
Shortest Path Routing

on the Hypercube with

Faulty Nodes

Mehrdad Arabpour Niasari

Department of Computer Science

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

c©M. A. Niasari, 2016

This thesis is dedicated to my parents

for their love and endless support.

Abstract

Interconnection networks are widely used in parallel computers. There are many

topologies for interconnection networks and the hypercube is one of the most pop-

ular networks. There are a variety of different routing paradigms that need to be

investigated on the hypercube. In this thesis we investigate the shortest path rout-

ing between two nodes on the hypercube when some nodes are faulty and cannot

be used. In this thesis the shortest path between two nodes is considered as the

Hamming distance of them.

Regarding the shortest path problem in a faulty hypercube, some efficient al-

gorithms have been proposed when each processor (node) has limited information

regarding the status of other processors (whether they are faulty or not). There are

also some proposed algorithms for the case where there is no limitation on the data

of each processor but they are not efficient and are exponential in terms of number

of faulty nodes and dimension of the hypercube.

To check whether there is a shortest path between two given nodes in a faulty

hypercube, we propose a polynomial algorithm with time complexity of O(n2m2)

where n is the dimension of the hypercube and m is the number of faulty nodes. Our

algorithm only requires the source node to know the state of all other nodes. The

proposed algorithm first checks whether there is a shortest path from the source node

to the target node and then it can construct it efficiently.

Our idea is based on a so-called ordering and permutation model of paths in the

hypercube. We use a constructive approach to find the path which is a permutation

as well. We then use inclusion-exclusion and dynamic programming techniques to

make our method efficient. We also propose an algorithm for counting all possible

shortest paths in the hypercube.

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Dr. Ke Qiu, for his

continuous support, patience, enthusiasm and motivation throughout this process.

His guidance has helped me in all the time of research and without him this thesis

would not have been completed or written.

Besides my advisor, I would like to thank the members of my supervisory com-

mittee, Dr. S. Houghten, Dr. M. Winter, and Dr. B. Farzad, for their time and

insightful comments.

Last but not the least, I must express my very profound gratitude to my loving

family, my parents and brother for their unconditional and invaluable love and support

and my charming little sister for helping me to be spiritually up. No matter where

they are around the world, they are always in my heart. This accomplishment would

not have been possible without them. Thank you.

M.A

Contents

1 Introduction to Parallel Computers 1

1.1 Introduction . 1

1.2 Shared Memory Parallel Computers 2

1.3 Interconnection Networks . 2

1.3.1 Linear Array and Ring . 5

1.3.2 Complete Graph . 5

1.3.3 Mesh and Torus . 6

1.3.4 Tree . 6

1.3.5 Hypercube . 6

1.3.6 Routing Paradigms . 9

1.3.7 Variants . 10

1.4 Organization of the Thesis . 11

2 Literature Review 12

2.1 Introduction . 12

2.2 Importance of Routing Paradigms . 12

2.3 Node-disjoint Shortest Path . 13

2.4 Shortest Path Between Two Nodes in Faulty Hypercube 15

2.5 Safe and Unsafe Nodes Method . 16

2.6 Sufficient Conditions . 17

2.7 Indentification Algorithm . 18

3 Proposed Algorithm 20

3.1 Introduction . 20

3.2 Ordering Model of Shortest Path in Presence of Faulty Nodes 20

3.2.1 Naive Approach . 22

3.3 The Proposed Polynomial Algorithm 23

3.3.1 Big Picture . 23

iv

3.3.2 Counting Valid Permuations 24

3.3.3 Creating DAG of sets . 28

3.3.4 Dynamic Programming on DAG 30

3.3.5 Efficient Inclusion-exclusion Counting 32

3.3.6 Proposed Algorithm . 34

3.3.7 Performance . 34

3.3.8 Performance Optimization . 35

3.3.9 Counting All Possible Shortest Paths 37

3.3.10 Examples . 37

4 Conclusion 48

Bibliography 50

List of Tables

3.1 DP table of Example 3.10, P = [1], total = 4 39

3.2 DP table of Example 3.10, P = [1, 2], total = 0 41

3.3 DP table of Example 3.10, P = [1, 3], total = 2 42

3.4 DP table of Example 3.10, P = [1, 3, 2], total = 0 42

3.5 DP table of Example 3.10, P = [1, 3, 4], total = 1 43

3.6 DP table of Example 3.10, P = [1, 3, 4, 5], total = 1 43

3.7 DP table of Example 3.10, P = [1, 3, 4, 5, 2], total = 1 43

3.8 DP table of Example 3.11, P = [1], total = 0 45

3.9 DP table of Example 3.11, P = [2], total = 0 46

3.10 DP table of Example 3.11, P = [3], total = 0 46

3.11 DP table of Example 3.11, P = [4], total = 0 46

3.12 DP table of Example 3.11, P = [5], total = 0 47

List of Figures

1.1 A shared memory parallel computer 2

1.2 Interconnection network . 3

1.3 Linear array with 6 nodes . 5

1.4 Complete network with 5 nodes . 5

1.5 A mesh of size 3× 4 . 6

1.6 Tree with 4 levels and 15 nodes . 7

1.7 Hypercubes of dimension 1, 2 and 3 7

1.8 A 4-cube . 8

1.9 A decomposed 4-cube into two 3-cubes 9

1.10 3-dimensional folded-cube . 10

1.11 Augmented cubes of dimension 1, 2 and 3 11

2.1 white: non-faulty nodes, black: faulty-nodes, grey: unsafe nodes . . . 16

3.1 The path of Example 3.2 in a 4-cube 21

3.2 4-cube of Example 3.3 . 23

3.3 A solution for the Example 3.4 . 26

3.4 DAG of Example 3.7 . 29

3.5 5-cube of Example 3.10 . 38

3.6 DAG of Example 3.10 . 38

3.7 The solution of Example 3.10 that is found by the algorithm is depicted

in black . 44

3.8 5-cube of Example 3.11 . 45

vii

Chapter 1

Introduction to Parallel Computers

1.1 Introduction

Computers can be categorized in two major types based on the number of processors

they use. Computers with a single processor are called sequential computers and the

ones with more than one processor are considered as parallel computers.

In sequential computers, a program is defined as a sequence of instructions which

tells the processor how and in which order to solve a certain problem. In this ar-

chitecture there are five main units, namely: input, control, memory, processor and

output units. Briefly, the control unit obtains an instruction from the memory unit

and passes it to the processor for doing a certain arithmetic or logical operation. The

processor is also connected to input and output units to be able to communicate with

the outside world. Also the processor has a local memory to perform its computations.

In parallel computers, by contrast, there is more than one processor and by break-

ing the input problem into smaller subproblems, each processor is assigned to solve

one of them. The processors may also communicate with each other to exchange the

partial result to obtain the final answer of the original problem.

There are many different classifications of parallel computers. The one that we

discuss here is based on their communication medium, whether it is a shared memory

or an interconnection network. In this chapter we first go over a general classification

of computer architectures. Then we introduce two main computational models, shared

memory and interconnection networks. We focus more on different instances and

properties of the latter network since in this thesis we propose an algorithm for one

important interconnection network, the hypercube. We also review two variants of

the hypercube which can be a part of future work on the proposed algorithm.

1

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 2

Figure 1.1: A shared memory parallel computer

1.2 Shared Memory Parallel Computers

In shared memory parallel computers, as shown in Figure 1.1, multiple processors

operate independently but share a single and common memory. They communicate

to each other through the shared resource and every change of one processor is visible

to all other processors. This model is also known as Parallel Random Access Machine

(PRAM) since the machine is able to have access to any unit of data randomly.

PRAM computers are classified into four submodels based on the way the proces-

sors gain access to the shared memory.

• Exclusive Read, Exclusive Write (EREW): in which no two processors

should have access to the same location of shared memory at the same time.

• Exclusive Read, Concurrent Write (ERCW): in which multiple processors

can write to but not read from the same location of memory at the same time.

• Concurrent Read, Exclusive Write (CREW): in which multiple processors

can read from but not write to the same location of memory simultaneously.

• Concurrent Read, Concurrent Write (CRCW): in which multiple pro-

cessors can either write to or read from the same location.

1.3 Interconnection Networks

Interconnection networks are another architecture for parallel computers that is gen-

erally designed for fast and reliable communication among the processors [11]. Despite

shared memory architecture, there is no shared memory involved in interconnection

networks and each processor has its own dedicated memory. In order for processors to

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 3

Figure 1.2: Interconnection network

communicate with each other there are different topologies that indicate in which way

there are links between processors. Therefore, communication between processors is

done by message passing. Also the links can be one way or two ways.

The entire architecture can be modeled with a graph G = (V,E) in which V is

a set of nodes (each processor is a node) and E is the set of links, i.e. E ⊆ V × V .

Thus, we will use some standard terminologies of graph theory in this thesis. Also

the terms “processor” and “node” and “vertex”, “edge” and “link”, “interconnection

network” and “graph” will be used interchangeably. Before discussing some important

and well-known topologies, we start with reviewing definitions of some graph theory

terminologies that we will use in the rest of the thesis.

Definition 1. A path is a sequence of distinct vertices v1, v2, . . . , vk such that ∀i ∈
{1, 2, . . . , k− 1}, vi and vi+1 are adjacent, i.e. (vi, vi+1) ∈ E. A cycle is a closed path,

i.e. v1 = vk.

Definition 2. The distance between two nodes of graph is defined as the number of

edges connecting them in a shortest path. The diameter of graph is defined as the

maximum pairwise distance between any of its vertices.

Definition 3. A directed acyclic graph (DAG) is a graph in which its edges are

directed and the graph has no cycle.

Definition 4. An undirected graph is called a tree, if for every two vertices there is

exactly one path connecting them. A rooted tree is an acyclic connected graph (i.e.

all nodes are connected) with one node considered as the root of the tree. A tree

can also be defined recursively as follows: a single node is a tree. If T1, T2, . . . , Tk

are disjoint trees with roots t1, t2, . . . , tk, a graph that is formed by connecting a new

vertex r to all roots ri is a tree with root r. The roots t1, t2, . . . , tk are called children

of r and r is called the parent of ri’s.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 4

Definition 5. A rooted tree is called a binary tree if each node of the tree has at

most two children.

Definition 6. Graph H is isomorphic to graph G if there is a bijection f : V (G)→
V (H) such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). An automorphism

of graph G is defined as an isomorphism of G into G.

Definition 7. A graph is considered as node-symmetric (edge-symmetric) if for every

pair of u, v ∈ V (G) (e, f ∈ E) there is an automorphism that maps u to v (e to f).

