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Summary

The insulin signaling network (ISN) is an important metabolic network
that, upon the insulin binding to its receptor at the cell surface, triggers
the glucose uptake into the cell. The study of this mechanism within muscle
cells, hepatocytes and cells of the adipose tissue is of major interest since it is
crucial for understanding more clearly the factors that may induce the insulin
resistance. However, the structure and the behaviour of the insulin signaling
network are only partially known and the current research on this topic is
fragmented into various lines of investigation. Because of the high degree
of complexity of the ISN, it is difficult to understand, without a theoretical
framework, how the network responses evidenced from the experimental data
determine the cell behaviour.

In the present thesis, we proposed a detailed mathematical model of the
ISN in order to investigate the factors that affect the basal concentrations
and the dose-response curves (i.e., the steady state concentrations at given
insulin levels) of the main components of the whole network. Our model con-
centrated particularly on single and double phosphorylation of Akt protein,
and hypothesized the existence of a putative factor released by the small
intestine that induces insulin resistance by activating the mammalian target
of rapamycin complex 2 (mTORC2) in an insulin-independent manner and
possibly operating through the IGF-1 receptor. Such hypothesis is based on
clinical and experimental observations.

The parameters of the ISN model were estimated from the experimen-
tal data of two skeletal muscle cell lines using a least squares approach. As

the available data consisted in the equilibrium concentrations of many of the



known signaling components at given values of the insulin, we derived the
concentrations of the chemicals at the steady-state from the kinetic equa-
tions and then we implemented an algorithm that minimizes the distance
between the model outputs and the data. For the numerical solution, we
used a local optimization routine based on a derivative-free algorithm for
bound constrained optimization. The ISN model was able to adequately fit
the available experimental data. The model could thus become a useful tool
to generate and test hypotheses, leading to a deeper understanding of the
molecular mechanisms underlying insulin resistance and, in future perspec-
tive, to find drugs able to counterbalance the effects of this disease.

Finally, as it is now widely recognized that Akt and mTOR complexes
have a major role also in the regulation of cell proliferation, and then in can-
cer development, we combined the ISN model with a mathematical model
that described the evolution of a AML (acute myeloid leukemia) cell popu-
lation in order to investigate the effects of mTOR inhibitors with antitumor
activity on the ISN and on the cell population response. Based on literature
data of AML cell response to mTOR inhibitors with antitumor activity (the
dual ATP-competitive mTOR inhibitor AZD8055), the two models provided
simple relationships between the concentrations of proteins of the ISN and

parameters representative of cell cycle progression and cell death.
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Introduction

Physiological and cellular processes of the living systems are controlled
by metabolic, signaling and transcription networks, specialized for cell cycle
control, growth regulation, stress response, and many other cell functions.

In particular, cell signaling networks are complex cascades of reactions
triggered by the binding of a ligand to a receptor on the plasma membrane.
Inside the cell, signaling networks involve changes in protein-protein interac-
tions permitting cells to communicate with other cells and with the external
environment and to undergo phenotypic changes, such as cellular division,
differentiation, death and others. Hence, these networks can be considered as
information processing devices that translate input signals into output sig-
nals in which information is often coded by concentrations, modifications,and
localization of proteins, either in the stationary levels or in temporal patterns.

Systems biology research helps us to understand the structure of cell
signaling networks and how changes in these networks may affect the trans-
mission of information. Malfunctioning of signaling networks may alter phys-
iological processes of cells, potentially leading to severe consequences on the
organism. The most common pathologies caused by altered cellular signal-
ing networks concern heart diseases, metabolic disorders and immunological
abnormalities. Moreover, it has been demonstrated that networks malfunc-
tioning are involved with oncogenic properties of cancer cells [I].

The insulin signaling network (ISN) is an important metabolic network
that, upon the insulin binding to its receptor at the cell surface, triggers the
glucose uptake into the cell. The study of this mechanism within muscle

cells, hepatocytes and cells of the adipose tissue is of major interest since



it is crucial for understanding the mechanisms underlying insulin resistance,
which represents the common denominator of a series of diseases, including
obesity, type 2 diabetes (T2D), metabolic syndrome and cancer. However,
the dynamics of the insulin signaling pathway is only partially known and
the current research is fragmented. The complexity of the ISN derives not
only from the enormous amount of different molecules involved in the pro-
cess (often shared among pathways initiated by distinct receptors), but also
from the presence of several feedback and feedforward signals, both negative
and positive. Such links generate signaling networks rather than a linear
pathway. So, the analysis of ISN requires a combination of experimental and
theoretical approaches including the development and analysis of mathemati-
cal models and simulations. Without a theoretical framework, it is difficult to
understand how the complexities evident from experimental data determine
cell behaviour. We need a systems approach in order to achieve a deeper un-
derstanding of the molecular mechanisms underlying insulin resistance and,
in the future perspective, to find drugs able to counterbalance the effect of
the disease.

The main components and interconnections within the insulin signaling
pathway are well established [2, 8] [, [5], with the protein kinase B (PKB),
also known as Akt, and the two mammalian Target of Rapamycin Complexes
(mTORC1 and mTORC?2) playing a special role. Akt is phosphorylated on
Thr308 by the phosphoinositide-dependent protein kinase-1 (PDK1) and on
Ser473 by mTORC?2 [6], and the maximal Akt activity is achieved when the
molecule is phosphorylated on both residues, allowing the translocation of the
insulin-regulated glucose transporters (GLUT4) from the cytoplasmic pool
to the plasma membrane (PM) in muscle and adipose cell [7, [§]. PDK1 and
mTORC2 respond to the activation of the insulin receptors and also of the
insulin-like growth factor 1 (IGF1) [5], via the insulin receptor substrate 1
(IRS1), the phosphatidylinositide 3-kinase (PI3K), and the phosphatidylinos-
itol 3,4,5-trisphosphate (PIP3;). Akt activation results in the activation and
inhibition of a variety of targets, such as mTORCI, the glycogen synthase



kinase 3 (GSK3) and the Forkhead box protein O1 (FoxO1).

The kinase cascade through the insulin receptor (IR) up to mTORCI,
as well as the mTORC1 activation by amino acids and energy, are clearly
assessed [9]. By contrast, the upstream regulation of mTORC2 is not yet
well-characterized [10]. The tuberous sclerosis complex 1/2 (TSC1/TSC2)
appears to be required for mTORC2 activation [I1], [4]. However, this view
was questioned in a study that reported the experimental time courses of
several proteins of the ISN under amino acids and insulin stimulation [12].
Interpreting the data by a dynamic model of the network, it was argued that
mTORC2 activation pathway may originate from the IR or IRS1, possibly
via a variant of PI3K [12]. A still different view emerged from experiments in
non-diabetic mice both in vivo and in muscle biopsies, and in L6 cells exposed
to a medium enriched with proteins secreted by the small intestine of diabetic
rats and to serum from insulin resistant humans [I3]. This study showed
that jejunal factor/s induce insulin resistance and that these factors activate
mTORC2, as revealed by the increased value of Ser473 Akt phosphorylation
even in the absence of insulin stimulation. The presence of such intestinal
factors was also suggested by the decrease of insulin resistance following
bariatric surgery, a procedure in which a portion of the stomach and of the
small intestine are removed or bypassed [14].

As the mTORCI1 substrate S6 kinase 1 (S6K1) is involved in the reg-
ulation of protein synthesis and the growth of cell size, and FoxO1 in the
regulation of proliferation and apoptosis, the ISN appears to have a main
role not only in obesity and diabetes but also in cancer [5], [15, [9].

Following the seminal papers of Wanant and Quon [I6] and of Sedaghat et
al. [I7], several studies have investigated the insulin-induced behavior of the
ISN;, or of some of its components, by means of mathematical models and the
analysis of experimental data. Complex dynamical models, supported by the
analysis of the time-course of protein concentrations after insulin stimulation,
were developed and investigated in [12, 18, [19]. Other studies [20, 21] consid-

ered the dose-response curves (i.e., the steady state concentrations at given



insulin levels), that are largely used in the literature to assess the behavior
of ISN components at various levels of insulin stimulation and to evaluate
the response to perturbing agents and drugs.

Aim of the present PhD thesis is to investigate the factors that affect the
basal protein concentrations and the dose-response curves of the ISN. We
developed a mathematical model of the network at the steady state, focusing
mainly on the single and double Akt phosphorylation and on the upstream
signaling of mTORC2. Experimental data of C2C12 myoblasts with the
phosphatase and tensin homologue (PTEN) suppressed and data of L6 my-
otubes with induced insulin resistance have been analyzed by the model.
The factors that induce insulin resistance have been modeled according to
the findings in [13].

In detail, in Chapter [I| the main mechanisms underlying glucose-insulin
homeostatic control both at organ/tissue level and at molecular level are
discussed: we first show how the plasma glucose level is regulated by the
insulin from a top-down point of view with the main combined experimental-
modeling tools which are currently employed in investigating the behaviour of
the glucose-insulin system; then, we detail the biochemical chain of reactions
giving rise to glucose uptake in order to identify the key components of the
ISN.

Chapter [2| contains an overview of the main computational approaches
used to model signaling networks along with the most common methods of
parameter estimation for biochemical systems.

Chapter [3| describes several models of the insulin signaling network pro-
posed in the literature. The mathematical model used in the present work to
analyze the available experimental data is then introduced. The present ISN
model was developed in three stages: 1) the chemical reactions characterizing
the network were established and written according to the Michaelis-Menten
scheme; 2) as our goal was to investigate the factors affecting the basal con-
centrations and the dose-response curve of the main components of ISN, the

steady-state concentrations of the chemicals were derived from the kinetic



equations; 3) the expressions of steady-state concentrations were written in
a normalized form to reduce the number of unknown parameters.

Chapter [4| discusses the estimation of the parameters values of the pro-
posed ISN model. The model equations in the normalized form were fit to
the experimental data of two different skeletal muscle cell lines of rodents (L6
myoblasts and C2C12 myotubes) through minimization of a least-squares in-
dex. This chapter also reports a detailed description of the experimental
data used for the parameter estimation and of the optimization algorithm.
Moreover, a sensitivity analysis was performed in order to investigate how
changes of model parameters influence the system behaviour at the steady
state and to identify those parameters that have the greatest impact on the
system output. We also used the model to predict the effects of gene silencing
as well as the effects of inhibitors and drugs.

Finally, in view of the close relationship between insulin resistance and
cancer, Chapter | focuses on the combination of the insulin signaling model
with a cell population model. In order to link these two models, we considered
the response of the ISN and of an acute myeloid leukemia cell population to
a mTOR inhibitor with antitumor activity (AZD8055).



Chapter 1

Glucose homeostasis and insulin action:
from the organ and tissue level to the
molecular level

Glucose is the major source of energy for living cells. The body makes
glucose from all three elements of food (protein, fats, and carbohydrates)
but the largest amount of glucose derives from carbohydrates. However,
cells cannot use glucose without the help of insulin.

Insulin is the major hormone controlling energy homeostasis in human
body and dysfunction in the insulin control perturbs glucose homeostasis
leading to diseases such as type 2 diabetes (T2D) and its complications
(e.g. cardiovascular disease, nephropathy, and neuropathy). The glucose
homeostasis depends on the balance between hepatic glucose production and
glucose utilization by the major insulin-dependent tissues, such as liver, adi-
pose, and muscle, and by insulin-independent tissues, such as brain and
kidney. This balance is tightly regulated by pancreatic hormones: in normal
individuals, the response to increased plasma glucose levels is an increase in
secretion of insulin from beta-cells of the pancreatic islets. This increase in
insulin levels stimulates glucose transport into peripheral tissues and inhibits
hepatic gluconeogenesis. In addition to its primary effects on glucose home-
ostasis, insulin also promotes a number of other important cellular events
[22, 23].

Mainly due to the high social impact of diabetes (particularly of T2D in
industrialized societies, given its link with obesity [24]), the glucose-insulin
homoeostatic control has been one of the most intensely modeled biomedical
problems. Modeling attempts to represent quantitatively the main features



of the system, to improve the identification of the mechanisms involved, to
predict the future conditions of a given patient.

In general, two different but complementary strategies can be applied
to model physiological and biochemical systems: top-down and bottom-up
approaches [25]. In a top-down approach an overview of the system is formu-
lated, specifying but not detailing any first-level subsystems. Each subsystem
is then refined with more details, sometimes in many additional subsystem
levels, until the entire specification is reduced to base elements. In a bottom-
up approach the individual base elements of the system are first specified
in great detail. These elements are then linked together to form larger sub-
systems, until a complete top-level system is formed. In other words, the
top-down modeling stars from the physiological functions and moves to un-
derstand underlying mechanisms, while the bottom-up modeling starts from
the molecular details and build toward physiology.

Given the vastity of the field and the large number of important results
obtained over the past four decades or so, it is impossible to present in this
thesis all facets of the glucose homeostasis problem. However, to clearly un-
derstand the events leading to insulin-resistant states and the pathophysiol-
ogy of insulin deficiency, it is necessary to have a total body point view, that
is to consider the main mechanisms underlying the glucose-insulin homeo-
static control both at organ/tissue level and at molecular level. For this
reason, in the present chapter we first show how the plasma glucose level
is regulated by the insulin from a top-down point of view, with the main
combined experimental-modeling tools which are currently employed in in-
vestigating the behaviour of the glucose-insulin system. Then, we detail the
chain of biochemical reactions, known as the insulin signaling network (ISN),
that give rise to glucose uptake into the cell.

1.1 The regulation of the plasma glucose level by the
insulin

The glucose-insulin system can be viewed as a feedback control system
with a controller (the pancreas) and multiple effectors (muscle, liver, fat
tissue), where the only state variable of interest is the level of glucose in blood
(glycemia) that needs to be kept within a narrow range (110 + 30 mg/dl).
Abnormally low glucose concentrations (hypoglycaemia) give rise to anxiety,
tremors, aggressiveness, obfuscation, coma and eventually death while, on
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the other hand, excessive plasma glucose concentrations (hyperglycaemia)
produce microvascular damages and neural damages, leading among others

to blindness and chronic renal insufficiency.

Insulin-secreting cells of
pancreas stimulated to
release insulin
into the blood

Most body cells take
up more glucose

High blood -J*""/
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Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings

Figure 1.1: Action of insulin and glucagon on blood glucose level regulation.If
the blood glucose level falls to dangerous levels (as in very heavy exercise or lack of food
for extended periods), the alpha cells of the pancreas release glucagon, a hormone that
stimulate liver cells to convert glycogen into glucose (glycogenolysis) which then is released
into the bloodstream.Otherwise, when level of blood sugar rises, whether as a result of
glycogen conversion, or from digestion of a meal, insulin is released from beta cells found
in the islets of Langerhans in the pancreas. Insulin causes the liver to convert more glucose
into glycogen (glycogenesis), and to force cells (primarily muscle and fat tissue cells) to
uptake glucose from the blood, thus decreasing blood sugar.

The glycemia is monitored and regulated by the cells in the pancreas’s
islets of Langerhans through the mechanism shown in Fig. When in-
sulin secretion by the pancreas is insufficient or absent, due to autoimmune
destruction of g-cells, the clinical picture of Type 1 Diabetes (T1D) results;
when insulin is secreted in normal, or supranormal amounts, but it is ineffec-
tive in lowering glycemia to normal levels, Type 2 Diabetes (T2D) is present.
T2D accounts for about 90 to 95 percent of all diagnosed cases and it often



begins as insulin resistance, a condition where the body produces insulin, but
the cells do not use it properly. As the need for insulin increases, the pan-
creas progressively loses its ability to produce the hormone. It appears that
both genetic and environmental factors are responsible for the progression
from normal glucose tolerance to T2D [26], 27].

In the last decades, several works aimed to develop mathematical mod-
els of the glucose-insulin system in order to analyze experimental data, to
identify and quantify relevant biophysical and biochemical parameters, to de-
sign clinical trials and to evaluate diabetes prevention or disease modification
therapies. In the literature we find models focused on the pancreatic insulin
production, short-term organ/tissue models accounting for the intra-venous
and the oral glucose tolerance tests as well as for the euglycemic hyperin-
sulinemic clamp, and long-term diabetes models aiming to represent disease
progression in terms of g-cells population dynamics over a long period of
years.

In the following sections we review the main combined experimental-
modeling tools which are currently employed in investigating the behaviour
of the glucose-insulin system at the organ and tissue levels without getting
too deep into the molecular/subcellular details. These models describe the
glucose/insulin dynamics from a phenomenological viewpoint, after an exter-
nal perturbation within a relatively short time period and prove information
on goodness of pancreatic insulin secretion and the peripheral glucose uptake
in the subject under investigation. The clinical experiments, and the mathe-
matical models aimed at their interpretations, are very interesting since they
offer the possibility to estimate a set of key markers of T2D development.

1.1.1 The intra-venous glucose tolerance test (IVGTT)

The intra-venous glucose tolerance test (IVGTT) is a clinical experiment
where a glucose bolus is rapidly injected intra-venously into the forearm of
a subject. Glucose and insulin samples are acquired in the following 3 h,
during which glycemia and insulinemia return to their basal values. The glu-
cose injection is modeled as an instantaneous change in the plasma glucose
concentration. In healthy subjects, pancreatic insulin secretion consists of
two contributions: a first-phase release, which is a quick response to a sud-
den change in glycemia, and a second-phase release, which occurs some ten
minutes after the bolus injection. The first-phase of insulin response may



be modeled as an instantaneous change in the plasma insulin concentration,
whereas the second phase is described by the model equations. Many mathe-
matical models exist to represent the dynamics of this process, but the most
famous and of still widespread use is the so-called minimal model (m.m.),
proposed by Bergman et al. [28]. The m.m., in the first formulation, is com-
posed of two parts: one describing the dynamics of the glucose uptake after
the external stimulus, regarding the insulin concentration as a known forcing
function; the other describing the dynamics of the pancreatic insulin release
in response to the glucose stimulus, with the glucose concentration regarded
as a known forcing function. The model equations for the glucose dynamics
are:

% = —(p1 + X(1))G(t) + p1Gy, G(0) = Gy + A
O = XG0 + ps(1(1) T, X(0) =0. (1.1.1)

This two-compartment model shows that the plasma glucose concentration
G(t) does not directly depend on the plasma insulin concentration I(t), but
on the insulin concentration in a remote compartment, through the auxiliary
function X(t), called insulin action, whose dynamics depends on the plasma
insulinemia. Ag is the instantaneous change of glycemia due to the glucose
bolus injection and is computed as the ratio D/Vi, where D is the dose of
glucose injected and Vg is the apparent distribution volume of glucose. G,
and I, are the basal concentrations of blood glucose and insulin, respectively
and p;, p2, p3 model parameters.

The second part of the m.m., which is no longer used in the recent ap-
plications of the m.m., concerns the insulin kinetics and consists of a single
compartment model:

% = —n(I(t) = L) +t[G(t) —h]T, I(0)=1T,+A;. (1.1.2)
The insulin kinetics exhibits a linear clearance rate n, and the insulin secre-
tion rate is modeled by a time-varying forcing function proportional (accord-
ing with the parameter v) both to the hyperglycemia attained and to the
time elapsed from the glucose stimulus. Parameter h is the target glycemia
that the actual plasma glucose concentration needs to exceed to stimulate the
second-phase pancreatic insulin production. The first phase insulin release
is modeled by A;.
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The four unknown parameters of m.m. to be estimated from the data
(values of glucose and insulin concentration in plasma at given time points)
are: p; (also denoted as Sg, glucose effectiveness), ps, p3 and Vg.

The m.m. has played a crucial role in modeling the glucose-insulin system
and, although many criticisms have been raised in the last decade [29], [30],
it is still widely used in the clinical practice because of its ability to provide
some important markers of insulin efficacy. Among these markers the most
important is the insulin sensitivity index, defined as the quantitative influence
of basal insulin concentration to increase the glucose effectiveness at steady
state, [28]:

a[ 8dG} s

Si=anl " o ar

(1.1.3)

steadystate b2

1.1.2 The oral glucose tolerance test (OGTT)

The oral glucose tolerance test (OGTT) is a simple clinical test where,
after an oral glucose load of 75 g, plasma glucose and insulin concentrations
are measured at times 0, 15, 30, 60, 90, 120 and 180min. C-peptide must
also be measured to compute indexes of the insulin secretion. The OGTT
is currently used to aid diagnosis of glucose intolerance and T2D since this
test mimics the physiological conditions of the glucose/insulin system more
closely than the Euglycemic hyperinsulinemic clamp (EHC) or the IVGTT.
However, the analysis of the OGTT data by a mathematical model is very
difficult as the time course of the delivery to plasma of exogenous glucose
and even the total amount of glucose delivered are unknown and influenced
by several factors. Experimental determinations of the rate of appearance,
R,, of exogenous glucose in plasma have been obtained using a double tracer
technique by Ferrannini et al. [31), 32]. The Authors found a similar profile
for R, in healthy subjects and diabetic patients. Other groups reported R,
data during an OGTT or a meal test (MTT) (for instance, see [33]).

