effect of bladder distension on arterial BP (Fagius and Karhuvaara 1989). 

Participants wore athletic attire for the duration of the experimental protocol. 

When finished, participants were provided with a standard meal replacement 

drink (Ensure, Abbott Nutrition Canada, Saint-Laurent, Québec, Canada), which 

they were instructed to consume one to two hours prior to all training (HIIT) 

sessions. This was to control for between-subject meal intake prior to training 

sessions and the acute effects of diet (Rakobowchuk et al. 2008).  

3.2.1. TESTING SESSIONS 

 Testing sessions occurred at three time points over the duration of the 

protocol: week 0, baseline (PRE); week 6, midpoint (MID); and week 12, 

endpoint (POST). Midpoint and endpoint were scheduled 24 – 48 hours after the 

previous HIIT session to ensure the participant had recovered from training. First, 

basic anthropometric measures were collected prior to autonomic and vascular 

data collection (Appendix E). Participants were then placed in the supine position, 

instrumented and then rested for 15 minutes in order to achieve a resting state. 

Three manual BP measurements were then taken followed by 10 minutes of beat-
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by-beat HR and BP collection for autonomic evaluation. Subsequently, carotid 

artery ultrasonography and tonometry were conducted for vascular evaluation. 

Three manual BP measurements were taken post-data collection to ensure 

baseline BP values. Autonomic and vascular evaluation in our lab has been 

described previously (Klassen et al. 2016), and is highlighted in 3.3.2. and 3.3.3. 

 Second, participants underwent body composition testing by way of air 

displacement plethysmography to determine lean mass (LM), percent LM (%LM), 

fat mass (FM), and percent FM (%FM).  Third, participants completed a 

VO2max test to determine measures of cardiorespiratory fitness and training loads 

for the HIIT sessions. Following VO2max testing, participants were monitored 

until sufficient rest was achieved, and subsequent HIIT sessions were scheduled 

to take place in the most consistent manner as possible. 

3.2.2. HIIT SESSIONS 

 For each HIIT session, participants were reminded to refrain from heavy 

exercise for at least 24 hours prior, and to consume the standard meal replacement 

drink one to two hours prior. HIIT sessions were divided into two blocks 

differentiated by volume (low-volume, block A; high-volume, block B) and each 

spanning six weeks, with a frequency of two sessions per week. Therefore, there 

were 12 sessions per block, or 24 training sessions for the entire study. This 

protocol was modeled after several investigations incorporating HIIT (Little et al. 

2010, Hood et al. 2011, Currie et al. 2013a). HR was continuously monitored in 

order to ensure that the participants were exposed to a maximal stimulus 

(Appendix F). The blocks were divided as follows: 
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 Block A, Low-Volume: 240 min or 4 hr = 60 min/week = 30 

min/session 

  - 3 min warm-up at 30 W 

  - 10x60 sec bouts at 90%HRmax 

   - 75 sec active rest at 45 W between each bout 

  - 5 min cool-down at 30 W  

With completion of block A, two more intervals were added to ensure a maximal 

stimulus and observe any training effects. 

 Block B, High-Volume: 272 min or 4.5 hr = 68 min/week = 34 

min/session 

  - 3 min warm-up at 30 W 

  - 12x60 sec bouts at 90%HRmax 

   - 75 sec active rest at 45 W between each bout 

  - 5 min cool-down at 30 W 

3.3. EXPERIMENTAL MEASURES 

3.3.1.  ANTHROPOMETRIC & BODY COMPOSITION MEASURES 

 Standing height was measured in centimetres (cm) with a stadiometer 

(STAT 7X, Ellard Instrumentation Ltd., Monroe, WA, USA) and body mass was 

measured in kilograms (kg) with a digital scale (BWB-800S, Tanita Corporation, 

Tokyo, Japan). BMI was calculated as body mass (kg) divided by height squared 

(m2). Hip and waist circumference (cm) were measured with an inelastic 

measuring tape. Hip circumference was measured at the largest part of the 
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buttocks below the iliac crest. Waist circumference was measured at the level of 

the umbilicus. Waist/hip ratio was calculated by dividing the waist circumference 

by the hip circumference. 

 Body composition was measured using the BOD POD® (BODPOD, Gold 

Standard, Life Measurement Inc., Concord, CA, USA), which uses air 

displacement plethysmography, to determine both absolute and percent fat mass 

and lean mass. Participants were seated in the chamber and a minimum of two 

volume measurements were conducted. A third volume measurement was 

performed if the difference between the previous measures was greater than 150 

mL. Participants were required to wear tight-fitting active wear in order to ensure 

a valid measurement. 

3.3.2. BAROREFLEX SENSITIVITY MEASUREMENT 

3.3.2.1. BEAT-BY-BEAT RRI & BP MEASUREMENTS 

 A single lead electrocardiogram (ECG) was used to obtain RRI, the time 

between successive heartbeats. Continuous non-invasive BP was measured at the 

left middle finger using the Nexfin® monitoring system (BMEYE Monitor Series, 

BMEYE, Amsterdam, The Netherlands). After 15 minutes of rest in the supine 

position, the first of two sets of manual BP measurements was taken using a 

manual sphygmomanometer on the upper arm and a stethoscope placed over the 

right brachial artery for auscultation. This measure was done in triplicate, where 

the first recording was used as a calibration measure. Average BP (SBP and DBP) 

was considered the average of the second and third recordings and MAP (1/3 SBP 
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+ 2/3 DBP) was calculated from these values. The manual BP recordings also 

served as a reference point for the beat-by-beat BP data collection from the 

Nexfin® monitoring system, where the continuous finger BP measurements were 

adjusted to the average manual brachial SBP and DBP, as described previously 

(O’Leary et al. 2005). Continuous BP and RRI were recorded for a 10 minute 

period. Both BP and RRI were sampled at a rate of 1000 Hz to provide a 

resolution of one millisecond using the online data analyses and acquisition 

systems, PowerLab® and LabChart® (Version 7, ADInstruments Inc., Colorado 

Springs, CO, USA). Average resting HR [RHR (bpm) = RRI (seconds/60)] was 

calculated for the first minute of the 10 minute data collection.	

3.3.2.2. CARDIOVAGAL BAROREFLEX SENSITIVITY ANALYSIS 

 The continuous BP and HR data were inspected for ectopic beats, as they 

have been shown to markedly affect cvBRS (Pinna et al. 2005). The cleanest five 

minute segment was used in the calculation of cvBRS.  

 MATLAB® numerical computation and visualization software (Version 

R2012b, MathWorks, Natick, MA, USA) was used to interpolate and resample the 

data at mean cardiac frequency in order to obtain an equal interval between 

samples (Pinna et al. 2004). A low-pass Butterworth filter (0.95 Hz) was used and 

the data was detrended to remove any linear trends. FFT was used with the Welch 

method and a Hanning window set to one-fourth of the signal length with a one-

half overlap. Spectral analysis was used to delineate SBP and RRI into LF (0.05 – 

0.15 Hz) and HF (0.15 – 0.40 Hz) bands (Robbe et al. 1987). As described by 

Robbe et al. 1987, LF variations relate to changes in vasomotor tone, and are 



HIIT & cvBRS  Austin J. Cameron 

51 
 

considered a marker of both vagal and sympathetic modulation. HF variations are 

mainly attributed to respiratory activity, which is considered vagal modulation 

(Robbe et al. 1987). The mean transfer function gain of SBP to RRI was used to 

determine cvBRS (ms/mmHg) for the LF region using a coherence ≥ 0.5 (Persson 

et al. 2001). 

3.3.3. ARTERIAL MEASUREMENTS 

3.3.3.1. COMMON CAROTID ARTERY 

 Following continuous data collection, ultrasonography was performed on 

the right CCA (1 – 2 cm proximal to the carotid bifurcation), using B-mode 

ultrasound (Vivid q, General Electric Medical Systems, The Netherlands) and a 

12 MHz linear array vascular transducer to obtain distensibility, compliance, 

diameter, and thickness measures. Three, two-dimensional B-mode images were 

recorded for approximately five heartbeats. Ultrasound movie clips were digitally 

stored in Digital Imaging and Communications in Medicine (DICOM) format for 

further offline analysis using a semi-automated edge-tracking system, Artery 

Management System (AMS, Chalmers University of Technology, Göteborg, 

Sweden).  

Measurements of carotid intima-media thickness (IMT), minimal and 

maximal diameters were determined from the five best quality heartbeats by the 

same investigator. Carotid lumen diameter (LD) was measured as the distance 

between the leading edge of the near-wall adventitia-media interface and the 

leading edge of the far-wall lumen-media interface. True LD is defined as the 
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distance between the leading edge of the near-wall intima-lumen interface and the 

leading edge of the far-wall lumen-intima interface. However, the presence of a 

clear near-wall intima-lumen was inconsistent between participants. Therefore, 

our measurements of LD included the bright white of the near-wall intima-media 

complex instead of the intima-lumen interface, which may overestimate the true 

LD. Far-wall IMT was determined as the distance between the far-wall leading 

edge of the lumen-intima interface and the leading edge of the intima-media 

interface. 

 Distensibility, which is the relative change in arterial diameter for a given 

pressure change, was be determined using the equation (O’Rourke et al. 2002): 

 Distensibility = [Π(dmax/2)2 - Π(dmin/2)2] / Π(dmin/2)2 x PP 

where dmax is the maximal diameter, dmin is the minimal diameter and PP is the 

corresponding pulse pressure. The numerator of the equation simplifies to 

represent the change in arterial cross-sectional area between systole and diastole, 

whereas the denominator represents arterial cross-sectional area during diastole 

multiplied by the average PP.  

 Compliance, which is the absolute change in arterial diameter with a given 

pressure, was determined from the equation (O’Rourke et al. 2002): 

 Compliance = [Π(dmax/2)2 - Π(dmin/2)2] / PP 

 Local PP measurements were collected from the left CCA immediately 

following ultrasonography using applanation tonometry. Since pressures collected 

with this technique are sensitive to hold-down pressure, absolute carotid artery BP 
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measurements were calibrated to the adjusted left middle finger BP values (Kelly 

and Fitchett 1992). A minimum of ten beats was used to calculate average PP.  

3.3.3.2. PULSE WAVE VELOCITY 

 Following ultrasonography, PWV was used to estimate central artery 

stiffness. PWV is the current gold standard for the non-invasive measurement of 

arterial stiffness. PWV was assessed using applanation tonometry with a hand-

held tonometer (model SPT-301, Millar Instruments Inc., Houston, TX, USA). 

The tonometer was calibrated with an external device using a two-point 

calibration system. This noninvasive pressure sensor was placed over the left 

CCA and the left femoral artery. The time delay (PTT, pulse transit time) between 

proximal and distal pulse waves were calculated. The distances between the 

sternal notch to the left CCA and left femoral artery were measured as segment 

lengths in meters (m). The PWV estimate is determined from the equation 

(O’Rourke et al. 2002): 

 PWV = D / Δt 

where D is the distance (segment length) between measurement sites, and Δt is the 

pulse transit time (PTT). Carotid and femoral artery tonometry were not 

performed simultaneously; therefore, the R-wave of the ECG was used as the 

initiation point of the pulse wave. To calculate carotid and femoral PTTs (ms), the 

time at the minimum point immediately prior to the upstroke of the pressure wave 

was subtracted from the time at the R-wave of the ECG. The PWV estimate was 

calculated by averaging a total of 15 – 20 heartbeats. . 
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3.3.4. CARDIORESPIRATORY FITNESS MEASUREMENTS 

3.3.4.1. VO2MAX TESTING 

 Cardiorespiratory fitness was assessed using a stationary electronically-

braked cycle ergometer (Lode® Excalibur, Version 5.3.1, Lode B.V., Groningen, 

The Netherlands), The VO2max test consisted of a five minute warm-up at 100 

watts (W), after which the workload increased by one watt every two seconds 

until volitional fatigue or the pedal cadence dropped below 40 revolutions per 

minute. The values obtained during this test were used to determine the estimated 

workload in watts for 90 - 100% peak power output (PPO) to be used for each 

interval in the HIIT sessions. Cardiorespiratory fitness testing and HIIT workload 

estimates were based on a previous protocol utilizing HIIT (Currie et al. 2013a). 