The latter definition makes it possible to look at the graph from any node and get

exactly the same graph. Being symmetric is considered an important characteristic

of a network since designing algorithms for routing and broadcasting is easier due

to the same accessibility between the processors. For example, for a node-symmetric

network, we can propose an algorithm based on a specific node and then it can be

easily generalized for any other nodes. We have leveraged the symmetry property of

the hypercube in our proposed method which will be discussed in detail.

There are some important metrics about interconnection networks that determine

its performance and practical usability in real life applications. Some of these metrics

are as follows:

• What is the longest shortest path in the network among all pairs of processors?

In other words, in the worst case how long does it take for two processors to

communicate with each other?

• How many neighbours does each processor have?

• How should a message communicate between two arbitrary processors?

• Is a specific processor able to communicate with a set of other processors via

node-disjoint paths?

• If there are some nodes which are not accessible (faulty nodes) how flexible is

the network for processors to continue communicating?

Since different parallel systems can have different usages, there are many topolo-

gies to cover each factor better than others. We review some well-known and impor-

tant proposed topologies and their properties. For the remainder of the thesis, we

use N as the number of processors and M as the number of links in each topology.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 5

Figure 1.3: Linear array with 6 nodes

Figure 1.4: Complete network with 5 nodes

1.3.1 Linear Array and Ring

In a linear array, processors simply form a chain where each processor has two neigh-

bours except for the first and last one, i.e. the corresponding graph has N vertices

numbered from 1 to N and (vi, vi+1), (vi+1, vi) ∈ E for each 1 ≤ i < N − 1. Figure

1.3 shows a linear array of size 6. The major advantage of this simple network is

ease of implementation. The diameter is N − 1 that is rather long for large N . If

the first and last nodes are connected to each other we will have a ring network. The

main reason of having such a network is to reduce the diameter to bN/2c compared

to the linear array. The routing algorithms in these architectures are easy but the

average distance between nodes grows linearly with N which is not desirable in large

networks.

1.3.2 Complete Graph

In the extreme case each processor can be directly connected to all other processors,

i.e. E = V × V . In this case, the diameter of the graph becomes 1. This is called

a complete network and is the most dense network with the maximum possible links(
N
2

)
. Figure 1.4 gives a complete graph of five nodes K5. Clearly, it is impractical to

build a complete network for large N .

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 6

Figure 1.5: A mesh of size 3× 4

1.3.3 Mesh and Torus

The mesh topology is an m × n grid with m rows and n columns. Each processor

(except for the ones on the boundary of the grid) is connected to four other processors

(top, left, right and bottom of its position in the grid). In the corresponding graph,

nodes are numbered as a grid, i.e. vi,j and it is connected to vi+1,j, vi−1,j, vi,j+1, vi,j−1

if they exist (indices are within the range). It can be shown easily that the diameter

of this network is O(m+n) and also is a non-symmetric network. Since this topology

is easy to lay out, it has been used widely in multiprocessor systems.

A torus network is similar to mesh with some extra edges that connect the first

and last nodes of each row and each column to each other. This makes boundary

nodes to have the same characteristics as internal nodes. Mesh and torus can also be

generalized to higher dimensions. Figure 1.5 shows a mesh of size 3× 4.

1.3.4 Tree

This network is a complete binary tree where each processor except for the root node

and leaf nodes, is connected to its parent and two children and each level of tree is

completely filled and in the last level all nodes are in the left side. Therefore, for

a binary tree with d levels, there are 2d − 1 nodes. In other words, there would be

dlog2Ne levels which is asymptotically equal to the diameter. A tree with 4 levels is

shown in Figure 1.6.

1.3.5 Hypercube

Since the main focus on this thesis is on the hypercube, we discuss its important and

related characteristics in detail.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 7

Figure 1.6: Tree with 4 levels and 15 nodes

Figure 1.7: Hypercubes of dimension 1, 2 and 3

Definition

An n−dimensional hypercube, also called n−cube or Qn, has 2n nodes that are

numbered from 0 to 2n − 1 and labeled by the binary representation of their num-

bers. There is an edge between two nodes if and only if the binary representation

of their numbers (i.e. their labels) differ in exactly one bit. More formally node

u = u0u1 . . . ui−1uiui+1 . . . un−1 is connected to v = u0u1 . . . ui−1uiui+1 . . . un−1 for all

0 ≤ i ≤ n − 1 (0 = 1 and 1 = 0). The examples of hypercubes of size 1, 2 and 3

are shown in Figure 1.7. The hypercube is considered as a highly concurrent loosely

coupled multiprocessor based topology due to its properties.

Symmetric Structure

The hypercube is node and edge symmetric. This implies that for routing and some

other algorithms, we can assume that the source node is 0n. For instance, consider

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 8

Figure 1.8: A 4-cube

the problem of finding shortest disjoint paths from given node s to a set of nodes

t1, t2, . . . , tk. We can safely assume that s = 0n and present our algorithm. This

is because all nodes are the same and we can relabel nodes (by an automorphism

bijection) of the original hypercube in order to get a new hypercube such that given

s is 0n.

Recursive Structure

One of the most interesting and important properties of the hypercube is that it

can be constructed recursively from cubes with lower dimensions. More precisely,

an n−cube can be decomposed based on the value of the leading bit of its labels.

Therefore, one subgraph will have all nodes whose leading bit is 0, and the other

subgraph would have the remaining nodes, the ones with the leading bit of 1. The

two subgraphs are such that each node of the first one is connected to one node of

the other one. If we remove those interconnecting edges, we get two disjoint cubes

that are isomorphic to (n − 1)−cubes. This is illustrated in Figure 1.9 and Figure

1.8. The decomposition can be done based on any of the n bits, not necessarily on

leading bit. Therefore, there are n different ways of decomposing an n−cube into two

(n− 1)−cubes.

This recursive structure makes it possible to run some recursive algorithms on

hypercubes, such as divide-and-conquer or dynamic programming.

Shortest Path and Diameter

The Hamming distance of two nodes in Qn is defined as the number of positions

in their binary representations which are different. More formally, consider u =

u0u1 . . . un−1 and v = v0v1 . . . vn−1, the Hamming distance will be H(u, v) = |{i|ui 6=

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 9

Figure 1.9: A decomposed 4-cube into two 3-cubes

vi}|. For instance, in Q4 we have H(6, 11) = H(0110, 1011) = |{0, 1, 3}| = 3. The

Hamming distance makes it easier to discuss about paths in the hypercube since two

nodes are connected if their Hamming distance is 1. In Qn, the shortest path between

two nodes u and v is equal to H(u, v). The approach is simply moving across the

binary sequence of node v from left to right and flipping each bit that is different

in the same position of u. Therefore, the total number of steps will be the same as

H(u, v).

The diameter of Qn is n. It is simply because the maximum value of the Hamming

distance among all pairs is at most n. Thus the longest shortest path or the diameter

is n. Also note that since N = 2n, Qn has a logarithmic diameter which is an

important property.

1.3.6 Routing Paradigms

There are many routing paradigms in the hypercube. In this thesis, our focus is on

the shortest path paradigms. For example, given two nodes, how to find a shortest

path between them? How many shortest paths exist in total? If the input is one node

as the source node and a set of other nodes as the destination, how should we find the

shortest path from source to all other nodes such that no two paths share a common

node except the source (which is called disjoint paths)? Under which conditions do

those shortest paths exist? What if some nodes become faulty and cannot be used,

how can we check whether shortest paths exists between nodes and how to find them

if exist?

This thesis propose an efficient algorithm to check whether there are disjoint

shortest paths between one source node and a set of other nodes in the hypercube.

We will define the problem and investigate it with details in Chapter 2 and Chapter

3.

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 10

Figure 1.10: 3-dimensional folded-cube

1.3.7 Variants

Many cube-like networks have been proposed to have a better efficiency than hyper-

cube in different aspects.

The folded-cube proposed by [8] is obtained by adding extra edges to the standard

hypercube. It defines an edge from each node to the complement of its binary rep-

resentation in the hypercube. New optimal routing algorithms have been developed

for this cube-like network which are remarkably more efficient than the conventional

hypercube [8] . The diameter is also reduced to dn/2e.
Another interesting variance similar to the hypercube is called the augmented cube

[6]. Augmented cube is also a node-symmetric cube and has diameter dn/2e. The

augmented cube has been defined recursively as follows:

Definition 8. The augmented cube AQn of dimension n has 2n vertices, each labeled

by an n-bit binary string a0a1 . . . an−1. We define AQ1 = K2 (a complete graph of

size 2). For n ≥ 2, AQn is obtained by taking two copies of the augmented cube

AQn−1, denoted by AQ0
n−1 and AQ1

n−1 , and adding 2× 2n−1 edges between the two

as follows:

Let:

V (AQ0
n−1) = {0a1a2 . . . an−1 : ai = 0 or 1} and

V (AQ1
n−1) = {1b1b2 . . . bn−1 : bi = 0 or 1}

A vertex A = 0a1a2 . . . an−1 of AQ0
n−1 is joined to a vertex B = 1b1b2 . . . bn−1 of

AQ1
n−1 iff for every i, 1 ≤ i ≤ n− 1, either

(i) ai = bi; in this case, AB is called a hypercube edge, or

(ii) ai = bi; in this case, AB is called a complement edge [6].

There are many other cube-like networks such as the exchanged hypercube [15],

the twisted cube [17], the Fibonacci cube [10], cube connected cycles [16], dual cube

[14] etc. We defined the folded-cube and augmented cube since we believe due to

CHAPTER 1. INTRODUCTION TO PARALLEL COMPUTERS 11

Figure 1.11: Augmented cubes of dimension 1, 2 and 3

their specific similarity with the hypercube, the proposed algorithm in this thesis can

be examined on them as future work.

1.4 Organization of the Thesis

We discussed some important routing paradigms that need to be examined on every

interconnection networks. We then focused on definition of the hypercube as an

important and popular interconnection network and reviewed its properties. In this

thesis, we examine the problem of finding the shortest path between two given nodes

in the hypercube when some nodes are faulty nodes and cannot be used. Therefore,

in Chapter 2 we review previous results on some sufficient conditions and algorithms

for the problem. In Chapter 3 we propose our efficient algorithm and its proof. In

Chapter 4 we talk about future work that can be done on the proposed algorithm.