A mathematical model, developed with the aim of describing the kinetics
of the glucose/insulin system during an OGTT or an MTT, and of estimating
the parameters of clinical interest, was proposed by Caumo et al. in [34]. This
OGTT minimal model extends to the oral test the basic model proposed
for the IVGTT, with the difference that the glucose administration does no
longer appear as a bolus dose in the initial condition of the glucose equation,
but as the input function R,, rate of appearance of the exogenous in the
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plasma. The model equations are as follows:

% =—(p + X(1)G(t) + R‘jg), G(0) = G,
O — X0 +ps(10) ~ 1), X(0)=0, (1.1.4)

where G is the plasma glucose concentration (basal value, Gy), I is the plasma
insulin concentration (basal value, I,), X represents the insulin action and Vg
is the glucose distribution volume. In [33] parametric descriptions of the rate
of appearance were evaluated. The Authors represented the R, in by
a piecewise linear function with a given number (n) of break points:

i—1

a1+ (Z:?%l (t—tic1) i <t<t;,i=1,...,n
0 otherwise

with ty =0 and ag = 0 (R,(0) = 0). The a; values are to be estimated from the
glucose concentration data. The a priori identifiability of model parameters
is guaranteed if p; and Vg are assumed to be known [33].

Several more complex OGTT models were prosed in the literature as, for
instance, the models proposed by Breda et al. [35] that considered also the
insulin secretion, and the model proposed by Salinari et al. [36] where also
the incretin kinetics was taken into account.

1.1.3 Euglycemic hyperinsulinemic clamp (EHC)

The gold standard for investigating and quantifying yhe insulin resis-
tance is the euglycemic hyperinsulinemic clamp (EHC) [37] that measures
the amount of glucose necessary to compensate for an increased insulin level
without causing hypoglycemia. Indeed, insulin resistance expresses the im-
balance between the amount of pancreatic insulin, delivered in response to a
glucose load, and the levels of plasma glucose reached. To obtain the same
plasma glucose concentration, higher levels of plasma insulin are necessary
in insulin-resistant subjects than in normal controls.

EHC is the gold standard method for determining insulin sensitivity, in
spite of its long and intensive execution: through a peripheral vein a priming
dose of short-acting human insulin is given during the initial 10 min of the test
in a logarithmically decreasing manner, in order to raise acutely the plasma
insulin to the desired level; thereafter, insulin is infused at 10-120 mU per m?
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per minute and, to compensate for the insulin infusion, glucose is also infused
(blood glucose levels have to be between 5 and 5.5 mmol/l); the glucose and
insulin levels are monitored every 5 min and every 20 min, respectively, and
the rate of glucose infusion is adjusted following an ad hoc algorithm; the rate
of glucose infusion during the last 30-60 min of the test determines insulin
sensitivity. If high levels (7.5 mg/min or higher) are acquired, the patient is
diagnosed insulin-sensitive. Low levels (4.0 mg/min or lower) indicate that
the subject is insulin-resistant. Levels between 4.0 and 7.5 mg/min suggest
impaired glucose tolerance that may generate insulin resistance.

A mathematical model to explain the oscillations of glycemia occurring
in response to the hyperinsulinization and to the continuous glucose infusion
at varying speeds characterizing EHC, was proposed in [3§].

1.2 The intracellular insulin control of glucose uptake:
the insulin signaling network

At the molecular level, insulin regulates glucose homeostasis by stimulat-
ing the uptake of the glucose into the insulin sensitive tissues. In addition,
insulin also promotes a number of other cellular events including the regula-
tion of ion and amino acid transport, lipid metabolism, glycogen synthesis,
gene transcription and mRNA turnover, protein synthesis and degradation,
and DNA synthesis [22, 23] (see Fig. [L.2).

The biochemical network that, upon the insulin binding to a specific cell
surface receptor, triggers the glucose uptake into the cells is known as insulin
signaling network (ISN) [22].

Glucose uptake into the various tissues of the body is accomplished by
two general types of glucose transporters, Nat-dependent and facilitative
glucose transporters [39]. Na*-dependent glucose transporters are present in
the intestinal tract and kidney and are not known to be regulated by insulin.
Glucose uptake into all other types of tissue is accomplished by the facil-
itative glucose transporters. Five different facilitative glucose transporters
have been identified and are referred to as GLUTI-5. GLUT1 was the first
facilitative transporter to be identified, and it is present in placenta, brain,
kidney, colon and in lower amount in adipose tissue and muscle. GLUT2
is present predominantly in liver and pancreatic beta-cells and appears to
be involved in the glucose-regulated pathway leading to insulin secretion.
GLUT 3 is found in multiple tissues including brain, placenta, and kidney.
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Figure 1.2: Effects of insulin at molecular level. The insulin signaling system affects
numerous intracellular processes.

GLUTS is found predominantly in the small intestine. GLUT1, GLUT3, and
GLUTS5 are thought to be the major transporters involved in basal glucose
uptake. GLUT4 is the only glucose transporter that is regulated by insulin
and is found exclusively in the insulin-sensitive tissue cells, i.e. muscle cells,
hepatocytes and adipocytes [40]. In the absence of insulin, almost all of the
GLUT4 resides in an intracellular vesicular pool. The binding of the insulin
to its receptor on the plasma membrane activates a series of cascade re-
actions of phosphorylation/dephosphorylation (activation/inactivation) that
lead to a redistribution of the glucose transporter GLUT4 from the intra-
cellular storage sites to theplasma membrane resulting in an increase in the
rate of glucose uptake.

In the following sections, the most important elements of the ISN are ex-
amined, giving particular attention to the molecular interactions which gov-
ern the dynamics of the metabolic response triggered by insulin. We present
in more details the main elements constituting ISN that can be divided in
three main subsystems:

1. From insulin binding to PI3K activation;

2. Akt phosphorylation/dephosphorylation;
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3. Activation/inhibition of Akt substrates.

1.2.1 From insulin binding to PI3K activation

Insulin action initiates upon insulin binding to its receptor on the cell
surface.

The IR belongs to a family of ligand-activated receptors characterized by
intrinsic tyrosine kinase activity that includes, in addiction to IR, the insulin-
like growth factor-1 receptor (IGF-1R), the insulin receptor-related receptor
(IRR), the epidermal growth factor receptor (EGFR), the platelet-derived
growth factor receptor (PDGFR) and others. These transmembrane signal-
ing proteins are fundamental regulators of cell differentiation, growth, and
metabolism. Generally, each receptor is produced starting from two chains,
termed o and 3, that are covalently linked by a disulfide bond. The o chains
contribute to the formation of ligand-binding domain, while 8 chains carry
the kinase domain. In the case of insulin, two o chains and two g chains are
linked together forming a biologically active receptor heterotetramer (a?3?).
Figure [1.3] shows the structure of the IR that can be divided in two main
parts, the extracellular and the intracellular regions [22]. Although the chains
constituting IR are covalently linked, these two domains function indepen-
dently. The extracellular domain of IR consists of the entire a-subunits and
about one third of the g-subunits. This region is responsible for the insulin
binding and, precisely, the a-subunits contain the primary ligand-binding
site. The intracellular region can be divided into several sub-domains with
different functions and characteristics: the juxtamembrane region (JM), that
is implicated in regulating the IR internalization; the tyrosine kinase (TK)
domain containing the kinase-insert region; and the carboxyl-terminus do-
main, that contains two autophosphorylation sites.

Upon insulin binding, IR rapidly internalizes with a multistep process
and the internalized receptors undergo a sorting that determines whether
they will be subjected to degradation in lysosomes or they will recycle back
to the membrane surface. The IR on the plasma membrane are phospho-
rylated on the tyrosine residues. The activation of the insulin receptor Tyr
kinase leads to the phosphorylation of several endogenous substrates, includ-
ing insulin receptor substrates (IRS1, 2, 3, 4), She, GA B1, Cbl and others
that are phosphorylated on tyrosine residues [41]. Each of these phospho-
rylated proteins serve as docking proteins for other signaling proteins that

15



Cyeteine-Rich e Insulin Binding
Domain W= - Damain

-5-§—

o -Subunits

Alternately
Spliced Exon 11

i) & Transmembrane

=y & Ly o
[ A pen
e ——

Tyr %5 | Juxtamembrane
Tyrd72 Domain

a-f Disulfide Link

Lys'®8]  ATP-Binding
-Subunits
b —Tyr! :: Kinase-Regulatary
};: s Domain
1329 C-Terminal

~Tyr 33| Phasphorylation

Figure 1.3: Structure of insulin receptor. Model of the insulin receptor showing its
various structural and functional domains.

contain the Src-homology-2 domains (SH2 domains). Some SH2 proteins are
enzymes, such as the P-Tyr phosphatase SHP2 (SH-PTP2). Other SH2 pro-
teins, such as the p85 regulatory subunit of phosphatidyl-inositide 3-Kinase
(PI3K), function as adaptor proteins for downstream effectors that further
propagate the metabolic and the growth-promoting effects of insulin.

A number of protein tyrosine phosphatases (PTPases) can dephosphory-
late the insulin receptor, reducing its kinase activity and thereby attenuating
insulin action. Two PTPases have been implicated in the negative regulation
of the insulin receptor, PTP1B and LAR. Elevated expression of each these
phosphatases has been reported in the insulin-resistant patients [42].

IRS1 is a high-molecular-weight cytosolic protein, which contains 20 po-
tential tyrosine phosphorylation sites and over 40 potential serine/threonine
phosphorylation sites, and has been shown to be a major substrate for both
the insulin and IGF-1 receptors [43]. It has a conserved pleckstrin homology
(PH) domain that serves to anchor such receptors. IRS1 phosphorylated on
tyrosine residues serve as docking sites for SH2 domain-containing the p85
regulatory subunit of PI3K, leading to its activation. Several Ser/Thr phos-
phorylation sites of IRS1, if phosphorylated, reduce the ability of this protein
to interact with the insulin receptor and undergo Tyr phosphorylation thus
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impairing the insulin signaling and inducing insulin resistance. In particular,
the Ser302 phosphorylation of IRS1 by S6-Kinase (S6K) constituting one of
the most important negative-feedback loop present in the ISN . This negative
feedback inhibits upstream insulin signaling upon mammalian target of ra-
pamycin Complex 1 (mTORC1) and S6K1 activation. Also IRS1, as well as
IR, may be dephosphorylated by the PTP1B that thus negatively regulates
the insulin signaling pathway.

PI3-kinase plays a central role in the metabolic and growth-promoting
actions of insulin [44]. It is a heterodimeric enzyme constitued of a p110 cat-
alytic subunit and a p85 regulatory subunit. The regulatory subunit main-
tains the p110 catalytic subunit in a low-activity state. Activation of PI3-
kinase occurs upon direct interaction of the regulatory subunit with adaptor
proteins such as the IRS proteins [43].

1.2.2 Akt phosphorylation/dephosphorylation

The association of p85-p110 complex with IRS molecules results in the
production of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) [45, [44]
. The most relevant function of PI(3,4,5)P3 is the ability to interact with the
phosphoinositide-dependent kinase 1 (PDK1), the protein kinase B (PKB),
also known as Akt, and other signaling molecules. These interactions result in
the recruitment of these proteins to the plasma membrane triggering changes
in their structure, function and their substrate availability. In the case of
PDKI1, binding of its PH domain to P1(3,4,5)P3 enables it to phosphorylate
several downstream effectors, such as protein kinase C (PKC) and PKB/Akt
and thus to further propagate the metabolic and growth promoting functions
of insulin.

Moreover, two important lipid phosphatases are commonly present in
the system and they mainly operate decreasing the levels of PI(3,4,5)P3:
the phosphatase and tensin homologue, PTEN, and the SH2 domain con-
taining inositol-5-phosphatase, SHIP2. In particular, PTEN acts removing
the phosphate in the 3-position of the inositol ring from phosphatidylinos-
itol PI1(3,4,5)P3 to produce PI(4,5)P2. SHIP2 specifically hydrolyzes the
5-phosphate of P1(3,4,5)P3 to produce PI(3,4)P2. Thus both enzymes coop-
erate as antagonists of the PI3K/Akt/mTOR pathway modulating cell cycle
progression and cell survival. PI3K and PDK1 also trigger the activation of
the atypical PKC isoforms (PKC¢ and PKC)). Two specific sites, Thr410
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and Thr560, need to be phosphorylated for full activation of this molecule
which has, as main function, the regulation of GLUT4 translocation to the
cellular membrane and subsequent induction of glucose transport inside the
cell. PKC plays an important role constituting a negative feedback control
mechanism that serves to terminate insulin action. This feedback loop in-
volves the phosphorylation of IRS proteins and leads to IRS dissociation from
IR, thereby terminating insulin signaling.

Akt is a serine/threonine-specific protein kinase and is one of the major
substrates of PDK1 [41]. It is implicated in mediating numerous aspects of
insulin action, including the regulation of glucose transport, glycogen synthe-
sis, protein synthesis, the antilipolytic effects of insulin, as well as cell growth
and cell survival induced by insulin [5]. Akt contains a PH domain that al-
lows the binding to PI(3,4,5)P3 following PI3K activity and its targeting to
the PM. Akt association with PI(3,4,5)P3 brings it to the proximity of PM
facilitating the phosphorylation of Akt at Thr308 by PDK1 while mTORC?2
(mammalian target of rapamycin complex 2) catalyzes Akt phosphorylation
on Serd73 [6]. The maximal Akt activity seems to be achieved when the
molecule is phosphorylated on both Thr308 and Ser473 residues, allowing
the translocation to Pm of GLUT4 glucose transporters in muscle and adi-
pose tissue [7, 8, [46]. The protein phosphatase PHLPP dephosphorylates
Akt at Serd73 and the phosphatase PP2A dephosphorylates Akt at Thr308.
Moreover, Akt may inactivate PTP1B upon phosphorylation at Ser50, which
enhances insulin signaling via a positive feedback loop [47]. Indeed, phospho-
rylation of PTP1B by Akt impairs the ability of PTP1B to dephosphorylate
insulin receptors and IRS. As PTP1B itself negatively modulates insulin sig-
naling, the downstream negative regulation of an upstream negative signaling
element represents a positive feedback loop for insulin signaling.

1.2.3 Activation/inhibition of Akt substrates

Akt with its phosphorylated forms may be considered the core of the ISN
because it promotes the phosphorylation of a series of substrates that play a
key role in the regulation of glucose uptake, glycogen and protein synthesis.

The first action is achieved by Akt mediating the translocation of GLUT4
glucose transporter to the cell membrane. This mechanismi involves AS160,
which is a Rab GTPase-activating protein, for the translocation and target-
ing of trasporters to the PM [46], and SNARE regulatory proteins for the
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fusion event [48]. Despite recent studies tried to uncover this mechanism,
several steps in GLUT4 trafficking, including endocytosis and sorting are
still unclear.

The glycogen synthesis involves the phosphorylation and inactivation by
Akt of glycogen synthase kinase 33 (GSK3p3) at Ser9. Phosphorylation at
this site causes a conformational change, preventing the access of substrates
to the active site. GSK3p acts phosphorylating and inactivating the glycogen
synthase (GYS) that has a key role in the conversion of glucose to glycogen.
It is also known that the inactivation of GSK33 also plays an important role
in the Wnt signalling pathway which is critical for embryonic development
[49).

The regulation of protein synthesis implicates the phosphorylation and
inhibition of the tuberous sclerosis complex 1/2 dimer (TSC1-TSC2) by Akt.
The TSC1-TSC2 complex acts as a GTPase-activating protein (GAP) for the
small GTPase Ras homologue enriched in brain (GTP/Rheb) and the pri-
mary function of this complex is as a critical negative regulator of mTORC1
activation. Since Akt-mediated phosphorylation of TSC1-TSC2 complex im-
plies the conversion of GTP/Rheb into GDP/Rheb, and GDP-loaded Rheb is
unable to activate mTORC1, TSC complex effectively shuts off mTORC1 sig-
naling. Moreover, several studies suggest that the TSC1-TSC2 complex can
also positively regulates mTORC2 in a manner independent of its GTPase-
activating protein activity toward Rheb. In [II], the Authors found that
mTORC2 isolated from a variety of cells lacking a functional TSC1-TSC2
complex was impaired in its kinase activity toward Akt. The defect in the
mTORC2 activity in these cells was found to be separated from the known
feedback mechanisms (via mTORC1) affecting IRS1 and then PIP3 that it
is recognized as a mTORC2 activator [9)].

The mammalian target of rapamycin (mTOR) is considered as a central
controller of cellular metabolism and also of cellular growth. In the past
few years, several studies focused on mTOR functions have revealed its cru-
cial involvement in the onset and progression of diabetes, cancer and ageing
[15, @]. In particular, mTOR regulates the anabolic and catabolic processes,
including translation, ribosome biogenesis and autophagy, in response to hor-
mones, growth factors (insulin), nutrients (amino acids), energy and stress
signals. Deregulation of the mTOR pathway occurs in several human dis-
ease [50, [51], [52]. Small molecules that target mTOR are becoming of great
clinical interest in view of their ability to arrest the growth of the cancer.
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Over-stimulation of the mTOR pathway by excess food consumption may
be a crucial factor underlying the diabetes epidemics. Recent findings sug-
gest that mTOR signalling controls the rate at which cells and tissues age,
and then inhibiting mTOR may represent a promising avenue to increase
longevity.

mTOR is the catalytic subunit of the two distinct complexes mTORC1
and mTORC2, which are involved in different biological processes as schemat-
ically represented in Figure [1.4]
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Figure 1.4: mTORC1 and mTORC2 complexes. mTORCI responds to amino
acids, stress, oxygen, energy, and growth factors and is acutely sensitive to rapamycin.
It promotes cell growth by inducing and inhibiting anabolic and catabolic processes, re-
spectively, and also drives cell-cycle progression. mTORC2 responds to growth factors and
regulates cell survival and metabolism, as well as the cytoskeleton. mTORC2 is insensitive
to acute rapamycin treatment but chronic exposure to the drug can disrupt its structure.

mTORCI is constituted by the DEP domain-containing mTOR-interacting
protein (DEPTOR), the mammalian lethal with SEC13 protein 8 (mLST8
or GBL), the regulatory-associated protein of mTOR (RAPTOR) and the
40 kDa Prorich Akt substrate (PRAS40). mTORC2 has DEPTOR and
mLST8 in common with mTORC1 but, differently from it, contains the
rapamycin-insensitive companion of mTOR (RICTOR) and the mammalian
stress-activated map kinase interacting protein 1 (mSIN1).

mTORCI1 is the better characterized of the two mTOR complexes while
much less is known about the mTORC2 [5]. Activated mTORC1 up-regulates
protein synthesis by phosphorylating key regulators of mRNA translation and
ribosome synthesis. mTORCI substrates are the S6-kinase (p70-S6K), the
translation initiation regulator 4E-binding protein (4E-BP) and the mTORCI1-
inhibitor PRAS40. Activation of p70-S6K is regulated by a wide range of
extracellular signals including growth factors, hormones, nutrients (glucose
and amino acids), and stress. Works from many research groups have revealed
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the complexity of S6K1 activation via sequential phosphorylation at multiple
sites [53, [54]. The best characterized sites are Thr-229 (T229) and Thr-389
(T389) and it is known that PDK1 and mTOR can phosphorylate T229 and
T389, respectively. In particular, mTORC1 phosphorylates T389, creating
a docking site for PDK1, which is then able to phosphorylate the activation
loop T229. More recently, it has been found that Ser-371 (S371) is essential
for T389 phosphorylation and S6K1 activity [15]. However, it remains un-
clear how the S371 phosphorylation is regulated. Fully actived p70-S6K is
an important element in insulin pathway also because of the phosphorylation
and the inhibition it carries out on IRS. Precisely, p70-S6K phosphorylates
IRS at multiple serine residues, resulting in the accelerated degradation of
IRS. Thus it constitutes a negative-feedback loop that inhibits upstream in-
sulin signaling. The action of this negative feedback is widely described in
the literature (see, for instance, [2 [, 55, 56]).

Unphosphorylated 4E-BP1 suppresses mRNA translation. More pre-
cisely, when phosphorylated by mTORC1 at Thr37, Thr46, Ser65 and Thr70,
4E-BP1 dissociates from the eukaryotic translation initiation factor 4E (eIF4E),
which is involved in several cellular processes including enhanced transla-
tional efficiency, splicing, mRNA stability, and RNA nuclear export.

