ФИЗИКА И ТЕХНИКА ПОЛУПРОВОДНИКОВ

Том 21, вып. 4

КРАТКИЕ СООБЩЕНИЯ

О РОЛИ ПРИРОДЫ ПРИМЕСИ В ПОВРЕЖДЕНИИ GaAs, ИМПЛАНТИРОВАННОМ ИОНАМИ AI⁺ И Р⁺

Ташлыков И. С., Поздеева Т. В., Кальбитцер З.

При изучении радиационных дефектов в GaAs, облученном при комнатной температуре ионами Al⁺ и P⁺, было замечено, что слоевая концентрация дефектов (СКД) в интервале доз, когда не наступила аморфизация кристалла, существенно выше при имплантации ионов P⁺ [1]. Различие в измеряемой концентрации радиационных нарушении в облученных кристаллах интерпретировалось в основном большей интенсивностью радиационно-стимулированного отжига первичных дефектов в процессе имплантации ионов A1⁺. Последнее ожидалось как следствие искажений структуры GaAs из-за несоответствия параметров кристаллических решеток GaAs н GaP ($a_0 = 5.6532$ и 5.4512 Å соответственно, тогда как для AlAs $a_0 = 5.6622$ Å).

Вместе с тем в ряде исследований отмечалась важная роль плотности ионного тока (*j*) в дефектообразовании в GaAs [2, 3]. Проведенные нами опыты по внедрению в GaAs ионов P⁺ ($E = 40 \text{ кэB}, \Phi = 10^{15} \text{ см}^{-2}, j = 0.5 \text{ и 5 мкA/см}^2$) показали, что СКД в 1.44 раза больше, когда $j = 5 \text{ мкA/см}^2$ [4]. Оказалось, что при $j = 0.5 \text{ мкA/см}^2$ глубина залегания дефектов меньше R_{pd} и уровень повреждения структуры ниже, чем при внедрении P⁺ $j = 5 \text{ мкA/см}^2$ [5]. Это свидетельствует о формировании более стабильных нарушении в GaAs в процессе внедрения ионов P⁺ с $j = 5 \text{ мкA/см}^2$. Качественно близкие результаты получены при имплантации Al⁺ с $E = 60 \text{ кэB}, j = 0.15 \text{ и } 1-3 \text{ мкA/см}^2$.

Чтобы уточнить роль природы примеси и устранить влияние *j* в формировании остаточных нарушений в GaAs, внедрение ионов Al⁺ и P⁺ проводилось при $T_{\text{комн}}$ в строго воспроизводимых условиях: E = 40 кэВ, $j_1 = 50 \pm 10$ и $j_2 = 400 \pm 50$ нА/см² в интервале доз от 10^{14} до $6.3 \cdot 10^{15}$ см⁻². Равномерность облучения по площади обеспечивалась сканированием ионного пучка ($\emptyset = 5$ мм) по осям X и Y с частотами 1 кГц и 2 Гц соответственно. Исследование повреждения монокристаллов (100) GaAs выполнялось методом обратного рассеяния каналированных ионов гелия с $E_0 = 2$ МэВ. Энергетическое разрешение детектирующей системы было 15 кэВ. Расчет СКД проводился в приближении линейной функции деканалирования на дефектах.

При внедрении ионов A1⁺ с j_1 ($\Phi = 10^{15}$ см⁻²) профиль нарушений имеет максимум на глубине, согласующейся с расчетной ($R_{pd} = 31.5$ нм, $\Delta R_{pd} = 20.7$ нм [6] (см. рисунок, кривая 2). СКД составляет ~1·10¹⁷ см⁻². Наличие двух пиков на осевом спектре отражает чувствительность метода к дефектам, образованным выходом в междоузлия как атомов мышьяка, так и атомов галлия, число которых при данных условиях внедрения алюминия приблизительно одинаковое. Осевой выход рассеянных анализирующих ионов гелия от GaAs, имплантированного A1⁺ с j_2 , значительно выше, чем с j_1 , (см. рисунок, спектры 3, 2). Факт наличия на осевом спектре лишь одного пика отражает уменьшение содержания As на поверхности из-за нарушения стехиометрии состава. СКД достигает ~2.9·10¹⁷ см⁻². Полученные результаты о зависимости радиационного повреждения GaAs от плотности тока ионов A1⁺ ($50 \le j \le 400$ нA/см²) подтверждают модель формирования более стабильных типов дефектов в полупроводниках, имплантируемых ионами с более высокими *j*, если для выделяемой в упругих

процессах энергии реализуются условия линейных каскадов, а дозы ионов меньше доз, при которых наступает аморфизация имплантированных слоев [3–5].

