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Abstract

Fractional differential equations, particularly fractional partial differential equations (FPDES)
have many applications in areas such as diffusion processes, electromagnetics, electrochemistry,
material science and turbulent flow. There are lots of work for the existence and uniqueness of
the solutions for fractional partial differential equations. In recent years, people start to consider
the numerical methods for solving fractional partial differential equation. The numerical methods
include finite difference method, finite element method and the spectral method. In this
dissertation, we mainly consider the finite element method, for the time fractional partial
differential equation. We consider both time discretization and space discretization. We obtain
the optimal error estimates both in time and space. The numerical examples demonstrate that the

numerical results are consistent with the theoretical results.
Keywords:

e Fractional partial differential equations.
e Finite element method.
e Caputo fractional derivative.

e Riemann-Liouville fractional derivative.

This work is original and has not been previously submitted for any academic purpose.
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Chapter one Introduction

Chapter 1

Introduction

Through the use of four sections this introductory chapter aims to highlight the research process
in this dissertation. Section 1 and 2 of this chapter review and discuss the aims and objectives
which have underpinned the research process. Finally, Section 3 outlines the organization of the

dissertation undertaken.

1.1 Aim of the dissertation
The primary aim of the dissertation is to:

e Promote an engineer’s ability to use fractional calculus as a modelling Instrument.

1.2 Objectives of the dissertation

This dissertation is a discussion of fractional partial differential equations and the numerical
methods used to solve these equations. The evaluation of derivatives and integrals where the
order of the derivative is not an integer is described as fractional calculus. Through a discussion
of the different types of equations found in fractional calculus the author aims to provide an
overview of the topic before moving on to the analysis of the finite element method for solving
time fractional partial differential equations. From the discussion of the presented analysis the

author will then identify potential areas of future work.



Chapter one Introduction

In this dissertation we shall:-
- Review the history of fractional calculus including some of the analytical methods used
to solve the fractional differential equation
- Discuss the existing numerical methods for solving fractional differential equations.
- Introduce the standard finite element method for solving partial differential equations.

- Consider the finite element method for solving fractional PDEs.

1.3 Organization of this dissertation

In chapter two we describe the history of fractional calculus, and we present a brief survey of the
possible uses of fractional differential equations. The chapter provides specific examples from
recent applications enable us to understand the diversity of fields in which fractional calculus can
be of use.

In chapter three we explain the tools and methods involved in solving fractional ordinary
differential equations.

In chapter four we review two different algorithms for the numerical solution of fractional
ordinary differential equation to provide the necessary background to enable a discussion of
fractional Partial differential equations.

In chapter five we explore a background of using finite element method to solve parabolic partial
differential equations.

In chapter six we consider the finite element methods for solving time fractional partial
differential equations. We obtain the error estimates both in time and space. The numerical
examples show that the numerical results are consistent with the theoretical results.

In chapter seven we summarize the dissertation, and give our conclusions.
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1.4 Summary

A finite element method for time fractional partial differential equations is necessary to promote
an engineer’s ability in their work. This chapter explains the aim and objectives of the
dissertation and then highlights the organization of the research by providing brief notes chapter-

by-chapter.
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Chapter 2

Fractional Calculus

Aim

We discuss the historical background for fractional calculus. The discussion will cover fractional
integration and differentiation and provided two definitions of the fractional derivatives. The
existence and uniqueness of the fractional differential equation will be demonstrated and the

numerical methods for solving fractional differential equations are discussed.

2.1 A brief History of factional calculus

It is from a letter by G.F.A. de I’Hopital in 1695 to G.W. Leibniz after created the notation
d"y/dt", that birth of fractional calculus is cited as it triggered a response which the
development of this aspect of mathematics responded [18] to I’Hopital’s question of “ what
would be the result if n = 1/2?” Leibniz identified that there was an “apparent paradox from
which one day useful consequences will be drawn” [18]. As it can be seen from various
mathematical discussion writers such as Ross [19] and Gorenflo attribute this letter as the
starting point of fractional calculus. It was later in the 18" century when L. Euler (1730) found
that the evaluation of the derivative of the power function for non-integer order had a role to play
in his Gamma function. Gorenflo and Mainardi assert that there were several important
contributions from the 19" to the middle of the 20" century who further developed the

knowledge and understanding of Fractional Calculus. Many mathematicians have experimented
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in Fractional Calculus including Fourier, Euler and Laplace [4] .These mathematicians used their
own definitions and methods to support the concept of a non-integer order of an integral or
derivative. The famous popularised definitions are from Reimann-Louville and Griinwald-
Letnikov. However it has been the last century which has seen the most intriguing developments
in engineering and scientific applications. In some cases mathematics has had to change in order
to meet t;le requirements of physical reality. I. Podlubny [4] advises that there are numerous
applications of fractional calculus to dynamical systems in control theory, such as fractance for
electrical circuits, voltage divider generalisation, viscoelasticity, electrochemistry, fluid flow
tracing, biological modelling of neurons and in electromagnetism the use of fractional-order

multiples. It seems that Leibniz’s response over 300 years ago appears to be at least half right as

there are numerous applications and physical manifestations of fractional calculus.

While Leibniz’s paradox is Still present in n = 1/2, resulting in the physical meaning of
equations that are difficult (arguably impossible) to grasp. The definitions and explorations are
no more rigorous than those of their integer order counterparts. Laplace in 1812 defined a
fractional derivative in terms of an integral while S.F. Lacroix [3] in 1819 provided the first
defined expression of a fractional derivative. Lacroix [3] stated for y(t)=t™, with m a positive
integer, expressing its nth derivative in terms of the Legendre Symbol for Euler’s Gamma
function. Hence we have

dny(t):dntm_ m! m-n__Tm+1) ;o pn
atm at®  (m-n)! r(m—-n+1)

, mz=n.

Lacroix then set m =1 and n=1/2 thus producing the derivative of order half of the

function t:
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al’?t_ @) .17z
dtl/2 r(/2)

By expanding I'(2) and I'(3/2), the equation is then solely in terms of I'(1/2). Using Euler’s
reflection theorem like Lacroix [3] we now have I' (t)I" (1-t)=n/ sin t where t < 1, this equation

determines I'(1/2) and thus we have Lacroix’s result:

et _ 2 g
dtt/2 m Vm'

J.B.J Fourier (1822) also commented on derivatives of arbitrary order [17]. But unfortunately

\

none of these mathematicians gave any application of fractional calculus as it was not until
N.H.Abel (1823) [11]. Abel [11] provided the first practical use of fractional calculus when he
considered the tautochrone problem. The tautochrone problem is used to determine the shape of
a fiction-less wire within a vertical plan and calculate how long it takes for a bead to slide along
this wire to the lowest point of the wire that is independent of the start point [11]. In his
consideration of the tautochrone.problem Abel [11] deduced a fractional integral eqliation that he
then converted into fractional differential equation. The fractional differential equation was then
manipulated by Abel [11] so that the fractional differential operator was on a constant. By

applying Lacroix’s method to a known result of the fractional derivative of a constant Abel [11]

adroitly calculated the curve of the tautochrone.

Joseph Liouville [13] was inspired by Abel’s solution to start the first major study of fractional
Calculus. From 1832 onwards Liouville [13] presented several papers and provided a definition
of a fractional derivative based on an infinite series. However there is a drawback of this

definition as the order of the fractional derivative can only have values for which the series
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converges. Liouville [13] addressed this issue by developing another definition by regarding and

implementing a definite integral related to Euler’s Gamma integral.

[ed] _ _ _ e} _ _ I'(a
[Fusletugy =t=a [©xa-1 =% gy = L@
4 0 ta

Taking the first and last expressions Liouville [13] formed the equation

-a— 1 (®_a-1 ,—x
t I"(a)fO x® 1 e™¥dx .

From this equation Liouville now took the ath derivative of both sides assuming that
d*(e®) /d t*=a%e* ,where « € R,, and derived his second definition:

d“t'“: a —a_ D (a+a) | _q_q
e D%t E— t .

The ordinary differential equation, d™y/dt™=0, according to Liouville [14] has the
complementary solution y = ¢y + ¢yt + ¢; t2 + -+ + c,_1t™ 1. It is then argued by Liouville
that the arbitrary order equation d%y/dt* = 0 should have a corresponding series so‘lution.
Ignoring the trivial case ¢ = 0which gives a constant as the solution similarly the factional order

derivative should also be zero providing a contradiction.

Later using the Lacroix method, W.Center (1850) demonstrated that the fractional derivative of a
constant is not zero [3]. It was not until the end of the nineteenth century that this situation was
resolved when consensus was reached by mathematicians for a robust definition of fractional
derivative as part of the general theory of fractional operators [3].

As part of the general theory of fractional operators the new definition of fractional derivatives
created a reconciliation of Lacroix classic-oriented approach with Liouville’s methods. G.F.B.
Riemann, as a student in 1847, developed an alternative theory of fractional operators utilising a

Taylor series generalisation. However this expression for fractional integrals was not released
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until after Riemann’s death in 1876. Davis [12] describes Riemann’s expression for fractional

integrals.

According to the efforts of these early Mathematicians of the late 19" and 20" centuries they
were able to improve constructive definitions of both the fractional calculus and to find methods
for solving various types of equations. Weilbeer [6] in his thesis of 2005 illustrated the

development of fractional integral and derivative.

2.2 Fractional integration and divfferentiation

This section of the chapter is now divided into a number of sub-sections. Each sub-section will
deal with one set of operations starting with the Rienmann-Liouville operators for fractional
differentiation and integration,

2.2.1 The Riemann-Liouville fractional calculus

The Riemann-Liouville fractional integral

Definition 2.1 ([15] pp.33)

The Riemann-Liouville fractional integral of order 0 < a < 1, is denoted by the expression:

1

BDF o f ()= [o(t = D f (Ddr. @.1)

r(a)

The Riemann-Liouville fractional derivative
Definition 2.2 ([15, pp.35])

Let a > 0, the Riemann-Liouville fractional derivative is defined with n — 1 < a < n by,

1

BDEf ()=D" [DE"f()]=D" —— [(t — )" *"* f(t)dx, (22)

n-a)

an ..
where D" = T denotes the standard nth derivative.
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Example 2.1 ([4, pp.56]). Let f(t) = (t — a)* for some k > —1 and a > O then,

r(k+1)

_ k-a
e (&~ @F (2.3)

RDEf(E) =

The derivation moves in the direction to:

1

EDE((t - ) ==

f;(r —a)* (t — 1) % dr.

Let T = @+ u(t — a) and using the definition of Beta function.

BDE (- @) = 2o (e— @) @k [luk (1 - w) *tdu

1
Ir'(-a)

f(—a, k+1)(t —a)“.

[(—a)T(k+1)

Where f is a Beta function, and B(—a,k + 1) = ATEEpOR

Hence we get

Rpa((t — g)k) = LHFD o Nk-a
oD ((t — a)*) = rkii-a) (t—a)~“.

If we substitute a = 0, then<he Riemann-Liouville fractional derivative of f(t) = t* is as

follows:

Rnark r(k+1) k—a _ k!
aDrt™ = r(k+1-a) T rk+l-a) 2.4)

2.2.2 The Caputo fractional derivative

M. Caputo [10] defines the Caputo fractional derivative $Dff f(t) := DE[D"f(t)] for
n —1 < a < n .We can define the Caputo fractional derivative of order a.
Definition 2.3

The Caputo fractional derivative of order & > 0 is takes the form:

1

P fat(t — )" * D" f(r)]dr, wheren—1<a<mn,
tha f()= (2.5)

dn
mf(t), where a = n.
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The relationship between the Caputo derivative and the Riemann-Liouville derivative is the
following, K. Diethelm [7],
Theorem 2.1 Let @ > 0, Assume that f is such that both EDZf and (D f exist.

Then,

D f(t)= RDEf(E) — $rod LD (¢t — q)k-@, (2.6)

Proof: Note that, Diethelm [7],

SDE £(8) = RDEF(E) — Bpz3 L@ Rpe[(- ~a)¥](0).