Criteria exist with maximal graded exercise testing that indicate whether or not an 

individual has reached their VO2max: 

 1. Plateau in VO2 curve, 

 2. Blood lactate ≥ 8 mM, 

 3. Respiratory exchange ratio (RER) ≥ 1.10, 

 4. Age-predicted maximum HR (HRmax) = 220 – age 

 The individuals needed only to meet one of three criteria, VO2 plateau, 

RER ≥ 1.10, or age-predicted HRmax, as blood lactate testing was not conducted. 

The three listed criteria are regarded as sufficient for assessing cardiorespiratory 

fitness (Mier et al. 2012). 

 Despite the effectiveness of measuring cardiorespiratory fitness with a 

VO2max test, many individuals fail to reach their true max (Howley et al. 1995, 
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Mier et al. 2012), and instead reached a VO2peak. The incidence of a true VO2 

plateau has been reported as low as 20% (Mier et al. 2012). Therefore, data 

reported reflect VO2peak. 

 The training status of the individual was confirmed as a result of the 

VO2peak test. Training status was based on normative data for males aged 20 – 29 

(Heywood 2006). The categories are stratified as follows: 

 Sedentary, VO2max < 45 ml/kg/min; 

 Recreationally active, VO2max = 45 to 55 ml/kg/min; 

 Trained, VO2max = 56 to 60 ml/kg/min; 

 Highly-trained, VO2max > 60 ml/kg/min; 

where only those individuals who stratify into the sedentary and recreationally 

active category were considered for further testing.  

3.3.4.2. HIGH-INTENSITY INTERVAL TRAINING 

 All HIIT sessions were performed on the Lode® Excalibur cycle 

ergometer and HR monitored. The training session included a standardized three 

minute warm-up and a five minute cool down at 30 W. The PPO at VO2peak 

provided an estimate as to the cycling wattage used during the HIIT sessions; 

however, the primary indicator of intensity was achieved through continuous HR 

monitoring with a chest strap and a corresponding wristwatch (Timex® Personal 

Heart Rate Monitor, Model M593, Timex Corporation, Middlebury, CT, USA). 

Participants exercised at or above 90%HRmax for each interval. Thus, the wattage 

for each interval was adjusted slightly from the PPO at VO2peak in order to 

ensure that the participants were exercising at the prescribed intensity. A member 
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of the research team supervised all exercise training sessions to ensure the usage 

of proper techniques and correct intensity.  

3.4. STATISTICAL METHODS 

Sixteen participants were recruited; however, a total sample size of 14 

participants was used for analysis, as there was one drop-out and one exclusion 

due to the presence of ectopic beats at baseline. Analyses were completed using 

SAS (Version 9.4, SAS Institute Inc., Cary, NC, USA). The level of significance 

for all measures was set to α = 0.05. Data are reported in tables as means and 

standard deviations. Data are presented in figures as means and standard errors.  

A one-way repeated measures ANOVA was used to determine a training 

effect (PRE-, MID-, POST-training) for all dependent variables (Table 1). 

Significant differences were followed up with Holm-Bonferroni post-hoc testing 

to determine at which timepoints the differences occurred.  

A Pearson correlation analysis was used to determine which variables 

(baseline and change variables) were significantly associated with PRE to POST 

change in cvBRS (ΔcvBRS). A Spearman correlation was used with variables that 

did not reach normality at baseline (height, waist-hip ratio, and DBP). ΔcvBRS 

was analyzed using simple linear regression models while adjusting for covariates 

which included baseline cvBRS, baseline compliance, change in compliance, 

change in distensibility, change in carotid PP, and change in IMT.  
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CHAPTER IV: RESULTS 

4.1. EFFECT OF TRAINING 

4.1.1. PARTICIPANT COMPLIANCE & TRAINING INTENSITY 

 Participants attended two supervised training sessions per week for the 

duration of the protocol. Training session compliance was 100%, as were the 

PRE-, MID-, and POST-training testing sessions. Care was taken during each 

training session to adjust the workload based on the previous VO2max test PPO, 

in order to elicit the target HR of 90%. An average HR was taken after each 

training session to ensure the participant completed the workout at the appropriate 

intensity. 

4.1.2. EFFECT OF TRAINING ON DEMOGRAPHIC AND BODY 

COMPOSITION VARIABLES 

Repeated measures ANOVA data for the effects of training are presented 

in Table 1. Following the training program, body mass and BMI significantly 

increased. Post-hoc analysis revealed that POST-training body mass was 

significantly higher compared to PRE-training; while, no significant differences 

for BMI were found at any time point. Absolute and percent measures of fat mass 

and lean mass, along with hip circumference, waist circumference, and waist/hip 

ratio remained unchanged.	
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4.1.3. EFFECT OF TRAINING ON CARDIORESPIRATORY FITNESS 

Two participants POST-training have missing VO2max and RER data due 

to one drop-out and another one had technical difficulty. Therefore, means are 

calculated for n = 14, 14, and 12 participants at PRE-, MID-, and POST-training, 

respectively (Table 1). Sample sizes for peak HR at PRE-, MID-, and POST-

training are 14, 13, and 13, respectively. At MID-training, there were issues with 

TABLE 1. PRE-, MID-, and POST-testing data.
Variable PRE n MID n POST n p
Body Composition Data
Body Mass, kg 78.9 (7.8) 14 79.4 (7.8) 14 79.8 (7.7)* 14 0.004
BMI, kg/m2 24.1 (2.5) 14 24.3 (2.5) 14 24.3 (2.5) 14 0.026
Lean Mass, kg 70.0 (6.5) 14 69.6 (6.1) 14 70.4 (6.6) 14 0.190
Fat Mass, kg 8.71 (3.9) 14 9.58 (3.6) 14 9.25 (4.2) 14 0.218
Percent Lean Mass, % 89.1 (4.5) 14 88.1 (3.8) 14 88.6 (4.9) 14 0.281
Percent Fat Mass, % 10.9 (4.5) 14 11.9 (3.8) 14 11.4 (4.9) 14 0.281
Hip Circumference, cm 98.6 (5.4) 14 98.4 (5.8) 14 98.4 (5.6) 14 0.904
Waist Circumference, cm 84.2 (6.6) 14 84.2 (6.6) 14 84.8 (6.8) 14 0.133
Waist-Hip Ratio 0.85 (0.04) 14 0.85 (0.04) 14 0.86 (0.04) 14 0.145

Cardiorespiratory Fitness Data
Absolute VO2peak, mL/min 3638 (545) 14 4068 (447)* 14 4099 (455)* 12 0.002
Relative VO2peak, mL/kg/min 46.3 (6.7) 14 51.6 (6.5)* 14 51.2 (5.8)* 12 0.004
Peak HR, bpm 195 (6) 14 195 (8) 13 195 (9) 13 0.842
RER 1.23 (0.06) 14 1.28 (0.19) 14 1.21 (0.06) 12 0.349
PPO, W 327 (39) 14 355 (37)* 14 360 (31)* 13 <0.001

Resting Blood Pressure and Heart Rate Data
RHR, bpm 60 (8) 13 56 (10) 14 57 (9) 11 0.042
SBP, mm Hg 121 (7) 14 120 (9) 14 117 (8) 14 0.083
DBP, mm Hg 73 (8) 14 70 (7)* 14 67 (5)* 14 0.001
MAP, mm Hg 89 (6) 14 86 (7)* 14 84 (5)* 14 <0.001

Arterial Structure and Function Data
Carotid PP, mm Hg 50 (10) 14 53 (8) 13 51 (9) 14 0.569
Compliance, mm2/mm Hg 0.14 (0.04) 14 0.12 (0.03) 13 0.13 (0.04) 14 0.061
Distensibility, mm Hg-1 0.0052 (0.0015) 14 0.0043 (0.0011) 13 0.0044 (0.0010) 14 0.042
Carotid LDmax, mm 6.64 (0.49) 14 6.65 (0.35) 14 6.61 (0.44) 14 0.870
Carotid LDmin, mm 5.94 (0.48) 14 6.01 (0.32) 14 5.97 (0.40) 14 0.670
IMT, mm 0.44 (0.09) 14 0.40 (0.08)* 14 0.36 (0.09)*† 14 <0.001
PWV, m/s 6.15 (0.73) 14 5.51 (0.41)* 14 5.84 (0.78) 14 0.008

Autonomic Function Data
cvBRS, ms/mm Hg 16.5 (7.0) 12 14.4 (6.6) 13 15.6 (7.4) 11 0.758

* indicates p < 0.05 v. PRE.
† indicates p < 0.05 v. MID.

BMI, body mass index; VO2, oxygen consumption; HR, heart rate; RER, respiratory exchange ratio; PPO, peak power output; 
RHR, resting heart rate; SBP, systolic blood pressure;  DBP, diastolic blood pressure; MAP, mean arterial pressure; PWV; carotid 
to femoral pulse wave velocity; PP, pulse pressure; LD, lumen diameter; IMT, intima media thickness; cvBRS, cardiovagal 
baroreflex sensitivity; RRI, R-R interval. A one-way repeated measures ANOVA was used with Holm-Bonferroni pairwise 
multiple comparison corrections for PRE-, MID-, and POST-means.
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the heart rate monitor, and at POST-training, the missing value is due to the drop-

out. For PPO data, sample sizes at PRE-, MID-, and POST-training are 14, 14, 

and 13, respectively. The missing value at POST-training is also due to the drop-

out. 

Absolute VO2peak increased following 12-weeks of HIIT (3638 ± 545 v. 

4099 ± 455 mL/min, p = 0.002). Likewise, relative VO2peak increased (46.3 ± 6.7 

v. 51.2 ± 5.8 mL/kg/min, p = 0.004). PPO also increased following 12-weeks of 

HIIT (327 ± 39 v. 360 ± 31 W, p < 0.001). Absolute VO2peak, relative VO2peak, 

and PPO were significantly greater at MID- compared to PRE-training; however, 

no further changes were observed from MID- to POST-training. Peak HR and 

RER remained unchanged following training. The effect of 12-weeks of HIIT on 

absolute and relative VO2peak is displayed in Figure 1. 
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Figure 1. Absolute (left) and relative (right) VO2peak mean responses (bars) and 
individual responses (lines), PRE- (white), MID- (grey), and POST-training 
(black). VO2, oxygen consumption. Only complete PRE-, MID-, and POST-
training data are shown (n = 12). 
* indicates p < 0.05. 
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4.1.4. EFFECT OF TRAINING ON RESTING HR AND BP 

DBP decreased following 12-weeks of HIIT (73 ± 8 v. 67 ± 5 mm Hg, p = 

0.001), along with MAP (89 ± 6 v. 84 ± 5 mm Hg, p < 0.001). Improvements in 

DBP and MAP were seen at MID- compared to PRE-training; however, no further 

change was observed from MID- to POST-training. A resting HR (RHR) 

ANOVA found significant changes; however, post-hoc analysis revealed no 

actual differences between any timepoints. SBP remained unchanged. Sample 

sizes for RHR at PRE-, MID-, and POST-training were 13, 14, and 11, 

respectively. This is due to the number of artifacts or unuseable segments of 

resting beat-by-beat HR collection since our RHR was derived from RRI. 