Энергетические спектры OP ионов гелия с $E_0 = 2$ MэB от (100) GaAs.

1 – исходный материал; 2, 3 – после имплантации 10^{15} Al/см²; 4 – после имплантации 10^{15} P/см². Плотность тока, нА/см²: 2, 4 – 50; 3 – 400; 5 – спектр неориентированного кристалла.

Имплантация ионов P⁺ в GaAs с j_1 вызывает повреждение структуры кристалла (СКД равна приблизительно $2.45 \cdot 10^{17}$ см⁻²), которое существенно превышает уровень дефектности после внедрения в тех же условиях Al⁺, но ниже, если ионы Al⁺ имплантированы с j_2 (см. рисунок, спектры 4, 2, 3). При этом также нарушена стехиометрия состава мишени.

Ход осевых спектров обратного рассеяния облученных кристаллов за пиком нарушений позволяет считать, что во всех трех случаях в имплантированном слое сформировались преимущественно дефекты типа межузельных атомов и их скоплений.

Таким образом, введение фосфора в GaAs отчасти сравнимо с действием повышенной j на повреждение структуры GaAs, имплантируемого ионами Al⁺. Однако физическая природа наблюдаемых эффектов представляется различной.

Так, СКД увеличивается с ростом *j* из-за увеличения числа стабильных вторичных комплексов в области торможения ионов. При внедрении же P⁺ в GaAs с образованием химической связи GaP создаются искажения структуры матрицы, тормозящие миграционные процессы, и, как следствие, замедляются отжиг и перестройка дефектов во время ионной имплантации. В результате также наблюдается рост СКД. По-видимому, различием в действии нестационарного отжига дефектов (из-за повышенной плотности свободных электронов [7]) на совершенство структуры GaAs при внедрении Al⁺ и P⁺ можно пренебречь, так как v_e (Al) лишь

на ~1 % больше v_e (P) (v_e – энергия ионов, выделенная в неупругих процессах).

Результаты настоящего исследования показывают, что влияние природы внедряемой примеси на торможение процессов отжига дефектов в GaAs, имплантированном Al^+ и P^+ , эффективно даже при малых (в максимуме распределения $N_{\rm P,Al} = 0.2$ ат %) количествах внедренной примеси.

Авторы благодарны В. Хиршелю за проведение имплантации Al⁺ и P⁺, О. Мейеру и А. Туросу за содействие в проведении экспериментов.

ЛИТЕРАТУРА

[1] Дэвис Дж., Ташлыков И. С., Томпсон Д. А. Различия в радиационном повреждении GaAs при имплантации ионов Р⁺ и A1⁺. – ФТИ, 1982, т. 16, в. 4, с. 577–581.

[2] Tinsley A. W. et al. – Rad. Eff., 1974, v. 23, p. 165–169.

[3] Ahmed N. A. G., Christodoulides C. E., Carter G. - Rad. Eff., 1980, v. 52, p. 211-224.

[4] Carter G., Nobes M. J., Tashlykov I. S. – Rad. Eff. Lett., 1984, v. 85, p. 37–43.

[5] Ташлыков И. С, Картер Г., Нобс М. Повреждение GaAs при имплантации A1⁺ и P⁺с различной плотностью ионного тока. – ФТП, 1986, т. 20, в. 5, с. 785–788.

[6] Буренков А. Ф. и др. Пространственные распределения энергии, выделенной в каскаде атомных столкновений в твердых телах. М., 1985. 248 с.

[7] Gregory B. L., Sander H. H. – Proc. IEEE, 1970, v. 58, p. 1328–1341.

Научно исследовательский институт прикладных физических проблем им. А. Н. Севченко при БГУ им. В. И. Ленина Минск Институт Макса Планка по ядерной физике ФРГ, Гейдельберг Получено 4.04.1980 Принято к печати 27.00.1980