By example 2.1, we have

D f(t) = BDEF(E) — Nt (¢ — @<, @7

Theorem 2.2 Let a >0,n—1 < a < n, then,

n-1

@y = Rpa f%(a) _a
DEFR) = EDEfF() — =Om (t —a)¢
= EDFIf () — Tpalf; al(®)].
Here Tes[fs al(O=T32322 (6 - @) (23)

Denotes the Taylor polynomial of degree n-1 for the function f, centred at a; in the case
n = 0 thus we define T,,_;[f; a] == 0.

Proof: from (2.7) we have

n-1

(x)
DEFO = WEO ~ Y e = )
=0
By referring to equations (2.4) and (2.8), we get
SDEF®) = EDELf ) — Tposlf; al ()] - (2.9)

10
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Note that if a = 0, then

oDEf() = SDELf () — Tralf; 01(0)] (2.10)
where To_11f;0](t) = Zﬁ;é@ tk, n—1<a<n. 2.11)

When 0<a<1 n=1, wehave

N 6DEF) = BDELF () — F(O)]. 2.12)

2.3 Fractional differential equations

The following subsection of this chapter will discuss the existence and uniqueness properties of
fractional differential equations. The definition and proofs will be restricted to initial value
problems and furthermore the assumptions without loss of generality will be that the fractional
derivatives are developed at the point 0. As a consequence from now on ¥D& and D& will be
used as symbols for the Riem‘e}nn-LiouVille and the Caputo fractional derivatives developed at
the point zero. The discussion will start with a formal definition of a fractional differential
equation (FDE):
Let a > 0,a € N, where N denotes the set of positive integers.
Let m = [a], where [a] denotes the integer part of «, f:AC R?—> R, we consider the
following fractional differential equation of Riemann-Liouville type
RDEy(t) = f(t,y (@), t > 0. (2.13)
The initial conditions for this type of (FDE) uses
D*ky(0) = by, (k =1,2,...,m — 1). (2.14)
Similarly, we can consider the following fractional differential equation of Caputo type,
EDEy () = f(t,y (@), t>0. (2.15)
In this case we use the initial condition

11
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D*y(0) =b,, (k=0,1.2,..,m—1). (2.16)

2.3.1 The existence and uniqueness of the solution

Theorem 2.3 [7] Leta > 0, a € N and n = [a]. Moreover,
let K > O,\ h* >0, and b4, ...,b,, € R. Define
G:={(ty)ER*0<t < h*,y eERfort=0and
[th%y — ¥R _ b t" K/ I(a—k + 1| < k else}.
Assume that the function f:G = R is continuous and bounded in G and that the equations
fulfills a Lipschitz condition with respect to the second variable, i.e. there exists a constant
L > 0 such that for all (t,y,) and (t,y,) € G, we have

| £t y1) — f(t vz <Lly; — yal.

Then the fractional differential equation of Riemann-Liouville type (2.13) equipped with the

initial conditions (2.14) has demonstrated a uniquely defined continuous solution y € C(0, h]

where
h:= min{h*,ii, (I'(a + 1)K/M)1/"} with M :=supzeclf(t,2)| and h being an arbitrary
positive number satisfying the constraint

p 'Ca—n+1)
< (I'a —n+ 1)LV

Theorem 2.4 [7] Under the hypothesis of Theorem 1.3 the function y € C(0, h] is a solution to
the fractional differential equation of Riemann-Liouville type (2.13), processed with the initial

condition (2.14), if and only if it is a solution of the Volterra integral equation of the second kind

by t*k 1t _
y(@) = le + mfo t - f(r,y(®)dr (2.17)

12
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For the fractional differential equation of Caputo type we can obtain a similar result in
Theorem 2.5 [7] Let a >0, n ¢ Nand n =[al]. LetM >0, h* >0, and by, ...,b,_; € R.
Define
G =[0,h"] X [by — M, by + M],
and let the function f:G — R be continuous. Then, there exists some h > 0 and a function
y € C[0, ;1] solving the fractional differential equation of Caputo type (2.15), equipped with
initial conditions (2.16). For the case a € (0,1) the parameter h is given by |
h = min{h*, (KT'(a + 1)/M)Y*}, with M := sup,|f (., 2)!.

If furthermore f fulfils a Lipschitz condition with respect to the second variable, i.e.

| £(& 1) — f (& y2] <Ly — yal,
with some constant L > 0 independent of t,y, and y,, then the function y € C[0, h] is unigue.
These results are very similar to their counterparts in the classical case of first-order equations.
They are even proven in a similar way.
Theorem 2.6 [7] Under the hypothesis of Theorem 2.5 y € C(0, h] is a solution to the fractional
differential equation of Caputo type (2.15), processed with the initial condition (2.16), if and

only if it is a solution of the Volterra integral equation of the second kind

y() = Spoy 2y L[5 = D% f(r,y@)dr. 2.18)

The next section focuses on the uses of fractional differential equations (FDEs) in modelling
physical phenomena and thus linking to practical applications of fractional calculus. The
following example of electrical circuits with fractance will demonstrate the application of

factional calculus to the electrode- electrolyte interface in circuitry.

13
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2.4 Electrical Circuits

Integer-order models can be used to describe classical electrical circuits which consist of
resistors and capacitors. But these circuits may have fractance which is an electrical element
feature that can be described according to Le Mehaute and Crepy [1] with fractional-order
impedance.

N
There are two kinds of fractances that can be considered in relation to electrical circuits: (i) tree
fractance and (ii) chain fractance.
Tree fractance is considered by Nakagawa and Sorimachi [2], as a finite self-similar circuit with
resistors that consists of resistance R .and capacitors of capacitance C. The hindrance of the

electron flow in the circuit as a result of the fractance is given by

Z(iw) = \/gw"l/zexp (— %) (2.19)

This tree fractance can be described by an associated fractional-order transfer function as

demonstrated below in equation (2.20)

Z(s) = \E sz, (2.20)

Oldham and Spanier [5] have demonstrated for a chain fractance where there are N pairs of

resistor-capacitor connected in a chain that the transfer function is approximately

G(s) ~ g% 221

This chain fractance behaves as a fractional-order integrator of order 1/2 in the time domain as

illustrated in 6RC <t < (—2—) N2RC.

14



Chapter Two Fractional Calculus

Electric batteries producé a limited amount of current due to microscopic electrochemical
processes at the electrode-electrolyte interface. As the metalelectrolyte interfaces impedes
function Z(w) does not indicate the desired capacitive features for frequencies w. Indeed, as
w—0,
Z(w) = (iw)!, 0<n<1. (2.22)

The Lapla\ce transform space gives the equivalent impedance function

Z(s) = s, (2.23)
This function illustrates that the electrode-electrolyte interface is an applied example of a
fractional-order process. The value of 7 is closely associated with the smoothness of the interface
as the surface is infinitely smooth as #—1.
It was proposed by Kaplan et al. [21] that a physical model utilising the Cantor block to self-
affine with N-stage electrical circuit of fractance type. Under suitable assumptions, Kaplan et al.
[21] found the importance of tife fractance circuit in the form as follows:

Z(w) = K(iw)™, (2.24)
where 7 = 2 —log(N?)/log aK and a are constants, and N> > a implies 0 < # < 1. This model
of Kaplan et al. also illustrates an example of the fractional-order electric circuit.

The inter conductor potential ¢(x,t) or inter conductor current i(x,t), in a resistive-capacitive

transmission line model, satisfies the classical diffusion equation

du 2%u
E—k@' O<x<oo, t>0, (2.25)

where the diffusion constant x is replaced by(RC)™1, R and C denotes the resistance and
capacitance per unit length of the transmission line, while u(x, t) = ¢(x,t) or i(x,t).
Utilising the initial and boundary conditions

¢(x,0) =0 Vx € (0,0), ¢(x,t) >0 asx — oo, (2.26)

15
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the function produces an illustration of the current

1

i(0,t) = - = 5 ¢(0,6) = (1) D360, D). 2.27)
The current field in the transmission line of infinite length is expressed in terms of the fractional
derivative of order 1/2 of the potential ¢(0,t). The equation will be solved using numerical
methods imthis dissertation. The numerical method which is planned to be utilised is the finite

element method.

Another example from electrical engineering is the involvement of fractional-order derivative in
electrical transmission lines through generalised voltage dividers. It was observed by Westerlund
[4] that both the tree fractance and chain fractance consist not only of resistors and capacitors
properties, but additionally exhibit electrical properties with ﬁoninteger-order impedance.
Westerlund [4] generalized that the classical voltage divider in which the fractional order
impedances F1 and F2 represent impedances not only on Westerlund’s capacitors, classical
resistors, and induction coils, but also upon the impedance of tree fractance and chain fractance.
The transfer function of Westerlund’s voltage divider circuit is represented by the following

function

H(s) = o, (2.28)
Where —2 < a < 2 and £ is a constant that depends on the elements of the voltage divider.
The negative values of a correspond to a high pass filter; while the positive values of «
correspond to a low pass filter. Some special cases of the transfer function (2.28) for voltage

dividers were considered by Westerlund [4] when they consist of different combinations of

resistors (R), capacitors (C), and induction coils(L). If U;,(s) is the Laplace transform of the

16
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unit-step input signal u;,(t), then the Laplace transform of the output signal U,,.(s)is

represented by

ksa—1

s®+k”

Uout(s) = (2.29)
The inverse Laplace transformation of equation (2.29) is obtained from equation (9.8) in
Westerlqu [4] to obtain the output signal.
Where

Upue (8) = kt*Ey 01 (—kt®) = k& (t, —k; a, a + 1). (2.30)
Although the inverse Laplace transformation provides an exact solution for the output signal this
function cannot describe physical properties of the signal. By evaluating the inverse Laplace
transform in the complex s-plane numerous interesting physical properties of the output signal

can be described for various values of a. For 1 < |a| < 2, the output signal exhibits

oscillations.

These examples provide a demonstration for the application of factional derivative in electrical
circuitr which is useful for electrical engineering. Fractance is presented in two forms: chain and

tree fractance which are illustrated with their own individual equations.

This chapter has presented the historical background for fractional calculus. The discussion has
covered fractional integration and differentiation and provided two definitions of the fractional
derivatives. The existence and uniqueness of the solution of fractional differential equation has

been demonstrated.
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Chapter 3

The Tools and Analytical Methods of FODEs

Aim
In this chapter, we will introduce the tools and methods used to solve fractional differential

equations.

3.1 Tools

By providing some relatively simple mathematical definitions the understanding of further
definitions and their application in fractional calculus will become apparent. Some of the
standard concepts are necessary that are provided below for the discussion of the application to

fractional calculus: the Gamma function, the Beta function, the Laplace transform, the Mittag-

Leffler function and Fourier transform.

3.1.1 Euler's Gamma Function

The Gamma function is a generalization of the factorial function n! where the factorial is only
applicable to positive integer order n. The Gamma function can be used for any real number.
Definition 3.1 [4]

The Gamma function I'(x) is defined by the integral

I'(x) = fooo e tt*"1dt
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The Gamma function has one of the basic properties:
I(x+ 1) = 2T (%) ' (3.1)
Through the application of a partial integration, for the arbitrary x > 0, we can manipulate the

integral in the definition of the Gamma function which yields:

‘Tx+1) = j ettt ldt = [—e TS + xJ et t*"1dt = al'(x)
0 0

Obviously, I'(1) = 0! = 1, and using (3.1) we obtain for x = 1,2,3, ...:
r2)=1-r@) =1
rkl)=2-1r2)=2-1=2!

r4) =3-1(3) =3!

Tn+1)=nl'(n) =n-(n—1)! =n!

3.1.2 Beta function

The Beta function is also known as the Euler integral of the first kind. The Beta function is an
important relationship in fractional calculus as its solution is not only defined through the
multiple use of Gamma functions, but additionally this function shares a form that is
characteristically similar to the fractional integral/derivative of many functions. This fractional
Integral/derivative is particularly found in the polynomials and the Mittag-Leffer function. The

equation below demonstrates the Beta integral in terms of the Gamma function (see [4]).

