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Residual reliability of P-threshold graphs  

 A.A. Chernyaka,  

Abstract 

We solve the problem of computing the residual reliability (the RES problem) for all classes of P-threshold graphs for 
which efficient structural characterizations based on decomposition to indecomposable components have been 
established. In particular, we give a constructive proof of existence of linear algorithms for computing residual reliability of 
pseudodomishold, domishold, matrogenic and matroidal graphs. On the other hand, we show that the RES problem is 
#P-complete on the class of biregular graphs, which implies the #P-completeness of the RES problem on the classes of 
indecomposable box-threshold and pseudothreshold graphs. 

 

1. Introduction 

In this paper, we consider nondirected loopless graphs without multiple edges. Let G be a graph with the vertex 

set VG and the edge set EG; let T=VG or T=EG, and let  be a family of some nonempty subsets of T. Then the 

pair  is called a graphoid system with the support T and the path set . If  coincides with the set 

 
then the system  is called hierarchical. Suppose that each element si T can be excluded from T (i.e., can fail) 

independently from the others with probability 1 pi, where 0 pi 1. By  denote the probability of the 

event that the set of remaining (working) elements is a path; here  and k=|T|. 
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Assume that P(T ) consists of all subsets of T that induce connected subgraphs of
G. In this case, the quantities R(EG;P(EG); =p) and Rv(G; =p) = R(VG;P(VG); =p) are
known as all-terminal and residual reliability of the graph G, respectively. Note that
unlike other classical reliability criteria, the latter is deFned for the system [VG;P(VG)]
which is not hierarchical.
Algorithmic aspects of the problem of computing residual reliability (i.e., of the

so-called RES problem) were studied in [1,5,9,10]. In these papers, polynomial algo-
rithms were found for computing Rv(G; =p) of trees, interval graphs, and permutation
graphs. On the other hand, the RES problem was proved to be #P-complete for split
and bipartite graphs. 1

In this paper, we solve the RES problem for those classes of P-threshold graphs
whose e.cient structural characterizations, based on decomposition to indecomposable
components, were obtained in [2,4,11–13]. More speciFcally, we give a constructive
proof of existence of linear algorithms computing residual reliability of matrogenic
and pseudodomishold graphs. These results imply the existence of such algorithms
for domishold, matroidal and threshold graphs. We also obtain e.cient recurrence
relations which make it possible to compute the coe.cients of reliability polynomials
for the above classes of graphs. On the other hand, we show that the RES problem
is #P-complete even for biregular graphs with the probabilities of failures equal to 1

2
for all vertices. This means that the RES problem is #P-complete in the classes of
box-threshold and pseudothreshold graphs.

2. Basic de�nitions

All the notions of graph theory not deFned here can be found in [6]. The deFnitions
concerning P-threshold graphs are given according to [8].
Let R+ be the set of nonnegative real numbers. A graph G is called pseudodomishold

if for every induced subgraph H of G there exist a function wH :VH → R+ not identical
to zero and a number t ∈R+ such that for each subset S ⊆ VH the following statements
hold:

if S is a dominating set in H; then
∑
v∈S

wH (v)¿ t;

if S is not a dominating set in H; then
∑
v∈S

wH (v)6 t:
(1)

Replacing one of the inequalities in (1) by the strict inequality, we obtain the deFnition
of a domishold graph.
A graph G is called pseudothreshold if there exists a function w : VG → R+ not

identical to zero and a number t ∈R+ such that for each subset S ⊆ VG the statements

1 The notion of #P-completeness concerns enumeration problems (see, e.g. [7]).
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hold

if S is an independent set in G; then
∑
v∈S

w(v)6 t;

if S is a dependent set in G; then
∑
v∈S

w(v)¿ t:
(2)

Replacing one of the inequalities in (2) by the strict inequality, we obtain the deFnition
of a threshold graph. An equivalent deFnition can be given in terms of the quasi-order
¿ : if u; v∈VG, then v¿ u if and only if each vertex adjacent to u and diIerent from
v is adjacent to v.
A graph G is called box-threshold if every two vertices of G not comparable in the

quasi-order ¿ have the same degree. A graph G is called matrogenic if the family of
all subsets of VG inducing threshold graphs constitutes the independence system of a
matroid with the support VG. Finally, G is called matroidal if the family of all subsets
of EG such that the vertices incident to the edges of one subset induce threshold graphs
constitutes the independence system of a matroid with the support EG.
If p1 = · · ·= pn = p and n= |VG|, we deFne

Rv(G;p) =
n∑

i=0

ci(G)pi(1− p)n−i ; (3)

where ci(G) is the number of connected induced subgraphs of G on i vertices. The
expression in the right-hand side of (3) is called the (residual) reliability polynomial
of the graph G with the coe.cients ci(G) and will be denoted by Pol(G;p).

