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SUMMARY 

The equations of motion of a uniform swept 

box with stringers and ribs are deduced. 	For the 

case of vibrations of a cantilever they are transformed 

into integral equations, an approximate method of 

solution of which is indicated. 
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NOTATION 

PXYZ 	 Oblique axes of reference (Fig.1). 

Up V, W 	 Oblique components of displacement. 

p(x,t), q(x,t) 
	

Oblique components of rotation of box 
sections about Ox, Oy respectively. 

a. 

	

	 Angle between the axes Ox, Oy (complement 
of angle of sweep). 

W(x,t) 	 Displacement of centre of box sections 
in Oz direction. 

. 	. 
u, v, etc. Time derivatives of u, v, etc. 
U9 V, etC. 

4(x,y,z) 	 Mass distribution of swept box. 

T 	 Kinetic energy of box. 

Length of swept axis of box (Fig.1). 

OX, OY 

	

	 Reference axes in Oxy plane, perpendicular 
to Oy and Ox axes respectively. 

L 19 M 1 	 Oblique components of couple about OX, OY 
respectively. 

1 2 j 	 Unit vectors in Ox, Oy directions. 

1 1, j 1 	 Unit vectors in OX, OY directions. 

U 	 Potential (strain) energy of box. 

C.. 	 Elastic constants given by equation (100) ij of Ref.1. 

171 i 	 Constants defined by (2.10). 

L = T-U 	 Lagrangian function of the box. 

I y  (x) , I z  (x ) 	Moments of inertia of box sections. 

m(x) 	 Mass per unit length of box. 

rl (x ) 	 Position of centre of gravity of box sections. 

t 	 Time 

P(x), Q(x),12(x) 	Amplitudes of normal vibrations. 

W2n 	 Frequency of vibration. 

ky , kz 	 Radii of gyration corresponding to 1 y , I z . 

/rnyt 2 Frequency parameter. 

f.(E,x) 	 Kernel functions given by (4.10). 
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1. Introduction 

The use of swept wings in high speed aircraft 
has naturally produced considerable interest in the dynamic 
behaviour of such structures. 	As far as complexity is 
concerned, the static and dynamic problems arising out of 
the sweeping of wings may well be compared with the problems 
encountered in high speed aerodynamics. 	Although the trend 
towards low thickness wings for high speed aircraft may lead 
to the treatment of wings as flat plates for the purposes of 
dynamic and aero-elastic investigations, it is of interest 
to consider the present problem as it should facilitate 
assessment of the effects of such a simplifying assumption 
on frequencies and modes of vibration, flutter characteristics, 
etc. 

In this paper Hamilton's Principle is applied to 
deduce the equations of motion and relevant end conditions 
for a uniform swept box, reinforced by stringers and ribs 
in a manner typical of aircraft wings. 	The expression for 
the potential energy, forming part of the Lagrangian function, 
is obtained using generalised curvature-bending and twist-
torque relations deduced in ref.1. 	This reference and the 
present report use throughout oblique coordinates (Fig.1) 
and the same notation, wherever possible. 

The equations of motion, obtained thus, are 
integro-differential equations in terms of the vertical 
displacement and the twists about two oblique axes of the 
box sections (Fig.1). 	Using the boundary conditions, 
they are transformed into integral equations in terms of 
certain derivatives of the above quantities. 	Finally, 
an approximate method of solution of these equations by 
reduction to a finite number of linear equations is indicated. 

2. Deduction of the Lagrangian Function 

First the kinetic energy of a swept box will be 
Obtained, assuming in conjunction with ref.1 that p,  q 
and W are functions of x and t only. 	Referred to 
the oblique axes Oxyz (Fig.1), the displacements of a 
point P(x,y,z) are 

u = z(p cot a + q cosec a) 

v = -z(p cosec a + q cot a) 

w = W + py sin a 

and thus the components of velocity are 

z(IS cot a + k cosec a) 

= -z(p cosec a + q cot a) 

itt7 	y sin a. 

  

(2.1) 

(2.2) 

  

  

/The . 
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The square of the modulus of the velocity vector is then 

.2 	 • 2 
u + 	cos a. + v + w.2  

• 2 	• 	 1s2 sin2 a  + _ • z2 (p + 2pq cos 1 + C3,2) + y2 2yp W sin a + 

	 (2.3) 

and hence the kinetic energy of a point mass 4(x,y,z)dx dy dz 

4(x,y,z) z 2  (p 2 + 215(i cos a, 4 42 )  + y21.3, 2 sin2 a,  + _y  • p sin a + 1k2  dx dy 
2 	L. 