1 - - I'(p)T
BP9 = [{A—wP ut du =800, pgER,. (3.2)
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In fact, we have

r(p)r'(q) = f et tp‘ldtf e *ul 1 du.
0 0
Set t = x%,u = y?, we obtain
) F()r(q) = 4 f e™* x2P~1dx j e ¥ y2a-1dy,
0 0

= 4[ f e~ Yy 2p=1 9,241 gy gy
00

2

Using x =rcos,y =rsinf, x? + y2 = r? we can then write

F'(p)l'(q) = 4[ f e r2P+24-2 (05 0)2P~1 (sin 0)29~ ! rdrd®
00

/2

2[ e r2rt2a-1gy 2 j (cos 8)?P~1 (sin §)%9-1 dg.
0 0

-

With the re-substitution r =/t and 8 = % — ¢ we finally get

5 /2

') (q) = f e ttPra-1qt x Zf (cos 9)?P~1 (sin )?9 1 dep.
0 0

From the last statement it follows that I'(p)T'(q) = I'(p + q)B(p, ).
The Beta function possesses the following properties:

1. For Re(p), Re(q) > 0, the definition (3.2) is equivalent to

1 . _ o P71
B, @) = [, tP"t (1 — )9 dt = [ Trorra 4t (3.3)
=2 [ (sin ) (cos £)2471 dt. (3.4)

2. B(p+1,q + 1) is the solution of Beta integral
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1

ft”(l -t)dt=B@p+1,q+1).

0

3. The following identities holds:
@ B@.q) = £q.p),
®) B.g) =B+ 1,9 +B{p.q+1),

© B.a+1) =@ +1,0) =—-F(p,0q).

3.1.3 Laplace transform
A common method used in solving differential equations is the Laplace transform. With the
Laplace transform it is possible to avoid working with equations of different differential orders
by directly translating the problem into a domain where the solution arrives algebraically.
Definition 3.2 [4]
Let f(t) be a function of t > 0 then we define the Laplace transform of f(t) by
L D)) = F(s) = [ e~ f(®)dt (3.5)

Where s can be either real or complex number. The Laplace transform exists if the integral
converges for some value of s. Correspondingly f(t) is called the inverse Laplace transform
of F(s) which we denote as

f@®) = L7HF()}E) = [ e F(s)ds. (3.6)
Here T is the straight line from ¢ — io to ¢ + ico, where ¢ = Re(s), ¢ > cq ¢y lies in the right
half plane of the absolute convergence of the Laplace integral [4].

For example, let f(t) = e'. Then the absolute convergence of L(f) is
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[e o)
j e Steldt

0

[oe]

J e St (t)dt

]

co

f e—(S—l)t dt
0

LA ()| = = = < oo, if Re(s) > 1

It is rather simple to calculate the Laplace transform of some elementary functions.

Example 3 .1

(a) For f (t) = exp(at) with a ER we have L(f)(s) = F(s) = =

s—a’
whenever 5 > a.
(b) For f (t) =’ t? withg > —1 wefind L(f)(s) = F(s) =T (g +1)/s?*! whenever
s > 0.

(c) For f (t) = sinwt with ® >0 we have L(f)(s) = F(s) = ﬁ

w?’

again fors > 0.

1
s%-1"

(d) For f(t) = t*71E, 4 (At%), then we have L(f)(s) = F(s) =
The Laplace convolution is alsotommonly used and is presented in (3.7)
f *9)(®) = [, fwg(t — w)du ' (3.7)
The Laplace transform of equation (3.7) is presented in (3.8)

L{f * g3 = {LU) ()} {L(g)(s)} = F(s).G(s) (3.8)

Proof: we can define L{f * g}(s) from (3.5) as following:
L{f * g} ()=[; e™'(f * g)(s) dt
=y et f3 f(t - Dg()dr|dt
By changing the integrations we get

LU+ g}s) =J, [T Ft —Dg@e st dt|dr = [ g()|[” f(t — e " dt] dr

By Substituting t —1 =1y,
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L{f * g}(s) =f; 9@Jy fIe T dy]de
L{f * g}(s) =[f,” g@e*dr).[f; eV dy] = F(s).G(s).
The n™ order derivative of a function f(t). can be expressed by
LF™©))(s) = s"F(s) — Tpzd sk f7*71(0). (3.9)
Lemma 3.1[4]: (Laplace transform of the fractional integral)
L{DG*f(D)}(s) = 57F(s), where  L{F(£)}(s) = F(s).

Proof:

L{Dy“fF(D}(s) = T T O} = ry y LT 1L O

1
LD f(0)}(s) = ) F(@) s F(s) = s7%F(s).

Podlubny has demonstrated in [4] that the Laplace transform of the Riemann-Liouville derivative
is defined in the lemma below,_
Lemma 3.2 [4]

LBDEFY(s) = s*F(s) — L=y s* [Déa_k_l)f(t)]t=0 ,wheren—1<a<n

Proof: Let g(t) = (D*"f)(t), then

LEDEFY(s) = LIEEZDY(5) = sG(s) — Xza s* g+ (0)

By using the definition of the Riemann-Liouville derivative, we have

t
dar 1
QOB { e f SRIMNICLHC

= LA F(O)(S)

l"(n a)
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{90} () = - Lt Y(s) LS.

F'n—a)

By referring to (example 3.1 (b)), we have
L{t" () =T(n — a)s~ ),

Then \
L{Z 90} ) = s IF(s),

and

o dn—k-1 dan—k-1 n— o
9"V = G 9O = g Do OF (O = DEE @),

Thus

n-1

LEDEF ()} = s9F(s) = ) s* DS D F (Olens.
k=0

Additionally the Laplace transform of the Caputo derivative is as follows.

Lemma 3.3 [4]

L{GDEfD}(s) = s*F(s) — Tpzg s* =t r B (0) (3.10)

Proof: Let g(t) = D™f(t), we have

LEEDEFDI(S) = LDy ™ P g(D)}(s) = s~ DG (s),

LEEDEF D)) = 570 |51 (5) — Y snoh-t foo(o)],
k=0
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thus

L{GDEf(D)}(s) = sUF () — Tz s+ £ (0).

In particular, if we set @ = %, n = 1, we obtain

LIEDIPF(D)(s) = sY2 F(s) — 512 £(0),

i

and if we put a =§, n =1, we get

LEDY? F(D)}(s) = s%/2 F(s) — [sY% £(0) + 572 FD(0)].

3.1.4 The Mittag-Leffler Function

The Mittag-Leffler function is ah important function. This function has widespread use in the
world of fractional calculus. In the same way as the Laplace transform the exponential naturally
arises out of the solution to Integer order differential equations. The Mittag-Leffler function
plays an equivalent role in the solution of non-integer order differential equations. The standard

definition of the Mittag-Leffler is given by [4]:
P

Ea(2) = Yoty *> 0 (3.11)

It is also common practice to represent the Mittag-Leffler function in two arguments, a and f

so that there is a similar equation as displayed in (3.11).

k
E,p(z) = Z’?=°F(f:2+_m' a>0,8>0. (3.12)

There are some relationships to other functions given by:

= T+ Lx &
k=0 k=0
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£, (2) = gk = gk 1 zk+1 | e?—1
1,2 Z) = _— = ———' = — ' = A
ZO I'tk + 2) kZO k+1)! =z kZO (k + 1) z

sinh({/z)
7

EZ,I(Z) = COSh(\/E), Ez’z(Z) =
and

E%,1 (Wz) = \/% e Zerfc(—/z).

Here the error function complement defined by ([4], pp.18).

erfc(z) = %f: e t’dt.
The following theorem utilizes some of the properties of the Mittag-Leffler function. These
properties will be useful further on in the discussion in the analysis of ordinary and partial
differential equations of fractional order.
Theorem 3.1 The Mittag-Leffler function possesses the following properties:

1. For |z| < 1 the generalized Mittag-Leffler function satisfies
j e ttP1E, s (t%2)dt = ——1—
@B 1-—2z
0

Proof: The Laplace transform of a function t*e? is deduced first using a series expansion of

exp(z) and the definition of Euler's Gamma function. In fact, we have

[e0]

VA
f e te?tdt =) — [ e ttkde = Z zk = .
k! J, 1—-2
k=0 k=0

0

for |z| < 1. Differentiating this statement k times with respect to z yields

k!

m, |Z|<1.

[e0)
f e ttkeZt dt =
0
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Substituting z = 1 + q- p we then get the Laplace transform of the function t*e4t:

r k!

f e Pitkedtdt =————  Re(p) > |q|
— k+1’

) (g—p)

If we now consider the Laplace transform of the Mittag-Leffler function, we can argue in the

same manner as above:

jo “teB-1p o( t”‘)dt—joo “tgh-1 't dt = ! (Izl < 1)
¢ apl? )¢ LTk+p ™ " 1-2 2=
0 0 =

(3.13)

We obtain from (3.13) a pair of the Laplace transforms of the function
®) 0 d*
t“k+B_1Ea,B(iZta)' E ;) = (—i—};—k—Ea,B(y) :

k! p*=B

Grrapy (Re@ > 1al')

f e 7Pt tak+F-1EDD (+at)dt =
0

(3.14)

The particular case of (3.14) fora = f = 1/2,

oo

k-1 k!
f e Pt tTEfkl)(i-a\/E)dt =—— 5 (Re(p) >a?).
0 22 Wrta)

2. For |z| < 1, the Laplace transform of the Mittag-Leffler function E,(z%), is given by,

*© 1
e 2 E,(z%)dt = .

LB = |

_ d-a
0 z
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3.1.5 Fourier transform

Definition 3.4 [4] Let f(t) is a continuous function of a real variable t € (—oo,+00). Then the

Fourier transform of f(t) is defined by

+o0

FUF (O} W) = F(w) = f eIt £(t)dt,

\ —Q0
Definition 3.5 Let f(t) be a given function in a certain function space. Then the inverse Fourier

transform is defined as
1
FHF@} = £ = f 9t F () do.

In a related approach to the Laplace transform we can specify the convolution property of two
functions f(t) and g(t) .
Definition 3.6 Let f, g be two functions. The Fourier convolution of fand g is denoted by f * g

and defined as

(f =)@ = [77 f(t ~wgw)du, tER.
Taking the Fourier transform of the above yields
FUf » g} w) = F{f (O3F{g(©)} = F(w)G(w).
The Fourier transform of the Riemann-Liouville integral with a lower terminal of —oo is given
by Podlubny [4, pp.111] as
F{-&D: *f ()} = (—iw)™*F (w).
Here F(w) is the Fourier transform of f(t)
For the Fourier transform of the Caputo fractional derivative with a lower terminal of —oo,
Podlubny [4, 'pp.l 11] gives it as

FLEDEF)} = (—iw)*F(w).
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Here F(w) is the Fourier transform of f(t).
This expression also gives the Fourier transform of the Riemann-Liouville and Griinwald-

Letnikov derivatives.

3.2 The analytical solution of FODEs

3.2.1 Laplace Transforms Method

The Laplace transform is introduced by Podlubny [4] in his book. Using the expressions for the
Riemann-Liouville derivative from (Section 3.1.3 of this chapter) it is possible to demonstrate
the solving of fractional ordinary differential equations with constant coefficients.

Examples from [4, pp.140] of ordinary linear fractional differential equations which can be
solved using the Laplace transform method are given below.

-

Example 3.2 Let a = 1/2, solve the equation below with the Riemann-Liouville derivative and

an initial value.

RDMPF() +af () =0, >0, %Dt_%f(t) =C (3.15)
t=0

Solution:

Applying the Laplace transform we obtain

F(s) = C =80 (1), _,-

st/2 +q’

And the inverse transform with a help of (3.13) gives the solution of (3.15):

1 k
f(t) = Ct—EEll(_a\/F) =(Ct1/2 Z;c;o (al\/t_)l ’
22 F(Ek'i'z)
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Ifa =1, we get

f(t) = CtT23e, F(Ek”) (3.16)

2

Using series expansion (3.11) the solution (3.16) is identical to the solution

Vit

fo=c <—-—1—— - eterfc(\/f)).
Example 3.3: Consider the following initial value problem for a non-homogeneous fractional
differential equation:
RDEfF(t) — Af(£) = g(t), wheret>0m—1<a<m, 3.17)
[8DF*fOlt=0 = br, (k=12,..,m) (3.18)
Solution:

The solution can be provided by applying the Laplace transform to both sides of equation (3.17),

and thus we obtain the following equation
m
SOF(s) — AF(s) = G(s) + Z sk1p,,
k=1

from which

1

A

sk-
S Sa —

k=1

By applying the inverse Laplace transform of both sides of equation (3.17), we get
t

FO = Y Bt Eaaiena At + [ (€ = 0% B (A — D9,
k=1 . 0.