3. Intractable cases of the RES problem

In this section, the classical notions of #P-completeness and polynomial reducibility
for enumeration problems are used; the details can be found in [7,14].
Let us start with several deFnitions. A graph G is called a split graph if there exists

a partition VG = A ∪ B of its vertex set to a clique A and an independent set B.
Moreover, if A and B are orbits in G (an orbit is a set of all vertices having the same
degree d, and d is called the degree of the orbit), then G is called biregular.
A vertex v is covered by a matching P if v is incident with an edge of P. By Lk(G)

denote the set of all matchings in G that consist of k edges; put L(G) =
⋃

k Lk(G)
and con(G) =

∑
k ck(G); the set of all perfect matchings in G is denoted by E(G).

The problem of Fnding |E(G)| for the class of graphs with the set {d1; : : : ; dr} of orbit
degrees is denoted by PM(d1; : : : ; dr). Suppose that H is an induced subgraph in G
and P ∈L(H). We say that P is induced by a matching T from L(G) if T ∩EH =P.
The length of a rational number p=q, where p and q are mutually prime integers, is
deFned to be 1 + log2(|p|+ 1) + log2(|q|+ 1).

Lemma 1 (Valiant [14]). Let b be a vector of length n; A be a nonsingular n × n
matrix; and the entries of A and b be rational numbers of lengths at most m. Then
the system of linear equations Ax = b can be solved in time polynomial on m and n.
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Theorem 1. The RES problem is #P-complete in the class of biregular graphs with
probabilities of all vertices equal to 1

2 .

Proof. In [3]; it was proved that the problem PM(2; 3) is #P-complete. We Frst show
that PM(2; 3) is polynomially reducible to PM(3). Let G be a graph with the set of
vertex degrees {2; 3} that contains a perfect matching. Since both |VG| and the sum
of degrees of all the vertices are even [6]; it follows that the orbit of degree 2 in G
consists of an even number of vertices; say {v1; : : : ; v2l}. By F denote a simple cycle
on 2l vertices with VF = {u1; : : : ; u2l}; VF ∩ VG = ∅. Let H be the graph with the
vertex set VH = VF ∪ VG and the edge set

EH = EG ∪ EF ∪ {uivi: i = 1; : : : ; 2l}
(clearly; H is 3-regular). By Ek(H) denote the set of all perfect matchings in H
containing k edges of F ; put gk=|Ek(H)|. Since |E(F)|=2 and |El(H)|=|E(G)|·|E(F)|;
we have 2|E(G)|= |El(H)|.
Replace each edge uiui+1 of EF in H by the subgraph Mir shown in Fig. 1 (the

sets VMir \ {ui; ui+1} are assumed to be disjoint). The graph obtained is denoted by
Hr . Suppose S ∈E(Hr). It can be checked directly that the edges e01 and e02 either
simultaneously belong to S or simultaneously do not. Therefore, the following surjection
’ :E(Hr)→ E(H) is well-deFned: an edge e= uiui+1 from EF belongs to ’(S) if and
only if {e01; e02} ⊆ S; an edge e from EH \ EF belongs to ’(S) if and only if e∈ S.
The graphs Mir readily imply that:

(either e01 �∈ S and e03 ∈ S; or e01 ∈ S)⇒



either {ej2; ej4} ⊆ S;

or {ej3; ej5} ⊆ S

for every j = 1; : : : ; r


 ;

(e01 �∈ S; e03 �∈ S)⇒

S ∩ E Mir =

r⋃
j=1

{ej1; ej6; ej+1;1}

 :

Hence, we have

|’−1(Ek(H))|= gk(2r)k(2r + 1)2l−k :

Consequently,

|E(Hr)|= |’−1(E(H))|= (2r + 1)2l
l∑

k=0

(
2r

1 + 2r

)k

gk

or

|E(Hr)|=(2r + 1)2l =
l∑

k=0

(
2r

2r + 1

)k

gk ; r = 1; : : : ; l+ 1: (4)

The entries of the linear system (4) constitute a Vandermonde matrix. Thus it fol-
lows from Lemma 1 that the system (4) can be solved in time polynomial on l and
|EHr|. But, as shown above, |E(G)|=gl=2, which means that PM(2; 3) is polynomially
reducible to PM(3).
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Fig. 1.