Integration of the last expression over a cross-section 
x = const. gives the kinetic energy of a cross-sectional 
element of thickness dx of the swept box. 

dT = -14'1
Y 
 (x) (15 2 + 2 -6d cos a + 4 2  ) + 1 z 	- (x)esin2a 

1..  

+ 2m(x)11 (x) -0* sin a + m(x)*21dx, 	 (2.4) 
i 

from which follows the total kinetic energy 

T 	dT. 
JO 

 

(2.5) 

 

In order to deduce an expression for the potential 
energy, consider a uniform swept box acted on by a uniform 
moment (i.e. neglecting shear), 

L 1 i 1 	+ M 1 j 1 . 

The corresponding relative displacement for an element dx 
is 

dpi + dqj 

and hence the strain energy 

n 	1E 	la dU = EL 1 i 1 + M 1 j 1 ). (dpi 	 si
2 
 a  dqj) - 	(L 1 	MI dx 

(2.6) 

since obviously 	(Fig.1) 

j. j i 	= 	sin a , 

Thus the total potential energy 

U 	= 	dU . 
4 0 

By equation 	(99) 	of ref.1, 

/la\ 	c  
/ 	dx 	 C12 \ 

la 
dx 12 	̀'22 

i. j 1 

of a swept 

L 1 

\\\Iv/  
1 	/ 

r 

= 	i 1 . j 	= 	0. 

box is 

	 (2.7) 

W 1 	q = - cosec a-c dx 

	 (2.8) 

/where ... 
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where the C. . are known constants given by equation (100) ID 
of the same reference, and the last equation has been 
integrated taking into account the neglecting of shear 
deflections. Inversion of (2.8) gives 

IL 	/ ( 	) 	22 

M 1 / -172 

, 	• 
- r12-112  dx 

dx f 
r a 11/  

 

(2.9) 

 

where 
C.. 	r, 	c II 	c i2  rii . 

0 12 	C22 
1 
I  

.1(2.10) 

Substitution from (2.9) in (2,6) and then in (2.7) leads 
to the total potential energy 

d 
U = i 

r 

 sins rp22 dx (—R) 2  - 2 	1-a 
12 dx dx 	1
r! + r

1 dx 
 (+ad ) 2  1 dx. 

Jo 	
(2  11) 

Using (2.5) and (2.11) the Lagrangian Function 

L = T - U   (2.12) 

can now be written down. 	However, before proceeding to 
the application of Hamilton's Principle to (2.12), it will 
be of interest to discuss the character of some of the 
Quantities appearing in (2.4) in connection with the 
theoretical background of (2.8). 

The equations (2.8) have been deduced in ref.1 
assuming a uniform rectangular box with the swept axis Ox 
passing through the centres of the cross-sections x = const. 
Nevertheless the quantity 11(x), the position of the centre 
of gravity of these cross-sections has been retained in (2.4), 
in order to allow for the addition of masses which, while not 
affecting the elastic properties of the box, may change the 
value of n, and of course also of I 	and I. 	It is 
Obvious that in the absence of additional masses 

1r1(X) 	0. 

Finally it should be noted that the equation 

q = 
dW - cosec a  dx 

in (2.8) implies that only two of the three functions 
p, q, W are independent, a fact which has to be taken 
into account in the application of Hamilton's Principle. 

/3. Hamilton's 
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3. Hamilton's Variational Equations of Motion 

By Hamilton' s Principle 

2 

	

L dt = 0   (3. 1 ) 
t 1 

provided that for t = t 1 t = t 2 

	

Op = OW = 0   (3.2a) 

where the latter can be seen by (2.8) to imply 

	

q = O.   (3.2b) 

In addition there are the following clamped end conditions 

p(0) = 0, 	q(0) = 0, 	W(0) = O.   (.3.3) 

Substituting in (3.1) for L from (2.12) and using (3.2) 

t 2 
dt 

tl 	0 

  

I [P013+(ci5i)+ ISO ci) cos a+ . 	. 	• I z sin2 
 a p p 

 

iD 	-b V:r) m ri sin g+ 	3 V1,1  - sin atf3 2p' 	- 	2  (q'Op + p l a 

q  qij dx  

rt 2 	P.-r- 
dt 	I 	p 	p + P 3 q) cos a + 

1 	0 

+ z sinc-

0  

	

a pop + 	p + 	W) 	sin a + m VI/ W 

- sin a r22 P"  P T  12( q "°  P + P "3 q) +r11 q "(5 q} 
-I -- 

sin a 1 -n 22 Pt 3 P - "ri 2 (ci t3  P + P ' 6  q' ) 	leo q 

dx 

= O. 