4.1.5. EFFECT OF TRAINING ON ARTERIAL STRUCTURE AND 

FUNCTION AND cvBRS 

Data is complete for maximal and minimal diameters (LD), IMT, and 

PWV; however, sample sizes for PRE-, MID-, and POST-training for carotid PP, 

compliance, and distensibility were 14, 13, and 14, respectively. The difference at 

MID-training was due to the unusable carotid PP data in determining average 

carotid PP, compliance, and distensibility. For cvBRS, samples sizes were 12, 13, 

and 11, for PRE-, MID-, and POST-training, respectively. This was due to the 

lack of a clean five minute segment of beat-by-beat HR and BP data to be 

analyzed. 

Most measures of carotid artery structure and function (PP, compliance, 

and LD) remained unchanged following 12-weeks of HIIT. IMT decreased 



HIIT & cvBRS  Austin J. Cameron 

62 
 

following the training program (0.44 ± 0.09 v. 0.36 ± 0.09 mm, p < 0.001). Initial 

improvements were seen at MID-training (0.44 ± 0.09 v. 0.40 ± 0.08 mm, p < 

0.05) and further improvements were seen at POST-training (0.40 ± 0.08 v. 0.36 ± 

0.09 mm, p < 0.05). An overall time effect was found for distensibility; however, 

post-hoc analysis revealed no significant differences between any timepoints. The 

effects of 12-weeks of HIIT on IMT are displayed in Figure 2. Distensibility and 

compliance are displayed in Figure 3. 

 

Figure 2. IMT means (bars) and individual responses (lines), PRE- (white), MID- 
(grey), and POST-training (black). IMT, intima media thickness. 
* indicates p < 0.05. 
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Figure 3. Distensibility (left) and compliance (right) mean responses (bars) and 
individual responses (lines), PRE- (white), MID- (grey), and POST-training 
(black). Only complete PRE-, MID-, and POST-training data are shown (n = 13). 
There was an overall significant effect for time (p = 0.042); however, post-hoc 
testing revealed no differences between timepoints. 
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PWV remained unchanged following 12-weeks of HIIT. Interestingly, 

PWV improved from PRE- to MID-training (6.15 ± 0.73 v. 5.51 ± 0.41 m/s, p < 

0.05); however, PWV returned to PRE-training levels at POST-training. The 

effect of 12-weeks of HIIT on PWV is displayed in Figure 4. 

 
Figure 4. PWV mean responses (bars) and individual responses (lines), PRE- 
(white), MID- (grey), and POST-training (black). PWV, carotid to femoral pulse 
wave velocity. 
* indicates p < 0.05. 
	

As for cvBRS, two participants at PRE-training, one participant at MID-
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consistently clean five-minute segment for autonomic data analysis. Therefore, 
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POST-training, respectively (Table 1). A one-way ANOVA determined that 

cvBRS remained unchanged following 12-weeks of HIIT (Figure 5).  

 
Figure 5. cvBRS mean responses (bars) and individual responses (lines), PRE- 
(white), MID- (grey), and POST-training (black). cvBRS, cardiovagal baroreflex 
sensitivity. Only complete PRE-, MID-, and POST-training data are shown (n = 
10). 
 

4.2. ΔcvBRS CORRELATIONS AND REGRESSION  

Due to missing cvBRS data, 10 participants with complete PRE- and 

POST-training paired data were utilized for correlations and linear regression 

analyses.   
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4.2.1. CORRELATES AT BASELINE 

PRE-to-POST ΔcvBRS was negatively correlated with compliance (r = -

0.73, p = 0.016). Distensibility showed a negative correlation with ΔcvBRS, 

although this was non-significant (r = -0.62, p = 0.057). Likewise, negative 

correlations were observed with carotid LDmax (r = -0.62, p = 0.054), and LDmin 

(r = -0.62, p = 0.054), although these also were non-significant. As expected, 

ΔcvBRS was significantly correlated with baseline cvBRS (r = -0.76, p = 0.011). 

Bivariate correlates of ΔcvBRS with baseline variables are reported in Table 2.  
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TABLE 2. Baseline correlates of change in cvBRS.
Variable r p 
Demographic Data
Age, yr -0.15 0.684
Height, cm 0.09 0.815†

Body Composition Data
Body Mass, kg -0.32 0.367
BMI, kg/m2 -0.36 0.309
Lean Mass, kg -0.30 0.407
Fat Mass, kg -0.12 0.738
Percent Lean Mass, % 0.11 0.760
Percent Fat Mass, % -0.11 0.760
Hip Circumference, cm 0.08 0.829
Waist Circumference, cm -0.02 0.958
Waist-Hip Ratio 0.08 0.829†

Cardiorespiratory Fitness Data
Absolute VO2peak, mL/min -0.26 0.462
Relative VO2peak, mL/kg/min -0.07 0.856
Peak HR, bpm 0.42 0.224
RER 0.03 0.934
PPO, W -0.13 0.715

Resting Heart Rate and Blood Pressure Data
RHR, bpm 0.38 0.284
SBP, mm Hg -0.18 0.628
DBP, mm Hg 0.04 0.907†
MAP, mm Hg -0.09 0.804

Arterial Structure and Function Data
Carotid PP, mm Hg 0.55 0.097
Compliance, mm2/mm Hg -0.73* 0.016
Distensibility, mm Hg-1 -0.62 0.057
Carotid LDmax, mm -0.62 0.054
Carotid LDmin, mm -0.62 0.054
IMT, mm 0.42 0.224
PWV, m/s -0.22 0.538

Autonomic Function Data
cvBRS, ms/mmHg -0.76* 0.011

* indicates p < 0.05.
† indicates Spearman correlation coefficient.

BMI, body mass index; VO2, oxygen consumption; 
HR, heart rate; RER, respiratory exchange ratio; PPO, 
peak power output; RHR, resting heart rate; SBP, 
systolic blood pressure;  DBP, diastolic blood pressure; 
MAP, mean arterial pressure; PWV; carotid to femoral 
pulse wave velocity; PP, pulse pressure; LD, lumen 
diameter; IMT, intima media thickness; cvBRS, 
cardiovagal baroreflex sensitivity; RRI, R-R interval. 
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4.2.2. CORRELATES WITH CHANGE VARIABLES 

ΔcvBRS was correlated with the PRE-to-POST changes in compliance (r 

= 0.68, p = 0.031), distensibility (r = 0.65, p = 0.043), carotid PP (r = -0.69, p = 

0.024), and IMT (r = -0.74, p = 0.014). ΔcvBRS did not significantly correlate 

with PRE-to-POST changes in BP variables (SBP, DBP, MAP) or body 

composition indices (body mass, BMI, lean mass, fat mass, percent body fat, 

percent lean mass, hip circumference, waist circumference, waist/hip ratio). 

Pearson correlations of ΔcvBRS with change variables are reported in Table 3. 



HIIT & cvBRS  Austin J. Cameron 

69 
 

  

Variable r p 
Body Composition Data
ΔBody Mass, kg 0.08 0.825
ΔBMI, kg/m2 0.2 0.586
ΔLean Mass, kg -0.08 0.816
ΔFat Mass, kg 0.12 0.737
ΔPercent Lean Mass, % -0.13 0.716
ΔPercent Fat Mass, % 0.13 0.716
ΔHip Circumference, cm 0.23 0.525
ΔWaist Circumference, cm -0.27 0.455
ΔWaist-Hip Ratio -0.13 0.726

Cardiorespiratory Fitness Data
ΔAbsolute VO2peak, mL/min 0.17 0.657
ΔRelative VO2peak, mL/kg/min 0.17 0.651
ΔPeak HR, bpm 0.20 0.577
ΔRER 0.22 0.563
ΔPPO, W -0.14 0.698

Resting Heart Rate and Blood Pressure Data
ΔRHR, bpm -0.59 0.068
ΔSBP, mm Hg 0.19 0.610
ΔDBP, mm Hg 0.15 0.672
ΔMAP, mm Hg 0.20 0.579

Arterial Structure and Function Data
ΔCarotid PP, mm Hg -0.69* 0.024
ΔCompliance, mm2/mm Hg 0.68* 0.031
ΔDistensibility, mm Hg-1 0.65* 0.043
ΔCarotid LDmax, mm 0.08 0.823
ΔCarotid LDmin, mm 0.21 0.562
ΔIMT, mm -0.74* 0.014
ΔPWV, m/s 0.19 0.593

* indicates p < 0.05.

BMI, body mass index; VO2, oxygen consumption; HR, 
heart rate; RER, respiratory exchange ratio; PPO, peak 
power output; RHR, resting heart rate; SBP, systolic 
blood pressure;  DBP, diastolic blood pressure; MAP, 
mean arterial pressure; PP, pulse pressure; LD, lumen 
diameter; IMT, intima media thickness; PWV; carotid to 
femoral pulse wave velocity; cvBRS, cardiovagal 
baroreflex sensitivity.

TABLE 3. Correlates of change in cvBRS with PRE-to-
POST change variables.
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4.2.3. ANALYSIS OF ΔcvBRS 

Simple linear regression was used to model the different covariates with 

ΔcvBRS. The covariates included were baseline cvBRS, compliance, change in 

compliance and change in distensibility. Regression analysis is reported in Table 

4. 

Model 1 

 Model 1 includes ΔcvBRS and baseline cvBRS. While adjusting for 

baseline cvBRS, ΔcvBRS was significant (F1, 9 = 10.94, r = 0.58, p = 0.011). This 

model explained 57% of the change in cvBRS.  

Model 2 

Model 2 includes ΔcvBRS and baseline compliance. The influence of 

baseline compliance on ΔcvBRS was significant (p = 0.016). Therefore, ∆cvBRS 

explained by baseline compliance following 12-weeks of HIIT was significant (F1, 

9 = 9.33, r = 0.54, p = 0.016), and this model explained 54% of the change in 

cvBRS.  

Model 3 

Model 3 includes ΔcvBRS and PRE-to-POST change in compliance. The 

effect of change in compliance on ΔcvBRS was significant (p = 0.031). Therefore, 

ΔcvBRS explained by the change in compliance was significant (F1, 9 = 6.83, r = 

0.46, p = 0.0309), and this model explained 46% of the change in cvBRS. 

Model 4 
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Model 4 includes ΔcvBRS and PRE-to-POST change in distensibility. The 

influence of change in distensibility on ΔcvBRS was significant (p = 0.043). As 

well, this model explained 42% of the change in cvBRS. (F1, 9 = 5.81, r = 0.42, p 

= 0.043). 

Model 5 

Model 5 includes ΔcvBRS and PRE-to-POST change in PP. The influence 

of change in PP on ΔcvBRS was significant (p = 0.025). As well, this model 

explained 49% of the change in cvBRS. (F1, 9 = 7.64, r = 0.49, p = 0.025). 

Model 6 

Model 6 includes ΔcvBRS and PRE-to-POST change in IMT. The 

influence of change in IMT on ΔcvBRS was significant (p = 0.014). As well, this 

model explained 55% of the change in cvBRS. (F1, 9 = 9.95, r = 0.55, p = 0.014). 
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CHAPTER V: DISCUSSION 

5.1. EFFECT OF HIIT ON cvBRS 

 First, we sought out to investigate if cvBRS would be improved following 

12-weeks of HIIT independent of changes in BP and body composition indices. 

Overall, cvBRS remained unchanged following the 12-weeks of HIIT. Second, we 

sought out to investigate whether any change in cvBRS would be concordant with 

changes in arterial stiffness (PWV, distensibility, compliance, IMT). We 

determined that the change in cvBRS, although not significant, was highly related 

to corresponding changes in distensibility, compliance, and IMT. As expected, the 

change in cvBRS was highly explained by baseline cvBRS. Interestingly, the 

change in cvBRS was also related to baseline compliance, a measure of absolute 

arterial elasticity, and the 12-week change in PP. 

 Previous investigations of cvBRS with HIIT demonstrate opposing results. 

