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Chapter 1

Introduction

Recently, highly dynamic distributed systems have attracted a lot of interest from the
relevant research community [21,47], due to the fact that static distributed systems do
not capture anymore the new kind of software applications that are emerging on the
ICT field. Mobile devices, sensors networks and cloud computing definitely changed
the way of looking at distributed systems where, for example, the underlying com-
munication graph connecting distributed system’s processes is constantly changing.
Mobility of devices, intermittent connectivity due to lossy links create very challeng-
ing system models where what was trivially solvable in a static distributed systems,
is far from being trivial in this new landscape.

A critical element in such future distributed systems is the anonymity of the de-
vices; the uniqueness of the node IDs is not guaranteed due to operational limit ( e.g.,
in highly dynamic networks maintaining unique IDs may be infeasible due to mobil-
ity and failure among nodes [65]) or to maintaining user’s privacy (e.g., where users
may not wish to disclose information about their behavior [28, 42]). We refer to this
setting as anonymous dynamic networks. The impacts of anonymity on distributed
computation has been largely investigated [18, 19, 24, 32, 33, 68, 71]. The difficulties
are created by the inherent symmetries created in peculiar families of networks con-
figuration. These symmetries do not allow nodes to locally distinguish the particular
network in which they are running, this leads to the impossibility of solving many
problems. A classical result in such setting is the impossibility of doing any non
trivial computation on an anonymous synchronous edge-unlabeled ring of unknown
size [3, 18].

Early studies deal with causes of dynamicity such as failures and changes in the
topology that eventually stabilize, [2, 13, 30, 35]. However this low rate of topological
changes is unsuitable for reasoning about truly dynamic networks. Recently there
have been several studies about dynamic networks that constantly change [44,63,65].
In these studies the dynamicity is governed by a fictional omniscient entity the ad-
versary that deploys the worst possible network configuration in order to challenge
computations. Studying which kind of problems can be deterministically solved is a
non trivial task and it is the focus of a wide number of recent papers: [43,45,60]. Ex-
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2 CHAPTER 1. INTRODUCTION

ample of key problems in such environments are terminating broadcast and counting.

The importance of broadcast with explicit termination is clear, this problem is
a basic building block for more complex primitives. Its solvability has been inves-
tigated in adversarial [44] and non adversarial dynamic networks [20]. Other recent
works, [1, 31, 36], investigated lower bounds on the time needed to solve the related
problem of k-token dissemination [44], where k tokens initially distributed among a
subset of processes have to be disseminated and received by all processes.

The problem of counting, or estimating, the number of processes in a system is
among the fundamental problems of distributed computing [12, 15, 41, 44, 58, 64]. Es-
timating the size of the network is indispensable for topological change detection or
automatic network reconfiguration. In a network when IDs are not unique count-
ing is the basic building block to answering predicates like “Are there k nodes with
initial input x?”, that is in turn necessary to compute generic aggregated functions.
Moreover if we consider a synchronous model where the perpetually changing graph
is connected at each computational round (i.e., the 1-interval connected model pro-
posed by [44]) we have that a terminating counting algorithm implies terminating
broadcast [44]: Intuitively, as result of the connectivity assumption, we have that if a
process floods in the network a certain message m then at each round the set of nodes
that has not received m will decrease by at least one unit. In 1-interval connected
network, counting has a further notable byproduct. Let us remark that such model
has been widely accepted in the context of dynamic computation [1,11,31,36–38,44].

When we consider mobile computing a common way to abstract processes com-
munication is to consider a local broadcast primitive, a process has to send the same
message to all neighbors. Considering this communication capability we have that
in anonymous interval connected graph the presence of the leader node is necessary
in order to compute non trivial tasks, including counting and terminating broadcast.
This is showed by [59] where is observed that otherwise the adversary could perpetu-
ally generate a ring graph. The presence of a leader node is an acceptable assumption
in many realistic settings (e.g., the presence of a base station in a mobile network)
and it is easier to ensure than an unique ID for each process. When processes com-
municate using broadcast assuming a leader is strictly weaker than assuming unique
IDs [59].

Even with leader and connectivity the task of counting in adversarial networks
is not trivial. The difficulties introduced by the anonymity are exacerbated by the
presence of a continuously changing graph. In this model there is no assumption of
fairness, as in contrast with population protocols [4,25] or dynamic graphs where links
are created by using peers sampling mechanics [41, 64]. Therefore we cannot lightly
assume: a certain break in symmetry (e.g., the highly dynamic assumption in [61]), a
known recurrent set of edges, a certain expansion factor in the graph or a bound on
the time needed to flood the entire network.

In the light of these difficulties it has been conjectured [61, 62] that even with a
leader non trivial computations are impossible: It is impossible to compute (even with
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a leader) the predicate Na ≥ 1, that is “exists an a in the input”, in general anony-
mous unknown dynamic networks with broadcast. The previous conjecture implies a
conjecture on the impossibility of counting. Therefore there is an important open
question about what can be computed in this environment.

In this manuscript we study the problem of exact counting. Specifically the main
focus is on deterministic terminating algorithms. A terminating counting algorithm,
in contrast with an algorithm that only converges to the correct count, is necessary
in many realistic situations. As example we may think about a mission critical envi-
ronment where information contained in each node matters, in this case an incorrect
termination, e.g. counting one node less, could have nefarious consequences. We are
not interested in algorithms where actions are based on the outcome of a coin toss,
e.g. [44, 58, 64], since randomness could be used to break symmetries increasing the
computational capabilities of nodes.

Ultimately, we are interested in the solvability of exact counting, and as con-
sequence on what can be computed, in an anonymous network where a single dis-
tinguished leader is present, nodes communicate by broadcast and the underling
connected communication graph changes at each round governed by an omniscient
adversarial entity that picks links in such a way to challenge the execution of our task.

1.1 System Model

We consider a synchronous distributed system composed by a finite static set of
processes V (also called nodes). Processes communicates through a communication
network which is a dynamic graph.

Definition 1. A dynamic graph G = {G0, G1, . . . , Gr, . . .} is an infinite sequence of
graphs one at each round r of the computation.

We assume at each round r the network is stable and represented by a graph
Gr = (V,E(r)) where V is the set of nodes and E(r) is the set of bidirectional links
at round r connecting processes in V .

The neighborhood of a node v at round r is denoted by N(v, r) = {v′ : {v′, v} ∈
E(r)}. We say that v has degree d at round r iff |N(v, r)| = d. Given a round r we
denote with pv,v′ a path on Gr between v and v′. Moreover we denote with P rv′,v, the
set of all paths between v, v′ on graph Gr. Graph Gr is connected iff ∀v′, v ∈ G we
have P rv′,v 6= ∅. The distance dr(v′, v) is the minimum length among the lengths of
the paths in P rv′,v, the length of the path is defined as the number of edges.

We use the term family to indicate a specific set of dynamic graph that share
certain properties. Let us formally introduce the family of interval connected graphs.

Definition 2. [44] 1-Interval Connected: Let us consider a dynamic graph G. A
graph G belongs to 1-Interval Connected Family , denoted G(1-IC) , iff ∀Gr ∈ G we
have that Gr is connected.

The main focus of this manuscript is on graphs in G(1-IC). Therefore when is not
explicitly specified we assume that the graphs are 1-interval connected.
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We assume that each node v ∈ V starts with a variable iv assigned at the beginning
of the computation, i.e. this variable is called initial state. Initial states are not
unique, we could have two nodes v1, v2 such that iv1

= iv2
. We say that in a dynamic

network there is a leader node vl if ∀v1 ∈ V \ {vl} we have iv1
6= ivl . A network is

anonymous with a leader if ∀v1, v2 ∈ V \ {vl} we have iv1
= iv2

.

The Adversarial Entity We introduce a fictional entity called adversary. The
adversary generates the sequence that will compose the dynamic graph. As in [44],
we use the term worst case adversary to denote an omniscient adversary that is able
to read nodes internal memory. Moreover we assume that the worst case adversary is
able to control the source of randomness available to nodes, i.e. the outcome of local
coin tosses could be arbitrarily biased. Therefore in this manuscript we consider only
deterministic algorithms.

We use the term random-adversary to denote an adversary that generates the dy-
namic graph according to some probabilistic strategy. When is not explicitly specified
we assume that the adversary is worst case.

Communication and Computation At round r a process v communicates with
the set of processes N(v, r) by sending and receiving messages. Every round is divided
in two phases: (i) send where processes send all the messages for the current round,
(ii) receive where processes receive all the messages sent at the beginning of the current
round and where nodes process received messages and prepare those that will be sent
in the next round. Each node has access to the current round number via a local
variable that we usually denote by r. Messages are sent by an anonymous broadcast
primitive: if node v sends a message m during the send phase of round r, message m
will be received by all nodes in N(v, r) during the receive phase of round r.

Now we introduce the concept of dynamic diameter, the definitions are adapted
from [43]:

Definition 3. Node v starts a flooding at round r by broadcasting a message Flood to
its neighbors. If a node receives Flood it will broadcasts Flood to its neighbors for all
successive rounds. We say that the flood has completed when all nodes have received
message Flood.

Definition 4. A dynamic network has dynamic diameter D, if for each node v ∈ V
a flooding that starts from v at round r has completed at most at round r +D.

Intuitively the dynamic diameter is the maximum time a node needs to trans-
fer information to all nodes in the network. Networks in G(1-IC) have a dynamic
diameters that is at most |V |, see [44].

The Counting Problem Let us introduce our formalization of the counting prob-
lem. As shown in [59], the leader is necessary to solve the counting. Therefore our
definition is leader based.

Definition 5. Terminating Counting: Given a dynamic network G with |V | processes,
a distributed algorithm A solves terminating counting on G if it exists a round r at
which the leader outputs |V | and terminates.
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G(PD)h networks Let us introduce a characterization of dynamic networks where
we restrict the adversary to ensure certain properties on paths among the leader vl
and other nodes. That properties lead to specific structures of the dynamic graph
that is kept among rounds. We first characterize dynamic graphs according to the
distances among a node v and the leader vl.

Definition 6. Persistent Distance over G: Let us consider a dynamic graph G.
The distance between v and vl over G, denoted D(v, vl) = d, is defined as follow:
D(v, vl) = d iff ∀r, dr(v, vl) = d.

Let us now introduce a family of dynamic graphs based on the distance between
the leader and the nodes of a graph.

Definition 7. Persistent Distance family: A graph G belongs to Persistent Distance
family, denoted G(PD) , iff ∀v ∈ G, ∃d ∈ N+ ::D(v, vl) = d

Among the dynamic graphs belonging to G(PD) we can further consider the set
of graphs, denoted G(PD)h, whose nodes have maximum distance h from the leader
with 1 < h ≤ |V |. Thus, given a graph in G(PD)h we can partition its nodes in h
sets, {V0, V1, . . . , Vh}, according to their distance from the leader.

We also consider networks where for each node v there exists a path pv,vl that
persist among rounds. In this case we have a resulting dynamic graph that is ∞-
interval connected.

Definition 8. [44] ∞-Interval Connected: Let us consider a dynamic graph G. A
graph G belongs to ∞-Interval Connected Family , denoted G(∞-IC) , if considered
G∞ : ∩∞r=0Gr we have that G∞ is connected.

The aforementioned networks will the be focus of Chapter 3

Local Degree Detector Oracles. We also focus on counting algorithms for net-
works that are unstructured, but where nodes have access to some local additional
knowledge. Specifically v has information on its local degree at the beginning of round
r, before exchanging messages. Let us recall that without the oracle in our model a
node has no information about its degree before the receive phase. This is modeled
by using the concept of local oracle, it will be formally introduced and investigated
in Chapter 4.

1.2 Related Work

The problem of counting the network size has been widely investigated in different
contexts. In the following, we will discuss the main results starting from the static
non-anonymous networks. Then we orderly discuss related results in static anonymous
network, in non-anonymous dynamic networks and finally in anonymous dynamic
networks. When needed each section is divided in adversarial and non adversarial
dynamicity.
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Counting in Static Non-Anonymous Networks.

In non-anonymous undirected network the seminal work of Awerbuch [12] shown the
connection between the counting problem and the construction of a spanning tree,
their time and communication complexity are related by a constant factor. In this
setting counting can be solved in O(D) rounds and O(log |V |)-size messages.

Recently, Khun and Oshman [46] have shown that in directed networks, if each
node can send at most B = Ω(log |V |)-bits, the time needed to solve counting is

function of the network size, specifically Ω( |V |B ) rounds, even in networks where the
diameter D is 2. The bound is obtained by a showing a reduction from the two-player
game of deciding if the hamming distance of two strings falls inside a certain range
to counting. The presence of directed edges is a fundamental point in their proofs.
Therefore this result cannot be ported in undirected static (or dynamic) networks.

Counting in Static Anonymous Networks.

The question concerning which problems can be solved on top of an anonymous net-
work has been pioneered by Angluin in [3]. Yamashita and Kameda [69] proposed
several characterizations for problems that are solvable under certain topological con-
straints when considering known the size, or an upper bound, of the network. Further
investigation led to the classification of computable functions [8, 18, 19, 69, 70]. The
work presented in [17] has been the first one that removed the assumption of knowing
the network size and provided characterizations of the relations that can be computed
with arbitrary knowledge.

A computational tool used in many of the previous work is the view of a node
v, this concept has been introduced in [70]. The view of v is an infinite tree rooted
in v and constructed by exchanging topological information, i.e. the local incom-
ing/outgoing configuration of edges, with neighbors. Each path from v to a node in
the tree corresponds to a walk in the original graph. Edges of this tree are labelled
or not according to the communication model used. The broadcast model considered
in this manuscript is equivalent to the broadcast-to-mailbox [71] and obviously lead
to an unlabeled view. Unfortunately views cannot be used in an highly dynamic en-
vironments where a node may change neighborhood at each round.

It is well known, [34], that in the broadcast model the presence of the leader does
not allow to assign unique IDs to each node, i.e. solving the naming problem [71].
The possibility of having a terminating naming algorithm would immediately lead to
a trivial possibility result for counting. In contrast with naming is easy to see that
in anonymous network with broadcast the presence of a leader is enough to solve
counting, we may easily obtain an algorithm based on the technique used in [71].

In [61] is shown a counting algorithm that employs O(D) rounds and O(log |V |)-
size messages. We are not aware of any non-trivial, i.e. different from Ω(D), lower
bound on the counting time for static anonymous network in models that could be
related to the one used in this manuscript.



1.2. RELATED WORK 7

Counting in Dynamic Non-Anonymous Networks.

In this paragraph we discuss known results on the counting for dynamic networks
where IDs, or local edge-labeling, are provided. We first discuss the works where
the dynamicity is governed by a random process and then when is governed by a
worst-case adversary.

Non-Adversarial Networks In the context of p2p systems there is a vast majority
of works that investigate the problem of counting when dynamicity is governed by a
random process. Usually in such systems the set of nodes is not static, as assumed in
this manuscript, but it is dynamic. Nodes can continuously leave and join the system,
this is modeled by the concept of churn. Moreover the distribution of links and churn
is usually assumed to be governed by some random distribution, in contrast with a
worst case entity. In this context have been developed many size estimation algo-
rithms based on probabilistic approaches. In [57,58,67] the size is estimated by using
random walks. This approach is unsuitable in our model for, mainly, two reasons:
(1) in order to do a random walk we have to send a specific message to one neighbor,
this implies some sort of local naming that is not available in the broadcast model,
(2) we have to randomly select the next hop in the walk and this would implies some
sort of randomness source that we would to avoid. This need of randomness is shared
by the majority of techniques develop for p2p system. In [40] a locally averaging
approach is used, and it is leveraged to obtain a convergent counting algorithm. This
method does not use randomness. However in their model unique IDs are assumed
and used to implement unicast communication and request-reply patterns. In our
model the unicast communication is impossible to achieve, and the same holds for
the request reply pattern, two neighbors at round r could be positioned arbitrarily in
the graph at successive rounds. Moreover the algorithm only converges to the correct
count, there is no explicit termination condition, and bounds on the estimation error
and convergence time are known only for dynamic topologies where links are created
uniformly random. That is not the case studied in our model. This lack of an explicit
exact termination, common to algorithms for size estimation in p2p systems, make
them unsuitable for our purpose.

The results in [15] formally show that when there is churn it is impossible to have
the exact count of network participants at some time t (i.e. impossibility of snapshot
validity semantics). This impossibility result obviously holds also for anonymous
dynamic network. This is one of the motivation for our focus on a static set |V |.
The impossibility proof presented in [15] leverage a worst case adversary that governs
churn.

Apart from the aforementioned paper, We are aware of very few works that cope
with a worst case adversary governing churn and all are investigating subjects that
are unrelated to counting: In [48] authors propose algorithms to maintain a specific
overlay structure. Very recently, [9, 10] propose algorithms to solve distributed stor-
age and byzantine consensus. These problems are not directly connected to counting,
system models assume IDs and solutions are heavily based on random walks and their
mixing properties in sequences of expander graphs.
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Adversarial Networks Distributed systems with worst-case adversary and a static
set of processes were first studied in [65], in this work the worst case adversary is
conceptually replaced by the equivalent highly dynamic graph. The communication
model assumed can be seen as an asynchronous version of 1-interval connected model,
the graph changes locally and it is not governed by a round mechanism. A node v
can detect if the neighborhood changes, and if v sends a message immediately after
the detection of this event then the message will be received by all neighbors. As
in 1-interval connected network this model does not allow request reply pattern, the
neighborhood of v may change immediately after v receives a message.

They studied implicitly terminating flooding and routing problems. A flooding
algorithm is implicitly terminating if eventually nodes stop to send flooding related
messages. For the flooding they shows various algorithms under one of this two
different conditions: (C1) a solution that uses storage restricted to O(log |V |), i.e.
each nodes can store a constant numbers of IDs and (C2) a solution that is uniform,
i.e. there is no initial knowledge on the network size. Moreover with an additional
assumption on the ID space, i.e. the maximum ID has to be an upper bound on the
network size, they show an algorithm that fulfills both conditions. However solutions
that ensure (C2) heavily relay on the presence of IDs, or on a structure of ID space,
to compute an upper bound on the network size. Therefore they cannot be used or
adapted to work in our environment.

Then they investigate the problem of flooding when IDs are not present. In this
case they conjecture that without IDs is impossible to design an implicitly terminat-
ing flooding algorithm that respects condition (C1) or (C2).

In [44] the 1-interval connected model is introduced an investigate. Authors pro-
vide terminating algorithms for counting and broadcast. A key property of this model,
on which the algorithms proposed in [44] are based, is that at round r each node v has
been influenced, i.e it has received directly or indirectly a message, by a set of nodes
of size X = max(|V |, r). Conversely if a node v starts to continuously flood a message
m at round 0, and each process that receives m does the same, we have that after at
most |V | rounds each process in the network has received m. This can be intuitively
seen if we imagine that v is the only colored node red at round 0. The coloring rule
is that each node neighbor of a red node changes color to red, for the connectivity
assumption in each Gr there is an edge between a red node and an uncolored one,
therefore if there is an uncolored node at each round the set of colored node increases.
By the end of round |V | − 1 all nodes will be colored in red.

On this observation is based a simple counting algorithm that requires O(|V |)
rounds and O(|V |) bits per message. Each node v floods continuously the set Sv of
known IDs, at the beginning a node knows only its ID. The algorithm terminates at
node v when r > |Sv|. The first process that obtains the count can disseminate this
value to other using a terminating broadcast. This idea is similar to the ListfFooding
algorithm of [65]. The additional explicit termination is given by exploiting the prop-
erty induced by the synchronous assumption.

Starting from this algorithm the authors propose a refined counting that requires
O(|V |2) rounds using O(log |V |) bits per message. The algorithm is based on “k-
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committee”, that is a partition of nodes in sets of at most k members if k < |V | and
if k ≥ |V | there must exist a single committee that include all nodes, each committee
is associated with an unique ID.

The idea is that nodes, knowing k, can locally verify if they are in a k-committee
with k ≥ |V | by flooding the committee ID. For the aforementioned property after
k + 1 rounds if two, or more, committee exist then each node knows at least the ID
of two committee.

Based on this the authors propose an algorithm that given a value k partition the
network in k-committee, when a partitioning is obtained the nodes simply verify if
there is an unique committee and if this is not the case they increment k. After at
most |V | step we have that in the network there is a single committee therefore nodes
stop and output the count.

The algorithm to create the k-committee must guarantee that each committee
does not have more than k members, otherwise the verification procedure will fail,
leading to an incorrect count. This is done in their model by using IDs to invite note
to join a committee, that is initially each node belongs to the committee with ID
equal to its own. After a flooding phase, each committee leader, that is the node with
ID equal to the committee ID, invites to join the node with lowest ID heard.

This cannot be implemented in our model, because of the symmetry induced by
anonymity. We cannot guarantee, at any point during the computation, that we can
send a message that could be associated to only one receiver. Therefore we cannot
have a bound on the numbers of node that will join a certain committee.

Very recently, in [60] is examined a worst case dynamic model in which the graph
is not connected at each round. They define the oit:outgoing influence time that is the
number of rounds needed for a node v to influence another node w, and the iit:ingoing
influence time that is the number of rounds needed to v to be influenced by another
node w. They show relationship between this two metrics. Moreover they define a
kind of network where the adversary is restricted to keep a bounded cover time. In
this model each node knows a local bound on the number of rounds necessary to be
connected, at least once, to all its possible neighbors. They show that, if IDs exist,
it exists a terminating counting algorithm for this kind of networks. The model of
bounded cover time bear some resemblance with the model of recurrent edges of [20]
where each edges has to appear after at most δ rounds with δ known to nodes, in
this model [20] proposes solutions and impossibility results for terminating broadcasts.

In the context of directed strongly connected adversarial network [1] shows a con-
nection between the counting and the problem of two-party k-token dissemination,
a variant of the k-token dissemination where the tokens have to be sent by a source
process to a destination process. In their model, if the size of messages is limited
to O(log |V |), a lower bound for the two-party k-token dissemination is also a lower
bound for counting. However the authors do not specify bounds for two-party k-token
dissemination. Therefore the only non trivial, different from Ω(D), lower bound for
counting in directed network is still the one of [46].

Other known bounds for adversarial network are related to the k-token dissemina-
tion: [44] proved that when each node may send only one token at each round any k
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token dissemination algorithm based on token forwarding 1 terminates in Ω(|V |log k)

round. In [31], the authors improved the bound to Ω( |V |klog |V | ). Starting from these

results, [36] provides bounds for dynamic networks where more than one token at
time can be sent. When IDs are present, the k-token dissemination is connected to
the counting problem, a solution for n-token dissemination solves also counting.

Considering networks with limited dynamicity, the T -interval connected model is
defined in [44]. It is shown that in ∞-interval connected networks with IDs counting
requires O(|V |) rounds and O(log |V |)-size messages.

Counting in Dynamic Anonymous Networks.

Non-Worst Case Dynamic Networks Counting algorithms in the field of anony-
mous non worst case dynamic networks have been investigated in the context of pas-
sive mobile model [25]. Where nodes interacts, i.e. they influence the state of each
other, when they meet. The interaction between agents are usually governed by a
random schedule that ensures some fairness condition. In [25] we have a convergent
counting algorithm that has no terminating condition, the algorithm works under the
assumption that eventually two agents interacts infinitely often, since agents are as-
sumed to have space O(log |V |) the agents exchange O(log |V |)-size messages. In the
same interaction model but by using population protocol and a distinguished leader,
namely base station, [16, 39] show algorithms to solve a self-stabilizing convergent
counting and lower bounds on space complexity. These results are not related to our
model, they assume pair-wise asymmetric interactions and a fair scheduling.

In [41], the authors propose a convergent gossip-based protocol to compute aggre-
gated function in a dynamic network by exploiting an invariant, called conservation
of mass, defined over the whole set of processes. The underline network graph con-
sidered in [41] is complete and connections between nodes are obtained through a
sampling function, i.e. the network dynamics is governed by a fair random adversary
that exchanges edges between nodes according to an uniform distribution. On the
contrary, in our work we do not assume such fairness in the network dynamics but we
rather consider a graph where edges are selected in such a way to choose at each step
the worst configuration possible to challenge the protocol, moreover the algorithm
of [41] is only convergent and terminating conditions, or method to evaluate the error
on the estimate, are not proposed.

Always in the context of gossiping protocol the work of [64] uses a randomized
algorithm to compute an approximated counting. The idea behind this algorithm
will be adapted to reach an approximated counting in worst-case networks with an
oblivious adversary in [44]. The authors remark that their algorithm does not suffer
from the oscillating behavior of [41]. The algorithm is randomized, and the random-
ization is used to implicitly break the network symmetry. Moreover a loose upper
bound on the network size is needed in order to determine the quantity of random-

1“Token-forwarding algorithms are not allowed to combine, split, or change tokens in any way
” [36].
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ness that nodes have to sample. As previously discussed we want to avoid the use of
any random source since it drastically changes the computational power of the model.

Worst Case Dynamic Networks The problem of Counting in interval connected
anonymous networks has been attacked for the first time in [44]. Where is proposed
a probabilistic algorithm for approximated-counting in anonymous worst case ad-
versarial network, the algorithm leverages the ideas proposed in [64]. However this
algorithm suffer from the need of randomness, that we want to avoid, and from a non
exact terminating condition. Therefore cannot be used to our purposes. Moreover,
the algorithm is given for the oblivious adversary model, where the adversary has to
create in advance the dynamic graph without knowing the random choice of processes.

The first work investigating the problem of counting in a model that is analogous
to our is [61, 62]. The authors conjectured the impossibility of counting when the
broadcast communication is available. In the light of this conjecture they show an al-
gorithm to compute an upper bound on |V | when an upper bound D on the maximum
degree that nodes may assume in the graph is known. This is assumption is equiva-
lent to the OFOE oracle that we will use in Chapter 4. The idea behind this upper
bound algorithm is that nodes may compute an upper bound U(r) =

∑r
i=1(D + 1)i

on the number of nodes that will be influenced, i.e. nodes that have received directly
or indirectly a message from the leader, by round r. Each node that has not been in-
fluenced starts a flooding of the current round number. For the property of 1-interval
connected network if at round r + 1 exist nodes that have not been influenced then
the leader will receive a message from one of them by round r+U(r) + 1. The upper
bound computed is worst case exponential with respect to the actual network size.
It could be O(D|V |). An exponential upper bound is particularly disadvantageous
when used to implement terminating broadcast, the time that each broadcast takes
to terminate is exponential with respect to the actual time needed to flood the net-
work, that is O(|V |). They introduce an high dynamicity assumption, that is a quite
involved form of fairness. They assume that there exists a k after which nodes must
have broken the symmetry. Under this assumption they show a terminating counting
algorithm. Apart from the broadcast model the authors also consider a model where
a node can send a different message to each neighbors, namely each-to-each. In this
model they show that terminating naming is solvable: the leader is able to assign an
unique set of names at each round. When a node has an unique ID it could act as a
leader assigning names on its own. This basic idea is refined in a naming algorithm
that takes O(|V |3) rounds and O(log |V |) messages.

1.3 Contribution

We will show that counting in our model is possible, albeit by using an exponential
algorithm, closing the conjecture of [61,62]. Showing that the presence of leader and
interval connectivity is enough to do non trivial computations, such as terminating
broadcast or computing aggregated function. In the path towards this result we will
investigate the problem of counting in more restricted dynamic networks, proving
bounds and giving optimal or efficient algorithms. Leading to a better understanding
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on the anonymity impact. Specifically the contributions are listed in the following:

Bounds on Counting in G(PD)2 In Chapter 2 we investigate the complexity
of counting in the family G(PD)2. In G(PD)2, processes in V2 are connected to the
leader by an unknown number of paths that dynamically changes at each round. If
nodes are anonymous, ambiguity is created among these multiple dynamic paths.
In this Section we show that this ambiguity leads to a bound of Ω(log |V |) rounds
for counting. Starting from this analysis we show a tradeoff lower bound on the
accuracy of any estimation algorithm on G(PD)2. Then we show how these bounds
on G(PD)2 lead to non trivial bounds on dynamic networks. Showing that counting,
for any network where D > 3, always requires a number of rounds that is function
of |V |. Finally we introduce and investigate the Fault Detection Problem in G(PD)2

networks, showing a lower bound for it.

Optimal and Efficient Algorithms in G(PD)h and G(∞-IC) In Chapter 3 we
show counting algorithms for structured networks. We start by showing optimal algo-
rithm for networks in G(PD)h, obtained by extending an optimal counting technique
developer for networks in G(PD)2. Then we show an algorithm FD solving the Fault
Detection Problem with a small gap with respect to the lower bound shown in Chap-
ter 2. Finally we leverage the algorithm FD to obtain an algorithm that counts in
any G ∈ G(∞-IC) using at most O(|V |5) rounds.

Counting using Local Degree Detector Oracles In Chapter 4 we present count-
ing algorithms for unstructured networks that work under different Local Degree De-
tector Oracles. These algorithms use a set of techniques that is different from the
one used in the previous Section. The chapter starts with the formal definition of the
oracles. The techniques used are introduced by showing a counting algorithm that
uses a fixed known upper bound on the degree of all nodes. The idea is then refined
to obtain a counting algorithm AOOE that uses a local overestimate on the number of
neighbors that a node may have at some round. This counting algorithm has a round
complexity that is worst case exponential. However we also design a variant A∗OOE
that performs well when the adversary is random. The performance are evaluated
experimentally at the end of the Chapter. The important point to remark is that
A∗OOE always terminates giving a correct count. Moreover we present and evaluate
a convergent counting algorithm ANoK , that works without needing any additional
information.

Counting in G(1-IC) In Chapter 5 we show a terminating algorithm that works
on G(1-IC) without using additional knowledge. The idea and the techniques behind
the algorithm derive from Chapters 2-3.

The algorithm implies that:

• We can design a terminating broadcast algorithm.

• By counting the initial states of nodes, we can answer to any predicates like:
“Are there k nodes with initial state i0 in G?”. This in turn implies that we can
exactly compute many aggregated functions (e.g, max, avg, count, sum,...).
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The proposed algorithm is not practical, it needs an exponential number of rounds
and its memory requirements grow exponentially with the round number.

Lower Bound: in Directed Networks with 
limited bandwidth f(|V|) rounds are 

necessary even if diameter is 2. [45]
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Terminating Counting. [12]

Convergent Counting. [40]
Assumption: Bounded Degree.

Terminating Upper Bound on |V|. [60,58]

Approximated Counting
using Randomness. [43]

Approximated Counting
using Randomess. [63]

Assumption: Eventual Symmetry Breaking. 
Terminating Counting. [60]

Impossibility of
Terminating Countig. [61,60,19]

Terminating Counting, O(|V |2) rounds. [43]

Conjecture: Impossibility of
 Terminating Counting. [60,61]

Assumption: 1-IC.
Terminating Counting, O(|V|) rounds. [43]

Lower Bound: if the dynamic diameter D > 3 then
counting requires a number of rounds that is

 ⌦(D+log(|V |)). (Chapter 2)

Assumption: 1-IC. Terminating Counting,
 O(poly(|V |)) rounds. (Chapter 3)   

Assumption: Fixed Distance from Leader.
Terminating Counting, time optimal. (Chapter 3)

Terminating Counting. (Chapter 5)

Assumption: Local Degree Detector Oracles.
Terminating Counting. (Chapter 4)

Lower Bound:  Tradeoff Lower Bound on the
Accuracy of Counting Algorithms. (Chapter 2)

Figure 1.1: Contributions of this manuscript and relationships with related work. In
the picture are considered only works where the communication primitive is broadcast

In Figure 1.1, there is a comparison of the contribution of this thesis with the
respect to the relevant related work, in particular dynamic model where the commu-
nication is broadcast based. We can see that in this model the problem of terminating
counting has been considered in only few works, and that no algorithm for terminating
counting is known, even considering restricted environments as G(∞-IC) or G(PD)h.
The bounds presented in Chapter 2, are also new. At the best of our knowledge no
trivial bounds, i.e. different from Ω(D), on counting are known in the case of unlim-
ited bandwidth.

Part of the results contained in this manuscript have been published in the follow-
ing papers [29, 50–53]. During the Ph.D., the author has also investigated: systems
and algorithm security issues [5–7, 14] and collisionless pattern formation algorithms
in the context of oblivious anonymous robots when they obstruct the view of each
other [54–56].
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Chapter 2

Bounds on G(PD)2 networks

The main result contained in this chapter is a lower bound Ω(log |V |) on counting time
for networks in G(PD)2. This lower bound is proved in Section 2.1. An additional
result that we obtain from our investigation G(PD)2 is a trade-off lower bound for the
accuracy of size estimation algorithms: any size estimation algorithm that takes an
input an upper bound U ≥ |V | and outputs a guess nG on |V | at round r < log3(U4 )

makes an error ||V | − nG | that is at least U
4(3r) .