PRAS40 contributes to the inhibition of mTORCI activity [57, 58]. In
response to insulin, mMTORC1 phosphorylates PRAS40 at Ser183 and this
action causes the release of PRAS40 from the complex and relieves its in-
hibitory effect on mTORC1 which is allowed to phosphorylate the remaining
substrates. Moreover, also Akt phosphorylates PRAS40 so causing it to bind
to cytosolic anchor proteins and preventing it from inhibiting mTORC1 [59].

In addition to regulating the production of proteins, mTORC1 controls
the synthesis of lipids required for proliferating cells to generate membranes
[60]. In yeast and mammals, an important mTOR inhibitor is rapamycin
that inhibits the ability of mTORC1 to phosphorylate its substrates [61].
Rapamycin binds the small protein 12 kDa FK506-binding protein (FKBP12)
and, in turn, rapamycin-FKBP12 binds and inhibits the kinase activity of the
RAPTOR-bound mTOR. Because acute treatment with rapamycin does not
perturb mTORC2 signaling and rapamycin-FKBP12 cannot bind to intact
mTORC2, this complex was originally thought to be rapamycin insensitive
[62]. However, the situation turns out to be much more complex as long term
treatment with rapamycin reduces mTORC2 signaling in some, but not all,
cell types and does so by suppressing mTORC2 assembly [63].
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In general, the upstream and downstream regulators of mTORC2 are
less characterized compared to mTORC1. Recent findings have revealed
mTORC2 mediates the phosphorylation of Akt at Ser473 and then it is im-
portant for the full activation of Akt [6]. mTORC2 may favour cell survival
through Akt-mediated inhibition of the forkhead box protein O1 (FOXO1)
and FOXO3: phosphorylation of FOXO1 and FOXO3 by Akt effectively
prevents them from translocating to the nucleus and activating the gene ex-
pression programmes that promote apoptosis. Moreover, mTORC2 activates
PKC-a that regulates cell shape in cell-type-specific fashion by affecting the
actin cytoskeleton [62].

1.2.4 Pathologies related to dysfunctions of the insulin signaling
network

The previous sections have stressed as the ISN components have key roles,
not only in the glucose metabolism, but also in other important cellular pro-
cesses such as apoptosis, cell proliferation, transcription and cell migration.
Malfunctioning of the ISN may alter these physiological processes of cells,
potentially leading to severe consequences on the organism. So, investigat-
ing the mechanisms responsible for insulin signaling impairment is of primary
importance. The most common pathologies caused by an altered ISN are the
insulin resistance, T2D and cancer [5, 15, 52]. Moreover, insulin resistance
is often associated with central obesity, hypertension, and atherosclerosis,
and diabetes involves many long-term complications including heart diseases,
strokes, diabetic retinopathy, kidney failure and poor circulation in the limbs
which may lead to amputations.

A detailed analysis of regulatory processes in the ISN may permit to
develop new insights about the origin of these pathologies and, in future
perspective, to find a drug or combination of drugs able to counterbalance
the effect of the diseases. Such purpose has been followed by several research
groups in the last decades. For instance, Guertin et al. [64] demostrated
that the development of prostate cancer caused by Pten delection in mice
requires mTORC2, but that for normal prostate epithelial cells, mTORC2
activity is nonessential. So, the selective requirement for mTORC2 in tumor
development suggests that mTORC2 inhibitors may be of substantial clinical
utility. Chresta et al. [65] studied the in vivo and in vitro antitumour activity
of AZD8055, a potent mTOR inhibitor. In [55], the Authors showed how
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the absence of S6K1 protects against age- and diet-induced obesity while
enhancing insulin sensitivity.
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Chapter 2

Mathematical modeling of cell
signaling networks and parameter
estimation in biochemical pathways

Biochemical pathways are the molecular mechanism involved in the var-
ious physiological and cellular processes of the living systems. These path-
ways can be categorized into three major groups: metabolic, signaling and
gene regulatory networks, which control the expressions of some sets of genes,
proteins or chemical compounds to regulate different phenotypic expressions.
Therefore, the study of the various biochemical pathways is very important
to identify their roles in several human diseases, such as cancer or diabetes.

Signaling pathways are complex, interdependent cascades of signals that
sense input stimuli (e.g. extracellular ligands or intracellular metabolites)
and transmit, process, and integrate this information to provide output sig-
nals that accordingly regulate the cell activity. Signaling networks permit
cells to communicate with each others and with external environment and to
undergo phenotypic changes, such as cellular division, differentiation, death
and others. Hence, these networks can be considered as information process-
ing devices that translate input signals into output signals in which infor-
mation is often coded by concentrations, modifications, and localization of
proteins, either in the stationary levels or in temporal patterns. In biologi-
cal systems, signal transmission occurs mostly through two mechanisms: (i)
protein-protein interactions and enzymatic reactions such as protein phos-
phorylation and dephosphorylation, (ii) protein degradation or production
of intracellular messengers.

Despite substantial progresses over the past three decades in biochemistry,
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molecular biology and cell physiology, together with emerging techniques for
detecting protein-protein interaction, the construction and the analysis of
cellular signaling networks remains too complicated for the human mind.

The complexity of the signal transduction pathways inside the cells de-
rives not only from the enormous amount of different molecules involved in
the process but also from the presence of numerous feedback and feedfor-
ward loops, both negative or positive, concerning the pathway itself, and
the crosstalks involving distinct pathways. For instance, a negative feedback
loop can give rise to adaptation and desensitization, while a positive feed-
back loop can lead to emergent network properties such as ultrasensitivity
and bistability [] [66]. Furthermore, cellular components rarely function in
just one location, but dynamically shuttle between cellular organelles [67), 68].
The network resulting from multiple interactions and dynamic localization
enables the cells to process information in a context-dependent manner.

Due to this high degree of complexity, it has been necessary to develop
mathematical models to more deeply understand the system behavior of sig-
naling networks, and to predict higher order functions that can be validated
by the experiments.

In the present chapter, different types of mathematical representations
for the modeling of the signaling networks are described and the advantages
and disadvantages of each type are discussed. Then, we discuss the main
problems arising in the assessment of model parameter values and the most
common methods used to estimate the parameters from the experimental
data.

2.1 Mathematical tools for modeling regulatory cellu-
lar networks

Experimental biology alone may not provide a strategy for a detailed anal-
ysis of complex signaling networks, that instead requires a combination of
experimental and computational approaches including the development and
analysis of mathematical models. This is the idea at the basis of Systems Bi-
ology. Kitano [69] states “to understand complex biological system requires
the integration of experimental and computational research - in other words a

Tn biological context, a system exhibiting bistability might shift from ‘low’ to ‘high’
steady state in response to a signal of sufficient duration and amplitude.
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systems biology approach.” Computational methods provide useful informa-
tion to guide experimental design, whereas data collected from experiments
help the implementation and refinement of computational models, providing
more accurate predictions on the behaviour of biological systems.

Computational methods used to study cell signaling networks are typ-
ically classified into two main categories: structural and dynamic network
analysis [70].

Structural network analysis depicts the regulatory network as a connec-
tion map (makes use of graph theory), in which the nodes represent the
distinet chemical species populating the system, and the edges (with sign)
their interactions. The aim is to give information about the network connec-
tivity and to deduce some properties of the global network as well as some
functions of the individual proteins. An advantage of these models is that
they can be developed for large numbers of components and interactions.
However, these connection maps are largely qualitative and then have lim-
ited use in understanding how networks behave dynamically in space and
time.

An example of structural analysis is the boolean method. In the boolean
model the signal transduction is discretized and can be either present or
absent. This two-states modeling represents an extreme simplification of the
underlying biochemistry and cannot be used to predict the time course of
protein concentrations.

Dynamic network analysis utilizes the network connectivity information
and makes use of the kinetic parameters characterizing the biochemical reac-
tions in order to determine how the system changes in time and spaceunder
external stimulation. Kinetics parameters, also known as kinetic rate con-
stants, give information about the speed of a chemical reaction and thus
about how fast the reactants are transformed into products.

Typically, the dynamic models are built in three steps. The first step
is to generate a connection map and to identify regulatory features. After
writing out the reaction schemes and collecting the necessary parameters, the
modeler generates the mathematical model using the appropriate framework.
Once the simulations have been performed, comparison between in silico and
in vivo/in vitro experiments enables the estimation of the parameters that
are not experimentally accessible with the current technology. Finally, the
model has to be validated. Besides verifying whether a proposed molecular
mechanism is correct, modeling identifies major regulatory hubs of signal-
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ing networks, and helps to uncover possible targets for the pharmacological
intervention in diseases.

However, even though the dynamic models are more informative than the
structural models, they require the additional knowledge of a large number of
numerical values describing the kinetics of the reactions. The implementation
of dynamic models easily presents problems due to the limited data available
from experiments. Moreover, the values of kinetics parameters often depend
on cell type, experimental conditions and other factors. These values may
differ of a order of magnitude from test to test, and in some cases they may
remain under-determined or non-uniquely estimated. Despite these difficul-
ties, dynamic models are widespread and they have been currently used by
many research groups with successful results.

Broadly, the mathematical models used to describe the dynamics of bio-
chemical reactions can be deterministic or stochastic. In deterministic mod-
els, the change in time of the components’ concentration is completely deter-
mined by specifying the initial, and in some cases, boundary conditions. By
contrast, the changes in concentration of components with respect to time
cannot be fully predicted in stochastic models. During a given period, the
reaction might or might not occur and the probability of occurrence is related
to the kinetic rate constant.

The choice of the modeling methodology depends on the cellular process
that is being investigated and the experimental tools that are available. De-
terministic models are a good description when the distributions of reactants
can reasonably be assumed to be continuous. This holds when the number
of molecules is large enough (> 102 — 10® molecules per reactant)[71]. In the
eukaryotic metabolism and signal transduction, these numbers justify the use
of deterministic kinetic models. On the other hand, the use of a stochastic
model is necessary for problems in which fluctuations have a significant role,
such as in phenotypic variations and in gene regulation. The biochemical
fluctuations or ‘noise’ inherent in such stochastic systems are often exploited
in cellular functions, resulting in spontaneous switching from one biochemical
state to another [72].

In the following, we focus mainly on the deterministic models describing
the three most commonly used types, that is: chemical kinetics models,
compartmental models, and diffusion-reaction models [73].
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2.1.1 Chemical kinetics models

The most commonly used approach to model cellular signaling networks
uses the formalism derived from the chemical kinetics theory. The governing
equation that describes the dynamics of a signaling network component X
has the form:

% = production — consumption (2.1.1)

The equation above states that the rate of change in concentration of any
molecule (called substrate) is equal to the difference between the rate of
production and the rate at which it is consumed. The generation and con-
sumption terms can be a constant (e.g., synthesis), first order reactions (e.g.,
degradation), or nonlinear (e.g., second order reactions or Michelis-Menten
kinetics for enzymes). Chemical kinetics models are implemented using a
set of ordinary differential equations (ODEs) where the only independent
variable is the time. In these models, the concentrations of chemicals are
assumed to be independent of space. The advantage of ODE-based models
is that, although analytical solutions are not guaranteed (in most cases, it
cannot be obtained), various numerical methods for solving ODEs systems
are well developed.

An example of a chemical kinetics model is the mass action law that states
that the rate of any chemical reaction is proportional to the product of the
masses of the reacting substances, with each mass raised to a power equal
to the coefficient that occurs in the chemical reaction. Thus, for instance,
a bimolecular reaction, A + B £ €, proceeds at a rate proportional to the
product of the concentrations of the substrates, k[A][B] (the squares brackets
denote concentrations).

Michaelis-Menten kinetics

In biochemistry, Michaelis-Menten (MM) kinetics is one of the best-known
models of enzyme kinetics. It involves an enzyme E binding to a substrate
S to form a complex C, which in turn may give back the substrate or be
converted into a product P plus the unmodified enzyme [74]. MM kinetics
may be represented schematically as

S+ELctypip (2.1.2)
kq
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where k,,kq, and k. denote, respectively, the association, dissociation and
catalytic rate constants. The double arrows between S and C represent the
fact that enzyme-substrate binding is a reversible process whereas the final
catalytic step is irreversible. The MM scheme in (2.1.2)) is used in a variety
of biochemical situations other than enzyme-substrate interaction, includ-
ing antigen-antibody binding, DNA-DNA hybridization, and protein-protein
interaction [75].

Applying the mass action law to the two chemical reactions in ,
we can write the following system of four non-linear ordinary differential

equations:
dsS
T —k,ES + k,C
d—E = —koES + kqsC + k.C
jé (2.1.3)
o =k ES — k4C — k.C
dP
T k.C
with the initial conditions:
S(O) = Stot 5
E(0) = B4 ,
(©) = Buor (2.1.4)
c(0)=0,
P(0)=0,
and the conservation laws
Stot:S+C+P, (215)
Etot:E+C. (216)

The quantities S, E,C, P are time-dependent concentrations. Note that, be-

cause of (2.1.5))-(2.1.6)), the system (2.1.3)) of four ODEs can be reduced to a

system of only two non linear differential equations with the corresponding
initial conditions:

ds

df = *ka(Etot — C)S + de' S(O) = Stot )

dé (2.1.7)
o= +ko(Eior — C)S — (kg + k.)C C(0)=0.

The systems ([2.1.3]) cannot be solved in closed form, but only numerically,
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for any specific values of the initial conditions and the kinetic parameters.
Actually, it would be very useful to have a closed form expression for the
rate of the reaction S — P, because that expression could be compared to the
experiments and the rate constants could be determined.

Michaelis and Menten [74], in their original analysis, assumed that the
substrate is in instantaneous chemical equilibrium (equilibrium approzima-
tion) with the complex and derived an approximate formula. In particular,
they assumed

ko ES = kqC'.

Combining the above expression with the enzyme conservation law ([2.1.6)),
they obtained

ka(Eror — C)S = kyC'.

and then

_ EtotS
K g+ S’

with Ky = k,/ks. Hence, the velocity v of the reaction (the rate at which P is
formed) is:

’U*E* VmamS
Cdt 7Kd—|—S

(2.1.8)

where V.. = kcFio 1s the maximum reaction velocity, obtained as S tends to
infinity.

In 1925, the British botanist G. E. Briggs and the British geneticist J. B.
S. Haldane undertook an alternative analysis of the system (2.1.3]) [76]. They
assumed that the concentration of the intermediate complex does not change
on the time-scale of product formation, that is, the dynamics of the complex is
faster than the substrate dynamics. Mathematically, this assumption, known
as the standard quasi-steady-state approzrimation (sQSSA), means that:

dC

7 = 0= kaBS = kaC + kC (2.1.9)

Combining this relationship with the enzyme conservation law (2.1.6)), the
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concentration of complex is given by

_ EtotS
B Km + S ’

where

7kd+kc

K
ka

(2.1.10)

is the so-called Michaelis-Menten constant. Thus, the reaction rate v becomes

dP  dS  k.EiwS

e L (2.1.11)

Reaction rate

Substrate concentration

Figure 2.1: Michaelis-Menten saturation curve for an enzyme reaction showing
the relation between the substrate concentration and the reaction rate.

The reaction rate increases with the substrate concentration and asymp-
totically tends to its maximum V,,., = k.E::, attained when all the enzyme
is bound to substrate (Figure . The constant k., the turnover number, is
the maximum number of substrate molecules converted to product per en-
zyme molecule per second, and the constant k./K,, (catalytic efficiency) is a
measure of how efficiently an enzyme converts a substrate into the product.
The MM constant K,, represents the substrate concentration at which the
reaction rate is at half of V,,,, and is an inverse measure of the affinity of the
substrate for the enzyme (a small K,, indicates high affinity, meaning that
the rate will approach V,,., more quickly).

The parameters V,,.., and K, describe completely the kinetics of a MM
reaction in sQSSA and they can be computed from experiments [77]. The
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advantage of the sQSSA is that it reduces the dimensionality of the system
(2.1.3) and thus speeds up the numerical simulations, especially for large net-
works as found in vivo. Moreover, the kinetic constants kg, k4, k. are usually
unknown, whereas finding the kinetic parameters K,, and V,,,, is a standard
in vitro procedure in biochemistry [77].

The resulting reaction rates predicted by the two approaches (equilib-
rium approzimation vs sQSSA) are similar, with the only difference that
the equilibrium approximation defines the constant as K,, whilst the quasi-
steady-state approximation uses K, (see and ) However, each
approach is founded upon a different assumption. The Michaelis-Menten
equilibrium analysis is valid if the substrate reaches equilibrium on a much
faster time-scale than the product is formed or, more precisely, if

ka
<1,
<

By contrast, the Briggs-Haldane quasi-steady-state analysis is valid if:

Etot

— <« 2.1.12
Km+5tot < ’ ( )

i.e., the total enzyme concentration must be much lower than the sum of the
total substrate concentration and the MM constant[78] [79].

According to the procedure described by Segel [78], the first step in at-
tempting to determine the parameter ranges for which the sQSSA is valid
is to estimate two time scales. Recalling that the simplifying assumptions
of the sQSSA are that the complex dynamics is faster than the substrate
dynamics and that during this fast complex transient the substrate does not
decrease appreciably, we have: 7, the time that characterizes the duration of
the fast transient, and 7, the time interval required for a significant change
in S during the post-transient period (see Figure .

The estimated values are (see [7§] for the details):

1

T = G 1K) (2.1.13)

and

_ total change in S after fast transient

s = - - 2.1.14
i max{|S|}after fast transient ( )
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Concentration

Time

Figure 2.2: Time-concentration profiles of enzyme FE, substrate S, complex C
and product P in a Michealis-Menten model.

Assuming the validity of the steady state assumption, the numerator of

(2.1.14])) is approximately S,,; and the denominator is given by (2.1.11f) with
S = Stot7 le.:

_ Stot + Km

= (2.1.15)

The first condition necessary for the sQSSA is 7y < 7, that, from (2.1.13))

and ([2.1.15)), implies:

Stf%[(m<< (1+%) (1+f;7:) (2.1.16)
Secondly, to insure that S(0) = S;; can be taken as initial condition, there
must be only a negligible decrease AS in the substrate concentration during
the fast transient, i.e. |AS/S;| < 1 during 7;. Overestimating the decrease
AS by the product of the initial maximal rate of depletion of S, k,FE:oSio
(obtained by setting ¢ = 0 in the first equation of (2.1.3)) with the time
duration r¢, yields

AS
Stot

1
Stot

ds
di

_ Etot
= e < 1. (2.1.17)

max

If (2.1.17)) holds then (2.1.16) holds. Thus, it is demonstrated that (2.1.12)
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guarantees the validity of the steady state assumption.

The condition ([2.1.12)) is usually fulfilled for the in vitro experiments, but
often breaks down in vivo [80].

In order to simulate physiologically realistic in vivo scenarios, Borghans
et al. [8I] recently introduced the total quasi steady-state approzimation
(tQSSA) and showed that it is valid for a broader range of parameters cov-
ering both high and low enzyme concentrations. The term total refers to the
fact that the tQSSA yields an equation for the total substrate concentration
(S = S+ C becomes the new substrate variable).

Several recent papers have reviewed and extended the results by Borghans
et al. [80, 82, 83, 84]. Tzafriri rederived and corrected the tQSSA both for
irreversible enzyme kinetics [80] and for reversible enzyme kinetics [82]. Ped-
ersen et al [83]84] extended the tQSSA to more complex reaction schemes, as
the fully competitive reactions, the double phosphorylation, and the Goldbeter-
Koshland switch Bl

We avoid to discuss further about the tQSSA because, as shown in the
following chapters, the ISN model proposed in this thesis was developed and
analysed assuming the sQSSA. This assumption is justified by the fact that
the experimental data used for the parameter estimation are in wvitro data
and, as stressed above, the condition is usually fulfilled for in wvitro
experiments.

We conclude this section with two remarks.

First, in general, in an enzymatic process the product formation can be
reversible but the irreversibility is a necessary simplification in order to yield
a tractable analytic solution [82]. Thus, the enzyme reaction is more correctly
described as

k k
S+E=—=C==P+E (2.1.18)
k—l k:_2

The assumption of irreversibility is correct in situations where one of the
below condition is true:

e the concentration of substrate is very much larger than the concentra-
tion of products (S > P);

2Goldbeter-Koshland switch [85] is used to describes the cycle of phosphorylation and
dephosphorylation of a substrate, that is one the most important processes to activate and
inactivate enzymes in all intracellular pathways.
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e the energy released in the reaction is very large.