We now show that PM(3) is polynomially reducible to the problem IPReg of Fnding
the number of all (not only perfect) matchings in the class of regular graphs. Let G be
an arbitrary cubic graph and VG= {v1; : : : ; vn}. To each vertex vi, we assign the graph
Lir shown in Fig. 2 by deFning vi to be adjacent to the vertices ur1 and ur2 of Lir (the
sets VLir are assumed to be disjoint). The graph obtained is denoted by Fr; clearly,
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Fig. 2.

Fr is regular. By ak ; bk , and ck denote the number of matchings in Lik covering both
uk1 and uk2, only uk1, and neither uk1 nor uk2, respectively. The following recurrence
relations can be checked directly:

ak = 22ak−1 + 56bk−1 + 36ck−1; a1 = 24;

bk = 14ak−1 + 40bk−1 + 28ck−1; b1 = 16;

ck = 8ak−1 + 24bk−1 + 18ck−1; c1 = 10: (5)

By Nir denote the subgraph of Fr induced by the set of vertices VG ∪ VLir . Suppose
S ∈L(G). If vi is covered by the matching S, then S induces |L(Lir)| matchings in
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Nir , which number is equal to ar + 2br + cr . But if vi is not covered by S, then S
induces ar + 4br + 3cr matchings in Nir . Indeed, precisely |L(Lir)| of them do not
contain viur1; viur2, and all the other 2br + 2cr matchings contain only one of these
edges. Put mi = |Li(G)|. Then the total number of matchings in Fr is

|L(Fr)|=
n=2∑
i=0

mi(ar + 2br + cr)2i(ar + 4br + 3cr)n−2i :

Thus,

|L(Fr)|=(ar + 4br + 3cr)n =
n=2∑
i=0

mi

(
ar + 2br + cr

ar + 4br + 3cr

)2i
: (6)

We next prove that there exists a constant r0, which can be found in polynomial time,
such that di �=dj for all i; j ¿ r0, where

dr =
ar + 2br + cr

ar + 4br + 3cr
:

Since

2
(
1
dr

− 1
)−1

− 1 =
ar + br

cr + br
=

ar=br + 1
cr=br + 1

;

it is su.cient to prove that the sequences ar \ br and br \ cr are strictly decreasing for
r ¿ r0.
Let us introduce the following notation:

B=


 22 56 36
14 40 28
8 24 18


 ; xr =


 ar

br

cr


 ; x0 =


 24
16
10


 :

It can be directly computed that the characteristic polynomial of the matrix B=2 is
+3−40+2+63+−8, the eigenvalues of B are +1=76:72648; +2=2:995, and +3=0:27854,
the eigenvectors of B are

,1 =


 2:3576
1:6611
1


 ; ,2 =


−2:92146

0:3486
1


 ; ,3 =


 1:75144

−1:32221
1




and the coe.cients of the representation of x0 in the base of ,1; ,2; ,3 are -1 =
9:8564; -2 =−0:10937; -3 = 0:25297. Since

xr = Brx0 = Br
3∑

i=1

-i,i =
3∑

i=1

-i+r
i ,

i;

we have

f(r) =
ar

br
=

-1,11 + -2,21/
r + -3,310

r

-1,12 + -2,22/r + -3,320r
;

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



90 A.A. Chernyak /Discrete Applied Mathematics 135 (2004) 83–95

where ,j
i is the ith entry of ,j; /= +2=+1, and 0= +3=+1. Thus,

b2rf
′(r)

/r =
(
-2,21 ln /+ -3,31 ln0

(
+3
+2

)r)
br

− ar

(
-2,22 ln /+ -3,32 ln0

(
+3
+2

)r)
: (7)

Since +3=+2 ¡ 1=10, (7) implies the existence of an integer r1 such that sgn (f′(r)) =
sgn (-1-2,21,

1
2 ln / − -1-2,22,

1
1 ln /)¡ 0 for r ¿ r1.