Chapter 2

Literature Review

2.1 Introduction

The proposed algorithm in this thesis is about the problem of determining the exis-

tence of shortest path between two given nodes in the presence of some blocking nodes

in a hypercube and finding if such a path exists. Note that as mentioned in Chapter 1,

the length of a shortest path between two nodes u and v in the hypercube is equal to

their Hamming distance, H(u, v). We define the problem more precisely in the next

chapter. In this chapter, we review some studies and proposed algorithms related to

the same shortest path problem and similar routing paradigms in the hypercube.

2.2 Importance of Routing Paradigms

In multiprocessor systems, processors should be able to exchange data with each

other via the links. This can be more challenging and problematic since there is no

shared memory and data should travel along a path node by node. By definition, the

length of a path is simply the number of edges on the path. There are many routing

paradigms involved here, such as:

• How to find a (shortest) path between any two nodes?

• Assume two sets of nodes need to communicate at the same time, are there

node-disjoint paths between the two sets? How to find them?

• If some processors are not working, how to find a (shortest) path between the

two nodes without using those faulty nodes?

12

CHAPTER 2. LITERATURE REVIEW 13

• How to find disjoint paths between two sets of nodes such that the summation

of the lengths of the paths are shortest?

We review some of the theorems and algorithms that have been proposed for

routing paradigms on the hypercube in the following sections.

2.3 Node-disjoint Shortest Path

In Qn, assume v, as a source node and v1, v2, . . . , vs any other nodes, necessarily

distinct, as target nodes with s ≤ n. The problem of finding necessary and sufficient

conditions under which there are internally node-disjoint shortest paths from v to

all other v1, v2, . . . , vs has been studied by Gao, Qiu, et al [9]. They proposed a

necessary and sufficient condition using Hall’s matching theorem. They introduced

a modeling called disjoint ordering that is the basis of their algorithm. Since the

proposed method of this thesis is also inspired by disjoint ordering, we review the

proposed conditions and modeling in detail.

Mathematical definition of disjoint ordering as discussed in [9] is as follows:

Definition 9. A permutation of the elements of a finite set is called an ordering. Let

X and Y be two sets ordered as OX = (x1, x2, . . . , xa) and OY = (y1, y2, . . . , yb), we

say that OX and OY are disjoint if

{x1, x2, . . . , xi} 6= {y1, y2, . . . , yi}

for 1 ≤ i ≤ min(|X|, |Y |) unless i = |X| = |Y |.

For instance, if X = Y = {1, 2, 3, 4} then OX = (1, 3, 2, 4) and OY = (2, 3, 4, 1)

are disjoint while OX = (2, 3, 1, 4) and OY = (1, 3, 2, 4) are not, since the set of the

first three elements are equal, i.e. {1, 3, 2} = {2, 3, 1}.
The mentioned node-disjoint shortest paths problem can be modeled as a disjoint

ordering problem. Before reviewing their modeling, we discuss how paths in the

hypercube can be represented using sets and orderings.

As discussed in Chapter 1, the length of a shortest path between two nodes u and

v in the hypercube is equal to H(u, v). Also for constructing the shortest path, all

we need is to flip the bits in the binary representation of u which are different from

the binary representation of v. This can also be modeled as sets and ordering. If we

make a set out of all bits that need to be changed, then any ordering of the set is a

different shortest path. For instance, let u = 01100 and v = 10101 two nodes in Q5.

CHAPTER 2. LITERATURE REVIEW 14

Assume bits are numbered from left to right, starting with one. Therefore we have

to flip bits 1, 2, 5 in any arbitrary order to get the shortest path from u to v. Let

X = {1, 2, 5} the set of these bits. Any ordering of set X gets a different shortest

path. For example O1 = (2, 5, 1) gets the path < 01100 − 00100 − 00101 − 10101 >

or O2 = (1, 5, 2) is equivalent to the path < 01100− 11100− 11101− 10101 >.

As system of distinct representative (SDR) and Hall’s theorem have been used in

the proposed condition in [9], we review them here.

Definition 10. Let (A1, A2, . . . , Am) be a collection of subsets of a setA = {a1, a2, . . . , an},
m ≤ n. An ordered set of distinct elements [ai1, ai2, . . . , aim] is called a system of rep-

resentatives (SDR) if aij ∈ Aj, for 1 ≤ j ≤ m.

In other words, we are looking for one distinct element in each set as a represen-

tative. Clearly, it is not always possible to find a SDR for some sets. Hall’s theorem,

also known as Hall’s marriage condition, gives necessary and sufficient condition for

a collection of sets to have a SDR.

Theorem 2.1. (Hall’s Theorem) A collection of sets A1, A2, . . . , An has a SDR if

and only if for every k ≥ 1, and every set {i1, i2, . . . , ik}, |
k⋃

j=1

Aij | ≥ k.

For instance, let A = {1, 2, 3, 4}, A1 = {1, 2, 4}, A2 = {1, 2}, A3 = {2, 4}, A4 =

{2, 3, 4}. One possible SDR can be [2, 1, 4, 3]. If we change A4 to A4 = {1, 4} there

will be no SDR. The reason based on Hall’s theorem is |A1 ∪ A2 ∪ A3 ∪A4| = 3 6≥ 4.

Now the following theorem by [9] shows that for a collection of sets, the existence

of SDR and disjoint ordering are equivalent.

Theorem 2.2. For any collection of nonempty finite sets X1, X2, . . . , Xs, in which

all singletons are distinct, there is a disjoint ordering if and only if a SDR exists for

the collection.

Finally, the following theorem, gives the necessary and sufficient condition for

node-disjoint shortest paths to exist in a hypercube.

Theorem 2.3. Let v be a source node and v1, v2, . . . , vs any other s ≤ n nodes on

Qn, necessarily distinct. For 1 ≤ s ≤ n, let Xi denote the set of coordinate positions

where v and vi differ. A necessary and sufficient condition for there to be internally

node-disjoint shortest paths from the source node v to v1, v2, . . . , vs is when there exists

a pairwise disjoint ordering for X1, X2, . . . , Xs.

CHAPTER 2. LITERATURE REVIEW 15

The complete proof is presented in [9]. Briefly, as we reviewed, each ordering

is a shortest path, and based on the definition, when two orderings are disjoint, it

means they are node-disjoint paths. The authors also proposed an algorithm for

constructing the path, i.e. pairwise disjoint ordering for v1, v2, . . . , vs with O(sn3)

time complexity. The algorithm is constructive based on induction. Briefly, it first

reorders Xi’s in ascending order by their size. Then it assigns to O1 an arbitrary

permutation of X1. At each step, it constructs the ordering of Xk called Ok such that

it meets all conditions mentioned in definition 9. The construction is either by adding

one element to Ok or by reordering the previous orderings such that the current Ok is

disjoint with any previous ordering. In this way, when we construct the final Os we

are sure all orderings are pairwise disjoint. The running time has since been improved

in [2] to O(n3).

There is also some research on conditions for the existence of disjoint paths which

are not necessarily shortest in the hypercube. For example, in [9] it is shown that

there exist n disjoint paths from a given source node in an n-cube such that all paths

have lengths at most no more than n+ 1.

In the following sections, we discuss research around the problem of finding short-

est path in the presence of blocking nodes.

2.4 Shortest Path Between Two Nodes in Faulty

Hypercube

Since in practical applications hypercube networks usually consist of many processors,

it is likely for the system to face failed component. Therefore, one of the most

important paradigms in the hypercube is to design routing algorithms which tolerate

faulty processors, also called faulty or blocking nodes.

In this thesis we only focus on one routing paradigm in faulty hypercubes, finding

the shortest path between two given nodes if it exists. Let the Hamming distance

of the two given nodes be r. Therefore, there are r! different shortest paths where

only some of them are using non-blocking nodes. Since checking all r! is very time

consuming we need to find more efficient routing algorithms.

This problem has been studied in two different perspectives based on the amount of

information known to each individual node. In the first type, which can be considered

as more theoretical, each node is aware of the current situation of all other nodes,

i.e. each node knows the set of blocking nodes before sending its data. In the second

CHAPTER 2. LITERATURE REVIEW 16

Figure 2.1: white: non-faulty nodes, black: faulty-nodes, grey: unsafe nodes

type, which is more natural, each node stores the information of its neighbours within

a range. We first review some work done in the second type. We then discuss the

first type studies, including our proposed algorithm.

2.5 Safe and Unsafe Nodes Method

A variety of routing algorithms have been proposed based on the idea of safe and

unsafe nodes first introduced by Chiu and Wu [5]. Since these algorithms aim to

solve the problem with limited amount of information in each node, the concept of

safe and unsafe nodes helps to identify fault-free nodes that may cause data passing

possible in a faulty hypercube. We review some of the proposed algorithms based

on safe and unsafe nodes. In the following definition, fault-free nodes refer to nodes

which are not originally in the set of faulty nodes.

Definition 11. A fault-free node is defined as an unsafe node if it has either two or

more faulty nearest neighbours, or three or more faulty or unsafe nearest neighbours.[5]

A non-faulty node which is not unsafe is called a safe node. In [5] an algorithm

is proposed to identify unsafe nodes in recursive manner. Briefly, at each iteration

each node sends its current state to its neighbours and gets their states and updates

its status as a safe or an unsafe node. As an example, a 4-cube with some faulty

and unsafe nodes has been shown in Figure 2.1. The more unsafe nodes exist in the

system, the faster the algorithm identifies all unsafe nodes.

In the following theorem, a feasible path refers to a path that traverses through

no faulty nodes.

Theorem 2.4. In a faulty hypercube, if node A is a safe node, for any non-faulty node

CHAPTER 2. LITERATURE REVIEW 17

B, there always exists a feasible minimum path of length equal to H(A,B) between A

and B. [5]

Kaneko and Ito [12] extended this approach and defined another notion of fully

reachable node. Based on their definition a fully reachable node is a node which can

reach all non-faulty nodes which have Hamming distance l from the node via paths of

length l. There are many details and definitions in their approach which are beyond

this thesis. Their approach is notable since it has a better performance compared to

the one proposed by Chie and Wu [5].

2.6 Sufficient Conditions

There is some research that gives sufficient conditions for the shortest path between

two nodes in a hypercube to exist in the presence of faulty processors, also referred to

as blocking nodes. As mentioned in Chapter 1, since the hypercube is node and edge

symmetric and has a recursive structure, we can safely assume that the two nodes

are s = 0n and t = 1n as source and target nodes, respectively. For example, Assume

two given nodes are s = 01001 and t = 10011 in a 5-cube. Since third and fifth bits

are the same, we just need to change the first, second and forth bits. Therefore, we

can solve the problem for a 3-cube from s = 010 to t = 101 and then by relabeling

the nodes it will change to s = 000 and t = 111.