These conditions are true in vitro and for many in vivo biological reactions,
particularly when the product is continually removed by a subsequent re-
action. In situations where neither of these two conditions hold (that is,
the reaction is low energy and a substantial pool of product(s) exists), the
MM scheme in breaks down, and more complex modeling approaches
explicitly taking the forward and reverse reactions into account must be con-
sidered to understand the enzyme biology.

The last remark is linked to the observation that, in biochemistry and
pharmacology, the binding of a ligand to a macromolecule is often enhanced
if other ligands are already present on the same macromolecule (the so-called
cooperative binding) [86]. If we want to represent this enhancement for a
substrate having more than one binding site, the Michaelis-Menten equation
(2.1.11)) is no longer appropriate to study the rate of reaction. Indeed, the
plot of the reaction rate as function of the substrate assumes a sigmoidal
shape instead of the hyperbolic one reported in Figure 2.2

The first description of the cooperative binding to a multi-site protein
was developed by A.V. Hill [87], who suggested the following equation:

(X7

Y= ———
K+ [X]*’

(2.1.19)
where Y is the fraction of the ligand-binding sites on the receptor protein,
[X] is the free (unbound) ligand concentration, K is an apparent dissociation
constant, and n is the so-called Hill coefficient. The total number of ligand
binding sites is an upper bound for n. If n < 1, the system exhibits negative
cooperativity, whereas the cooperativity is positive if n > 1. A coefficient
n = 1 indicates that the affinity of the enzyme for a ligand molecule is not
dependent on whether or not other ligand molecules are already bound.In the
latter case, the Hill equation has the form of the Michaelis-Menten equation

normalized with respect to the maximal reaction rate (see Eq. (2.1.11])).

2.1.2 Compartmental models

The basic limitation in using equations such as to describe a com-
plex system, such as a subcellular system, is the assumption of spatial homo-
geneity. However, since the activity of biological molecules is often controlled
by their microenvironment, it is desirable to incorporate this feature into the
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models. The simplest way to take into account the spatial distribution of
some quantities in a system is by making a compartmental approximation.

In a compartmental model, the molecules in different compartments are
treated as separate species. The exchange of molecules among compartments
is modeled as a flux, which is determined from either a priori knowledge of
the biology or from empirical observations. Compartmental modeling has
been used extensively in the modeling of dynamical systems in biology and
medice, and more recently, in the modeling of networks involved in protein
secretion and trafficking (e.g. [8§]).

For a component X that dynamically shuttles between the plasma mem-
brane and the cytoplasm, might be extended as:

dXpy

0 production — consumation

— export to cytoplasm + membrane recruitment (2.1.20)

Similar equations can be written for the concentrations of components in
the cytoplasmic compartment. Thus, like the chemical kinetics models, com-
partmental models are also based on ordinary differential equations (ODEs).
However, for the cases where the explicit dependence on the spatial variables
is needed, a partial differential equation (PDE)-based model has to be used
(see, for instance, [89]).

As the same component in different compartments is described by dif-
ferent equations, the biological realism of the model increases along with
the computational complexity of the model. Moreover, the experimental
complexity increases because it becomes necessary to use the flux terms that
must be estimated from indirect measurements. Currently, the flux terms are
estimated by means of experiments that use the photoactivation of labeled
proteins.

2.1.3 Diffusion-reaction models

At a more fine-grained level, the spatiotemporal dynamics of cellular com-
ponents can be modeled by the reaction-diffusion equation:

0X %X 0X
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where X is the concentration of the molecule, ¢ is time, D is the diffusion
coefficient, x is the spatial variable, v is the convective velocity, and R is
the rate of generation and consumption. The diffusion-reaction models are
based on partial differential equations (PDEs) because the concentrations
depend on multiple independent variables, in the case of time and
one space variable. Physically, Equation states that the rate of
change of concentration of a component at any particular location depends
on diffusion (the first term), active transport or convection (second term),
and biochemical reactions (the last term).

PDE problems can require many more parameters compared to ODE
problems. Indeed, in addition to the initial concentrations and kinetics
parameters, PDE-based models require the diffusion coefficients, and the
mandatory specification of concentration and/or flux at the boundary. More-
over, PDE problems require far greater computational skills, resources, and
time than their ODE counterparts.

2.2 Assessment of the parameter values from the
experimental data

One of the greatest hurdles in the modeling of the biological systems is
the estimation of the parameter values [90]. Values for specific parameters
measured in vivo are rare and the parameters are often estimated from ex-
perimental measurements made in vitro or by fitting of model equations to
the available experimental data.

The minimum requirements for modeling the biochemical reactions using
chemical kinetics models are the concentrations of the signaling components
at the basal state and the kinetic parameters, such as the forward and back-
ward reaction rates. Currently, these values exist only for a small fraction
of the enzymatic and chemical reactions occurring within any cell of inter-
est. Furthermore, even in cases where the rate constants are measured, the
experiments are usually performed in vitro with purified components. The in-
teractions may have largely different kinetics in vivo, because many biological
reactions take place on cell scaffold, microdomains, or PM, that essentially
increase the local concentrations of the reactants. Thus far, techniques for
measuring rate constants and concentrations of reactants in their natural
compartmentalized environment have not generally available.

A further key area of research is the multidimensional parameter esti-
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mation. Because of the paucity of quantitative data, it is often necessary
to estimate several parameters from a single dose-response curve or a single
concentration time course. As the number of parameters to be estimated
increases, the difficulty and the time required for parameter estimation also
increase.

In general, a simple data set consists of n points (z;,%;),i = 1,...,n where
z; is the independent variable and y; is the dependent variable which is mea-
sured. The relationship between x and y is described by the regression model

y=1y(z,0) +v, (2.2.1)

where 5 € R" is the input-output function of the model that describes a set
of specific dynamic/mechanicistic assumptions, # € R™ is the vector of the
(deterministic) unknown parameters and v € R represents the measurement
(random) error assumed with mean zero. As well as v, y is a stochastic vector.
Moreover, the regression model can be linear or non-linear, depending
on whether the model function y(z,0) is or is not a linear combination of the
parameters in 6.

If n data points are observed, with n < m , the classical approaches of
the regression analysis cannot be used since the system of equations defining
the regression model is underdetermined and there are not enough data to
recover 6.

If exactly n = m data points are observed, and the function 7 is linear
in 6, the system y = y(x,6) can be solved exactly rather than approximately.
Indeed, we have to solve a set of n equations with n» unknowns (the elements
of 9), which has a unique solution as long as the z are linearly independent.
If 4 is non linear in 4, a solution may not exist, or many solutions may exist.

The most common situation is when n > m data points are observed. In
this case, the regression model results an overdetermined system in ¢ and in
principle there is enough information in the data to estimate a value for ¢
that best fits the measurements.

Let us show some of the most common methods to determine the unknown
parameter vector 6 from the available data using the regression model in
(12.2.1]).
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2.2.1 Maximum likelihood method

In the regression model ([2.2.1), if the probability distribution of the vector
v, and then of y, is known, the estimator of the paramenter vector 4, denoted
by 6, can be obtained by the Mazimum Likelihood Method (MLM) [91]. Given
the probability distribution of y, f(y;0), the Maximum Likelihood Estimator
(MLE) of ¢ is defined as the value of 6 that maximizes the so called likelihood
function L,(0) = f(y;0).

For instance, let us suppose that v has a Gaussian distribution with mean
zero and covariance matrix ¥, independent of § and known. Thus, also the
observation vector y has a Gaussian distribution with mean g(#) and covari-
ance matrix ¥. To obtain the MLE 4, we need to maximize with respect to
6 the likelihood function

L(0) = a3l — 50075 = 5(0)) (2.2.2)

Equivalently, we can minimize the function -InL,(#) that, as ¥ is known,
means to minimize, with respect to 6, the index

R(O) =y — 50" 2 [y - 5(0)]. (2.2.3)

Note that the estimator § is unique if n > m, i.e. the number of available
data points is larger than the number of unknown parameters.

MLE enjoys good asymptotic properties. Under not particularly restric-
tive conditions and when the sample size tends to infinity, the MLE has the
properties of: 1) consistency, i.e. the estimator § converges in probability to
the true value; 2) asymptotic normality, i.e. the distribution of 4 tends to the
Gaussian distribution with mean ¢ and covariance matrix ¥; 3) efficiency, i.e.
the estimator achieves the Cramér-Rao lower bound (its covariance matrix
3 is equal to the inverse of the Fisher information matrix). The property of
efficiency guarantees that no consistent estimator has lower asymptotic mean
squared error than the MLE (or other estimators attaining the Cramér-Rao
bound).

In the study of biochemical models, because of the complexity of the
measurements processes, it is very difficult to assign a specific probability
distribution to the measurement errors and then the application of the max-
imum likelihood method is not allowed. When the error distribution is un-
known, the most common method used to fit the model equations to the
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experimental data is the Least Squares Method.

2.2.2 Least squares method

The Least Squares Method (LSM) determines the unknown parameter val-
ues minimizing the sum of squared residuals, i.e. the differences between the
model-based predictions and the observed values. Thus, a problem of param-
eter estimation solved by the LSM coincidesin general with an optimization
problem in which the objective function is:

obj(parameters) = (model output - data)?,

where the squared term prevents the negative deviations from canceling out
the positive deviations.

Let us now introduce the different types of Least Squares Estimator (LSE)
[91].

Let us consider the generic ODE model

‘f:f(xve)v

where z is the state vector and 6 the parameter vector. The observed value of
the model output is described by the measurement equation ([2.2.1)) with the
only assumption E[v] = 0. As no other information about the distribution of v
is known, the simplest way to determine ¢ from the available data is to find the
value § which minimizes the distance ||y — E(y)||?, where E(y) = E(5(9)) = 5(0)
is the expected value of y, i.e. the cost function

n

RO) =[y— 50"y —50) = (vi — 5:(0))? (2.2.4)

i=1

Such estimator 6 is called Ordinary Least Squares Estimator (OLSE).
The OLSE is a particular case of the so called Generalized Least Squares
Estimator (GLSE) or Weighted Least Squares Estimator(WLSE) defined as

fcrs = min (ly —g@O)" Wy —5(0)]) , (2.2.5)

where W is a symmetric and positive defined matrix.
Denoting by Cov(v) the covariance matrix of the error v in ([2.2.1)), defined
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as
Cov(v) = Elwv"] = El(y — 5(0))(y — 5(0))"], (2.2.6)

it is easy to verify that, if W = Cov(v) and v has a Gaussian distribution,
GLSE coincides with the MLE (see(2.2.3) and (2.2.5)). We recall that, in
view of central limit theorem, the errors can be considered approximately
normally distributed when the dimension of data set n increases.

Under the assumption that the errors v;,i =1,...,n are uncorrelated each
other, i.e. Cov(v) is diagonal and each non-zero element is the variance o?,i =
1,...,n of the i-th component of the error vector, the GLSE becomes

F o~ (= 1i(0))?

Obviously, if the variance of the errors is constant over the observations we
obtain again the OLSE.

Both the OLSE and the GLSE can be linear or non-linear function of 6.

In the linear least squares, the model function y(z,0) of must be
linear with respect to the parameters, not necessarily with respect to the
state variable. This means that, even if the model is linear in x, the fitting of
the data can require the non linear least squares estimator if the state matrix
contains the parameters.

The linear least-squares problem is convex and has a closed-form solution
that is unique, provided that the number of data points used for fitting equals
or exceeds the number of unknown parameters. Indeed, given the regression
model

y= X0+, (2.2.8)

where y € R*, § € R™, m <n, X is a matrix nxm with the m coloumns linearly
independent, and v a random vector with mean zero, the GLSE, 4., is

Ocors = (XTWX)1XTWy, (2.2.9)

i.e. the value of § that minimizes [y — X0]TW [y — X4)].

Obviously, for the linear OLSE Eq. (2.2.9) holds with W = 1.

The linear OLSE is important in view of the Gauss-Markov Theorem that
states:
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Theorem 2.2.1 In a linear regression model in which the errors have zero
expectation, are uncorrelated, and have equal variance, the best linear unbi-
ased estimator (BLUE) of the coefficient vector is given by the OLSE as it is
the most efficient as compared to other unbiased, linear estimators.

Unfortunately, the problem of parameter estimation in the biochemical
pathways is often non-linear, so that it must be solved by using numerical
algorithms that minimize the sum of squared residuals iteratively until some
convergence criteria are satisfied. Moreover, the optimization problem can
be non-convex with multiple optima for the objective function.

2.3 Sensitivity analysis in systems biology modeling

In the previous section, we stressed that one of the main hurdles in the
development and identification of mathematical models of biological systems
is that a large number of model parameters remain unknown and difficult
to be estimated. In most cases, parameter estimates are associated with
significant uncertainty, and examining the influence of these uncertainties on
the model behaviour is crucial to enhance the predictive capacity of the model
and to generate hypotheses about the biological mechanisms. Therefore, each
model should be checked with respect to its sensitivity to parameter changes.

The term sensitivity analysis(SA) refers to an important tool used to
determine how parameter changes influence the system behaviour and to
identify those parameters that have the greatest impact on the system output
both in steady and transient states. Moreover, SA can allow to simplify high
dimensional models that arise in systems biology and can be used to indicate
prospective molecular targets for new drugs.

A good overview of the sensitivity methods and their applicability can be
found in [90]. Here, we give only few hints about these methods.

In general, there are two main classes of SA, local and global [92]. The
local sensitivity analysis (LSA) investigates the effect on the system output
of a small deviation in a single parameter around its nominal value. Global
sensitivity analysis (GSA) describes the effects of simultaneous parameter
variations over relatively wide ranges, and allows us to explore the effects of
interactions among the parameters.
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2.3.1 Local sensitivity analysis

Let us consider the generic non linear ODE model used to describe the
dynamic behaviour of a cell signaling network:

dX

= f(Xu ), (2.3.1)

where X = [z1 25...2,]7 is the state vector with z; denoting the molar con-
centration of molecules of type i, v is an input variable and § € R™ contains
the model parameters (i.e. the kinetic constants).

The LSA is not related to the experimental measurements and, therefore
the state is considered to be the output. In particular, the model output
is the solution of , X(0,,t), where 6, denotes the nominal parameter
vector.

Denoting by =; the i-th state in X and by 6¢; the j-th parameter in 6,
the effect of the change in parameter ¢; on a species of interest z; can be
expressed by a Taylor series expansion:

i+ A 1) = 3, Zamz %ZZ ‘Zl;; AOAG; + . (2.3.2)

In the expression , the partial derivatives dx;/0¢; are called the first
order local concentration sensitivity coefficients, while 9%z;/00,00; are the
second-order local concentration sensitivity coefficients, etc. Normally, only
the first-order sensitivity coefficients are considered.

The absolute sensitivity matrix is defined as

S11 512 . S1m

0X S21 S22 ... Sa2m
§ == — 2.3.3
9 | e (23.3)

Snil Sn2 e Snm

where the first order sensitivity coefficients

ami
sij = R (2.3.4)
are actually sensitivity functions (as they change in time) describing the
influence of the j-th parameter on the time course of the i-th state variable.

The matrix S can be obtained by computing the partial derivatives in
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if the analytical solution of is available. Unfortunately, this is
very rare for cell network systems whose dynamics is described by complex
nonlinear ODEs. Therefore, in these cases, numerical methods have to be
applied to obtain S at each sample time.

One of the most commonly used numerical methods applies the finite
difference approximation, computing the sensitivity coefficient s;; by means
of the difference between the nominal and perturbed solution [93]

- axz(t) ~ .Tl(ej + Aé‘j, t) — a?i(ej, t)

Obviously, for Ag; — 0, we obtain the definition of derivative. This method is
straightforward in that only the calculation of z; is required with the nominal
and the perturbed parameter value, even if the numerical values obtained
may vary significantly with the size of Ag;.

In the models describing biological systems, the parameters as well as
the state variables may take values that are distributed over several orders
of magnitude. Therefore, instead of the absolute sensitivities, the relative
sensitivities defined as

_ O b (2.3.6)

S;i =
J 69J ZT;

are often considered. Such normalization makes it possible to compare the
relative influence of any parameter change on system behaviour, regardless
of the scale of either the parameter or the state variable. The analysis of the
relative sensitivities allows to:

- check which parameters are relevant for the steady state and which for
the transient dynamics;

- create a ranking of parameters indicating, consequently, which pro-
cesses are the most important for the behaviour of the signaling network
and also providing suggestions for experimental research;

- find correlations among parameters so to simplify the parameter esti-
mation of the model.

For the ranking of the parameters, it is necessary to define cumulative
indices that can be calculated either for each state variable separately, or
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for the whole system [92]. In particular, the cumulative effect of the j-th
parameter on the i-th state variable can be measured as

1 [T
S = T/o |si; (T)|dT, (2.3.7)

where T denotes the time horizon of the simulation, or:

1 N
Sy = ﬁ“2|5ij(k)|2a (2.3.8)
k=1

where N denotes the number of integration steps in the simulation and the
sum includes the consecutive values of s;; computed in the simulation.

Similarly, the overall effect of the j-th parameter change on the whole
system can be measured as

St =35 (2.3.9)
i=1

2.3.2 Global sensitivity analysis

In a generic system, multiple parameters can be changed simultaneously
and some of these changes can increase and some decrease the effect on the
system behaviour compared with the change of a single parameter. To cap-
ture the general sensitivity of the system, several methods for global sensitiv-
ity analysis (GSA) have been developed. Most of them consist in simulation
of the model for a large number of parameter sets and subsequent inter-
pretations of the results. So, the sampling methods of the parameter space
has a key role for the good performance of GSA. Usually, for signaling net-
work models, parameter values are randomly generated from: i) a normal or
Gamma distribution, if the nominal value of the parameter has already been
determined or known from literature; ii) a uniform distribution, defined on
a wide range of biologically acceptable parameters, if the parameters are not
known.

Afterwards, one of the following methods is applied [92], 94]:

e calculating local sensitivities for each simulation and subsequently av-
eraging them over all simulations;

e variance-based sensitivity methods, where
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- the ratio of a model output variance to its average value is calcu-
lated and then used as a sensitivity index, or

- the variance of a model output is decomposed into partial variance
contributes caused by changes in individual parameters, and the
sensitivity indices are subsequently derived from the ratio of the
partial variance to the total variance of model output.

Among the variance-based sensitivity methods, the most known is the
so called Sobol’s method widely detailed in [95]. In few words, this method
calculates two kinds of sensitivity indices: one is a first-order sensitivity that
measures the fractional contribution of the change of a single parameter to
the variance of the output; the other is the total effect sensitivity, or the
sum of all the sensitivities involving the model inputs of interest over the full
range of parameters values explored.

However, we do not detail the various GSA methods further because, in
the present thesis, the sensitivity analysis of the ISN was performed through
LSA methods (see Chapter 4)). Works devoted to the GSA, dealing with both
theoretical and pratical aspects, can be found in the literature [92 93] 96], O7].
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Chapter 3

Mathematical modeling of the insulin
signaling network

The ISN represents a typical example of complex signaling network be-
cause of the large number component molecules and the various types of
interactions between these elements. This complex network of interacting
elements can be described by means of a mathematical model to analyse in
detail its dynamics. The resulting model can be used to make predictions of
the behaviour of the signaling pathway in physiological /pathological states
and to test hypotheses leading to a deeper understanding of the process. In
the previous chapter, we have shown that the dynamic models of cell sig-
naling networks are commonly described by a system of ordinary differential
equations (ODEs) as (2.3.1)). An important property of these systems is that
for any time ¢ all variables are non-negative.

Starting from some of the best known models of the insulin signaling net-
work proposed in the literature, we present in this chapter the mathematical
model used in the present thesis to analyze the available experimental data.
Such model explicitly represents many known insulin signaling components
and incorporates feedback pathways, both positive and negative.

3.1 State of the art

In the last decades, several studies have investigated the behavior of the
ISN by mathematical models and analysis of experimental data providing
new insights at different levels, for instance: (i) insulin binding to the insulin
receptor [98, [16], (ii) insulin signaling and cellular responses [17], and (iii)
integration of intracellular insulin signaling with whole-body glucose home-
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ostasis [99].

Following the seminal papers of Wanant and Quon [16] and of Sedaghat
et al. [17], some studies focused on the response to a step increase of the
extracellular insulin concentration and give the time course of the protein
phosphorylation/dephosphorylation reactions, whereas in other studies the
dose-response curves, i.e., the steady state concentrations at given insulin
levels, are considered.

The transient response of insulin binding and the subsequent autophos-
phorylation of insulin receptor have been described in [16] [17, 100} 10T, 19].
In particular, the complex mathematical model proposed by Kiselyov et al.
[100] accounted for both the high and low affinity sites in the two monomers
of insulin receptor. Brannmark et al. [I01] studied possible schemes that
explain the peculiar behavior observed in the phosphorylation of insulin re-
ceptor and insulin receptor substrate. More complete dynamical models,
supported by the analysis of the time-course of protein concentrations after
insulin stimulation, were developed and investigated in [12], 18] [19].