Analogously, we prove that there exists an integer r2 such that r ¿ r2 implies
sgn (g′(r)) = sgn (-1-2,13,

2
2 ln / − -1-2,23,

1
2 ln /)¡ 0, where g(r) = br=cr . Putting r0 =

max{r1; r2} completes the proof.
So, we have proved that the entries of the system (6) consitute a Vandermonde

matrix for r = r0 + 1; : : : ; r0 + 1 + n=2. Therefore, due to Lemma 1, the system can be
solved in time polynomial on |EFr| and n. This means the polynomial reducibility of
PM(3) to IPReg since mn=2 = |E(G)|.
It remains to prove that IPReg is polynomially reducible to the RES problem in the

class of biregular graphs with the probability of vertex failure equal to 1
2 . To do so,

consider a regular graph G and its line graph F and put m= |VF |; n= |EF |. By Mk(F)
denote the set of vertex subsets of F covering exactly k edges; put tk = |Mk(F)|. By
the deFnition of line graphs, F is regular. Let S be a subset of edges in EG, and T be
the corresponding vertex subset in F . It can be easily checked that T ∈Mn(F) if and
only if EG\S ∈L(G). Thus, tn= |L(G)|. Add to F the n r-element sets Vir consisting
of new 2-degree vertices and join each vertex in Vir to the two end vertices of the ith
edge in F . Then we augment F with edges to obtain the complete subgraph on the
vertex set VF . Denote the graph obtained by Hr . Clearly, Hr is a biregular graph.
Let C(Hr) be the set of all connected induced subgraphs in Hr containing some

vertices in VF (there are nr = |⋃i Vir| more connected induced one-vertex subgraphs
in Hr). DeFne the mapping ’ :C(Hr) → 2VF such that ’(M) = VF ∩ VM and pick
an edge ei ∈EF . If ei is not covered by ’(M), then since M is connected, we have
VM ∩ Vir = ∅. On the other hand, if ei is covered with ’(M), then each subset of Vir

(including the empty one) can belong to VM . Consequently,

|’−1(Mk(F))|= tk(2r)k ; |C(Hr)|=
n∑

k=0

tk2rk

or

con(Hr)− nr =
n∑

k=0

tk2rk ; r = 1; : : : ; n+ 1

(recall that con(Hr) is the number of all connected induced subgraphs of Hr). Now
Lemma 1 implies the polynomial reducibility of IPReg to the problem of determining
the number of connected induced subgraphs in biregular graphs. But

con(Hr)
2m+nr = Pol

(
Hr;

1
2

)
;

which completes the proof of Theorem 1.
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Since each biregular graph is a box-threshold graph [13], Theorem 1 directly implies

Theorem 2. The RES problem is #P-complete in the class of box-threshold graphs
with the probabilities of failure equal to 1

2 for all vertices.

Since each biregular graph is pseudothreshold, we have

Corollary 1. The RES problem is #P-complete in the class of pseudothreshold graphs.

4. Polynomially solvable cases of the RES problem

A graph G with an ordered partition VG = A ∪ B of the vertex set is called a triad
and denoted by (G; A; B). The set of triads and the set of all graphs will be denoted
by P and I, respectively. The composition ◦ : P ×I → I is deFned as follows: if
VG ∩ VH = ∅; G ∈P, and H ∈I, then

(G; A; B) ◦ H = G ∪ H ∪ KA;VH ;

where KA;VH is the complete bipartite graph with the parts A and VH . Moreover, if
H ∈P then

(G; A; B) ◦ (H;C;D) = ((G; A; B) ◦ H; A ∪ C; B ∪ D):

The composition ◦ is an associative operation [12].
A triad (G; A; B) is called a net-graph if |A| = |B|; G is a split-graph with parts A

and B, and the set of edges obtained from EG by deleting all the edges from A is
a perfect matching in G. The vertices a∈A and b∈B in a net-graph (G; A; B) (or in
its complement) will be called corresponding if a and b are adjacent in G. Let =G be
the complement of G; then the triad =F = ( =G; A; B) is called complement to the triad
F = (G; A; B).
Now introduce some notation: On=(G; ∅; B); where n= |B| and B is an independent

set in G; Qn = (G; A; ∅), where n = |A| and A is an independent set in G; M is
the set of net-graphs and their complements; P4 = (G; A; B), where |A| = |B| = 2 and
(G; A; B)∈M; R is the set of complements of cycles and paths; P5 and C5 are the
path and the cycle on 5 vertices, respectively. Suppose (G; A; B) is a triad. Then uk(G)
is the number of k-vertex induced subgraphs whose each component contains at least
one vertex of A, and Pu(G; =p) is the probability for the components of the subgraph
induced by the remaining vertices to possess this property. Finally, pv is the probability
for the vertex v to remain, Pf(G; =p) =

∏
v∈VG(1− pv), and

Upol(G;p) =
n∑

k=0

uk(G)pk(1− p)n−k ; n= |VG|:

Lemma 2 (Chernyak [2] and Chernyak and Chernyak [4]). A graph G is pseudodo-
mishold if and only if G can be decomposed as

G = X1 ◦ · · · ◦ Xm ◦ Y1 ◦ · · · ◦ Yn ◦ Z; m¿ 0; n¿ 0;

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



92 A.A. Chernyak /Discrete Applied Mathematics 135 (2004) 83–95

where Xi ∈{Q2; Q1; O1; P4}; 16 i6m; Yj=(Fj; Aj; ∅); Fj ∈R; 16 j6 n; and Z ∈R∪
{P5}; this decomposition can be done in time O(|VG|+ |EG|).

Lemma 3 (Tyshkevich [11]). A graph G is matrogenic if and only if G can be de-
composed as

G = X1 ◦ · · · ◦ Xm ◦ Y1 ◦ · · · ◦ Yn

or

G = X1 ◦ · · · ◦ Xm ◦ Z;

where Xi ∈{Q1; O1} ∪M; 16 i6m; Y1 = · · ·= Yn = Y; Y ∈{Q2; O2}; and Z ∈{C5};
this decomposition can be done in time O(|VG|+ |EG|).

Lemma 4. Let G ∈P. Then

Rv = (G ◦ H; =p) = Rv(H; =p) · Pf(G; =p) + Rv(G; =p) · Pf(H; =p)

+Pu(G; =p)(1− Pf(H; =p)): (8)

Proof. Let F be a connected induced subgraph of G ◦ H . Then F = (F1; A; B) ◦ F2;
where F1 and F2 are induced subgraphs of G and H; respectively. If VF1=∅ (VF2=∅);
then F2 (F1) is a connected induced subgraph of H (G); and this situation is taken
into account in the Frst two addends of (8). Suppose that VFi �= ∅; i=1; 2: Then since
F is connected; each component of F1 must contain a vertex from A. In this case; F2
is an arbitrary nonempty induced subgraph of H . This situation is taken into account
in the third addend of (8). The lemma is proved.

Lemma 5. Let G ∈P; m= |VG|; and n= |VH |. Then

ck(G ◦ H) = ck(H) + ck(G) +
k−1∑
i=1

ui(G)
(

n
k − i

)
; 16 k6m+ n: (9)

Proof. Due to Lemma 4; we have

Pol(G ◦ H;p) = Pol(H;p)(1−p)m+Pol(G;p)(1−p)n+Upol(G;p)(1− (1−p)n):

Using this fact and the equality

1− (1− p)n =
n∑

i=1

(
n
i

)
pi(1− p)n−i ;

we obtain (9). The lemma is proved.

Lemma 6. If A is a clique in (G; A; B); we have
Rv(G ◦ H; =p) = Rv(H; =p) · Pf(G; =p) + Rv(G; =p);

ck(G ◦ H) = ck(H) +
k∑

i=1

ci(G)
(

n
k − i

)
; 16 k6m+ n:
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Proof. If A is a clique in the triad (G; A; B); then each disconnected induced subgraph
of G has a component disjoint with A. Therefore; Pu(G; =p) = Rv(G; =p); and the Frst
equality follows from Lemma 4. The second formula follows from the equality

ck(G) +
k−1∑
i=1

ci(G)
(

n
k − i

)
=

k∑
i=1

ci(G)
(

n
k − i

)
:

Lemma 7. Suppose (G; A; B) is a triad. Then B= ∅ implies

Rv(G ◦ H; =p) = Rv(H; =p) · Pf(G; =p) + Rv(G; =p) · Pf(H; =p)

+ (1− Pf(G; =p))(1− Pf(H; =p));

ck(G ◦ H) = ck(H) + ck(G) +
(

m+ n
k

)
−
(

m
k

)
−
(

n
k

)
;

and A= ∅ implies

Rv(G ◦ H; =p) = Rv(H; =p) · Pf(G; =p) + Rv(G; =p) · Pf(H; =p);

ck(G ◦ H) = ck(H) + ck(G):

This lemma follows directly from Lemmas 4 and 5.
In Lemma 8, all indices are equal to 1; : : : ; n modulo n.