These results show that, for any networks where D > 3, when anonymity and
dynamicity are present the counting time is always function of the network size, this
is explained in Section 2.2.

In Section 2.3, we define the Fault Detection Problem on G(PD)2. In this problem
the leader has to distinguish between two runs one with processes that crash and

another one without faults. We show that to solve this problem Ω(|V1|blog(b |V2|
|V1|c+1)c)

rounds are necessary.

At the best of our knowledge the only other known bound that shows a model
where the time necessary for counting is not only function of D is in [46]. [46] considers
directed static networks with IDs with limited bandwidth. The technique that we use
to prove our result is completely unrelated to the one used in [46].

At the end of the Chapter we present some conclusions and we identify interesting
open problems.

2.1 Lower bound for G(PD)2

In this section we consider the family G(PD)2 and compute a lower bound for count-
ing time. This is done by introducing a Dynamic Bipartite Labeled k-Multigraphs
(M(DBLk)), by showing that counting on G(PD)2 requires at least the same number
of rounds than counting overM(DBLk) and by finally showing a lower bound on the
number of rounds needed to count overM(DBLk). In this section we assume that at
each round a node is able to read neighbors memory.

15



16 CHAPTER 2. BOUNDS ON G(PD)2 NETWORKS

Counting in Dynamic Bipartite Labeled k-Multigraphs (M(DBLk))

Let consider a dynamic connected multigraph M defined as follows M = ∪∞r=0{({vl}∪
W,E(r), fr, lr)} where E(r) is a set of edges at round r, W a set of nodes, fr :
E(r) → {vl} × W a function that maps each edge to the endpoints nodes and
lr : E(r) → {1, 2, . . . , k} a function labeling edges. M belongs to M(DBLk) if for
each round r the number of edges connecting a node v ∈ W to vl is less than k + 1,
more formally ∀r, ∀v ∈W,Ev(r) = f−1(vl, v) :: 1 ≤ |Ev(r)| ≤ k; Given e′, e′′ ∈ Ev(r)
we have lr(e

′) 6= lr(e
′′). For simplicity we will refer as Mr the instance of M at round

r. Figure 2.1 shows an example of a dynamic connected multigraph M at round
r belonging to M(DBL3). We consider that when a node v ∈ {vl} ∪W reads the
memory of a node w at round r from edge e, it also obtains the label lr(e).

G(MPD)2

V1

V2

V0

1

1 2 2

3
1 2 3 |    | =3

|     |=4

3

v

Figure 2.1: Trasformation, at round r, from M(DBL3) multigraph to G(PD)2.

Lemma 1. Let consider a dynamic connected multigraph M in M(DBLk). If any
counting algorithm based on message passing takes more than T rounds to complete
on M , then there exists a graph G in G(PD)2 such that any counting algorithm based
on message passing requires more than T rounds to complete on G.

Proof. From Mr = ({vl} ∪W,E(r), fr, lr) we build an instance Gidr = (V = {(V0 =
{vl}) ∪ V1 ∪ (V2 = W )}, Eid(r)) belonging to Gid ∈ G(PD)2 such that V1 contains
k nodes having unique identifiers in [1, . . . , k], V0 contains only the leader node vl
and the set of nodes V2 = W . Additionally, at round r we have that ∃e : (v, w) ∈
Eid(r) with v ∈ V1 and w ∈ V2 where id(v) = j if and only if ∃e′ ∈ E(r) with
fr(e

′) = (vl, w), lr(e
′) = j with w ∈W . Figure 2.1 shows the transformation at round

r between a dynamic graph in M(DBL3) and one in G(PD)2. Let us notice that the
node with label 1 in V1 at each Gidr is connected to the nodes in V2 that correspond to
nodes in W that are connected in Mr to vl by edges labeled with 1. As a consequence,
the leader vl in M is actually the union of local memories of processes in {vl} ∪ V1

in Gid. Let us assume that there not exist a message passing algorithm solving the
counting problem in M with T rounds, then it is not possible to count nodes in V2

on Gid in T rounds even by merging the memories of {vl} ∪ V1, by knowing the size
k of V1 and by having unique IDs for nodes in V1. Consider now the dynamic graph
G derived by Gid removing the identifiers of nodes in V1. Counting nodes in G is at
least as hard as counting nodes in Gid. As an example, without identifiers the leader
cannot realize if messages of two successive rounds arrive from the same node of V1.
Thus it is not possible for the leader to count the size of G in less than T rounds.
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Let consider an instance M of the family M(DBLk), we introduce the following
notions on M :

Definition 9. (Set of edge labels of a node at round r) Given a node v ∈W at round
r we define the set of edge labels L(v, r) : {l1, . . . , lj} with li ∈ L(v, r) iff ∃e ∈ E(r)
and lr(e) = li and fr(e) = (v, vl).

As an example in Figure 2.1, the edge label set of node v at round r is {1, 2, 3}.

Definition 10. (State of a non-leader process) Given a node v ∈ W at round r, we
define the state S(v, r) as an ordered list S(v, r) : [(⊥), L(v, 0), . . . , L(v, r − 1)] where
(⊥) is the first state of any non-leader node1.

Given a list A : [L0, L1, . . . , .., Lr−1] we have that |A| denotes the number of nodes
with the same state S(v, r) = A at round r. Ref. Figure 1: we have S(v, r + 1) =
[⊥, . . . , {1, 2, 3}] and |S(v, r + 1)| = 1 since v is the only node connected to vl by
{1, 2, 3} at round r.

Definition 11. (State of a leader node at round r) Given the leader vl at round r we
define the leader state S(vl, r) as [C(vl, 0), . . . , C(vl, r − 1)] where C(vl, i) with i < r
is a multiset of elements where (j, S(v, i)) ∈ C(vl, i) iff it exists a node v with state
S(v, i) connected to vl by an edge with label j.

As for states of local nodes, |(j, S(v, r))| denotes the number of nodes with state
equal to S(v, r) connected to vl by an edge with label j at round r. Let us remark
that the state of the leader vl can be constructed by a simple message passing protocol
where each node sends to the leader its own state at each round.

The next lemma shows that a bound given for algorithms in which the decision of
the leader is based on the state S(vl, r) is an asymptotic lower bound for any counting
algorithm A. Even algorithms in which the decision about the size is not taken by vl.

Lemma 2. Let us consider any message passing algorithm A that runs on top of
dynamic multigraph M ∈M(DBLk). We have that exists an algorithm A that round
r decides about a certain property of M , i.e. the size |W |, iff exists an algorithm As
that decides on the same property using S(vl, r) or S(vl, r + 1).

Proof. sketch The ← direction is trivial. We have to prove the →. Let us consider
the protocol P∗ in which a process v ∈ {vl} ∪ W at each round sends the initial
content of its memory and the entire history of messages received at the previous
round. We use S∗(v, r) to define the memory content of a process v that runs P∗
until round r. Any algorithm A will use a subset of the information contained in
S∗(v, r). Now we will show that from S(vl, r) we can reconstruct S∗(vl, r). In P∗ at
round r a non leader process v receives, from a set of labeled edges, the entire memory
of vl at round r − 1; moreover v sends the copy of its memory at round r − 1. The
new meaningful information for vl received from the node v and round r − 1 its only
the history of edges labels incident to v; and not the old copy of the leader memory
S∗(vl, r − 2), . . . , S∗(vl, 0) that v is sending back. Now let us suppose that at the
end of round r, A allows the leader vl to decides using the information in S∗(vl, r).
We have that also Al can decide at round r since the state S(vl, r) is equivalent to

1For simplicity whenever not necessary we omit the presence of (⊥) as first element of S(v, r).
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S∗(vl, r). Now let us suppose that at the end of round r, A allows v 6= vl to decides
using information in S∗(v, r), that contains the S ∗ (vl, r − 1), . . . , S∗(vl, 0) received
by the leader in the previous rounds plus and the information L(v, r) associated to
the edges incident to v at round r, and the old history of edge incident to v in the
previous rounds. So Al can simulates the decision of A on v, at leader vl by using
S(vl, r + 1) at round r + 1 since the history of edge labels of v until round r is in
S(vl, r + 1).

Lower Bound for M(DBLk)

In order to ease the presentation of the proof we present the underline intuition
starting with a small example for the restricted familyM(DBL2) and for only the first
round, later we first generalize the example for runs of any number rounds thus proving
the bound for the family M(DBL2) , and then we show that the same bound holds
for M(DBLk). The proof will use linear algebra concepts. Thus we will introduce
some notation on vector and Matrices that will we use in this section.

Linear algebra notation Given a vector a ∈ Nn, we denote as (a)j the j-th com-
ponent of a (with 1 ≤ j ≤ n) and as

∑
a the sum of all components of a. Additionally,∑+

a (resp.,
∑−

a) denotes the sum of only the positive (resp., negative) components

of a. Given two vectors a,b we have

[
a
b

]
is the vector obtained by appending the

elements of the vector b after the last element of vector a. Given a matrix M ∈ Nn,m
we indicate with (M)j its j-th row (with 1 ≤ j ≤ n) and we denote as ker(M)
the set of vectors a ∈ Nm such that Ma = 0. We also consider the set of vectors
B = {a1, . . . ,a`} that form a basis for ker(M), i.e., ker(M) = SPAN(B). Finally
we denote as ar the instance of vector a at round r.

The case of k = 2 and r = 0. In this case we have only two edge labels: 1, 2.
Let us consider the leader state on a generic multigraph M ∈ M(DBL2). We have
that at the end of round 0 the leader has state S(vl, 0) : [{(1, [⊥]), (2, [⊥])}], this
leader state can be generated by many different configurations of nodes and edges in
M . Such configurations are determined by the number of non leader processes with
states [{1}], [{2}], [{1, 2}] and they are solutions of the following system of equations
at round 0: {

|(1, [⊥])| = |[{1}]|+ |[{1, 2}]|
|(2, [⊥])| = |[{2}]|+ |[{1, 2}]|

r=0

(2.1)

with the additional constraint that any variable in the solution cannot assume a
negative value. When the leader updates its state, in successive rounds, we have a
new system of equations. The system of equations 2.1 can be written in a matrix
form as follows:

m0 = M0s0 (2.2)

where M0 :

[
1 0 1
0 1 1

]
represents the matrix of coefficients of the system at round

0, m0 is the column vector of constant terms (each component of mr represents the
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multiplicity of a certain element in the state of the leader at round r) and s0 is a
solution vector. Let us remark that Mr depends of the round only while mr depends
of the leader state at round r. As a consequence Mr characterizes any multigraph of
the family M(DBL2).

The matrix M0 is characterized by ker(M0) = SPAN(k0 :
[
1 1 −1

]ᵀ
). Solu-

tions of the matrix equation 2.2 are related by the following linear combination with
the kernel vector k0: s′0 = s0 + tk0 with t ∈ N and such that each component of
s′0 is non negative. As a consequence, given m0 the possible solutions of (2.1) are
restricted to a finite discrete set of points over a segment with direction k0. From the
point of view of the leader each of the solutions represents a distinct graph belonging
to M(DBL2) with a different number of processes:

∑
s′0 −

∑
s0 = t

∑
k0 = t.

Considering the example of Figure 2.2, the system of equation at round 0 for the
multigraph M is the following

{
2 = |[{1}]|+ |[{1, 2}]|
2 = |[{2}]|+ |[{1, 2}]|

r=0

(2.3)

where m0 :
[
2 2

]
. For such a system of equations a solution is s0 :

[
0 0 2

]ᵀ
,

then using the kernel transformation another solution is s′0 = s0 + 2k0 :
[
2 2 0

]ᵀ
,

these two solutions corresponds to two M,M ′ ∈ M(DBL2) of different size that
generates the same state S(vl, 0) as depicted in Figure 2.2. These two graphs are
indistinguishable from the leader at round 0 thus the leader is not able to output a
correct count.

Figure 2.2: Two dynamic multigraphs M,M ′ ∈ M(DBL2) of different size that are
indistinguishable at round r = 0, the relationship among M,M ′ is given by the kernel
vector k0

The idea that we will use to show the lower bound is to characterize how the
kernel space of Mr evolves and under which condition of the kernel space we can have
an unique solution, that corresponds to an unique size |W |. Essentially there is an
intimate connection between the kernel space of a certain succession of matrices and
the possibility counting in M(DBL2).
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General structure of Mr. At round r, the system of equations becomes mr =
Mrsr. The number of columns of Mr is equal to the number of all possible states
of non-leader nodes, at round r + 1 , which is column(r) = 3r+1. Each row of Mr

corresponds to a possible connection (j, S(v, r′)) of vl at some round 0 ≤ r′ ≤ r. Thus
the number of rows at round r is two times the number of existent states in [0, r]:
row(r) = 2

∑r
k=0 3k.

As an example, at the end of round 1, the system contains 8 equations (2·30+2·31)
and 9 variables (i.e. 32 rows) and the associated matrix M1 are:





|(1, [⊥])| = ∑∀j∈{{1},{2},{1,2}} |[{1}, j]|+
∑
∀j∈{{1},{2},{1,2}} |[{1, 2}, j]|

|(2, [⊥])| = ∑∀j∈{{1},{2},{1,2}} |[{2}, j]|+
∑
∀j∈{{1},{2},{1,2}} |[{1, 2}, j]|

|(1, [{1}])| = |[{1}, {1}]|+ |[{1}, {1, 2}]|
|(1, [{2}])| = |[{2}, {1}]|+ |[{2}, {1, 2}]|
|(1, [{1, 2}])| = |[{1, 2}, {1}]|+ |[{1, 2}, {1, 2}]|
|(2, [{1}])| = |[{1}, {2}]|+ |[{1}, {1, 2}]|
|(2, [{2}])| = |[{2}, {2}]|+ |[{2}, {1, 2}]|
|(2, [{1, 2}])| = |[{1, 2}, {2}]|+ |[{1, 2}, {1, 2}]|

r=1

(2.4)

M1 =




1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1




(2.5)

Let us now consider how it is built the equation at round r derived from the generic
leader connection (j, [x0, . . . , xr′−1]) with j ∈ {1, 2} introduced at round r′ in the sys-
tem of equations, i.e.,|(j, [x0, . . . , xr′−1])| = |[x0, . . . , xr′−1, {j}]|+|[x0, . . . , xr′−1, {1, 2}].
This equation at round r becomes:

|(j, [x0, . . . , xr′ ])| =
∑

∀s∈({1}|{2}|{1,2})r−r′
|[x0, . . . , xr′−1, {j}, s]|+

+
∑

∀s∈({1}|{2}|{1,2})r−r′
[x0, . . . , xr′−1, {1, 2}, s]| (2.6)

where ({1}|{2}|{1, 2})r−r′ is the set of all possible lists with elements in {{1}, {2}, {1, 2}}
and size r − r′. As an example see the equation associated with |(1, [⊥])| at round 0
(see Equation 2.1) and the equation associated with |(1, [⊥])| at round 1 (see Equation
2.4).

Let notice ker(M1) = {k1 =
[
1 1 −1 1 1 −1 −1 −1 1

]ᵀ}, thus we
have < k1 >= 1 with < k1 >

+= 5, < k1 >
−= 4. Now let us consider a solution

s1 with < s1 >≤ 3. It is easy to see that s′1 = s1 + tk1 has at least one negative
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component for any t 6= 0: since < k1 >
−= 4 is not possible to have a solution s1

that as at least one unitary component for each negative component of k1. Thus s′1
cannot be a solution that represents a dynamic multigraph.

This means that if n ≤ 3 is possible to obtain the count in 2 rounds, since there
is only one possible solution of the system of equations for any m1 generated by a
multigraph with n ≤ 3. For n ≥ 4 we have at least two possible solutions of different
size, i.e. we have s1 =

[
0 0 1 0 0 1 1 1 0

]ᵀ
with n = 4 processes and

s′ :
[
1 1 0 1 1 0 0 0 1

]ᵀ
= s1 + k1 with n = 5. Ut is easy to check that

m1 = M1s1 = M1s
′
1, thus we have two multigraphs of different sizes that generate

the same state m1 at vl, see Figure 2.3.
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round 0 round 1

vl has state S(vl, 1) = m1 = (|(1, [?])| = 3 |(2, [?])| = 3 |(1, [{1}])| = 1 |(1, [{2}])| = 1 |(1, [{1, 2}])| = 1 |(1, [{1, 2}])| = 1 |(2, [{1}])| = 1 |(2, [{2}])| = 1 |(2, [{1, 2}])| = 1)

2

s =
�
0 0 1 0 0 1 1 1 0

�
s0 =

�
1 1 0 1 1 0 0 0 1

�

Figure 2.3: Two dynamic multigraph M,M ′ ∈ M(DBL2) of different size that are
indistinguishable at round r = 1, they induce the same leader state S(vl, 1) = m1,
the relationship among the two is given by the kernel vector k1

Ordering Columns and rows in Mr. For the sake of simplicity of the proofs,
we order columns of Mr lexicographically with respect to the state of a process.
We consider the following order among elements {1} < {2} < {1, 2}. As a conse-
quence, the first column of Mr will correspond to state: |[{1}, . . . {1}]|, the second
column |[{1}, . . . {1}, {2}]| and the last one |[{1, 2}, . . . , {1, 2}]|. Rows are ordered
in the same way. This ordering has been used in Equation 2.2 and Equation 2.5.
Fixed this ordering we can use a connection (j, [x0, . . . , xr′−1]) to indicates a row
v = (Mr)(j,[x0,...,xr′−1]) and a node state to indicate a single component of a vector,
i.e. (v)[x0,...,xr−1]. Moreover we have that the row vector (Mr)(j,[x0,...,xr′−1]) will have

two trails of ones, with length 3r−r
′
, for all columns in the form

|[x0, . . . , xr′−1, {j}, s]|, |[x0, . . . , xr′−1, {1, 2}, s]|

with s ∈ ({1}|{2}|{1, 2})r−r′ , and zero for all the other columns (as reference see Eq.
2.5).

In the following lemmas we specifically characterize the structure of the kernel
space of Mr in order to check if there is one solution to the system of equations.

Lemma 3. Let consider the matrix Mr of the family M(DBL2) at round r. The
dimension of the kernel space of Mr is one (i.e., ker(Mr) = SPAN(kr)).
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Proof. We first show that rows of Mr are linearly independent, thus that the rank of
the matrix is equal to the number of rows. The proof is by induction:

• Base Case r = 0: M0 =

[
1 0 1
0 1 1

]
, det(M0) = 1 thus the rows are linearly

independents.

• Inductive Case r: Mr can be written as Mr =

[
M′

r−1

U

]
, where M′

r−1 is the

matrix obtained by Mr−1 substituting each element 1/(0) of Mr−1 with a row
vector

[
1 1 1

]
/(
[
0 0 0

]
). Now by inductive hyp. we have that all rows

of Mr−1 are linearly independent. This implies that also the rows of M′
r−1 are

linearly independent, this can be easily shown by contradiction, let us suppose
that we have (M′

r−1)s = xa(M′
r−1)a + xb(M

′
r−1)b for some rows s, a, b and

two coefficient xa, xb, this means that also if we take the subvectors v1,v2,v3

of (M′
r−1)s, (M

′
r−1)a, (M

′
r−1)b, obtained by taking the components in position

j such that jmod3 = 0, we must have v1 = xav
2 + xbv

3 but this could be
also written as (Mr−1)s = xa(Mr−1)a + xb(Mr−1)b that is clearly a contra-
diction since the rows of Mr−1 are linearly independent. We now show that
a row of U cannot be expressed as linear combination of rows of M′

r−1, we
have that the row Uc corresponding to connection c : (j, [x0, . . . , xr−1]), has
only two elements different from zero contained in the subvector

[
1 0 1

]

(if j = 1) or
[
0 1 1

]
(if j = 2) positioned in the columns with the form

[x0, . . . , xr−1, ({1}|{2}|{1, 2})1]. Now, for each row (M′
r−1)i considering only

the values of columns [x0, . . . , xr−1, ({1}|{2}|{1, 2})1], we get a subvector that is
either

[
1 1 1

]
or
[
0 0 0

]
. Therefore it follows that

[
1 0 1

]
or
[
0 1 1

]

cannot be expressed as linear combination of the row vectors of M′
r−1.

We have to show that the rows vector of U are linearly independent. If we
consider the sets of 3 columns in the form [x0, . . . , xr−1, ({1}|{2}|{1, 2})1], only
two rows have some elements different from zero: they are either

[
1 0 1

]
or[

0 1 1
]

that are linearly independent.

This implies, for the rank-nullity theorem [49], that the size of the kernel is
|ker(Mr)| = column(r)− row(r) = 3r+1 − 2

∑r
k=0 3k = 1.

Lemma 4. Let consider the matrix Mr of the familyM(DBL2) at round r. We have
kr =

[
kr−1 kr−1 −kr−1

]ᵀ
with k−1 = 1.

Proof. The proof is done by induction:
• Base Case, round = 0. k0 =

[
1 1 −1

]ᵀ
implies 0 = M0k0.

• Inductive Case, round = r. We assume kr−1 =
[
kr−2 kr−2 −kr−2

]ᵀ
. We

show a vector k such that its product for the rows of Mr corresponding to
c′ = (j, l′ : [x0, . . . , xr′−1]), with r′ < r and j ∈ {1, 2}, is 0. Then we
show that the same holds for the remaining rows of Mr that corresponds to
connection c = (j, l : [x0, . . . , xr−1]), and finally we show that k = kr =[
kr−1 kr−1 −kr−1

]ᵀ
.

Let us consider the row-vector product (Mr−1)c′kr−1, at round r − 1, that by
definition of kernel we have:



2.1. LOWER BOUND FOR G(PD)2 23

0 =
∑

∀s∈({1}|{2}|{1,2})r−r′−1

(kr−1)|[l′,{j},s]|+

+
∑

∀s∈({1}|{2}|{1,2})r−r′−1

(kr−1)|[l′,{1,2},s]| (2.7)

Let us build a vector k =
[
(kr−1)1k0 (kr−1)2k0 . . . (kr−1)3rk0

]ᵀ
and let

us examine the row-vector product (Mr)ck :

∑

∀s∈({1}|{2}|{1,2})r−r′−1

((k)|[l′,(j),s,{1}]| + (k)|[l′,(j),s,{2}]| + (k)|[l′,(j),s,{1,2}]|)+

+
∑

∀s∈({1}|{2}|{1,2})r−r′
(k)|[l′,{1,2},s]| (2.8)

the first term of Eq. 2.8 can be expressed as follow

∑

∀s∈({1}|{2}|{1,2})r−r′−1

((k)|[l′,(j),s,{1}]| + (k)|[l′,(j),s,{2}]| + (k)|[l′,(j),s,{1,2}]|) =

∑

∀s∈({1}|{2}|{1,2})r−r′−1

((kr−1)|[l′,(j),s]|)((k0)1 + (k0)2 + (k0)3) =

∑

∀s∈({1}|{2}|{1,2})r−r′−1

(kr−1)|[l′,(j),s]|

Also the second term of Eq. 2.8 can be rewritten as the first term, then by
applying Eq. 2.7, we have:

(Mr)c′k = (Mr−1)c′kr−1 = 0

Now let us consider the row c = (j, l : [x0, . . . , xr−1]) the row-vector product is
(Mr)ck:

(k)|[l,{j}]| + (k)|[l{1,2}]| = (kr−1)|[l]|((k0)j + (k0)3) = 0

Thus we have 0 = Mrk. Now we have to prove that
k =

[
kr−1 kr−1 −kr−1

]ᵀ
.

For inductive hypothesis we have that kr−1 =
[
kr−2 kr−2 −kr−2

]ᵀ
, more-

over we have, for Lemma 3, that
kr−1 =

[
(kr−2)1k0 (kr−2)2k0 . . . (kr−2)3r−1k0

]ᵀ
. This means that the first

3r components of k′ are kr−1, the same holds for the other 3r components, and
the last 3r are −kr−1. This completes the proof.

Lemma 5. Let consider the matrix Mr of the family M(DBL2) at round r.

We have:

{
min(

∑+
kr,
∑−

kr) = 1
2 (3r + 1)− 1∑

kr = 1
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Proof. Thanks to lemma 4, we have that
∑+

kr = 2
∑+

kr−1 +
∑−

kr−1,
∑−

kr =
2
∑−

kr−1 +
∑+

kr−1 and
∑+

k0 = 2,
∑−

k0 = 1. We first prove, by induction,
that

∑
kr = (

∑+
kr −

∑−
kr) = 1.

• Base case:
∑+

k0 −
∑−

k0 = 1.

• Inductive step: (
∑+

kr −
∑−

kr) = (2
∑+

kr−1 +
∑−

kr−1 −
∑+

kr−1 −
2
∑−

kr−1) = (
∑+

kr−1 −
∑−

kr−1) = 1.

This result leads to the following recursive relation
∑+

kr = 3
∑+

kr−1 − 1 for∑+
kr with base condition

∑+
k0 = 2. Resolving the recursive relation we obtains∑+

kr = 1
2 (3r+1 +1). This implies that min(

∑+
kr,
∑−

kr) = 1
2 (3r+1 +1)−1 where

the last term takes into account the fact that the minimum is always the negative
component and that

∑
kr = 1.

Lemma 6. Let us consider M,M ′ ∈ M(DBL2) with sizes |W | = n, |W ′| = n + 1.
Does not exist an algorithm Al that at round r ≤ blog3(2|n|+1)c is able to distinguish
if it is running on multigraph M or M ′.

Proof. Let us suppose by contradiction that such algorithm Al exists. For lemma 5
we have

∑−
kr = 1

2 (3r+1 + 1)− 1 ≤ n. Let us consider a configuration of non leader
processes represented by vector sr with

∑
sr = n and such that (sr)j ≥ 1 for each

j | (kr)j < 0 and (sr)j = 0 otherwise. This implies there exists a dynamic multigraph
M : {M1, . . . ,Mr, . . .}, of size n, obtained from sr such that the leader state S(vl, r)
at round r is represented by mr = Mrsr. Thus Al outputs n on the state S(vl, r).

Now let us consider s′r = kr + sr, by construction we have ∀j|(s′r)j > 0 thus s′r
represents an instance of dynamic multigraph M ′ : {M ′1, . . . ,M ′r, . . .}, let us denote
S′(vl, r) the state of vl in M ′. Since we have

∑
s′r =

∑
kr +

∑
sr = n + 1, let us

recall that from Lemma 5 we have
∑

kr = 1, by hypothesis Al outputs n+ 1 on the
state S′(vl, r).

But by definition of kernel Mr′sr = Mrs
′
r = mr, thus S(vl, r) = S′(vl, r) therefore

Al has to give the same output on the two different instances, that is a contradiction.

Moreover from Lemma 3 we have:

Lemma 7. There is an optimal algorithm for counting on M ∈ M(DBL2) that
decides at round r if |W | = n with r = blog3(2|W |+ 1)c+ 1.

Proof. The optimal algorithm, is given by leveraging the same ideas that we used in
the previous proof, when r = blog3(2n+ 1)c+ 1 we have that

∑−
kr > n thus cannot

exist a solution sr such that (sr′)j ≥ 1 for each j | (kr′)j < 0 and
∑

sr = n. This
implies that given mr, thanks to the unicity of the kernel vector (see Lemma 3), there
is only one solution with non negative components for the linear system mr = Mrsr.
This unique solution gives the size of the network.

Theorem 1. Any algorithm A cannot solve the counting on an instance M ∈M(DBLk)
at round r < blog3(2|W |+ 1)c − 1.
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Proof. On M(DBLk) multigraphs there exists a set of multigraphs that always only
two labels, creating the same setting generated by an instance on M(DBL2), this
means that each algorithm has at least to solve the counting also onM(DBL2), from
Lemma 6 we know that in order to distinguish a networks of size |W | from |W | + 1
we have to wait at least blog3(2|W |+ 1)c rounds. This complete the proof.

From Theorem 1 and Lemma 1 the next theorem immediately follows.

Theorem 2. Given an instance G ∈ G(PD)2 any counting algorithm A on G requires
O(log(|V |)) rounds.

Discussion We have that the same kernel based strategy could be used for any
k > 2, it is clear that if vl creates a system of equations in a manner similar to
the one used for k = 2 it obtains an optimal algorithm for counting. One problem
that makes difficult to investigate ker(Mr) for k > 2 is that the kernel space is not
anymore of fixed size. The size of the kernel starts to grow exponentially with respect

to r. Even if we consider k = 3, it grows like 7r+1+1
2 .

Moreover Theorem 1 does not say anything about the possibility to count in
G(PD)2. For this reason in Section 3.1 we show a simple algorithm to count in
G(PD)2 in O(log2(|V |)) rounds.

Consequences for size estimation algorithms. Given the leader state S(vl, r)
the kernel vector kr of Mr characterizes all networks that could generate that state.
This has been exploited in Theorem 1, to prove a lower bound on counting time, but
it could also be used to give an upper bound on the precision of deterministic size
estimation algorithms, as we show in the next theorem.

Lemma 8. Let Ae be any counting algorithm on M(DBL2) taking as input an upper
bound U on the network size. If vl outputs a guess on the network size nG at a
certain round r with r < log3(U4 ), then there always exists a dynamic multigraph,

M ∈ M(DBL2) of size |W | ∈ [U2 , U ] such that vl outputs nG on M at round r and

||W | − nG | ≥ U
4(3r) .

Proof. The proof is constructive. We show that the leader could get in a state S(vl, r)
such that, each multigraph of the family M(DBL2) that could generate S(vl, r) has
a size that falls in the interval [U2 , U ]. Let SET⊆ M(DBL2) be the the set of such

multigraphs. SET has the following properties: SET cardinality is U
2(3r) and each

multigraph belonging to SET has a different size.

Therefore if Ae makes a choice and outputs a guess at round r, we have a multi-
graph M ∈SET such that the difference between the guess and the actual size of M
is at least U

4(3r) .

Let us recall that Ae is deterministic thus the adversary, that has access to the
internal variables of all nodes, knows exactly: (1) at which round Ae outputs its
guess and (2) the value of the guess. Without lost of generality, let us assume that
U = 2(3)∆ for some ∆ ∈ N+.

We first prove an intermediate results:
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Figure 2.4: Structure of solutions used in Theorem 8. The symbol δj,i indicates the
Kronecker’s delta, its value is 1 if i = j and 0 otherwise
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Lemma 9. Let consider the system ur = Mrqr with

ur =
[
U
2

U
2

U
2(31)

U
2(31)

U
2(31) . . . U

2(3r)

]ᵀ
where ur is a vector of size

∑r
i=0 2·3i

whose components are defined as follows:

• (ur)1 = (ur)2 = U
2 ;

• Each component (ur)j with index j in the interval [
∑k−1
i=0 2 · 3i + 1,

∑k
i=0 2 · 3i]

with k ∈ N+ has value equal to U
2(3k)

(i.e. (ur)3 = U
6 we have 3 ∈ [[

∑k−1
i=0 2 ·

3i + 1,
∑k
i=0 2 · 3i] with k = 1 ).

The solution vector qr of size 3r+1 has the following structure:

• if (kr)j = 1 then (qr)j = 0;

• if (kr)j = −1 then (qr)j = U
2·3r .

Proof. The proof is by induction on r:

• Base case r = 0: By substitution we immediately obtain u0 = M0q0.

• Inductive case r: Our inductive hypothesis is: ur−1 = Mr−1qr−1. Let us

recall, see proof of Lemma 3, that Mr =

[
M′

r−1

U

]
, where M′

r−1 is the matrix

obtained by Mr−1 substituting each element 1/(0) of Mr−1 with a row vector[
1 1 1

]
/(
[
0 0 0

]
). M′

r−1 has
∑r−1
i=0 2(3)i rows.

We first show that for each row of U, we have (U)jqr = U
2(3r) . Let us recall that

U has 2 ·3r rows and that (ur)j = U
2(3r) for each j ∈ [2 ·3r−1 +1, 2 ·3r]. For each

row (U)j considering the generic subvector vi :
[
((U)j)3i−2 ((U)j)3i−1 ((U)j)3i

]
,

with i ∈ [1, 3r], we have that vi could be either
[
1 0 1

]
or
[
0 1 1

]
or[

0 0 0
]
. Moreover there is only one vi, namely v′, different from the zero

vector. For the structure of kr, see proof of Lemma 4, we have that the groups of
three components of qr (i.e., the subvectors

[
(qr)3i−2 (qr)3i−1 (qr)3i

]
with

i ∈ [1, 3r]) are either
[

U
2(3r)

U
2(3r) 0

]
or
[
0 0 U

2(3r)

]
. Therefore we have

v′ ·
[
0 0 U

2(3r)

]ᵀ
= v′ ·

[
U

2(3r)
U

2(3r) 0
]ᵀ

= U
2(3r) . This implies (U)jqr =

U
2(3r) .