Here we use the following fact

(H+G)(s) = H(s) * g(s) (3.19)
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If H(s) = then L YH(s)} = h(t) = t* 1E, o (At%).

1
s@-2 "’

By utilising equation (3.5) on the inverse Laplace transform of (3.19) we arrive at the following

equation.

t
. {h+g}(®) = f(t — 1) 1E, o (At — 1)*g(1)dT.
0
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Chapter 4

The Numerical Methods of Fractional Differential Equations

Aim
This chapter will discuss the numerical methods for solving fractional ordinary differential

equations.

4.1 Diethelm’s Backward Difference Method

This whole process was previously described in Diethelm’s paper [8], in 1997, and for this
reason the total method employed is called the Diethelm fractional backward difference method,
see {39],[40]. -
In this section we consider the fractional ordinary differential equation in the Caputo type

EDEy(t) = Ay()+f(), 0<a<1l, 1<0, 0<t<1, 4.1)
with the initial condition

y(0) = yo. (4.2)

This equation can be transformed into a fractional differential equation with the Riemann-

Liouville derivative (see equations (2.10-2.12)),

D&y — yol(®) = ay(®) + f(©), 0<t<l, (4.3)

Initial condition: y(0) = y,. 4.4)
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Note that

t
d 1
Rnpa ——— —r)y-a
oDt (vo) th(l—a)f(t 7)™ % yodt
0

_ Yo d 1 1—aN Yo —a
"Ta-wai-a’ ’~Ta-o'

Diethlm [8] demonstrated a numerical algorithm which appears to use the Riemann-Liouville
fractional derivative above in defining a backward difference formula generalization.
By interchanging differentiation and integration of the Riemann-Liouville fractional derivative

(see definition 2.2) we get,

1 t
55O = 1oy fo (¢ - D=1 y()dr,

where the integral is interpreted in a Hadamard finite-part [13].
Let0 =ty <t; <+ <t, =1bea partition of [0, 1].
Applying the approximation to the equispaced grid t; = j/n,j=12,..,n, At = 1/n, is the

time step. We obtain,

1 t;  y(o)
I(ngy(tj) = r(-a) fOJ (t]'—‘l?)a+1 dr,

setting t; — 7 = tjw, we get

t7% y(ti-tjw)-y(0) t7% 1 e
ey =g fo ™ e 4w =55y 9@ o,

where

g(w) = }’(tj - tjw) —¥(0).
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We replace the integral by a compound quadrature formula [9], with equispaced nodes

| =

0,-,-,..,1foreachj, gives

~
—~— N

£ d

Dy () = arjy(t —t) + Ri(9|,
( a)

A
thus the approximation can be represented by a quadrature formula of a product trapezoidal form

Q;lgl = Th_o ak,-g(f) ~ folg(w)w""“1 dw,
where

[} g(@) T dz = Q;lg] + R;(9),

and the remainder term R;(g) satisfies

-

”Rj(g)” < Cje? SUPostsT”y”(tj - tjw)”-

Thus,
DEy(t) = ( (1 —a)j ™ ay; y(t — t) +=— R;(9)
) 1"( a)
J
_ ()1 -a)j~ e
=are ) — re f S50 i B
k=0
j a
= At ¢ Z (J)kj y(tj - tk) +ﬁ R](g)
k=0
Here
F'Q2-awg=—-a(l-a)j %ay;, 4.5)
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where the weights wy; satisfies that [9]

1, fork =0,
F2— wg; =4 —2k%+ (k= 1) + (k + D7, fork =1,2,..,j—1, (4.6)
—(a—-Dk %+ (k— D% — 1, fork =j,

and a; satisfies

-1, fork =0,
a(l—a)j %ay; =42k = (k= 1)'"% = (k + D', fork=1.2,..,j—1, (4.7
(@ — Dk ™% — (k — 1D+ k19, fork =j.

Now we consider the finite difference method of

SDELy — wol(®) = y(®) + f(t), at t =t
We get -

EDE[Y() — y(O)le=e, = My(t) + £ (4),

-
tj

e Ril@) = y(4) + £ (1),

AT wi [ y(t — te) — y(0)] +
Or

-Q

j
SDEly () — y(O)]le=; = At_akZOwkj[)’(tj — ty) — ¥(0)] +‘1:(L_;)‘ Ri(9),

Denote y; = y(t;) as the approximation of y(t;), we can define

At T o wis| Vick — Vo] = Ay + £
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Let k=0, we get
(w0j - Ata){)y] = Ataf} - Z wkj yj—k + Z wkj Yo-
k=1 k=0
From (4.5) we can find

Zw —a(l—a)] ! .
KT TR-a) Lt

But

Thus
Zwm “ea () a

The implicit formula below gives Diethelm’s numerical algorithm for the equation (4.3) and

(4.4):

. -
yj = (wo; = At D) MALf; — Doy Wy Vjok + 7 Vol (4.8)
Diethelm [8] provides that the error behaves as O(h?~%) when using functions that are

sufficiently smooth. The method is analysed for 0 < @ <1 . Diethelm provides that the

extensionto 1 < a < 2 should not present major difficulty.
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4.2 Adams-Bashforth-Moulton method [7]
In this section we will present the algorithm for the fractional differential equation in the Caputo
type:
sDEy () = f(t.y(®),
with the initial condition

D¥y(0)=b, , k=012 ..,n—1,

The algorithm to solve the fractional differential equation of Caputo type is based on the
fractional formulation of the classical Adams-Bashforth-Moulton method. In particular by using
the formulation of the problem in Abel-Volterra integral form, i.e

y(0) = $hop 2O 1 L[ — 0% f(5,y(0)de 49)

k! r@)

In order to discuss differential equations of fractional order it is necessary to review the classical
differential equations and the methods used to numerically solve these equations. From the
classical algorithms it is possible to extend the resulting formulas to the fractional differential
equation so it is important to understand this common background for numerical methods. It
must be noted that many classical numerical schemes can be extended in more than one way
which can led to issues within literature as different equations could be conveyed in a similar
manner creating a potential source of confusion. For example, the fractional Adams—Moulton
rules of Galeone and Garrappa [16] do not coincide with the methods of the same name as it will

be demonstrated later in this section below.
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4.2.1 Classical Formulation
Diethelm [7] identifies that the classical Adams—Bashforth—-Moulton algorithm for first-order
equations should be reviewed to enable a starting point by using the familiar initial-value
problem for the first-order differential equation
» Dy(t) = f(t,Y(t)), (4.10)
y(0) = yo. (@.11)
It is assumed that the function f will be a unique solution that exists on some interval [0, T].
Following Hairer & Wanner [20], Diethelm [7] advises to use the predictor-corrector technique
of Adams where it is assumed that for simplicity that mathematician is working on a uniform
grid {t; =ih :i = 0,1, .., N} with some integer N and h = T/N. While in some applications
it would be more efficient to utilise a non-uniform grid and this will be identified to the reader
and thus a generalised sense of numerical approximation formulas will be utilised. When

reviewing the properties of the scheme the author will restrict themselves to the isometric case.

Basically it assumed that the approximations have already been calculated as y;.y(t;),

(i = 1,2, ...,n). While trying to obtain the approximation y, ,; by means of the equation
Y(tnsr) = y(t) + [, f(2,5(2))dz. | (4.12)

Following the integration of equation (4.10) on the interval [t,, t,+1] without knowing either of

the expressions on the right-hand side of equation (4.12) exactly. Yet there is an approximation

for y(t,), namely y, that can exploit instead. The integral is then replaced by the two-point

trapezoidal quadrature formula

[, 9)dz ~ =2 (g(@) + (b)), (4.13)
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Thus giving an equation for the unknown approximation y,,,, itbeing

tne1—tn
Yn+1 = Yn + —'+12_ (f(tnr y(tn)) + f(tn+1r y(tn+1)))- (4-]4)
Again y(t,) and y(t,,,) are replaced by their approximations y, and y,,, respectively and

this produces the equation for the implicit one-step Adams—Moulton method, which is

hY

Vns1 = Y+ (F (b, ) + f (tnas Ynsn))

Diethelm [7] advises that the so-called predictor or preliminary approximation y~., is similarly
obtained by only replacing the trapezoidal quadrature formula in the rectangle rule giving the
explicit forward Euler method to produce the following formula:

Yirr = Yo T Rf(Gwyn) (4.15)

And

Vner = Yn + 5 (£ Yn) + fGnen ¥Ei1) ) (4.16)

-

This approach is known as the one-step Adams-Bashforth-Moulton method,
The convergence order of (4.16) is 2, i.e,
max;=; .~y () — yil = 0(h?). (4.17)

Where y(t;) isan exact solution and y; is an approximate solution.

4.2.2 Fractional Formulation

From the classical algorithms it is possible to transfer the essential concepts over to the
fractional-order problems of courses with some necessary adaptions. The key to addressing this
application to fractional-order problems is to develop an equation which is similar to (4.16)
according Diethelm [7] but the equation will be different due to the range of integration which

now starts at 0 instead of .
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By using the product trapezoidal quadrature formula to replace the integral, for example the
nodes t;{i = 0,1,2, ..., k + 1} and thus interpret the function (t;,; — *) as a weight function for

the integral. By apply the approximation

tk+1 tet1

f (tger — D Tg(D)dt = j (tesr — O grp1(Ddt,
0 0

hY
where gy, is the piecewise linear interpolant for g with nodes and knots chosen at the t;,i =
0,1,2,...,k + 1. From this construction it demonstrates that the weighted trapezoidal quadrature
formula can be represented as a weighted sum of function values of the integrand g , taken at the

points t; . Explicitly, the integral on the right-hand side of (4.18) can be expressed as

fotk+l(tk+1 — )% g (O)dt = XI5 @i per1 9 (@) (4.18)
Where
t _
Apiesr = [, 5 (bar — )7 Piqa (D), 4.19)
and
It ift;, <t<t,
ti—tia
Pirr1 () = { it ift, <t<t (4.20)
tiea—ty’ ' el
0, else.

This is clear because the functions ¢; y4, satisfy

1 if i#u
¢i,k+1(tu) = {0 if i = #}

And that they are continuous and piecewise linear with breakpoints at the nodes t,, , and thus

must integrated exactly by the developed formula.
An easy explicit calculation produces that, for an arbitrary choice of the ¢t;, (4.19) and (4.20)

result in (4.21)
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_ (s = 8T+ [t + by — ]
Aok+1 =

tia(a+1) ’
@ _ (teer = tim1) ™+ (bger — D) [a(tiog — &) + tig — tyyq] +
biext (t; — tiDa(a + 1)

(trsr = tir) ™ = (gr — 8@ (t; — tige) — tigs + trer) L<i<k

N (tivr —t)a(a +1) T T
(g1 — 8
Ap+1,k+1 = a(a—+1)'

“.21)

The isometric nodes (t; = ih with some fixed 4) are reduced to the following equations
This then provides a factional variant of the one —step Adams—Moulton method by providing the

correct formula which is

(2 e+ — (k—a)(k+ 1)) ifi=0

a(a+1)

h® . a+1 _ a+l
aiss = | 7D (e — i +2)*1 + (ke — ) “22)
=2(k — i+ 1)**1 ifil<i<k

h® s
\a(a+1) 1fl—k+1

This then provides a factional variant of the one —step Adams—Moulton method by providing the

correct formula which is

—1t j 1
Yier1 = Z{iol"“f—l}’g(l) o (B0 @igesaf 0 Yi) + Opsprnf v Virn)): (4.23)
What remains are the resolution of the predictor formula and thus the required calculation of the
value yg,,. The same concept that was utilized to generalize the Adams—Moulton technique is

applied to the one-step Adams—Bashforth method by replacing the integral with the product of

rectangle rule
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t -
fo k+1(tk+1 - t)a 1g(t)dt = Zf:ﬂ bi,k+1g(ti)r (424)
where
, —_+.\x_ —
Biisr = J* (tisr — )% 72dt = o 10 e fir))” (4.25)

Similarly to the method utilized in the equations (4.22)-(4.24) the weight can be consequential
hY
calculated. Yet there is a requirement to utilize a piecewise constant approximation and not a

piecewise linear one, and hence there is a requirement to
h® . .
burs = ((k + 1= )% = (k= . (4.26)
Thus, the predictor y}, , is determined by the fractional Adams-Bashforth method

1t i 1
Vi1 = Zﬁol%yg) + p_(;l—)zi"":o bijeraf (i, ¥i), 4.27)
The fractional Adams-Bashforth—-Moulton method, is therefore completed and described by the
formula expressions (4.27) and (4.23) with the weights a; x4+, and b; ., as defined according

to (4.21) and (4.26), respectively.