Heydari et al. (2013a) observed a 23% increase in cvBRS in the intervention 

group. The sample consisted of young, sedentary males. Despite the similar age 

group (24.4 ± 4.7 years), the sample of Heydari et al. (2013a) reported a higher 

baseline body mass (89.2 ± 2.9 kg), BMI (28.4 ± 0.6 kg/m2), and waist 

circumference (93.5 ± 1.6 cm) compared to our sample. It was noted that of the 17 

participants in the intervention group of Heydari et al. (2013a), 12 were 

overweight and five were obese. In contrast, only four of our participants were 

overweight (BMI 25.0 – 29.9 kg/m2). Heydari et al. (2013a) also reported a much 

lower baseline relative VO2peak (33.9 ± 1.1 mL/kg/min) compared to the current 

study. Furthermore, there were significant improvements in body mass, BMI, 
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waist circumference, RHR, SBP, and cardiorespiratory fitness in Heydari et al. 

(2013a), whereas in the current sample, only cardiorespiratory fitness and MAP 

improved.  

 Given the significant changes reported by Heydari et al. (2013a), it is 

likely that the improvement in cvBRS was attributed to changes in RHR, SBP, 

body composition, and cardiorespiratory fitness. The absence of changes in the 

majority of the aforementioned variables, all determinants of cvBRS, may explain 

why no changes in ANS function following the HIIT protocol were observed. 

 Currie and colleagues (2013b) demonstrated similar autonomic findings, 

but with HRV, a measure related to cvBRS. Following 12-weeks of HIIT, there 

was no apparent change in HRV in older males with documented CAD. This 

finding was attributed to their already normative cardiac autonomic function. 

HRV measures beat-by-beat cardiac autonomic function and is reflective of vagal 

activity, not dissimilar to cvBRS. Hence, the lack of change in HRV following a 

similar training protocol is comparable to our current findings.  

 With the current protocol, cvBRS remained unchanged despite significant 

improvements in RRI. Since SBP is a major determinant of baroreflex function, 

the lack of change in SBP may likely be the reason that no change in cvBRS was 

observed with this protocol. In the time course of changes in cardiac autonomic 

function, RRI lengthens (or shortens) in response to an increase (or decrease) in 

SBP. Despite the reduction in RRI, it appears that SBP may be a stronger 

determinant of cvBRS. 
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 The timing of testing days may also be a factor in the lack of change in 

cvBRS. It is possible that the timing of test days, although scheduled 24 – 48 

hours following a HIIT session, may not have been enough time for the nervous 

system to fully recover. In fact, autonomic recovery following sprint interval 

exercise is known to be reduced (Stuckey et al. 2012). Although the 

aforementioned sprint interval exercise consisted of one or four Wingate tests, 

perhaps the relative intensity and volume of our protocol elicits longer periods of 

reduced autonomic function, which could be reflected in our results. In fact, 

transient reductions and shifts in autonomic function are known to occur 

following bouts of high intensity rowing (Iellamo et al. 2002). Although we did 

not test the relative contributions of sympathetic and vagal control of cardiac 

function (sympathovagal balance), autonomic balance is known to shift towards 

sympathetic predominance with higher intensity exercise (Iellamo et al. 2002). 

Hence, if MID- or POST-testing occurred during a period where autonomic 

balance is shifted towards sympathetic predominance, cvBRS would not be 

enhanced. 

5.2. EFFECT OF HIIT ON ARTERIAL STIFFNESS  

5.2.1. PULSE WAVE VELOCITY, COMPLIANCE, AND 

DISTENSIBILITY 

 HIIT has been shown to have a positive effect on central artery stiffness 

(Heydari et al. 2013a). However, the current study demonstrates that 12-weeks of 

HIIT had no effect. Interestingly, PWV improved with the first six weeks of 
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training, but returned to baseline levels at 12-weeks. This suggests that further 

improvements in arterial stiffness are not observed with additional volume. 

  Carotid artery compliance, as well as the corresponding PP and LD 

measures, also remained unchanged following 12-weeks of HIIT. As for 

distensibility, there was a significant effect for time; however, caution should be 

taken when interpreting these results, as post-hoc analysis did not reveal 

significant differences between time points.   

 To our current knowledge, there are limited studies that have explored the 

effects of HIIT on measures of arterial elasticity and diameters. Our findings are 

consistent with what has been observed following an acute bout of HIIT in a 

healthy population of men and women (Rakobowchuk et al. 2009), as well as 

following 12-weeks of HIIT in a CAD sample (Currie 2013a). In fact, lack of 

alterations in central artery elasticity following endurance training appear to be 

common in a young, healthy population (Tanaka et al. 2000). Rakobowchuk and 

colleagues (2008) did not find an improvement in CCA distensibility following 

six weeks of either sprint interval or endurance training and noted that due to the 

healthy baseline status of their participants, further room for improvement was 

largely limited (Rakobowchuk et al. 2008). We believe this is also the case with 

our sample. Additionally, changes in arterial diameter, a component of 

compliance and distensibility, is known to occur more extensively in peripheral 

sites in response to blood flow and shear stress (Black et al. 2016). Peripheral, but 

not central, vascular changes have been observed following acute (Rakobowchuk 

et al. 2009) and six weeks of HIIT (Rakobowchuk et al. 2008). The acute training 
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in Rakobowchuk et al. 2009 consisted of either one single Wingate test, or four 

Wingate tests, each separated by 4.5 minutes. In contrast, Rakobowchuk et al. 

(2013) reported improvements in both carotid artery stiffness and HRV following 

six weeks of both moderate and heavy interval training. Moderate was defined as 

repeated cycles of 10 seconds of work, 20 seconds recovery at 120% of pre-

training VO2peak; and heavy was defined as repeated cycles of 30 seconds of 

work, 60 seconds of recovery, also at 120% of pre-training VO2peak. All 

participants completed 30 (week 1 – 2), 35 (week 3 – 4), and 40 (week 5 – 6) 

minutes of exercise. These opposing results could be due to the fact that their 

participants were more sedentary (lower VO2peak), the training protocol was 

different (shorter work cycles and higher work intensity), and β-stiffness was used 

as the measure of stiffness. β-stiffness index is a regional measure of arterial 

stiffness similar to PWV; however, it is BP independent and is thought to reflect 

structural wall changes without the influence of distending pressure (Hayashi et 

al. 1980, Wohlfahrt et al. 2013, Lim et al. 2016). 

5.2.2. CAROTID INTIMA-MEDIA THICKNESS 

 Of all the carotid artery structure and function variables, carotid IMT 

improved substantially from baseline to both MID- and POST-training. 

Measurement of IMT is a useful technique for identifying and quantifying 

subclinical vascular disease for the evaluation of CVD risk (Stein et al. 2008). In 

fact, an IMT increase of 0.1 mm has been shown to increase an individual’s risk 

of MI and stroke by 10 – 15% and 13 – 18%, respectively (Lorenz et al. 2007). 

Our participants’ IMT was within the normal range at all timepoints (Engelen et 
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al. 2013) with improvements of around 0.04 mm at each timepoint. While 

Rakobowchuk and colleagues (2013) found no changes in IMT following six 

weeks of either moderate- or high-intensity exercise in young, healthy men and 

women (Rakobowchuk et al. 2013), Currie (2013a) found improvements of a 

lesser magnitude in their sample of older (aged 62 ± 11 years) participants with 

CAD after 12-weeks of HIIT (Currie 2013a). Similar to Currie (2013a), we found 

no significant change in distensibility but significant improvements in IMT. 

Additional analysis revealed that the 12-week changes in distensibility and IMT 

were not correlated (r = -0.33, p = 0.245). Indeed, findings of a correlation 

between distensibility and IMT in the literature are inconsistent despite both being 

measures of arterial health (Alan et al. 2003, Doyon et al. 2013). However, both 

measures reflect different aspects of the arterial wall (distensibility, functional; 

IMT, structural), so the lack of a relationship between the two is not surprising. It 

appears that the impact of HIIT on arterial properties may differ by measurement 

index. 

5.2.3. EFFECT OF ARTERIAL STIFFNESS ON cvBRS 

In the findings of the current study there was no significant relationship 

between baseline and the 12-week change in cvBRS and change in PWV. The 

absence of a relationship is surprising, since arterial stiffness and cvBRS are 

known to be highly linked (Bonyhay et al., 1996; Cooke & Carter, 2005; K. D. 

Monahan et al., 2001). However, most studies that explore the relationship 

between cvBRS and arterial stiffness often utilize measures of local stiffness, 

which include carotid artery compliance and distensibility. This suggests that 
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changes in cvBRS may be attributed more to the local carotid artery changes 

rather than regional central PWV changes, which encompasses a much larger 

vasculature region.  

 Baseline distensibility was not observed to be significantly correlated with 

the overall change in cvBRS following 12-weeks of HIIT; however, it trended 

towards significance. A larger sample size would likely have improved the 

correlation and corresponding significance. In contrast, baseline compliance was 

significantly correlated with overall change in cvBRS. Similar findings between 

cvBRS and compliance have been demonstrated in other studies. Bonyhay and 

colleagues (1996), as well as Monahan et al. (2001) report a strong correlation 

between cvBRS and carotid artery compliance (r = 0.78, p < 0.001 and r = 0.71, p 

< 0.001, respectively). Likewise, Cook et al. (2005) found a moderate correlation 

(r = 0.54, p < 0.005). The results of the regression analysis suggest that the lower 

the baseline compliance, the greater the potential change in cvBRS.  

 Likewise, the change in compliance following 12-weeks of training was 

significantly correlated with the change in cvBRS, which further strengthens our 

findings with the relationship between carotid artery stiffness and ANS function. 

Interestingly, the change in distensibility was also significantly correlated with the 

change in cvBRS, even though baseline distensibility was not. The current 

findings are in contrast to those of Rakobowchuk and colleagues (2013) who 

reported that after six weeks of either moderate or high intensity interval training, 

changes in autonomic control (measured by HRV) were not related to arterial 

stiffness changes (Rakobowchuk et al. 2013).  
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 The change in cvBRS was significantly explained by the 12-week change 

in PP. Such a finding is not a surprise since cvBRS and PP are known to be 

associated regardless of age and gender (Virtanen et al. 2004). Our univariate 

analysis is also supported by similar analyses done by Virtanen et al. (2004), who 

showed an inverse relationship exists between cvBRS and PP. Although analyses 

of cvBRS and PP individually revealed no differences as a result of training, the 

apparent significance in the regression model may be due to the underlying 

relationship between cvBRS and PP already. 

 Interestingly, the change in cvBRS was also highly correlated with the 

change in IMT. A relationship between cvBRS and IMT has been observed 

before. Specifically, a greater IMT in the carotid sinus has been associated with 

reduced cvBRS, even after controlling for factors that are known to influence 

cvBRS, such as age and BP (Gianaros et al. 2002). Notably, our findings are 

significant even though our measures of IMT were taken at the common carotid, 

an area which has a lesser density of baroreceptors compared to the carotid sinus. 

Physiologically, such a finding is not a surprise, since the baroreceptors rely on 

stretch of the arterial wall in order to be activated. Presumably, an increase in 

IMT would require a higher pressure to distend the vessel wall and activate the 

baroreceptors.  

 The change we observed PRE to POST in compliance and distensibility 

trended towards significance, while the PRE to POST change in IMT was 

significant. In contrast cvBRS did not significantly change following HIIT. Of 

interest, compliance, distensibility, IMT and cvBRS were linked based on 
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regression analysis.  Overall, the findings from this study support those in the 

literature that have associated cvBRS with distensibility (Bonyhay et al. 1996), 

compliance (Cook et al. 2006), (Monahan et al. 2001) and IMT (Gianaros et al. 

2002). 