To complete the proof, we have to prove that (M′
r−1)jqr = (ur)j . From the

structure of ur, this is equivalent to prove that M′
r−1qr = ur−1. Let us build

the vector q′ of size 3r obtained by qr in such a way that (q)′i = (qr)3i−2 +
(qr)3i−1+(qr)3i. In the proof Lemma 4 we have shown that if (kr−1)i = 1/(−1)
then (kr)3i−2 = 1/(−1), (kr)3i−1 = 1/(−1), (kr)3i = −1/(1), from this follows:

− if (kr−1)j = 1 then (q)′j = U
2(3r) ;

− if (kr−1)j = −1 then (q)′j = 2 U
2(3r)

Therefore q′ − U
2(3r) (kr−1) = qr−1. Since kr−1 is a kernel vector, we have

Mr−1qr−1 = Mr−1q
′ = ur−1. Considering the structure of M′

r−1, we have
M′

r−1qr = Mr−1q
′. This complete the proof.
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(cont. Lemma 7) The construction works as follows:

• Ae outputs the guess at round r = 0. At round r = 0, the leader state is
u0 =

[
U
2

U
2

]ᵀ
. The set of possible solutions for u0 = M0s0 is given by q0+t0k0,

where t ∈ [0, U2 ], and q0 =
[
0 0 U

2

]ᵀ
. The best strategy for Ae is to pick

nG such that nG =
∑

(q0 + xk0) with x ∈ [0, U2 ]. Therefore there exists a

multigraph with size n =
∑

(q0 +xAu0
0), thus we have |n−nG | = |x−xA| ≥ U

4
which represents the error done issuing a guess at round 0.

• Ae outputs the guess at round r = 1. The leader state is
u1 =

[
U
2

U
2

U
6

U
6

U
6

U
6

U
6

U
6

]ᵀ
the set of possible solutions of u1 =

M1s1 is q1 + t1k1 with t1 ∈ [0, U6 ],

and q1 =
[
0 0 U

6 0 0 U
6

U
6

U
6 0

]ᵀ
. These solutions are actually the

multigraphs in SET. The number of possible solutions (i.e., the cardinality of
SET ) is U

6 + 1

Let nG be the guess of Ae, there is at least a multigraph in SET whose size is
n such that |n − nG | > U

12 which represents the error done issuing a guess at
round 1.

• Ae outputs the guess at round r. The leader state is the vector

ur =
[
U
2

U
2

U
2(31)

U
2(31)

U
2(31) . . . U

2(3r)

]ᵀ
of size

∑r
i=0 2·3i. The element

(ur)j with j ∈ [
∑k
i=0 2 · 3i,∑k+1

i=0 2 · 3i] and k ∈ [0, . . . , r] is equal to U
2(3k)

.

The set of possible solutions of ur = Mrsr is qr + trkr with tr ∈ [0, U
2(3r) ] and

qr obtained by Lemma 9. For Lemma 5 we have
∑

qr = ( 1
2 (3r + 1) − 1) U

2(3r)

and
∑

(qr + U
2(3r)kr) = ( 1

2 (3r + 1)) U
2(3r) , and that the difference of processes

number of two adjacent solutions qr + xkr and qr + (x+ 1)kr is 1.

These solutions are actually the multigraphs in SET. The number of possible
solutions (i.e., the cardinality of SET ) is U

2(3r) + 1.

Let nG be the guess of Ae, there is at least a multigraph in SET whose size is
n such that |n− nG | > U

4(3r) which represents the error done issuing a guess at

round r.

2.2 Anonymity and Dynamic Diameter

The results found in the previous section have non trivial consequences on the con-
nection of the counting with the dynamic diameter. Let us recall that when IDs are
present, in case of unlimited node space and bandwidth counting requires exactly D
rounds.

On contrary counting in anonymous dynamic networks has a complexity that is
function of the network size even if D = O(1). Given a constant D > 3, we can
create a configuration where vl is connected to two nodes v1, v2 by a static chain of
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D− 1 nodes. Nodes v1, v2 are connected to the remaining O(|V |) nodes mimicking a
G(PD)2 network. From this observation and Theorem 2 the next corollary follows.

Corollary 1. Given a dynamic network with fixed known dynamic diameter D, where
D is constant w.r.t. |V |. We have that any counting algorithm A requires at least
D + Ω(log |V |) rounds.

It is easy to see that even if D = O(|V |) we can create configurations where we
have still to pay a term of Ω(log |V |) rounds, e.g. we create a static line of length

D = |V |
2 − 1 and we use the remaining |V |2 nodes to create a G(PD)2 network at the

end of the line. However this term is asymptotically dominated by the diameter.

The second results is about the accuracy of counting algorithms. We consider a
leader based estimation algorithm Ae that takes as input an upper bound U on |V |
and at round r vl outputs a guess on the network size and terminates.

Theorem 3. Let us consider a dynamic networks with dynamic diameter D, and
D > 3. Let Ae be any counting algorithm taking as input an upper bound U on
the network size. If vl outputs a guess on the network size nG at a certain round r
with D < r < D + log3(U−D4 ), then there always exists a dynamic network G of size

|V | ∈ [U2 , U ] such that vl outputs nG on G at round r and ||V | − nG | ≥ U−D
4(3r) .

Proof. We first prove an intermediate Lemma

Lemma 10. Let S(vl, r) be the state of vl, in a dynamic multigraph M ∈M(DBL2).
This state can be generated by a set SET of dynamic multigraphs with different sizes.
There exists a state S′(v′l, r) for a leader node v′l, in a dynamic network G ∈ G(PD)2

such that (1) this state can be generated by a set SET’ of dynamic networks with
different sizes and such that (2) |SET’| ≥ |SET |.

Proof. Let us consider the transformation used in the proof of Lemma 10. Using
this transformation we have for each multigraph M ∈M(DBL2), it exists a dynamic
network Gid ∈ G(PD)2, with |V1| = 2 and |V2| = |W |, such that, at each round r,
the state of vl ∈ M contains exactly the same information contained in the union of
memories of nodes in {v′l} ∪ V1. Leveraging this observation: We have that each for
each multigraph M ∈ SET that generates the state S(vl, r), there exists a Gid ∈ SET′

that generates S′(vl, r). Therefore the claim follows.

The accuracy bound obtained in Lemma 8 for M(DBL2), by Lemma 10, it also
holds for G(PD)2. From the bounds obtained on G(PD)2, the claim of the theorem
follows by using the same construction used in Corollary 1.

The lower bounds have been obtained by using a dynamic labeled multigraph.
An unlabelled multigraph models also an anonymous static network where broadcast
messages may be duplicated, if a message from node v is delivered 3 times to its
neighbor w at round r in Gr there will be at least 3 edges from v to w. Therefore our
bounds on time and accuracy also holds for this kind of static anonymous networks.

Corollary 2. Let us consider a synchronous static anonymous network where nodes
communicates by using an anonymous broadcast primitive. Let us assume that there
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exists a leader node vl, and that the maximum distance from vl to a node v is h. If a
message m sent by node v can be delivered multiple times to one of its neighbors then
counting requires at least h+ Ω(max∀ilog |Vi|) rounds, where Vi is the set of nodes at
distance h from vl.

Proof. It is easy to see that counting in an undirected edge-unlabeled dynamic multi-
graph is easier than counting in a static anonymous network where messages may
be duplicated. In order to model the duplication with an undirected multigraph we
are assuming that each time a message m from v to w is duplicated also a message
m′ from w to v is duplicated. Counting in an edge-labeled multigraph is easier than
counting in one that is edge-unlabeled. Let us consider a construction that generalize
M(DBL)2 in order to have nodes at distance h from vl. That is vl is connected, by a
dynamic multigraph as in M(DBL)2, to nodes in V1. Then only one node in v1 ∈ V1

is connected to nodes in V2 as inM(DBL)2 and so on until set Vh. This construction
models a static anonymous networks that is a tree where the leader is the root and
where nodes at level h are all connected to the same node at level h − 1. With the
additional assumptions that duplications are reciprocal and that edges are labeled.
It is easy see that vj , in order to count nodes in Vj+1, has to wait Ω(max∀ilog |Vi|)
rounds, and that counting at different levels do not interfere with each other. There-
fore the leader outputs the count only after it has received the partial sum from each
vj . From this the claim follows.

2.3 Investigating Faults in G(PD)2 networks

In this section we will study the case of faulty processes. We say that vi is faulty at
round r if it leaves the system before the broadcast operation of round r. We model
failures as a set of processes that permanently stop sending messages at the beginning
of certain round r. We assume that the failures start from round r = 1: processes
send at least one message before their departure.

Let us introduce a basic problem:

Problem 1. Fault Distinguisher Problem (FDP): Given two run Rf , R such
that: in the run R no processes fail; in the run Rf there is a failure at r = 1 and
there could be other failures in successive rounds. An algorithm FD solves the Fault
Distinguisher problem if at some round r it outputs a value and terminates. The value
has to be Red on the run Rf , and Green on the run R.

A simple broadcast algorithm solves this problem in a G(PD)2 network with identi-
fiers, moreover vl is able to terminates at round r = 3 independently from the network
size.

Lower Bound on Fault Detection for G(PD)2 networks.

In this subsection we show a lower bound for FD problem. It is interesting to notice
that the lower bound that we shows is greater than the time needed to count. It
is clear that the time needed to detect a fault is at least the time that we need to
count: let us imagine that all nodes have the same state at the end of round 0, then
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one nodes fails, the leader has to count the remaining nodes in order to detect the
failure and this needs Ω(log(|V2|)) rounds, see optimal counting algorithm for G(PD)2

in next Chapter. With the next theorem we show that for G(PD)2 the adversary can
exploit a “chain of failures” leading to a number of rounds that in the worst case is
exponentially far from O(log(|V2|)), i.e. Ω(|V2|). moreover the asymptotical number
of rounds necessary to solve the problem depends from |V1|, this is in contrast with
the simple counting studied in the previous sections.

Theorem 4. Let us consider a graph G ∈ G(PD)2, where processes in V2 may fail. If
|V2| > |V1| we have that does not exists any Fault Distinguisher algorithm that outputs

a results in less then |V1|blog(b |V2|
|V1|c+ 1)c rounds, if |V2| ≤ |V1| the number of rounds

is |V2|.

Proof. We assume that a failure happens at round r = 1, we indicate with vxi that
vi ∈ Vx.

Let us first consider the case |V2| = |V1|. We consider the G0 at round 0 in
which each node v2

j in V2 is connected to only one node v1
j in V1 and viceversa. It

is easy to see that at the end of round 0 thanks to the anonymous broadcast all
processes in V2 have the same memory content, the same hold for all processes in V1.
Now at the beginning of round 1, v2

1 leaves. The adversary takes process v2
2 in V2

and connects it to v1
1 and v1

2 , from the point of view v1
1 ,v1

2 this configuration is not
distinguishable to the one of the previous round, and clearly is not distinguishable
for the other processes in the system. At round r, v2

r leaves and v2
r+1 is connected

to v1
1 , v

1
2 , . . . , v

1
r+1. At round r = |V2| − 1 only one process of V2 is left v2

|V2| and it

is connected to v1
1 , . . . , v

1
|V2|. For processes in V1, and thus for the leader, this run is

not distinguishable from a dynamic graph {G0, G1 = G0, . . . , G|V2|−1 = G0}. This
complete the proof for |V2| = |V1|, the case |V2| < |V1| is equivalent.

Now let us consider the case |V2| > |V1|, since we are proving a lower bound we
restrict ourselves to the subset of instances in which |V1| = x! and |V2| = x|V1| for
some x ∈ N+.

Nodes in V2 are partitioned in x sets, let us define as V j2 the j-th set and as vj,2i the

i-th process in the set V j2 . In G0 we have that each vj,2i is connected only to v1
j , see

Figure. In G1, v1,2
1 leaves and v2,2

1 is connected to v1
1 , v

1
2 . Thanks to the anonymous

broadcast the memory content of v2,2
1 is equal to the memory content of v1,1

1 thus
from the point of view of v1

1 , v
1
2 this graph is not distinguishable from G1 = G0. This

strategy is iterated for the first |V1| rounds, at round j ∈ [0, |V1| − 1] the adversary
connects vj,21 to v1

1 , . . . , v
1
j , all nodes in V1 are kept in the same state, at each round a

node in V1 receives x identical messages by nodes in V2, this implies that also the non
faulty nodes in V2 are kept in an identical state. As result we have at round r = |V2|,
|V j2 | = x− 1 for all j ∈ [1, |V1|]. Now at round r = |V2| the adversary uses two nodes
to mask the faults of the previous rounds, v1,2

2 is connected to v1
1 , . . . , v

1
|V1| and v2,2

2

to v1
1 , v

1
2 , since at the beginning of round r = |V2| all processes in V2 are in the same

state each process in V1 will receive x identical messages. At round r = |V2| + 1 the
adversary connects v3,2

2 to all process in V1 and v4,2
2 to v1

1 , v
1
2 , v

1
3 , v

1
4 .

Following this strategy given a round r such that the non faulty processes in V2

are |V2| − a · |V1| − (a+ 1) · j we have that V i2 with i ∈ [1, (a+ 1)j] have x− (a+ 1)
non faulty processes and the remaining sets have x− a non faulty processes, thus the
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adversary connects the processes v
(a+1)j+1,2
a+1 , . . . , v

(a+1)j+(a+1),2
a+1 to all processes in V1

and the process v(a+1)(j+1)+1 to v1
1 , . . . , v

1
(a+1)(j+1)+1.

Now we have to prove that this behavior can be iterated for |V1|blog(b |V2|
|V1|c)c

rounds. Let us focus on the number of alive processes in the systems, as long as the
non faulty the processes in V2 are [|V2| − a · |V1|, |V2| − (a + 1) · |V1|] the adversary
needs to use (a + 1) processes, at each round, to mask the failures, processes that
will leave the system at the next round, this means that starting from |V2| − a · |V1|
non faulty processes we remain with |V2| − (a + 1) · |V1| non faulty processes after
|V1|
a+1 rounds. After |V1| rounds we have |V2| − |V1| non faulty processes, after |V1|

2
rounds we have |V2| − 2|V1| non faulty processes, and so on until we have 0 non

faulty processes. The total number of rounds is |V1|
∑ |V2|
|V1|
i=1

1
i ≥ |V1| log( |V2|

|V1| + 1). For

processes in V1, and for vl, this run is not distinguishable from a dynamic graph
{G0, G1 = G0, . . . , G|V1| log(

|V2|
|V1|

+1)−1
= G0}.

... ... ...

...
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round 0
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2 | =

... ... ...

...

......

|V 2
2 | =
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Figure 2.5: FDP Lower bound: indistinguishability example for |V1| > |V2|.

Robust Counting If we are in a system where processes in V \ {vl} may leave, it
could be of interest defining the following notion of counting:

Definition 12. Robust Terminating Counting: Given a dynamic network G with
an initial set V of processes. Processes in V \ {vl} may fail and permanently stop
to send messages. Let us define as V r the set of non-faulty processes at round r.
A distributed algorithm A solves robust terminating counting on G if it satisfies the
following properties:

• Termination: It exists a round r at which the leader outputs a pair (X, r′) and
terminates.

• Correctness: We have |V r′ | = X.
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This notion is similar to the snapshot validity of [15]. It is easy to see that if we do
not ensure some restriction on the pattern of failures any robust counting algorithm
could only output the trivial X = 1. This is straightforward if we consider a run
in which at round 1 all processes but the leader fail. Therefore in order to study
non trivial instances of robust anonymous counting, let us define the robust dynamic
diameter D∗.

Definition 13. Robust Dynamic Diameter: Given a dynamic network G, we say
that G has robust dynamic diameter D∗ if at round r each process v ∈ V r can start a
flooding of message m and by round r+D∗ m will be received by all non faulty process
in V r+D

∗
.

A network in G(PD)2 where only processes in V2 fails is network with robust
diameter D∗ = 4. It is easy to see that in a network with IDs and D∗ known a
simple flooding algorithm solves robust counting. The leader at round D∗ outputs
the number of IDs sent at round r = 0. We have the following corollary,

Corollary 3. Given a dynamic network with robust dynamic diameter D∗. We have
that if D∗ > 3 any robust counting algorithm A requires Ω(|V 0|) rounds to give an
output.

Proof. The proof follows from Th.4, a robust algorithm has to solve FDP on G ∈
G(PD)2, if we have |V1| = |V2| the claim follows.

The previous corollary implicitly used a simple “trick”: we have exploited the
anonymity and the unbounded degree of nodes to allow a node in V2 to “take place”
of up to O(|V 0|) failed nodes. Therefore it is natural to ask what could happen if we
bound the degree of failing nodes to be O(1) with respect to O(|V 0|). We also restrict
the number of nodes that could depart in a certain round, otherwise we would simply
exploit O(|V 0|) nodes with degree O(1) to replace the past failures of O(|V 0|) nodes.
We will show that even in networks with robust diameter and constant number of fail-
ures in the worst case the adversary could always force any robust counting algorithm
to a trivial output that does not depend on the initial size of processes, i.e. X ∈ {1, 3}.

As we did for counting we consider the networks in M(DBL2). We prove the
impossibility result in these networks as it could be easily ported to G(PD)h. Let us
notice that for M(DBL2) we have D∗ = 1 and that failing nodes could have at most
degree d = 2. We have the following Theorem.

Theorem 5. Let us consider a network in M(DBL2), where at each round f = O(1)
processes may fail, the number of failure is constant with respect to the initial network
size. We have that any robust counting algorithm has to wait Ω(|W |) rounds and it
can only output a trivial value X = 1.

Proof. Let us consider two networks M,M ′ ∈M(DBL2). M has |W | = 2x processes
and M ′ has |W ′| = 2x + 1 processes with x ∈ N+. In Figure 2.6 there is a small
example that we generalize in the following description.

• The network M has the following dynamicity. At round r we have |W | − 2b r2c
non-faulty processes. if r is even, including r = 0, we have that all processes are
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Figure 2.6: Impossibility of non-trivial robust counting with a constant failures rate
on M(DBL2).

connected to the leader by two labels, if r is odd we have that |W | − 2b r2c − 2
processes are connected with the leader by two labels and the remaining two
will be connected to the leader respectively with label 1 and 2, the two processes
will fail at the beginning of round r + 1.

• The network M ′ has the following dynamicity. At round r we have |W ′|−2b r+1
2 c

non faulty processes. If r is even, including r = 0, we have that |W ′|−2b r+1
2 c−2

processes are connected with the leader by two labels and the remaining two will
be connected to the leader respectively with label 1 and 2, this two processes
will fail at the beginning of round r + 1. If r is odd we have that all processes
are connected by the leader with two labels.

It is easy to verify that for each r we have |W | − 2b r2c 6= |W ′| − 2b r+1
2 c, the absolute

difference between the number of processes in the two networks is always 1. Eventually
we will reach a round rend in which one network has two processes and the other only
one. At the beginning of round rend + 1 we can force the failure of all non leader
processes. We now show that at each round S(vl, r) on M is equal to S′(vl, r) on M ′.
This can be done inductively on r.

• round 0: At the end of round 0 on M the leader receives x states [⊥] from label
1 and x states [⊥] from label 2. The same holds on M ′.

• round r: Our hypothesis is that the state of the leader is the same until round
r − 1. Let us suppose w.l.o.g that r is even, in case r is odd we simply switch
the role of two networks. On M we have that all the |W | − 2b r2c processes have
state [{1, 2}, . . . , {1, 2}]. All processes are connected to the leader by both edge
labeled {1, 2}. Therefore the leader receives |W |−2b r2c states [{1, 2}, . . . , {1, 2}],
i.e. a list with exactly r − 1 elements equal to {1, 2}, from edge labeled with
1. It receives exactly the same from the edge with label 2. On M ′ we have
|W ′| − 2b r+1

2 c = |W |+ 1 non faulty processes, of the processes exactly |W | − 1
are connected to vl with both labels, the remaining two processes are connected
respectively with label 1 and 2. It is easy to see that vl receives |W | lists equal
to [{1, 2}, . . . , {1, 2}] from label 1 and the same from label 2.
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Thus if the leader outputs (X, r′) and r′ ≤ rend we have that it would generate
a contradiction on M or M ′. Therefore the leader can only outputs (X, r′) with
r′ > rend but in this case X = 1.

From the previous proof we get the following corollary.

Corollary 4. Given a dynamic network with robust dynamic diameter D∗. We have
that if D∗ > 3 any robust counting algorithm A can only output the trivial values
X ∈ {1, 3}. This holds even by restricting the number of processes that may fail at
each round to be constant with respect to the initial network size.

Proof. For any integer x ∈ N+ we can create two networks G,G′ ∈ G(PD)2 of size
2x+ 2, 2x+ 3. Until round rend the networks follows the same dynamicity of the two
networks M,M ′ ∈ M(DBL2) of the proof of Th. 2.6. We use the two additional
processes as dummy process in V1 one associated with label 1 and the other 2. It
is easy to see that these two networks have D∗ ≤ 4 and that the number of failure
is at most 2 independently from x. At beginning of round rend + 2 in G,G′ both
processes in V1 fail. It follows from the proof of Th. 2.6 that the state of the leader
will be exactly the same in the two networks. Therefore the leader can only output
the trivial pair (X, r′) with X = 1 if r′ ≥ rend + 2 or X = 3 if r′ = rend + 1.

2.4 Conclusive Remarks

We have shown that counting in anonymous dynamic networks could be harder than
information dissemination. This difference is actually not present in dynamic networks
with IDs and anonymous static networks, counting algorithms for anonymous static
networks also works on static networks with IDs. In all these networks there are
algorithms showing that the cost of counting is at most of the same order of the
cost of information dissemination [44, 59]. When D is constant with respect to V ,
we proved that counting in anonymous dynamic network requires to pay at least
Ω(log |V |) rounds.

Let us finally remark that the proposed bound does not hold only for counting
but also for other aggregation problem in which the leader has to count the number
of nodes in a certain state. Another interesting result is the trade-off lower bound on
the accuracy of estimation counting algorithms.

Moreover we have shown that on synchronous static network message duplication
leads to a counting time that is function of the network size independently from the
network diameter. This is not true for static networks where messages cannot be
duplicated. This connection will be considered more in depth in Chapter 3 where we
show possibility results for counting in G(PD)h networks that can be applied to static
anonymous networks as well.

Finally we have proved a lower bound for the FDP problem on G(PD)2. The
importance of this problem for counting algorithms will be clear in Chapter 3 and 5.
Where an algorithm to solve FDP will be used as a fundamental building block for a
polynomial counting algorithm on G(∞-IC) and for a terminating counting algorithm
on G(1-IC). Let us remark that we mainly interested in networks where |V | is static,
but also in this case the solution of FDP will be useful to our purposes.
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FDP on G(PD)2 networks with IDs is solvable in a number of rounds that is at
most 3, but in the anonymous case the time needed to solve the problem is function
of the network size, and this was intuitive since counting is the only way to detect if
someone is missing when processes are anonymous. However we have shown that in
the worst case, |V1|, |V2| = O(|V |), we need Ω(|V |) rounds that is exponential with
respect to the time needed to count, Ω(log |V |), and linear with respect to the number
of processes.

Open Problems From the results presented in this chapter we can identify the
following open problems, ordered by their relevance:

• Bound on G(1-IC): An important open problem is to find out if on anonymous
G(1-IC) the lower bound for counting is Ω(|V |), as in G(1-IC) with IDs. We are
investigating a generalization of our kernel based technique to dynamic graphs
when there is mobility among nodes at various distances from the leader.

• Bound on the memory needed by nodes to count in G(PD)2: Let us
consider a network in the family of multigraphs M(DBLk) where k = O(|V |).
Our feeling is that in such setting messages and space of Ω(log2 |V |) bits are
necessary. This would be in contrast with dynamic networks with IDs or static
anonymous networks where messages of O(log |V |) bits are enough, see [44]
and [59]. Probably both algorithms can be adapted to use O(log|V |) space.
Our feeling is based on the following facts:

− Each node has to keep an history. Collectively these histories must involve
at least Ω(log |V |) rounds; otherwise we can create an ambiguity, i.e. the
system of equations leader side has at least two solutions.

− Let us assume that at each round a node has to memorize in his history
information about its degree. This cannot be done by using less than
O(log |V |) bits without creating ambiguity.

However to formally prove the bound we have both to show: (1) that nodes
cannot agree on some strategy that allows them to “forget” about some rounds
in such a way to store locally less than O(log |V |) rounds, (2) the degree at each
round is a necessary information.



Chapter 3

Counting on G(PD)h and
G(∞−IC)

In this chapter we present terminating counting algorithms for networks where the
dynamicity introduced by the adversary is limited, keeping intact an inherent struc-
ture in the dynamic graph. We first present an optimal counting algorithm, namely
OPT, for the family G(PD)2, this is done in Section 3.1.

In Section 3.2 this algorithm is extended to an optimal algorithm, OPT h, for
networks in G(PD)h. At the end of Section 3.2 we discuss the implications of this
algorithm with respect to static anonymous networks, showing that OPT h is an opti-
mal algorithm for static networks where messages are duplicated and the duplication
is detectable sender side.

In Section 3.3 we present an efficient algorithm, namely FD, that uses the idea
behind OPT to detect faulty processes in G(PD)2, solving the FDP problem intro-
duced in Section 2.3. This algorithm has a gap with respect to the lower bound that
is at most O(log(|V2|)2).

We conclude the chapter with Section 3.4 where we show a polynomial counting
algorithm, O(|V |5), for networks in G(∞−IC). Let us remark that at the best of our
knowledge this is the first deterministic and polynomial terminating algorithm for
anonymous G(∞−IC) networks.

3.1 OPT algorithm for G(PD)2

OPT initially starts a get distance phase. At the end of this phase each node is aware
of its distance from the leader. In G(PD)2 this phase takes one round and works as
follow: Each node knows if it is the leader or not. This information is broadcast by
each node (including the leader) to its neighbors at the beginning of round 0. Thus,
at the end of round 0, each node knows if it belongs to V1 or V2.

No-leader node behavior Starting from round 1, a node broadcasts its distance
from the leader (i.e., 1 or 2) and each node v in V2 builds its degree history v.H(r)

37
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with r ≥ 0 where v.H(1) represents the number of neighbors of v belonging to V1 at
round 1 and v.H(0) = ⊥. Thus v.H(r) = [⊥, |N(v, 1) ∩ V1|, . . . , |N(v, r − 1) ∩ V1|].
Starting from round r > 0, each node in V2 broadcasts v.H(r). These histories are
collected by each node v′ ∈ V1 and sent to the leader at the beginning of round r+ 1.

Let us define as Num(H ′(r)) : |{v ∈ V2|v.H(r) == H ′(r)}|, i.e. the number of
nodes in V2 that at round r have degree history H(r).

Leader behavior Starting from the beginning of round r ≥ 2 the leader receives
degree histories from each node in V1. The leader merges histories in a multiset
denoted vl.M(r). Let us remark that vl.M(r) can contain a same history multiple
times.

Data structure : The leader uses vl.M(r) to build a tree data structure T whose
aim is to obtain |V2|. For each distinct history [A] ∈ vl.M(r) the leader creates a
node t ∈ T with label [A] and two variables < m[A], n[A] >: m[A] denotes the number
of histories [A] in vl.Mr and n[A] is the number of processes in V2 that has sent [A].
Following the information flow, at round 2, vl.M(2) will be formed by a single history
[⊥] with multiplicity m[⊥]. The leader creates the root of T with label [⊥], value m[⊥],
and n[⊥] =?. It is important to remark that m values are directly computed at each
round r from vl.M(r) while n values are set by the leader at a round r′ ≥ r through a
counting rule that will be explained later. The leader final target is to compute n[⊥]

which corresponds to the number of processes in V2.

At round r + 2 if the leader receives a history h = [⊥, x0, . . . , xr−2, xr−1] and
n[⊥,x0,...,xr−2] =? then it creates a node in t ∈ T with label h and value mh that is a
child of the node with label [⊥, x0, . . . , xr−2] otherwise it does nothing, see lines 7-12
Figure 3.2. It is straightforward to see that the following equations holds:

{
m[⊥,x0,...,xr−2,xr−1] =

∑|V1|
i=1 i ·Num([⊥, x0, . . . , xr−2, xr−1, i])

Num([⊥, x0, . . . , xr−2, xr−1]) =
∑|V1|
i=1 Num([⊥, x0, . . . , xr−2, xr−1, i])

(3.1)

Where i · Num([⊥, x0, . . . , xr−2, xr−1, i]) means that the leader received i copies
of history [⊥, x0, . . . , xr−2, xr−1], one for each process in V2 that at round r + 1 had
history [⊥, x0, . . . , xr−2, xr−1, i].

Counting Rule : When in T there is a non-leaf node with label [⊥, x0, . . . , xr−2, xr−1, xr]
and such that the leader knows the number of processes, i.e. n[A], for each of its chil-
dren but one, i.e n[⊥,x0,...,xr−1,xr,j] =?. Then the leader computes n[⊥,x0,...,xr−1,xr,j] =

Num([⊥, x0, . . . , xr−1, xr, j]) usingm[⊥,x0,...,xr−2,xr−1],xr =
∑|V1|
i=1 i·Num([⊥, x0, . . . , xr−2, xr−1, xr, i])

See lines 19-22 Figure 3.2

Due to the fact that the number of processes is finite, there will be a non-leaf
node in T that will have only one child (a leaf). Then thanks to the counting rule,
the n variables of the child and of the father will be set. This will start a recursive
procedure that will eventually set n[⊥].

When the leader knows the values n for each of the children of a non leaf-node t,
it sum the children values and set the n value of the t, see the second equation of Eq.
3.1, see line 24 Figure 3.2. The count terminates when the leader knows n[⊥].
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round 0 round 1 round 2

Dynamic Graph

Data Structure Tree T

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,1] [?,1] [?,2] [?,2] [?,3] [?,3][?] [?] [?] [?] [?] [?] [?] [?,1,2] [?,1,2] [?,2,3] [?,2,3] [?,3,2] [?,3,1]

round 3

[?,1,1]

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?

[?,1,1,2] [?,1,2,1] [?,1,2,2] [?,2,3,2] [?,2,3,1] [?,3,2,3] [?,3,1,3]

round 4

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?
m[?,2] = 6

m[?] = 17, n? =?[?]

[?,1] [?,2] [?,3]
m[?,1] = 5 m[?,2] = 5 m[?,3] = 3

n[?,1] =? n[?,2] =? n[?,3] =?

[?,1,2]

[?,2,3]

[?,2]
n[?,2] = 2

n[?,2] =
m[?,2]

3
= 2

m[?,2] = 6

[?,3,2] [?,3,1]m[?,1,1] = 2
n[?,1,1] =?

m[?,1,2] = 3
n[?,1,2] =?

m[?,3,2] = 3

n[?,3,2] =?

m[?,3,1] = 3

n[?,3,1] =?[?,1,1]
[?,1,1]

[?,1,1,2]

n[?,1,1] =
m[?,1,1]

2
= 1

n[?,1,1] = 1

n[?,1,2] = 2

n[?,1,2] =
m[?,1] � n[?,1,1]

2
= 2

n[?,1] = 3

n[?,3] =
m[?] � n[?,1] � 2n[?,2]

3
= 2

m[?] = 13 m[?] = 13

m[?] = 13
m[?] = 13

n[?,3] = 2

n[?] = 7

Figure 3.1: Example run for Algorithm for G(PD)2
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1: T = ⊥
2:
3: function buildT(MultiSet Mr)
4: if r == 2 then
5: Assert(∃[⊥] ∈M1)
6: T .setRoot([⊥] :< m[⊥],⊥ >)

7: for all [x0, . . . , xr−2, xr−1] ∈Mr do
8: vl creates a node [x0, . . . , xr−2, xr − 1] :< m[x0,...,xr−1]

, n|[x0,...,xr−1]| : ⊥ >

9: t : T .findNode([x0, . . . , xr−2])
10: if nt 6=?||t = null then
11: continue
12: t.addChild([x0, . . . , xr−2, xr − 1])

13: compute(T )
14: if T .root.n[⊥] 6= ⊥ then
15: output(T .root.n[⊥])

16:
17: function compute(Tree T )
18: for all t ∈ T starting from the level of the leaves until the root do
19: C : T.findChildren(t)
20: X ⊆ C such that [x0, . . . , xk] ∈ X iff n[x0,...,xk]

6= ⊥
21: if ∃!c : [y0, . . . , yk] ∈ C \X then

22: nc :
mt−

∑
∀[x0,...,xk]∈X (xk·(n[x0,...,xk]))

yk

23: if X = C then
24: nt :

∑
∀[x0,...,xk]∈X n[x0,...,xk]

Figure 3.2: Creation of T - Leader Code , this algorithm is used by both OPT and
OPT h

Correctness proof

Lemma 11. Let consider the algorithm OPT. Eventually vl sets a value for n[⊥] and
this value is |V2|.