This chapter has presented the historical background of analytical and numerical scheme for the
solution of the fractional ordinary differential equations.
In the next two chapters we will discuss fractional partial differential equations; we will

introduce the finite element method to solve these equations numerically.
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Chapter 5

Introduction of Finite Element Method for Solving Parabolic PDEs

Aim

In this chapter we will give a background of using finite element method to solve parabolic
partial differential equations.

A linear homogeneous partial differential equation of order two in two variables ¢, x in general
is:

2%u a%u

du du
axay+c¥+da+e5;+fu—0,

a%u
aﬁ + 2b

which is parabolic equation if b’ ac = 0. The standard diffusion or heat equation is a parabolic

partial differential equation.

5.1 Finite element methods
Partial differential equations are solved by numerous methods. The populér methods amongst
them are finite element methods and finite difference methods. We will discuss finite element

methods in this dissertation.

Let us consider finite element method to solve the following heat equation [38],

du(tx)  9u(tx)

7 Py =f(tx), 0<sx<1 O0<t<T, 5.1
I.C  u(0,x) = g(x), 0<x<1, (5.2)
B.C u(t,0) =u(t,1) =0, 0<t<T. (5.3)
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Denote that H}(0,1) = H} = {v(x) |v(x) and v'(x) are square integrable on (0,1),
ie {ve L2(Q),v' € L*(Q) aﬁd v(0) = v(1) = 0}.
The inner product in L?(0,1) is defined by
(f,9) = [, FDgldx, vV f,gel?(©). (5.4)
Step 1: Find the weak solution of (5.1)-(5.3). Suppose that u is the solution of (5.1)-(5.3) then u

satisfies

(a“ )+ U ) = ) Vv € HE
ac" ax2”) = U.v), vE o

By integration by parts, we have

o%u (0% fou v o
—W,‘U Zf EE v(x)dxz a-adx=(u,v
0 0

In other words, the solution u of (5.1)-(5.3) satisfies

(2,0)+ ' v) = (v, Vv e H} (5.5)
u(0) = g(x) (5.6)
In (5.5)-(5.6), we only require u has first derivative with respect to x. Note that we require u has
second derivative with respect to x in (5.1)-(5.3). Therefore (5.5)-(5.6) is the weak form of
(5.1)-(5.3). 1t is easy to find the solution of (5.5)-(5.6) mathematically. The solution of (5.5)-(5.6)
is also called the variational solution of (5.1)~(5.3),
i.e. Find u(t) € H§, u(0) = g(x), such that
(%,v) + @', v") = (f,v), Vv € H}. (5.7
Step 2: We will find the finite element approximation of (5.5)-(5.6). Let us introduce a linear

finite element space Sj,.

Let xg=0<x; <x, <--<Xx, =1 be apartition of space interval [0, 1].
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Denote ¢;(x) be the basis function at x = x;

1, ifxy, =x;,

j =012,.. M 5.8
0, otherwise, Where j,m =0 (5-8)

¢j(xm) = {

Move precisely, we have

X—x;_ )
x——xi—l, ifxj_q <x <xj,
jXj-1

¢j(x) = f_‘ﬂ’ iij <x< Xj 41/ 5.9)

Xj=Xj+1
0, otherwise.

Here ¢;(x) is a piecewise-linear hat function on the mesh xy < x; <x; < -+ < xp,. [t has two
desirable properties: (i) ¢;(x) is unity at node j and vanishes at all other nodes and (ii) ¢; is only
nonzero on those elements containing node j. The first property simplifies the determination of
solutions at nodes while the segond simplifies the solution of the algebraic system that finite
element discretization.
Denote {S,} is the finite dimensional space, with grid parameter h generated by the basis
function ¢;, i.
Sp = {aopo + 1y + - + amdm | a; € R},

= {all piecewise linear continuous function on [0, 1]}.

The finite element method of (5.1)~(5.3) is to find u, (t) € S;, for fixed t € [0, T] such that

dup(t)
( - x) + Wr(©,x) = (f,x), VX € Sp. (5.10)
Here u; denotes the derivative with respect to the space variable x.y’ denotes the derivative

with respect to the space variable x.
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Step 3: We consider the time discretization. Let 0 = t; < t; < --- < t, = T be a time partition.

We use backward Euler method, i.e.

dup(t) . Un(tn)—up(tn-1)
ot =t N (5.11)

Here k is the time step, k = At = ¢t,, — t;,_4.
Denote Uy (x) = uy(t,) be the approximation of uy (t,,).

The backward Euler method of (5.10) is to find U, (x) € S}, such that

(P22 0) + WaG0.X) = (F(Ed 1), VX E S (.12)

We substitute k = At into equation (5.12) to obtain,
Un (), 1) + At(Un (x), x') = At(f (£), x) + (Uno1(X), 1), VX E S, (5.13)
Let U,(x) = Z;”;ll a;j ¢j, here ¢y, Py, are homogeneous boundary conditions and choose
x=4¢; i=12,..,m—1, we obtain:

Te ay by ) +At T 0 (9, 1) = AL (tn-1), pO)+ U1 (D), ) (5.14)
Let n = 1, we know Uy(x) = g(x), the initial value.
Step 4: Let us find U, (x), that is

(U100, ) + At(U1(x), ') = Ae(f (x0), x) + (Uo (8, 1) (5.15)

Let ¢, ¢1, @2 P35 P4 ¢s be a basis functions defined by, for example

X—Xo
P X < X < Xq,
P, (t) =< X% X < X < X (5.16)
P 1 2
0 otherwise,
X=X
Fxll' X < x < Xy,
$a(t) = (X2 X, < x < X3. (5.17)
o 2 3
0, otherwise.
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Let U;(x) = a1y + oy, + azps + ass,
here we do not need to consider ¢, s, because we consider the homogeneous Dirichlet

boundary conditions.

Choose y = ¢;,i =1,2,3,4.

Sy (g, b0 FALD a; (85, BL) = ALCF(to), be) + (Uo (), 0. (5.18)
Denote

(01, $1) (D1, B2) (D1, P3) (D1, D)
(P2, 91) (P2, P2) (P2, P3) (P2, Ps)
(P03, $1) (@3, 02) (P3,¢3) (P3,04) |
(4, D1) (Pa, D2) (P, P3) (Pg, D)

(91, $1) (P1,92) (D1, 93) (D1, )]
(@2, ¢1) (62,92) (@2, ¢3) (P2, ¢2)
(03, 91) (63,92) (@3,¢3) (¢392
(s, #1) (D2, P2) (D2, 93) (@2, ¢2)]

a,
a

, F=
as

Substituting by Mass, stiffness, a, F and R expression into equation (5.18). Then we get

Mass =

Stiffness=

and

(Uo(®), $1)
(Wo (), ¢2)
(U (1), p3)
(Uo(t), d4)

(f (to), P2)
(f (to), d3)
(f (t0) Pa)

(f (to), $1)
:|' N

e — |

Mass* a + At * Stiffness * a = AtF +R.
Let

Aa = Mass * a + At * Stiffness * a.
Then we have

a = (Mass + At = Stiffness) 1(At F + R) = A™! x (At F + R).
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Here

Uy (x1)
_ U, (x2)
Uy (x3)
Uy (x4)

, denote the values of U, (x) at grid points x;, x5, X3, X4.

Step5: We will construct the Mass matrix.

From the definition of variational form (5.4), we have

1 X1 X2
(b1, do) = j 1(x) by (O)dlx = j $1.(x) s (O)dlx + f 1) b1 (D) .
0 X X1

From (5.16) we obtain

X1 X2

(¢1,$1) =xf (;—;100)2 dx+xj (;2__9121)2 dx

Andsetx —xy = t,x — x, = T, we get
h 0

—jtz dt + ftz dt==h+sh=2h

(¢1'¢1) - h2 hz — 3 3 - 3 -
0 “h

—Xy X—X;
)( ) dx,
— X2 X2 —Xg

1 X2 Xo
(b1, 62) = f $1(0) ¢ (X)dx = j $1(x) by (X)dx = f &
0 X1 Xq

Where
X=X
—1 X1 <x< X2,
Xz2—X1
$a(x) = X*s Xy < X < X3.
X2—X3
0 otherwise

And set x —x; = t, we get
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h

(P1,92) = f

0

t— h. t dt = 1 b

—h R T

And (¢1' ¢3) = O' (d)ll ¢4-) =0.

Similarly (2, ¢1) = ($1,82) = h, (B2, 2) =2 h, (p2.83) = Zh,

1 2 1
(h204) =0, (¢3.¢,) = gh' (¢3, ¢3) = §h' (¢3, P4) = gh.

(@08 =0, (P0$2) =0, (Bs¢s) =2h (P4 bs) = =h.

The Mass Matrix as follows:

2/3 1/6 0 0
1/6 2/3 1/6 0
0 1/6 2/3 1/6
0 0 1/6 2/3

Mass =h

Step 6: Now construct the Stiffness Matrix

1 X1 X2
(@90 = [ 4100 p1(dx = [ 100 B4 + f $1(x) ¢ (O dx,
0 Xo X1

where
X—Xg
o~ X < X < Xq,
¢ (x) = X2z X < x < X»p.
Xq1=X2
0 otherwise.
Then we get
X X
/ ,_f( 1 )2'd+f( 1 )’-d _1,1. 2
(@1,91) = X1 — Xo x X1 — X TR h
X0 Xq
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1 X2
(#95) = [ P00} 0Idx = f () By () dx,
0 X1

where
X—X1
. p X <X < Xy,
Pa(x) = { X2 X, < x < X3,
X2—X3
0, otherwise.
Therefore
X2
@00 = | " dr=—r
) = " X =—="
vz X1 — Xy Xp— X h
X1
Note that

(@1, 85) = 0,(B1, 84) = 0,(Bh, ¢1) = — 7, (5, 82) = =, (95,85 = —=, (B}, $4) =0,

-

1 2 1
(¢3,41) = 0,($3.92) = —7.($3,93) =1, ($3,84) = — 1., (d0, $1) = 0,(¢2,¢$2) = 0,

1 2
(d)t;-l ¢é) = - Et (d)é-' ¢4;-) = -]_l-
We can write Stiffness matrix as follows;

2 -1 0 0
-1 2 -1 0
o -1 2 -1
0 O -1 2

Stiffness = l,
h

Step 7: Construct the right vector

(f(to), $1)
_| o) ¢2)
(f (to) #3)
(f (to), d4)

F

Where
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1 X1 X2
(f(to), 1) = jf(to) i dx = f f(to) prdx + f f(to) P1dx
0 Xo X1

1 1
(f (to), d1) = f(to) ‘5 (x; — x0) + f(to) '3 (22 — x1)

1 1
= Ehf(to) +§hf(t0) = h f(ty),
1 X2 X3
(F(to)r d2) = f f(to) - badx = f £(to) dadx + j F(to) podx
0 X, X2

1 1
zf(to)"i(xz —x1)+f(t0)-5(x3 — X3)

1 1
=~hf(to) + S h f(te) = h f(to),

(f(to), 3) = hf (tp), (f(to), Ps) = hf (to) .

-

We can calculate the algorithm of the finite element method using MATLAB software.
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Chapter 6

A finite Element Method for Solving Time Fractional Partial

Differential Equations

Aim
In this chapter we will discuss fractional partial differential Equations (FPDE) to provide the

finite element method which is solving these equations numerically.