The following theorem is pointed out in [5] which can be applied when the number

of blocking nodes is less than n.

Theorem 2.5. In Qn, n ≥ 2, if the number of faulty nodes is less than n, then there

exists a shortest path from s to t that does not intersect any of the blocking nodes.

This theorem can be proven using induction on n. The next theorem proposed by

Qiu, Noroozi, et al [3] is more generalized than the previous one and is for the case

when the number of blocking nodes is less than 2(n− 1) with two obvious conditions.

Theorem 2.6. In Qn, if the number of blocking nodes (that are represented by bi’s)

is less than 2(n− 1), there exists a shortest path from s = 0n to t = 1n that does not

intersect any of the blocking nodes if for any subset of size n of the blocking nodes,

these two conditions hold

(a) {b1, b2, · · · , bn} 6= {011...11, 101...11, · · · , 111...10} and

(b) {b1, b2, · · · , bn} 6= {00...001, 00...010, · · · , 10...000},
i.e., at least one neighbour of s is not a blocking node and at least one neighbour of t

is not a blocking node.

CHAPTER 2. LITERATURE REVIEW 18

Note that clearly the shortest path can exist even when the number of blocking

nodes is greater than 2(n− 1) and Theorem 2.6 is only a sufficient condition. In the

next section we review another routing algorithm in the presence of faulty nodes in

the hypercube.

2.7 Indentification Algorithm

Qiu, Noroozi, et al [3] studied the problem of shortest path between two nodes in a

faulty hypercube and proposed a method called identification algorithm. The pro-

posed algorithm is based on finding non-blocking nodes that are not reachable via

source node. In other words, there are some nodes which are not in the given set of

blocking nodes, but they are also not reachable from source node, called dead end

node in the paper. At the end of the algorithm if the target node, source node and

all neighbours of the source node are not dead end nodes, it implies that a shortest

path exists from source to target. For convenience, here 1n is assumed as the source

node and 0n as the target node. More formally:

Theorem 2.7. In Qn with m blocking nodes, 1 ≤ m ≤ 2n − (n + 1), there exists

a shortest path from s = 1n to t = 0n that does not intersect any of the blocking

nodes if and only if after performing the identification algorithm, at least one of the

0n neighbours is a non-blocking node (neither original blocking node nor dead end

node). [3]

The identification algorithm is based on the fact that some blocking nodes with

the same Hamming weight, say h, (i.e. number of bits that are 1 in the binary

representation) can block all the paths of some nodes with Hamming weight h − 1.

This makes some new blocking nodes or dead end nodes. More precisely, it has

been proven that if bit-wise AND operation of two blocking nodes (including already

identified dead end nodes) with the Hamming weight h results in a node with the

Hamming weight h−1, the new node is a dead end node and will be added to the set

of blocking nodes. For instance, in Q5 let b1 = 10110 and b2 = 11010 be two blocking

nodes whose Hamming weight is 3. Since v = (b1 ∧ b2) = 10010 has Hamming weight

2 it will be unreachable from the target node.

The algorithm starts by performing bit-wise AND operation on every pair of

blocking nodes with Hamming weight n− 1. There are possibly
(
h(n−1)

2

)
pairs, where

h(n−1) is the number of blocking nodes with Hamming weight of n−1. If the result

of each AND operation is a node with Hamming weight of n − 2 it will be added

CHAPTER 2. LITERATURE REVIEW 19

to the set of blocking nodes. Next time, it will take every combination of all three

nodes of Hamming weight n-2 and does the same operation on them, then on every

combination of all four nodes of Hamming weight n-3, etc. At the end, if there is at

least one neighbour of 0n that is not in the set of blocking nodes it implies that there

is a shortest path from 1n to 0n.

In the worst case the identification algorithm can have an exponential running

time in terms of the number of the blocking nodes, m. Since at each step the number

of operations is
(
h(n−k)
k+1

)
with n− k the Hamming distance of blocking nodes at step

k. Therefore in worst case the total number of operations is
∑n−2

k=1

(
h(n−k)
k+1

)
where

h(n− k) can possibly be
(

n
n−k

)
.

Chapter 3

Proposed Algorithm

3.1 Introduction

In this chapter we design an algorithm for finding a shortest path between two nodes

in a hypercube when some nodes have become faulty and thus cannot be used. As

mentioned in previous chapter, due to symmetry and recursive structure in hyper-

cube, we can safely assume that the source node is 0n and the target node is 1n in an

n−dimensional hypercube or n−cube. More formally, the problem can be stated as

follows:

Given source and target nodes s = 0n and t = 1n in an n-dimensional hypercube,

and m blocking nodes b1, b2, ..., bm, bi 6= s, bi 6= t, 1 ≤ i ≤ m, does there exist a

shortest path from s to t that does not intersect any blocking node?

We first explain how to model the problem to sets and permutations using a

similar technique used in [9]. Then we explain a naive exponential approach to solve

the modeled problem and finally we present and discuss our proposed polynomial

algorithm.

3.2 Ordering Model of Shortest Path in Presence

of Faulty Nodes

As discussed in Chapter 1, in an n-dimensional hypercube, nodes are n-tuples of

0’s and 1’s of length n. Therefore, a node in n-cube can be represented as v =

v1v2 . . . vn, vi ∈ {0, 1}. In our modeling, we represent each node as a set as follows:

20

CHAPTER 3. PROPOSED ALGORITHM 21

Figure 3.1: The path of Example 3.2 in a 4-cube

Definition 12. A node v = v1v2 . . . vn, vi ∈ {0, 1} in an n-cube is represented by

X = {i|vi = 1, 1 ≤ i ≤ n}. In other words, X is the set of all positions (bits) in v

where their values are 1.

Example 3.1. In a 5-hypercube, the set representations of some example nodes are

as follows:

v1 = 01001 X1 = {2, 5}
v2 = 10101 X2 = {1, 3, 5}
v3 = 11100 X3 = {1, 2, 3}

A path can also be represented using a permutation of bit positions. Before giving

the formal definition of a path using permutation, we need some notations as follows:

Definition 13. For a permutation P = [p1, p2, . . . , pn], we define partial permutation

Pk = [p1, p2, . . . , pk] and set of partial permutations as {Pk} = {p1, p2, . . . , pk}.

For instance if P = [3, 1, 4, 2, 5] then P3 = [3, 1, 4] and {P3} = {1, 3, 4} (elements

are given in a sorted order here).

Two nodes are adjacent in a hypercube if and only if their tuple representations

(or binary representations) differ only in one position. This makes it possible to

show a simple path from 0n to 1n in a hypercube with a permutation and the set

representation of nodes.

Definition 14. A path in an n-cube in the form of < 0n, v1, v2, . . . , vn−2, 1
n > can

be shown as permutation P = [p1, p2, . . . , pn] such that {Pk} = Xk where Xk is the

set representation of vk. Note that since the path should be a simple path, therefore

for i 6= j, vi 6= vj. Also we will use {P} and |P | notations as set of elements of

permutation P and its size, respectively.

CHAPTER 3. PROPOSED ALGORITHM 22

Example 3.2. A paths in a 4-dimensional hypercube shown in Figure 3.1 can be

represented with a permutation as follows:

< 0000, 0010, 0110, 1110, 1111 >←→ P = [3, 2, 1, 4]

Using these notations, the following theorem models the problem to a permutation

problem:

Theorem 3.1. In an n-dimensional hypercube with m blocking nodes X1, X2, . . . , Xm

in which Xi is the set representation of a blocking node, there exists a shortest path

from 0n to 1n if and only if there is a permutation P of numbers {1, 2, . . . , n} such

that:

∀i : 1 ≤ i ≤ m : Xi 6= {P|Xi|} (validation condition)

Proof. Any permutation of the set {1, 2, . . . , n} is a simple path from 0n to 1n. Also

it is a shortest path because its length is n. Since each {Pk} is a node of the path,

therefore if validation conditions hold for P , it implies that none of the nodes of the

path are in blocking node set.

Example 3.3. In a 4-cube, m = 4

X1 = {1, 3, 4}
X2 = {2, 4}
X3 = {1}
X4 = {3, 4}
One possible answer as depicted in Figure 3.2 could be P = [2, 3, 1, 4] since:

{P3} = {1, 2, 3} 6= X1

{P2} = {2, 3} 6= X2, X4

{P1} = {2} 6= X3

Note that for the rest of the thesis, in all figures, paths and blocking nodes are

depicted with black lines and black nodes, respectively. Before explaining our pro-

posed polynomial algorithm for finding the permutation P , we first review a naive

inefficient approach.

3.2.1 Naive Approach

A simple solution to this model would be creating all possible n! permutations of P

and then checking each of them against all Xi’s to see if it satisfies the validation

condition or not. Therefore, the time complexity would be O(n!×m).

CHAPTER 3. PROPOSED ALGORITHM 23

Figure 3.2: 4-cube of Example 3.3

3.3 The Proposed Polynomial Algorithm

3.3.1 Big Picture

Our proposed algorithm is based on creating the elements of P one by one. In other

words, we start with an empty permutation P = [] and we choose the first element,

say α, from N = {1, 2, 3, .., n}. If among all possible (n− 1)! permutations that start

with [α], there exists at least one permutation that satisfies the validation condition,

we fix α as the first element of the path. We repeat the same process for the second

element, say β, among remaining numbers from N . In this case, we need to make

sure that there is a permutation that starts with [α, β] and satisfies the validation

conditions among all possible (n− 2)! permutations. We follow the same process for

all positions in P until we create the final permutation. Clearly, if we cannot find α

in the first step, it means there is no such permutation and a shortest path does not

exist.

The heart of the algorithm is how to efficiently make sure that the current partial

permutation (for example [α, β]) can lead to an answer. For the rest of the chapter, we

refer to valid permutation as a permutation which satisfies the validation condition.

To make sure that the current partial permutation P leads to a valid permutation

we use the inclusion-exclusion principle. We first count all invalid permutations that

start with P and then subtract them from all possible permutations starting with P to

get the valid permutations (complement law). If the number of valid permutations is

more than zero, it means the current partial permutation leads to a valid permutation

and we can safely continue extending the partial permutation.

In Algorithm 1, NumberOfValidPermutations(X,P,n) is a function that computes

the number of total valid permutations that can be made with extending P as the

partial permutation considering X as blocking nodes. Naively, this function can

CHAPTER 3. PROPOSED ALGORITHM 24

be computed using a simple inclusion-exclusion counting. Since applying inclusion-

exclusion principle on a set of sizem has time complexity ofO(2m) we need to optimize

the idea. Optimization is based on creating a directed acyclic graph (DAG) out of

blocking nodes and leveraging dynamic programming (DP) on the DAG to efficiently

count inclusion-exclusion terms. Also in Algorithm 1, appending an element, say α

to permutation P means adding α to P as the last element.