Proof. We first prove that eventually we reach a round in which the counting rule
can be applied for any leaf of T . Let us consider the subtree of T rooted in the node
with label [A] if there is only one child then the counting rule can be applied and n[A]

can be computed. Thus let us suppose that [A] has at least two children with labels
[A, x], [A, x′] with x 6= x′. We have that n[A,x] ≥ 1 and n[A,x′]| ≥ 1 since there must
be at least one sending process for each of this two different degree-history. Since we
have Num([A]) =

∑k
j=1Num([A, j]) then Num([A, x]) < Num([A]) − 1. Iterating

this reasoning we have that when the height of the subtree rooted in [A] is greater
than Num([A]) − 1, then each leaf has no sibling: when there is a single processes
sending a certain degree history H in the next round there will be only one degree
history with H as suffix. Thus after at most Num([A]) rounds we may apply the
counting rule for any leaf of the subtree rooted in [A].

Now we prove by induction that: for each node v ∈ T if nv 6=?, then nv = Num(v).
• Base case, leaf without siblings: Let v1 : [x0, . . . , xr+1] a leaf without sibling

and v0 : [x0, . . . , xr], vl will sets nv0
= nv1

=
mv0
xr+1

it is straight from Eq 3.1 that

nv0
= nv1

which is equal to Num([x0, . . . , xr]);
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• Inductive case: Let us consider v0 : [x0, . . . , xr] and the set of its children Cv0 ,
with |Cv0

| > 1, defined Xv0
: {x ∈ Cv0

|nx 6=?} if ∃!v1 : [x0, . . . , xr+1] ∈ Cv0
\Xv0

the leader sets

nv1 :
mv0
−∑∀[x0,...,xk]∈X((xk) · ([x0, . . . , xk].n[x0,...,xk]))

yk

and by inductive hypothesis we have ∀x ∈ Xv1 , nx is equal to Num(x). Due to
Eq. 3.1, we also have nv1

and nv0
will be set to the correct value.

From the previous arguments we have that after at most |V2| rounds all the leaf of
[⊥] have no siblings, thus the counting rule will be applied recursively until the value
n[⊥] is set to |V2|, at round 1 all processes in V2 sends ⊥.

Theorem 6. Let G be a dynamic graph of size |V | belonging to G(PD)2. There exists
an asymptotically optimal counting algorithm for G that terminates in dlog2(|V |)e+3
rounds.

Proof. Let consider the algorithm OPT. The latter counts the node in V2, since the
number of nodes in V1 is immediately known by vl at round 0, thus let us suppose
that we are in the worst case that is |V2| = O(n). Let us consider the tree T ,
given a node [A] the maximum height of the subtree rooted in [A] is a function
hmax(Num([A])). We have that hmax is non decreasing, that is hmax(Num([A])−1) ≤
hmax(Num([A])): let us consider the worst scheduling that the adversary may use
with Num([A])− 1 nodes in order to obtain the maximum height, it easy to see that
the same scheduling can be created with Num([A]) nodes, the adversary will simply
force two nodes to follow the behavior of a single node in the hold schedule. Let us
restrict to the case when [A] has only two children: [A, x], [A, x′], for the counting
rule hmax(Num([A])) = min(hmax(Num([A, x])), hmax(Num([A, x′]))) + 1 that for
the second equation of Eq. 3.1 becomes, considering δ ∈ [0,

n[A]

2 ], hmax(n[A]) =

1 + min(hmax(
n[A]

2 − δ), hmax(
n[A]

2 + δ)) ≤ 1 + min(hmax(
n[A]

2 ), hmax(
n[A]

2 )) thus is
clear that the optimal height can be reached by havingNum([A, x]) = Num([A, x′]) =
Num([A])

2 . It is easy to see that the case when [A] has more than two children, gives
a maximum height that cannot be greater than the case examined. Iterating this
reasoning we have that the worst case is that T is a balanced tree with degree at most
2 for each non leaf node and with exactly n leaf. The height of this tree is dlog2(n)e.
Each level of T corresponds to one round of OPT, this complete the proof. Due to
theorem 2, OPT is asymptotically optimal.

Discussion An interesting point is that if OPT terminates at early stages we have
that many nodes in V2 may share the same state, i.e. if the algorithm terminates at
round 1 all nodes have the same state. But the more rounds OPT runs, the more
nodes have to assume a different history, ending up with a different state for each
node. This trade-off between the speed of the counting and the different states that
processes may assume is up to our adversary. This property will be investigated more
in depth at the end of the next section. Let us remark that this algorithm is not
robust.
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3.2 OPT h: Extending OPT to count in G(PD)h

As in OPT, OPT h begins with a get distance phase over G(PD)h where each node
obtains its distance from the leader. Using a simple flooding and convergecast algo-
rithm this phase takes at most 2h + 1 rounds. In the first h rounds (flooding step)
each node computes its distance from vl, in the h+ 1 successive rounds (convergecast
step) the leader computes the maximum distance h.

1: M(0) = [⊥]
2: H(0) = [⊥]
3: distance = d . The distance is obtained in the get distance phase
4:
5: procedure sending phase
6: send(Message :< distance,M(r), H(r) >)

7:
8: procedure rcv phase(MultiSet MS)
9: H(r + 1) = H(r).append(count distance neighbors(MS, distance− 1))

10: M(r + 1) = M(r).append(get messages from distance(MS, distance+ 1))

Figure 3.3: OPT h algorithm for G(PD)h: algorithm run by a non-leader node

Non-Leader node behavior in OPT h. The code of a non-leader node in OPT h
is reported in Figure 3.3, the function count distance neighbors returns the num-
ber of messages in MS generated by nodes at distance distance − 1, the function
get messages from distance returns only messages generated by nodes at distance
distance+1. If there is no such message the function returns ⊥. As in OPT, a node v
updates its degree history v.H(r) by counting the number of nodes in N(v, r) whose
distance is equal to v.distance− 1. Moreover v updates a multiset v.M(r) that con-
tains messages received by neighbors at distance v.distance+ 1, if v has not received
any of these messages, it adds ⊥ to the multiset. In the sending phase, v broadcasts
< v.distance, v.M(r), v.H(r) > to its neighbors.

Leader node behavior in OPT h. From an high level point of view the algorithm
works as follow: the leader first computes the number of nodes in V1, then it executes
OPT to count the nodes in V2, this count will be completed by round (2h + 1) +
(3 + log(|V2|)) (see Theorem 3.2). At this point, the leader simulates an execution
of OPT counting nodes in V3 exploiting the information obtained by processes in V2,
the leader uses OPT to obtain the exact multiset of messages received by processes
in V2. This counting will be completed by round (2h+ 1) + 6 + log(|V2|) + log(|V3|).
Iterating this procedure till nodes at distance h we obtain the final count in (2h +

1) + 3h+
∑h
i=2 log2(|Vi|) rounds.

Operationally, the purpose of the leader is to reconstruct the multiset MSj of
messages
< distance,M(r), H(r) > sent by nodes in Vj at some round r, from MSj we have
|Vj | = |MSj |.

At each round the leader receives MS1. Starting from MS1 content, OPT h
iteratively reconstructs the sets MSj for j > 1. This is done in the loop 16-26 of



3.2. OPT H: EXTENDING OPT TO COUNT IN G(PD)H 43

1: distance count[]
2: procedure sending phase
3: send(< leader >)

4:
5: procedure rcv phase(MultiSet MS :< distance,M,H >)
6: i = 1
7: distance count[i] = |MS|
8: i+ +
9: while true do

10: if i > h then
11: count =

∑
∀j|distance count[j]6=⊥ distance count[j]

12: output(count)

13: MS =buildLastNextDistanceSet (MS)
14: if MS = ⊥ then
15: break
16: distance count[i] = |MS|
17: i+ +

18:
19: function buildLastNextDistanceSet(MS)
20: MSlast = ⊥
21: if Tree(Recent(MS, 0)) 6= ⊥ then
22: rlast = r′|Tree(Recent(MS, r′)) 6= ⊥ ∧ @r′′ > r′|Tree(Recent(MS, r′′)) 6= ⊥
23: MSlast = Tree(Recent(MS, rlast))

24: return MSlast

Figure 3.4: OPT h algorithm for G(PD)h: algorithm run by the leader

rounds

r r + 1
e1 :< i + 1, M(r), [. . . , xr�1] >

e1 :< i + 1, M(r), [. . . , xr�1] >
e2 :< i + 1, M2(r + 1), [. . . , xr�1, yr] >

e2 :< i + 1, M(r), [. . . , yr�1] >

e4 :< i + 1, M 0(r), [. . . , tr�1] >

e5 :< i + 1, M 0(r), [. . . , hr�1] >

e3 :< i + 1, M(r), [. . . , zr�1] >

Tree for M’(r)Tree for M(r)

n[?] =?

m[?] = 4

n[?] =?

m[?] = 2

e1 :< i + 1, M1(r + 1), [. . . , xr�1, xr] >

e3 :< i + 1, M3(r + 1), [. . . , yr�1, xr] >

e4 :< i + 1, M4(r + 1), [. . . , yr�1, tr] >

. . .

Tree for M(r)

n[?] =?

m[?] = 4

n[?,xr] =?
m[?,xr] = 2 m[?,yr] = 1

n[?,yr] =? n[?,tr] =?

m[?,tr] = 1

Content of
S

M
obtained by multiset recent(MSi, r)
ordered by rounds:

Reconstruction of MSi+1

at round r, let us note that is enough
to recover the multisets of variables M
of nodes in Vi+1:

For each di↵erent M(r)
the algorithm creates a tree to count
the multiplicity of that M(r) among
nodes in Vi+1

In order to update the tree for M(r)
the algorithm uses the elements that contains
an M j(r + 1) with su�x M(r).
For the degree histories are considered
elements starting from round r

Figure 3.5: Reconstruction of M variables sent by the set of nodes Vi+1
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Figure 3.4. The leader uses the variable i to store the maximum distance at which
nodes of the network have been already counted by OPT h (initially i = 1).

At the beginning of the loop, the leader checks if the count is over (i.e. it checks
if i > h), in the affirmative the leader outputs the count. Otherwise vl continues to
execute the code in the loop (see Lines 10-12 of Figure 3.4). The leader now uses the
information in the last reconstructed multiset, denoted MSi, to obtain the multiset
Mi+1. Specifically vl simulates an instance of the algorithm OPT for each element
contained in MSi, i.e., if MSi contains only two different elements, namely M(r) and
M ′(r), then the leader uses two trees in order to count the exact number of processes
that sent M(r) and M ′(r). An example can be found in Figure 3.5.

The reconstruction is executed by the function buildLastNextDistanceSet.
This function calls Tree(Recent(MSi, r

′)). The function Recent(MSi, r
′) re-

turns the set of messages MS′ where the elements in MSi received before round
r′ are removed. Therefore the call Tree(Recent(MSi, r

′)) returns either the mul-
tiset MSi+1 sent at round r′ or ⊥. The round rlast is the most recent round at
which the multiset MSi+1 can be reconstructed (see Line 22). In the worst case

rlast ≥ r − (log2(|Vi+1|) + 3) +
∑i
j=2(log2(|Vj |) + 3). Thus the function buildLast-

NextDistanceSet returns either MSi+1 sent at round rlast or ⊥.
At line 14 of Figure 3.4 the leader obtains MSi+1 or ⊥. If the value obtained is ⊥,

the leader exits from the loop and it waits for the next round; otherwise it computes
the count of |Vi+1|, it updates the distance index and it starts the next iteration of
the loop (lines 16-17, Figure 3.4).

Lemma 12. OPT h requires at most (2 · h+ 1) + 3 · h+
∑

1≤i≤h log2(|Vi|) rounds to
output a precise count.

Proof. We consider a generic run after 2h + 1 rounds, so that each node has set
my distance 6= −1. For easy of explanation we consider that the algorithm starts at
round 0 and that all nodes know their distance. Let us consider the nodes in Vh, at
round r = 0. They start to send their degree history to nodes in Vh−1, in the worst
case at round rh = log2(|Vh|) + 3 the union of variables of nodes in Vh−1 allows to
compute the multiset MSh sent at round r = 0, see Th. 6 for OPT algorithm, thus
at round rh−1 = 6 + log2(|Vh|) + log2(|Vh−1|) the multiset MSh−1 generated at round
rh can be reconstructed by the union of variables of nodes in Vh−2, let us recall that
MSh−1 at round rh−1 contains the information to reconstruct MSh at round rh. By

induction is easy to show that at round r1 =
∑h
i=2(log2(|Vi|) + 3) the multiset MS1

contains all the information to reconstruct MS2 at round r2 =
∑h
i=3(log2(|Vi|) + 3)

and so on. Thus the leader at round r1 +1 will execute the reconstruction loop, Lines
19-24 of Figure 3.4, on the multiset MS1, and it will obtain the multiset MS2 sent
by nodes in V2 at round r′ ≥ r2, thus using MS2 it will reconstruct the multiset MS3

sent at rounds r′ ≥ r3 =
∑h
i=4(log2(|Vi|) + 3). The leader iterates the computation

till it obtains the multiset MSh, then leader terminates the reconstruction and the
count.

Complexity analysis From Section 2.1, we can easily obtain that a lower bound
on counting time for G(PD)h is h+max∀Vi(log3(2|Vi|+ 1)). This lower bound holds
for a configuration where at each round nodes at distance x could be connected to only
two nodes at distance x − 1. The complexity of OPT h is 5h + 1 +

∑h
i=2 log2(|Vi|).
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If h has to be constant w.r.t |V | we have 5h + 1 +
∑h
i=2 log2(|Vi|) ≤ 5h + 1 + h ·

max∀Vi(log3(2|Vi| + 1)) that is the same order of the lower bound. Let consider the

case when h is not constant w.r.t. |V |. We have that
∑h
i=2 |Vi| ≤ |V | and that

Πh
i=2|Vi| ≤ |V |x

x
since the product of numbers with a given sum is maximized when

all numbers are equals 1.

We have from simple calculus that the maximum |V |
x

x
is obtained when x = |V |

e

and thus log2(Πh
i=2|Vi|) ≤ |V |e log2(e). Since also the lower bound is worst case O(|V |)

we have our algorithm is asymptotically optimal.

Negligible impact of the adversary in case of continuos counting The pro-
posed algorithm has a nice property that could be useful in many realistic setting, we
illustrate this with an example. Let us suppose to have a network of sensors deployed
around a base station (BS). Nodes are partitioned in levels. At each level is assigned
an unique ID, that is shared among all nodes in that level, this sharing could be
necessary because of cost or time deployment constraint. Nodes are concentrically
disposed around the BS in such a way that nodes at level l can always communicate
with nodes at level l − 1, but due to constraint of the environment the communi-
cation among levels is not stable therefore a node at level l could communicated at
each different round with a different set of nodes at level l − 1. The measurements
done by sensors change periodically and these have to be continuously obtained by
the BS. By continuously starting new instances of the algorithm OPT h we have an
asymptotically optimal solution. Moreover we have that, considering the delay in
counting, the term that is function of the network size will be payed only once in the
whole computation. The impact of the worst case adversary in the long run will be
negligible. The reason behind this is simple, in order to delay the OPT algorithm the
adversary has to create new histories, these histories if memorized by nodes could be
used to speed up successive computations. When the number of histories for nodes
at level i is O(|Vi|) we have that the instance of OPT, that counts node on level i,
terminates in O(1) rounds. So let us consider the cost that we have to pay in the
whole computation, and not the single counting instance, for level i. The adversary
could force us to pay at most O(|Vi|)) rounds, each round it delays the count there
is at least a new history in Vi. Therefore on all instances of counting we can pay at
most a delay of O(|V |) rounds.

Consequences for static anonymous networks

Let us consider synchronous static anonymous networks where the broadcast primitive
may deliver to neighbors duplicated messages, with this duplication governed by a
worst case adversary but bounded by a value unknown to nodes. If duplication is
detectable receiver side, duplicated messages can be ignored and any algorithm for
the setting where messages cannot be duplicated will work, for a counting algorithm
that without duplications counts in O(D) rounds see [59]. Is thus interesting to
examine three complementary settings:

1This is a well known result obtained by using the relationship between geometric and arithmetic
mean.
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• (S1) Duplication cannot be detected.
• (S2) Duplication can be detected sender side: the sender obtains the number

of duplicated messages delivered to each set of neighbors with the same state.
More precisely: we define as s(vj) the state of node vj , i.e. the memory content
of vj . We consider node v and its neighbors N(v) : {v0, . . . , vl}, with states
{s0, . . . , sk} with k ≤ l. When v broadcasts m to N(v) at the end of the
broadcast it receives a set Dup : {< m0, s0 >, . . . , < mk, sk >} where mi is the
number of messages delivered to nodes with state si.

• (S3) Duplication can be detected sender side: the sender obtains the number
of duplicated messages delivered. We consider node v and its neighbors N(v) :
{v0, . . . , vl}, with states {s0, . . . , sk} with k ≤ l. When v broadcasts m to N(v)
at the end of the broadcast it receives an integer Idup that corresponds to the
number of messages delivered to its neighbors.

Let us recall that, even in static anonymous network, the leader is necessary to count
[59], thus we assume the existence of vl.

In setting (S1) counting cannot be solved:

Lemma 13. Let us consider an anonymous networks with broadcast communication
where a message m sent by a node v could be received a bounded number of times by
one of its neighbors w. In this setting counting is not possible.

Proof. Let us first consider the left network of Figure 3.6 and a run R where at each
round r a message from v is always delivered two times to vl and messages from vl
are never duplicated. At each round r of run R the state of v is the same of the state
of nodes a, b in the right network, when we consider a run R′ where messages are
never duplicated. Thus vl will receive the same set of messages in the two runs R,R′
persisting in a state that is reachable in a network of size 1 and a network of size 2.
This indistinguishability can be easily extended for any network size.

v

Left Network Right Network

a b

Figure 3.6: Two static networks that are indistinguishable if duplications are not
detectable

In the previous proof we considered that the same message is delivered multiple
times. Usually the message duplication is introduced to model an underling broadcast
algorithm that sends a message multiple times in order to overcome message loss. A
realistic setting is the following: node v knows that if it sends a message x times at
round r at least one message is delivered to its neighbors. In this case v could number
each broadcast by using a local sequential counter.
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Thus v broadcasts a set B : {< m, 0 >,< m, 1 >, . . . , < m, x >} to its neigh-
bors N : {v0, . . . , vl}. The adversary for each vj ∈ N picks a subset Svj ⊆ M with
|Svj | ≥ 1 and delivers Svj to vj . Unfortunately even in this stronger setting, where
two duplicated message are always different, counting is still impossible, the proof is
essentially the same of Lemma 13, in the left network at each round the leader receives
{< m, 0 >,< m, 1 >} from v, in the right network the leader receives {< m, 0 >}
from a and {< m, 1 >} from b.

Let us consider setting (S2), we have that a lower bound for counting is h +
max∀Vi(log3(2|Vi| + 1)) see Chapter 2. In setting (S2) the algorithm G(PD)h still
works, this is due to the fact that the algorithm only uses information about the
outdegree/indegree of nodes among the various distances from the leader. Information
that can be obtained by the set Dup and by counting the multiplicity of received
messages.

Therefore we have an optimal algorithm for static networks with communication
modeled as (S2). Let us remark that the majority of works on computation for generic
static anonymous networks do not consider a broadcast primitive that may duplicate
messages thus introducing a dynamicity of communication network among rounds,
see [18, 24, 32, 34, 68], and recently [22, 23]. To the best of our knowledge we are not
aware of any optimal counting algorithms designed for this setting.

It is interesting to consider a setting (S3) where the sending node obtains only the
cardinality of duplicated messages without knowing how many messages have reached
a certain set of neighbors.

In (S3) OPT h does not work. Let us consider a star graph with vl at the centre
and where nodes in V1 could be connected among each other. In this kind of graph
we cannot use the techniques used in Chapter 2 to obtain a better lower bound. The
reason is that a nodes cannot know in advance how many messages has been delivered
to neighbors in V1 or to vl. Therefore the matrix Mr seen by the leader does not have
a peculiar structure that allows to characterize the kernel space. Counting is possible
in (S3), this will be clear by seeing the techniques used in Chapter 4. We can adapt
the algorithm AOFOE presented in Section 4.1.

The idea is that the leader can compute the diameter D, this is done by a trivial
flooding and convergecast algorithm. When D is known the leader knows that at
round r it has received all messages sent at round r′ < r−D. The purpose of nodes is
to build an eventual OFOE , see definition in Section 1.1, that gives to node a bound
on the number of duplications. This is done by disseminating the maximum value
Idup seen by each node. The leader starts with a guess maxIdup = 1, each time this
guess changes it restarts the counting. Each instance of the algorithm is associated
with an increasing epoch number assigned by vl. Eventually, since duplications are
bounded, the value maxIdup will never change. Therefore there will be a final instance
of the counting where all nodes have access to a correct OFOE . For the termination
condition the leader terminates D rounds after the usual termination of AOFOE , in
this way it knows that the current instance of AOFOE has been executed with a
correct OFOE . Unfortunately AOFOE is a time exponential algorithm. As final note,
the algorithm presented in Chapter 5 cannot be adapted to work in (S3).
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3.3 An FD algorithm for G(PD)2

In this section we show an algorithm to solve the FDP problem introduced in the
previous Chapter. It is easy to see that a fault in V1 is immediately detected by the
leader, therefore we assume that faults are only localized in the set V2. We consider a
variation of the counting algorithm for G(PD)2, the only different part is the structure
of the tree that the leader constructs using the received messages. In this case the
leader builds a tree TFD, a node in v ∈ TFD is associated to the usual label and two
variables < mv, wv >. When the leader receives a new degree history it creates a node
in TFD using the same rule of T . Moreover If there exist a leaf v : [x0, . . . , xr−2] ∈ TFD
and at round r − 1 the leader does not receive any message that contains a degree
history [x0, . . . , xr−2, xr−1] then the leader adds to v a dummy child v′ : [x0, . . . , xr−2]
with < mv′ = −1, wv′ = 0.5 >.

The leader executes a set of actions on the tree, according to the rule explained
in the following. The first two rules are used by the leader to mark a node v of TFD
as verified, that is wv 6=?. When v is verified the leader will not add any child node
to v, thus the relative degree histories will be ignored. The last rule is used to check
the consistency of the tree and to verify if there has been a fault.

• Verification Rule 1: Let us consider a node v∆+1 : [x0, . . . , xk+∆+1] ∈ TFD
with wv =? and such that ∃v1 : [x0, . . . , xk] ∈ TFD ancestor of v: if (1) denoted
with pv1,v∆+1

the path between v1, v∆+1 we have ∀v ∈ pv1,v∆+1
that wv =?

and that defined as Cv the set of children of v and defined the set Xv : {x|x ∈
Cv∧wx 6=?}, |Cv|−|Xv| = 1 and (2) we have |pv1,v∆+1

| > 2|V1|·log(2dmv1|V1| e+1)+1

then defined v∆ : [x0, . . . , xk+∆] ∈ pv1,v∆+1
, the father of v∆+1, the leader

computes t :
mv∆−

∑
∀[x0,...,b]∈Xv∆

b·w[x0,...,b]

xk+∆+1
and sets wv∆ : t +

∑
∀[x0,...,b]∈Xv∆

b ·
w[x0,...,b].

• Verification Rule 2: Let us consider a node v : [x0, . . . , xk] ∈ TFD with wv =?
and such that |Cv| > 0 and ∀v′ ∈ Cv wv′ 6=?, then the leader sets wv =

∑
∀v′ wv′ .

• Fault Detection Rule 1: If ∃v ∈ TFD with wv 6=? such that wv /∈ N or
mv 6=

∑
∀v′:[x0,...,xk]∈Cv xkwv′ or wv 6=

∑
∀v′:[x0,...,xk]∈Cv wv′ then vl detects a

failure.

The algorithm terminates when w[⊥] 6=? or when the leader detects a failure. In
the next lemmata we show that the FD algorithm is correct, and that its cost in
rounds is O(|V1|log2(|V2|)).

Lemma 14. If the FD algorithm terminates, i.e. w[⊥] 6=?, and the leader does
not detect any failure then the number of failures at round r = 1 is 0 and w[⊥] =
Num([⊥]).

Proof. The proof is done by induction:

• Base Case: In the base case we consider a node v1 : [x0, . . . , xr−1] such that
the subtree T v1

FD rooted in v1 that has only one leaf, and where the Verification
Rule 1 has been applied for the father, v∆ : [x0, . . . , xr+∆], of the leaf; this
implies that Verification Rule 2 has been applied for all nodes in T v1

FD but
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the leaf, setting all the variables w∗. We show that if the Fault Detection
Rule 2 is not triggered on T v1

FD then there has been no failure at round r +
1 among processes with degree history [x0, . . . , xr−1] and moreover we have
Num([x0, . . . , xr−1]) = wv1

. This base case has to exist since processes are

finite and we have Num([x0, . . . , xk]) ≥ ∑|V1|
i=1 Num([x0, . . . , xk, i]), thus the

tree will eventually contains a subtree without branches, where the Verification
Rule 1 will be applied. In the following we only refers to nodes in T v1

FD that are
between v1 and v∆, and the respective processes in the dynamic graph, since
the degree history until round r − 1 is in common we use [xr−1, . . . , xr+j+1] as
label for vj .

Let us first notice that all w∗ has to be set to the same value w otherwise the
FD rule will be triggered.

The proof of the base case is by contradiction. Let us assume, that there
as been a single failure among processes with degree history [xr−1] and that
∀(vj , vj+1) ∈ pv1,v∆

mvj = xr+jwvj+1
otherwise the Fault Detection rule will

be trigger, but this condition means that wvj+1
=

mvj
xr+j

and since the Ver-

ification Rule 2 has set wvj = wvj+1 we must have wvj =
mvj
xr+j

. Thus we

have wv1
=

mv1
xr

, that is an upper bound on Num([xr−1]), since we have
Num([xr−1, xr]) = Num([xr−1])− 1 and mv1

= Num([xr−1, xr])xr + f1 where
f1 ≥ 1 is the degree of the faulty process, let us notice that f1

xr
∈ N otherwise

wv1 /∈ N, thus f1 has to be a multiple of xr. Now suppose that there are no
failures among processes with degree history [xr−1, xr] thus Num([xr−1, xr]) =
Num([xr−1, xr, xr+1]), and we must have wv2

=
mv2
xr+1

= wv1
thus we have,

since mv2
= Num([xr−1, xr, xr+1])xr+1, w2 = w1 → Num([xr−1, xr, xr+1]) =

Num([xr−1, xr]) + f1

xr
that is an absurd since the no failure condition implies

Num([xr−1, xr]) = Num([xr−1, xr, xr+1]). Thus we must have at least one
failure in Num([xr−1, xr]), i.e. Num([xr−1, xr, xr+1]) ≤ Num([xr−1, xr]) − 1,
let f2 be the degree of the failed process. The condition on wv2

becomes
Num([xr−1, xr, xr+1]) + f2

xr+1
= Num([xr−1, xr]) + f1

xr
, thus −1 + f2

xr+1
≥ f1

xr

that is f2 ≥ xr+1(1 + f1

xr
) since f1

xr
∈ N we have f2 ≥ xr+1 + 1 ≥ 2, thus the

faulty process has to have degree at least 2. Now let us examine the condition
wv3

= wv2
, it easy to see that we may reach the same contradiction of before if

we assume that no node with history Num([xr−1, xr, xr+1]) may fail, thus we
must have Num([xr−1, xr, xr+1, xr+2]) ≤ Num([xr−1, xr, xr+1])−1, and we will
have Num([xr−1, xr, xr+1, xr+2]) + f3

xr+2
= Num([xr−1, xr, xr+1]) + f2

xr+1
thus

f3 ≥ xr+2(1+ f2

xr+1
) ≥ xr+23 since f3

xr+2
∈ N we must have f3 ≥ 3. Iterating this

we have that the cumulative degree of faulty nodes at round r + δf has to be
greater or equal to δf , but the degree of a single node is bounded by |V1|, thus
we have that the minimum number of faulty nodes at round r + δf has to be

d δf|V1|e, since |[xr−1]| is bounded by nv1
we have that defined δfmax such r+δfmax

is the maximum round at which mvδfmax
= xδfmax+1wδfmax+1 and must hold

δfmax ≤ T =
∑mv1
|V1|
i=1

|V1|
i , since after r + T we have no more active processes

with [xr−1] in their history. This means the leader will add a dummy child, but
this will trigger the Fault Detection Rule, thus we must have δfmax > ∆. By
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construction we have ∆ = 2|V1| · log(2dmv1|V1| e + 1) + 1 > T ≥ δfmax , that is a

contradiction. The initial assumption of a single failure is not restrictive since
f1 could be seen as the sum of the degrees of the set of failed processes at round
r+ 1, thus the previous contradiction complete the proof. Since there is no fail-
ure we have Num([xr−1]) = Num([xr−1, xr]) that implies wv1

= Num([xr−1]),
otherwise we can reach a contradiction.

• Inductive Step: The inductive step is divided in two cases, our inductive
hypothesis is that for each node v : [l] with wv 6=? and such that v is examined
in conditions of Ver. Rule 1 or Ver. Rule 2, we have that wv = Num([l]) and
that there is no fault among processes with degree history [l, x].

− Case 1 In this case we examine the application of Ver. Rule 1 on a subtree
T v1

FD with two or more leaves, and the successive application of the Ver.
Rule 2.
In this case we consider a node v1 : [x0, . . . , xr−1] such that in the subtree
T v1

FD rooted in v1 there exists a node v′ and where the Verification Rule
1 has been applied for the father, v∆ : [x0, . . . , xr+∆], of v′; this implies
that Verification Rule 2 has been applied for all nodes in T v1

FD but the leaf.
For inductive hypothesis we assume that given v ∈ pv1,v∆

, ∀v′ : [h] ∈ Xv

we have wv′ = Num([h]). We show that if the Fault Detection Rule 2
is not triggered on T v1

FD then there has been no failure at round r + 1
among processes with degree history [x0, . . . , xr−1] and moreover we have
wv1 = Num([x0, . . . , xr−1]). Let us assume, that there as been a single
failure among processes with degree history [xr−1] and that ∀(vj , vj+1) ∈
pv1,v∆

mvj =
∑
∀v′:[x0,...,xk]∈Cv xkwv′ otherwise the Fault Detection rule

will be triggered. Thus we have

mv1
=

∑

x∈{1,...,|V1|}\{xr}
xNum([xr−1, x]) + xrNum([xr−1, xr]) + f1 =

=
∑

x∈{1,...,|V1|}\{xr}
xw[xr−1,x] + xrw[xr−1,xr]

, since for inductive hypothesis we have w[xr−1,x] = Num([xr−1, x]) this

implies that we must have w[xr−1,xr] = Num([xr−1, xr]) + f1

xr
and that

w[xr−1,xr] ∈ N+, now let us assume that there are no faults among processes
with degree history [xr−1, xr], thusNum([xr−1, xr]) =

∑
∀xNum([xr−1, xr, x])+

Num([xr−1, xr, xr+1]) for inductive hypothesis and since we have w[xr−1,xr] =∑
∀x w[xr−1,xr,x] otherwise the FD rule would have been triggered, we

must have Num([xr−1, xr]) = w[xr−1,xr] that leads to a contradiction

Num([xr−1, xr]) = w[xr−1,xr] = Num([xr−1, xr])+ f1

xr
. Thus we must have

at least one fault in the set [xr−1, xr], let us indicate with f2 the degree of
the faulty processes. We havemv2

=
∑
x∈{1,...,|V1|}\{xr} xNum([xr−1, xr, x])+

xr+1Num([xr−1, xr, xr+1])+f2 as for the previous case this implies wv[xr−1,xr,xr+1]
=

Num([xr−1, xr, xr+1])+ f2

xr+1
, we have wv[xr−1,xr ]

=
∑
x∈{1,...,|V1|}\{xr} w|[xr−1,xr,x]+
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wv[xr−1,xr,xr+1]
, for i.h.

wv[xr−1,xr,xr+1]
= Num([xr−1, xr])−

∑
x∈{1,...,|V1|}\{xr}Num([xr−1, xr, x])+

f1

xr
since

Num([xr−1, xr])−
∑
x∈{1,...,|V1|}\{xr}Num([xr−1, xr, x]) ≥ Num([xr−1, xr, xr+1])+

1 we have f2 ≥ xr+1(1+ f1

xr
), thus f2 ≥ f1 +1 ≥ 2. Iterating this as for the

base case we have that fδ ≥ δ, thus we can reach the same contradiction
of the base case using the fact that ∆ > 2|V1| · log(2dmv1|V1| e+ 1) + 1. This

implies that we cannot have failure at round r + 1, thus [x0, . . . , xr−1] =∑
∀[x0,...,xr−1,x]Num([x0, . . . , xr−1, x]) this and the inductive hypothesis

implies w[x0,...,xr−1] = Num([x0, . . . , xr−1]).