Based on previous models of insulin-IR binding [16] and regulation of
the insulin sensitive glucose transporter GLUT4 [08], Sedaghat et al. [17]
built a mathematical model of insulin signaling that contained most of the
accepted mechanisms and intermediates in downstream signaling to control
the glucose uptake. This model contains kinetic equations from the insulin
receptor (including the binding of two insulin molecules and the cytosolic IR,
pool) up to PIP3, PKC, and total phosphorilated Akt(pAkt). Intracellular
and surface GLUT4, and both negative and positive feedback loops were
included. Model parameters were assessed from literature data of 3T3-L1
adipocytes and the model response to a 15 min insulin pulse was computed.
In addition, a comparison of steady-state surface GLUT4 against literature
data is also reported.

The model in [I7] was extended to include amino acids, the mammalian
target of rapamycin, and some other aspects of the signaling network by
Vinod et al. [102].

A more complete scheme of the ISN was investigated in [19]. The model
proposed by Brannmark et al. [19] is based on data of adipocytes isolated
from subcutaneous adipose tissue of patients with T2D and non-diabetic
subjects. Data consist of the time course of IR and IRS1 up to PKB/Akt,
mTORC1 and mTORC2, S6K and S6, AS160 and GLUT4 together with
glucose uptake, after insulin stimulation. Dose-response data were also ob-
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tained. In adipocytes from T2D patients compared to control the Authors
found that the positive feedback from mTORCI to IRS1(Ser307) was reduced
to 15% of control and IR and GLUT4 concentrations were reduced to 55%
and 50% of control, respectively. The response to rapamycin was used for
model validation.

Other studies focused maily on the steady state of the ISN system, us-
ing experimental data of the insulin dose-response curve, which can be more
easily determined and are available in the literature for a variety of cells
(mainly adipocytes and skeletal muscle cells). Giri et al. [20] and Wang
[21] studied the behavior of the dose response curves of the components of
the insulin signaling pathway versus the extracellular insulin concentration,
with the aim of determining the conditions that produce a hysteresis in the
curves as the result of the interactions between negative and positive feed-
back loops present in the system. In [20], many of the signaling intermediates
and parameters were re-used from the Sedaghat model [I7]. The main find-
ing was bi-stability, in other words, the notion that two steady-states might
coexist for given parameters and constant insulin stimulation. However, no
experimental validation of the results was presented. By applying singu-
larity analysis, in [21] regions of the model parameters were identified that
correspond to diabetes and cancer.

Some preliminary attempts to link the insulin signaling models with mod-
els of glucose homeostasis have recently been published [103], [104], [105],
[18]. Such multi-level models are important because diseases emanate from,
and drugs act at, the intracellular molecular level, whereas diseases are mani-
fested and diagnosed at the whole-body level. In [18], a minimal model of the
insulin signaling in the adipose tissue was analyzed using constraints from a
whole-body glucose homeostasis model developed by Dalla Man et al. [106].
Nyman et al.[I8] considered, as inputs, the interstitial glucose and the insulin
concentrations of the tissue and, as output, the glucose uptake computed by
the minimal model.

In other works, the crosstalking of the ISN with other pathways, such as
the epidermal growth factor (EGF) signaling and the MAP kinase pathway
[107], have been also studied.
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3.2 The ISN model proposed to analyse the available
experimental data

The model proposed in this thesis represents the main protein-protein
interactions of the PISK-Akt-mTOR pathway, according to the current view
of ISN [I7, 4, 5, 108]. The model, reported in Figure [3.1] includes negative
feedback loops to IRS1 and Rictor, plus a positive feedback to PTP1B, but it
does not include (among others): the intracellular pool of IR and the IR re-
cruitment to plasma membrane (PM); phosphatidylinositol 4,5-bisphosphate
PI(4,5)P2 with the phosphatase SHIP; the transport of PDK1 and Akt from
cytosol to PM; the complex TSC1/TSC2 that, stimulating the conversion
from the active GTP-Rheb to the inactive GDP-Rheb, acts as a functional
unit in the suppression of mMTORCI activity [4]; the possible mTORC2 acti-
vation by TSC2 [11} 51]. Similarly, we did not include the activation of S6K1
by GSK3 [53] and the protein kinase C (PKC) action on GLUT4 transloca-
tion [3]. .

Our model concentrats particularly on the single and double phosphory-
lation of Akt, because recent studies have shown that its action on glucose
uptake is maintained almost unaltered when it is phosphorylated only on
Thr308, while Akt phosphorylation on Serd73 seems to have a key role in
the oneset of insulin resistance [13] and in the cancer development [5] [I].
Moreover, we assumed that mTORC2 activation may also be promoted in-
dependently by a putative factor which is related to signaling from the prox-
imal small intestine and possibly operates through the IGF-1 receptor. Such
hypothesis is based on the clinical observation that bariatric surgery, a proce-
dure in which a portion of the stomach and of the small intestine are removed
or bypassed, induces a remission of T2D very soon after surgery and far too
early to be attributed to weight loss [109], [110], [14]. The mechanisms re-
sponsible for the improvement in glycemic control after bariatric surgery are
still not well understood but, as bariatric operations reroute food through
the upper small intestine, an hypothesis can be that gastrointestinal removal
or bypass reduce the production of putative intestinal factor/s inducing in-
sulin resistance. Such hypothesis was experimentally tested by Salinari et al.
in [I3] where the Autors collected experiments in non-diabetic mice both in
vivo and in muscle biopsies, and in L6 cells exposed to a medium enriched
with proteins secreted by the small intestine of diabetic rats and to serum
from insulin resistant humans. The Authors found that jejunal factor/s in-
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Figure 3.1: Scheme of the insulin signaling network model. Activation by insulin
I of IR catalyzes tyrosine phosphorylation of IRS1. Phosphorylated IRS1 binds the p85
regulatory subunit of PI3K, activating the p110 catalytic subunit. PI3K mediates phos-
phorylation of PI(4,5)-bisphosphate (PIP2) to PI(3,4,5)-trisphoshpate (PIP3) near PM
and PTEN dephosphorylates PIP3 back to PIP2. PIP3 recruits Akt and PDK1 to PM,
where PDK1 phosphorylates Akt at Thr308 (phosphatase PP2A). mTORC?2 is activated
by PIP3 and by the jejunal factor J, and catalyzes Akt phosphorylation on Ser473 (phos-
phatase PHLPP). Maximal Akt activity is achieved when the molecule is phosphorylated
on both Thr308 and Ser473 residues, allowing translocation of GLUT4 glucose transporters
to PM. GSK3 and FoxO1 are direct Akt substrates. Akt also activates mTORC1, which
in turn activates S6K1. Activated S6K1 phosphorylates IRS1 and Rictor in negative feed-
back loops. The positive feedback loop from Akt to PTP1B is also included. Feedback
loops are represented by bold lines. Points of action of rapamycin and PP242 are also
shown.
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duce insulin resistance and that these factors activate mTORC2, as revealed
by an increased value of Ser473 Akt phosphorylation, even in the absence of
insulin stimulation.

Most of the reactions in the scheme of Fig. [3.1| are represented by the
classical Michaelis-Menten scheme (see Chapter [2|) composed of the reversible
formation of complex E:S of substrate S and enzyme E, with k, and k; the
association and the dissociation constant, respectively. The complex C un-
dergoes an irreversible catalytic step with catalytic constant k. that leads to
product P [85] 111}, T12]. Since substrates and enzymes are continuously syn-
thesized and degraded within the cell, synthesis and degradation rates were
also accounted for in the mathematical model, and denoted by the symbols
b and, respectively, ¢ (endowed with the suitable subscripts). The synthesis
rate and degradation rate constants were assumed to not change with time
and do not depend on the insulin signal. This assumption may fail during
chronic insulin treatment: e.g., after 12 h treatment, IRS1 amount is reduced
to 13.6% of control level in 3T3-L1 adipocytes [I13]. However, experimental
data and model simulations of insulin signaling pathway ([17], [18], [19]) show
that the response to a step insulin increase may reach a steady state within
a shorter time, so the horizon is here limited to times that do not include
these long-range changes. Moreover, we assumed that the degradation rate
constant of the complex enzyme-substrate is negligible compared with the
sum of dissociation and catalytic constants according to the observations in
[114]. This assumption allowed us to write the model equations in a simpler
form.

In addition, we assumed that: i) an (approximate) steady state of insulin
signaling is attained in cells in culture; ii) intracellular localization (e.g.,
cytosolic vs. membrane-associated) and compartmentalization (for instance,
see [115]), as well as intracellular trafficking, can be neglected; iii) similarly,
the presence of isoforms (for instance the three isoforms of Akt [110]) was
not considered ; iv) interactions with other receptors (e.g., IGF-1 receptor)
and signaling pathways (e.g., effects of nutrient supply on mTOR/S6K1, see
[55] are also neglected; v) protein complexes (e.g., mTORC1 and mTORC?2)
are treated as simple molecular components.

The network model was developed in three stages: first, we established
the chemical reactions that characterizes the network; then, as our goal was
to investigate the factors affecting the basal concentrations and the dose-
response curve of the main components of ISN, we derived the concentra-
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tions of the chemicals at the steady-state from the kinetic equations; finally,
to reduce the number of unknown parameters, we rewrote the steady-state
concentrations in a normalized form.

3.2.1 Reactions within the PISK-Akt-mTOR network

In the following, we detail the chemical reactions that are included in the
network shown in Fig. 3.1}

IR phosphorylation/dephosphorylation with inhibition of dephosphorylation
by pAkt

Insulin binding and autophosphorylation of the insulin receptor IR upon
insulin binding have been described by complex mathematical models in
[16, 17, 20, 10T 18, T00]. Kiselyov et al. [100] accounted for both the high
and the low affinity site in the two IR monomers and Cedersund et al.[I01] [1§]
investigated possible schemes that explain the transient response. In the
present model, the binding of one or two insulin molecules to IR, as well as
the receptor internalization and recycling, are neglected. Phosphorylation at
multiple tyrosine residues is here treated as one-site phosphorylation. Insulin
binding and receptor autophosphorylation are represented according to the
reaction scheme (phosphate group omitted)

I+IRS Cop - I+1IRY (3.2.1)

where I denotes insulin, IR the free insulin receptor, Cy the complex IR:I and
IRY the tyrosine-phosphorylated, but still insulin-bound, insulin receptor.
The reaction constants are denoted by koa, ko, koe and Ko = (koa + koc)/koa-
Spontaneous IR autophosphorylation at zero insulin (according to [101]),
that leads to IRy, is regulated by a phosphorylation rate constant, k.

As shown in Fig. 3.1} IR dephosphorylation occurs via PTP1B [117]. It
has also been found that PTP1B may be inactivated upon phosphorylation
at Ser50 by Akt, so that insulin signaling may be enhanced via a positive
feedback loop [17, [47]. TR dephosphorylation and the possible inactivation
of PTP1B by the phosphorylated Akt, pAkt (possibly Akt phosphorylated at
Ser473 and Thr308), may be described by the following reactions:

IRY + PTP1B
pAkt + PTP1B

C; —» IR+ PTP1B (3.2.2)
Cp — PTP1B; + pAkt (3.2.3)

mn
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where C; is the complex IRY : PTP1B with ki, k14, k1. the reaction constants
and K,,1 = (ki + k1.)/k1.. The same reaction constants also regulate the
complex IRY : PTP1B, denoted by C). Cp is the putative complex of PTP1B
with the inhibitor pAkt, with kp., kpa, kp. the reaction constants and K, p =
(kpq+kpe)/kpa , and PTP1B; is the inactive form of PTP1B. The inverse tran-
sition PTP1B; — PTP1B is simply regulated by a rate constant k_p. Similar
symbols will be used in the following reactions.

IRS1 phosphorylation/dephosphorylation with serine phosphorylation by mTORC1
signaling

For the phosphorylation/dephosphorylation of IRS1 we consider, according
to [I7], two coupled cycles that account for IRS1 phosphorylation at tyro-
sine and serine residues. Several IRS1 serine residues are phosphorylated
by downstream kinases: IRS1 is phosphorylated at Ser318 by the atypical
protein kinase C¢, at Ser632 by mTORC1, at Ser302 by the S6K1, at Ser9 by
GSK3 [3]. To simplify, we assume that IRS1 is only phosphorylated at Ser302
by the activated S6K1 (Ser302 phosphorylation by S6K1 disrupts IRS1 abil-
ity to interact with activated IR, [I5], [I18]), whereas it is phosphorylated at
tyrosine residues by IRY. We have:

IRS1+TRY < Oy —IRS1Y +IRY (3.2.4)
IRS1Y + PTPIB = (3 — IRS1+ PTPIB (3.2.5)
IRS1+S6K1 = Cy — IRS1S 4 S6K1 (3.2.6)
IRS1° + PP = Cjs — IRS1 + PP (3.2.7)

where IRS1 is the unphosphorylated insulin receptor substrate-1, IRS1Y is the
tyrosine phosphorylated IRS1, and PTP1B dephosphorylates IRS1Y. PP is a
protein serine phosphatase. C,,Cs,C4 and Cs; are the complexes IRY : IRSI1,
IRS1Y : PTP1B, IRSI : S6K1 and IRS1® : PP, respectively, with ki, kiq, kic,i =
2,3,4,5 the respective reaction constants and K., ; = (ki + kic)/kia,i = 2,3,4,5.
IRS1 phosphorylation at serine residues represents a negative feedback, widely
described in the literature (see, for instance, [2, 55 56 [4]). The formation
of complex Cp by reaction (3.2.3)) with the PTP1B inactivation represents a
putative positive feedback since it attenuates IRY and IRS1Y dephosphoryla-

tion (see reactions (3.2.2)) and (3.2.5))) and enhances insulin signaling.

PISK activation/deactivation
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The formation of PI3K occurs through the recruitment of the catalytic sub-
unit p110 to the PM and the p110 binding to the regulatory subunit p85.
Both steps of the process are assumed to be regulated by a complex IRS1Y /p85.
We have:

IRS1Y /p85 + pl10.y; S c; — IRS1Y /p85 + pl10py & Cs — IRS1Y +PI3K  (3.2.8)

where C and Cg are the complexes and the kinetic constants are defined
accordingly. Transport of p110 from PM to cytosol and deactivation of
PI3K occur according to rate constants k , and k_s. PI3K activation by
IRS-independent mechanisms can also occur upon growth factor stimulation
(IGF-1 and EGF receptor signaling, see [119] [108]).

Phosphatidylinositol phosphates and PDK1

PI3K phosphorylates the phosphatidylinositol 4,5-bisphosphate PI1(4,5)P2 on
the 3'—position to form the second messenger P1(3,4,5)P3 (PIP3), whereas
PIP3 dephosphorylation to PI(4,5)P2 occurs through the phosphatase and
tensin homologue PTEN 3'—lipid phosphatase [120]. We neglect PIP3 for-
mation from PI(3,4)P2 and the SHIP1/2 phosphatases. PIP3 activates the
PDK1 [4] and then the following reactions can be written:

PI(4,5)P2 + PI3K < C; — PIP3 + PI3K (3.2.9)
PIP3 + PTEN < Cg — PI(4,5)P2 + PTEN (3.2.10)
PIP3 + PDK1l; S Cg¢ — PIP3 + PDK1 (3.2.11)

C7,Cs,Cy denote the complexes in (3.2.9))-(3.2.11)) and the kinetic constants

are defined accordingly. The transition from active to inactive form of PDK1,
PDK]; , is regulated by the rate constant k_,.

Activation/deactivation of mTORC2

It is currently accepted that the mTOR complex 2 (mTORC2) is the kinase
that promotes Akt phosphorylation at Serd73 ([6]). As suggested in [9],
PIP3 may activate mTORC2, reaction (3.2.12). The inverse transition to
the inactive form, mTORC2 — mTORC2; , is regulated by a rate constant
k_10. We assume that mTORC2 activation is also promoted independently
by a factor, J in the reaction (3.2.13)), which is related to signaling from the
proximal small intestine and possibly operates through the IGF-1 receptor
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[13]. The inverse transition is regulated by the rate constant k_;;. We have:

mTORC?2; + PIP3
mTORC2; + J

Cip — mTORC2 + PIP3 (3.2.12)
C11 — mTORC2 +J (3.2.13)

mn

where the subscript “i” denotes the inactive form and Cyo,C;; the com-
plexes in reactions (3.2.12))-(3.2.13]), with the kinetic constants defined ac-
cordingly. Although the TSC1/2 complex has been shown to positively reg-
ulate mTORC?2 kinase activity [11, 4], we did not include this pathway in
the model in view of the results reported in [12]. Moreover, S6K1 negatively
regulates mTORC2 by phosphorylation of Rictor (a component of mTORC?2)
at Thr1135, so impairing mTORC2 ability to phosphorylate Akt at Serd73
[108]. We have:

mTORC2 + S6K1 = C2 -+ mTORC2T + S6K1 (3.2.14)

where mTORC2T denotes the mTOR complex 2 with Rictor phosphorylated
at Thr1135. The inverse transition is assumed to be regulated by a rate
constant k_is.

Akt phosphorylation/dephosphorylation

The first step in Akt activation is the protein translocation to plasma mem-
brane through interaction with PIP3. For simplicity, we have not considered
this step as well as the recruitment of PDK1 to PM, assuming that Akt
translocation to PM and Thr308 Akt phosphorylation are a unique step di-
rectly regulated by PDK1. At the membrane, mTORC2 phosphorylates Akt
at Ser473. The protein phosphatase PHLPP dephosphorylates Akt at Serd73
and the phosphatase PP2A dephosphorylates Akt at Thr308 (Fig . In
some cases a hierarchical scheme where Ser473 Akt phosphorylation precedes
phosphorylation at Thr308 was considered but this point is controversial [10].
So, we assumed that two pathways may in principle be followed to achieve
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full Akt phosphorylation and obtain the following reactions:

C1s — AktS + PP2A
Cr9 — Akt™S + mTORC?2
Cs9 — AktT + PHLPP

AktST + PP2A
Akt + mTORC2
AktTS + PHLPP

Akt + PDK1 S Cy3 — Akt + PDK1 3.2.15
AktT + PP2A < Oy — Akt + PP2A 3.2.16
Akt + mTORC2 = Cy5 — AktS + mTORC2 3.2.17
AktS + PHLPP =
AktS + PDK1 S Cy7 — AktST + PDK1 3.2.19
=
=
=

(
(
(
Ci6 — Akt + PHLPP (3.2.18
(
(
(
(

where Akt™ denotes Akt phosphorylated at Thr308, AktS denotes Akt phos-
phorylated at Serd73, and Akt>T or Akt™S denote the dual phosphorylated
protein. Ci3-Coo denote the complexes in reactions ((3.2.15))-((3.2.22]).

Activation/deactivation of the Akt substrates FoxO1 and GSK3p

Upon phosphorylation by AktS and Akt>T, FoxO1 leaves the nucleus and enters
cytoplasm, where it is degraded. We have

FoxOlyue + Akt® 5 Cop — AktS + FoxOleys (3.2.23)

and similarly for AktST with the same kinetic constants. The inverse tran-
sition are also regulated by equal rate constants. We assume that GSK33
is phosphorylated at Ser9 and deactivated by pAkt, but it may also be se-
questered in cytoplasmic vesicles [49]. We have

GSK3p + pAkt < Cag — pAkt + GSK3p; (3.2.24)

Binding with the factor W that promotes sequestration and GSK3j3 seques-
tration/recruitment are similarly represented.

Activation/deactivation of the pathway to mTORCL and S6K1

AktT and AktTS phosphorylate and inactivate the tuberous sclerosis complex
2 (TSC2). TSC2 inactivation inhibits the formation of the complex Rheb/GDP
and thus enhances the active complex Rheb/GTP, which in turn activates the
mTOR complex 1 [5]. To simplify the model, we consider that mTORCI is
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activated directly by AktT and Akt™S:
AktT + mTORCY; < Cay — AktT + mTORCI (3.2.25)

and similarly for Akt™T-S with the same kinetic constants. The inverse tran-
sition is regulated by a rate constant. For the full activation of S6K1, we
neglect Ser371 phosphorylation by GSK3g [53] and we assume that phos-
phorylation at Thr229 by PDK1 precedes the Thr389 phosphorylation by
mTORC1 [54].