6.1 Introduction

Time fractional partial differential equations have been used in various areas such as , diffusion
processes material science, turbulent flow, electromagnetics, electrochemistry, etc.[22], [23],
[24], [25], [26], [27], [37],- Analytical solutions of time fractional partial differential equations
have been focused on u'sing Green’s functions or Fourier-Laplace transforms [4],[28],[291,[30].
Numerical methods for fractional partial differential equations were considered by some authors.
Liu et al. [31] used the finite difference method in both space and time and analysed the stability
condition. Sun and Wu [32] advised a finite difference method for the fractional diffusion-wave
equation.

Ervin and Roop [33], [34] employed finite element method to get the variational solution of the
fractional advection dispersion equation, where the fractional derivative based on the space,

related to the nonlocal operator. Li et al. [35] studied a time fractional partial differential
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equation by using the finite element method and obtained error estimates in both semi-discrete
and fully discrete cases.
Jiang et al. [36] considered a high-order finite element method for the time fractional partial
differential equations and proved the optimal order error estimates.

N
In this Chapter, we will consider finite element method to solve the time fractional partial

differential equation

EDfu(t,x) — Au(t,x) = f(t,x), x €N, 0<t<T, 6.1
Initial conditions: u(0,x) =0, x € £, (6.2)
Boundary conditions: u(t,0) =0, x € 0, O<t<T. (6.3)

Where 0 <a <1land 2 =[Q,1], here A= —gz- denotes the Laplacian operator with respect to
the x variable and u(t, x) depends the space variable x € [0,1], and time variable

t €[0,T].u(0,x) = g(t) is the initial condition.u(t,0) = u(t,1) =0 is the Dirichlet
boundary condition, §Dfu(t,x) denotes the Caputo fractional derivative with respect to the

time variable t defined by

e _ 1 tu@w)
EDEu(t,x) = o Jo o dr, 0<a<l1. (6.4)

In Chapter 6 we demonstrated finite element method to solve the equation (5.1)-(5.3) and we
recalled the idea of finite element method for solving the parabolic equation.

In this Chapter we use finite element method for solving fractional partial differential equations.
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6.2 Finite element method for solving FPDEs

In this section, we will consider how to solve the one dimension time fractional partial

differential equation by using finite element method.

Consider the time fractional partial differential equation with the Caputo type:

R u(t x)

EDfu(t,x) — =f(t,x), 0<x<1, O0<t<T, (6.5)
Initial condition: u(0,x) = u,, 0<x<1, (6.6)
Boundary condition: u(t,0) = u(t,1) =0, 0<t<T,O0<a<l1. 6.7)
We know that
§Dfu(x,t) = §DF[u(x,t) — ug]

Hence the equations (6.5)-(6.7) reduces to

BDE[u(t, x) — up] — 20

=f(tx), 0<x<1, 0<t<T, (6.8)
u(t,0) =u(t,1) = 0, 0<t<T. 6.9)

Here EBDfu(t,x), denotes the Riemann-Liouville fractional derivative with respect to the

time variable t defined by

1 tu(rx)
. a)at 0 e dt, 0<a<1, (6.10)

RDfFu(t,x) =

where I" denotes the Gamma function.

The variational form (see chapter 5) is to find u(t) € H3(0,1) such that

RDEu(t, x) — upl, v(x)) + (68121 % (f,v), YveH}, 6.11)

The finite element method is to find a solution uy(t) € S, . Such that

8¢ Tut, ) —uol )+ (52.32) = (F.0), VX €Sy (6.12)
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Let0 =ty <t, <-- <t, =T be atime discretization

Note that, (see section 4.1 in chapter 4)

SDEY(Ole=t, = AT T} i [ ¥ — ti) — y(O)] + (6.13)

where
) 1, fork =0,
T2 - @wy =32k *+k-D"*+k+ D% fork=12,..,j-1,
—(a—Dk %+ (k—1)17% - k172, fork =j,
And the remainder term R;(g) satisfies
|Ri ()| < €Cj* 2 suposesr ||y (& — ;)| 0<w<1.
Denote U/ ~ uh(tj) as the approximation of u,(t) at t = ¢;.
Then we can define the following time discretization, with f/ = f (tj),
—awi ; aul a ; .
AE YL (U97% = ug), %) +(32E) = (Fx), j=012.. VXES, (6.14)
Or
_ aul @ _ i
8wy (U0, 1) + (5, 2) = (F,2) — (Bt~ Th_y iy (U775 = wo), 0 (6.15)
+At™%wgj(ug, X), Vy €Sy, for j =012, ..,n
Now find U/, for j =0,1,2,...,n
Step 1: if we set j=0, then we will get U°® = u,
Step 2: we put j=1, then we have
aut @ ' - j

Mt we (U0 + (5, ) = (F1, 1) — (At They s (U0 — 10), X)
+At_a0)01(ll0, X), VX € Sh' (616)
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And we know that U' =Y} 1a,¢,(x), where ¢,(x), (%), ..., py_1(x), are the basis

functions of the finite element space Sy, and then we have

- - - 0y, 0 _
At 0oy (SH ap( (), 20) + Tt ap (322,55) = (F1, 1) — (At %012 (U° — uo), 2)

+At™ % w1 (Ug, X), VX € Sy,

Choose y = ¢ (1), for m = 1,2,...,M — 1, and we substitute into equation (6.16)

At w0y (THS @p(§(x), G () + T arp (P22 20mE) (1,4, () -

ox
(At™%w11(U° — up), Pm (X)) +AL % woy (Ug, P (), (6.17)
Then we get
At~%wy,(Mass * V1) + stiff x VI = F1 — At ™%w,, VO + At™* ¥} g wyq u® (6.18)
Denote
(@1, ¢1) (@2.01) i (Pm-1,91)
Mass= (¢1:. ¢2) (452; $2) (¢M?1r $2)

(b1 Srrs) (Do brro) oo (B bu-1)

(T%) (52%2) -~ (%=52)

dd, 0, d¢, 0, dpm—1 92
Stiff = (W’E) (W'E) ( o 'E)
0¢1 0du_1\ (9%, 0Pm— Oy OPm_s
(W' dx ) (_a—;' ax ) ( ax ' ox )
(fl: ¢1) a, e, ¢1) (uo, 91)
Fl— (fl':¢z) o Vi= 0‘:2 o yo= (U0:¢z) w0 = (uo::qbz)
L dm-1) Am-1 U°, pp-1) (uo, dm-1)
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Step 3: Let us compute UZ.

To compute U? we set j = 2 into equation (6.11), then we have

At™%wo, (U2, x) + (aa—lf:%i‘() = (f%0) — (At By iz (U7 —ug), ) (6.19)
ALY TRy W (W, X), VX E Sp.

Let U? = 22”;11 ay P,(x) as we have done before. Then the‘equation (6.19) is equivalent to

At gy (TH5 ar(de(x), $m (D)) + T, (T2, 22m0) =

(2, dm () = (A~ By 0z (U = ), o (D) +(A8) ™ T}y Wiz (U0, (X)), (6:20)
and finally we get

(At) *wgy (Mass * V2) + stiff * V2 = F2 — (At) % T2_, i VEK + (ML) "2 X2_ wyu®

Denote
(fz' ¢1) aq (UOJ ¢1) (uOI ¢1)
F2 = (fz,‘¢z) Cvz=("% | yo= (U0:¢z) o oud= (uo,-¢2)
(fzrq;M~1) a“’;_l (Uo.d.bm—ﬂ (uo,q.bM_l)

and note that Mass and stiffness expressions are the same in Chapter 5
Step 4:  We continue this process to obtain U™ =~ u,(t,,), the approximation solution of

u,(t,) attime t =t, for n=0,1,2,....

— au™ a - - —
Bt 00 (U™, 1) + (5=, 35) = (£, 1) — (A% ZHE wpn (U™ — 1), 1)

At T wn (o XD, VX E S (6.21)

To calculate U™ we have to follow the same steps as in step 2 and 3. Based on the idea above, we
can design the algorithm of the finite element method and solve the system by using MATLAB

software.
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6.3 The Error Estimates

In this section, we prove the error estimates in a time discretization and a space discretization
scheme.

e Local errors:

A

The local errors define as the difference between the exact solution and the approximate solution

~of the method, if there is no error in earlier steps.

e Global errors:

The errors below together referred to as global errors.

¢ Truncation errors:

They are achieved when an incidence method is terminated and the approximate solution

-

changes from the exact solution.

¢ Round-off errors:

They happen due to lack of the accuracy in rounding of unit quantities by computer.

o Discretization errors:

They occur when the solution of the discrete problem does not correspond with the solution of

the continuous problem.
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6.3.1 Time discretization

We will consider the error estimate of the finite element approximation and the stability result of

the following fractional partial differential equation with the Riemann-Liouville type

BDE[ut,x) —uol — 12D = f(1,x), 0<x<1, t>0, (6.22)
u(t,0) =u(t,1) = 0, 0<t<1l,0<a<l (6.23)

Define A =2, D(4) = Hi N H2 = {u |u',u" € L,(0,1),u(0) = u(1) = 0},

X

where L,(0,1) = {f : f01 fdx < 00}, then the system (6.22)-(6.23) can be written in the abstract

form

FODE: {Df[u(t) —up] + Au(t) = f(t), 0<sx <1, t>0. (6.24)
First let us consider the error estimates for the time discretization of the abstract problem (6.24).
Let 0 =ty <t; <. <t, =1 be the time partition of [0, 1]. Then, for fixed t;,

Jj =1,2,..,n, we have (see Section 4.2)

t ¢ 4
ODE () — uplle=r; = sz__a);)akj[u(tj —ty) —uol + Ri(9),

where

-1, fork =0,
a(l—a)j %ay; = 2k — (k — D)% — (k + 1)17¢, fork=1,2,..,j—1,
(@a— 1Dk ™% — (k- 1%+ k12, fork =j,

and
IR, (9] < €42 suposesa[|uzz (t; — i),
where
suposeaa [ut (& — t0)l|=lutt (s ~ 60l _-
Thus we get
Fi’_ ; [Zh-o @il ulty - ) —uol + Ry(@)] + Au(ty) = £(t)), (6.25)
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Rewriting equation (6.25) when k = 0 we obtain
[@o HET(—@)Alu(ty) = tFT(~a)f; — Th_, ajulty — ti) + Th_g aijlo — Ri(g)  (6.26)
Denote U/ ~ u(t;) as the approximation of u(tj). We can define the following time stepping
method

[aoj+tfT(—a)AJU) = tfT(—a)f; — Tipmo tr; U7 7F + X ol (627
Let &/ = U’ — u(t;) denotes the error. Then we have the following error estimate:
Theorem 6.1 Let U/ and u(t;) be the solution of (6.22)-(6.23), then we have

e < CAL> % + ||lu(ty) — U° ||, where g, = |lu(t,) — U° ||

Proof:
Subtracting (6.27) from (6.25), we get the error equation

(o HtfT(—a)A)g = _Z{;=0 ayj €% — R,
Rewriting (6.28), then we have _
el = (—ag; — tPT(—a)A) (Thoo ki €9 7F + R)), (6.29)
Where
I Rill < suposesa [[utt t — o)l
Taking the L, norm for (6.29), we get
le/ll < | (=ao; = 6T [[Zhco @ty el + 1| Rill] (6.30)

Note that A is a positive definite elliptic operator. The eigenvalues of 4 are 4; = jn?,
j =1,2,3,..... For any function g(x) we have, by spectal method,

lg(A)]l = supasolg ()|

From (6.30) and (4.7), we have
-1

(== - 4 T(-a)A)

a(l-a)j="

[(=aoj = FT(=a)A)* || =
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= et - )j*(1- a1 - )it T(-e)A) |
|(—apj — ' T(—a)A) ! || = (1 — @)j~%supyso (1 — a(1 — a)j‘“t}’l‘(—a)l)_l

Since I'(—a) > 0, we find that

N

supzso (1— a(l — @)j " fT(-a)2) < 1.