− Case 2 In this case we examine the application of Ver. Rule 2 for nodes
that were not included in the checking condition of Ver. Rule 1. Thus let us
consider a node v : [x0, . . . , xr−1] for which wv is set using Ver. Rule 2. For
Inductive hyp. we have that ∀v′ : [x0, . . . xr] ∈ Xv wv′ = Num([x0, . . . xr])
and for the condition of Ver. Rule 2 Cv = Xv. Let us suppose that
Num([x0, . . . , xr−1]) 6= ∑

∀v′:[x0,...xr]∈Xv Num([x0, . . . , xr]) but since F.D.

Rule is not triggered we havemv =
∑
∀v′:[x0,...xr]∈Xv xrNum([x0, . . . , xr])+

f1 =
∑
∀v′:[x0,...xr]∈Xv xrwv′ thus f1 = 0 but this means thatNum([x0, . . . , xr−1]) =∑

∀v′:[x0,...xr]∈Xv Num([x0, . . . , xr]).

From the inductive proof we have that if w[⊥] 6=? we must have w[⊥] = Num([⊥])
and that there is no failure at round 1.

Lemma 15. If there are no failures then FD terminates without detecting a failure
and w[⊥] = Num([⊥]).

Proof. The tree used by FD is an extension of the tree used by algorithm OPT
to count in G(PD)2, the verification rule 1, 2 are an extension of the counting rule
explained in Section 3.1 where to assign a value we wait to have a path from an
ancestor to some node of a certain length. Therefore when no failures are present, the
value w∗ assigned to one node is exactly the same of n∗ in G(PD)2, the correctness of
OPT is proved in Lemma 11. The detection rule cannot be triggered since in case of
no failures the equations 3.1 of Section 3.1 hold.

Lemma 16. The FD algorithm terminates in a number of rounds that is order of
O(|V1|log(|V2|)2).

Proof. Let us notice that for each v ∈ TFD we have mv ≤ |V1|Num(v), this happens
if all nodes with degree history v are connected to all nodes in V1. Let us indicate
with h|V1|(|V2|) the maximum height of a tree that can be built by a run of FD on
a G ∈ G(PD)2 with |V | = |V1| + |V2| nodes. It is easy to see that h|V1|(x) is finite
for each value x: (1) we have h(0) = 1, (2) if the adversary creates a branch in the
tree we have that each branch has height less or equal to h(x − 1), if the adversary

creates no branch then the algorithm terminates in at most 2|V1| · log(2d |V1|x
|V1| e+1)+1

rounds. Moreover we have that h|V1|(x) ≤ h|V1|(x+ 1) for the same argument used in
Th. 6.
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Let us define the function g(x) = 2|V1| · log(2d x
|V1|e + 1) + 1, and the function

secondMax that given a multiset S of integer returns the second maximum element,
i.e secondMax(3, 2, 2, 1) = 2.

Let us consider a tree that have at least height g(mv) where v is the root of
the tree, a generic configuration that starts from |V2| nodes, see the Figure 3.7 left,
reach an height that is always less or equal to a configuration with the structure
C, see the Figure 3.7 right Let us consider the generic configuration, w.l.o.g let us
restrict ourselves to the case when each node may have only two children, and a
path p of length g(mv), with where bj is the degree history of the node at dis-
tance j from the leader in the right branch. We have that the height of the tree
is less or equal to g(|V1|) + max(max(h|V1|(Num(b1), Num(b2), . . . , Num(bg(mv)))),
this derives directly from the rules used in the algorithm, if the value wj is set for
all bj but one the rule 2 is applied on the tree, setting the value wv0 . But it is
easy to see that g(|V1|)+secondMax(h|V1|(Num(b1), Num(b2), . . . , Num(bg(mv)))) ≤
g(|V1|) + h((

∑g(m1)
j=1 Num(bj)+Num(vg(mv))

2 )), otherwise we should have that the ar-
gument of the second maximum value in (Num(b1), Num(b2), . . . , Num(bg(mv))) is

greater than |V2|
2 =

∑g(m1)
j=1 Num(bj)+Num(vg(mv))

2 that leads to a contradiction since
this will implies then the sum of the arguments of the maximum and the second

maximum elements is greater than |V2|. But g(mv) + hv1
( |V1|

2 ) is exactly the height
of configuration C. Reiterating this argument on the two children of the two subtree
of configuration C we have that h|V1|(|V2|) ≤ log(|V2|)g(mv), since mv ≤ |V1||V2| we
have that the upper bound is O(|V1|log(|V2|)2).

g(m_v)

h|V1|(Num(b1))

h|V1|(Num(b2))

h|V1|(Num(bg(m1)))
h|V1|(Num(vg(m1)))

g(m_v)

Generic Configuration Configuration  C

b1

bg(mv)

b2

v0

v1

vg(mv)

v0

b⇤g(mv)
v⇤g(mv)

Num(b⇤g(m1)
) = Num(v⇤g(m1)

) =

Pg(m1)
j=1 bj + vg(mv)

2

Figure 3.7: Maximum height generable by the adversary

From Lemmas 14,15 and 16 the next Theorem follows

Theorem 7. On G(PD)2 is possible to solve FDP problem in O(|V1|log(|V2|)2)
rounds.
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There is gap between the time needed by the proposed algorithm and the lower
bound of Th. 4, the ratio between the algorithm and an hypothetical optimal algo-

rithm is at most O( log(|V2|)2

log(
|V2|
|V1|

)
), an open question is if there exists an algorithm that

matches the lower bound. The FD algorithm could be used as a fault detection algo-
rithm, we continuously start a new instances of FD at each round, and if at round r
there is a fault then the instance that starts at round r will terminate detecting the
failure. But the proposed algorithm does not ensure that all the instances starting
before round r terminate without detecting a fault.

3.4 Polynomial Counting in G(∞−IC)

In this section we consider networks in G(∞−IC). For the assumption of ∞-Interval
Connectivity there is a path p∞vl,v from vl to any node v on a stable spanning tree,
thus each message that is flooded by the leader will reach v in at most |p∞vl,v| rounds.
We define as Len(v) = |p∞vl,v|, that is the distance of each node from the leader on
the stable path.

The algorithm works in epochs, the main idea is that each node v, with a certain
epoch, computes an approximation v.length of Len(v), and communicates only with
nodes that have length value equal to v.length − 1 and the same epoch value. The
counting messages are analogous to messages used in G(PD)h, thus each non leader
node v at length l has variables M,H used to compute the history degree and to
collects messages from nodes at length l+ 1. The counting messages are routed to vl
by paths of ordered decreasing length.

When the leader detects that some node at a certain length l at some round was
not able to send messages to nodes at length l − 1, it creates a new epoch. This
detection is done by executing the FD algorithm, between nodes at lengths l − 1, l.
In the new epoch nodes compute a new approximation of the value length and reset
the data structures used in the old epoch, starting a new counting.

Essentially, we continuously run instances of FD between nodes at length l and
nodes at length l− 1, if a node v at length l at round r is disconnected from nodes at
length l − 1 we have that the instance of FD started at round r − 1 will eventually
detect this event, since it is analogous to a crash failure studied in the problem FDP.
Let us remark that if also nodes in l− 1 are moved then the instance of FD between
nodes in l − 2, l − 1 will detects this, and so on. Let us remark that if nodes with
l = 1 are moved at a different length the leader will immediately detect this since
these nodes are their direct neighbors.

Let us introduce in details the strategies used by our algorithm. The algorithm
for non leader node is reported in Figure 3.8, the algorithm for the leader node in
Figure 3.10.

Non-Leader Node behavior Each non leader node v starts with the following
variables:

• v.epoch = −1 its current epoch number;
• v.repoch = −1 the starting round of the current epoch;
• changeepoch = false a flag that indicate if node v wants to change epoch;
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• v.length = −1 its approximation of Len(v) in the current epoch;
• lists M,H used to store the counting messages as in the algorithm for G(PD)h.

During the send phase v broadcasts the content of its variables, with messages
< length, repoch, epoch,M(r − 1), H(r − 1), changeepoch >.

When the leader issues the first epoch it send a message that contains the epoch
number, stored in the variable vl.epoch == 0, and the starting round of the epoch,
variable vl.repoch == 0. This message is flooded in the network. When v receives
the message, at round r, it runs three checks, see line 13:

• (c1) its epoch number has to be equal to vl.epoch− 1;
• (c2) its length has to be less or equal than r − vl.repoch;
• (c3) the length value, len, of the node that sends the message to v has to be

equal to r − vl.repoch.

If this three checks are verified then v sets its epoch and length according to the
content of the message, see Lines 14-20. The check (c2) ensures that the length of v,
variable v.length, between epochs is non decreasing, details in Lemma 17; the checks
(c1,c3) are done to limit the propagation of the epoch on dynamic paths that are
compatible with paths on MST∞.

Specifically the check (c1) ensures that node may only accept epochs in a strict
monotonically increasing order, thus if node v has v.epoch = −1 and at some round
it is connected by an edge e 6∈ MST∞ to a node v′ that is at epoch 1 it will discard
the message waiting for epoch 0. Intuitively since v has a neighbor u on p∞vl,v we have
that v has to eventually receive a message with epoch == 0 from u, or it receives the
message from some other node by means of an edge e′ 6∈ MST∞. The check (c3) is
inspired by the same principles but inside the same epoch, let us assume that v is at
Len(v) = 10 and at round r′ = 2 is connected by an edge e 6∈MST∞ to a node v′ at
Len(v′) = 1, i.e. a neighbor of vl in MST∞, then v will discard the message received
by v′ because v′ cannot be its neighbor on p∞vl,v otherwise v should have been the
neighbor of v′ at round r′ = 1.

After the acceptance of an epoch ep by v, and thus after the acceptance by v of
a length value v.length, the node v will do a continuos check (c4) on the messages
that it receives, see Line 22. The check is triggered if at some round does not exist
a neighbor of v that has length value equal to v.length − 1, if this happens node v
sets the variable v.changeepoch = true and increase its length to v.length+ 1, from
now on nodes at epoch ep will not add messages from v to their M,H sets, see Lines
25-26. If the check (c4) is triggered then node v was not able to route its degree
history towards the leader over a path of ordered decreasing length, this could hap-
pen (1) if node v sets its length by receiving a message from a node v′ through an
edge e′ 6∈ MST∞ and at some round this edge disappears or (2) if the node u s.t
(v, u) ∈MST∞ with u.length = v.length− 1 triggered its check (c4).

In the formal proofs we show that the combination of (c1,c3,c4) ensures two prop-
erties on nodes pair (u, v) ∈MST∞ that are: (p1) if they have the same epoch value
then |u.length − v.length| ≤ 1 and (p2) if one nodes, let us say u, switch to a new
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epoch ep at round r before the other, let us say v, then or v switches to ep at the same
round or at the next round, Lemma 18. Based on these properties if (u, v) ∈ p∞vl,v
we also prove inductively that v.length ≤ Len(v), see Lemma 20. This and the non
decreasing property of the length value, see the check (c2), guarantees that v may
change length at most Len(v) times, intuitively if v.length = Len(v) than also the
length of its neighbor u has u.length = Len(u) = Len(v) − 1 and since v is always
neighbor of u the check (c4) cannot be triggered anymore.

1: length = −1
2: epoch = −1,
3: repoch = −1
4: changeepoch = false
5: M(−1) = []
6: H(−1) = [⊥]
7:
8: procedure send phase(r)
9: send(< length, repoch, epoch,M(r − 1), H(r − 1), changeepoch >)

10:
11: procedure rcv phase(MultiSet MS : {< len, rep, ep,Ms,Hs, change >})
12: for all m ∈MS ordered by increasing ep do
13: if (epoch = ep− 1) ∧ ((r − rep) + 1 ≥ length) ∧ (len == r − rep) then . Checks (c1)(c2)(c3)
14: length = (r − rep) + 1
15: repoch = rep
16: epoch = ep
17: changeepoch = false
18: M(r − 1) = []
19: H(r − 1) = [⊥]
20: break
21: if ¬changeepoch ∧ epoch > −1 then
22: if (@m ∈MS|len == length− 1 ∧ ep ≥ epoch) then . Check (c4)
23: changeepoch = true
24: length = length + 1

25: MS′ : {m ∈MS|(len == length + 1 ∧ ep == epoch ∧ change == false)}
26: forall (m ∈MS|(change == true∧r == length+repoch∧len ≤ length∧ep = epoch−1)) do MS′∪
{[⊥]}

27: M(r) = M(r − 1).append(if(MS′ 6= ∅) {{MS′}} else { ⊥})
28: H(r) = H(r − 1).append(count(m ∈MS|(len == length− 1 ∧ ep == epoch)))
29: else
30: M(r) = M(r − 1), H(r) = H(r − 1)

Figure 3.8: Counting Algorithm for G(∞-IC): code for Non-Leader Node

Leader Node behavior The leader starts with the following variables: epoch = 0
the epoch counter; repoch = 0 the round at which the current epoch is started;
length count[] an array to store the count of nodes at different lengths. The duties
of the leader are to issue new epochs and to count.

During the send phase vl broadcasts the information about the current epoch,
< 0, repoch, epoch,⊥,⊥ >.

In order to create a new epoch the leader detects if a node triggered check (c4)
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by counting the nodes at each length, for simplicity let us call with Vh nodes with
length = h at the current epoch, using the FD algorithm, see Section 2.3. Let us
recall, see Lemma 15, that FD outputs the count of Vh when it is executed between
two sets Vh, Vh−1 such that no node in Vh “fails”, that is it stops sending messages
to nodes in Vh−1 because it is moved to a different length (let us recall that in our
model the sets of nodes V is static). When FD it is executed at round r such that at
round r + 1 one, or more node, in Vh fails then it detects a failure see Lemma 14.

Thus the leader at a certain epoch uses FD to count iteratively and continuously
nodes in V1, V2, . . .. If the length value of nodes is enough stable, i.e. no nodes trigger
(c4), then the leader eventually will count a set Vlast such that no nodes in Vlast
had a neighbor at length last + 1, when this is done it terminates. The key point
to prove the correctness of this termination procedure are: Lemma 20, in which we
informally show that at each round a new node has to switch to the new epoch, if
this does not happen then all nodes are in the current epoch. This ensures that if
Vlast+1 = ∅ then all Vj>last+1 are empty. Lemma 23 in which we show that if the
leader updates its count for a certain Vh, see Line 14, then this count is correct, and
Lemma 24 in which we show that if Line 11 is executed then there is no node in Vlast+1.

If the network is not stable, a node v executes (c4); v stops routing information to
the leader preventing the correct counting. The leader will detect this by using FD,
and this detection takes at most O(|V |3) see Lemma 22. After the detection it will
issue a new epoch and reset the partial count, see Lines 21-23.
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FD missing node propagation

The instance of FD that starts at round r + � � 1 between nodes at length
v0.length and nodes at length v0.length + 1 will detect that there is a fault, i.e.
v is missing. This information is propagated by using other instances of FD
between the others level, and will reach the leader at r + � + O(|V |3).

Detection of a node that triggers the check (c4)

round r = vl.repoch + length

v

v0

u

v sets: v.length = v0.length + 1
and v.epoch = x and resets H, M .
Moreover it updates v.H(r).add(2).
At the end of the round v.H(r) = [?, 2]
and v.M(r) = [?]

v0 updates v0.M(r).
At the end of round r:
v0.M(r) = [?, {[?], [?]}]

Figure 3.9: Detection of a node that changes length

To show the termination, we leverage the bound on the length value that a node
may assume, see Lemma 19. Then we show that this leads to at most |V |2 epochs,
see Lemma 27. As final part we show that after at most O(|V |3) rounds the leader
counts or it issues a new epoch, see Lemmas 21-22. This leads to a total worst case
cost of O(|V |5) rounds.

In Figure 3.9 there is a pictorial representation of the algorithm key points.



3.4. POLYNOMIAL COUNTING IN G(∞−IC) 57

1: epoch = 0
2: repoch = 0
3: length count[]

4: procedure send phase(r)
5: send(< 0, repoch, epoch,⊥,⊥ >)

6:
7: procedure rcv phase(MultiSet MS :< len, ep,M,H >)
8: MS′ : {m ∈MS|m.ep = epoch}
9: MS = MS′

10: if MS 6= ∅ ∧ (∀m ∈MS : m.M = [⊥, . . . ,⊥] ∧ size(m.M) > 1) then
11: count =

∑
∀j|length count[j] 6=⊥ length count[j]

12: output(count)

13: indexlength = 1
14: length count[indexlength] = |MS|
15: indexlength + +
16: while true do
17: MS =buildLastNextLengthSet (MS)
18: if MS == ⊥ then
19: break
20: if MS == failure then
21: repoch = r + 1
22: epoch + +
23: reset(length count)
24: break
25: length count[indexlength] = |MS|
26: indexlength + +

27:
28: function buildLastNextDistanceSet(MS)
29: MSlast = ⊥
30: if FDTree(Recent(MS, 0)) 6= ⊥ then
31: for r = (MinRound(MS); r < MaxRound(MS); r + + do
32: if FDTree(Recent(MS, r)) == failure then
33: return failure
34: if FDTree(Recent(MS, r)) 6= ⊥ then
35: MSlast = FDTree(Recent(MS, rlast))
36: else
37: break
38: return MSlast

Figure 3.10: Counting Algorithm for G(∞-IC): code for Leader Node

Correctness proof Let us begin by stating lemmas on the length variable of non-
leader nodes

Lemma 17. For each node v the value v.length is not decreasing.

Proof. v.length is set at line 14 where the check in the if Line 22 avoid decreasing,
and it is increased at line 24.

Lemma 18. Let us consider two nodes v0, v1 ∈ V such that (v0, v1) ∈ MST∞ we
have that:

• (p1): If (v0.len 6= −1∧v1.len 6= −1)∧(v0.epoch == v1.epoch) then |v0.length−
v1.length| ≤ 1
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• (p2): Considered an epoch ep if v0 is the first among the two to set v.epoch = ep
at round r then also v1 sets v1.epoch = ep at round r′ ∈ {r, r + 1}

Proof. The proof is by induction on the epoch:

• base case epoch=0: Let us consider the case when node vb is the first among
the two that round r executes for the first time line 14 thus setting vb.epoch = 0
and vb.length = r+ 1, then we have that at round r+ 1 node vb⊕1 receives the
message from vb. Now two things may happen: (1) that vb⊕1 executes line 13 by
setting its length to vb⊕1.length = r+ 2, (2) that vb⊕1 does not execute line 13;
the possibilities are: (a) that vb⊕1.length > vb.length but this is not possible
since vb⊕1.length ≤ r+1, (b) that vb⊕1.epoch == vb.epoch but this implies that
vb⊕1.length = vb.length thus the lemma holds, (c) that vb⊕1.epoch > vb.epoch
but this is not possible since vb⊕1.epoch ≤ 0. Let us consider the case when in
epoch 0 one of the two executes line 24: it is easy to see that it can be executed
first by the one among the two that have the small length value, thus the lemma
still holds since both have the same length value, and at next round it could be
executed by the other one, thus the lemma still holds since the difference is at
most 1. Otherwise it can be executed at the same round r by both, but this
implies that both have the same length value at round r and r+ 1, thus in any
case the lemma holds.

• inductive case epoch=ep: Let us suppose that epoch ep has been issued at
round rep. If v0 sets its epoch to v0.epoch = ep and its length to v0.length =
r− rep at round r then at round r− 1 we have v0.epoch = ep− 1. For ind. hyp.
we have that v1.epoch = ep−1 at round r−1 or r. Thus at most at round r+1,
when it receives the messages from v0, v1 will set its epoch to ep and its length
to a value l ≤ r + 1 − rep. It is easy to see that by a reasoning analogous to
the base case that execution of line 24 during epoch ep cannot force the nodes
to have |v0.length− v1.length| > 1.

Lemma 19. Let us consider a node u ∈ V \{vl} with Len(u) = k and a new epoch ep
issued by the leader at round rep. We have that at round r′ ≤ rep+k−1, u.epoch = ep
and u.length ∈ [0, k].

Proof. The proof is by induction on Len.

• Len(u)=1: In this case we have that ∃(u, v) ∈MST∞ and v = vl it is easy to
see that if vl issues a new epoch ep we must have ep > u.epoch thus, at round
rep+1 the only reason for u to not execute line 14 is that u.length > v.length+1
but u.length is set at round 0 to 1 let us recall that u will never execute line
24 since it is always neighbor of the leader. Thus ∀u|Len(u) = 1 we have that
u.length ∈ [0, Len(u)].

• Len(u)=k: We have that exists (u, v) ∈MST∞ and that LEN(v) = Len(u)−
1 = k − 1. Thus let us consider the possible cases:
(1) v changes epoch before u: At round r the node v executes line 16 by
setting v.epecoh = ep for Lemma 18 we have that u will execute line 16 at round
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r + 1, thus we have for inductive hypothesis that v.length = u.length + 1 ≤
Len(u) + 1 = k.
(2) u changes epoch before v: Let us assume that u changes epoch at round
r, By using the same consideration of the previous case we have that v will
change epoch at round r+1 setting its length to v.length+1. But we have that
exists (v, w) ∈ MST with Len(w) = Len(v) − 1 by using inductive hypothesis
we have that w change epoch at round r′ − rep < Len(w), thus for Lemma 18
we have that r + 1 ≤ r′ + 1 this implies u.length ≤ Len(w) ≤ k − 2.

(3) u, v change epoch at the same round r: by inductive hypothesis since
u.length = r − ep ≤ Len(u) we have that v.length ≤ k − 1.

Lemma 20. Let us consider the beginning of a new epoch ep, at round rep, and the
interval of rounds r ∈ [rep, T ], where T is the first round at which some nodes vf sets
changeepoch = true. Let us consider two partition of nodes Iar , I

b
r s.t. ∀v ∈ Iar we

have v.epoch = ep and |Iar | > 0 and ∀v ∈ Ibr we have v.epoch < ep. We have that (1)
|Iar+1| > |Iar | or (2) |Ibr | = 0.

Proof. Let us suppose, by contradiction, that at round r we have |Ibr | > 0 and that
at round r+ 1 we have |Iar+1| = |Iar |. For hypothesis we have that at each r ∈ [rep, T ]
@w ∈ V with w.changeepoch = true and w.epoch = ep. Let us consider a node
v ∈ Ibr and let us recall that ∃v1 ∈ N(v) with (v, v1) ∈ MST∞ and Len(v) =
Len(v1) + 1, let us suppose that v1 ∈ Iar this and Lemma 18 implies that at round
r′ ≤ rep+ v1.length+ 1 the node v has to be in Iar′ , thus we have that v 6∈ Ibr+1 this
implies |Iar+1| = |Iar |. So we must have v1 ∈ Ibr , let us consider the node v2 ∈ N(v1)
s.t. (v1, v2) ∈MST∞ and Len(v1) = Len(v2) + 1 we must have v2 ∈ Ibr otherwise we
can reach the same contradiction, but this implies that iterating the chain we reach
a vk ∈ Ibr with Len(vk) = 0 that is a contradiction.

From the previous lemma the next observation immediately follows

Corollary 5. Let us consider the beginning of a new epoch ep at round rep, at each
round r ∈ [ep, T ] we must have that if |Ibr | 6= 0 then exist v ∈ Ibr s.t. v ∈ Iar+1.

Lemma 21. Let us consider the beginning of a new epoch ep at round rep and such
that ∀r > rep no nodes vf sets changeepoch = true. We have that after at most
rep+O(|V |3) the leader terminates.

Proof. We have for Lemma 20 that after at most |V | rounds all nodes have epoch
ep. If no node sets changeepoch = true then we have that each node in Vk will
have a neighbors in Vk − 1, see Line 22, thus we are equivalent to the G(PD)h where
messages are routed from nodes at length l to nodes at length l − 1. The leader vl
uses FD to counts node at each different length, the correctness of this procedure
derive from Lemma 15. If we see line 27 - Figure 3.8 at round h nodes in Vh start to
send their degree history, initially equal to [⊥], to nodes in Vh−1 that will puts that
histories in their variable M . Thus to count up to length x the leader employs at
most O(

∑x−1
i=1 |Vi|log2(|Vi+1|)) ≤ O(|V |3). Let us define as llast the maximum length
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assigned, we have that at most at round rep+O(llast+1+
∑llast−1
i=1 |Vi|log2(|Vi+1|)) ≤

rep + O(|V |3) the leader has to terminate: if llast is the maximum length then we
have that no nodes can send a message m such that a node v ∈ Vlast will add m to
v.M (see Line 27- Figure 3.8). The terminating condition will be triggered when the
leader reconstruct MS sent by nodes in Vlast at round rep+ llast + 1.

Lemma 22. Let us consider an epoch ep, issued at round rep and the interval of
rounds [rep+ l+ 1,+∞). Let us assume that ∀v|v.length ∈ [0, l] we have that @v that
executes line 24. And let us assume that ∃vf |vf .length = l + 1 that at some round
rf > rep+ l executes line 24. We have that if vl does not terminates then it will issue
a new epoch at a round rn < rf +O(|V |3).

Proof. Let us assume w.l.o.g that rf = rep + l + 1, we have that at round rep + l
node vf sends a message to a subset S of nodes with length = l, since we have that
vl sets its length to l + 1 at round rep + l we have that the nodes in S will execute
line 26 adding these messages to M . At round rf + 1 vf executes line 24 this means
that vf is not neighbor of any node with length l (see checks at Lines 21-22 ), let us
remark that from round rf and until vf .epoch = ep we have that messages coming
from vf will be not added to any set M of other nodes, see check at line 25. At

most at round rep + l + 1 +O(
∑l−1
i=1 |Vi|log2(|Vi+1|)) the leader reconstructs the set

MS of messages sent by nodes with length l at round l + 1. Starting a simulation
of the FD algorithm between nodes with length l and l + 1 from round r = l. But
there is a node vf that was present at round r = rep+ l and that was not any more
present at round r > rep + l, i.e. equivalent to a failure discussed in Section 2.3,
this implies that these simulation of FD see Th. 7 will terminates with a failure at
most at round rend = rep + l + |Vl|log2(|Vl+1|), since there is a propagation time

from nodes in Vl to vl of at most O(
∑l−1
i=1 |Vi|log2(|Vi+1|)) we have that at round

r = rep+ l+O(
∑l−1
i=1 |Vi|log2(|Vi+1|) + |Vl|log2(|Vl+1|)) the leader detects a failure of

the FD, see line 32. We have r = rep+l+O(
∑l−1
i=1 |Vi|log2(|Vi+1|)+|Vl|log2(|Vl+1|)) <

rep + l + O(|V |3). If ref > rep + l + 1 we have an analogous proof since at lines
31, the leader executes a for loop in which it sequentially starts simulation sj of FD
such that each sj started at round rep+ l+ j with j ≥ 0, for Th. 7 we have that the
simulation srf−(rep+l)−1 will detect the failure.

Let us recall that when a node sets a new epoch its erase the content of M,H (Lines
18,19-Figure 3.8), the same is done by the leader (Line 23- Figure 3.10), moreover
the messages using for counting in old epochs do not influence the content of the
sets M,H and the messages processed by the leader (Lines 25,28-Figure 3.8 and Line
8-Figure 3.10). This is equivalent to restart the counting process at each new epoch.

Lemma 23. Let us consider an epoch ep, issued at round rep and the interval of
rounds [rep+ l+ 1,+∞). If we have vl.epoch = ep and the leader sets at line 25 that
length count[l] = C we have that the number of nodes that at epoch ep had length = l
is equal to C.

Proof. If the leader executes line 25 then a simulation of the FD between nodes in
Vl−1, Vl terminated without detecting a failure. Let us recall that nodes in Vl sets
their length to l at round rep+ l − 1 and that at the same round in line 26 nodes in
Vl−1 detect the messages from their neighbors in Vl, by adding the default value [⊥]
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for each neighbor in Vl. Now for lemma 22 if one nodes in Vl changes its length, or
if the same is done by some node in Vi<l, we have that the leader will detects this
before obtaining the counting. Otherwise if the leader does not detects this then FD
terminated without detecting failure. Thus we have that all the instances executed
in the for loop (Lines 31- Figure 3.10) sj of FD such that each sj started at round
rep + l − 1 + j with j ≥ 0 terminate in a correct way. The various instances are
obtained by shifting the starting round of 1, then all have to terminate detecting the
same count; otherwise we have a contradiction in which the count sj is different from
sj+1 without detecting a failure, that is not possible for Lemma 15. Also for Lemma
15 we have that this count is equal to the number of nodes Vl that where neighbors
of nodes in Vl−1 at round rep+ l − 1. Let us remark that if a node, v ∈ Vi<l, on the
path of the messages from Vl to vl changes length when it is tunneling the messages
from Vl in its set M we have that for lemma 22 the leader will detects this when it
compute the set of messages MS sent by nodes in Vi, this set is necessary to compute
the set MS sent by nodes in Vl thus the leader will detect a failure before computing
an erroneous counting on Vl due to the delay of messages.

Lemma 24. Let us consider an epoch ep, issued at round rep and the interval of
rounds [rep+ l+1,+∞). If we have vl.epoch = ep and such that the leader terminates
executing line 12 when indexlength = llast + 1 we have that @v with v.epoch = ep and
v.length ≥ llast + 1.

Proof. If the leader terminates then, see check at line 10, it has reconstructed the
set MS of messages sent by nodes Vllast at round rep + llast + 1, this is enforced by
the check that each M has to contains at least two elements and it contains only ⊥
value. For Corollary 5 we have that if there is some node with v.length ≥ llast + 1
then there must be at least on neighbor of a node in Vllast that sets its length to
v.length = llast + 1. This implies that exists a node in v′ ∈ Vllast that at round
llast add to its list v′.M(llast) an element different from ⊥ as second element of the
list, see line 26 where a non empty set of lists is added to M(llast). Let us recall
that at round llast − 1 nodes in Vllast reset the variable M(llast − 1) to [⊥] line 18
and line 27. For lemma 23 when the leader reconstruct the set MS sent by nodes in
Vllast it obtains the messages sent by all process thus it has to receive the messages
from v′, but this means that the terminating condition will not be triggered since
v′.M(llast) = [⊥,¬⊥, . . .].

Lemma 25. Let us consider an epoch ep, issued at round rep and the interval of
rounds [rep + l + 1,+∞). If the leader vl, with vl.epoch = ep terminates then it
outputs the correct count.

Proof. Let us suppose that llast + 1 is the value of indexlength when the leader ter-
minates. For Lemma 23 it has correctly counted all nodes in V0, . . . , Vlast moreover
for Lemma 24 we have that there is no node with v.length ≥ llast + 1. This implies
that the leader has counted all nodes in the network.

Lemma 26. If the leader issues an epoch ep > 0 then some node vf at a certain
round r with vf .ep = ep− 1 executed line 24.

Proof. A new epoch is issued by the leader at line 22 - Figure 3.10. This means that
the FD algorithm terminated detecting a failure, see lines 32,33,22- Figure 3.10. A
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failure is detected by FD only if, see Lemma 15, a node vf with v.length = h has sent
messages to nodes with length = h − 1 at rounds r < r′ and then stopped sending
messages at rounds greater than r′, that is vf executed line 24- Figure 3.8.

Lemma 27. We have that the maximum number of epochs in any run is at most
O(|V |2)

Proof. From Lemma 26 we have that an epoch is issued only if there is node that
changes its length. For Lemmas 19-17 we have that the maximum number of length
changes is bounded by V 2, that is each node, at most, changes length |V | times from
0 to |V |.

Theorem 8. In ∞-interval connected network it is possible to count in O(|V |5)
rounds.

Proof. If the leader terminates the count is correct, see Lemma 25. For Lemma 27
we have that the maximum number of epochs is O(|V |2). For Lemmas 21,22 we have
that in the worst case the count terminates or that a new epoch is issued after at
most O(|V |3). Thus in at most O(|V |5) rounds we reach the last epoch where the
counting terminates.

3.5 Conclusive Remarks

In this section we have presented an optimal counting algorithm for G(PD)h, that
is also an optimal algorithm for static networks with message duplication. Then we
have presented an efficient algorithm for FDP. Finally we have shown a polynomial
counting algorithm for G(∞-IC) networks.

The techniques designed in this section will be used, in Chapter 5, to build a
terminating algorithm for G(1-IC).

Open Problems From the results presented in this chapter we can identify the
following open problems, ordered by their relevance:

• It is unknown if counting in G(∞-IC) requires more than Ω(|V |) rounds. There-
fore an open question is to quantify the gap, if it exists, between the algorithm
proposed in this chapter and the optimal counting time for G(∞-IC).

• Considering static anonymous network with message duplication. It is unknown
if it is possible to count in setting (S3) with a number of rounds that is better
than O(Exp(|V |)).