5.3. STRENGTHS & LIMITATIONS 

 To the best of our knowledge, this was the first study to assess the effects 

of HIIT on ANS function while simultaneously assessing BP, body composition, 

and arterial stiffness indices. This study is also one of the few studies to explore 

the effect of HIIT on carotid IMT. A particular strength of this study was that all 

participants completed the required training volume for the duration of the 

protocol. Therefore, participant compliance was 100%. Additionally, the target 

intensities were met with each training session, as HR was carefully monitored. 

The number of testing sessions was also a strength as we conducted PRE-, MID-, 

and POST-training data acquisition sessions. However, there are several 

limitations to be addressed. 

 First, the aim was to recruit a minimum of 20 males; however, due to 

logistical restraints, only 16 were recruited in time for the training protocol to 

begin. One participant dropped out prior to training, and another had several 

ectopic beats present during baseline testing, and therefore was excluded from the 

study. Hence, the total sample size was 14 participants. Several measures neared 

significance, therefore, having a larger sample size would likely have increased 

the statistical power (Appendix G). As well, having a larger sample size would 

have allowed us to complete more complex regression models, putting in several 
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variables into one model. However, although important, the regression models do 

not address the primary purpose of the study. The current sample was also fairly 

healthy according to measures of body composition and cardiorespiratory fitness. 

It is possible that the potential for any variable to improve was largely diminished 

by the healthy baseline status of the participants.  

 Second, the study did not include a control group. We had one group of 

participants who completed the HIIT training protocol. A control group that was 

not subjected to HIIT training may have provided more insight into the 

relationship between cvBRS and BP, body composition, and arterial stiffness 

indices. Additionally, a control group that completed a protocol designed to 

mimic the current Canadian physical activity guidelines for adults would provide 

us with the insight as to whether or not HIIT should be recommended as an 

alternative form of exercise. Despite the drastic reduction in training volume and 

time commitment, HIIT is also demanding, as noted by the exhaustion our 

participants displayed following each training session. In a bigger perspective, the 

time advantage of HIIT must be weighed against the training intensity and post-

exercise exhaustion as compared to slower, low-intensity exercise. 

 Third, although the study was a 12-week HIIT protocol, two differing 

volumes were incorporated into the first and second halves of the study. The study 

design followed a similar short-term HIIT protocol (Little et al. 2010). In the first 

half, the participants exercised two times per week with 10 x 1 minute intervals at 

90% of HRmax separated by 75 seconds of active rest. Total volume in the first 

half of the study (PRE-MID) was 240 minutes with 120 minutes of total HIIT 
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work. In the second half, two more intervals were added, with the same intensity 

and frequency. Total volume in the second half of the study (MID-POST) was 

272 minutes, with 144 minutes of total HIIT work. One consideration would be to 

examine the effects of the differing volumes of exercise on measures of ANS 

function, resting BP and HR data, and carotid artery measures. Another 

consideration may be the effect of volume on rest and recovery. Although care 

was taken to ensure that testing dates only occurred 24 – 48 hours following the 

previous HIIT session, autonomic recovery was not monitored, and the additional 

volume could be impeding the collection of this data. 

 Finally, although the main outcome of our study was to assess the change 

in cvBRS with changes in BP, body composition and arterial stiffness, other 

complimentary measures of ANS function should be included such as HRV. Even 

though we found no changes in cvBRS with 12-weeks of HIIT, analysis of HRV 

may provide more insight as to whether or not the lack of change in cvBRS was 

due to the lack of change in the HRV indices. 
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CHAPTER VI: CONCLUSION 

  

 There is no question that traditional endurance exercise training imparts 

many benefits with regards to improving cardiorespiratory fitness, BP, arterial 

health, and ANS function. However, investigating the relationships between 

cardiorespiratory fitness, BP, arterial health, and ANS function with HIIT 

warrants attention. The purpose of this investigation was to determine whether 

there were favourable improvements in ANS function by measuring cvBRS in 

response to a HIIT protocol. This study found that cvBRS remained unchanged 

following 12-weeks of HIIT. Despite a reduction in RRI, it appears that SBP is a 

stronger determinant of cvBRS. However, significant improvements in carotid 

IMT were demonstrated, suggesting that arterial health improves. The current 

study also determined that changes in cvBRS were not related to changes in body 

mass or BMI, SBP, and regional central arterial stiffness (PWV); however, the 

PRE-to-POST change in cvBRS did track well with changes in distensibility, 

compliance and IMT, separately, as well as with baseline compliance suggesting 

that changes in cvBRS may be attributed more to local carotid artery stiffness 

rather than regional central PWV. Furthermore, the findings of the current study 

indicate that changes in cvBRS may be driven by baseline compliance. This 

suggests that baseline arterial stiffness plays an important role in ANS function 

and adaptation in response to HIIT. Overall, 12-weeks of HIIT did not alter 

cvBRS in our sample of young, healthy men. 
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project.  All report forms can be found on the Research Ethics web page at 
http://www.brocku.ca/research/policies-and-forms/research-forms.   
 
In addition, throughout your research, you must report promptly to the REB: 

a) Changes increasing the risk to the participant(s) and/or affecting significantly the conduct of the study; 
b) All adverse and/or unanticipated experiences or events that may have real or potential unfavourable 

implications for participants; 
c) New information that may adversely affect the safety of the participants or the conduct of the study; 
d) Any changes in your source of funding or new funding to a previously unfunded project. 

 
We wish you success with your research. 
 
 
 
Approved:        
  ____________________________ 
  Brian Roy, Chair 
  Bioscience Research Ethics Board  
 
Note: Brock University is accountable for the research carried out in its own jurisdiction or under its auspices 

and may refuse certain research even though the REB has found it ethically acceptable. 
 

If research participants are in the care of a health facility, at a school, or other institution or community 
organization, it is the responsibility of the Principal Investigator to ensure that the ethical guidelines and 
clearance of those facilities or institutions are obtained and filed with the REB prior to the initiation of 
research at that site. 
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SUBJECT SCREENING AND MEDICAL HISTORY QUESTIONNAIRE 
 

 
Name: ___________________________________________         Date: _______________  
 
Age: __________________________________ 
 
Your responses to this questionnaire are confidential.  If you answer “YES” to any of the 
following questions, please give additional details in the space provided and discuss the matter 
with one of the investigators.  You may refuse to answer any of the following questions; 
however, participants may be subject to exclusion from the study based on their responses. 
 

1. Are you currently taking any medication (including aspirin) or have 
you taken any medication in the last two days? 

 

YES NO 

2. Have you taken any medication in the past six months? 
 

YES NO 

3. Is there any medical conditions with which you have been diagnosed 
and are under the care of a physician (e.g. asthma, diabetes, 
hypertension, anorexia)? 

 

YES NO 

4. Have you in the past, or are currently, experiencing any of the 
following: chest pains during exercise, dizziness or light headedness 
with exercise, irregular heart beat, high blood pressure or 
hypertension, high cholesterol, a heart murmur or defect, 
cardiovascular disease, heart problems of any kind, difficulty 
breathing, asthma or bronchitis, pneumonia or tuberculosis, diabetes, 
thyroid problems, other endocrine or hormonal problems, kidney 
stones, blood in your urine, other kidney problems, hernia, testicular 
problems, anaemia, blood clotting problems, other blood-related 
problems, digestive problems, hepatitis/jaundice, HIV/AIDS, severe 
skin problems, oral or dental problems or injuries, eating 
disorder/anorexia/bulimia, cancers or tumours, head injury, 
concussion, mild “bell ringers”, burns or stings, numbness in your 
arms or legs, convulsions, seizures, or epilepsy, neurological disease 
or problems, severe headaches, hearing problems, eye injuries, vision 
problems, attention deficit/hyperactivity disorder, sleeping disorders, 
mental or emotional problems, problems with alcohol or drugs, 
broken bones, stress fractures or hairline cracks, dislocated joints, 
sprained joints, torn ligaments, torn cartilage, muscle/tendon injury, 
arthritis, painful or swollen joints, neck or upper back pain or injury, 
low back pain or injury, or any other significant medical problem? 

 

YES NO 

5. If “yes” to any of the conditions listed in question 4, please describe 
below: 
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6. Have you recently undergone a surgery or operation (within the past 
six months)? 

YES NO 

7. If “yes” to question 6, please describe: 
 
 
 
 
 
 

  

8. Do you have a family history of any of the following: death before 
the age of 50, blood disorders or problems, sudden death during 
physical activity, arthritis, heart problems of any kind, cardiovascular 
disease including any coronary artery surgeries, diabetes, high blood 
pressure or hypertension, high cholesterol, chronic obstructive 
pulmonary disease, another other respiratory-related problems, other 
major medical problems? 

YES NO 

9. If “yes” to question 8, please describe: 
 
 
 
 
 
 

  

10. Do you, or have you in the past, consumed any alcohol on a regular 
basis (i.e. daily, males ≤2 drinks/day, females ≤1 drink/day)? 

 

YES NO 

11. Do you, or have you in the past, smoked on a regular basis (i.e. daily, 
≤ 20 cigarettes/day)? 

 

YES NO 
 
 

12. Are you, or have you in the past, engaged in any extreme diet? YES NO 
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13. Do you, or have you in the past, consumed any nutritional 
supplements (e.g. calcium, multi-vitamin, protein powders) on a 
regular basis (i.e. daily)? 
 

YES NO 
 
 

14. Do you, or have you in the past, engaged in physical activity on a 
regular basis (i.e. 3-5 times per week)? 

 

YES NO 

15. Are you aware of any allergies that include milk and soy ingredients? YES NO 

16. Are you aware of any other allergies, drug reactions, or 
hypersensitivities? 

YES NO 

17. If “yes” to question 16, please list ALL known allergies, drug 
reactions, and/or hypersensitivities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

YES NO 
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INFORMATION	AND	CONSENT	TO	PARTICIPATE	IN	RESEARCH	
	
Title:	Investigating	the	Effects	of	High-Intensity	Interval	Training	on	Baroreflex	Sensitivity	
	
You	are	invited	to	participate	in	a	research	study	being	conducted	by	the	investigators	listed	below.	
Any	participant	wishing	to	participate	in	this	study	is	asked	to	complete	this	consent	form.	It	is	
important	that	you	read	and	understand	the	following	explanation	of	the	proposed	study.	This	form	
outlines	the	purpose	and	testing	procedures	to	be	used	in	this	study.	It	also	describes	your	right	to	
refuse	to	participate	or	withdraw	from	the	study	at	any	time,	the	time	commitment	and	the	potential	
risks	and	benefits,	so	that	you	can	make	an	informed	decision.	For	the	tests,	you	will	have	to	visit	the	
Human	Hemodynamics	Laboratory	(WH22,	Brock	University).	This	study	is	being	conducted	by	
researchers	in	the	Faculty	of	Applied	Health	Sciences.	
	
INVESTIGATORS:	 	 	 DEPARTMENT:	 	 	 	CONTACT:	
Dr.	Deborah	O’Leary	 	 	 FAHS*,	Brock	University	 												 (905)	688-5550	x4339	
Austin	J.	Cameron	 	 	 FAHS,	Brock	University	 											 (905)	688-5550	x4593	
Dr.	Andrea	Josse	 	 	 FAHS,	Brock	University	 	 (905)	688-5550	x3502	
	
*	FAHS	=	Faculty	of	Applied	Health	Sciences	
	
	
	
I.	PURPOSE:	
	
The	aim	of	the	proposed	study	is	to	determine	the	physiological	changes	that	occur	concurrently	
within	the	cardiovascular	and	autonomic	nervous	systems	following	a	high-intensity	exercise	training	
regime	in	young	male	adults.	In	order	to	examine	the	effects	of	high-intensity	interval	training	(HIIT)	
on	neural-vascular	components,	a	cycling	exercise	training	program	will	be	prescribed	with	
physiological	assessments	throughout	the	training.	
	