Css — S6K1’ + PDK1 (3.2.26)

S6K1; + PDK1
S6K1' + mTORC1 < Cyg — S6K1 + mTORCI (3.2.27)

where S6K1; denotes the inactive form, S6K1 the Thr229-phosphorylated
form, and S6K1 the active form phosphorylated at both Thr229 and Thr389.
The inverse transitions, S6K1' — S6K1; and S6K1 — S6K1', are regulated rate
constants. As seen in reaction , the fully activated S6K1 promotes the
serine phosphorylation of IRS1.

Ezocytosis/endocytosis of GLUT4

AktT and fully activated Akt phosphorylate and inactivate AS160, thus re-
lieving from the inactive state some Rab proteins implicated in vesicular
traffic processes [3, 121, B]. According to Sedaghat et al. [17], we assume
that GLUT4 also undergoes trafficking between cytoplasm and plasma mem-
brane in basal conditions. Insulin stimulation promotes GLUT4 exocytosis
according to the following reaction:

AS160 + Akt = Cog — Akt™ + AS160; (3.2.28)
AS160 + Rab = Ca9 — AS160 + Raby (3.2.29)
GLUT4cy + Rab = Cgp — Rab + GLUT4y, (3.2.30)

and similarly as (3.2.28)) for AktTS. The inverse reactions are regulated by

W
1

rate constants, and the subscript denotes the inactive form. The rate

constants of exocytosis and endocytosis are denoted as k.., and, respectively,
kendo- We remark that AS160 is here inhibited by pAkt(Thr308) and fully
activated Akt whereas in the model proposed in [19] AS160 is inhibited by
pAkt(Serd73) and fully activated Akt. Our assumption is supported by the

o8



results reported in [122], where muscle-specific deletion of rictor in mice re-
duced pAkt(Serd73) to less than 10% of control, but pAS160(Thr642) was
still at 80% of control, with data from glucose and insulin tolerance tests not
substantially different from control.

3.2.2 Kinetic and equilibrium equations

The concentrations at the equilibrium of the chemicals are obtained from
the kinetic equations by setting the time derivatives to zero. Synthesis and
degradation rates are denoted by the symbols b and, respectively, x (with the
suitable subscripts).

We show now in detail the derivation of the kinetic equations for reac-
tions —, denoting the concentration with the same symbol of the
chemical species written in italic. A similar procedure allows obtaining the
concentrations at equilibrium of all other species.

For the complexes Cy-Cs and Cp the following equations hold:

dCy

i = koalR I~ (Koa + kac)Co. (3.2.31)
dd%l = kioIRY - PTP1B — (kg + k1.)C1 , (3.2.32)
dc% = koo IRY - TRS1 — (kog + ko.)Cs, (3.2.33)
dd—cf” = k3o JRS1Y - PTP1B — (ksq + k3.)Cs, (3.2.34)
% = kyoTRS1- S6K1 — (kag + kae)Cly, (3.2.35)
5 — ksuIRS1® - PP — (hsa + kse)Cs (3.2.36)
ddcté = kg, TRS1Y - p110,y; — (kg + ko) Cl - (3.2.37)
dd%"’ = kea IRS1Y - p110pas — (K6a + k6e)Cs (3.2.38)
‘% = kpo PTP1B - pAkt — (kpg + kp.)Cp (3.2.39)

where we have assumed that the degradation rate constant of a complex is
negligible compared with the sum of the dissociation and catalytic constants
according to the observations in [114]. An equation similar to (3.2.32]) with
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IRY instead of TR holds for ;. Moreover, in ([3.2.37)-(B.2.38)), IRS1Y denotes
the concentration of the complex IRS1Y /p85.

Recalling that the Michaelis-Menten constant is defined as K,, = (kg +
k.)/k. and the specificity constant as k./K,,, at the equilibrium (time deriva-

tives equal to zero), we write

IR-T IRY . PTP1B
CO = Km)o 5 Cl = T, (3240)
IRS1-IRY IRS1Y . PTP1B
Cy = ngi’ Csy = %ot ; (3.2.41)
IRS1-S6K1 IRS1% . PP
Similarly, for the complexes Cp , C, and Cq we have
PTP1B - pAkt IRS1Y - p110,
po PIPIB pAR - IRSU pl0a (5 43
Km,P Km,6

TRS1Y - p110,,,
Oy = 2= P Tpm
Km,G

The kinetics of IR, ITRY and of the spontaneously autophosphorylated IR,
denoted as IR}, is described by

1
ddTR =— koo IR I+ kogCo + k1.C1 + leC; +brr — puirIR — kIR, (3244)
dIRY v v
oy =ko.Co — k1o, IR - PTP1B + k14C1 — koo IR* - IRS1
+ (k2a + kac)Co — prrl R, (3.2.45)
dIR?)/ v / v
7 =kyIR — k1o IR} - PTP1B + k14C, — pirlI R}, (3.2.46)

where b;r, expressed as concentration over time, is the rate of biosynthe-
sis (and transport to PM) of the insulin receptor, u;z is a rate constant
representing internalization and degradation, and k;, is the rate constant of
spontaneous IR autophosphorylation.

60



For IRS1 and PTP1B, we write:

dIRS1
T =~ kalRS1 IRY + kpyCy + k3.C3 — k4o IRS1 - S6K1
+ k4qCy + k5.C5 + brrs1 — prrs1I RS1, (3247)
dIRS1Y
—— =h2eCy — ksoIRS1” - PTP1B + ksaCs - kg IRS1Y - 110,y
+ (kg + kg, ) O — kioaIRS1Y - p110pys
+ (kga + kee)Co — prrs1IRS1Y (3.2.48)
dIRS1°
ar =k4.Cy — k5aIRSIS - PP + k5qC5 — [LIRSlIR81S R (3249)
dPTP1B
= k1oIRY - PTP1B + (k1q + k1)C1 — k3o IRS1Y - PTP1B
+ (ksqg + k3c)Cs — kpo PTP1B - pAkt + kpaCp
+k7PPTP1.Bi+bPTp13 —/LPTplBPTPIB7 (3250)
dPTP1B,
T :chCP - k‘,pPTPlBZ - [LprlBPTplBi . (3251)

In view of (3.2.31))-(3.2.33)), Eqs. (3.2.44)-(3.2.46) at the equilibrium give

—kocCo + k1.C1 + byg — urrIR — kyIR + k’lcci =0, (3252)
+koeCo — k1.C1 — prrIRY =0, (3.2.53)
+koIR — k1o Cy — prrl RY =0, (3.2.54)

where C, does not appear because its degradation rate constant has been
taken equal to zero. The sum of (3.2.52))- (3.2.54) provides the relation

IR+ IRY + IR} = ZI—R : (3.2.55)
IR

The above equation and ([3.2.53))-(3.2.54)) are a linear system in IR, IRY and
IR}, which is easily solved providing

ﬂ]
pin g, o FPTPIB koo 2.
b T HIR Ko Koo
b k
y _ IR b
IRb N HIR kp + + klcPTplB + k()c I' (3257)
’ MIR Km,l Km,o
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The expression of IR is similarly found. We impose for the insulin the con-
servation equation
I.=1+Cy+IRY, (3.2.58)

where I, is total insulin concentration, the insulin in the complex IRY : IRS1
was neglected and terms in the right-hand-side refer to equal volumes. Using
the expressions of IR and IRY, the conservation equation yields a second-
order equation that gives I as a function of I.:

1
=3 { — (ap +ag + a, PTP1B — L)+

V(ay +af +d} PTP1B — )2 + 4(ay + aj + allPTPlB)Ie} : (3.2.59)

with the following unknown parameters:

=i/ (5) a=mn/(25) d=(25)/(z5)
a=r Km70 ’ G = HIR Km70 ’ = Km,l Km,O

I /
nm 1 bR aq brr no bR a4y
ay =ag+ ——2-+ "2 a =a; + ——1—,
HIir Kmo  MIR wir Ko

where the choice of the positive sign in the square root is required to have
I>0. Equation (3.2.59)) allows us to express IRY and IR} as functions of I..
If . =0 and k, > 0 , only IR} survives and its expression shows that k, is
likely to be much smaller than k,.PTP1B/K,, . Note that the unit of a, and
ap is a concentration and a; is nondimensional.

Proceeding similarly, Eqgs. (3.2.47)-(3.2.49)) at the equilibrium give

—kocCo + k3.C3 — kacCs + k5.Cs + brrs1 — prrs1IRS1 =0, (3.2.60)
kQCCQ - k3503 - M[RSlfRSIY = 07 (3261)
k4cC4 — k5cC5 — /J[RSl.[RS:[S = 07 (3262)

and the sum of (3.2.60)-(3.2.62) provides the relation

[RS1+ IRS1Y + IRS1S — 1RsL. (3.2.63)
HIRS1
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Using the expressions of the complexes in Eqgs. (3.2.61)), (3.2.62]) we obtain

IRY -IRS1 PTP1B
kQCRiRS - (kgci + um51) IRS1Y =0, (3.2.64)
Km,2 Km,S
K1-1TRS1 PP
4Cu— <k/’567+/L1R51> IRS1° =0. (3265)
Km,4 Km,5

Given IRY, PTP1B,S6K1 and PP, Egs. (3.2.63)-(3.2.65)) are a linear system
in IRS1, IRS1Y and IRS1° whose solution in IRS1Y and IRS1° is given by:

. a&IRY
IRS1Y = uIRSl e r (3.2.66)
IRS1 4c 2¢ Y
af + S6K1 + « IR
ﬁ BKmA Km,Q
kac
; B%SGKl
TRS1S = ZLES e r (3.2.67)
HIRS1 af + 6K4c4 S6K1 + aK2c2 IRY
with By y
a=pirs1+ 5= ~FPP, B =prsi+ =~ PTP1B.
m,5 m,3

Moreover, at the equilibrium, from Egs. (3.2.50)) and (3.2.51)) we have

b
PTP1B; + PTP1B = 1215 (3.2.68)
HPTP1B

and, using (3.2.68) and the expression of C, with pAkt = Akt>T (that is, the
fully active, but not the partially active Akt phosphorylates PTP1B), we get

b 1
PTP1B = 2218 - : (3.2.69)
HPTP1B | | 1 Pe  AptST

wprpiB +k_9 . Ko p

From Eq. it is found, as expected, that IRY increases with the
insulin concentration I. and shows that IRS1Y increases with IRY
and thus with I., provided that PTP1B, PP and S6K1 are constant. How-
ever, according to , the downstream kinase S6K1 exerts an inhibitory
effect on the IRS1 tyrosine phosphorylation and thus on insulin signalling
(negative feedback). In addition, the fully phosphorylated Akt inhibits the
phosphatase PTP1B as shown by , and thus tends to increase IR (see
Eq. (3.2.50)) and to decrease the factor g in (3.2.66)-(3.2.67). Consequently,
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Akt phosphorylation might exert a positive feedback on insulin signaling, es-
pecially upon inhibition of S6K1. In the absence of the positive feedback,
PTP1B is constant and simpler expressions hold for the phosphorylated IR
and IRS1.

Following the same approach, and without reporting from now on the
kinetic equations, it is found that

!

kﬁc kGC

e (TRS1Y)?
_ bp11o Ko 6 1m.6
PI3K = p - , (3.2.70)
110 k ke
"B+ F.IRS1Y + S 6 (1RG1Y)?
Km,G Km,ﬁ
where
ke k ke
I C C
According to reactions (3.2.9)-(3.2.11)), we get
b
PI(4,5)Py + PIPy = 2L (3.2.71)
kP
b
PDK1; + PDK1 = -£2KL (3.2.72)
UPDK1
and
b ;iPIfSK
PIP; = Hﬂ el - : (3.2.73)
PI 8c Tc
PTEN PI3K
et * Km,S * Km,? 5
) ;90 PIP,
PDK1 = —£PX1 e : (3.2.74)
HPDKL by + kg + —<— PIP;
Km,9

Equation predicts that the concentration of the second messenger
PIP3 increases with PI3K if PTEN is constant and still increases after PTEN
deletion. Note that the spontaneous IR autophosphorylation leads to nonzero
PIP3 and PDK1 concentrations for I, = 0.
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Turning to the mTOR complex 2, we find:

k C k C
b (MmTORcz + k‘qz) (Klo PIP; + Ku J)
mTORC? — mTORC2 m,10 m,11

HmTORC2 D

. (3.2.75)

where

k k
D :(,UmTORC2 + k_12) (umTORCQ +k_10+k_11 10c¢ PIP; + ﬁj)
Km,lO Km,ll

kiac ( k1oc k11c )
+ S6K1 ( PIP; + J), 3.2.76
Km,12 K TORC2Km,1O ’ Km,ll ( )

showing how mTORC1 negatively regulates mTORC2 via S6K1.
The concentrations of Akt, AktT, AktS and AktST at the steady state are
derived from reactions (3.2.15)-(3.2.22) by solving a system of four linear

equations, one of them given by

Akt + AR(T + AktS 1 ARtST = DAkt (3.2.77)
KAkt

We obtain the following expressions:

bare PDK1 ( kize  kire
Akt = PDK16+
tare D1 K13 K17
lec k17c k13c )
—=¢ =% mTORC2(y—n)+ —ve ), (3.2.78
K15 K17 (r=m) Km,137 ( )
bart mTORC?2 < kise  kioe
Akt® = mTORC2n+
Akt D, Km,ls Km,19 7
lec lec k15c )
PDK1(y—60)+ 5), (3.2.79
K13 K10 (=9 Km,15’y ( )
bAkt PDK]. . mTORC2 k'15c k17c < klgc
AktTS = mTORC2+ 4§ | +
Akt D, K15 Kt N\ Ko 19

kize  Kioe ( kize )
PDK1+ ¢ 3.2.80
Km,lB Km,19 Km,l’? ( )
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where the the denominator D, is given by

kize  kive 2 ( k19¢ )
D, = PDK1° | ——mTORC2+ 0 ) +
! Km,13 Km,l? Km,lg
k15c klgc 2( k17c )
—————mTORC2°| ——PDK1 + +
K15 K1 Ko7 K
PDK1-mTORC2 < Mise _Mire (v+6—n)+
Km,lE) Km,17
kize  kioc kize  kioc )
B Gy L . 2Ly Py B |
Km,lS Km,19 (7 ) Km,17 Km,lg (77 PY)

lec k17c ) < kl5c klgc )
PDK1< e+ 7 50) £ mTORC2 54+ 19 ) L ase (3.2.81
Km,13V K17 Km,157 K19 g 7 ( )

and the quantities v, §,¢,1,0 express the activity of the phosphatases:

Y = pakt + Fise PP2A + mPHLPP, (3.2.82)
Km,lS Km,20
§ = pagt + Fie PP2A, (3.2.83)
Km,14
€ = pant + Mo prrpp, (3.2.84)
Km,lG
k1sc
0= pare + - PP2A, (3.2.85)
K18
k20c
0 = pagt + —2PHLPP. (3.2.86)
K20

Equations (3.2.78))-([3.2.80]) show that in the absence of insulin, when the
concentrations of PDK1, Akt™ and Akt>T are likely to be very small, the con-
centration of Akt may still be large because of mTORC2 signaling throught
the factor J (Eq. (3.2.75))). This behavior cannot be described by a hierar-
chical scheme in which Thr308Akt phosphorylation is necessary for phospho-

rylation at Ser473. The phosphorylation at threonine and serine measured
in the absence of insulin may be related to: 1) basal autophosphorylation
of the insulin receptor [TI01]; 2) signaling from other receptors (e.g., IGF — 1
receptor); 3) PIP3 activation by PI(3,4)P2; 4) nonspecific binding of the anti
pAkt antibodies.
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The cytoplasmic FoxO1 concentration is given by

) 7;210 (Akt® + Akt™5)
FoxOl,, = —2*9 m.21 : (3.2.87)

- k
HFoxO fdeg —|—]€_21 + % (Akts —|—AktT’S)
m,21

The concentration of phosphorylated GSK33 is obtained as

b
GSK3Bey: = 9GSKS3 |

HGSK3
1
Fae < ) (AktT + AKt™S)
Km,23 HGSK3 + k—23 (3 2 88)
kaac < 1 ) kase ( 1 > T 7.5\ o
1+ W + Akt + Akth
K24 \pugsis +k_o24 K23 \pgsks + k_23 ( )

where W is the concentration of the putative factor that promotes GSK33
sequestration and decreased response [49].

For the cascade of reactions (3.2.25)- (3.2.27) leading to the activation
of mTORC1 and S6K1, the following expressions for the concentrations of the
active mTORC1 and S6K1 may be obtained:

ko4c
) o (AktT + ARtTS)
mTORC1 = —21 " : (3.2.89)
HTORCL ) roret + k2a + i (ARt + AKtTS)
Ko 24
ko6e ko7e
; K% PDK1—2 mTORC1
S6K1 = S6K1 m,26 m,27 ’ (3290)
HS6K1 D,
where
k
Dy = (psex1 + k—26) (ser1 + k—27) + pser1 K27Z7 mTORC1
koge kare
Km,26 Km,27

Finally, for the concentration of GLUT4 at the plasma membrane, reac-
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tions ((3.2.28))-(3.2.30)) provide the following equation in terms of Akt” +Akt™"5:

GLUTA,,, = M

HGLUT
kage T T,5
14+ AktT + Akt
wp + [w (BRab + k-20) + 0] (ras + k—28)Km 28 ( ) (3.2.92)
p+ [Rab + Ek—20 + 0] kosc T T,5 o
1+ Akt® + Akt
(tas + k_28)Kpm 28 ( )
where
k
w = exo 7 3.2.93
HGLUT + kewo + Kendo ( )
kage bas
- 45 3.2.94
p Km,29 HAS ( )
o - k_29 k30c bRrab (3.2.95)

HGLUT + kemo + kendo Km,30 M Rab ,

with w possibly much smaller than 1. Equation shows that a decrease
in w impairs GLUT4 translocation to plasma membrane. Moreover, at zero
insulin, GLUT4,,, may increase when AS160 expression is silenced (p driven
close to zero), according to the function of “brake” of AS160 [§].

We note that most of model parameters, as seen in the previous equations,
are in the form of the specificity constant k./K,,.

3.2.3 Model equations in normalized form

The model equations at the equilibrium, obtained in section[3.2.2] are here
rewritten in a simple non-dimensional form in order to reduce the number
of unknown parameters. The concentrations of all molecules, except insulin
and factor J in (3.2.75)), are normalized to the ratio of production rate (ex-
pressed as concentration - time~!) over degradation rate constant (time=1)
and denoted by the subscript n. We recall that synthesis rate and degrada-
tion rate constants are assumed to not change with time and do not depend
on the insulin signal. All the normalized concentrations are nonnegative and
smaller than the unity for any value of the extracellular insulin concentration
I.. The model parameters are modified accordingly, and are combinations of
the original parameters of the kinetic equations.

Let us start considering Eqs. (3.2.56)-(3.2.59), from which it is simple to
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obtain the equation for the total tyrosine phosphorylated IR in normalized
form (i.e., normalized to brr/urr). In particular, assuming for simplicity
that the positive feedback is not active (PTP1B, = 1), we have the following
simplified expression:

IRV +IR)  ay+1

IRBL/ == - bl
brr/1IR ap +ag +1

(3.2.96)

where the free insulin concentration I is expressed as a function of total
insulin 7. by

1
I=; { —(ab+ao+ a1 — L) + \/(ap + ao + a1 — L)? + 4(ap + ao)Ie} . (3.2.97)
with
Foc kic bprp ko
/(). el ) ).
e Km0 o= \fm K pprp Koo

brr ( ag )
a] = — - 1 + .
YT g Koo

Since IRY = ay/(ap + ag) can be experimentally measured, a, can be written
as agp/(1 — p), where p denotes this experimental value. Therefore, —
(3.2.97) allow to obtain two meaningful quantities function of ag,a; and p,
i.e. the value of I, at IRY =0.5

- a1\ 1 —2p
1370.5 = (a() + ?) 1—p (3298)

and the slope at I o5

Sos = i , (3.2.99)

. . . . . 1
where I. o 5 has the dimension of a concentration and Sy 5 is a concentration™ .

Assuming that PP, and so «, is constant, Eqs. (3.2.66|) and (3.2.67)) are

rewritten with TRS1Y and IRS1° normalized to brrsi/pnrrs: as follows:

IRY

Y _ n
RS = (o F asPTPIB,) (1 + asS6K1,) + TRY ’ (3.2.100)
IRSl;? _ (ag + a3 PTP1B,)aymTORC1, (3.2‘101)

(a3 + asPTP1B,)(1 + a4S6K1,) + IRY ’
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where

az =

b in )

kse  bprpip < kac _bm)_l
Km,2 HIR ’

ag = MIRS1( Kmo i
m,

K3 ppreiB
kse  bseri

aq = )
aKpma  JSeK1

with as-a4 nondimensional.