We discuss each step with details in the following sections.

Algorithm 1 Big Picture of the Proposed Algorithm

1: procedure FindingShortestPath(X,n) . X: set of blocking nodes,
n:dimension of cube

2: P ← [] . Start with an empty ordering
3: for i = 1→ |N | do
4: α← Ni . Get i-th element of N
5: P ← P + [α] . Append α to the end of P
6: if NumberOfValidPermutations(X,P, n) > 0 then
7: N ← N \ {α} . Remove α from the set N
8: i← 1 . Reset to the beginning of N
9: else
10: P ← P \ [α] . Remove α from the end of P
11: end if
12: if α == n and P == [] then . Reached n but no first element yet
13: break . There is no answer
14: end if
15: if α == n and P == [] then . Reached n but no first element yet
16: break . There is no answer
17: end if
18: end for
19: return P . In case of no answer, P will be empty
20: end procedure

3.3.2 Counting Valid Permuations

Assume we have added a new element to our partial permutation P . Now we have to

make sure that the current permutation leads to a valid permutation. As mentioned,

we use the inclusion-exclusion principle to count all invalid permutations that start

with the current permutation. Then we subtract the number of all invalid permu-

tations from all possible permutations to get the number of valid ones. Finally, if

the number of valid permutations is more than zero, it means the current partial

permutation can lead to a valid permutation.

CHAPTER 3. PROPOSED ALGORITHM 25

In general, the inclusion-exclusion principle for counting the number of elements

in the union of m sets is as follows:∣∣∣∣ m⋃
i=1

Yi

∣∣∣∣ =
m∑

i1=1

|Yi1|

−
∑

1≤i1<i2≤m

|Yi1 ∩ Yi2|

+
∑

1≤i1<i2<i3≤m

|Yi1 ∩ Yi2 ∩ Yi3|

− · · · (−1)p−1
∑

1≤i1<···<ip≤m

∣∣Yi1 ∩ · · · ∩ Yip∣∣ · · ·
(−1)m−1|Y1 ∩ Y2 ∩ · · · ∩ Ym|.

(3.1)

In our problem, we define Yi as follows:

Definition 15. Yi = set of all permutations that start with the current partial per-

mutation P , and violate the validation condition for Xi.

Based on Definition 15, each Yi violates the validation condition for at least Xi.

Therefore
⋃m

i=1 Yi has all invalid permutations and thus

∣∣∣∣⋃m
i=1 Yi

∣∣∣∣ gives the number

of all invalid permutations starting with P . The total number of permutations that

start with P is (n− |P |)!. Thus we have:

number of valid permutations = (n− |P |)!−
∣∣∣∣ m⋃
i=1

Yi

∣∣∣∣ (3.2)

Example 3.4. Based on Definition 15, for a 4-cube with 4 blocking nodes and P = [4],

Yi’s are as follows:

n = 4,m = 4, P = [4]

X1 = {1, 3, 4} Y1 = {[4, 1, 3, 2], [4, 3, 1, 2]}
X2 = {2, 4} Y2 = {[4, 2, 1, 3], [4, 2, 3, 1]}
X3 = {1} Y3 = {}
X4 = {3, 4} Y4 = {[4, 3, 1, 2], [4, 3, 2, 1]}

In the above example
⋃4

i=1 Yi has 5 elements. On the other hand, the number of

all possible permutations starting with P = [4] is equal to (4−1)! = 6. Therefore, the

total number of valid permutations is 6− 5 = 1 which means there is a permutation

starting with [4] and that leads to an answer, namely P = [4, 1, 2, 3] as illustrated in

Figure 3.3.

CHAPTER 3. PROPOSED ALGORITHM 26

Figure 3.3: A solution for the Example 3.4

Since in our inclusion-exclusion formula we only need the size of the sets, we do

not actually need to compute all of their members. This can be done directly with

the following theorem:

Theorem 3.2. Calculating the size of Yi can be directly done using following formula:

|Yi| =

(|Xi| − |P |)! ∗ (n− |Xi|)! (If {P} ⊆ Xi)

0 (If {P} 6⊆ Xi)
(3.3)

Proof. If {P} 6⊆ Xi, there is no permutation that starts with P ’s elements and Xi’s

elements at the same time since there is at least one element in P that is not in Yi

and thus violates the definition of Yi that all elements of set Yi must start with P ’s

elements. Also the ordering of common elements of P and Yi is fixed and equal to

P . Then, any permutation of all numbers of Xi which have not been used by P can

come next in (|Xi|−|P |)! different ways. And finally any permutation of all remaining

numbers from N which have not been used yet can come next in (n− |Xi|)! different

ways.

As an example, consider the following blocking nodes and partial permutation:

Example 3.5. In a 6-cube:

n = 6, P = [1, 3]

X1 = {1, 3, 4}
Y1 = {[1, 3, 4, 2, 5, 6], [1, 3, 4, 5, 2, 6], [1, 3, 4, 6, 5, 2],

[1, 3, 4, 5, 6, 2], [1, 3, 4, 2, 6, 5], [1, 3, 4, 6, 2, 5]}

CHAPTER 3. PROPOSED ALGORITHM 27

|Y1| = (|X1| − |P |)! ∗ (n− |X1|)! = (3− 2)! ∗ (6− 3)! = 1 ∗ 3! = 6

X2 = {1, 3, 5, 2}
Y2 = {[1, 3, 5, 2, 4, 6], [1, 3, 5, 2, 6, 4],

[1, 3, 2, 5, 4, 6], [1, 3, 2, 5, 6, 4]}
|Y2| = 4 = (|X2| − |p|)! ∗ (n− |X2|)! = 2! ∗ 2! = 4

In the inclusion-exclusion formula we also need to count the size of intersection of

multiple Yi’s. This is also a generalization of finding the size of each Yi individually.

Consider Xi and Xj and without loss of generality assume |Xi| ≤ |Xj|. The same

conditions that we have for single form, apply here as well.

Lemma 3.1. Assuming |Xi| ≤ |Xj|: |Yi ∩ Yj| > 0 iff {P} ⊆ Xi ⊆ Xj

In other words, Lemma 3.1 says for two Yi and Yj to have non-empty intersection,

one needs to be a subset of the other one. It can be proved with the same logic as

Theorem 3.2. We generalize Lemma 3.1 for k sets and prove it.

Theorem 3.3. Assuming |X1| ≤ |X2| ≤ · · · ≤ |Xk|, the size of the intersection of

corresponding Yi’s, |Y1 ∩ Y2 ∩ · · · ∩ Yk|, can be calculated as follows:

|
k⋂

i=1

Yi| =

(|X1| − |P |)! ∗ (|X2| − |X1|)! ∗ . . .

∗(|Xk| − |Xk−1|)! ∗ (n− |Xk|)! if {P} ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xk

0 otherwise

(3.4)

Proof. We use induction over k to prove it. The base case is k = 1 which is equal to

Theorem 3.2 that has been already proved. For the induction step, assume we have

the answer of {P} ⊆ X1 ⊆ X2 ⊆ . . . Xk−1 and call it P ′. Now all we have is P ′ and

Xk which have the same conditions as Theorem 3.2 that has already been proved.

As an example, consider the intersection of two blocking nodes as follows:

Example 3.6. In a 6-cube:

n = 6,m = 2, P = [1]

X1 = {1, 3, 4}
X2 = {1, 3, 4, 6}

CHAPTER 3. PROPOSED ALGORITHM 28

Y1 = {[1, 4, 3, 2, 5, 6], [1, 4, 3, 2, 6, 5], [1, 4, 3, 6, 2, 5],

[1, 4, 3, 6, 5, 2], [1, 4, 3, 5, 2, 6], [1, 4, 3, 5, 6, 2],

[1, 3, 4, 2, 5, 6], [1, 3, 4, 2, 6, 5], [1, 3, 4, 6, 2, 5],

[1, 3, 4, 6, 5, 2], [1, 3, 4, 5, 2, 6], [1, 3, 4, 5, 6, 2]}
Y2 = {[1, 3, 4, 6, 2, 5], [1, 3, 6, 4, 2, 5], [1, 6, 3, 4, 2, 5]

[1, 6, 4, 3, 2, 5], [1, 4, 3, 6, 2, 5], [1, 4, 6, 3, 2, 5]

[1, 3, 4, 6, 5, 2], [1, 3, 6, 4, 5, 2], [1, 6, 3, 4, 5, 2]

[1, 6, 4, 3, 5, 2], [1, 4, 3, 6, 5, 2], [1, 4, 6, 3, 5, 2]}

{Y1 ∩ Y2} = {[1, 3, 4, 6, 2, 5], [1, 3, 4, 6, 5, 2], [1, 4, 3, 6, 2, 5], [1, 4, 3, 6, 5, 2]}
|Y1 ∩ Y2| = (|X1| − |p|)! ∗ (|X2| − |X1|)! ∗ (n− |X2|)! = 2! ∗ 1! ∗ 2! = 4

Based on Theorem 3.3, each term in the inclusion-exclusion formula can be cal-

culated directly without constructing the set itself. Although many terms are zero,

but still the number of non-zero terms are in order of O(2m) which leads to an ex-

ponential solution if we do counting without any other optimization. That is why

we continue optimizing the solution by creating a DAG out of blocking nodes and

leveraging dynamic programming on it.

3.3.3 Creating DAG of sets

Based on Theorem 3.3, the only non-zero terms are those whose members make a

chain of subset relation. On the other hand, we know that subset relation is an

acyclic relation for proper subsets, therefore we can create a directed acyclic graph

based on Xi’s.

Algorithm 2 Creating Graph Out of Blocking Nodes

1: procedure CreateGraph(X)
2: m← |X|
3: G← empty graph with X as the set of vertices
4: for i = 1→ m do
5: for j = 1→ m do
6: if i 6= jand Xi ⊂ Xj then
7: add edge (Xi, Xj) to E(G)
8: end if
9: end for
10: end for
11: return G
12: end procedure

CHAPTER 3. PROPOSED ALGORITHM 29

Figure 3.4: DAG of Example 3.7

Definition 16. Graph G(X,E) is a directed graph with set of blocking nodes X as

vertices and there is a directed edge from Xi to Xj iff Xi ⊂ Xj.