II.	DESCRIPTION	OF	THE	TESTING	PROCEDURES:	
	
Inclusion/Exclusion	Criteria	
A	“healthy”	participant	is	one	that	is	free	of	cardiovascular	disease	and	does	not	partake	in	unhealthy	
behaviours	such	as	excessive	drinking.	Cardiovascular	exclusion	criteria	include	the	presence	or	
history	of	coronary	artery	disease,	which	is	defined	as	having	at	least	one	of	the	following:	
angiographically	documented	stenosis	≥	50%	in	at	least	one	major	coronary	artery;	prior	history	of	
myocardial	infarction,	percutaneous	coronary	intervention,	or	coronary	artery	bypass	graft	surgery;	
positive	exercise	stress	test	determined	by	a	positive	nuclear	scan,	or	symptoms	of	chest	discomfort	
accompanied	by	electrocardiographic	changes	of	>	1	mm	horizontal	or	down-sloping	ST	segment	
depression.	
	
Further	exclusion	criteria	include	smoking	within	three	months,	non-cardiac	surgical	procedure	within	
two	months,	history	of	New	York	Heart	Association	class	II-IV	symptoms	of	heart	failure	(mild	
shortness	of	breath	and/or	angina	with	slight	limitation	during	ordinary	activity;	marked	limitation	in	
activity	due	to	symptoms;	marked	limitation	in	less-than-ordinary	activities	such	as	walking	short	
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distances;	severe	limitations	and	experiences	symptoms	even	during	rest),	documented	valve	
stenosis,	documented	severe	chronic	obstructive	pulmonary	disease,	symptomatic	peripheral	arterial	
disease,	unstable	angina,	controlled	and	uncontrolled	hypertension	(resting	diastolic	blood	pressure	>	
100	mm	Hg),	controlled	and	uncontrolled	atrial	arrhythmia	or	ventricular	dysrhythmia,	insulin-
requiring	diabetes	mellitus,	and	any	musculoskeletal	abnormality	that	would	limit	exercise	
participation.	Participants	will	also	be	excluded	if	they	have	a	baseline	VO2max	≥	56	mL/kg/min,	as	a	
VO2max	between	56	and	60	mL/kg/min	is	indicative	of	a	well-trained	status.		
	
Exclusion	criteria	also	include	BMI	cutoffs.	According	to	Health	Canada,	the	classifications	of	BMI	are	
as	follows:	
Underweight	 	 	 BMI	<	18.5	kg/m2

	

Normal	Weight	 	 BMI	=	18.5	to	24.9	kg/m2	
Overweight	 	 	 BMI	=	24.9	to	29.9	kg/m2	
Obese	 	 	 	 BMI	>	30	kg/m2	
Participants	will	be	excluded	if	they’re	BMI	is	under	18.5	kg/m2	or	over	29.9	kg/m2.	The	upper	limit	is	
set	to	the	overweight	classification	so	as	to	compensate	for	the	over-estimation	of	BMI.	For	example,	
a	highly	athletic	male	(minimal	fat	mass)	who	is	196	cm	tall	and	99	kg	would	have	a	BMI	of	25.8	
kg/m2,	classifying	him	as	overweight	despite	his	high	lean	mass	status.	
	
If	a	participant	is	allergic/intolerant/sensitive	to	dairy	and/or	soy,	they	will	be	excluded	from	the	
study.	This	is	due	to	the	contents	of	the	meal	replacement	drink	(Ensure)	that	will	be	provided	before	
each	training	session	(see	below).	
	
Inclusion	criteria	include	being	male	between	the	ages	of	18	and	30	who	are	sedentary,	previously	
active,	or	recreationally	active	(VO2max	<	56	mL/kg/min	and	not	currently	undertaking	a	rigorous	
exercise	training	program).		
	
What	is	the	time	commitment?	
If	you	agree	to	participate	in	this	study,	you	will	partake	in	a	total	of	28	sessions	over	3.5	months,	
which	is	approximately	16.3	hours	in	total.	On	your	first	visit	to	the	laboratory,	you	will	be	introduced	
to	the	laboratory	environment	and	data	collection	procedures.	Following	this,	an	investigator	will	take	
you	through	the	consent	process	where	you	will	be	given	an	opportunity	to	ask	questions	before	
deciding	whether	or	not	you	wish	to	participate.	After	which,	a	familiarization	session	will	begin	so	
that	the	participant	understands	the	requirements	of	the	study.	
	
Upon	receipt	of	informed	consent,	you	will	be	scheduled	to	complete	session	2	of	28,	which	includes	
a	food	diary,	body	composition	analysis,	baseline	cardiovascular	variable	measurements	(heart	rate,	
blood	pressure,	pulse	wave	velocity,	carotid	and	aortic	imaging),	and	a	maximal	exercise	test	
(VO2max).	
	
The	next	26	visits	to	the	laboratory	will	include	completing	each	block	of	high-intensity	interval	
training.	Each	block	of	training	spans	six	weeks.	Block	A	consists	of	10x60	second	intervals,	and	block	
B	consists	of	12x60	second	intervals.	At	the	end	of	block	A	(6	weeks),	on	a	day	separate	to	training,	a	
food	diary,	measurements	of	heart	rate,	blood	pressure,	pulse	wave	velocity,	carotid	and	aortic	
imaging	will	be	completed.	This	will	allow	for	sufficient	rest	after	training.	
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Please	note	that	food,	exercise,	and	temperature	may	affect	the	results,	so	we	will	ask	you	not	to	eat	
4	hours	prior	to	exercising	and	testing,	and	not	to	exercise	the	day	of	testing.	Heavy	exercise	and	
caffeine	should	be	avoided	24	hours	prior	to	any	training	session.	A	meal	replacement	drink	will	be	
provided	and	must	be	consumed	at	least	2	hours	prior	to	exercise	or	testing.	The	meal	replacement	
drink	will	be	an	Ensure®	Original	nutrition	shake	in	milk	chocolate,	strawberry,	or	vanilla	flavours.	The	
nutrition	drink	comes	from	Ensure,	Abbott	Nutrition	Canada,	Saint-Laurent,	Québec,	Canada.	One	
bottle	is	8	fluid	ounces	(237	mL),	220	calories,	50	calories	of	which	come	from	fat.	Nutrition	amounts	
per	serving	are	as	follows:	
Fat	 	 	 	 6	g	 	 Sodium	 	 	 190	mg	
		Saturated	Fat		 	 1	g	 	 Potassium	 	 	 390	mg	
		Trans	Fat	 	 	 0	g	 	 Carbohydrate	 	 	 33	g	
		Polyunsaturated	Fat	 	 3	g	 	 		Dietary	Fiber		 	 1	g	
		Monounsaturated	Fat	 2	g	 	 		Sugars	 	 	 15	g	
		Cholesterol	 	 	 5	mg	 	 Protein		 	 	 9	g	
	
Vitamins	and	minerals,	in	amounts	not	specified,	include:	vitamin	A,	vitamin	C,	calcium,	iron,	vitamin	
D,	vitamin	E,	vitamin	K,	thiamin,	riboflavin,	niacin,	vitamin	B6,	folate,	vitamin	B12,	biotin,	pantothenic	
acid,	phosphorus,	iodine,	magnesium,	zinc,	selenium,	copper,	manganese,	chromium,	molybdenum,	
chloride,	and	choline.		
	
Ingredients	include:	water,	corn	maltodextrin,	sugar,	milk	protein	concentrate,	soy	oil,	soy	protein	
isolate,	sucromalt,	cocoa	powder	(processed	with	alkali),	and	canola	oil.	Ingredients	in	less	than	0.5%	
include	the	following:	corn	oil,	magnesium	phosphate,	potassium	citrate,	cellulose	gel,	natural	and	
artificial	flavour,	potassium	chloride,	sodium	citrate,	calcium	phosphate,	calcium	carbonate,	salt,	
choline	chloride,	ascorbic	acid,	cellulose	gum,	monoglycerides,	soy	lecithin,	carrageenan,	potassium	
hydroxide,	liquid	sucralose,	ferric	orthophosphate,	dl-alpha-tocopheryl	acetate,	acesulfame	
potassium,	zinc	sulfate,	niacinamide,	manganese	sulfate,	calcium	pantothenate,	cupric	sulfate,	
vitamin	A	palmitate,	thiamine	chloride	hydrochloride,	pyridoxine	hydrochloride,	riboflavin,	folic	acid,	
chromium	chloride,	biotin,	sodium	molybdate,	sodium	selenate,	potassium	iodide,	cyanocobalamin,	
phylloquinone,	and	vitamin	D3.		
	
There	are	potential	concerns	with	allergies	as	the	drink	does	contain	milk	and	soy	ingredients.	The	
Subject	Screening	and	Medical	History	Questionnaire	will	address	allergy	screening.	
	
For	each	training	and	data	collection	session,	we	will	ask	you	to	wear	athletic	attire.	The	following	
data	collection	procedures	will	be	described	in	greater	detail	below:	
	 	

1. Questionnaire	 	
2. Body	Composition	and	Anthropometry	
3. Heart	Rate	
4. Blood	Pressure	
5. Carotid	Artery	and	Aortic	Ultrasound	
6. Pulse	Wave	Velocity	
7. VO2max	Test	
8. Food	Diary	
9. High-Intensity	Interval	Training	
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1. Questionnaire:	You	will	be	asked	to	complete	a	questionnaire	outlining	your	medical	history	

and	physical	activities.	Please	be	aware	that	the	medical	history	questionnaire	includes	
questions	about	drug	use,	alcohol	use,	and	smoking.	In	all	questionnaires,	you	may	choose	not	
to	answer	any	question;	however,	you	may	be	excluded	from	the	study	if	any	questions	
regarding	current	or	past	cardiovascular	problems	are	not	answered.	

2. Body	Composition	and	Anthropometry:	Body	muscle	and	fat	mass	will	be	measured	while	you	
sit	in	the	BOD	POD	chamber.		The	BOD	POD	is	an	air	displacement	plethysmograph	that	uses	
whole-body	densitometry	to	determine	fat	vs.	lean	mass.	It	is	similar	to	the	idea	of	under-
water	weighing	in	that	it	measures	body	mass	(weight)	and	volume	inside	the	chamber.	BOD	
POD	incorporates	a	built	in	window	on	the	front	of	the	chamber	in	the	event	of	a	
claustrophobic	event	or	for	communication	purposes	as	well	as	a	safety	button	on	the	inside	of	
the	chamber	for	you	to	voluntarily	exit	on	your	own.	During	this	assessment,	you	will	be	asked	
to	relax	and	breathe	normally.	If	you	express	any	anxiety	for	confined	spaces,	body	
composition	can	also	be	measured	using	bioelectrical	impedance	analysis	(BIA)	and	ultrasound	
using	the	BodyMetrix	System.	For	BIA,	a	weak	electrical	current	(800μA,	50kHz)	passes	from	
electrode	plates	that	you	stand	on,	to	electrodes	wands	that	you	hold	in	your	hands.	This	
current	is	very	low	and	one	cannot	feel	it.	There	is	no	discomfort	associated	with	this	
measurement.	The	BodyMetrix	system	uses	ultrasound	to	measure	fat	thickness	at	the	thigh	
and	calculates	body	fat	%	and	weight	distribution.	There	is	no	discomfort	associated	with	this	
measurement.	With	the	BodyMetrix	ultrasound	device,	body	composition	will	be	measured	at	
three	sites:	thigh,	chest,	and	waist.	In	addition,	height,	body	mass,	waist	and	hip	circumference	
will	be	measured.	Height	will	be	measured	using	a	stadiometer	and	body	mass	using	a	
calibrated	scale.	Waist	circumference	will	be	measured	using	a	standard,	retractable,	non-
metallic	tape	measure	placed	around	the	waist	at	the	level	of	the	umbilicus.	Hip	circumference	
will	be	measured	using	the	same	tape	measure	across	the	largest	part	of	the	buttocks	and	
below	the	iliac	crest.	