Chapter 4

Counting and LDD Oracles

In this chapter we consider the problem of counting when addition knowledge about
the degree of a node in G is given. We assume that each process endows a local oracle
that, at the beginning of each round r, reveals to the inquiring node, an estimation
on the actual number of neighbors in the current round. We will call such oracles
Local Degree Detector oracles (LDD).

Each node is equipped with its own LDD oracle and, at the beginning of each
round r, an event number of neighbors(lvs) is generated by the oracle that re-
ports the expected number of neighbors. Depending on the accuracy of the revealed
information, it is possible to define several LDD oracles as follow:

• Perfect LDD OP : At the beginning of any round r the oracle OP outputs the
exact number of neighbors of the inquiring process v. i.e.,

∀v ∈ V,∀r ∈ N+ :: OP (v, r) = |N(v, r)|
• LDD with Over Estimation OOE : At the beginning of any round r the

oracle OOE outputs an upper bound on number of neighbors of the inquiring
process v. i.e.,

∀v ∈ V,∀r ∈ N+ :: OOE(v, r) ≥ |N(v, r)|
• LDD with Fixed Over Estimation: OFOE : At the beginning of the com-

putation the oracle OFOE outputs an upper bound dmax on the number of
neighbors for any process v and any round r. i.e.,
∃dmax ∈ N+ : ∀v ∈ V,∀r ∈ N+ ::

OFOE(v, r) = dmax with dmax ≥ |N(v, r)|
• NoK : The local oracle does not give any additional knowledge.

Let us notice thatOP can be easily implemented by using the information collected
at the MAC layer or it could be implemented in systems where there is enough stability
to have a request-reply pattern between processes (that in our model means having
no topology changes for two consecutive rounds).

It is easy to see that OFOE satisfies the definition of OOE while the viceversa is
not true. Thus OOE is strictly weaker than OFOE . At the same time, OOE is strictly
weaker than OP .

63
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The algorithms contained in this Chapter are based on a technique that mimics an
energy-transfer. Informally it works as follows: each node vi is assigned with a fixed
unitary energy charge, stored in the variable evi , and during each round it discharges
itself by disseminating energy around to its neighbors i.e., evi decreases of a value
k ≤ evi/2, then this quantity k is equally split among the neighbors of vi and this
value is added to vi’s neighbors variable. The leader acts as a sink collecting energy
(i.e., energy is not transferred by the leader to neighbors). Our technique enforces,
at each round, a global invariant on the sum of energy among networks’ nodes (i.e.,∑
vi
evi = |V |), that resorts to the fact that energy is not created or destroyed in the

anonymous dynamic distributed system (energy conservation property). Considering
the behavior of the nodes, the energy is eventually transferred to the leader and
stored there. The crucial point is that the energy is concentrated in the leader, and
this ensures a monotonically increasing behavior of variable evl that will converge
towards |V |. This behavior is fundamental for the correctness of the AOOE algorithm
presented in the successive Section.

[58,60]  
Upper Bound Counting

(see Sec. 4.1)

[AOOE]
Counting
(see Sec 4.2)

[58,60]
Conjecture: Impossibility of 

       Counting

Am
ount of Know

ledge revealed by the adversary 

[AOP ]
Counting
(see Sec 4.2)

[AOF OE]

Chapter 5: Counting

OFOE

Counting
(see Sec 4.2)

[ANoK]
Convergent

OP

OOE

NoK

Figure 4.1: Dependency relation between oracles and results on counting in anony-
mous networks under worst-case adversary

The technique shares some similarities with the averaging gossiping used in [40,41],
where nodes continuously exchange fractions of input variables in order to reach an
average of the inputs. Both previous works, that are coping with a random adversary,
suggest the same way to have a convergent counting algorithm: one node starts with
input 1 the others with input 0, the average of the inputs will converge to 1

|V | . We

are not aware of terminating condition or convergence study for averaging gossiping
under worst case adversary. The convergence in both works is proved only for an
uniform gossiping scheme, i.e at each send phase a node samples uniformly a set of
nodes of known size for interaction, therefore it is not clear if they converge also in
case of worst case adversary where the interaction scheme is far different from uniform
gossiping.

Our approach concentrates the sum of inputs in the leader, this allows to solve the
following problem: There are x < |V | − 1 nodes in V \ {vl} with initial input 1 and
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all the other nodes have input 0; the leader knows that the number of nodes is x but
it does not know |V |; vl has to terminates when it receives, directly or indirectly, a
message from these nodes. With our technique when the energy evl > x− 1 + ε, with
ε > 0, the leader knows that it has received information from all x nodes; despite its
lack of knowledge about the network size |V |. This simple problem is fundamental
for terminating counting and its solution is a building block for algorithm AOOE .

The next sections are organized as follows: In Section 4.1 is presented a terminat-
ing counting algorithm, AOFOE , that uses OFOE , this algorithm is used to introduce
the aforementioned technique and to prove its convergence. In Section 4.2 is presented
a terminating counting algorithm, AOOE , that uses OOE . In Section 4.3 we present
a convergent, i.e. non terminating, algorithm that uses no additional knowledge,
AONoK . In the same section we also present a termination heuristics designed to have
an approximated counting in environments where the adversary is not worst case. At
the end of the Chapter, in Section 4.4, we present an evaluation of our algorithms
under different random adversaries

4.1 Counting Algorithm using OFOE

This section presents a distributed algorithm, denoted as AOFOE , that assumes (i)
the existence of a leader node starting from a different initial state and (ii) all other
nodes execute identical programs. In addition, AOFOE assumes that the bound on
nodes degree dmax (which limits the powerfulness of the adversary) is known by all
processes.
AOFOE is composed by a sequence of iterations i = 0 . . . ` run by the leader and

each iteration takes several rounds. Each iteration i starts considering two parameters:
(i) the upper bound on nodes degree dmax and (ii) an upper bound Ki on the network
size; then, the algorithm computes a guess for the network size. If the guess matches
the current considered bound Ki, then the algorithm terminates and Ki corresponds
to the size of the network |V |. Otherwise iteration i + 1 is started taking dmax and
Ki+1 = Ki − 1 as inputs.

Let us notice that, starting from the upper bound dmax on nodes degree, an upper
bound K0, to be used in the first algorithm iteration, can be easily computed (e.g. by
using the algorithm shown in [59]). Thus, the hard part of AOFOE is to compute the
guess on the network size at the end of each iteration. To this aim, AOFOE employs
the idea of energy-transfer and exploits the invariant on the energy globally stored in
network: the sum of the energy stored by each node at the end of each round remains
constant during the algorithm execution. Note that the energy we are considering
is not the real energy that nodes may have but it is rather an abstraction used to
explain the details of the algorithm.

At the beginning of each iteration i (with i ≥ 0), every node is assigned with a
fixed energy charge, and during each round r it discharges itself by disseminating the
energy to its neighbors. The leader acts as a sink collecting energy (i.e., it does not
transfer energy to its neighbors).

Considering the behavior of the nodes, the energy is eventually transferred to the
leader. The leader measures the level of energy received to verify if the energy level
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Figure 4.2: Send, Receive and Update of energy for a non leader node

matches the bound Ki considered in the current iteration i. More specifically, the
leader starts iteration i of AOFOE algorithm by assuming that the network has size
Ki and computes the first round r finali where, in the worst case, it should have
received strictly more than Ki − 1 energy by all the others (see Lemmas 29,30). If
at round r finali, the leader has received such amount of energy then it outputs
|V | = Ki. Otherwise the algorithm starts iteration i+ 1 with Ki+1 = Ki − 1.

Algorithm AOFOE – Terminating Counting Algorithm resilient to a Dynamic Graph Adver-
sary with Bounded Degree.

(Step 1) The algorithm starts taking as input dmax and computes an upper bound K on the
network size by running an estimation algorithm as the one shown in [59];

(Step 2) The leader and the anonymous nodes start the step 2 at round r start;

leader : The leader vl maintains the following local variables: evl ← 1 representing the initial
energy charge, rcvvl ← ∅ is a set variable where vl stores all the messages received during each
round, i ← 0 is the iteration number, Ki ← K is the upper bound on the network size at
iteration i, r initi ← r start is the starting round of iteration i, r finali is the termination
round of iteration i when the leader will be able to either validate the guess (i.e., |V | = Ki) or
not (i.e., |V | < Ki) - see Lemmas 29, 30.

start iteration i at round r initi: take dmax and Ki as inputs

The leader computes the minimum R ∈ N+ such that R satisfies Ki − (1 − (B−1
B

)R)Ki < 1,

where B = (2dmax)K and sets r finali ← r initi + RKi.

for each round r:

• Send phase of round r: at the beginning of each round, vl broadcasts a en-
ergy release(0) message releasing no energy.

• Receive and Computation phases of round r: energy release(e′) messages are
stored in the rcvvl variable. At the end of the round, when all the messages have been
received, vl updates, its local energy charge as follows:

evl ← evl + received

where received is the sum of all the charges received by neighbors (i.e.,
∑

e′∈rcvvl

e′).

• When (r = r finali) % Terminating Condition %
if (Ki − evl < 1)
then vl terminates and broadcasts for Ki rounds stop(Ki) message to other nodes and
then it outputs count← Ki;
else vl sends a message re-start(r finali+Ki) to other nodes declaring that it will start
a new iteration. This message is broadcast for Ki rounds and then vl starts iteration
i + 1 considering the new bound Ki+1 = Ki − 1 and r initi+1 = (r finali + |Ki|).
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anonymous node: Each non leader node vi maintains the following local variables: evi ← 1
representing the initial energy charge of vi, rcvvi ← ∅ is a set variable where vi stores all the
messages received during each round.

for each round r:

• Send phase of round r: at the beginning of each round, vi broadcasts a en-
ergy release(

evi
2dmax

) message, releasing at most half of its energy to its neighbors

(at most dmax).

• Receive and Computation phases of round r:
switch

case (∃ m =stop(count) ∈ rcvvi )
vi broadcasts stop(count) for count rounds, then vi stops to execute the algorithm
and outputs the value count.

case (∃ m =re-start(r′) ∈ rcvvi )
vi broadcasts re-start(r′) until the current round is r′ and then vi initializes all
local variables.

default %rcvvi contains only energy release(e′) messages %
vi updates its local energy charge as follows:

evi ← evi − released + recharged + received =

where the energy released is given by the the quantity of energy sent to its current
neighbors (i.e. (dmax ×

evi
2dmax

)), the energy recharged is the amount of energy

not effectively released due a possible neighborhood over estimation (that, in the
current round, is smaller than dmax) and computed by considering the difference
between the estimated number of neighbors dmax and the effective ones |rcvi| (i.e.

(dmax − |rcvvi |)×
evi

2dmax
). Thus,

evi ← evi −
(
dmax ×

evi
2dmax

)
+ (dmax − |rcvvi |)×

evi
2dmax

+
∑

e′∈rcvvi

e′

Figure 4.2 shows the execution of a generic round r at node vi with initial energy
1 where dmax = 5 and the number of vi neighbors is 3.

Correctness Proofs.

In the following, we will prove that protocol AOFOE is correct. We first prove in
Lemma 28 the existence of the following invariant: the global energy stored in the
system is preserved (i.e. the sum of all the energy variables evi at each vi ∈ V remain
constant). Note that, this is a fundamental property to ensure the correctness of the
guess computed and returned by the leader. Then, in Lemma 29, we derive a lower
bound on the energy that the leader will receive during the computation. Finally,
in Lemma 30, we prove the terminating condition that the leader has to verify in
order to check if the bound matches the network size. From these results Theorem 9
naturally follows. In the following, we use the notation ervi to indicates the quantity
of energy stored at round r in vi ∈ V .

Lemma 28. (Invariant - Energy Conservation) At the end of each round, the sum of
the energy over all the nodes of the anonymous dynamic network is an invariant and it
is equal to the total energy present in the system at the beginning of the computation.
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Figure 4.3: Lower bound on the energy received by the leader from a single node

Proof. Let us notice that energy is created only during the initialization phase and
then it is only transferred. Thus, in the following, we will prove that energy is never
lost. For ease of presentation, in the prove we refer only to the energy ervi stored at
non-leader nodes (i.e. v∈V \ {vl}) as vl does not send energy. At the beginning of

each round r, every vi sends
ervi

2dmax
energy to the set of its neighbors (i.e. the released

energy is dmax ×
ervi

2dmax
). However, vi does not know the exact number of current

neighbors N(vi, r) but it just know an upper bound on them. Thus, while sending
the energy, due to a possible over estimation of its neighborhood, vi may transfer
more energy that the one will never received by other processes (loss of energy of
(dmax−|N(vi, r)|)× evi

2dmax
). However, vi will know the exact number of neighbors by

counting the number of received messages in the current round (|N(vi, r)| = |rcvvi |)
and it will compensate the extra energy released.

Thus, vi will have a remaining energy of
ervi
2 +erv

dmax−|N(vi,r)|
2dmax

. The energy initially
possessed by vi was ervi , at the end of r the sum of energy over nodes in N(vi, r)∪{vi}
is ervi . Iterating this reasoning over all nodes we have that the conservation of energy
is not violated.

Lemma 29. Let G ∈ G(1-IC), let K be an upper bound on the network size and let
R ∈ N+. Given the algorithm AOFOE , at the end of round RK, the energy stored at
the leader is at least eRKvl ≥ (1− (B−1

B )R)|V |, where B = (2dmax)K .

Proof. Let us first compute the energy that a single node vi provides to the leader vl
when it is the only one releasing energy (i.e. vi has an energy charge of evi = 1 while
all the other non-leader nodes vj has no energy and evi = 0).

At round 0, vi transfers e = 1
2dmax

to each of its neighbors. Due to 1-interval
connectivity, vi has at least one neighbor vj that will receive such energy charge and
will update its residual energy to e0

vj ≥ 1
2dmax

. As a consequence, an additional node
(i.e. vj) will have a quantity of energy greater than 0, no matter of the adversary
move.

At round 1, due to the adversary action, vi and vj may change their neighbors
and a node vk, with no energy, may become neighbor of vj . Due to the rules of the
algorithm, vj will transfer to vk a quantity of energy at least ej ≥ e

(2dmax) ≥ 1
(2dmax)2 .

Let us notice that the such quantity is a lower bound on the energy that an empty
node may receive after 2 rounds.
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Iterating the reasoning, it is possible to define the lower bound on the energy that
the leader vl received from vi after |V | − 1 rounds in case vi is the only one releasing

energy, i.e. e
|V |−1
vl ≥ 1

(2dmax)|V |
. Considering the individual contribution of each node

in V , we obtain e
|V |−1
vl ≥ |V |

(2dmax)|V |
. However, node contributions interfere and the

real quantity of energy that each of them transfers to the leader at each round is
greater than the computed one; thus the formula above represents a lower bound on
the energy transferred from all nodes to the leader after |V | − 1 rounds.

Due to Lemma 28, e
|V |−1
vl +

∑
vi∈V \{vl} e

|V |−1
vi = |V |, this implies that after |V | − 1

rounds, the energy not stored at the leader is, at most, |V | − e|V |−1
vl .

Using the same argument, after 2(|V | − 1) rounds the lower bound on the energy

that the leader stores is e
2(|V |−1)
vl ≥ |V |−e

|V |−1
vl

(2dmax)|V | + e
|V |−1
vl . We can use the same argu-

ment even if the distribution of energy at round r = |V | is different from the uniform
initial distribution, the basic idea is to consider the contribution that each node has
to send to the leader independently, then summing up these contribution we will end
up with the same bound.

AfterR(|V |−1) rounds, the energy at the leader is at least e
R(|V |−1)
vl ≥ |V |−e

(R−1)(|V |−1)
vl

(2dmax)|V |
+

e
(R−1)(|V |−1)
vl that is a recurrence equation with boundary condition e0

vl
= 0.

Solving the equation we obtain: e
R(|V |−1)
vl ≥ |V |× (1− ( b−1

b )R) where b = (2dmax)|V |,
that is a lower bound on the energy of the leader after R × (|V | − 1) rounds. Let us
recall that K ≥ |V |, thus we can compute a lower bound for the energy in the leader

after RK rounds on a network of size |V |, with B = (2dmax)K since |a|b ≥
|a|
B the

following inequality holds:

eRKvl ≥ |V | ×
(

1−
(
B − 1

B

)R)

Lemma 30. Let G ∈ G(1-IC), let Ki be an upper bound on the network size. Given
the algorithm AOFOE , at the end of each iteration i, the leader can either accept or
reject the hypothesis |V | = Ki.

Proof. Let us note that the algorithm outputs the exact count when the upper bound
Ki is equal to the real network size |V |. Initially, Ki is set by running the algorithm
in [59] that has been proved to provide an upper bound on the network size (i.e.
K0 ≥ |V |). The leader can compute the difference ∆r as follows

∆r = Ki − ervl ≥ Ki −
(

1−
(
B − 1

B

)R)
Ki

that is the difference, at round r = RKi, between the total energy stored in a
network of size |V | = Ki and the lower bound on the minimum amount of energy
that the leader has to receive after r rounds if |V | = Ki (as computed in Lemma 29).

According to the algorithm, the leader computes the minimum R′ ∈ N+ such that
r finali = R′Ki satisfies ∆r finali < 1. At round r finali two cases are possible:
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1. The energy accumulated in the leader er finalivl
is less or equal than Ki − 1: in

this case, we have necessary that |V | < Ki. By construction, in fact, R′ is
selected in such a way that the quantity ∆r finali < 1; thus, if the real network
size is Ki, the leader must collect er finalivl

> Ki − 1. On the contrary, the only
possibility is that |V | < Ki since in this case the quantity of energy in V will
not allow the leader to reach a value er finalivl

= Ki − 1 + ε with ε > 0.

2. The energy accumulated in the leader er finalivl
= Ki − 1 + ε (with ε > 0): this

implies that there are at least Ki nodes in V . Considering that Ki is an upper
bound we have that necessary |V | = Ki.

Theorem 9. Let G ∈ G(1-IC) and let K0 be an upper bound on the network size.
The algorithm AOFOE is a terminating algorithm.

Proof. During the Step 1, computes an upper bound K0 on the size of the network
(i.e. K0 ≥ |V |) and then it moves to Step 2 starting a sequence of iteration I =
{i0, ..., ifinal}, each one taking as input an upper bound Kix . According to Lemma
30, at the end of an iteration ix, the leader checks the terminating condition, evaluates
the hypothesis Kix = |V | and in case of rejection, it decreases by one the upper bound
considered in the following iteration. Considering that (i) K0 is an upper bound on
the real network size and (ii) every iteration ix+1 starts with a new upper bound
Kix+1

= Kix − 1 it follows that, in a finite number of iterations, AOFOE will evaluate
the real size of the network accepting the hypothesis Ki = |V |.

The termination is also ensured by Lemma 30, considering that when the leader
accepts the hypothesis Ki = |V | starts to disseminate a stop message letting the
algorithm terminate at each node.

Complexity and Discussion

Theorem 10. Let G ∈ G(1-IC) and let K0 be an upper bound on the network
size. The algorithm AOFOE outputs the correct size of the network after at most
O(eK

2
0K2

0 (K0 − 1)) rounds.

Proof. The claim follows from Lemma 29 and Lemma 30 by considering that each
iteration i of the algorithm lasts ∆R(Ki)×Ki, where ∆R(Ki) is the number of Ki−1
rounds that the algorithm has to execute in order to check the hypothesis |V | = Ki

(cfr. Lemma 30). Moreover, we have that the maximum number of iterations is
K0 (i.e., the worst case obtained starting from evaluating the hypothesis on the size
|V | = K0 when the real size is |V | = 1). ∆R(Ki) can be computed by solving
∆r finali < 1 inequality obtaining:

∆R(Ki) ≥
⌈

log( 1
Ki

)

log(B−1
B )

⌉
+ 1

where B = (2dmax)Ki .

Let us notice that, in the worst case, dmax = Ki, so we have ∆R(Ki) = Θ

(
log
(

1
Ki

)
log(1−Ki−Ki)

)
.
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Since the limit limKi→+∞
(

∆R(Ki)

eK
2
i

)
= 0 we have that the number of rounds for each

iteration is O
(
eKi

2

(Ki − 1)
)

this seamlessly leads to the theorem.

The complexity aforementioned is a direct consequence of the energy release mech-
anism where each non leader node transfers half of its energy at each round. Let us
suppose to modify the algorithm in such a way that each node sends the whole en-
ergy to its neighbors. In this case the problem became equivalent to unique token
circulation, the trivial example is a chain {v1, v2, ..., vn}, that is transformed at odd
rounds in v2, v1, ..., vn and in even rounds as v1, v2, ..., vn, this dynamic adversary will
prevent the initial energy present in v1 to reach other nodes apart v2. On the contrary
halving the energy allow us to obtain the bound on energy dissemination (See Lemma
29). Let us remark that changing the quantity of energy sent by nodes (i.e. sending
a fraction different from 1

2 ) does not change the complexity from being exponential
since the termination round is only influenced by a multiplicative factor.

4.2 Counting Algorithm using OOE

In this section we present a terminating counting algorithm, namely AOP , working in
an anonymous network governed by a worst-case dynamic adversary and where pro-
cesses are equipped with an OOE LDD oracle. For ease of presentation, we introduce
and prove the algorithm using oracle OP and then we will explain the changes needed
in the algorithm in order to let it work with the weaker oracle OOE . At the end of
the section we discuss a variation of AOP , namely A∗OP , that is designed to terminate
faster on graphs generated by random adversaries. Experimental results are presented
at the end of the evaluation Section 4.4. The pseudo-code for the algorithm is shown
in Figures 4.4,4.5.

Abstract Description Informally, the algorithm follows the approach of “coloring
and counting”: at each round, a new subset of processes is colored with a new color
and then the algorithm counts the number of colored processes (for each color) until
no new color is used. More in detail, at round r0, the leader vl starts with color
c0 while each other node has no color, i.e. its color is ⊥. At any round ri a new
color ci is used and the mapping between round number and color is unique. As a
consequence, considering that round numbers are totally ordered, it follows that also
colors (and set of nodes colored with a specific color) are totally ordered according
to the round number (i.e. a node colored in round 0 will have a color that preceeds
the color of a node colored in round 1 in the color order). In addition, exploiting the
unique mapping between round numbers and colors, we can use the operators <,≤,=
between colors as they can be represented as natural numbers, i.e. there exists an
isomorphism between colors and N+.
Each non-colored node (i.e. a node with color ⊥) will be colored in round ri with
color ci if and only if it has at least one neighbor with a color different from ⊥ and
it does not change its color anymore. This is detected by letting processes exchange
their colors at the beginning of each round. The multi-set defined by colors received
by neighbors in a certain round is called color view.
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At the beginning of each round r
(01) color viewvi ← ∅;
(02) n sizevi ← number of neighbors(lvs);
———————————————————————————————————————————–
Send Phase of round r: each process vi sends two different type of messages:
(03) it broadcasts a my color(colorvi ) message to let its neighbors know if it is colored and its color;
(04) for each < e, color view, col, r′ >∈ energy setvi
(05) vi broadcasts a energy( e

2∗n sizevi
, color view, col, r′) message;

(06) vi updates energy setvi ← energy setvi \ {< e, color view, col, r′ >});
(07) vi updates energy setvi ← energy setvi ∪ {<

e
2
, color view, col, r′ >};

(08) endFor
———————————————————————————————————————————–
Receive Phase of round r
(09) for each energy(e′, color view, col, r′) message in rcvi do
(10) if (@ < e′′, color view, col, r′ >∈ energy setvi ) (i.e., with the same color view, same color and same round)
(11) then energy setvi ← energy setvi∪ < e′, color view, col, r′ >;
(12) else energy setvi ← energy setvi \ {< e′′, color view, col, r′ >};
(13) energy setvi ← energy setvi ∪ {< e′ + e′′, color view, col, r′ >}.
(14) endIf
(15) endFor
(16) For each my color(cl) message in rcvi do
(17) color viewvi ← color viewvi ∪ {cl};
(18) endFor
———————————————————————————————————————————–
Computation Phase of round r
(19) if ((∃cj 6= ⊥ ∈ color viewvi ) ∧ (colorvi = ⊥)) then colorvi ← cr.
(20) if (colorvi 6= ⊥ ) then energy setvi ← energy setvi ∪ < 1, color viewvi , colorvi , r >.

Figure 4.4: The AOP Algorithm. Non Leader Protocol
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At the beginning of each round r
(01) color viewvl ← ∅;
———————————————————————————————————————————–
Send Phase of round r:
(02) The leader broadcasts a my color(colorvl ) message.
———————————————————————————————————————————–
Receive Phase of round r: The leader handles the received messages as an anonymous node.
———————————————————————————————————————————–
Computation Phase of round r
(03) vl creates a tuple < 1, color viewvl , colorvl , r > and adds this tuple in its energy setvl .
(04) if (count = 0) then count← |color viewvl |+ 1;
(05) let S = {< e, cv, col, r′ >∈ energy setvl | col ≤ lcc ∧ r

′ = lcc+ 1}
be the sub-set of energy charges created at round r′ = lcc+ 1
and coming from nodes colored at some round r′ ≤ lcc.
This energy is transferred to vl by the nodes in C1 ∪ C2 ∪ ... ∪ Clcc.
(06) let F = {< e, cv, col, r′ >∈ energy setvl | col = lcc+ 1 ∧ r′ = lcc+ 1} be the sub-set of energy charges
created at round r′ = lcc+ 1 and coming from nodes colored at round r′ = lcc+ 1.
This energy is transferred to vl by the nodes Clcc+1.
(07) if (count− (

∑
∀<e,color view,col,r′>∈S

e) < 1)

(08) then if (@ < e′, color view, col, r′ >∈ S | ∃⊥ ∈ color view)
(09) then trigger terminated count(count);

% Let us define n⊥color view as the number of ⊥ in color view.

(10) else upper bound←∑
∀<e′,color view,col,r′>∈Sde′e × n⊥color view;

% Let us define n∗color view as the number of processes with color less or equal than ∗ in the color view color view.

(11) shrink ←∑
∀<e′,color view,col,r′>∈F de′e × (nlcccolor view − 1);

% Let us notice that nlcccolor view is the number of edges from process in
% C1 ∪ C2 ∪ ... ∪ Clcc to a process with color view color view in Clid+1.
% So shrink is a “surplus” of processes that have tried to color processes in Clcc+1.

(12) if ((upper bound− shrink)−∑∀<e′,color view,col,r′>∈F e′ < 1)

(13) then lcc← lcc+ 1;
(14) count← count+ d ∑

∀<e′,color view,col,r′>∈F
e′e;

(15) endIf
(16) endIf
(17) endIf

Figure 4.5: The AOP Algorithm. Leader Protocol
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In the following, we indicate with Ci the set of nodes with color ci.
At the beginning of the algorithm, the leader is able to count only itself. At the end
of round r0, the leader will be also able to count its direct neighbors. In the following
rounds, the leader will count processes with color c1, then processes with color c2 and
so on until everyone is colored and counted.
Let us note that counting processes in C0 is straightforward as they are neighbors of
the leader vl at round r0 and the leader itself. The tricky part is counting processes
colored in the following rounds, i.e. counting |Cj | for all j > 0. This is done, at
the leader side, by collecting the color views from processes in C0 ∪ C1 ∪ ... ∪ Cj−1.
Through these color views it is possible to compute an upper bound on the actual
size of a set Cj ; this upper bound is then refined to the actual |Cj | by collecting the
views of processes in Cj at round rj .
As an example, let us consider Figure 4.6(a) where we show on the left the network
at the end of round r0 and on the right the network an the end of round r1. Processes
v1, v2, v3 have been colored by the leader during r0 with color c0 and they have exactly
the same color view both at round r0 and r1. To properly reconstruct the frontier
between nodes with color c0 and nodes with color ⊥, that will assume color c1 at the
end of round r1 (processes with color blue in the right Figure), the leader must be
able to count the correct multiplicity of each color view defined at round r1.
Local Variables at node vi. Each process vi maintains the following local variables:

1. colorvi : is a local variable storing the color of node vi, that is the color cj
associated to the round at which vj has been colored. Such variable is initialized
to a default value ⊥ except for the leader that initializes it to c0.

2. n sizevi : is an integer variable (initialized to 1) storing the current number of
neighbors of node vi.

3. color viewvi : is a multi-set variable (emptied at the beginning of each round)
where vi collects the set of colors of its neighbors.

4. energy setvi : is a set (initially empty) where processes store tuples in the form
< e, clv, col, r > used to collects energy charges sent during different rounds.
In particular, each tuple contains: (i) the quantity of energy e transferred by
the sender, (ii) the color view clv of the sender and (iii) the sender color at the
specified round r.

5. rcvvi : is a set variable (emptied at the beginning of each round), where vi stores
messages received during the current round r.

In addition, the leader vl also maintains the following local variables:

1. count: is an integer variable (initialized to 0) used to store the partial count.
2. lcc: is an integer variable (initialized to 0) which stores the color of the last

counted processes, that are the processes in Clcc.

Detailed Algorithm Description.

At round r0, the leader is the only process having a color (i.e. it is the only process
having colorvl 6= ⊥). During the send phase of r0, each process (included the leader)
broadcasts a my color message to all its neighbors (line 03 in Figure 4.4 and line 02
in Figure 4.5). Note that, during round r0, my color messages are the only ones sent
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around as there are no colored nodes except the leader and the energy setvi variable is
initially empty, meaning that no colored energy is created. Every my color message
sent in r0 by the leader vl will trigger the coloring of the leader neighbors. In fact, when
such processes will execute the computation phase at the end of r0, they will find in
their color viewvi variable the color c0 sent by the leader (line 17, Figure 4.4) enabling
the coloring with color c0 (line 19, Figure 4.4). As an example, consider the scenario
depicted in Figure 4.6(a) where node v1 receives a my color(c0) message from the
leader and a my color(⊥) message from vi; this implies color viewv1 = {c0,⊥}
(where color c0 = green).
Let us remark that the leader and its neighbors at round r0 belong to the set C0 and
the cardinality of C0 is known immediately by the leader. Thus, in the computation
phase of round r0, the leader can update the variable count to 1 + |color viewvl | (line
04, Figure 4.5).
At round r1, processes in C0 send a my color(c0) message inducing the coloring of
their non-colored neighbors that will belong to set C1. Let us note that such processes
will belong to the color views of processes in C0 as they will send, during the send
phase of r1, a my color(⊥) message. Thus, in order to count the size of C1, the
leader has to collect color views at round r1 of any process in C0 as such color views
will contain at least one ⊥ value for each process colored during round r1. Coming
back to the example of Figure 4.6(a), the set C1 = {v4, v5, v6} and the color views
of v1, v2 and v3 are respectively color viewv1

= {c0,⊥,⊥}, color viewv2
= {c0,⊥,⊥}

and color viewv3
= {c0,⊥,⊥}. Let us note that making the union of all the color

views collected at round r1 and counting the number of ⊥ provides an upper bound
on the real number of processes that have been colored with color c1 (c1 = blue in the
example) as each non-colored processes may be neighbor of more than one colored
process. In addition, note that there may exist different processes with the same color
view that should be distinguished by the leader. Thus, to count how many processes
have the same color view, each process generates an energy charge associated with (i)
its color, (ii) the current round and (iii) its color view. From now on, each colored
process vi at any round rj will generate one energy charge associated with its color
ck, the round rj and the view color viewvi at that round. This energy charge will
be stored in the energy setvi and disseminated starting from the following round
rj+1 (line 20, Figure 4.4). Let us consider the energy spreading in a generic round
ri. At the beginning of ri, each process vi updates its n sizevi variable with the
value provided by the oracle and then the send phase starts (line 02, Figure 4.4).
During the send phase, non-leader nodes start distributing colored energy stored
in their energy set variable to neighbors by sending a energy message (line 09,
Figure 4.4). More in details, for each tuple < e, color viewvi , colorvi , r

′ > belonging
to energy setvi , vi broadcasts a energy( e

2∗n sizevi
, color viewvi , colorvi , r

′) message

and updates the set halving the energy for each tuple. Let us remark that the OP
oracle provides the exact number of neighbors to each process vi. Thus, vi will send,
to each of its n sizevi neighbors, a charge e

2∗n sizevi
and the sums of all the energy

distributed will be exactly half of the energy initially stored in each tuple of the energy
set. Receiving a energy( e

2∗n sizevi
, color viewvi , colorvi , r

′) message, any node vj

updates its energy setvj as follows: (i) if there not exists a tuple in energy setvj
with color viewvi , colorvi , r

′, vj simply adds the received tuple to the energy set (line
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11. Figure 4.4), (ii) otherwise it updates the tuple already stored in energy setvj by
adding the energy received in energy( e

2∗n sizevi
, color viewvi , colorvi , r

′) (lines 12-13.