Hence
|(—ao; — tfT(—a)A)™! || < a(1 — a)j~%.
Thus (6.30) implies that
le7]l < @@ = @)i~4[Zh_o a; ll&j—r|| + Ci*n 2supgses |[uts (& — t:0)][], (6.31)

Where we use the fact, noting that t, =n-At =1,
ugp(t; — tt) = u'" (4 — t;t) - ¢ = j2 At*u" (t; — t;t)
=j*n?u"(t - ),

Further (6.31) can be written into the form

_ J

le7|| < a1 — )i~ *Cn2u"|l,,, + a(1 — a)j = Z ax; ||lgi-k]|-
k=0
Denote a = a(1 —a)j~*Cn2|[u"]l,,.
Choose: j = 1.
Then we have
et < a+ a1 —a)1 %ayll&ll
=a-dy +nllgll,

Here d; =113 =a(l —a)1 %ay,.
Choose: j = 2, we get
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r2—1
le2ll < a+ all = @27 | Y @y el + azznson]
Ljc=1

r2—1
el < a+a(l-@)27 | > @i, (adyi + 12 illeol) + azzneon]
| jr=1

2-1 2~-1
D =l al- @27 ) apdy |+ el - @2 [Z - rz_k] leoll
k=1 k=1
= ady + 1,|| &l

Here

2-1

dz =1+ a(l - a)Z_“ Z (249 d2—ki
k=1

2-1
= a(l—-a)2™® 2 A2 T2—psTo = 1,
k=1
In general, we obtain
|| < ad; +1lleoll, S =123, .., (6.32)
Next we will find d; and 13, where
j-1
dj =1+ a(l - a)j"“z ak]- dj—kl ] = 2,3, oy
k=1

J
r=a(l- a)j‘“z: jTj-k J=1,23,.., 19 =1
k=1

Lemma 6.1 [9] for 0 < a < 1, let the sequence {d;}, j = 1,2, ... be givenby d; = 1 and

j-1

d] =1+ a(l — a)j_“z akj dj—k' ] = 2,3, ey

k=1
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then,

1<d: < sinma

T = na(i-a)

j% j=12,..

Lemma 6.2 Assumethatif =1, ;= a(l—a)j™® £=1 agjTi-k J =123, ..,

then

Proof:
Step 1: If we have 1, = 1. Then
n=a(l—a)1 % n=a(l—-a)a;;=(a@—-1D1*+11"%*=qa< 1,
Step 2: Assume that 1; < a < 1, thet
] J

Ty = a(l— “)j_az ayg; -k < a(l — a)j‘“z agj -1

k=1 k=1
[ J

1 1
=a(l-a)j @ Zakj—aoj =a(l—-a)j™® [_E-I-W]

| k=0
1 1-1-a)j @
=a(l—-a)j *|—— -—-—-——] 1-a)j™® .
a1 -a)j [ «a * a(l—a)j~@ < a(l-a)j a(l—a)j@
Hence, we get
—a 1
e < e —a) o = 1

The proof of the Lemma 6.2 is complete.

By using Lemma 6.1 and Lemma 6.2, we obtain from (6.32) the follows

e7]l < ad; +nlleoll < a1 — a)Cn 2|l |, - d; + 13 lloll

sinma
' 1%+ lleoll £ 1 < CAL?> ™ + ||g].

<a(l-a)n 2u"|,, rall—a)’
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The proof of the Theorem 6.1 is complete.

Second: we will consider a stability result of the time discretization of the FPDEs (6.22) and
(6.23).

Theorem 6.2 Let U’ be the approximate solution of (6.27), then we have

sinta
IT(—a) It/ 1If Nl

N U7\ < 21u°) +
/A

Before proving this Theorem we have the following steps:
Step 1: Substituting by the expression Z{;:o ag; = —é , into (6.27), we get
. i P 1 R

(@o;ttfT(—)A)U! = tfT(—)f; — Xpoq ar ;U7 7F — =U°, forj=123,..
Or

. ‘ i P 1

(—aoj = tfT(—a)AU = Ty ;U7 + - U° — 7T (—a)fj, (6.33)

Multiplying on both sides of (6.33) by a(1 — a)j~%, and use the fact,

a(l—a)j %(—ag;) =1,

then we obtain the follows
d 1
[1+a(l—a)j (-t (A = a(l — a)j™@ Z U7 7* + ;UO — tfT(-a)f; ).
k=1
Step 2: Assume that u; = a(1 — @)j~*(—t])I(—a), then we get
d 1
V= (1+wA) ta(l — a)j Z aUI* + = U0 - 7T (-a)f; |

k=1

We denote that the norm  ||(1 +w;4) || = supsso|(1 + w;A)7t| <1, then

[0/ < [|(1 +wa) || @ - @)= (Bho, @l + MUl + [T (=] If s, )
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J
< all= @i ) ayllt*] |+ @ - N0l + a1 - QAT CDIIf I,
k=1

<a(l-a)j @ j;zl apl|U7 K| + (1 = i U] + q, (6.34)

Here
a = a(l - a)At* T, -
Denote that when j =1,
UM < a+al —a)1™%ay, [[U°] + (1 — a)17¢[[U°]].
Suppose that d; =1, by =(1—-a)17%, r,=a(l—a)17%,
then we have |
IUM < ady + by IU°]] + 1 IU°]I.

In general, we can write that -~

|U7]| < ad; + BIUCI + w1000, j=1,23,.. (6.35)
Here
d1 - 1,
j-1
d] = 1 + 0((1 - a)j_“Z akjdj_k, ] = 2,3,4‘, arey
k=1
by =(1—-a)17%,
j-1
bi=(1-a)j*“+a(l—a)j @ Z axjbji_k, j=2,34,..,
k=1
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and
TO = 1,
J
7}' = a(l - a')j_“ Z akj'f}'_k, ] = 1,2,3, e s

k=1

Step 3: Suppose that, for some fixed numbers j = 1,2,3, ...,
|U7|| < ad; + B;IUII + 5 )1U°|I.
Then by (6.34), we have
. j
|l < a1 - @5 ) ay|[UH]| + (1 - 0y IU°l +
k=1
j
< a1 - )™ ) ayylad;p + b IVl + 731 U°)]
k=1

+(1 - a)j U + @
[ j
=|la(l—a)j™® Z arjdi—k
i k=1 ’
J
A= @)+l = @ Y by | 10°]

k=1

j
+ e -y ) agm 1000
k=1

= adjy, + bj+1||U0” + 7}'+1||U0||-

Which shows that (6.35) holds.
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Lemma 6.3: Assume that, for 0<a <1,

Choose: j =1, then b, = (1 —a)j™%,
J
bj=Q1-a)j ™" +a(l-a)™ Z jbj-t forj =234, ..,

k=1

Then we have

Proof: we know that

bhh=Q1-a)j %<1
By mathematics induction principle, suppose that

b; <1, then we have

j-1
bj+1 = (1 - O.’)(] + 1)—(1 + a(l - a)j"“z akj bj-—k
- k=1
j~1
<SA-a+D) %+a(l-a)j @ Ayj — Qg
k=0

1 1
SA-a)+D*+a(l —a)j® (_E-*—W)

1-(1-a)j@
<U-o(+1)*+a(l—a)j™™ a(l(—a;rj){“

<A-)GF+D%+1-(1-a)j*<1.

The proof of the Lemma 6.3 is complete.
Proof of the Theorem 6.2: by the expression (6.35), we have

|U7]| < ad; + BlIlUC +mllU°, j=1,23,..

here d;, b; and r; are given before.
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Using Lemma 6.1-6.3, we obtain

. sinma
|U/|| < ad; + BIIU°]| + 7 |IU°)| < amj‘“ + Ul + Ui
sinmTa
— — [24 _ T i~a 2 0
a(1 = DN Ml g — )™ + 2101
N sinmta
< 20l + —— IFC-a)lf lIf ..

The proof of the Theorem 6.2 is complete.

6.3.2 Space discretization

Let us consider the finite element approximation (the space discretization) of the equations
(6.22)-(6.23).
Let S, denote the piecewise linear continuous finite element space. More precisely,
let 0=xp<x; < <2xp =.1 be space partition of [0,1]. Denote
Sp = {vy(x) |v,(x) is piecewise linear continuous function on [0,1]}

The variational form of (7.1) is to find the solution u(t) € Hj (0,1) such that

du dv

(BDEMuEx) — uol, v() + G230 = (F@®,v(x), Vv € HE. (6.36)

The finite element method is to find u, (t) € Sy, such that

dup dx

D un(t, ) —ugl, ) + G130 = (F(, 1), VX € Sp. (6.37)

Denote Ay, = —Ap: Sy — Sy , which satisfies

(Anun 1) = (G2 L), v €Sy

Let P,: H — S, be the LZ projection operator is defined by
(Pov,X) =W, x), VXES,, VEL,.

We can write (6.33) into the abstract form
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BDf[up(x, t) —up) + Apup, = P,f, t>0. (6.38)
Let0 =ty <ty <+ <t;<--<t, =1 bethetime partition, At be the time step.
Denote U/ =~ u(t;) as the approximation of u(t;). We can define the following time stepping

method as (6.23),

A

-a . . .
(S U -0+ 0 = 5, =123, 639

We have the following theorem.
Theorem 6.3: Let u(t;) and U’ be the solutions of (6.24) and (6.39). Then we have
U7 —ue)|| < 211U° — Ryuoll + 0(AL2~% + h?),

here
h = Ax : Space step size
Let Rp: Hy — Sy, be the Ritz projection or the elliptic projection defined by
(VRyv,Vx) = (V0,Vy), Vy €S, .
We write

e = U —u(t)) = U/ — Rpu(ty) + Reu(t)) — u(t,)

=6/ +p/, ] =123,..,
where
8/ = U/ — Ryu(t)),

p! = Ryu(t;) — u(t).
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Step 1: Estimate 67, we have the error equation obtained from (6.39),

j j
t—a. t.—a

,_1__2 (pi~k — go j=_J Z (Ui~k — o j
) k—Oak} (6 0°) + An6 & k—Oak] (v U°) + AU

akj Rh (U(tj_k) - UO) + AthU(tj)
=0

j
t*
= th) - Rh 'I:—(‘]‘_—‘a—)‘E akj (U(tj._k) — uo) + PhAhU—(tj)
k=0

= Py ( ¥D#[u(t)) — uo]) — Pn

J
7
T 2, % () ~ )

= —Ph(l)",

Here, -

j
. t e
W = — BDE[u(t;) — uo] + Rhﬁkzo s (u(tj_ie) — o)
= (Rh—I) )Zak] (u( k)—uo)

t; % 4
ﬁkZo oy (u(tj-x) —uo) — §DE[u(t;) — uo)

=gl +1/,

where

= Ry — 1) —— o Zhe=o Uk (u(ti—r) — uo), (6.40)

and
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. t7% :
T = o Zemo @ (u(ty—ic) —uo) = §DE[ulty) — uo] . (6.41)
Thus we get
o
. - Z (877 — 6°) + A,0) = Py(o) + 7).
k=0

Using the stability results (Theorem 6.2), we obtain

. sina . .
lo7]) < 216°1 + === Ir (=157 [|on (o’ + ).

Here
. t 4
(LS M(—a) Z g (u(tj-r) = uo) — EDE[u(t;) — wo]
k=0

t“ e (182t —tt) —u
™| *tea " T
< ctyejee? [urr i) | = carze|fumul)|,

and

’

j
. 7
o/l = o || R - D5 a)z ey (u(tj—ie) = o)
k=0

J
telloll < ch2 (| @y (o) = o)
k=0 42
J J
< Ch? Z akju(tj_k) + Z A jUo ’
k=0 P | =0 l,2

Where (. || ;2 denote the sobolev norm.
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Note that, with g(t) = u(t; — t;t),

J J 1

k |
Z ayu(tj-) = Z akjg(']'-‘) = fg(t)t‘l‘“dt +R;,
]

k=0 k=0

where
fol g(©)t~17%dt, denotes the finite Hadamard integral [13], and
Rj| < j* 2 lgitlle = 1P uie(t; — o),
< AU NIy < A2t lugell 42

Further, we have

1 1

]g(t)t'l'“ dt = fu(tj — Ot dt,

0 0

setting t; — t;t = 7, we obtain

1 tj

L - —1—a—1—
Jg(t)t 1 dt—ofu(r)( tj ) tj dr
tj
=tf | (t; — 1) 1 *u()dr

Jof j

= t& EDu(t; )T (—a).
Thus
j

Z ault)|| < tFITCEal|l §pEu(g)ll,,. +2e2 " tf lugtllye,
k=0 H?2
which implies that

tllo’[| < ch?e® [InC-=a)l|| §DEu(t)] o + A2~ lugell e -
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Hence, we obtain
lo7]] < zlle®ll + === Ir(=)ltf|lpn (o7 + )| (6.42)
< 2]|6°| + Ct;"Atz‘“Hué’tlle
+Ch?tf (|| SDEu(t)|, . + A2 lugtllyz )
< 2|18°|| + 0(At?~% + h?).
Thus
le7]] < [l67]| + [lo”[| < 2lle°N + 0at?=* + h?) + ||p7|].
By the error estimates of the Ritz projection, we have [37], [38]
071l = [|Rnu(t;) — u(t)l = cr?[lult)l . (6.43)
Together with these estimates we get,

/|| < 2116°1 + 0(at? == + h?).