Lemma 8. Let H ∈R and VH={1; : : : ; n}; where n¿ 5; and the vertices be numbered
so that the vertices i and i + 1 are not adjacent whenever 16 i6 n. Then

Rv(H; =p) = 1−
l∑

i=1

pipi+1pi+2

∏
j �∈{i; i+1; i+2}

(1− pj)−
k∑

i=1

pipi+1

∏
j �∈{i; i+1}

(1− pj);

ck(H) =
(

n
k

)
; k �=2; 3; c2(H) =

(
n
2

)
− k; c3(H) =

(
n
3

)
− l;

where l= k = n if =H is a cycle and l= n − 2; k = n − 1 if =H is a path.

Proof. Let F be a disconnected induced subgraph of H . Since the degrees of vertices
in =F are at most 2; the components of F have one or two vertices. Moreover; since
=F does not contain triangles; there are at most two such components. If F consisted
of two components having two vertices each; then =F would contain C4 as an induced
subgraph; which is impossible. Thus; either VF = {i; i + 1} or VF = {i; i + 1; i + 2}.
The rest of the proof is obvious.

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



94 A.A. Chernyak /Discrete Applied Mathematics 135 (2004) 83–95

Lemma 9. Suppose (G; A; B) is a net-graph with A={1; : : : ; n} and B={n+1; : : : ; 2n}
such that the vertices i and n+ i are corresponding for all 16 i6 n. Then

Rv(G; =p) =
n∏

i=1

(1− (1− pi)pn+i)−
2n∏
i=1

(1− pi) +
2n∑

i=n+1

pi

∏
j �=i

(1− pj);

Rv( =G; =p) = 1−
2n∏

i=n+1

(1− pi)−
n∑

i=1

pipn+i

2n∏
j �=n+i;
j=n+1

(1− pj);

c1(G) = c1( =G) = 2n

(10)

and for all k ¿ 1;

ck(G) =
n∑

i=0

(
n
i

)(
i

k − i

)
; ck( =G) =

(
2n
k

)
−
(

n
k

)
− n

(
n − 1
k − 2

)
:

Proof. Let F be an induced subgraph in G. Then F is connected if and only if either
|VF |= 1; or VF �= ∅ and the implication

(n+ i∈VF)⇒ (i∈VF);

holds for each vertex i∈A. The probability of this event is deFned by (10). So; putting
t = p=(1− p); we have

Pol(G;p) = (1− p+ p2)n − (1− p)2n + np(1− p)2n−1

= (1− p)2n((t2 + t + 1)n − 1 + nt)

= (1− p)2n


 n∑

i=0

(
n

i

)
ti

i∑
j=0

(
i

j

)
tj − 1 + nt


 :

Thus; for every k ¿ 1;

ck(G) =
∑
i+j=k

(
n
i

)(
i
j

)
:

Now let F be a disconnected induced subgraph in =G. Since any two vertices in B
constitute a dominating set in =G; we have |VF ∩B|6 1. If; in addition; n+ i∈VF ∩B;
then i∈VF ∩ A. The rest of the proof is obvious.

Theorem 3. For the classes of pseudodomishold and matrogenic graphs the RES prob-
lem can be solved in linear time.

Proof. Let a graph G be an either pseudodomishold or matrogenic. Due to Lemmas 2
and 3; we can decompose G as G =Hr ◦ · · · ◦H2 ◦H1 in O(|VG|+ |EG|) time; where

Hi ∈{Q2; Q1; O1; O2; P4; P5; C5;M;R}; 16 i6 r:

Moreover; if i¿ 2 then Hi = (Fi; Ai; Bi) and either Ai is a clique; or Ai = ∅; or else
Bi= ∅ (all these cases were considered in Lemmas 6 and 7). Due to Lemmas 8 and 9;
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the value of Rv(Hi; =p); 16 i6 r; can be computed in time linear with respect to the
order of Hi (if |VHi|6 5 then Rv(Hi; =p) can be computed directly from the deFnition).
But then due to Lemmas 6 and 7 the values Rv(Hj ◦ · · · ◦ H1; =p); 26 j6 r; can be
computed successively in time linear with respect to the order of G. Theorem 3 is
proved.

Since all matroidal graphs are matrogenic, and all domishold and threshold graphs are
pseudodomishold, Theorem 3 implies the following corollaries:

Corollary 2. The RES problem can be solved in the classes of matroidal and domish-
old graphs in linear time.

Corollary 3 (Stivaros [9]). The RES problem can be solved in the class of threshold
graphs in linear time.

Theorem 4. The coe:cients of the reliability polynomial of a pseudodomishold
(matrogenic; domishold; matroidal; threshold) graph G can be found in O(|VG|3)
time.

The proof of Theorem 4 is similar to that of Theorem 3.
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