Equation (3.2.69)) becomes

1

PTP1B, = —————
1+ apAkt7€7T

(3.2.102)

with ap given by
kp. bkt

pprPiB +k—p)Kmp pakt

apz(

In the absence of the positive feedback, ap = 0 and PTP1B, = 1.
Proceeding similarly, Eq. (3.2.70) normalized to bprsx/uprsx rewrites as

ag(IRS1Y)?

PI3K, = . , (3.2.103)
1+ agIRS1Y + ag(IRS1Y)2
with /
. F birs: ag = 1 ke kec (bIRs1 >2
" E prs’ EK,, s Kms \tirs:
Equations (3.2.73|) and (3.2.74]) become
PI3K,
PIP3,, = .2.104
3n a7 +agPTEN,, + PI3K,, (3 0 )
aoPIP3,
PDK1l, = ———— 2.1
" 14 a9gPIP3, (3.2.105)
with
= MPI/( ke bPI3K) s = < ksc  bpren >/( ke bPI3K)
K7 pprsk’’ Kns ppren Kmy7 ppisx/’
kg bprps
ag =

(uppK1 + k—9)Km 9 " uprps’
For the mTOR complex 2, (3.2.75)) provides the following equation:

a1oPIP3,, + a11J
1+ (1 + algS6K1n)(a’f0 + a1gPIP3,, + a11J)

mTORC?2,, = (3.2.106)

70



with

S k10c bprp3 P k11c
10 (k—10 + k—11)Km,10 kpips M (k—10+k-11)Km1 '
a1y = k12c bser1 g — _HmTORC?
(mroRC2 + k—12)Km 12 f1s6k1 Ok o+ konn’

where ay, afy, a12 are nondimensional and a4, is the inverse of a concentration.
Assuming PP2A and PHLPP (and so v, 4, ¢,n,0 defined by (13.2.82))-(3.2.86)))
constant, Eqs. (3.2.78))-(3.2.80) may be rewritten in terms of eight parame-

ters as follows:

PDK1
AktT :Tn (a‘fsa%agePDKln + a$5(ad; — alya,5)mTORC2,, + a¢153) (3.2.107)
1
mTORC2, [ . . )
Akt = (awa’fga,,ngORC’Qn + a5(aSy — ajgag)PDK1,, + a15>
1
(3.2.108)
PDK1,mTORC?2,
AktST = g, (a§5a§7a¥9mT0302n + ai;a$al, PDK1,,+
1
ajsal; + a‘fgaYg) (3.2.109)
with

Dy =alyal, PDK12(a$qmTORC2, + age) + a5alymTORC22 (a2, PDK1, + ays)
+ PDK1,mTORC2,(a%3(ajy — ajgase) + ais(aly — ajzans) + al7(af5 + ajoans)
+ ajg(afs + afrape) — afraly) + PDK1,(ad5 + ajzapc)

+ mTORC2,(afs — ajgag:) + 1
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and

s _ kise brppril e _ kisc  bmrorc2 1
B Kmas pppr1d’ Y Knis  mrorcs €
o = kize  bppr1 1l 7 ac, = kige  bmrorc2 1 ’
K7 pppri 0 K19 HmTORC? €
oY, = kize  bppri 1l 7 ol = kigc  bmrorcz 1 ’
K17 pppr1 Y K19 MmrTORC2Y
0
aAge = z 5 QAnps 5 P

where all parameteres are nondimensional.

Concerning the Akt substrates, we assumed that singly and doubly phos-
phorylated Akt molecules have the same catalytic activity. So, the normal-
ized cytoplasmic FoxO1 concentration is given by

ag (Akty + Aktl-9)

, 3.2.110
1+ ag (Akts + Akt ( )

FoxO1,, =

with
1 ka1 bakt

 Fer0 + ko1 Kot pakt

a21
The normalized concentration of phosphorylated GSK3p is obtained as

a3 (Aktz + Aktg”g)
1+ ahy W + ags (AktL + AktyS)

GSK3B, = (3.2.111)

with /
1 kose bkt . 1 kase
23 = .
HGSK3 + k/_23 K’:n723

Equation (3.2.89)) for the normalized concentration of mTORC1 becomes:

ag3 = )
Hasks + k—23 Ky 23 LAkt

azy (AKtT + AktTS)

mTORC1,, = , 3.2.112
1+ agy (Aktg + Aktz;’s) ( )
with
s = 1 kose bakt
PmTORCT + k—24 Ky o4 frak
For the normalized S6K1 from (3.2.90) we have:

1 + agPDK1,, + (agﬁ + a26PDK1n)a27mTORCln
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where

_ 1 kesc bppr1 . HS6K1
6 — ’ 26 T ’
Hser1 + k—26 K26 LPDK1 Hsex1 + k—26

a

dr — 1 ka7 bmrorCi
27 = .
pser1 + k_o7 Ko 27 lmTORC1

The equation (3.2.92)) for the normalized GLUT4,,, (here simply denoted
as GLUT4, ) may be written as:

a8 + A29 (Akt,j; + Aktz;’s)

GLUT4, = e, (3.2.114)
1+ ago(AktL + Akty™”)
with
s — wp +w (URap + k—29) + 0
P+ lRap + k20 +0
g — W (fRab + k—20) + 0 ~ k_ss  barur
(P4 1tRab + k20 +0) (as + k—28) Kmo2s perur’

_ PRab + k—20 + 0 k_2s  barur

asg = '

(p+ tRab + k—20 + ) (pas + k_28) . Kmos perur

Parameters asg, asg,azp account in a simple way for the various steps that
promote GLUT4 translocation to plasma membrane [8]. Moreover, it may
be easily verified that ass < 1 and ag9 < azo.

In summary, given the concentrations of insulin and of the factor J, plus
the constant parameters defined above, Eqgs. (3.2.96))-(3.2.114]) provide the
dose-response curve of each component in the scheme of Fig. of the

insulin signaling network.
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Chapter 4

Model parameter estimation from
experimental data of skeletal muscle
cells

In general, the typical building cycle of the model representing a biolog-
ical process starts from a goal definition and some a priori knowledge (i.e.
preliminary data and initial hypotheses) that suggest the model structure.
From the available data, parameter estimation is then performed and, finally
the initial model must be validated with new experiments. If the validation
reveals a number of model deficiencies, a new model structure and/or a new
experimental design must be planned and the process is repeated iteratively
until the validation step is considered satisfactory.

In the previous chapter, we presented a mathematical model of the ISN
developed to investigate the mechanisms that regulates the glucose uptake
into insulin-sensitive cells such as muscle cells, hepatocytes and cells of the
adipose tissue.

Skeletal muscle is the main tissue involved in the insulin-induced stimula-
tion of glucose uptake in rodents and humans. Reduction of glucose uptake in
muscles in the state of insulin resistance is the principal factor that accounts
for reduced systemic glucose utilization. For this reason, skeletal muscle cells
have long been regarded as a critical organ/cellular system for the investiga-
tion of insulin resistance and the pathogenesis of type 2 diabetes.

As described in this chapter, the ISN model parameters were estimated
by fitting the model equations at the steady state (3.2.96)-(3.2.114) to the
experimental data of two different skeletal muscle cell lines of rodents (L6

myoblasts and C2C12 myotubes) through minimization of a least-squares

4



index. A preliminary observation of the data obtained from the two different
cell lines [13, [123] suggested that, although L6 and C2C12 are both skeletal
muscle cells, their response to insulin stimuli can be significantly different
as well as their parameter values. Moreover, the observation of the data
suggested that there could exist some differences in the ISN model structure
for the two cell lines as detailed in the following sections.

The present chapter presents the main results of this thesis project and
shows the potential applications that the ISN model here proposed could
have.

4.1 Experimental data used for the ISN parameter
estimation

The ISN model parameters were estimated using (separately) the ex-
perimental data sets related to two different skeletal muscle cell lines: L6
myotubes with induced insulin resistance and C2C12 myoblasts with PTEN
protein suppressed.

L6 myotubes are derived from rat skeletal muscle, and this cell line is
one of the most frequently used cellular model systems to investigate the
insulin-stimulated glucose transport. In these cells insulin induces significant
glucose uptake and the extent of such uptake is related to the expression and
function of the muscle-specific GLUT4 glucose transporters. In addition,
the GLUT1 glucose transporter responsible for basal glucose uptake is also
expressed. Thus, this cell line serves as an ideal model system to investigate
both insulin-dependent and insulin-independent glucose transport.

We used the experimental data of L6 cell line to estimate the parameter
values of the ISN model in this line with the aim of obtaining a useful tool
to generate and test hypotheses, leading to a deeper understanding of the
molecular mechanisms underlying insulin resistance. Then, to test the ability
of our model to reproduce the effect of gene knockout, we estimated the ISN
model parameters starting from the second data set that showed the effect
of PTEN knockout in C2C12 myotubes of mouse [123].

Let us show now in detail the two data sets, available in the literature,
used for the parameter estimation.

L6 myotubes data The L6 data set includes data reported in [13] and
in [124]). In [I3], the Authors aimed to investigate the possible molecular
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mechanism /s underlying the decrease of insulin resistance and remission of
type 2 diabetes observed after the bariatric surgey. Indeed, several and recent
studies ([109], [110], [14]) demonstrated that bariatric surgery, a procedure
in which a portion of the stomach and of the small intestine are removed or
bypassed, induces a remission of type 2 diabetes very soon after surgery and
far too early to be attributed to weight loss. The mechanisms responsible
for the improvement in glycemic control after bariatric surgery are still not
well understood but, as bariatric operations reroute food through the upper
small intestine, it has been hypothesised that gastrointestinal removal or
bypass reduce the production of putative intestinal factor/s inducing insulin
resistance. To test such hypothesis, Salinari et al. [I3] collected experimental
data on the effects of jejunal proteins, secreted by diabetic mice (db/db) or
Swiss mice, on the glucose uptake in vivo in Swiss mice and in vitro in both
Swiss mice soleus and L6 skeletal muscle cells.

To perform the parameter estimation, we considered the data of L6
cells collected in [I3]. These data represent the phosphorylation levels of
some of ISN components for several insulin values normalized with respect
to the respective saturation levels. In particular: the normalized levels of
pAkt(Serd73) and (Thr308) at zero insulin and at insulin concentrations of
0.1, 1, 10, and 100 nM; pGSK33(Ser9) at zero and 100 nM insulin; the basal
(zero insulin) pAkt(Serd73) and pS6K1(Thr389) in the presence of the in-
hibitors Rapamycin and PP242 (that targets both mTOR complexes) [125].
The data, reported in Fig. 4.1, were measured in the control medium, en-
riched by proteins secreted by the jejunal mucosa of non-diabetic mice, and
in conditioned medium (CM) enriched by proteins secreted by the mucosa of
diabetic mice (db/db CM).

The phosphorylation of ISN components was measured by Western blot
analysis [] and quantified by densitometry.

As extensively discuss in Chapter [2| one of the main problems in the
estimation of the biological parameter values from experimental data is that
the number of available data is not large enough compared to the number of
parameters. Another problem is related to the substantial differences in the
parameter values that may be found among different cell types.

Such problems also characterized our study. So, in order to increase the
amount of data for the estimation of L6 parameters, we used in addition some

'Western Blotting is a technique used in biochemistry for analysis of individual proteins
in a protein mixture.
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Figure 4.1: Experimental data of L6 myoblasts reported in [13] and used for the
parameter estimation of the ISN model. Data are expressed as fold change versus
control condition (control at 100 nM insulin set at 100). Data are mean + s.d. Panel A:
Dose-response curve of pAkt(Ser473) vs insulin concentration (nM) in logarithmic scale
in the absence (squares) or presence (circles) of db/db CM proteins. Panel B: Effect of
mTORC inhibitors (Rapamycin or PP242) on basal 4"Ser Akt phosphorylation in both
control and db/db CM treated cells. Panel C: Dose-response curve of pAkt(Thr308)
vs insulin concentration (nM) in logarithmic scale in the absence (squares) or presence
(circles) of db/db CM proteins. Panel D: Effect of mTORC inhibitors (Rapamycin or
PP242) on basal 33 Thr p70S6K1 phosphorylation in both control and db/db CM treated
cells. Panel E: ?Ser GSK343 phosphorylation in control, in Swiss CM treated cells (data
not used for the parameter estimation), and db/db CM treated cells with or without
insulin.
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Figure 4.2: Experimental data of L6 myoblasts reported in [124] and used for
the parameter estimation of the ISN model. 2-deoxyglucose uptake measured in L6
myoblasts in the presence (black bars) or absence (white bars) of bradykinin (10~7 mol/1)
after preincubation with various concentrations of insulin (0,107, 1072,10~% and 107
mol/l. Results are expressed as the mean + s.d. (n=6).

of the data reported by Miyata et al. in [124]. In this work, the Authors
wanted to determine how bradykinin, a peptide involved in multiple biological
processes (such as vasodilatation, increase in capillary permeability, smooth
muscle relaxation/contraction, and inflammation) affected insulin-stimulated
glucose uptake in dog skeletal muscle and rat L.6 myoblasts. They found that
bradykinin significantly increased 2-deoxyglucose (2-DG) uptake in isolated
muscle and L6 myoblasts in the presence of insulin in a dose-dependent man-
ner, but not in the absence of insulin (Fig. . 2-Deoxyglucose is a glucose
molecule which has the 2-hydroxyl group (one oxygen atom connected by a
covalent bonding to one hydrogen atom) replaced by hydrogen, so that it
cannot undergo glycolysis when taken up by the cell. 2-DG is taken up by
the glucose transporters of the cell (GLUT4 for the skeletal muscle cells) and,
therefore, cells with higher concentrations of glucose transporters also have a
higher uptake of 2-DG. We assumed that there exists a proportional relation
between the levels of 2-DG measured by Miyata et al. [124] in L6 myoblasts
in the absence of bradykinin at the various concentrations of insulin, and
the GLUT4 levels ate plasma menbrane in the same cell line and the same
condition. In view of this assumptions, to estimate the GLUT4 parameters,
we used the data of Fig. (white bars) normalized to the value of the
maximal insulin concentration.
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C2C12 myoblasts data In order to verify the present ISN model is able
to represent data from different cell lines and different experimental condi-
tions, we used the data reported in [123] to estimate the ISN parameters of
the C2C12 cells. In [123] the Authors investigated the effects on insulin sig-
naling regulation of selective inhibitions of PIP3 phosphatases (SKIP, SHIP2
and PTEN) by small interfering RNA (siRNA) in the C2C12 myoblasts. As
widely discussed in Chapter , PTEN (phosphatase and tensin homologue)
acts by removing the phosphate in the 3-position of PI1(3,4,5)P3 to produce
PI(4,5)P2 while SHIP2 (SH2 domain-containing inositol polyphosphate phos-
phatase) specifically hydrolyzes the 5-phosphate of PI1(3,4,5)P3 to produce
PI(3,4)P2. SKIP (skeletal muscle and kidney enriched inositol polyphos-
phate 5-phosphatase) is an other phosphatase abundantly expressed in the
skeletal muscle that hydrolyzes P1(3,4,5)P3 to downregulate its intracellular
levels [126]. SKIP is localized to the endoplasmic reticulum under basal con-
ditions and is translocated to the membrane ruffles [| in response to insulin.
The action of SKIP, SHIP2 and PTEN on PIP3 is represented in Figure
Several studies have shown that SKIP, SHIP2, and PTEN negatively regulate
insulin-dependent glucose incorporation [126, 127, [128]. Based on these stud-
ies, all of the PIP3 phosphatases are implicated in the regulation of insulin
signaling, but several important findings about the differences between the
PIP3 phosphatases are also reported. It is stated, however, that the exact
role of these PIP3 phosphatases in the regulation of insulin signaling in the
skeletal muscle remains unknown.

In [123] the Authors measured the relative phosphorylation levels of some
players of the ISN for different insulin concentrations in C2C12 myoblasts
transfected with small interfering RNA (siRNA) of PTEN, SKIP and SHIP2
(see Figures , . Among these data, we used only the experimental
data for control and for PTEN-suppressed cells (PTEN protein concentration
was reduced up to 10% of control) because SKIP and SHIP2 were not included
in the present ISN model. In particular, for the parameter estimation of
C2C12 cells, we used the normalized phosphorylation levels of IR(Tyr1146),
Akt(Ser473) and (Thr308), GSK35(Ser9) and S6K1(Thr389) at zero insulin
and at insulin concentrations of 1, 10, and 100 nM. In addition, we considered
the normalized concentration of GLUT4,,, at the cell surface in basal (zero
insulin) conditions and in cells stimulated with 100 nM of insulin for 15 min

2Membrane ruffles are actin-rich protrusions of the plasma membrane that can be
observed on the surface of many cell types.
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Figure 4.3: Role of PTEN, SKIP and SHIP2 in the regulation of insulin signal-
ing in skeletal muscle cells. PTEN, SKIP and SHIP2 are PIP3 phosphatases that reg-
ulate insulin-dependent glucose incorporation. PTEN acts removing the phosphate in the
3-position of PI(3,4,5)P3 to produce PI(4,5)P2. SKIP and SHIP2 hydrolyze PI(3,4,5)P3
to produce PI(3,4)P2.

(Figure [£.5). The data of PIP3 and AS160(Thr642) shown in Fig. [4.6] were
used for the prediction. All protein levels were measured by Western blotting
analysis and immunoprecipitation and quantified by densitometry.
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of pAkt(Thr308). Panel D: Insulin-stimulated phosphorylation of pGSK33(Ser9). Panel
E: Insulin-stimulated phosphorylation of p70S6K1(Thr389).
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4.2 Estimation procedure and optimization algorithm

The optimal values of the ISN model parameters were estimated by fit-
ting the model equations at the steady state (3.2.96)-(3.2.114) to the ex-
perimental data through minimization of a least-squares index. In other
words, according to the Ordinary Least Squares (OLS) method described
in section of Chapter [2, we implemented an estimation algorithm that
aimed to minimize the sum of squared residuals, i.e. the differences between

the model-based predictions and the available data. Such optimization al-
gorithm, implemented using the C programming language, consists in the
following steps:

1. The model parameter values are initialized.

2. For any insulin concentrations, model equations (3.2.96)-(3.2.114) are

solved numerically by reducing to a non-linear system in only two vari-
ables, PDK1, and mTORC2,, through a series of cascade substitutions.

3. As the experimental data were normalized to have a unity value at
maximal insulin concentration in control, the concentrations of the
measured quantities are computed according to this constraint.

4. The cost function defined as the sum of squared residuals is computed.

5. A numerical optimization routine searches for the cost function mini-
mum repeating Steps 2-4. When the routine converges, the algorithm
stops providing the optimal parameter values.

To find the numerical solution of the optimization problem, we used a
local routine implementing a derivative-free algorithm for bound constrained
optimization problems (Package SDBOX available at the Software Library
of the Department of Computer and System Science, Sapienza University of
Rome). The choice of a local optimization routine, whose performance may
depend on the initial parameter vector, was motivated by the availability of
a priort information about this initial value, obtained both from a careful
analysis of the literature and from an extensive series of preliminary numeri-
cal simulations. Moreover, we constrained the local routine to search for the
optimal parameter values in the wide range [0,500].

The parameter estimation for the two cell lines was characterized by some
differences and some common hypothesis suggested by the data observation
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and the literature knowledge. Such differences and common assumptions will
be detailed in the following sections.

4.3 Estimates of ISN model parameters and optimal
fitting curves for L6 myoblasts

We used the L6 data described in section to estimate the following
parameters of the ISN model: the value of I. 5 defined in letting So 5
fixed as no IR data were available; the IRS1 parameters a3 and a4; the PI3K
parameters ag and ay; the PIP3 parameter as; the PDK1 parameter ag assumed
equal to the mTORC2 parameter a;, as no data on the phosphorylation of
PDK1 and mTORC2 were available; the mTORC2 parameter a;,; the factor
J that activates mTORC2 for db/db with ay; set to 1; the Akt parameters
aly, aSy, als, als, aly, aly, ase and a,s; the GSK38 parameters ays and ayy (only
for db/db as ay, is zero for control); the mTORCI parameter asy; the S6K1
parameters asg, abs and agr; and the GLUT4 parameters ass, az and asp.