Figure 4.4).
Let us now consider what happens at the leader side. The leader vl is an energy

sink and, receiving energy messages from its neighbors, it behaves as a generic node
storing the tuple in its energy setvl variable. In addition, at the end of each round,
it checks if it has collected enough information to count a new subset of colored
processes or to terminate the count. In the computation phase of each round ri, the
leader computes two sets S and F defined as follows:

• S = {< e, cv, col, r′ >∈ energy setvl | col ≤ lcc ∧ r′ = lcc+ 1} is the sub-set of
energy charges created at round r′ = lcc+ 1 and coming from nodes colored at
some round r ≤ lcc. Such set represents all energy charges collected by vl from
nodes in C1 ∪ C2 ∪ ... ∪ Clcc (line 05, Figure 4.5).

• F = {< e, cv, col, r′ >∈ energy setvl | col = lcc+ 1∧ r′ = lcc+ 1} is the sub-set
of energy charges created at round r′ = lcc+ 1 and coming from nodes colored
at round r′ = lcc+1. Such set represents all energy charges collected by vl from
nodes in Clcc+1 (line 06, Figure 4.5).

Once the leader computed such sets, it checks the condition in line 07, Figure
4.5 to verify that it waited long enough to receive enough energy charges from all
the nodes that have been colored before round rlcc to correctly count the number
of nodes with the same color view. When this happens, the condition count −
(

∑
∀<e,color view,col,r′>∈S

e) < 1 is satisfied. Then, the leader checks color views just

collected to verify if there still exist nodes with color ⊥ and if all the color views
contains only colored nodes the counting terminates (line 09, Figure 4.5). Otherwise
the leader counts the number of nodes with color ⊥ in the color views collected (line
10, Figure 4.5). Such number is an upper bound on nodes in Clcc+1. So, vl sets
upper bound←∑

∀<e′,color view,col,r′>∈Sde′e×n⊥lv, the rounded energy de′e is the ac-
tual number of processes in C≤lcc with color col and view color view in round rlcc+1,
where C≤lcc is the union of all the sets Ci with i ≤ lcc.
The bound is then used to check when the leader has collected enough energy from
processes in Clcc+1 to let him able to obtain the correct count of these processes.
This is done by considering the set of tuple contained in F . By means of these color
views, in fact, vl detects if at round rlcc+1 there exists a node vj ∈ Clcc+1 that has
been colored by multiples nodes in C≤lcc. If this happened, in the color view of vj
we will find more than one process with color less or equal to clcc. In this case vl
will lower the upper bound on |Clcc+1| until it matches the actual size. For each
tuple < e′, color view, clcc+1, rlcc+1 > in F the leader counts the number of color
cx with x < lcc + 1, namely nlcccolor view. If this number is greater than one, we
have that a process in Clcc+1 with color view color view at round rlcc+1 have been
counted nlcccolor view − 1 times more in the upper bound. The leader computes the
quantity shrink that is the surplus of times nodes in Clcc+1 have been counted in
upper bound. As last step the leader verifies if it has received all the color views from
processes in Clcc+1 with the correct multiplicities (condition in line 12, Figure 4.5).
When this condition is satisfied the leader updates count with the size of Clcc+1 (line
13, Figure 4.5) and updates lcc to lcc = lcc + 1 to move the count to the next set
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< 1, {?,?, G}, G, 1 >

vl
r=2

< 1, {?,?, G}, G, 1 >

< 1, {?,?, G}, G, 1 >
< 1, {G, G,?}, B, 1 >

< 1, {G, G,?}, B, 1 >

< 1, {G, G,?}, B, 1 >
count=4

vl

upper_bound=6

v1

v2

v3v5v6

v4

< 2.1, {?,?, G}, G, 1 >2 energy setvl

count� (
X

8<e,col view,col,rd>2S

e) < 1

(b) Energy-Transfer from nodes to leader in order to construct the views of processes in C0at round
r1 inside the leader vl

reconstructing the views
 of blue processes...vl

shrink=2

upper_bound - shrink=4

upper_bound=6
vl

upper_bound - shrink=3

shrink=3

< 1.5, {G, G,?}, B, 1 >2 energy setvl < 2.5, {G, G,?}, B, 1 >2 energy setvl

(c) Energy-Transfer from nodes to leader in order to construct the views of processes in C1 at round
r1 inside the leader vl, when these views are correctly recovered the leader is able to count processes
in C1

Figure 4.6: Example of the algorithm execution.
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of colored processes, if any (line 14, Figure 4.5). This procedure is iterated until all
processes are colored and counted.
Let us consider again the example in Figure 4.6. In Figures 4.6(b) and 4.6(c) the
leader, receiving energy from processes in C0, C1, obtains |C1|. In details in Figure
4.6(b) left, processes in C0 and C1 start to send energy to the leader by means of
energy-transfer technique. Each process attaches to the unitary charge of energy its
color view at round r1. It is possible to see that there are many processes with the
same color view (i.e. v1, v2, v3 and all processes in C1, i.e. v4, v5, v6). The leader will
identify this multiplicity by collecting energy. The leader waits until energy collected
from processes in C0 is greater than |C0|−1. This can be done since the leader knows
the number of processes in C0. When this happens, (Figure 4.6(b) right), the condi-
tion count− (

∑
∀<e,color view,col,r′>∈S

e) < 1) is satisfied. Then the leader computes an

upper bound on C1 by counting the number of ⊥ in the views of processes in C0. In
this example, we have a total of six ⊥ ({⊥,⊥, vl}, 2 × {⊥,⊥, G}), so the leader sets
upper bound = 6. Now the leader has to collect energy from at most six blue nodes.
During the collection of energy from nodes in C1, it dynamically adjusts the upper
bound until it matches the real size of C1. In Figure 4.6(c) left, the leader collected
enough energy to recognize two sources for view {G,G,⊥}; this means that two pro-
cesses in C1 have been counted twice in the upper bound because each of them is
present in the color view of two processes in C0. So each of these views brings 1 unit
of shrink represented by the edges that are pointed by the red arrows in the figure.
So the leader computes the new upper bound upper bound− shrink = 4 and it waits
to collect energy from 4 blue processes. In Figure 4.6(c) right, the leader collected
enough energy to detect that there are 3 processes in C1 with view {G,G,⊥}, so it up-
dates the shrink to 3 and updates the upper bound to upper bound−shrink = 3, but
this value is equal to the number of processes in C1 from which the leader has received
energy. Thus, vl detects this condition and updates the count to count = count + 3
and lcc to lcc = 1. We can see that the leader has the count of C0 ∪ C1.

Correctness

For ease of presentation, let us define Er as the sum of energy charges generated at
round r (i.e. all the energy charges created while executing line 20, Figure 4.4 at
round r). In the next two Lemmas we show that: (i) the energy transfer mechanism
does not duplicate or lose energy while moving energy from a node v ∈ V \ {vl} to
vl; this allows us to associate information related to color views with the energy that
will be transmitted to vl without duplication and (ii) the quantity of energy inside
the leader set energy setvl is a monotonically increasing function in the number of
rounds.

Lemma 31. Conservation of Energy: In each execution of AOP , ∀r′ > r, Er is
an invariant.

Proof. The proof is essentially the same of Lemma 28, thus it is omitted.

Lemma 32. In each execution of AOP , ∀r′ where r′ is a round such that r′ >
r + |V | − 1. The energy in the form < ∗, ∗, ∗, r > (that is the energy generated at
round r) in energy setvl of the leader is an increasing quantity that converges to Er.
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Proof. The proof derives directly from Lemma 29, thus it is omitted.

In order to prove that AOP is correct, we show that, starting from round r0, the
leader is able to (i) compute an upper bound on C1 in a finite time (Lemmas 33,34)
and (ii) compute the actual cardinality of |C1| in a finite time. So, in the next lemmas,
we show that the leader is able to count the number of processes in C1 and if C1 = ∅
to terminate outputting the actual count.

Lemma 33. Let us consider a run of Algorithm AOP . The condition at line 07,
Figure 4.5 will be satisfied at least once after a finite number of rounds.

Proof. At round r0, the leader vl colors a set of nodes C0 = N(vl, 0) ∪ {vl} (line 02,
Figure 4.5 and lines 17 and 19, Figure 4.4). Please note that the leader knows the
size of C0 and will set the variable count to |C0| = |N(vl, 0)| + 1 (line 04, Fig-
ure 4.5). Moreover, each process vj in C0 will put in its energy setvj a charge
< 1, color viewvj , c0, r1 > (line 20, Figure 4.4). Each process in V \ {vl} broadcasts
at each round r, for each energy charge in energy set, half of the stored energy (lines
04-05, Figure 4.4). This implies that, for 1-interval connectivity and due to Lemma
32, energy charges with attributes color = c0 and round r1 will start flowing from
each vj ∈ C0\{vl} and eventually they will reach the leader. The energy accumulated
by the leader with attributes color = c0 and round r1, in the worst-case, follows a
monotonic increasing behavior (see Lemmas 31-32). So there exists a round r after
which the leader receives |C0| − 1 + ε energy with ε > 0 and the claim follows.

Lemma 34. Let us consider a run of Algorithm AOP . When the condition at line
07, Figure 4.5 is satisfied and lcc = 0, then upper bound ≥ |C1|.

Proof. When the condition at line 07, Figure 4.5 is satisfied, and lcc = 0, we have that
the leader received a quantity |C0| − 1 + ε of energy (with ε > 0) associated to tuples
with color = c0 and round r1. This means that vl has received at least a fraction ε′ of
energy from each vj ∈ C0. So vl has collected all color views color viewvj generated

at round r1 from nodes in C0. Let C
color view′v(r1)
0 ⊆ C0 be the subset of nodes in

C0 with color view equal to color view′v at round r1. In order to prove the existence
of the upper bound, we first need to prove that for each color view color view′ of
processes in C0, the energy generated and transferred to the leaser is equal to the
number of processes having the same color view color view′, i.e. we have to prove

that mcolor view′ =
∑
∀<e′,color view′v,c0,1>∈Sde

′e is equal to |Ccolor view
′
v(r1)

0 |.

Let us suppose by contradiction that mcolor view′ 6= |Ccolor view
′
v(r1)

0 |. Obviously it

is not possible that mcolor view′ > |Ccolor view
′
v(r1)

0 | as this would means that the leader
received more energy than the energy present in the system but this is not possible

due to Lemma 28. So it is only possible to have mcolor view′ < |Ccolor view
′
v(r1)

0 |. Let
us define evlvi as the energy with color c0 transferred from vi to vl and round r1. Then
the previous condition, reported in a system of inequalities is:



80 CHAPTER 4. COUNTING AND LDD ORACLES





∑

∀vi∈C0

evlvi ≥ |C0| − 1 + ε

∑

∀vi∈Ccolor view
′
v(r1)

0

evlvi ≤ |C
color view′v(r1)
0 | − 1

∀vi ∈ C0 : 0 ≤ evlvi ≤ 1

ε > 0

(4.1)

(4.2)

(4.3)

(4.4)

where inequalities (1) and (4) are essentially a rewriting of the condition in line
07, Figure 4.5. Inequality (3) holds by construction of the energy-transfer mechanism
since each process in C0 during the receive phase of round r1 creates only one energy
charge with attribute round r1 (cfr. Lemma 28). In addition, by hypothesis, equation

(2) holds (that is a transposition of mcolor view′ < |Ccolor view
′
v(r1)

0 |).
From inequalities (1) and (2) we have

∑

∀vi∈C0\Ccolor view
′
v(r1)

0

evlvi ≥ |C0| − |Ccolor view
′
v(r1)

0 |+ ε

that violates the energy conservation Lemma, since this would implies that the leader

would collect, from the set C0\Ccolor view
′
v(r1)

0 , strictly more energy (since ε > 0) than
the energy present in this set of nodes, this is an absurd. So, when the condition in

line 07, Figure 4.5 is satisfied, we necessary have that mcolor view′ = |Ccolor view
′
v(r1)

0 |.
The leader sets, executing line 10 in Figure 4.5, the upper bound on C1 to

upper bound←
∑

∀<e′,color view,col,r′>∈S
de′e × n⊥color view

that means

upper bound←
∑

∀<e′,color view,col,r′>∈S
mcolor view × n⊥color view

that is equivalent to

upper bound←
∑

∀<e′,color view,col,r′>∈S
|Ccolor viewv(r1)

0 | × n⊥color view

.
Let us note that the right term of the last inequality is essentially the number of

edges at round r1 from nodes in C0 to non-colored nodes, that is obviously an upper
bound on C1.

Lemma 35. Let us consider a run of Algorithm AOP . If the condition at line 08,
Figure 4.5 is satisfied and lcc = 0 then C1 = ∅ and count = |V |.
Proof. In the proof of Lemma 34 we shown that the computed upper bound is actually
an upper bound on the number of edges from nodes in C0 to non-colored nodes. Due
to 1-interval connectivity, the network is always connected. Thus, if there not exists
any ⊥ in any color views it means that there not exists any non-colored node. Thus,
if this number is equal to 0 we have V \ C0 = ∅ and the claim follows.
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The next lemma shows that we can count the processes in C1.

Lemma 36. Let us consider a run of Algorithm AOP . If the condition at line 12,
Figure 4.5 is satisfied and lcc = 0 then |C1| = d∑∀<e′,lv,col,r′>∈F e′e. Moreover if
|C1| > 0 then the condition at line 12, Figure 4.5 will be eventually satisfied in a
finite number of rounds.

Proof. In order to evaluate the condition at line 12, Figure 4.5 , the leader computes
the shrink, i.e. it counts the number of edges from nodes in C1 to nodes in C0 at
round r1. This counting is done similarly to what the leader does with color views
of processes in C0 (see Lemma 34). So, if a color view color viewvj , with vj ∈ C1,
contains a certain number nc0 of color c0 then vj has been counted in upper bound
nc0−1 times more than necessary. So, when the leader checks the condition at line 12,
Figure 4.5 it adjusts the count of upper bound subtracting the shrink. Let us remark
that in this way upper bound− shrink is still an upper bound on |C1|. This follows
by considering that

shrink ←
∑

∀<e′,color view,col,r′>∈F
de′e × (nlcccolor view − 1)

is equals, for each received color view, to the number of edges between processes
in C1 and C0 minus one, and de′e converges to the number of processes in C1 at round
r1 with view color view. So upper bound − shrink is still an upper bound since it
will contains at least one counted edge for each process in C1.
When the condition at line 12, Figure 4.5 is satisfied we have that the difference
between upper bound− shrink and the energy collected from nodes in |C1| is smaller
than one. Since upper bound− shrink and d∑∀<e′,lv,col,r′>∈F e′e are respectively an
upper/lower bound on |C1| we have that |C1| = d

∑
∀<e′,lv,col,r′>∈F e

′e.
Let us note that, due to Lemma 28 d∑∀<e′,lv,col,r′>∈F e′e is a lower bound on |C1|
since the energy accumulated in the leader from the set C1 at round r1 cannot be
more than |C1|.
Due to Lemma 32 the leader eventually collects from nodes in |C1| a quantity of energy
such that |C1| −

∑
∀<e′,lv,col,r′>∈F e

′ < 1 and this will happen in a finite number of
rounds. When this happens

Theorem 11 (Convergence). AOP converges to a correct count of the network size.

Proof. For 1-interval connectivity we have that after at most |V | − 1 rounds all pro-
cesses will be colored, this processes are partitioned in sets C0, C1, C2, ..., Ck with
k ≤ |V | − 1. We show by induction that the leader correctly counts each |Cj | with
0 ≤ j ≤ k.
Basic Step: It follows from Lemmas 31-36.
Inductive Step: Let us assume that the algorithm correctly counted the subset of
processes in C0 ∪C1 ∪ · · · ∪Ci and let us show that it counts also Ci+1 (if any). From
a logical point of view, when the leader updates lcc to i, it is equivalent to create a
set of colored nodes C ′≤i = C0 ∪ C1 ∪ · · · ∪ Ci. It easy to see that each one of the
previous lemma still applies for C ′≤i. Thus, the leader will end up with the correct
count of |Ci+1|. When lcc = k (i.e., the leader has counted all process), we have that
it does not change the value of count before terminating, since all nodes have been
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colored, so condition if(@ < e′, color view, col, r′ >∈ S | ∃⊥ ∈ color view) cannot be
false this implies that the updates of count cannot be triggered.

Theorem 12 (Termination). There exists a round r in which the leader knows that
its guess corresponds to the correct count.

Proof. Let us recall from the previous proof that when count = |V | we have that
the set of processes is partitioned in sets C0, C1, C2, ..., Ck with k ≤ |V | − 1 and that
lcc = k. Since lcc = k the leader collects all the views from processes in C0∪C1∪...∪Ck
in the set S = {< e, color view, col, r′ >∈ energy setvl | col ≤ lcc∧ r′ = lcc+ 1}. For
Lemma 28, 32 this will happen and when it happens the condition at line 07, Figure
4.5 has to be satisfied. Moreover, since all processes have been colored we have that it
cannot exist a process with ⊥ in its color view. This implies that condition of line 08
is satisfied so the algorithm correctly terminates in a round r for which count = |V |,
thus the algorithm terminates.

The counting algorithm AOOE
By inspection of the correctness proof of the previous section, we can notice that
the knowledge encapsulated within OP is used only in the proof of Lemma 28. This
Lemma is necessary since it ensures that the quantity of energy in the system is always
equal to the number of sources, this allow us to prove other Lemmas, in which the
leader has to converge to the number of sources that are pushing a certain token t.
It is then possible to modify the algorithm shown in Figures 4.4,4.5 ensuring that
Lemma 31 still holds even though processes can access an oracle OOE . This can be
done as we did in the Algorithm of Section 4.1.

From AOP to the practical algorithm A∗OP
AOP is able to provide an exact count in a finite time. However, it may take a large
amount of time since the leader may not be able to count two nodes with the same
color until it collects more than one unit of energy from them. Let us assume for
example that there are y nodes that at round r have the same color and the same
multi set of neighbors. The leader has to collect at least y − 1 + ε energy to count
the correct multiplicity y. However, in practice such two nodes may be identified if
we consider the history of their local views, i.e., the union of all the multi-sets they
saw from round r0 until the current round.

Based on this intuition, we defined a new algorithm, namely A∗OP , that takes
advantage of symmetry breaking introduced by different local histories. Essentially,
each non-leader process with color ci 6= ⊥ computes, at each round r, a round id
ridr = CriptoHash(ridr−1 + color view(r − 1)); in this way, two nodes v, u that at
round r′ have a different multi set of neighbors will have, with high probability the
hashing function is collision resistant, for each round r > r′ a different ridr.

Such ridr will be attached together with the other information to the energy
created at round r. The ridr influences only the collection of energy generated from
round r. Let us notice that in the unlikely event of a collision of the hashing function
the correctness of the algorithm is not impaired.
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With this modification the algorithm uses the concept of energy to count when
the symmetry has not been broken by the dynamic topology, i.e., two nodes that at
each rounds have the same neighborhood. Otherwise it can count fast, let us suppose
that at round r all nodes with cid 6= ⊥ have a different ridr, this implies that the
leader terminates the energy collection in at most V rounds. Considering the previous
example if y

2 nodes have different ridr the leader have to wait till it collects y
2 − 1 + ε

of energy that is in general faster.
In the Evalutation Section, at the end of the Chapter, we have evaluated both

AOP and A∗OP . From our tests we have that A∗OP on graphs generated by a random
adversary terminates roughly in a number of rounds that is less than twice the size
of the network.

In this Section we study the problem of counting when the communication model
is labeled in-edge. That is: when v receives at a certain round r a message m from
nodes w it also receives an ID inv,w, this ID is fixed and do not changes among rounds,
moreover the ids are uniques. Node v will see ID inv,w if and only if the message is
from w. Let us recall that the labels can be seen only at receive sides and are locally
uniques, this means that could be another node v′ 6= v that associates to messages
coming from w the same label inv,w.

This implies that, in contrast to out-edge labeling [], the presence of the leader
does not imply the possibility of solving the naming problem.

However, under this communication model is possible to solve the counting prob-
lem without additional assumption.

Building an OOE when there is In-edge labeling

1: Uv = ∅, pending send = ⊥
2: procedure try to send(m)
3: if pending send = ⊥ then
4: pending send = m

5:
6: procedure sending phase
7: if pending send 6= ⊥ then
8: send(< pending send, |Uv | >)

9:
10: procedure rcv phase(Set M : {< payload, n, id >})
11: ID = ∪∀m∈M{m.id}
12: if pending send 6= ⊥ ∧ ID ∩ Uv 6= ∅ then
13: delivered(< m, |Uv |, |ID ∩ Uv | >)
14: pending send = ⊥
15: for all < payload, n, id >∈M do
16: if id ∈ Uv then
17: delivery(< payload, n, id >)

18: Uv = ID

Figure 4.7: Eventual Delivery with Upper Bound Algorithm for the In-Edge labeling Model

Let us assume that the communication model is labeled in-edge: when v receives at
a certain round r a message m from nodes w it also receives an ID inv,w, this ID
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is fixed and it does not change among rounds. Moreover the ids are locally uniques.
Node v will see ID inv,w if and only if the message is from w. Let us recall that the
labels can be seen only at receive sides and are locally uniques. Therefore it could
exist another node v′ 6= v that associates to messages coming from w the same label
inv,w.

From this observation is easy to see that in contrast to out-edge labeling, the
each-to-each model of [59], the presence of the leader does not imply the possibility
of solving the naming problem.

The algorithm The idea is to implement an algorithm, Eventual Delivery with
Upper Bound, that eventually allows each node to send messages to a set of neigh-
bors for which an upper bound is known. Let us define as IDv

i the sets of ID attached

to messages received by node v at round i. Let us define Uvi = ∪j=ij=0ID
v
j . In order to

send message m at round r, the node v sends < m, |Uvr−1| >, the receiving neighbor
w will receive the message < m, |Uvr−1|, inw,v >.

Now w checks if it has heard from v before, that is inw,v ∈ Uwr−1, in this case w
deliver m to the upper layer associated with |Uvr−1| that is the upper bound on the
number of nodes that may deliver m at round r.

At the end of the receive phase of round r, v checks if |IDv
r ∩ Uvr−1| 6= 0 in this

case, v knows that m has been delivered by exactly |IDv
r ∩Uvr−1| nodes with an upper

bound information associated that is |Uvr−1|.
The detailed pseudocode of the algorithm can be found in Figure 4.7
Analysis: It is straightforward to see that by construction the algorithm ensures

that Uvr−1 is an upper bound on the nodes that may deliver a message from v at round
r − 1, since a node delivers a message m from v if and only if it has already received
a message from v in a previous round, and thanks to the local in edge labeling no
ambiguity may arise.

Given a node v that try to send message m at round r′, we have that the delivery
of m could be delayed: m is not delivered if at round r we have that |IDv

r ∩Uvr−1| = 0.
Therefore, in order to block a message m the adversary has to give v a new set of
neighbors at each round. However there are only |V | nodes thus the message m has to
be delivered in the worst case by round r′+ |V |+ 1. Therefore v will send a messages
m to all other nodes in at most |V |2 rounds.

Under this communication procedure we can adapt the proof of Lemma 29 to
show that it holds also in this case, taking into a count a multiplicative factor of |V |.
Therefore it is possible to implement AOOE in this model.

4.3 Convergent Counting Algorithm using NoK

In this section we propose an algorithm, namely ANoK , that is able to eventually
count the number of processes in the dynamic anonymous network without having
any assumption on the network. ANoK is actually a modification of the algorithm
presented in Section 4.1 where nodes have to cope with the uncertainty about the
number of neighbors (and thus, with the uncertainty about the energy they have to
release in each round).
ANoK works in the following way: each non-leader node vi starts, at round r0, with
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energy quantity evi ← 1 and it transfers half of its current energy to the neighbors.
However, vi has no knowledge about the network and thus it cannot know the exact
number of neighbors at round r before receiving messages, but it can only guess such
number. Thus, vi supposes to have Dmax neighbors and it broadcasts a quantity of
energy 1

2Dmax
(as if there are really Dmax neighbors). Then vi starts to collect mes-

sages transmitted by its neighbors at the beginning of the round and it stores such
messages in a local variable rcvvi . At the end of the round, vi updates its energy, as
in the previous algorithm, to preserve the quantity of energy over all the network.

Notice that, if the real number of neighbors at round r is lower than the estimation
(i.e., |rcvvi | ≤ Dmax) then the global energy conserved among all the processes is still
constant (this is due to the compensation done by vi at the end of the round, based
on the effective number of received messages). On the contrary, if the number of
neighbors is greater than the estimation (i.e., |rcvvi | > Dmax) then, there is the
release of a local surplus of energy. As an example, consider the case where vi has
energy evi the estimation of neighbors is Dmax = 2 and the real number of neighbors
is |rcvvi | = 8. When vi sends

evi
4 to each neighbors, the total amount of energy

transferred is twice the energy stored by vi (i.e., the energy transferred is 8× evi
4 = 2evi

while node vi had only evi residual energy). However, since vi adjusts its local residual
energy considering the number of received messages |rcvvi |, it follows that its residual
energy will become negative and globally the energy is still preserved. Considering
the previous example at the end of the round vi stores a residual energy −evi .
Unfortunately, the local surplus of positive/negative energy could create, in the leader,
a temporary value of energy evl that is greater than |V | or negative. Moreover, the
adversary could change, at each round, the degree of nodes in order to avoid the
convergence of the leader. To overcome these issues each processes stores locally the
highest number of neighbors it has ever seen and it uses the double of such number as
Dmax. In this way, the surplus of local negative/positive energy that the adversary
can create is upper bounded by a function f(|V |): each node vi can increase Dmax

at most log(|V |) times, from 1 to |V |. This implies that the worst case adversary
cannot create an infinite surplus of local energy. Thus, the adversary could delay the
convergence of the count only a finite number of rounds.

Algorithm ANoK – Convergent Counting without Additional Knowledge

leader : The leader vl maintains the following local variables: (i) evl ← 1 representing the initial
energy charge and (ii) rcvvl ← ∅ is a set variable where vl stores all the messages received during
each round. (iii) countvl ← 0 this variable is used to keep trace of the latest estimated count.
for each round r:

• Send phase of round r: at the beginning of each round, vl broadcasts a energy release(0)
message releasing no energy.
vl broadcasts count(devle, r).

• Receive and Computation phases of round r: energy release(e′) messages are stored
in the rcvvl variable. At the end of the round, when all the messages have been received, vl
updates, its local energy charge as follows:

evl ← evl +
∑

e′∈rcvvl

e
′

vl sets countvl ≈ evl
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anonymous node: Each non leader node vi maintains the following local variables: (i) evi ← 1
representing the initial energy charge of vi, (ii) rcvvi ← ∅ is a set variable where vi stores all the
messages received during each round and (iii) Dmax ← 1 is an integer variable storing the maximum
number of neighbor vi has ever had (initially set to 1 as it has no knowledge about the network).
(iv) countvi ← 0 this variable is used to keep trace of the latest count estimate seen by the node (v)
r countvi ← 0 is the round number associated with the latest count accepted.
for each round r:

• Send phase of round r: at the beginning of each round, vi broadcasts a en-

ergy release(
evi

2Dmax
) message, releasing at most half of its energy to its neighbors.

• Receive and Computation phases of round r:

for each message m ∈ rcvvi such that m is an energy release message, vi updates its local
energy charge as in the previous algorithm:

evi ← evi −
(
Dmax ×

evi
2Dmax

)
+
(
(Dmax − |rcvvi |)×

evi
2Dmax

+
∑

e′∈rcvvi

e
′)

In addition, if |rcvvi | > Dmax, vi also updates the maximum number of neighbors it has ever
saw by setting Dmax ← 2|rcvvi |.
for each message m ∈ rcvvi such that m is an count message, if the round number in m is
greater than r countvi updates countvi and r countvi with the content of m.

Correctness Proofs. In the following, we will prove that protocol ANoK converges
to the exact count in a finite number of rounds. We first prove that the quantitive of
negative energy that the dynamic adversary is able to create is bounded by a function
of the network size |V | (Lemma 37 ). From this result, we prove that the leader will
obtain the correct count in a finite but unknown number of rounds (Lemma 39), so
we will prove that ANoK is convergent. Let us notice that since the energy transfer
mechanism is the same of AD the global invariant on energy still holds, so Lemma 28
keeps holding for ANoK too. Moreover, it is clear that for each round r the leader will
receive energy from its neighbors. So, even if it is not possible to have a bound like
the one obtained in Lemma 29, it is straightforward to see that the absolute value of
the sum of energy that the leader receives is a monotonically increasing function.

Lemma 37. Let G ∈ G(1-IC). During any execution of ANoK on G, the amount of
negative energy that can be generated is finite. Moreover, during any round r a single
node vi ∈ V with energy ervi can create at most (|V | − 2)ervi negative energy.

Proof. Let us focus on the negative energy that can be generated during the execution
of the algorithm by a generic node vi ∈ V . Let En : {ri,1, ri,2, ...., ri,t} be the set of
rounds (not necessarily consecutive) in which vi creates negative energy; we will show
that the number t is finite. For the generic round ri,j ∈ En we must have that
|rcvvi | > 2Dmax; this follows by imposing e

2 + (|rcvvi | − Dmax) e2 < 0. This means
that we have at least |rcvi| ≥ 2Dmax + 1, and at the end of round ri,j the number
Dmax will be doubled. Since |rcvi| ≤ |V | and Dmax ≥ 1, we have that the condition
|rcvi| > 2Dmax could happen at most log(|V |) times. So, t ≤ O(log(|V |)). Moreover,
the negative energy created by a node vi with energy e during a single round is at
most (|rcvvi | − 2Dmax)e that is maximized when |rcvvi | = |V | and Dmax = 1.
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Lemma 38. Let G ∈ G(1-IC). During any execution of ANoK on G, for any ε ∈ R+

there exists a round r|V,ε| after which the amount of negative energy that could be
transferred to the leader in the following rounds is less than ε.

Proof. Due to the invariant on energy (Lemma 28), we have that the negative energy
that each node could create is related to the energy that the nodes already possess
(since the sum of negative and positive energy has to be equal zero). In addition,
for Lemma 28 and for the monotonically increasing energy received by the leader, we
have that, if no negative energy is created, the absolute value of energy in V \ {vl} is
a monotonically decreasing function of r. The maximum amount of negative energy
that can be created starting from round r is bounded (see lemma 37) and from the
previous consideration it is a monotonic function f of

∑
∀v∈V \{vl} |erv|. From Lemma

29 we have that ∀ε1 ∈ R+ ∃rε1 ∈ N+| ∑∀v∈V \{vl} |e
rε1
v | ≤ ε1, since f is monotonic

exists ε1 such that f(ε1) ≤ ε.

Lemma 39. Let G ∈ G(1-IC). Let us consider an execution of ANoK on G. Then,
∀vi limr→∞countvi = |V |. So ANoK is a convergent counting algorithm.

Proof. Lemma 38 shows that there exists a round r|V,ε| after which the maximal
amount of negative energy that can be created in the network is bounded by a quantity
ε that can be made arbitrarily small. For energy conservation Lemma, this means that
the total amount of negative and positive energy in V \{vl} is bounded at each round
by a monotonically decreasing function of the round number. So limr→∞(|V |−ervl) =

0, this means that there exists a round r such that ∀r′ ≥ r holds |V | − er′vl < 1. So
the variable countvl will be equals to |V | ∀r′ ≥ r.

The previous Lemma has an interesting implication: there exists a round r such
that ∀r′ ≥ r holds |V |−er′vl < 1. However, this condition is not detectable by any node
in the network. Convergent algorithms can be used in any practical context where
the safety of the application does not depend by a correct count and where liveness
and/or fairness need just an eventually correct count (e.g. fair load balancing).

Termination Heuristic: A∗NoK
In this section, we will present the heuristic added to the basicANoK to obtain the new
algorithm A∗NoK working in an anonymous network with No Knowledge assumption
and having a termination condition. The heuristic is used by the leader to decide at
which time the current count can be considered as the final one. The heuristic is based
on the assumption that the dynamicity of the graph is governed by a random process
(i.e., a graph where links change according to a uniform probability distribution) and
it considers the notion of flow observed by the leader.

At each round r, the leader vl will receive a fraction of energy from all its neighbors.
So the flow of energy to the leader at round r can be expressed as:

Φr(vl) =
∑

∀v∈N(vl,r)

ev(r)

2dmaxv (r)

where ev(r) is the energy of v at round r and dmaxv (r) is the maximum number of
neighbors that node v has so far. After a sufficient number of rounds, the estimation
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of the flow observed by the leader is

Φr(vl) =
∑

∀v∈N(vl,r)

ev(r)

2dmaxv (r)
' |N(vl, r)|

2d
max(r)
avg

ev(r)

where 2dmaxavg (r) is the average of the maximum degrees seen by nodes in G at round

r and ev(r) is the average of the energy kept by all non-leader nodes at round r.
Let us remark that, in the absence of the leader, the energy is always balanced among
nodes in the network and let us recall that the leader is the only node absorbing
energy. As a consequence, nodes being neighbors of the leader could have less energy
than others as they transferred part of their energy to the leader without receiving
nothing from it. Due to the assumption about the probabilistic nature of the edges
creation process and considering the functioning of ANoK , those non-leader nodes will
tend to have a similar quantity of energy as they will balance energy surplus. Thus,

the leader can estimate ev(r) ' |V |−evl (r−1)

|V | .