 

(3.4) 

 

Choosing Op, Oa as independent variations, one 
finds immediately that for 0 X 

22P"  r12q" 	in T1 — 1 z  sin a p - Iy 	cosec a ± q cot a) = 0 

	 (.3.5) 

and 

22 P T (4-)  - r12 q' (41)  = o.  	(3. 6) 

Since the coefficient of Op must disappear. 

When dealing with the remaining terms of (3.L1.), 
OW will be transformed into 5q using (2.8). 	By the 
help of the last condition of (3.3), the following trans-
formation of the terms involving OW is possible: 
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)-e 	 t 
0EW + sin a, ill ri 15)6 VC! dt: = 	P

• 

(E,t)OVIT(E,t)dE 

0 	 0 

k = 
 j

F(E,t) dE j nidx 
O 0 

= I a V dx J 
 F(E,t) dE 

0 	x 
1 	 i 

= f 	 M (- sin a 3q)dx 	Ft)(1 . 
O cx 

(3. 7) 

Hence, substituting from (3.7) in (3.4), 

In   2 p" 	In  q" + y ( cot 0.15 	cosec a En_ 	sin 0,mri i;11, = 0 
11 

	 (3.8) 

T112 P i  (-e) - 1-'11 q'(-e) = 0 . 

 

(3. 9 ) 

 

The boundary conditions (3.5) and (3.9) have 
been chosen to satisfy Hamilton's Principle at the free 
end of the cantilever. 	The equations (3.5) and (3.8) 
are the desired equations of motion of a swept box; 
they are supplemented by the relation holding between 
q and W, given in (2,8), so that there are actually 
three equations. 	Before giving an interpretation of 
the various terms appearing in these equations, they 
will be transformed into integral equations in the next 
section. 

4. Transformation of the Equations of Motion 

Integration of t3.5) and (3.8) with respect to 
x from P.: to 	using (3.6) and (3.9) gives 

	

I2p' (4,t)-7 2q 1  (,t) = 	fm(x),-,(x)W(x,t)+ I z (x)sina -6(x 9 t) 

	

+ I 
Y

(x)(y) (x,t)cosec a, 	Fi(x,t)cot Idx 

	 (4,1 ) 

-r12 pi 	t)-1- 	q' 	t)= 	tI (x) (cot a (x,t)+ cosec a V, 	11-` 1 

rf 
(rn( )W( y t )+sin a m(E)ri  (E)ii(",t)dEldx. -

jx 
 

	 (4.2) 

Comparing the equations (4.1) and (4.2) with 
(2.9) leads immediately to the conclusion that the right 
hand sides of (4.1) and C4.2) are respectively equal to 
L 1 and M 1 of (2.9). 	A further reference to (2.1) 

/suggests 
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suggests that the terms under the integrals are rates 
of change of moment of momentum and of momentum of a 
cross sectional element of thickness dx. 

- Zir) dydz 

7 = f p,midyclz 

= ff w dydz 

which on consideration of the equilibrium of such an 
element of the box will be found to be related to L1 
and M1 in the manner suggested by (4.1) and (4.2). 

The equations (4.1) and (4.2) are integro-
differential equations which are easily transformed 
into integral equations using (3.3). 	However, before 
doing so, in order to simplify the further treatment, 
normal vibrations and absence of additional masses 
(see end of section 2) will be assumed, i.e. 

p(x,t) = P(x)sinKt, q(x,t) = Q(x)sin)<t, W =n(x)sinXt, 

	 (4.3) 

rl (x) 	D   (4.4) 

substituting (4.3) and (4.4) in (4.1) and (4.2), and 
inverting the order of integration in (4.2), 

re 0  
2-7.22p , w - -.,x2 T-..,12Q! (0  = 	(k;sin  _ 

P (X )± k y2  (x)coseca+Q (x)cotcldx 

	

4   (4.5) 

Cky2 (p (x)cota + Q(x)coseca -(x-E)S4x)p.T. 