In this graph we are interested in paths since they connect those blocking nodes

that make a chain of subset relation. Therefore to connect Theorem 3.3 and paths in

the graph we define value of path as follows:

Definition 17. For a path in the form of < X1, X2, . . . , Xk > we define the value of

the path to be V [< X1, X2, . . . , Xk >]=|Y1 ∩ Y2 ∩ · · · ∩ Yk|.

In other words, the value of a path is equal to number of permutations that violate

the validation condition for all (blocking) nodes involved in the path.

Example 3.7. In a 6-cube:

n = 6,m = 7, P = [2]

X1 = {1, 2}
X2 = {1, 2, 4}
X3 = {1, 2, 4, 5}
X4 = {1, 2, 3, 4}
X5 = {1, 2, 3, 6}
X6 = {1, 2, 3, 4, 5}
X7 = {6}
V [< X1, X4, X6 >] = |Y1 ∩ Y4 ∩ Y6| = 1! ∗ 2! ∗ 1! ∗ 1! = 2

As a result of Definition 17, each term of the inclusion-exclusion formula can be

calculated by summing values of corresponding paths. More formally:

CHAPTER 3. PROPOSED ALGORITHM 30

Theorem 3.4. Each term of the inclusion-exclusion formula can be calculated by the

value of the paths.∑
1≤i1<···<ik≤n

|Yi1 ∩ · · · ∩ Yik | =
∑

1≤i1<···<ik≤n

V [< Xi1 , . . . , Xik >] if such path exists

(3.5)

Therefore, for calculating the inclusion-exclusion formula all we need is to calculate

sum of values of all paths with size k for 1 ≤ k ≤ n.

Example 3.8. Based on Figure 3.4:

∑
1≤i1<i2<i3≤6 |Yi1 ∩ Yi2 ∩ Yi3| =

V [< X1, X2, X3 >]+V [< X1, X2, X4 >] +V [< X1, X2, X6 >]+V [< X1, X4, X6 >]

+V [< X2, X3, X6 >] + V [< X2, X4, X6 >]

If we calculate the value of all paths one by one and then sum them up, we still

need an exponential number of calculations. There are three observations that make

it possible to use dynamic programming to sum V values efficiently. Firstly, we are

working on a DAG which means there is no cycle and all paths are simple paths.

Secondly, a path in a graph has inherently a recursive definition; i.e. each path of

size k is created by a path of size k − 1. Thirdly, we will show that the value of a

path can also be calculated recursively.

3.3.4 Dynamic Programming on DAG

Example 3.9. Based on Theorem 3.3, V values of Figure 3.4 can be calculated as

follows:

V [< X1 >] = (|X1| − |P |)! ∗ (n− |X1|)

V [< X1, X2 >] = (|X1| − |P |)! ∗ (|X2| − |X1|)! ∗ (n− |X2|)!

=
V [< X1 >]

(n− |X1|)!
∗ (|X2| − |X1)! ∗ (n− |X2|)!

V [< X1, X2, X6 >] = (|X1| − |P |)! ∗ (|X2| − |X1|)! ∗ (|X6| − |X2|)! ∗ (n− |X6|)!

=
V [< X1, X2 >]

(n− |X2|)!
∗ (|X6| − |X2|)! ∗ (n− |X6|)!

As shown in Example 3.9, the value of a path of size k, V [< X1, X2, . . . , Xk >],

can be calculated based on the value of a path of size k−1, V [< X1, X2, . . . , Xk−1 >].

CHAPTER 3. PROPOSED ALGORITHM 31

To make the formula more clear, we define a new notation, V ′ as follows:

Definition 18. V ′[< X1, X2, . . . , Xk >] = V [<X1,X2,...,Xk>]
(n−|Xk|)!

In other words, V [< X1, . . . , Xk >] is defined on all members of set N , while V ′[<

X1, . . . , Xk >] has the same definition as V but on the members of Xk. Therefore,

in V ′ there is no permutation of numbers that are in N but not in Xk, hence in the

definition of V ′ we divided V by (n− |Xk|)! to remove those permutations.

Based on Definition 17, Definition 18 and Thoerem 3.3 the following theorem gives

the recursive definition for V ′:

Theorem 3.5. V ′ can be calculated recursively as follows:

V ′[< X1, . . . , Xk >] =

0 k = 1, {P} 6⊆ Xk

(|Xk| − |P |)! k = 1, {P} ⊆ Xk

V ′[< X1, . . . , Xk−1 >] ∗ (|Xk| − |Xk−1|)! k > 1

(3.6)

The recurrence relation of Theorem 3.5 is based on Theorem 3.3 and basically

with the definition of V ′ it is very similar to cumulative product. To sum up all V ′

values of paths with size k, we use dynamic programming by defining T (Xi, k) as

follows:

Definition 19. T (Xi, k) = summation of V ′ value of all paths of size k that end at

node Xi. More formally:

T (Xi, k) =
∑

1≤s1<···<sk−1≤m

V ′[< Xs1 , Xs2 , . . . , Xsk−1
, Xi >] if such a path exists (3.7)

The approach of dynamic programming is based on calculating the answer node

by node. Using result of Theorem 3.5, calculating V ′ value of a path of size k can be

done using the answer of the paths of size k − 1. Therefore for calculating T (Xi, k)

all we need is T (Xj, k− 1) such that there is an edge from Xj to Xi. The recurrence

relation is as follows:

T (Xi, k) =

0 k = 1, {P} 6⊆ Xi

(|Xi| − |P |)! k = 1, {P} ⊆ Xi∑
(Xj ,Xi)∈E(G)(T (Xj, k − 1) ∗ (|Xi| − |Xj|)!) k > 1

(3.8)

CHAPTER 3. PROPOSED ALGORITHM 32

Implementation of T (Xi, k) can be done efficiently similar to the known Bellman-

Ford algorithm [7]. The idea is for calculating T (Xi, k) order of nodes does not

matter and we only need to make sure that paths of size k − 1 have already been

computed. We first iterate over k and then for each edge we update the value of its

corresponding vertices. Therefore, with two nested loops all elements of T table will

be computed efficiently. Also note that since we are dealing with a DAG, we do not

need to handle cycles.

Algorithm 3 Computing Dynamic Programming Table

1: procedure ComputeDP(G, n, P) . G:Graph,P:Partial Permutation

2: m← |V (G)|
3: for i = 1→ m do

4: if {P} ⊆ Xi then

5: T (Xi, 1)← (|Xi| − |P |)!
6: else

7: T (Xi, 1)← 0

8: end if

9: end for

10: for k = 2→ n do

11: for each edge (Xj, Xi) ∈ E(G) do

12: T (Xi, k)← T (Xi, k) + (T (Xj, k − 1) ∗ (|Xi| − |Xj|)!)
13: end for

14: end for

15: return T

16: end procedure

3.3.5 Efficient Inclusion-exclusion Counting

The main problem with directly calculating the inclusion-exclusion formula is that

a term in the form of
∑

1≤i1<···<ik≤m |Yi1 ∩ · · · ∩ Yik | has
(
m
k

)
sub-terms and since

we need to calculate such terms for all 1 ≤ k ≤ n, we would need to calculate∑m
i=1

(
m
i

)
= 2m − 1 different terms which leads to an exponential time complexity.

We review Theorem 3.3, Definition 18 and Definition 19 to see how T (Xi, k) is

related to inclusion-exclusion terms:

Based on Theorem 3.3:∑
1≤i1<···<ik≤n

|Yi1 ∩ · · · ∩ Yik | =
∑

1≤i1<···<ik≤n

V [< Xi1 , . . . , Xik >] if such path exists

CHAPTER 3. PROPOSED ALGORITHM 33

And Definition 18:

V ′[< X1, X2, . . . , Xk >] =
V [< X1, X2, ..., Xk >]

(n− |Xk|)!

Therefore:

∑
1≤i1<···<ik≤n

|Yi1 ∩ · · · ∩ Yik | =
∑

1≤i1<···<ik≤n

(V ′[< Xi1 , . . . , Xik >] ∗ (n− |Xik |)!) (3.9)

And based on Definition 19:

T (Xi, k) =
∑

1≤s1<···<sk−1≤m

V ′[< Xs1 , Xs2 , . . . , Xsk−1
, Xi >] if such a paths exists

Thus finally we have:

∑
1≤i1<···<ik≤m

|Yi1 ∩ · · · ∩ Yik | =
m∑
i=1

(T (Xi, k) ∗ (n− |Xi|)!) (3.10)

Since the dynamic programming table can be calculated in polynomial time, there-

fore using Equation 3.10 we can reduce exponential time of calculating inclusion-

exclusion formula to polynomial time.

Algorithm 4 Inclusion-Exclusion Counting

1: procedure InclusionExclusionCounting(G, n, P)
2: m = |V (G)|
3: if {P} ∈ V (G) then . If {P} is equal to one of the nodes, i.e. Xi’s
4: return 0 . There would be no answer
5: end if
6: T ← computeDP (G,P)
7: total← (n− |P |)! . All permutations starting with P
8: sign← −1 . For handling the sign of terms in ex.-in. formula
9: for i = 1→ n do
10: for j = 1→ m do
11: total← total + sign ∗ T (Xj, i) ∗ (n− |Xj|)!
12: end for
13: sign← sign ∗ −1
14: end for
15: return total
16: end procedure

CHAPTER 3. PROPOSED ALGORITHM 34

3.3.6 Proposed Algorithm

As explained in Section 3.3.1, in the proposed algorithm we find the order of the

elements of P one by one, i.e. we first make sure about the first element, and then

we continue to the second element and so on. To make sure that each element leads

to a valid permutation, we use the inclusion-exclusion formula.

In Algorithm 5 Line 14 checks whether after visiting all elements, P is still empty

or not. If it is, that means no first element has been found which implies there is no

answer.

Also, we create the graph of blocking nodes before going into the loop of finding

elements since the definition of graph is independent from P .