3. Heart	Rate:	Heart	rate	will	be	measured	using	six	sensors	placed	on	the	skin	of	your	chest.	
These	electrodes	are	used	to	detect	the	electrical	activity	generated	by	the	heart	and	are	not	
used	to	transmit	electrical	signals	into	your	body	from	the	heart	rate	monitor.	Heart	rate	will	
also	be	monitored	during	all	exercise	sessions	using	a	comfortable	chest	strap	and	
corresponding	wristwatch.	

4. Blood	Pressure:	Blood	pressure	will	be	monitored	using	a	non-invasive	method.	After	ten	
minutes	of	quiet	rest,	systolic	and	diastolic	blood	pressure	will	be	measured	manually	using	a	
sphygmomanometer	and	stethoscope	at	the	brachial	artery,	like	at	the	doctor’s	office.	
Following	the	manual	blood	pressure	measurement,	continuous	beat-by-beat	systolic	and	
diastolic	blood	pressure	will	be	collected	non-invasively	using	a	Nexfin,	a	small	inflatable	finger	
cuff	placed	on	the	middle	finger	on	the	left	hand.	This	technique	will	allow	us	to	continuously	
measure	blood	pressure	throughout	the	protocol.	

5. Carotid	Artery	and	Aortic	Ultrasound:	Ultrasound	will	be	performed	with	a	small	transducer	in	
order	to	visualize	the	arteries	of	interest.	This	measurement	requires	a	thin	layer	of	gel	to	be	
applied	to	the	skin.	The	measurement	also	involves	the	use	of	a	pen	like-device	(a	tonometer,	
described	below	in	“Pulse	Wave	Velocity”),	in	order	to	measure	pressure	within	the	artery.	
Both	the	probe	and	tonometer	will	be	pressed	against	the	neck	on	opposite	sides.	It	is	a	non-
invasive	procedure.		

6. Pulse	Wave	Velocity:	This	is	a	measure	of	the	speed	of	pressure	waves	between	two	different	
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points	along	the	blood	vessels.	These	waveforms	are	collected	by	a	technique	called	
“applanation	tonometry”,	where	a	small	pen-like	device,	the	tonometer,	is	placed	on	the	
surface	of	the	skin	at	the	site	of	an	artery.	The	tonometer	detects	pulses	and	converts	them	
into	waveforms.	The	waveforms	are	then	used	to	calculate	pulse	wave	velocity.	Tonometry	
will	be	conducted	at	your	carotid	artery	and	sinus	(neck),	femoral	artery	(groin),	and	radial	
artery	(wrist).	A	pulse	oximeter	will	be	place	on	your	foot	to	measure	dorsalis	pedis	artery	
waveforms.	The	values	obtained	from	these	measurements	will	allow	for	the	calculation	of	
central	and	peripheral	pulse	wave	velocities.	

7. VO2max	Test:	The	VO2max	test	will	take	place	on	a	stationary	cycle	ergometer.	The	test	will	
consist	of	a	5	minute	warm-up	at	100	watts	(W),	after	which	the	workload	will	increase	by	1	W	
every	2	seconds	until	volitional	fatigue	or	until	the	pedal	cadence	drops	below	40	revolutions	
per	minute	(rpm)	or	drops	20	rpm	over	5	seconds.	The	values	obtained	during	this	test	will	be	
used	to	estimate	the	workload	(watts)	for	the	HIIT	sessions.	

8. Food	Diary:	Prior	to	beginning	the	first	session	of	training,	you	will	need	to	record	a	minimum	
of	three	days	of	a	food	diary,	in	detail.	This	will	be	repeated	at	the	end	of	each	block	and	at	the	
end	of	the	study.	In	all,	you	will	have	to	complete	a	pre,	week	6,	and	week	12	(post)	food	
diary.	We	also	ask	that	you	consume	the	same	meal	the	night	before	the	data	collection	
sessions	to	ensure	consistency.	

9. High-Intensity	Interval	Training:		Exercise	training	will	make-up	the	largest	portion	of	the	
study	design.	All	exercise	training	sessions	will	be	performed	on	a	stationary	cycle	ergometer	
and	will	include	a	standardized	3-minute	warm-up	at	100	W	and	a	5-minute	cool	down	at	30	
W,	with	heart	rate	monitoring.	All	exercise-training	sessions	will	be	supervised	by	a	member	of	
the	research	team	who	will	ensure	that	you	are	using	proper	techniques	and	exercising	at	the	
correct	intensities.	The	exercise	training	will	be	divided	into	two	blocks,	each	spanning	six	
weeks,	with	a	frequency	of	two	sessions	per	week.	Therefore,	there	will	be	12	sessions	per	
block,	or	24	training	sessions	for	the	entire	study.	With	completion	of	block	A,	more	intervals	
(bouts)	will	be	added.	Each	interval	will	meet	a	percent	heart	rate	criterion—around	
90%HRmax	and	the	average	HR	for	the	training	session	should	be	90%HRmax.	The	power	
output	at	VO2peak	will	give	us	an	indication	of	the	wattage	settings	during	each	HIIT	session;	
however,	this	will	be	adjusted	to	ensure	that	you	are	exercising	at	90%HRmax.	After	the	final	
session	of	each	block	(weeks	6	and	12),	in-lab	testing	will	occur	on	a	separate	day.	This	is	to	
ensure	sufficient	rest	is	met.	A	breakdown	of	the	time	commitment	is	shown	below:	

	
Time	Commitment	Breakdown	of	Training	Sessions	in	Each	Block	
	
a)	Familiarization	Day	1:	30	minutes	
	 -	Protocol	familiarization	
	 -	Food	diary	
b)	Pre-Training	Data	Collection	Day	2:	1.5	hr	
	 -	Body	composition	analysis	
	 -	Cardiovascular	variable	measurement	
	 -	VO2max	test	
c)	Block	A:	360	min	or	6	hr	=	60	min/week	=	30	min/session	
	 -	3	min	warm-up	at	30	W	
	 -	10x60	sec	bouts	at	100%	PPO	
	 	 -	75	sec	active	rest	at	45	W	between	each	bout	



HIIT & cvBRS  Austin J. Cameron 

110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protocol 1, Version 2, February 2015 
Participant Initials: __________ 
 

6 

	 -	5	min	cool-down	at	30	W	
d)	Block	B:	408	min	or	6.8	hr	=	68	min/week	=	34	min/session	
	 -	3	min	warm-up	at	30	W	
	 -	12x60	sec	bouts	at	100%	PPO	
	 	 -	75	sec	active	rest	at	45	W	between	each	bout	
	 -	5	min	cool-down	at	30	W	
e)	Data	Collection:		weeks	6	and	12	=	3	hr	=	1.5	hr/session	
	 -	Food	diary	
	 -	Body	composition	analysis	
	 -	Cardiovascular	variable	measurement	
	 -	VO2max	test	
	
Time	Commitment	Breakdown	for	Data	Collection	
	
a)	Body	Composition	Analysis:	10	minutes	
	 -	anthropometrics	and/or	BIA/Body	Metrix	=	5	min	
	 -	BOD	POD	analysis	=	5	min	
b)	Vascular	Analysis:	1	hour	
	 -	rest	=	5	min	
	 -	manual	blood	pressure	collection	1	=	10	min	
	 -	baseline	beat-by-beat	heart	rate	and	blood	pressure	=	15	min	
	 -	ultrasonography	=	15	min	
	 -	pulse	wave	velocity	=	5	min	
	 -	manual	blood	pressure	collection	2	=	10	min	
c)	VO2max	test:	15	–	20	minutes	
	 -	warm-up	=	5	min	
	 -	test	=	6	–	7	min	
	 -	cool	down	=	5	min	
	
Total	Time	Commitment:	Approximately	16.3	hours	
	
III.	CONFIDENTIALITY: 
	
Your	participation	will	remain	confidential.	The	personal	data	collected	from	this	investigation	will	be	
kept	secured	on	the	premises	of	Brock	University	in	the	laboratory,	and	will	not	be	accessed	by	
anyone	other	than	the	listed	investigators.	Investigators	will	require	disclosure	of	your	name	and	
contact	information	(phone,	email),	and	therefore	your	participation	is	not	completely	anonymous	
during	the	conduct	of	the	research.	However,	all	participants	will	have	their	names	removed	from	any	
data	and	assigned	a	unique	anonymization	code.	The	master	list	matching	participants	to	the	data	will	
be	password-protected	and	kept	by	Austin	J.	Cameron	(student	PI).	All	electronic	data	will	be	stored	
on	password-protected	computers	and	paper	data	in	a	locked	filing	cabinet.	Following	publication	of	
the	data,	all	personal	identifiers	will	be	confidentially	destroyed,	as	well	data	will	be	destroyed	5	years	
following	publication	(electronic	files	will	be	deleted	and	paper	data	shredded),	the	allotted	time	
required	to	keep	scientific	data	post-publication.	You	should	be	aware	that	the	results	of	this	study	
will	be	made	available	to	scientists	through	publication	in	a	scientific	journal,	but	your	name	and	any	
personal	data	will	not	appear	in	compiling	or	publishing	these	results.	Additionally,	you	will	have	
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access	to	your	own	data	as	well	as	the	group	data	when	it	becomes	available,	if	you	are	interested.	
	
IV.	PARTICIPATION	&	WITHDRAWAL: 
	
You	can	choose	whether	to	participate	in	this	study	or	not.	If	you	are	a	Brock	University	student,	your	
decision	to	participate,	not	participate,	or	withdraw,	will	in	no	way	affect	your	academic	standing	at	
Brock	University.	You	may	also	refuse	to	answer	any	questions	posed	to	you	during	the	study;	
however,	you	may	be	excluded	from	the	study	if	some	questions	are	not	answered	(i.e.	any	
cardiovascular-related	questions	in	the	Subject	Screening	and	Medical	History	Questionnaire).	This	is	
to	ensure	your	safety.	The	investigators	reserve	the	right	to	withdraw	you	from	the	study	if	they	
believe	that	it	is	necessary.	In	the	event	of	a	withdrawal	from	the	study,	compensation	will	still	be	
given	for	any	laboratory	visits	you	are	present	for,	as	described	in	VI.	Remuneration.	As	well,	your	
participation	or	withdrawal	will	not	affect	your	standing	at	Brock	University	either	positively	or	
negatively.	Upon	withdrawal,	all	of	your	associated	data	will	be	erased	from	computers	and	any	paper	
documents	shredded.	If	participants	would	like	to	withdraw,	they	can	notify	any	of	the	investigators	
in	person,	by	email,	or	by	phone.	Contact	information	is	described	in	section	VIII.	Inquiries.	
	