	 (4.6) 

where 

2 	 2 	2 	1 
	 (4.7) = m k I

z 
 = m k

z 	
flA 

m3 

by (3.3) 

P(0 ) = .Q(0 ) = Q(0 ) = 4-V(0 ) = 

hence 

P(x) = 	 pr(OdE, 
0 

Q(x) = 	V(CriE 
0 

sE fi. 
 

.Q(x) = j
x 
 dE 	"01)dri = 

0 	o 0 
x--rac2."(n ) dri -c os ecc,j(x- E)Q t(E)dE, 

0 

where in the last step use has been made of (2.8). 

/Introducing .. 
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Introducing these last expressions in (4.5) and (4.6), 
and inverting the orders of integration 

r2 22Pr 	
Qi(x) tcl," ()f 1 (r,x)+ V(E)f 2 (E,x).1dE 

(4. 8 ) 

.42 2 Fr 
(x )  + 
 >12 17 	( x 	

( ) f 
	

+ 	(r)f 4 (Eyx)j 

	  (4.9) 

with 0 X 

f (r x) 1 - ' 	f 	x) 	f 3 	
,x) 2 -' 	 _ (-e - - 2 - 2 k z

2  sin + k2 cosec a 	ky cota 	ky cota 

f 
	

x 
) 

	

{k 2 cosec a+ co sec a (r1-x) (11-01 dry 

(4. 1 o) 

where t,x = max(E,,x). 

The equations (4.8) and (4.9) represent a system 
of simultaneous homogeneous Fredholm equations of the 
second kind. 	An approximate method of solution of these 
equations will be indicated in the next section. 

5. A Method of Solution of the Integral Equations 

The method of solution, to be suggested here, 
has been applied to similar problems in references 2, 3. 
As it has been presented there in great detail it will 
be sufficient to concentrate attention here on a modifi-
cation of this method which, it is hoped, will reduce 
the amount of computation involved as well as improve 
the accuracy of the results obtained. 	However, before 
going any further, it should be noted that the method of 
solution given in references 2, 3 is one of many which 
could probably equally well be applied. 

The principle of the method of solution in the 
above mentioned references is to replace the integrals in 
the integral equations by finite sums. 	For this purpose 
the range of values of the independent variable, in the 
present case 0 4= x -e is subdivided into n equal 
intervals. 	The integrals over each of these subdivisions 
are then replaced by the product of the values of the 
integrand at their mid-points and the length of the 
interval -16/n. 	By giving the independent variable of 
the converted integral equation successively the values 
corresponding to the mid-points of the subdivisions, one 
obtains a set of n simultaneous linear equations in 
terms of the approximate values of the solutions of the 
integral equation at the mid-points. 

It follows clearly from the last paragraph that 
the choice of the mid-points of subdivisions in the 
reduction of the integrals is arbitrary, and that the 

/degree ... 
• 



degree of accuracy of approximation to the solutions of 
the integral equation will depend entirely on the suita-
bility of this choice. 	As a result of unpublished work, 
it was found that in the case of vibrations of a uniform 
cantilever the use of the mid-points as "reference points" 
necessitated the introduction of a comparatively large 
number of degrees of freedom, i.e. subdivisions, to ensure 
satisfactory accuracy for a few of the lower frequencies. 
Hence an attempt was made to develop a method by which 
more appropriate "reference points" could be found. 	In 
this way it was hoped to reduce the number of simultaneous 
equations and at the same time to improve the accuracy of 
the solutions. 

This method, which proved to be very satisfactory 
in the problem mentioned above, assumes the knowledge of at 
least an approximation to one solution of the integral 
equation. 	In the case of the vibrating cantilever, a 
polynomial was used as an approximation to the fundamental 
mode. 	Using this approximate solution, the following 
equatlons determining values x.. of reference points in 
the i -6 h subdivisions may be wriAien down: 

t ) ii- ± 

t 
4 -(i-1) n 

where f is the kernel and g the approximate solution 
of the integral equation. 	Once the x.. have been found, 11 
their suitability can be checked by substitution in the 
equations 

f 	g(E)dr, = 	f 	 g(xi j ) 
n 	10 11 

J r1 0-1 
assuming in the first place x i . = i ii . 	In the case of 
the cantilever it was found the.? the xij varied very 
little for j = const. , i = 1,2,...,n. 

The use of the modified method of solution in 
the problem treated earlier in this paper is ohvious. 
It is intended to apply it to the case of a swept box, 
already built, and to compare the theoretical and ex-
perimental results. 

f(,x..11 )g(E)dE = n f(x. 	
x. )g(x 	) 	i = 1,2,... ,n 
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