Algorithm 5 Proposed Algorithm: Finding shortest path in the presence of blocking
nodes

1: procedure FindingShortestPath(X,n) . X: set of blocking nodes,
n:dimension of cube

2: P ← [] . Start with an empty partial permutation
3: N ← {1, 2, . . . , n}
4: G← CreateGraph(X)
5: for i = 1→ |N | do
6: α← Ni . Get i-th element of N
7: P ← P + [α] . Append α to the end of P
8: if InclusionExclusionCounting(G, n, P) > 0 then
9: N ← N \ {α} . Remove α from set N
10: i← 1 . Reset to beginning of N
11: else
12: P ← P \ [α] . Remove α from the end of P
13: end if
14: if α == n and P == [] then . Reached n but no first element yet
15: break . There is no answer
16: end if
17: end for
18: return P . In case of no answer, P will be empty
19: end procedure

3.3.7 Performance

As mentioned, we use m for the number of blocking nodes, and n for the dimension of

the hypercube. Therefore, the performance of each section of the proposed algorithm

is as follows:

CHAPTER 3. PROPOSED ALGORITHM 35

• Creating the Graph. Algorithm 2 has two nested loops each over m. In the

inner loop, we need to check whether the set Xi is subset of the set Xj. To do

so efficiently, we can store all elements of Xj in a hash table and then iterate

over Xi’s elements and find each of them in the hash table. If there is at least

one element of Xi which is not in the hash table then Xi is not a subset of Xj,

otherwise it is. Since looking up a hash table takes O(1) time, thus the entire

subset checking can be done linearly O(n). Finally, creating the graph can be

done in O(nm2).

• Dynamic Programming. In Algorithm 3 steps 3-9 can be done in O(mn)

time with the same approach we described in creating the graph for checking

{P} ⊆ Xi . The dominant cost is at Steps 10-15 which have two nested loops;

one over n and one over the number of edges in graph. Since the graph has m

nodes, therefore the maximum number of edges is in the order of O(m2). As a

result, the total cost for Algorithm 3 is O(nm+ nm2) = O(nm2).

• Inclusion-exclusion Counting. In Algorithm 4 Step 3 can be done in time

O(nm) by checking every member of P in all m blocking nodes. Step 6 calls

Algorithm 3 that has O(nm2) time complexity and is the dominant step of

inclusion-exclusion counting. Steps 9-14 have only two nested loops with an

O(1) operation inside that needs O(nm) operations overall. Therefore, the

total cost of this algorithm is O(nm+ nm2 + nm) = O(nm2).

• Finding the Shortest Path. Algorithm 5 which is the main body of our

proposed algorithm, can be simply analyzed as follows. Step 4, creating the

graph, has time O(nm2). Steps 5-17 have one loop with at most n iterations

which calls inclusion-exclusion each time. Thus, the loop performs in time

O(n × (nm2)) = O(n2m2). Therefore, the proposed algorithm can be done in

time of (nm2 + n2m2) = O(n2m2) which is polynomial in terms of number of

faulty nodes and dimension of the hypercube.

3.3.8 Performance Optimization

In the proposed algorithm section, we create the graph once and compute the dynamic

programming table on it in every iteration. Based on Theorem 3.3, if the set of partial

permutations {P} is not a subset of a node Xi, T (Xi, k) for all 1 ≤ k ≤ n will be

zero. Thus, in two nested iterations of the dynamic programming algorithm, many

terms are calculated as zero. Therefore, we can safely remove all nodes Xi where

CHAPTER 3. PROPOSED ALGORITHM 36

{P} 6⊆ Xi and reduce the size of the graph in order to calculate table T faster. Note

that the effectiveness of this optimization is based on the blocking nodes and thus it

cannot change the time complexity. An implementation of the optimized version of

the proposed algorithm is shown in Algorithm 6. In Step 8, we keep a copy of the

graph before removing nodes based on the current P . If that extension of P leads to a

valid permutation, we continue with the updated graph (since we will not need those

removed nodes anymore), otherwise we replace the graph with the unchanged one. As

we go forward finding P ’s elements, the size of the graph will reduce accumulatively.

Therefore, in many cases this optimization will have a huge impact on the overall

performance of the algorithm.

Algorithm 6 Proposed Algorithm: Finding shortest path in presence of blocking
nodes - Optimized Version

1: procedure FindingShortestPathOptimized(X,n) . X: set of blocking
nodes, n:dimension of cube

2: P ← [] . Start with an empty ordering
3: N ← {1, 2, . . . , n}
4: G← CreateGraph(X)
5: for i = 1→ |N | do
6: α← Ni . Get i-th element of N
7: P ← P + [α] . Append α to the end of P
8: G′ ← G . Keep a copy before removing nodes
9: for j = 1→ |X| do
10: if {P} 6⊆ Xi then
11: remove Xi from G
12: end if
13: end for
14: if InclusionExclusionCounting(G, n, P) > 0 then
15: N ← N \ {α} . Remove α from set N
16: i← 1 . Reset to beginning of N
17: else
18: P ← P \ [α] . Remove α from the end of P
19: G← G′ . Roll back to unchanged graph
20: end if
21: if α == n and P == [] then . Reached n but no first element yet
22: break . There is no answer
23: end if
24: end for
25: return P . In case of no answer, P will be empty
26: end procedure

CHAPTER 3. PROPOSED ALGORITHM 37

3.3.9 Counting All Possible Shortest Paths

With the proposed algorithm, not only can we find a shortest path but also we can

count all possible shortest paths.

To do so, we can simply try all members of N as the first element of P and sum

up the result of inclusionExclusionCounting each time. In other words, we count the

number of valid permutations for all P = [α], α ∈ N = {1, 2, . . . , n} and sum them

up.

Algorithm 7 Finding the total number of shortest path in presence of blocking nodes

1: procedure CountingAllShortestPaths(X,n) . X: set of blocking nodes,
n:dimension of cube

2: N ← {1, 2, . . . , n}
3: G← CreateGraph(X)
4: total← 0
5: for i = 1→ |N | do
6: α← Ni

7: P ← [α]
8: total← total+ InclusionExclusionCounting (G, n, P)
9: end for
10: return total
11: end procedure

3.3.10 Examples

To elaborate each step of the algorithm, we provide some examples in this section.

Example 3.10. In a 5-cube:

m = 7

X1 = {2, 3}
X2 = {1, 2, 3}
X3 = {1, 2, 5}
X4 = {1, 2, 3, 4}
X5 = {1, 2, 4, 5}
X6 = {1, 2, 3, 5}
X7 = {1, 5}

The 5-cube has been depicted in Figure 3.5. As we discussed in Chapter 1, an n di-

mensional hypercube can be decomposed into lower dimensional hypercubes. Here we

CHAPTER 3. PROPOSED ALGORITHM 38

Figure 3.5: 5-cube of Example 3.10

decomposed a 5−cube into 4 3−cubes. The DAG of the blocking nodes is illustrated

in Figure 3.6.

Figure 3.6: DAG of Example 3.10

At first, 1 will be chosen as the first element of P and then the dynamic program-

CHAPTER 3. PROPOSED ALGORITHM 39

ming table will be calculated based upon that.

1 2 3 4 5
X1 0 0 0 0 0
X2 2 0 0 0 0
X3 2 1 0 0 0
X4 6 2 0 0 0
X5 6 4 1 0 0
X6 6 6 1 0 0
X7 1 0 0 0 0

Table 3.1: DP table of Example 3.10, P = [1], total = 4

In Table 3.1:

• The first row is completely zero because {P} 6⊆ X1.

• Columns 4 and 5 are zero since there is no path of size 4 or 5.

• All columns of X7 are zero but the first one. This is because there is no path

of size more than one that ends at X7.

• As an example T (X5, 2) = T (X3, 1) ∗ (|X5|− |X3|)! +T (X7, 1) ∗ (|X5|− |X7|)! =

2 ∗ 1! + 1 ∗ 2! = 4.

The inclusion-exclusion formula will be calculated based on the DP table as fol-

lows:

The initial value will be:

total = (n− |P |)! = (5− 1)! = 24

And then in the loop of Algorithm 3:

CHAPTER 3. PROPOSED ALGORITHM 40

total =total

−
7∑

i1=1

|Yi1|

+
∑

1≤i1<i2≤7

|Yi1 ∩ Yi2|

−
∑

1≤i1<i2<i3≤7

|Yi1 ∩ Yi2 ∩ Yi3 |

+
∑

1≤i1<i2<i3<i4≤7

|Yi1 ∩ Yi2 ∩ Yi3 ∩ Yi4|

−
∑

1≤i1<i2<i3<i4<i5≤7

|Yi1 ∩ Yi2 ∩ Yi3 ∩ Yi4 ∩ Yi5|

= total

−
7∑

i=1

(T (Xi, 1) ∗ (5− |Xi|)!)

+
7∑

i=1

(T (Xi, 2) ∗ (5− |Xi|)!)

−
7∑

i=1

(T (Xi, 3) ∗ (5− |Xi|)!)

+
7∑

i=1

(T (Xi, 4) ∗ (5− |Xi|)!)

−
7∑

i=1

(T (Xi, 5) ∗ (5− |Xi|)!)

= 24

− (0 ∗ 3! + 2 ∗ 2! + 2 ∗ 2! + 6 ∗ 1! + 6 ∗ 1! + 6 ∗ 1! + 1 ∗ 4!)

+ (0 ∗ 3! + 0 ∗ 2! + 1 ∗ 2! + 2 ∗ 1! + 4 ∗ 1! + 6 ∗ 1! + 0 ∗ 4!)

− (0 ∗ 3! + 0 ∗ 2! + 0 ∗ 2! + 1 ∗ 1! + 1 ∗ 1! + 0 ∗ 1! + 0 ∗ 4!)

+ (0 ∗ 0! + 0 ∗ 2! + 0 ∗ 2! + 0 ∗ 1! + 0 ∗ 1! + 0 ∗ 1! + 0 ∗ 4!)

− (0 ∗ 0! + 0 ∗ 2! + 0 ∗ 2! + 0 ∗ 1! + 0 ∗ 1! + 0 ∗ 1! + 0 ∗ 4!)

= 24− 30 + 14− 0 + 0

= 4

Therefore, if we choose 1 as the first element of P , there will be 4 different per-

mutations starting with 1 and satisfying the validation condition and thus making a

CHAPTER 3. PROPOSED ALGORITHM 41

valid path.

Therefore, 1 will be removed from the set N and we try number 2 as the second

element. Here is the DP table for P = [1, 2].

1 2 3 4 5
X1 0 0 0 0 0
X2 1 0 0 0 0
X3 1 0 0 0 0
X4 2 1 0 0 0
X5 2 1 0 0 0
X6 2 2 0 0 0
X7 0 0 0 0 0

Table 3.2: DP table of Example 3.10, P = [1, 2], total = 0

And the total will be:

total = 6

− (0 ∗ 3! + 1 ∗ 2! + 1 ∗ 2! + 2 ∗ 1! + 2 ∗ 1! + 2 ∗ 1! + 0 ∗ 4!)