V.	RISKS	AND	BENEFITS:	
	
The	only	foreseeable	risks	involved	in	participation	include:	

a) In	rare	instances,	possible	skin	irritation	may	occur	from	applying	surface	electrodes	and/or	
conducting	gel.	This	can	be	minimized	by	washing	the	skin	and	applying	skin	lotion.	

b) Discomfort	and	tingling	often	occurs	in	the	left	middle	finger	where	beat-by-beat	blood	
pressure	is	taken.	However	this	method	is	safe	and	poses	no	danger	to	the	subject.	Discomfort	
and	tingling	will	subside	within	a	few	minutes	after	the	testing	is	completed.	

c) As	with	all	exercise,	there	is	a	transient	increase	in	the	risk	of	cardiovascular	complications;	
however,	the	risks	associated	with	maximal	exercise	in	a	healthy	population	are	low.	In	a	
sedentary	young	adult	population	without	heart	disease,	the	risk	of	cardiovascular	event	or	
complication	is	on	the	order	of	1	in	400,000	–	800,000	hours	of	exercise1.	Exercise	is	therefore	
considered	very	safe.	Risks	of	muscle	cramping	and	fatigue	in	your	legs	or	buttocks	are	
possible.	These	feelings	should	subside	within	a	few	days.			

d) None	of	the	procedures	are	diagnostic,	however,	if	an	unusually	low	or	high	result	is	attained	
for	any	of	the	measurements,	reflecting	a	possible	health-related	problem,	you	will	be	alerted	
and	advised	to	consult	your	physician.	Only	a	physician	can	make	a	diagnosis.	

e) Due	to	the	nature	of	maximal	graded	exercise	testing	(VO2max	test)	and	HIIT	exercise,	the	
risks	of	nausea	and/or	vomiting	are	increased.	Prior	to	any	exercise	testing,	we	ask	that	you	
not	eat	for	at	least	four	hours	prior	and	that	you	consume	the	Ensure	meal	replacement	drink	
at	least	two	hours	prior	to	testing.	This	will	ensure	that	digestion	is	complete,	hence	reducing	
the	risk	of	nausea	occurring	during	HIIT	training.	As	well,	if	nausea	and/or	vomiting	occurs,	
participants	can	choose	to	continue	a	training	session	at	their	own	discretion	or	re-schedule	
for	a	later	date.	Fluids	will	be	provided	throughout	the	VO2max	test	and	training	sessions	as	
well,	and	snacks	will	be	made	available	at	the	end	of	each	session.		

1Myers	2003.	Exercise	and	cardiovascular	health.	Circulation,	107:e2-e5. 
	
VI.	REMUNERATION:	
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To	compensate	you	for	your	time,	a	$100	gift	card	redeemable	at	the	Pen	Centre	will	be	provided	
upon	completion	of	the	study.	If	you	choose	to	withdraw	early,	you	will	be	compensated	for	your	
time.	A	minimum	of	24	out	of	28	sessions	is	required	for	full	compensation.	For	anything	less,	
compensation	will	be	prorated	to	percentage-based	attendance.	For	example,	if	you	complete	15	
sessions,	you	will	receive	(15/28)*$100	=	$53.	Prorated	compensation	will	be	provided	if	you	
withdraw/are	withdrawn	by	researchers	due	to	medical	reasons.		
	
Participation	will	allow	you	to	become	exposed	to	an	interdisciplinary	exercise	physiology	research	
protocol,	contribute	to	the	advancement	of	science,	and	gain	knowledge	about	the	function	of	your	
own	body.	You	will	also	have	the	rare	opportunity	to	see	two-dimensional	images	of	your	carotid	
artery,	sinus	and	aorta.	All	results	will	be	provided	to	you	in	a	final	report	at	the	completion	of	the	
study,	upon	request.	You	will	not	be	given	information	regarding	your	data	(i.e.	body	fat	percentage,	
pulse	wave	velocity,	etc.)	at	the	time	of	testing,	as	the	data	still	needs	to	be	analyzed.	
	
VII.	RIGHTS	OF	RESEARCH	PARTICIPANTS:	
	
You	will	receive	a	signed	copy	of	this	ethics	form.	You	may	withdraw	your	consent	to	participate	in	
this	study	at	any	time,	and	you	may	also	discontinue	participation	at	any	time	without	penalty.	In	
signing	this	consent	form	or	in	participating	in	this	study	you	are	not	waiving	any	legal	claims	or	
remedies.	This	study	has	been	reviewed	and	received	clearance	from	the	Brock	University	Research	
Ethics	Board	(file	#).	If	you	have	any	pertinent	questions	about	your	rights	as	a	research	participant,	
please	contact	the	Brock	University	Research	Ethics	Officer	(905	688-5550	ext.	3035,	reb@brocku.ca)	
	
VIII.	INQUIRIES:	
	
Please	contact	Dr.	Deborah	O’Leary	(905-688-5550	x4339),	Dr.	Andrea	Josse	(905-688-5550	x3502),	
and/or	Austin	J.	Cameron	(905	688-5550	x4593)	or	email	(ac13kk@brocku.ca)	if	you	have	any	
questions	about	the	study.	
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Investigating	the	effects	of	Low-Volume	High-Intensity	Interval	Training	on	Baroreflex	Sensitivity	

	
CONSENT	STATEMENT	

	
SIGNATURE	OF	RESEARCH	PARTICIPANT	

	
I	HAVE	READ	AND	UNDERSTAND	THE	ABOVE	EXPLANATION	OF	THE	PURPOSE	AND	PROCEDURES	OF	
THE	PROJECT.	I	HAVE	ALSO	RECEIVED	A	SIGNED	COPY	OF	THE	INFORMATION	AND	CONSENT	FORM.	
MY	QUESTIONS	HAVE	BEEN	ANSWERED	TO	MY	SATISFACTION	AND	I	AGREE	TO	PARTICIPATE	IN	
THIS	STUDY.		
	
	
	 	 	 	 	 	 	 	
PRINTED	NAME	OF	PARTICIPANT	 	 															 	
	
	
	 	 	 	 	 	 	 	 	 	 	 	
SIGNATURE	OF	PARTICIPATNT	 	 	 DATE	
	
	
	 	 	 	 	 	
PRINTED	NAME	OF	WITNESS	
	
	
______________________________		 	 _________________________	
SIGNATURE	OF	WITNESS	 	 	 	 DATE	
	
INVESTIGATOR	
	
In	my	judgment	the	participant	is	voluntarily	and	knowingly	giving	informed	consent	and	possesses	
the	legal	capacity	to	give	informed	consent	and	participate	in	this	research	study.	
	
	
	 	 	 	 	 	 	 	 	 	 	 	
SIGNATURE	OF	INVESTIGATOR	 	 	 DATE	
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RECORD OF FOOD INTAKE 

Name: _____________________       Date: ___________________ 

Day of Week (circle):  Mon    Tue    Wed    Thu    Fri    Sat    Sun 

Meal/Time Food consumed Amount (ml, grams, 
servings)

How it was prepared 
(baked, broiled)

Seasonings/
Toppings

Notes
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Date:	_____________________________________																							Time	(am/pm):	_______________	

STUDENT	(check	for	completeness)	

1.	Consent	(signed):	_______	

2.	Medical	Screening	Questionnaire:	_______		

3.	Have	you	had	anything	to	eat	or	drink	in	the	last	4	hours?	

________.	If	yes,	how	long	ago?	___________	

4.	Did	you	participate	in	any	exercise	today?	________.		

	If	yes,	how	long	ago?	_____________	.		

What	type?	______________.	For	how	long?	______________	

5	Did	you	have	any	caffeine	today?	___________.	If	yes,	how	
long	ago?	___________.	What	type?	_____________	

6	Females.	Currently	on	period?	What	day	approx.?________	

	

	

	

	

	

	

	

SECTION	1:	STUDENT	INFORMATION	

Subject	#:		

	_____			_____			_____			_____			_____			_____			_____			_____			_____	

Name:		

Gender:					Male																			Female	 DOB:					___	___		/	___	___		/	___	___	___	___																																										

															(month)						(day)															(year)																																																	

Age:					_________	years	

Age:		____________	months		

Height	(cm):					_____________		

Sitting	Height	(cm):		_____________	

Weight	(kg):					_____________	

Waist	Circumference	(cm)	____________	

Hip	(cm)	____________		

BMI	(kg/m2)				_____________	
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SECTION	3	CONTINUED:	BODY	COMPOSITION	MEASURES	
BODPOD	Measurements	

Examiner:	

Lean	Mass	___________Kg				Fat	Mass	____________Kg				%BF___________			%FFM	_______________	

Body	Volume	______________	L												Body	Density	______________	Kg/L										Thoracic	Gas	Volume	_________________	L	

	 HR	_____________	

SECTION	4:	ARTERIAL	MEASUREMENTS		
Blood	Pressure	-	Manual	

	 Systole	(mmHg)	 Diastole	(mmHg)	

Pre										1	 	 	

																2	 	 	

																3	 	 	

Post									1	 	 	

																2	 	 	

																3	 	 	

Distance	Measurements	

Sternal	notch	to	toe:	_____________	cm	 Sternal	notch	to	carotid:	_____________	cm	

Sternal	notch	to	sinus	_____________	cm	 Sternal	notch	to	femoral	______________	cm	

Sternal	notch	to	radial	artery	_____________	cm	 Radial	artery	to	finger______________	cm	

Sternal	notch	to	umbilicus	_____________	cm	 Umbilicus	to	toe	______________	cm	

Notes	for	Cardiovascular	Component	
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HIIT-BRS	Ramp	VO2max	Protocol:	1W2S	(AUSmx)	 		 		 		
Subject	

ID:	 		 Date:	 		 		
	fiO2	PRE:	 		 Correction	Factor:	 		 		
	fiO2	

POST:	 		
	 	 	 	

Stage	
Time	
(Ramp/Actual)	 Workload	(Ramp/Actual)	 HR	 RPE	

	Warm-Up	 5:00	(0)	 100	 		 		 		

	 	 	 	 	 	1	 6:00	(1:00)	 130	 		 		 		

	 	 	 	 	 	2	 7:00	(2:00)	 160	 		 		 		

	 	 	 	 	 	3	 8:00	(3:00)	 190	 		 		 		

	 	 	 	 	 	4	 9:00	(4:00)	 210	 		 		 		

	 	 	 	 	 	5	 10:00	(5:00)	 240	 		 		 		

	 	 	 	 	 	6	 11:00	(6:00)	 270	 		 		 		

	 	 	 	 	 	7	 12:00	(7:00)	 300	 		 		 		

	 	 	 	 	 	8	 13:00	(8:00)	 330	 		 		 		

	 	 	 	 	 	9	 14:00	(9:00)	 360	 		 		 		

	 	 	 	 	 	10	 15:00	(10:00)	 390	 		 		 		

	 	 	 	 	 	Recovery	
	 	 	 	 	1	 1:00	 50	

	 	 	2	 2:00	 50	
	 	 	3	 3:00	 50	
	 	 	4	 4:00	 50	
	 	 	5	 5:00	 50	
	 	 	

	 	 	 	 	 	*Actual:	write	down	the	time/watts	they	actually	complete.	
	 	 	i.e.	If	the	individual	maxes	out	at	11:02,	the	workload	would	be	271	W.	

	 	**HR	&	RPE	should	be	collected	in	the	last	10	seconds	of	each	minute.	
	 	

	 	 	 	 	 	Notes:	
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HIIT-BRS:	HIIT	Protocol
Subject	ID: Date:

Block: 										A										B Session: ___	of	26

VO2peak	DATA
Previous	VO2max	Date:

PPO:
HRmax:

90%HRmax:

Stage Time	(Interval/Total) Workload	(W) HR	(bpm) RPE
Warm-Up 3:00	(0) 30

1 1:00	(4:00)
Recovery 1:15	(5:15) 45

2 1:00	(6:15)
Recovery 1:15	(7:30) 45

3 1:00	(8:30)
Recovery 1:15	(9:45) 45

4 1:00	(10:45)
Recovery 1:15	(12:00) 45

5 1:00	(13:00)
Recovery 1:15	(14:15) 45

6 1:00	(15:15)
Recovery 1:15	(16:30) 45

7 1:00	(17:30)
Recovery 1:15	(18:45) 45

8 1:00	(19:45)
Recovery 1:15	(21:00) 45

9 1:00	(22:00)
Recovery 1:15	(23:15) 45

10 1:00	(24:15)
Recovery 1:15	(25:30) 45

11 1:00	(26:30)
Recovery 1:15	(27:45) 45

12 1:00	(28:45)
Cool-Down 5:00	(33:45) 30

Notes:
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