Due to the assumption about the probabilistic nature of the edges creation process,
the leader will see almost the same maximum number of neighbors as the other nodes.
Thus, 2dmaxvl

(r) ' 2dmaxavg (r). Thus, substituting we have

Φr(vl) '
|N(vl, r)|
2dmaxvl

(r)

|V | − evl(r − 1)

|V |

from which we obtain

|V̄ (r)| ' ρ(r)evl(r − 1)

ρ(r)− Φr(vl)

where |V̄ (r)| is estimation of the number of processes in the network done by the

leader at round r and ρ(r) = |N(vl,r)|
2dmaxvl

(r) .

Let k = devl(r)e be the number representing the count done by the leader at round
r, and let ∆(r) = |V̄ (r)|−evl(r) be difference between the network size estimated with
the energy flow and the energy currently stored at the leader. We can finally define
a termination condition as follows: as long as devl(r)e remains stable, the leader
computes the average ∆ of ∆(r) over the last k rounds and if after k consecutive
rounds the quantity devl(r + k) + he is equal to k and devl(r + k)e = k the counting
procedure terminates and the leader outputs k.

4.4 Experimental Evaluation

Simulator. In order to run our experiments, we developed a JAVA simulator using
the Jung library [66] to keep track of the graph data structure. Each process v is seen
as a node in the graph and it exposes an interface composed of two methods: the first
one allowing to send a message for round r and the second one allowing to deliver
messages for the round r. Moreover, each node has associated a queue qv storing the
messages that it has to receive. The simulation is done trough a set of threads; a
thread Tj takes a node from a list lm containing all of nodes to be examined in this
round, removes it from the list and invokes the method send message. Tj also takes
the message m generated by v, and adds it to the queues of N(v, r). When lm is
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empty, a different set of threads is activated to deliver messages. Tj takes a node v
from a list ld and manage the delivery of all messages in qv that v received during the
current round. When all the messages in the queues are delivered to all the processes,
the round terminates and the topology can be modified according to the dynamicity
model considered and a new round can start.

Random Dynamic Graph Adversaries. In order to model the dynamicity of the
network graph, we consider the following four adversary models:

1. G(n,p) graph [26]: at the beginning of each round r the set of edges is emptied
and then for any pair of processes u, v ∈ V , the edge uv is created according to
a given probability p. Let us recall that in the G(n, p) graph model, there exist
a connectivity threshold t, depending on the number of nodes n, such that if
probability p is above the threshold, then G(n, p) is connected with very high
probability.

2. Edge-Markovian (EM) graph [27] : at each round r, edges are modified
according to the following rules:

(a) For each edge uv ∈ E(r − 1), uv is removed from E(r) with a probability
pd (i.e., death probability).

(b) For each edge uv /∈ E(r − 1), uv is created and inserted in E(r) with a
probability pb (i.e., birth probability).

Clearly, connectivity of the graph at each round depends on pd and pb.

3. Duty-cycle based graph: at round r0 the dynamic graph has a fixed, con-
nected, topology. Each node follows a duty cycling phase during which, if at
a given round ri the node is awake it can receive and send messages according
the topology of r0 to any neighboring node that is also awake. While when at
round rj it is in sleep mode, all adjacent edges are removed from the graph. The
presence of the duty cycle essentially brings some dynamicity in the graph since
not all edges will be set at each round. This model constructs evolving graphs
that reflect realistic deployments of resource constraint devices. Remark that
this model does not guarantee that the graph will be connected at each round.

Metrics and parameters. We investigate three key performance metrics:

• Convergence Time Distribution: the convergence time is defined by the
first round at which the algorithm outputs the correct value. In the following,
we studied the probability distribution of the convergence time to show the
average latency of the algorithms before reaching a correct count.

• Flow Based Gain ∆: such metrics represents the difference measured by the
leader between the size estimated through the flow and the the size estimated
trough the energy stored inside the leader (i.e., ∆(r) = |V̄ (r)| − evl(r)).

• Error frequency ρ: we measured the percentage of uncorrect termination
obtained while adopting the heuristics-based termination condition defined in
Section 4.3.



90 CHAPTER 4. COUNTING AND LDD ORACLES

1000 2000 2500 3500 5000 6000 8000 10.0000

0.01

0.02

0.03

0.04

Convergence Round

D
en

si
ty

 

 

16t
t
t/2
t/4
t/8
t/16
2t

(a) |V |=100

104.5 104.6 104.7 104.80

1

2

3

4

5

x 10−3

Convergence Round

D
en

si
ty

 

 

2t
t
t/2
t/4

(b) |V |=1000

Figure 4.8: ANoK Convergence time distribution for G(n,p) graphs with different edge
creation probabilities p.

The above metrics have been evaluated by varying the following parameters:

• Dynamicity model: we considered different types of random dynamic graph
adversaries to evaluate the factors impacting every metrics.

• Edges creation probability p: such probability governs the graph dynamicity
according to the specific model considered (G(n,p) or Edge-Markovian).

We have evaluated the performance of the algorithms under different metrics in
networks comprised of {10, 100, 1000} nodes. When not explicitly stated, tests are
the results of 1000 independent runs.

Evaluation of ANoK
We implemented and tested ANoK on both G(n,p), Edge-Markovian and Duty-cycle-
based graphs. Let us first consider the case of G(n,p) graphs and let us recall that
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Figure 4.9: ANoK Convergence time distribution for edge-Markovian graphs with
different edge creation probabilities pb and |V | = 100.

the connectivity threshold t is defined according to the number of nodes in the graph

(i.e., t = ln(|V |)
|V | ). We evaluate our algorithm for several probability p. In particular,

for any probability greater than 2t, we consider only connected graph instances, i.e.,
at each step, we check the connectivity and in case of disconnected graph we sample
a new random graph. For probabilities smaller than 2t we allow disconnected graph
instances.

Figure 4.8 shows ANoK convergence time distribution when the algorithm runs on
G(n,p) graphs. As expected the convergence time becomes worse when we consider
disconnected instances. However, it is worth notice that the algorithm is able to con-
verge to the correct count even in presence of disconnected instances. Moreover, the
increment of convergence time is inversely proportional to p and there is an increment
of the distribution variance due to the presence of disconnected instances.

When considering Edge-Markovian graphs, we set the probability of creating an
edge as in the G(n,p) graphs and we fixed the probability of deleting an edge to 0.25
(i.e., pd = 0.25 and pb = f(t)).

Figure 4.9 shows ANoK convergence time distribution; as we can see, it is compa-
rable to G(n,p) graph one. In addition, the persistence of edges across rounds (due to
pd ≤ 1) mitigates the low values of edge creation probability. As a consequence, the
convergence is faster than the pure G(n,p).

Evaluation of A∗NoK
In the following, we evaluate the A∗NoK algorithm on both G(n,p) and Edge-Markovian
graphs. Figure 4.10 shows several measures related to the heuristic correctness. In
particular, in addition to the error frequency ρ, we measured also the average error
and maximum error done, by the heuristic, in terms of number of nodes missed with
respect to the real number of nodes in the graph. We omit from the Figure some
probabilities since they always terminate correctly (p ≥ t

2 in case of G(n,p) graphs and
pb ≥ t

4 for the Edge-Markovian). In case of disconnected topologies, i.e., p ≤ t
4 for

the G(n,p) or pb ≤ t
8 for the Edge-Markovian, we have that the percentage of counting

instances terminating correctly is smaller that 100% and it becomes proportionally
worse with the decrease of p. Moreover, it is possible to see a bimodal behavior of the
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heuristic when it fails: two cases are frequent in the experiments (i) the heuristic forces
the termination in the first rounds of the counting process with the consequence of
having the leader outputting a count much smaller than the real number of processes
and (ii) the heuristic fails when the energy accumulated by the leader is close to the
current network size. In all our experiments we have not found a case in which the
heuristics forces the termination in a case different from this two. Moreover in the
table we indicate the Convergence Detection Time, that is the number of rounds after
the first convergence that the heuristics employs to correctly terminate the count. It
is possible to see that in the majority of experiments, even on disconnected instances
the heuristic converges in a time that is equal to the size of the network.

Model G(n,p) Edge-Markovian pd = 0.25

p t
4

t
8

t
16

t
32

t
8

t
16

t
32

|V | 10 100 1000 100 100 100 100 100 100
ρ 22% 3% 2% 19% 25% 84% 30% 68% 76%

Average Error 2,02 8,96 1 9 44,5 41,4 1 3,12 11,8
Max Error in Nodes 8 96 1 99 99 99 1 99 99

σ of Error 2,1166 27,4 0 27,4 48,3 48,8 1 14,23 29,73
Convergence Detection Time Average 10,2 100 1000 100 100 100 100 100 100

Convergence Detection Time Max 40 100 1000 100 100 100 100 100 100
Convergence Detection Time Min 10 100 1000 100 100 100 100 100 100

Figure 4.10: Evaluation of the Termination Correctness ρ. The results are the
outcome of 500 experiments

Comparison between ANoK and A∗NoK
The flow could be used to estimate the size of |V | obtaining a faster count. Figure
4.11 shows the evolution of ∆, i.e., difference measured by the leader between the size
estimated through the flow and the the size estimated trough the energy stored inside
the leader, both from a temporal perspective 4.11(a) and from the energy perspective
4.11(b).

The value ∆ reaches the maximum when the energy at the leader is approximately
half of the network size; in this case, when the network is connected (i.e., p ≥ t), the
use of the heuristic allows the leader to predict, correctly, the presence of at least
others 17 nodes.
So, on connected instances our approach could be useful to answer faster to predicates
likes |V | ≥ t. In addiction, the flow-based estimation continues to perform well on
non-connected instances only until a certain threshold, then the gain obtained with
the flow drops to one or two nodes more than the ones estimated by the energy.
Moreover the figures show why the termination heuristics works bad on instances
where p ≤ t

4 , we can see that ∆ falls behind the threshold of 1, both when the energy
in the leader is low, and when the energy in the leader is approaching the value |V |
this could lead to two possible misbehavior, terminating after few rounds from the
start, so with a value that could be sensibly distant from the value of |V | or it could
terminate near |V |, when ∆ falls again behind 1.

Figure 4.11(a) shows the behavior of ∆ along time. In particular,

• when the network is connected (i.e., p ≥ t), the counting done by the leader
fast approaches half of the network size (i.e., the maximum value for ∆). The
energy-based count approaches the actual size with an exponential time; this
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Figure 4.11: Difference between the size estimated with the flow (A∗NoK) and the size
estimated by looking to the energy stored at the leader (ANoK) in a Gn,p network of
|V |=100.

is visible from the exponential decay of ∆. This behavior is present also when
p < t, even tough there is a slower decay of ∆ that obviously reflects a slower
approach to the actual size.

• for values of p ≤ t the curves show a high variance. This is due to the presence
of disconnected topologies that introduce a variance in the convergence time
for which the magnitude is proportional to the inverse of p. This high variance
in convergence is due to the high variance of the flow that the leader will see
during the execution.

The same behavior can be observed in Edge-Markovian graphs (cfr. Figure 4.12).
The presence of more edges in the edge-markovian graph affects positively the ∆
measures since it is less prone to the value of p. It is possible to notice a slightly low
maximum value for the edge-markovian process, 17 against 17.3 of the G(n,p) graph.

We run also tests with larger graphs (|V | = 1000) but we omit them here since
curves exhibit the same behavior of those shown in Figures 4.11 and 4.12, notably in
this case the maximum delta is about 170 nodes.
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Figure 4.12: Difference between the size estimated with the flow (A∗NoK) and the size
estimated by looking to the energy stored at the leader (ANoK) for Edge Markovian
network with pd = 0.25 of |V |=100.
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Duty Cycle

In order to test the adaptiveness of our heuristic, we run A∗NoK on regular topologies:
rings and chains. Over those topologies, we simulate a duty-cyle of 80%. Each node
independently sleeps for 20% of the time and during this period links of sleeping nodes
are deleted. Considering a ring topology with |V | = 100, the average convergence
time is around 26986 rounds for 100 experiments, for the chain the convergence time
is on average 70000 rounds . We also tested random G(n,p) topologies where p =
2t, in this case the average over 200 experiments shows a convergence time of 1059
rounds. The most noticeable phenomenon is that on graphs with duty-cyle both the
termination heuristic and the size estimation perform really bad: on rings and chains
the termination heuristics always fails and on random graphs it fails on the 23% of
the instances.
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Figure 4.13: Difference between the size estimated with the flow (A∗NoK) and the size
estimated by looking to the energy stored at the leader (ANoK) of 200 runs for duty
cycle and random graph with |V |=100.

Evaluation of A∗OP

Model G(n,p) p = 2t Edge-Markovian pb = 2t
|V | 10 100 1000 10 100 1000

Average Termination 7,6 107,6 1690,6 9,9 113,4 1554,2
Max Termination 17 187 2117 19 222 2684
Min Termination 5 96 1175 5 99 807

Figure 4.14: Termination performance of A∗OP on 1-interval connected instances.

We evaluate the termination time of A∗OP over G(n,p), edge-markovian and Random
Connected graphs. Let us recall that this algorithm only works on instances that are 1-
interval connected. The basicAOP algorithm employs, on average, 15 rounds for |V | =
10, 393 for |V | = 100 and 7753 for |V | = 1000, in Table 2 we can see the performance
for the symmetry breaking version (i.e., A∗OP ). As expected the symmetry breaking
extension allows the algorithm to terminate faster, the termination time is close to
the size of the network. Moreover we can see that the additional knowledge offered
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by the OP allows the counting algorithm to count faster then the ANoK or the A∗NoK
one.

4.5 Conclusive Remarks

In this Chapter we have shown that when a structure to convey counting information
towards the leader is missing, we can resort on a convergent processes that could lead
to terminating counting. The main results of this chapter is the algorithm AOP . A
perfect local oracle is implementable in many context: when the MAC layer could
gives up information about the number of neighbors or when the network is enough
stable to allow a local request-reply pattern. Another thing to notice is that AOP can
also be easily adapted to work when the network is directed and strongly connected
at each round. Provided that it is known in advance the out-degree of nodes. This is
due to the fact that the energy transfer mechanism does not care about the state of
receiving nodes. The technique used to know the cardinality of the new colored node
could be also adapted to work when coloring nodes do not know if all nodes at the re-
ceiving endpoint are colored or not. It is possible to solve this indecision receiver side.

Open Problems From the results presented in this Chapter we can identify the
following open problem:

• The presence of OOE is necessary for Lemma 37, on which are based all the
terminating algorithms presented in this section. An open problem is to find
out if it is possible to implement a monotonically convergent process similar
to the one that we showed in this section without using OOE . This would
seamlessly lead to a variation of AOOE that works in other settings.

• In contrast with Chapter 3, the algorithm AOP suffers from an upper bound of
exponential complexity due to our exponential upper bound on the convergence
of the energy-transfer mechanism. This mechanism is used to compensate the
lack of structure, i.e. at each round the position of the leader and of the previous
neighbors changes unpredictably. Therefore an open question is if it is possible
to find a sub-exponential upper bound on the convergence. In case of OOE the
bound is given by the quality of the local overestimation. A polynomial upper
bound for the energy transfer, if it exists, will show that when a local oracle is
present the counting time is polynomial despite the anonymity.



Chapter 5

Counting on G(1-IC)

In this Section we show a terminating algorithm that solves the counting on the
general family G(1-IC), this algorithm shows the equivalence, from the point of view
of the computability of predicates and aggregated functions, of G(1-IC) with IDs and
G(1-IC) with anonymous nodes and a distinguished leader.

Definition 14. (Subgraph) Given a dynamic graph G, a dynamic graph G′ is a
subgraph of G (i.e, G′ ⊆ G) if and only if G′ : [Gi1 , Gi2 , . . .] is an ordered subsequence
of G : [G0, G1, G2, . . .].

Let introduce a lemma on G(1-IC).

Lemma 40. Let consider a dynamic graph G : [G0, G1, G2, . . .] ∈ G(1-IC). We have
that exists h ∈ N+ and ∃G′ ⊆ G such that G′ is infinite and G′ ∈ G(PD)h.

Proof. The proof is by contradiction. Given a G : [G0, G1, . . .] ∈ G(1-IC) let us assume
that each distinct graph Gj ∈ G appears a bounded number of times, let us say
mGj ∈ N+. Now let us consider the set X of all possible graphs of |V | nodes, clearly
we have that this set is finite. Now let us consider the round x =

∑
∀Gj∈X mGj + 1

and the sub-sequence S : [G0, G1 . . . Gx] of G, let us consider the set of distinct graphs
Xs of S, we have that |S| ≤ ∑∀Gj∈Xs mGj ≤

∑
∀Gj∈X mGj but |S| = x + 1 that is

a contradiction. Thus exists at least one graph Gj ∈ G that appears in G an infinite
number of times.

Let us consider the subsequence G′ = [Gr0 , Gr1 , Gr2 , . . .] of G such that each
Gri = Gj . It is clear that G′ ∈ G(PD)h for some h ≤ Diameter(Gj) and that G′ is
infinite.

Lemma 40 tell us that to have a terminating counting algorithm on G(1-IC) is
sufficient to design a counting algorithm that always terminates correctly on instance
G′ ∈ G(PD)h, and that do not give a wrong result on G′ 6∈ G(PD)h. Since for any
G ∈ G(1-IC) there exists G′ ⊆ G,G′ ∈ G(PD)h we have that eventually a counting
algorithm designed in such way terminates correctly.
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5.1 The Algorithm

Both leader and non leader nodes check all possible subgraphs of G, let us define as
PG such set. For each G′ ∈ PG they start a different instance IG′ of the counting
algorithm. Let us remark that the system is synchronous and the current round
number r is known to all processes. Therefore each instance IG′ is uniquely identified,
for example by a binary string that has value 1 in position j if Grj ∈ G′ and 0
otherwise. The uniqueness guarantees that different instances cannot interfere with
each other. At each new round r the number of instances is duplicated, half of the
new instances will consider the messages exchanged in round r and the other half will
not consider these messages. As example at the end round 0 we have two instances
I1, I0. In instance I1 the counting is started and nodes have received the message
exchanged in G0. In instance I0 the counting has not been started, the messages
exchanged in round 0 are ignored. At round 1 we have four instances I11, I10, I01, I00:
I11 is an instance of counting in which messages exchanged in G0, G1 are considered;
in I10 are considered only messages exchanged in G1 and ignored messages exchanged
in G0; in I01 are considered only messages exchanged in G0 and ignored messages
exchanged in G1; in I00 the counting has not been started.

The pseudocode necessary to handle instances is trivial therefore will be omitted.

1: M(−1) = []
2: H(−1) = [⊥]
3: distance = −1
4:
5: procedure sending phase
6: send(Message :< distance,M(r), H(r) >)

7:
8: procedure rcv phase(MultiSet MS)
9: if distance == −1 ∧ ∃m ∈MS |m.distance 6= −1 ∧m.distance == r then

10: distance=m.distance+1

11: if r == distance then
12: for all m ∈MS |m.distance == −1 do
13: m.distance=distance+1

14: if r > distance ∧ ∃m ∈MS |m.distance 6∈ {distance− 1, distance, distance + 1} then
15: M(r + 1) = M(r).append(BAD)

16: if distance 6= −1 then
17: H(r + 1) = H(r).append(count distance neighbors(MS, distance− 1))
18: M(r + 1) = M(r).append(get messages from distance(MS, distance + 1))

Figure 5.1: Counting algoritm for G(1−IC): pseudocode for Non-Leader Node

In each instance IG′ , nodes run a slightly modified version of the OPT h algorithm
for G(PD)h (see Section 3.2 Chapter 3).

For simplicity in the explanation of the algorithm we refer to instance IG′ :
[Gi1 , Gi2 , . . .] and we use a round numbering consistent with instance IG′ , that is
if we say round 2 we refer to the round of i2 of G. Thus when we use the term Vh we
refer to the set of nodes that sets that in the instance IG′ have set their distance to
h at round r = h − 1 of G′, that is the round ih−1 of G. The modifications are the
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following:

• If vl detects that the instance IG′ is such that G′ 6∈ G(PD)h for any h ∈ N+ then
IG′ is considered BAD. When an instance IG′ is BAD it will be not considered
for counting. Moreover all instances IG′′ such that G′ is a prefix of G′′ will be
considered BAD.

• The get distance phase is not executed as in OPT h. Counting and distance
determination are done in parallel, as in the algorithm of Section 3.4.

• The counting of nodes at distance Vh is done by using the FD algorithm ex-
plained in Section 3.3. This allows the leader, if it does not terminate the count,
to detect:

− if a node v, that had set its distance to h at round r = h, at some round
r′ > r moves at some distance h′ 6= h. When this is detected the current
instance IG′ is considered BAD.

− If a node v that has no distance set, is neighbor of some node w at distance
h at some round r > h+ 1. When this is detected the current instance IG′

is considered BAD.

• The condition of termination cannot be the same of OPT h. The leader termi-
nates the count when the current instance is not considered BAD and it counts a
set Vh such that no node in Vh, has some neighbor in Vh+1. This same strategy
is used in the algorithm of Section 3.4.

The pseudocode for instance IG′ is reported in Figures 5.1-5.2.
It is intuitive that the code terminates correctly on a IG′ such that G′ ∈ G(PD)h.

It could be less intuitive that the code does not terminate incorrectly on an instance
IG′′ such that G′′ 6∈ G(PD)h.

Correctness Proof

Lemma 41. Let consider a dynamic graph G ∈ G(1-IC), and its subgraph G′. Let
consider the instance IG′ of the counting algorithm on G′ ∈ G(PD)h. We have that
vl will never consider IG′ as BAD.

Proof. The leader considers IG′ bad at Line 19. The line is executed either (a) if
a failure is detected by FD, i.e. a node v ∈ Vh at some round r > h − 1 is not
neighbor of nodes in Vh−1, or (b) if some set MS contains a BAD element. The latter
happens if a non leader-node v′ executes Line 15-Figure 5.1, that is v′ has a neighbor
with distance value that is not in {v′.distance − 1, v′.distance, v′.distance + 1}. By
definition of G(PD)h condition (a) cannot happen on G′, the same holds for condition
(b). Both conditions would implies that a node v is at distance h in a graph Gj ∈ G′
and at distance h′ 6= h in Gi ∈ G′ with i > j. Therefore the claim follows.

Lemma 42. Let consider a dynamic graph G ∈ G(1-IC), and its subgraph G′. Let
consider the instance IG′ of the counting algorithm on G′, we have that if exists a set
of nodes in Vh either (1) the leader eventually obtains the count Vh or (2) the leader
will consider IG′ as BAD.
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1: distance count[]
2: procedure sending phase
3: send(< leader >)

4:
5: procedure rcv phase(MultiSet MS :< distance,M,H >)
6: i = 1
7: if (distance count[i] 6= ⊥ ∧ distance count[i] 6= |MS|) ∨ (∃m ∈MS|m.distance > 1) then
8: BAD INSTANCE:terminate
9: distance count[i] = |MS|

10: i+ +
11: while true do
12: if MS 6= ∅ ∧ (∀m ∈MS : m.M = [⊥, . . . ,⊥] ∧ size(m.M) > 1) then
13: count =

∑
∀j|distance count[j]6=⊥ distance count[j]

14: output(count)

15: MS =buildLastNextDistanceSet (MS)
16: if MS = ⊥ then
17: break
18: if MS == failure then
19: BAD INSTANCE:terminate
20: distance count[i] = |MS|
21: i+ +

22:
23: function buildLastNextDistanceSet(MS)
24: MSlast = ⊥
25: if ∃BAD ∈MS then
26: return failure
27: if FDTree(Recent(MS, 0)) 6= ⊥ then
28: for r = MinRound(MS); r < MaxRound(MS); r + + do
29: if FDTree(Recent(MS, r)) == failure then
30: return failure
31: if FDTree(Recent(MS, r)) 6= ⊥ then
32: MSlast = FDTree(Recent(MS, rlast))
33: else
34: break
35: return MSlast

Figure 5.2: Counting algoritm for G(1−IC): pseudocode for Leader Node

Proof. The nodes in Vh set their distance at round r = h − 1, see Line 9 of Figure
5.1. At the same round an instance of FD between nodes in Vh−1, Vh is started:
the multiset of messages MSh sent at round h− 1 by node in Vh will be propagated
from nodes in Vh to vl during rounds [h − 1, . . . , rcounth ]. At each different distance
this is done by using other instances of FD: between nodes in Vh−1, Vh−2, nodes
in Vh−2, Vh−3 and so on. Now let us consider condition (A) that is instances of FD
between nodes in V0, . . . , Vh that are propagating towards the leader MSh never detect
a failure and no nodes in V0, . . . , Vh has a BAD elements in its multiset of messages
MS. If condition (A) holds we have that the leader will obtains the correct count of
nodes in Vh by reconstructing the multiset of messages MSh sent by node in Vh at
round h−1. This is ensured by Lemma 14 of algorithm FD and by a simple induction
on the count for each set Vi. Otherwise if condition (A) does not hold the instance
IG′ will be considered BAD either in line 25 or because some instance of FD fails
before the leader is able to reconstruct MSh.

Lemma 43. Let consider a dynamic graph G ∈ G(1-IC), if vl terminates then it
outputs the correct count.
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Proof. The Leader terminates at Line 12, that is the leader has reconstructed a mul-
tiset MSh from nodes in Vh such that for each M ∈ MSh: M contains at least two
elements and M contains only ⊥ value. The condition on the size implies that MSh
has been sent at round r′ ≥ h. For Lemma 42 we have that if this happen the leader
has correctly counted nodes in V0, . . . , Vh, we have to show that when Line 12 is trig-
gered we have V \ V0 \ . . . \ Vh = ∅. Let us assume Line 12 is executed and that it
exists v ∈ V \ V0 \ . . . \ Vh. We must have, for connectivity assumption, that such v
at round r′ is neighbor of some node in V0, . . . , Vh. If it is neighbor of a node v1 ∈ Vj
then v1 will put BAD in v1.M(r′). In order to reconstruct MSh the leader will also
reconstruct the multiset of messages MSj sent at round r′; two things may happen:
(1) that the leader receives the BAD message thus the Line 25 will be triggered, then
the instance is considered BAD and the Line 12 will not be executed; (2) that v1, or
some other node that is sending the BAD message to vl, is moved away. This triggers
a failure in FD during the reconstruction of MSh therefore Line 12 is not executed.
If v is neighbor of nodes in Vh and r′ > h we have the same behavior of the previous
case. The only possibility left is v neighbor of nodes in Vh and r′ = h. In this case at
least one node v′ in Vh will execute Line 12 setting v′.M(h) = [⊥,¬⊥] therefore Line
12 cannot be executed.

Lemma 44. Let consider a dynamic graph G ∈ G(1-IC), eventually vl terminates
and outputs the correct count.

Proof. For Lemma 40 there exists G′ ⊆ G with G′ ∈ G(PD)h. For Lemma 41 the
instance IG′ will never be considered as BAD by vl. This means that, see Lemma 42,
the leader will eventually obtain the count for each set V1, . . . , Vh on instance IG′ .
Since the set Vh+1 is empty we have that eventually vl will execute the terminating
condition. Therefore for Lemma 43 the leader will eventually terminates correctly on
IG′ . Moreover also for Lemma 43 if the leader terminates on another instance IG′′

with G′′ ⊆ G the counts is also correct. From these considerations the claim follows.

5.2 Conclusive Remarks

The algorithm in the worst case needs an exponential number of rounds: the adver-
sary, in the worst case, cycles among all possible graphs of |V | nodes, the length of
this cycle is exponential in |V |. We also have that the number of not BAD instances
grows exponentially with respect to the number of rounds, this implies an exponential
number of messages exchanged. This exponential cost in rounds, memory and mes-
sages means that the algorithm is not usable in practice. We designed a simulator of
a random adversary and even on small networks, less than 50 nodes, after few rounds
the memory requirements are overwhelming.

Let us notice that a dynamicity governed by an random random adversary does
not lead to good performance. The condition of stability on graph subsequence that
we are looking is a rare event on a sequence of purely random graphs. Therefore the
algorithms presented in Chapter 4, are more interesting, from a practical point of
view despite their strong requirements on knowledge, the presence of a local degree
detector oracle.
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However the algorithm shows that on G(1-IC) the only presence of the leader is
enough to obtain an exact count. When the size |V | of G is known for the property
of G(1-IC) we can construct a terminating broadcast algorithm.

Open Problems From the results presented in this Chapter we can identify the
following open problem:

• It is unknown if counting in G(1-IC) requires more than Ω(|V |) rounds. There-
fore an open question is to quantify the gap, if it exists, between the algorithm
proposed in this Chapter and the optimal counting time for G(1-IC).



Chapter 6

Conclusion

In this manuscript we have shown that counting in G(1-IC) is possible once is provided
the existence of an unique distinguished leader node. In the path towards this result
we have proved that on anonymous dynamic networks the time needed to output the
count is function of the network size for any dynamic diameter D > 3. Other exis-
tential results have been provided regarding the trade-off between the time needed to
count and the accuracy of deterministic counting algorithms. An optimal algorithm
for G(PD)h networks is given. In this kind of networks the adversary is strongly re-
stricted, nevertheless these networks could model a setting where nodes are positional
static and where the dynamicity of links among nodes is introduced by communica-
tion problems. The possibility of polynomial counting in G(∞-IC) leads to an efficient
way to implement deterministic broadcast on top of these networks. In Chapter 4
we have introduced a different technique to attack the counting problem under the
assumption of additional local knowledge. If a node knows its degree before the send
phase we have that it is possible to implement a deterministic terminating algorithm
that experimentally has been proved efficient, even if analytically we have only ob-
tained an exponential upper bound on its time complexity. Summarizing we have
used mainly two approaches to attack the counting problem, in the first one (used in
Chapter 3,5) we have exploited a certain structure in the dynamic network in order to
convey counting information towards the leader. In Chapter 3 the structure is always
present in the dynamic network, due to adversarial restriction. In Chapter 5 we use a
“trick” to find that structure, we simply consider all possible subsequences of rounds
until we find the one that ensures the structure on which we can count. In Chapter
4 where we have never considered this structure, we used a leader-based convergent
technique with deterministic terminating conditions.

These results are a small step towards a comprehensive picture of determinis-
tic computability in dynamic anonymous networks. The restriction imposed by the
presence of the leader is necessary. However, considering problems that are different
from the counting, a possible trade-off for its presence would be the knowledge about
the network size (see [50] and for a parallelism in anonymous static networks [68]),
or the assumption of an eventual symmetry breaking that would allow leader election.
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The following key problems are left opens:

• Considering the bounds presented in Chapter 2, it is easy to see that they
are heavily based on the indecision introduced by the lack of knowledge about
nodes degree. If a node knows its degree before the send phase then counting
in G(PD)2 is trivial, and it would require O(1) rounds. However it is not clear
if this would allow to design faster algorithms on G(1-IC). Therefore an open
question is to quantify, if it exists, the advantage given by degree knowledge in
the general model.

• The kernel based technique used in Chapter 2 has been fundamental to prove the
trade-off lower bound. Once the local knowledge about the dynamic network is
modeled as a succession of matrices the kernel space gives an exact characteriza-
tion of all possible local-undistinguishable networks, since it implicitly considers
all possible configurations that the adversary could create. We are looking for-
ward the possibility of an extension to general unknown G(1-IC) networks, but
it is more likely to expect applications in dynamic networks where a certain
structure is assumed, e.g. by having a recurrent set of edges as in [20, 60]. A
structure in the dynamic network imposes a structure in the succession of ma-
trices, structure that is necessary in order to have a closed characterization of
the kernel space.

• In the whole manuscript we have never considered bandwidth or space con-
straints. Therefore an interesting open question is about the minimal require-
ments needed to count. Let us consider networks in M(DBL)k, if we restrict
our attention on the class of algorithms where nodes send their last c degrees it
is easy to verify, by using the technique introduced in Chapter 2, that if c is not
order of log(|V |) then they cannot solve count. A generalization of this observa-
tion to all possible algorithms would lead to a bound on space complexity. We
conjecture that on G(PD)2 messages of size Ω(log2 |V |) are necessary, proving
this would lead to a non trivial lower bound for anoymous G(1-IC): when IDs
are present messages of size O(log |V |) are sufficient.

• A big question remains open about the solvability of deterministic terminating
counting on G(1-IC) in sub-exponential time. An exponential lower bound for
the problem will show that counting is solvable from a theoretical perspective
but it is not solvable in practice.
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