+ (0 ∗ 3! + 0 ∗ 2! + 0 ∗ 2! + 1 ∗ 1! + 1 ∗ 1! + 2 ∗ 1! + 0 ∗ 4!)

− (0)

+ (0)

− (0)

= 6− 10 + 4− 0 + 0

= 0

Since total is zero, inclusionExclusionCounting() function returns 0 and then we

need to go to step 11 of the main algorithm. As a result, 2 will be put back to the

set N and we continue trying the next element which is 3 as the second element.

As can be seen in Table 3.3, X3’s row is now all zero since P is not a subset of X3

anymore. And therefore there is not any path of length 3 or more.

CHAPTER 3. PROPOSED ALGORITHM 42

1 2 3 4 5
X1 0 0 0 0 0
X2 1 0 0 0 0
X3 0 0 0 0 0
X4 2 1 0 0 0
X5 0 0 0 0 0
X6 2 1 0 0 0
X7 0 0 0 0 0

Table 3.3: DP table of Example 3.10, P = [1, 3], total = 2

And the total will be:

total = (5− 2)!

− (0 ∗ 3! + 1 ∗ 2! + 0 ∗ 2! + 2 ∗ 1! + 0 ∗ 1! + 2 ∗ 1! + 0 ∗ 4!)

+ (0 ∗ 3! + 0 ∗ 2! + 0 ∗ 2! + 1 ∗ 1! + 0 ∗ 1! + 1 ∗ 1! + 0 ∗ 4!)

− (0)

+ (0)

− (0)

= 6− 6 + 2− 0 + 0

= 2

Therefore, we can continue with number 3 as the second element.

The next choice will be adding 2 and make P = [1, 3, 2], but since we already have

X2 = {1, 2, 3} therefore X2 = {P} which will be detected in Line 3 of inclusionExclu-

sionCounting() function (Algorithm 4). The same will happen when the algorithm

tries P = [1, 4, 3, 2] which makes its set equal to X4.

The rest of the example is shown by the tables and the total value at each step

without further explanations.

1 2 3 4 5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 1 0 0 0 0
X5 0 0 0 0 0
X6 1 0 0 0 0
X7 0 0 0 0 0

Table 3.4: DP table of Example 3.10, P = [1, 3, 2], total = 0

CHAPTER 3. PROPOSED ALGORITHM 43

1 2 3 4 5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 1 0 0 0 0
X5 0 0 0 0 0
X6 0 0 0 0 0
X7 0 0 0 0 0

Table 3.5: DP table of Example 3.10, P = [1, 3, 4], total = 1

1 2 3 4 5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 0 0 0 0 0
X5 0 0 0 0 0
X6 0 0 0 0 0
X7 0 0 0 0 0

Table 3.6: DP table of Example 3.10, P = [1, 3, 4, 5], total = 1

1 2 3 4 5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 0 0 0 0 0
X5 0 0 0 0 0
X6 0 0 0 0 0
X7 0 0 0 0 0

Table 3.7: DP table of Example 3.10, P = [1, 3, 4, 5, 2], total = 1

CHAPTER 3. PROPOSED ALGORITHM 44

Figure 3.7: The solution of Example 3.10 that is found by the algorithm is depicted
in black

As can be seen from the above tables, as P grows, the number of cells that are

zero increases. The reason is simply because P will not be a subset of many of the

blocking nodes. Finally the answer is P = [1, 3, 4, 5, 2] which is equal to the path

[00000− 10000− 10100− 10110− 11101− 11111] which is depicted in Figure 3.7.

Now we add some other blocking nodes to this example to make it impossible to

find the shortest path.

Example 3.11. In a 5-cube depicted in Figure 3.8:

m = 9

X1 = {2, 3}
X2 = {1, 2, 3}
X3 = {1, 2, 5}
X4 = {1, 2, 3, 4}
X5 = {1, 2, 4, 5}
X6 = {1, 2, 3, 5}
X7 = {1, 3, 4}
X8 = {1, 3, 4, 5}
X9 = {2, 3, 4, 5}

CHAPTER 3. PROPOSED ALGORITHM 45

Figure 3.8: 5-cube of Example 3.11

Our algorithm tries all elements as the first element but the total values for all of

them is zero and therefore there is no answer for this example.

1 2 3 4 5
X1 1 0 0 0 0
X2 2 1 0 0 0
X3 2 1 0 0 0
X4 6 6 1 0 0
X5 6 4 1 0 0
X6 6 6 2 0 0
X7 2 0 0 0 0
X8 6 2 0 0 0
X9 0 0 0 0 0

Table 3.8: DP table of Example 3.11, P = [1], total = 0

CHAPTER 3. PROPOSED ALGORITHM 46

1 2 3 4 5
X1 1 0 0 0 0
X2 2 1 0 0 0
X3 2 1 0 0 0
X4 6 4 1 0 0
X5 6 4 1 0 0
X6 6 6 2 0 0
X7 0 0 0 0 0
X8 0 0 0 0 0
X9 6 0 0 0 0

Table 3.9: DP table of Example 3.11, P = [2], total = 0

1 2 3 4 5
X1 0 0 0 0 0
X2 2 0 0 0 0
X3 0 0 0 0 0
X4 6 4 0 0 0
X5 0 0 0 0 0
X6 6 2 0 0 0
X7 2 0 0 0 0
X8 6 2 0 0 0
X9 6 0 0 0 0

Table 3.10: DP table of Example 3.11, P = [3], total = 0

1 2 3 4 5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 6 2 0 0 0
X5 6 0 0 0 0
X6 0 0 0 0 0
X7 2 0 0 0 0
X8 6 2 0 0 0
X9 6 0 0 0 0

Table 3.11: DP table of Example 3.11, P = [4], total = 0

CHAPTER 3. PROPOSED ALGORITHM 47

1 2 3 4 5
X1 0 0 0 0 0
X2 0 0 0 0 0
X3 2 0 0 0 0
X4 0 0 0 0 0
X5 6 2 0 0 0
X6 6 2 0 0 0
X7 0 0 0 0 0
X8 6 0 0 0 0
X9 6 0 0 0 0

Table 3.12: DP table of Example 3.11, P = [5], total = 0

Chapter 4

Conclusion

In this thesis we proposed a polynomial algorithm for a routing paradigm in the hyper-

cube, one of the most popular types of interconnection networks. The paradigm was

investigating the existence of shortest path between two given nodes in a faulty hy-

percube, i.e. when some nodes are faulty and cannot be used for routing. We reduced

the problem to a permutation problem and we used inclusion-exclusion principle and

dynamic programming technique to solve the problem efficiently. Our algorithm was

constructive and thus it can construct the shortest path if it exists. The proposed

algorithm was based on the fact that the state of all nodes (whether they are faulty

or not) is known to the source node and hence the source node can check whether

the shortest path exists or not before sending its data. We are working to extend

our algorithms to other cube-like networks. As discussed in Chapter 1, due to the

specific similarity of augmented cube and folded cube to hypercube, we believe that

these are two proper candidates to start our investigation with. The idea also can be

investigated to other symmetric networks and to other routing paradigms as well.

Currently, our algorithm has time complexity of O(n2m2) (n as dimension of

hypercube and m number of faulty nodes) that we believe can be improved in future

work. One observation to do so is that the set of edges in the faulty nodes graph

is a transitive set. That implies if node u is connected to node v and node v is

connected to node t, thus there should be an edge from u to t. This makes the graph

a dense graph with many edges. We believe as a future work, we can take advantage

of transitivity property and make the graph a sparse graph and this helps to improve

the time complexity of dynamic programming phase of the proposed algorithm.

48

Bibliography

[1] Selim G. Akl. Parallel computation: Models and methods. Prentice Hall Inc.,

1997.

[2] Eddie Cheng, Shuhong Gao, Ke Qiu, and Zhizhang Shen. On disjoint shortest

paths routing on the hypercube. In Proceedings of the 3rd International Confer-

ence on Combinatorial Optimization and Applications, pages 375–383. Springer-

Verlag, 2009.

[3] Eddie Cheng, Keivan Noroozi, Ke Qiu, and Zhizhang Shen. Routing on the

hypercube with blocking/faulty nodes. Unpublished paper.

[4] Ge-Ming Chiu and Shui-Pao Wu. A fault-tolerant routing strategy in hypercube

multiprocessors. Computers, IEEE Transaction on, 45(2), 1996.

[5] Gi-Ming Chiu and Shui-Pao Wu. A fault-tolerant routing strategy in hypercube

multicomputers. Computers, IEEE Transaction on, 45(2), 1996.

[6] S. A. Choudum and V. Sunitha. Augmented cubes. In Networks, volume 40,

pages 70–84. Wiley Periodicals, 2002.

[7] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[8] Ahmed El-Amawy and Shahram Latifi. Properties and performance of folded

hypercubes. Parallel and Distributed Systems, IEEE Transaction on, 2(1), 1991.

[9] Shuhong Gao, Beth Novick, and Ke Qiu. From hall’s matching theorem to

optimal routing on hypercubes. Journal of Combinatorial Theory, Series B,

74(2):291 – 301, 1998.

[10] Wen-Jing Hsu. Fibonacci cubes - a new interconnection topology. Parallel and

Distributed Systems, IEEE Transaction on, 4(1), 1993.

49

BIBLIOGRAPHY 50

[11] Michael Jurczyk, Howard Jay Siegel, and Craig Stunkel. Interconnection net-

works for parallel computers. John Wiley & Sons, Inc., 2007.

[12] Keiichi Kaneko and Hideo Ito. Fault-tolerant routing algorithms for hypercube

networks. In Proceedings of the 13th International Symposium on Parallel Pro-

cessing and the 10th Symposium on Parallel and Distributed Processing, pages

218–224. IEEE Computer Society, 1999.

[13] Tze Chiang Lee and John P. Hayes. A fault-tolerant communication scheme for

hypercube computers. Computers, IEEE Transaction on, 41(10), 1992.

[14] Yamin Li, Shietung Peng, and Wanming Chu. Efficient collective communica-

tions in dual-cube. The Journal of Supercomputing, 28(1):71–90, 2004.

[15] Peter K. K. Loh, Wen Jing Hsu, and Yi Pan. The exchanged hypercube. Parallel

and Distributed Systems, IEEE Transaction on, 16(9), 2005.

[16] Franco P. Preparata and Jean Vuillemin. The cube-connected-cycles: A versatile

network for parallel computation. Communications of the ACM, 24(5):300–309,

1981.

[17] Deqiang Wang and Lianchang Zhao. The twisted-cube connected networks. Jour-

nal of Computer Science and Technology, 14(2), 1999.