The proof of the Theorem 6.3 is complete.

6.4 Numerical simulation

In this section, we will consider two numerical examples.

Example 6.1. Consider the time fractional partial differential equation, with 0 < a < 1,

a® a2 _

ﬁu(t, xX) — Eu(t, x) = f(t,x) (6.44)
Lc: u(0,x) = uy, 0<x<1, (6.45)
B.c: u(t,0) =u(t,1) =0, t>0, 0O<ax<l1 (6.46)

The exact solution is
u(t,x) = sin(mt) sin(mwx).

73



Chapter Six A finite Element Method for Solving FPDE

The write hand side of the function

f(t.x)=r

&
1;_@ f n(t — 5)™% cos(ms) sin(mx) ds — n? sin(nt) sin(mx)
0

(

Wechoose a =02, Ax=h=001, T=1 At=k=1/32, N=T/At.
Let U™ denote the approximate solution and u(t,) denote the exact solution at t = t,, .
Let e" = U™ — u(t,) denote their error at t = t,,. We plot the exact solution, approximate

solution at ty = 1, in Figure 1. We plot the error at ty = 1 in Figure 2.

The exact solution u(t, x) at t=1 for o, =01 approximate solution uNat ty=1fora =0.2

Figure 1. The approximate and exact solutions at ty = 1
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1 for g =0.2

The error at t

The errorat ty =1

Figure 2

Example 6.2. Consider, with 0 <a <1

(6.47)

Oiex < !

?

>0

t

= f(t,x),

u(t, x)

aZ
x>

u(t,x) —

at«

(6.48)

L w0, x) = 1,

(6.49)

Boc: ult,0) =4, 1) =0,

The exact solution is

u(t, x) = sin(mt) sin(mx).

The right hand side function
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f(t,x) = 2t>~%sin(2nx) /T (3 — a) — 4m? sin(2mx)t>.

We choose @ = 0.2, Ax=0.01, T=1, At=0.01, N=T/At.

Let U™ denote the approximate solution and u(t,) denote the exact solution at t = t,,.

Let €" = U™ — u(t,) denote the error at t = t,. We plot the exact solution and the

approximate solution at ty = 1 in Figure 3, and we plot the error at ty = 1 in Figure 4.

=oj2{1e approximate solution uNat ty=1fora =0.1

pes
£y
]
'
i

The exact solution u(t, x) at t=1 for o

0.5 2

150

il

150
150

Figur 3. The approximate and exact solutions at ty =1
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The error at t=1 for ¢, =0.1

Figure 4. The error at ty = 1
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Chapter !/

Conclusion and Future Research

7.1 Conclusion

In this dissertation we discuss the finite element method for the time fractional partial differential
equations. We first introduce the finite element method for solving parabolic partial differential

equation. Then we extend the method to the time fractional partial differential equation.

We obtain the error estimates in the L,-norm between the exact solution and the approximate
solution in fully discrete case. The numerical examples show that the numerical results are

consistent with the theoretical results.
7.2 Future Research

The main objective of this chapter is to highlight areas where further research might be pursued
in order to contribute to the understanding and advancement of finite element method for solving
partial differential equations in fractional order. We only demonstrate the finite element method

for solving 1D linear fractional partial differential equations in this dissertation.

In the future research we will extend the present approach to the 2D fractional partial differential
equations. We will also study finite element methods for the non-linear fractional partial

differential equations, and consider the error estimates. It is also very interesting to consider the
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finite element method for fractional partial differential equations where both time and space

derivative are of fractional order.
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MATLAB program for example 6.1

function [ dA,db,localmass ] = elementcontributions( t,x,nodes,el,w0,al )

%ELEMENTCONTRIBUTION Summary of this function goes here
% Detailed explanation goes here

nl=nodes(el,l);

n2=nodes(el,2);

x1=x(nl);

x2=x(n2);

length=x2-x1;

f=[right(t,xl,al);right(t,x2,al)];

%F=0;

localmass=[1/3*1length 1/6*length; 1/6*length 1/3*length];
localstiffness=wO0*[1/length -1/length; -1/length 1/length];
dA=localmass+localstiffness;

db=wO*localmass*T;

%db=0;

end

Ww).....
function y=w(k,j,q)
if k==0;
y=1/gamma(2-q);
else if j==1 && k==j
y=-a/gamma(2-q);
else if k==1 && j>=2;
y=(2"(1-9)-2)/gamma(2-q);
else if k>=2 && k<=j-1;
y=((k-D)"(1-0)+(k+1)"(1-0)-2*k"(1-q))/gamma(2-q) ;
else k==j && j>=2;
y=((k-1)"(1-a)-(a-1)*k*(-a)-k*(1-a))/gamma(2-q) ;
end
end
end
end
end

function [y ] = right( t,x,al )

ee=le-5;

y=1/gamma(l-al)*quad(@(ta)funexpl(ta,t,x,al),0,t-ee)-fun(t,x);

end

function y=funexpl(ta,t,x,al)
y=pi*(t-ta) .~(-al) . *cos(pi*ta) . *sin(pi*x);
end
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function y=fun(t,x)
y=-pi™2.*sin(pi*t) . *sin(pi*x);
end

%To solve the time fractional partial differential equation

%

%

wDNalpha}l {t} u (x, t) - D2} {x} u (t, xX) = f(t,x), 0 < alpha <1,
%u(0,x)=0

%u(t,0)=u(t,1)=0;

%

% The exact solution is

%

% u(t,x)=sin(pi t)*sin(pi Xx);

%

% Here f(x, t) is caculated by using quadrature formula "quad"

%%6%%6%%%%%%%%%%%%%%%%%%%%%6%%6%%6%%6% %% %% %% %% %% % %%
clear

al=0.2; % fractional order

h=1/100; % space stepsize

x=[0:h:1];

n=size(x,2);

nodesl=1:n-1;

nodes2=2:n;

for i=1:n-1;
nodes(i,l)=nodesl(i);
nodes(i,2)=nodes2(i);
end

T=1;

k=1/32; % time stepsize

NT=T/K;

UOO=ones(size(x"))*0; %initial value
t=[1:1:NT]"*k;

exact=sin(pi*t)*sin(pi*x); % exact solution

exact=exact";
exact=[UO0 exact];

Uu=uo00;

for j=1:NT
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w0=1/w(0, j ,al)*k~(al);

RO=wO*(t(j))"(-al)/gamma(l-al)*U00;

A=zeros(n,n);
b=zeros(n,1);
mass=zeros(n,n);
U=zeros(n,1);
ssum=zeros(n,1);
F=zeros(n,1);

for el=1:n-1

[dA,db, localmass]=elementcontributions(t(j),x,nodes,el,w0,al);
nn=nodes(el, :);

A(nn,nn)=A(nn,nn)+dA;

b(nn)=b(nn)+db;

mass(nn,nn)=mass(nn,nn)+localmass;

end
for g=2:j+1
ssum=ssum+w(g-1, j,al)*UU(:,j-g+2);
%w denotes the coefficients of the fractional time derivative
approximation
end

R=wO/k”~(al)*ssum;

b=b-mass*R+mass*R0;

innodes=2:n-1;
Al=A(innodes, innodes);
bl=b(innodes);
U1=A1\b1;
U(innodes)=U1;

Uu=[uu UJ;
end

error=UU-exact;

figure(l)

subplot(1,2,1)

mesh(exact)

xlabel ("t*);ylabel ("x");

title("The exact solution u(t, x) at t=1 for \alpha =0.2%)
subplot(1,2,2)

mesh(UU)

xlabel ("t");ylabel ("x");

title("The approximate solution UMN} at t {N}=1 for \alpha =0.2")
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figure(2)

mesh(error)

xlabel ("t");ylabel ("x");

title("The error at t=1 for \alpha =0.2%)

toc

MATLAB program for example 6.2

%To solve the time fractional partial differential equation

%

%

wDN{alpha} {t} u (x, t) - D2} {x} u (t, xX) = f(t,x), 0 < alpha <1,
%u(0,x)=0

%u(t,0)=u(t,1)=0;

%

% The exact solution is

%

% u(t,x)= t"2 *sin(2*pi x);

%

% Here

% f(x, t) = 2 * t~(2- alpha) * sin (2 *pi*x)/Gamma(3-alpha)
% - 4 * pin2 *sin(2 * pi*x) *t"2
clear

al=0.1; % fractional order

h=1/100; % space stepsize

x=[0:h:1];

n=size(x,2);
nodesl=1:n-1;
nodes2=2:n;

for i=1:n-1;
nodes(i,l)=nodesl(i);
nodes(i,2)=nodes2(i);
end

T=1;
k=0.01; % time stepsize
NT=T/K;

UOO=ones(size(x"))*0; %initial value
t=[1:1:NT]"*k;

exact=(t."2)*sin(2*pi*x); % exact solution
exact=exact";

exact=[U0O0 exact];

%U0=U00;
uu=u00;
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tic
for J=1:NT
w0=1/w(0, j,al)*k~(al);

RO=wO*(t(j))"(-al)/gamma(l-al)*U00;

A=zeros(n,n);
b=zeros(n,1);
mass=zeros(n,n);
U=zeros(n,1);
ssum=zeros(n,l1);
F=zeros(n,1);

for el=1:n-1

[dA,db, localmass]=elementcontributions(t(j),x,nodes,el,w0,al);
nn=nodes(el, :);

A(nn,nn)=A(nn,nn)+dA;

b(nn)=b(nn)+db;

mass(nn,nn)=mass(nn,nn)+localmass;

end

for g=2:j+1
ssum=ssum+w(g-1, j,al)*UU(:,j-g+2);
%w denotes the coefficients of the fractional time derivative
approximation
end
R=wO/k~(al)*ssum;

b=b-mass*R+mass*R0;

innodes=2:n-1;
Al=A(innodes, innodes);
bl=b(innodes);
U1=A1\b1;
U(innodes)=U1;

uu=[uu U];
end

figure(l)

subplot(1,2,1)

mesh(exact)

xlabel ("t");ylabel ("x");

title("The exact solution u(t, x) at t=1 for \alpha =0.1%)
subplot(1,2,2)
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mesh(UU)
xlabel ("t");ylabel ("x");
title("The approximate solution UMN} at t_{N}=1 for \alpha =0.17)

error=UU-exact;

figure(2)

mesh(error)

xlabel ("t");ylabel ("x");

title("The error at t=1 for \alpha =0.1%)

toc

function [ dA,db,localmass ] = elementcontributions( t,x,nodes,el,w0,al )
%ELEMENTCONTRIBUTION Summary of this function goes here

% Detailed explanation goes here

nl=nodes(el,l);

n2=nodes(el,2);

x1=x(nl);

x2=x(n2);

length=x2-x1;

f=[right(t,x1,al);right(t,x2,al)];

%T=0;

localmass=[1/3*length 1/6*length; 1/6*length 1/3*length];
localstiffness=wO*[1/length -1/length; -1/length 1/length];
dA=localmass+localstiffness;

db=wO*localmass*f;

%db=0;

end

function y=w(k,j,q)
if k==0;
y=1/gamma(2-q);
else if j==1 && k==j
y=-0/gamma(2-q);
else it k==1 && j>=2;
y=(2"(1-q)-2)/gamma(2-q) ;
else if k>=2 && k<=j-1;
y=((k-1)"(1-0)+(k+1)"(1-q)-2*k"(1-q))/gamma(2-q) ;
else k==j && j>=2;
y=((k-1)*(1-a)-(a-1)*k*(-a)-k*(1-a))/gamma(2-q) ;
end
end
end
end
end
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