We fit the experimental data assuming that: i) J has negligible concen-
tration in control medium and a larger concentration, to be estimated, in
db/db medium; ii) insulin resistance also increases because of an increased
IRS1 degradation due to enhancement of mTORC?2 signaling [129]. So, to fit
the data of cells exposed to db/db medium, we reduced the values of ag and
ag in Eq. according to a twofold increase of IRS1 degradation rate
constant (urgrs1);iii) as the L6 data suggested that, for this cell line, GSK33
is activated by pAkt(Serd73), we changed AktT into Akt in Eq.
and assumed ay, > 0 with W =1 in db/db to represent the putative GSK33
sequestration; iv) the action of Rapamycin was accounted for by reducing as,
in by a factor 0.1, and the action of PP242 by reducing a1y and ay;
in Eq. and ay in Eq. by a factor 0.15; v) to reduce the
number of parameters to be estimated, the parameters as,a; and af, in Egs.
(3.2.100)), (3.2.104), (3.2.106]), that are likely to be small, were set to zero and
the positive feedback loop from Akt to PTP1B was not included (ap =0 and
then PTP1B, =1 from (3.2.102))); vi) the remaining parameters were fixed,
ie. p=0.03in (3.2.98), Sp.5=25-10"2in (3.2.99), W =1 in (3.2.111)), as; = 0.5
in (F2110).

We remark that the normalized experimental data of pAkt(Ser473) were
fit by the sum Akt + AktST, given by Eqs. (3.2.108)-(3.2.109)), because the
specific monoclonal antibody is likely to bind Akt phosphorylated on Ser473
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irrespective of the presence of the phosphorylated Thr308. Similarly, the data
of pAkt(Thr308) were fit by AktI + Akt5". All parameters to be estimated
were constrained to be nonnegative and to belong to the box [0, 500]. More-
over, in view of the definition of some model parameters, further constrains

were necessary. In particular, since from (3.2.98)), (3.2.99)) IR parameters ag
and a; are related to I.o5 and Sy 5 by the equations

1 Ie0.5> 1—p
= S 4.3.1
a0 (250,5 1-2p)1-2p° (4.3.1)
1—p 1 > 1-p
(4l g —P 4.3.2
a“ ( 051 0, T Ses) 1-2p° (4.3.2)

the terms in parenthesis were constrained to be positive to ensure the positiv-
ity of ap and a;. The quantities a$; —ajya,s and a§y—ajyag. in (3.2.107))-(3.2.109)
were constrained to be positive. In addition, noting that al,a$ea,s+ajqal,agc —

adza]y in D) equals al;a]y(tare/y), we assumed fap /v < 1.

Table (4" and 5" columns) reports the parameter estimates and Fig-
ure [4.7/shows the experimental data of L6 cells, replotted from [13] and [124],
along with the optimal fitting curves. The phosphorylation data measured
in the experiments with db/db medium are fit with a value of J substantially
larger compared to control (0.07 vs. 0.001). pAkt(Ser473) at zero insulin is
largely increased, but its response to insulin is blunted (see Fig. |4.7| panel
A). We observe that a high value of pAkt(Ser473) at zero insulin can only
be obtained if mMTORC2 is also activated through a signaling pathway inde-
pendent of PI3K, and if the Thr308 Akt phosphorylation is not required for
Ser473 phosphorylation. The response of pAkt (Thr 308) and of pGSK33(Ser9)
is also depressed (panels B and C of Fig. . The 2-DG uptake data in con-
trol reported in Fig. [£.7 D were adequately fit by the model. The predicted
2-DG uptake in the presence of db/db medium was computed by assuming
that the rate constants that regulate GLUT4 translocation to plasma mem-
brane are smaller compared to control [7, 8]. Actually, in T2D subjects,
GLUT4 mRNA and protein levels are reduced in adipose tissue (GLUT4
concentration reduced to 50% of control in [19]) but not in skeletal muscle
[7], suggesting that a defective regulation of GLUT4 translocation may con-
tribute to insulin resistance in L6 cells exposed to the db/db medium. We
accounted for the diminished capacity of GLUT4 vesicles to reach plasma
membrane in the presence of db/db medium by decreasing the parameters

azs and agg in Eq. (3.2.114)) (see Table [4.1]).
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The data measured in the presence of Rapamycin and PP242 are shown
Fig. H panels E-F. The model adequately fits the inhibition of basal (no
insulin) pS6K1(Thr389) both in control and db/db medium (panel F). In
the basal pAkt(Serd73) data (Fig. , panel E), the poor prediction for cells
exposed to db/db medium is likely caused by experimental variability and
the data were not used for model fitting. In cells treated with Rapamycin, the
attenuated negative feedback led to an increase of mTORC2,,, thus enhancing
pAkt. By contrast, PP242 affects Akt phosphorylation at Ser473, so Akt®
and AktTS are strongly reduced. Overall, it appears that the present model
provides an adequate fitting of the L6 data.

A subset of model predictions is displayed in Fig. . We stress that
mTORC1 inhibition leads in turn, because of attenuated negative feedback
via S6K1, to a decrease in IRS13 and an increase in IRS1Y thus enhancing
insulin signaling (panels A-D). In panel E of we plotted the values
assumed by PDK1, and mTORC2, when I, increases from zero to 100 nM for
control and db/db medium while panel F gives a 3D representation of the
components of pAkt. At 100 nM insulin, total pAkt is 78.7% of total Akt in
control.

The L6 cell data were also analyzed in the presence of the positive feed-
back, with the constant ap in Eq. set to a smaller value for the
cells in db/db medium compared to control. The results, however, did not
appear to improve on those obtained without the positive feedback.

We also performed a sensitivity analysis in order to investigate how pa-
rameter changes influence the system behaviour at the steady state and to
identify those parameters that have the greatest impact on the system output.
The sensitivities of the normalized concentrations of proteins with respect to
model parameters were computed (both for control and for cells exposed to
conditioned (db/db) medium), as the derivative of log concentration with
respect to log parameter at the optimum (see section . The use of these
relative sensitivities provids nondimensional quantities that do not depend on
the absolute values of concentrations and parameters. Sensitivities were eval-
uated numerically upon a +10% perturbation of the parameters. The results
are presented in the form of matrices where the numerical values, which are
positive for a positive regulation and negative for an inhibition, are converted
to a color. Figure shows the sensitivities of protein concentrations to
the estimated model parameters at the extracellular insulin concentration of
9.69 nM (estimated I,05). We remark that the sensitivities to a; and ay, are
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small according to the small values of the estimates whereas, as expected, the
sensitivities to the factor J increase in cells exposed to the db/db medium
compared to control. The sensitivity to ai» is small suggesting that the effect
of the negative feedback loop from S6K1 to mTORC2 can be negligible.
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Proteins Parameters C2C12 L6

Ctr db/db
IR I.o5 (nM) 44.68 9.69 -
So5 (nM)~t 0.01 0.025 -
IRS1 as 8.26 1.88 -
ay 24.12 4.70 -
PI3K ag 0 1.3-107%  0.66-103

ag 124 14.50 3.62
PIP; as 0.05 1.85 -
PDK1 ag 0.49 6.61 -
aio 0.49 6.61 -
mTORC2 ail 0 1 -
aro 5-107%  1.2-1077 -
aly 9.2-107* 0.34 -
ass 0.22 5.80 -
al, 0.92 3.84 -
Akt al, 0.20 0.29 -
asy 7.95 0.67 -
aly 12.88 0.65 -
ape 0.62 1.0 -
ans 0.11 2.5-1073 -
FoxO1 a921 0.5 0.5 -
GSK3p as3 2.92 12.54 -

- 0 0 3.35
mTORC1 a4 0.01 0.17 -
as6 66.01 39.06 -
S6K1 abe 0.13 0.90 -
agy 74.12 460 -

asg 0.14 0.22 0.15

GLUT4 a9 24.67 1.20 0.67
azo 28.16 2.01 -

Table 4.1: Parameters estimated from data of C2C12 and L6 cells.
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Figure 4.7: Experimental data of L6 myotubes and model fitting. Data (mean
+ SD) replotted from Ref. [I3] except in panel D from Ref. [124]. Data (squares) and
model fitting (solid lines) plotted in black for control and in blue for cells exposed to
conditioned (db/db) medium. (A, B) Relative pAkt(Serd473) and pAkt(Thr308). (C)
Relative pGSK33(Ser9) at zero (white box) and 100 nM (gray box) insulin. (D) Relative
2-DG uptake in rat L6 myoblasts. (E) Relative pAkt(Ser473) at zero insulin in control
(black) and cells exposed to db/db medium (red), in the absence of inhibition and in
cells treated with rapamycin (50 nM) and PP242 (500 nM). The red color indicates that
experimental values do not preserve the increase in basal pAkt(Serd473) from control to
db/db medium in the absence of inhibition, and asterisks point out that these data were
not used in model fitting. The boxes represent model fitting with the color code: green
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at zero insulin in the absence of inhibition and in treated cells. The boxes represent model
fitting with the same color code of Panel E.
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Figure 4.8: Model predictions for L6 myotubes. (A, B) Model prediction of IRS1Y
(panel A) and IRS13(panel B) for cells in control medium at zero and 10 nM insulin
in the absence of inhibitor (green), and in the presence of 50 nM rapamycin (yellow)
and 500 nM PP242 (pink). (C, D) Model predictions as in (A) and (B), but for cells
exposed to db/db medium. Panels A-D show the different effect of the decreased negative
feedback on the tyrosine and serine residues of IRS1. (E) Plot of values assumed by
PDK1,, (abscissa) and mTORC2, (ordinate) when I, increases from zero to 100 nM for
control and db/db medium. (F) 3D plot of Akt] | AktS | and Akt!"S as a function of
PDK1,, and mTORC2, according to Eqs. (3.2.107)-(3.2.109). With the present estimates
of Akt model parameters, AktS increases with mTORC2, and decreases with PDK1,,,
while AktT-S and less clearly Akt increase with both PDK1,, and mTORC2,.
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Figure 4.9: Sensitivity analysis for the ISN model of L6 myotubes. The plot
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at the extracellular insulin concentration of 9.69 nM (I, o.5) for control cells (upper panel)
and cells in db/db medium (lower panel).
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4.4 Estimates of ISN model parameters and optimal
fitting curves for C2C12 myotubes

From the C2C12 data, we estimated: the quantities I. 05 and S5 char-
acterizing the dose-response curve of IRY (see (3.2.98), (3.2.99)); the IRS1
parameters a3 and ay; the PI3K parameter aq; the PIP3 parameter ag; the

PDK1 parameter ag assumed equal to the mTORC2 parameter a;y as no data
on the phosphorylation of PDK1 and mTORC2 were available; the mTORC2
parameter aip; the Akt parameters als, a$s, ai;, al,, ady, aly, age and a,s; the
GSK3p3 parameter as;; the mTORC1 parameter aoy; the S6K1 parameters asg,
abs and as7; and the GLUT4 parameters asg, asg and aso.

To fit the C2C12 data, we assumed that: i) PTEN normalized concentra-
tion was equal to 1 in control and to 0.1 in PTEN-silenced cells in according
with the experiments in [123]; ii) basal IR autophosphorylation at zero in-
sulin (denoted as p in (3.2.98)), (3.2.99))) was set to 0.03 in view of the data in
[123]; iii) the parameter ap of positive feedback in (3.2.102)) was set to zero

because IR tyrosine phosphorylation is similar in control and PTEN-silenced
cells (Fig. [4.4 panel A); iv) the factor J was considered negligible and then
arr in (3.2.106) was set to zero; v) to reduce the number of parameters to be
estimated, the model parameters az,a; and af, in Egs. (3.2.100)), (3.2.104)),
, that are likely to be small, were set to zero as well as a;, in (3.2.103)
and aj, in (B2.111).
Moreover, as for the L6 cells, the normalized experimental data of pAkt(Serd73)

and pAkt(Thr308) were fit by the sum AktS + AktT and Akt + AktST, respec-
tively, and all parameters were constrained to be nonnegative and to belong

to the box [0, 500]. We implemented the constraints that guarantee the posi-
tivity of ap and a; (see (4.3.1))) and of the quantities af; —a},a,s; and a$y—a]yas.
in ([3.2.107)-(3.2.109). Finally, recalling that aJ-a$gans +alyalsae —alraly in D)
is equal to al;a)y(part/7), we also imposed par:/y < 1.

Table reports in the third column the parameter estimates for C2C12
cells. It is worth noting that I.,5 was found equal to 44.68 nM, a value

larger than that of L6 cells. Moreover, we note that the parameter estimates
reported in Table are rather different between C2C12 and L6 cells, which
however is not surprising since C2C12 is a line of mouse myoblasts whereas
L6 is a line of rat myotubes. Figure displays the data of C2C12 cells,
replotted from [123], and the optimal fitting curves computed by the present
model. The ISN model was able to adequately fit the available C2C12 data.
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Figure 4.10: Experimental data of C2C12 myoblast cells and model fit-
ting. Data (mean + SEM) replotted from [123] for control (black squares) and PTEN-
suppressed (red squares) cells. Solid lines are the dose-response curves (logaritmic scale)
predicted by the model for control (black) and PTEN-suppressed cells (red). (A) Relative
pIR(Tyr1146). (B, C) Relative pAkt(Serd73) and pAkt(Thr308). (D) Relative pGSK3
B(Ser9). (E) Relative pS6K1(Thr389). (F) Relative GLUT4 at PM at zero (white box)
and 100 nM (gray box) insulin.

As expected, PTEN deletion enhances the insulin response and basal level
increased in almost all proteins and, in particular, PTEN protein suppression
causes an increase in basal Ser473 Akt phosphorylation, which may phospho-
rylate and deactivate FoxO1 with the possible enhancement of signaling to
the pathways that regulate cell proliferation.

A subset of model predictions is displayed in Fig. [1.11} Panel A shows
the prediction, obtained by the estimated model, of pAS160(Thr642) to-
gether with the data that were not used in the estimation procedure. While
the profile of pAS160(Thr642) data was followed rather accurately, the model
failed to predict PIP3 concentration data in the PTEN-silenced cells (panel
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Figure 4.11: Experimental data of C2C12 myoblasts not used in the parameter
estimation and model predictions. Data (mean + SEM) in panels A and B are
replotted from [123]. (A) Relative pAS160 (Thr642) concentration in control (black)
and PTEN-suppressed (red) cells, together with the dose-response curves predicted by
the model. The equation for pAS160 (Thr642) (inactive form) is given by pAS160, =
0.5(AktL + AktI:9) /(1 +0.5(AktL + AktI5)]. (B) Relative PIP3 concentration in control
(black squares) and PTEN-suppressed (red squares) cells with model prediction at zero
insulin (white boxes) and 10 nM insulin (blue boxes). (C, D) Fitting of the relative
pAkt(Ser473) and prediction of relative PIP3 in the hypothesis that mTORC?2 is activated
by PI3K instead of PIP3. (E) Model prediction of PDK1,, in control and PTEN-suppressed
cells at zero (white boxes) and 100 nM insulin (gray boxes). (F) Model prediction of total
pAkt, in control and PTEN-suppressed cells at zero (white boxes) and 100 nM insulin
(gray boxes).
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B). We note that if mTORC2 were activated by PI3K instead of PIP3,
the model could not adequately fit pAkt(Serd73) data at zero and low in-
sulin in PTEN-silenced cells, nor the prediction of PIP3 concentration data
would improve (Fig. , panels C, D). Moreover, we found that the total
pAkt(AktT + Aktd + AktTS) at 100 nM insulin in control is 8.61% of total Akt
(Fig. panel F) and GLUT4 at the plasma membrane is about 50% of
total GLUT4. These values agree with the model results reported in [17],
where pAkt is about 9% of total Akt and surface GLUT4 attains 40% of total
GLUT4 after 15 min 100 nM insulin.

We performed a sensitivity analysis around the optimal parameter val-
ues also for the C2C12 cells. Figure shows the sensitivities of protein
concentrations upon a +£10% perturbation of the estimated parameters at the
extracellular insulin concentration of 44.68 nM. As this concentration equals
.05, the sensitivity to Sy 5 is vanishing. The same occurs for the sensitivities
t0 a12,al; and a], that have small values. The largest positive sensitivities are
found for ag and a,0, whose values were set equal (see Table as no data
on the phosphorylation of PDK1 and mTORC2 were available. The sensitiv-
ity to a1 is again small as in L6 cells, suggesting that the negative feedback
loop from S6K1 to mTORC2 has a negligible role in both cell lines. The
parameters that directly affect the downstream proteins, as mTORC1 and
S6K1, also affect the upstream proteins, as IRS1 and PI3K, because of signal-
ing through the negative feedback loop. The opposite behavior of IRS1Y and
IRS1% is also noted. We also stress the negative sensitivity to ag of all proteins
downstream PTEN, whereas TRS1Y and PI3K are positively regulated. Let
us note that the sensitivity values in control cells and in PTEN-suppressed
cells belong to different ranges. Moreover, the general pattern of the sensi-
tivities for the C2C12 cells is similar to that found for L6 cells, confirming
that the model is able to represent both types of data.
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Figure 4.12: Sensitivity analysis for the ISN model of C2C12 myocytes.The
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model at the extracellular insulin concentration of 44.68 nM in control cells (upper panel)
and in PTEN-suppressed cells (lower panel).
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4.5 Effects of inhibitors and of gene knockout and iden-
tification of potential drug targets

A test of model validity is that of ascertaining whether it is able to repre-
sent the effects of inhibitors and of conditions such as gene knockout or RNA
interference. For instance, our model may represent the following particular
conditions:

e PI3K inhibitors. The effect of PISK inhibitors, such as Wortmannin
and PIK-90, may be represented by a reduction of the catalytic con-
stant ke in (3.2.70). A strong decrease in kg drives PI3K, PIP; and
PDKI1 close to zero and substantially reduces mTORC2 as shown by Egs.
(3-2.70)-(3.2.74) and ([3-2.75)). So Ser473 and Thr308Akt phosphorylation
are inhibited [125].

e Pten knockout. When the concentration of PTEN vanishes, as in PtenKO
cells, PIP3, and thus PDK1, mTORC2, and Akt signalling are enhanced
[123]. In the model, Pten knockout is simulated by reducing the vari-
able PTEN, in Eq. (3.2.104). An increase in pAkt(Ser473) (2.1-fold) and
pAkt(Thr308) (3.2-fold) in PtenKO g-cell of mice compared with control
is reported in [130].

e PDKI1 knockout and inhibition. Hashimoto et al. in [I31] showed that
PDK1 ablation in mice g-cells reduced Thr308 Akt phosphorylation
without affecting the phosphorylation at Ser473. PDK1 knockout effect
is reproduced by the model by setting bppri close to zero. It has been
shown [132] that the protein kinase inhibitor 7-Hydroxystaurosporine
(UCN-01), a PDK1 inhibitor [133] used in cancer therapies, had a
similar effect on Akt activation: UCN-01 inhibits pAkt(Thr308), and
then the GLUT4 translocation to the cellular membrane, in a dose-
dependent manner at all insulin concentrations even in the face of al-
most an completely unaffected Serd73 phosphorylation. Figure [4.13
shows how the model proposed is able to reproduce such effects, i.e.
the marked decrease of AktT and AktT-S, with the resulting insulin resis-
tance elicited by the drug in treated cells compared to control(GLUT4,,,,
increase of 61.8% in control and 36.7% in treated cells).

e Rictor knockout. Muscle extracts from mice with muscle-specific ric-
torKO showed an impaired Serd73 Akt phosphorylation (85% reduc-
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Figure 4.13: Response of the insulin signaling network to the PDK1 inhibitor
UCN-01 in L6 cells. Model predictions of Akt}, AktS, Akt>T and GLUT4,,, at 1 and
100 nM insulin in control (white boxes) and in cells exposed to UCN-01 (black boxes). To
simulate the effect of UCN-01, the parameter ag (function of the PDK1 catalytic constant
kgc) in was tenfold decreased, keeping the other parameters to values estimated
for L6 cells.
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tion) and an increased basal but almost normal Thr308 Akt phospho-
rylation (similarly for pS6K1(Thr389)) upon insulin stimulation. Thr642
AS160 phosphorylation was reduced but mice did not differ in the in-
sulin tolerance test and only partially in the glucose tolerance test [122].
Accordingly, Eqgs. (3.2.78])-(3.2.80)) and show that, if mTORC?2
is driven close to zero by setting b,rorce = 0, pAkt (Serd73) is inhib-

ited, while AktT and GLUT4,,, may respond almost normally to insulin
stimulation.

e mTOR inhibitors. mTORCI signalling is inhibited by rapamycin that
inhibits Ser2481 mTORC1 and thus Thr389 S6K1 phosphorylation
[134]. Rapamycin action on mTORCI is represented by reducing the
catalytic constant ks and thus asy in Eq. (3.2.112). Althougth ra-
pamycin cannot bind to preformed mTORC2 [62], it may bind to free
mTOR. Therefore, the newly synthesized mTOR does not bind to ric-
tor and mTORC2 assembly is partially or completely inhibited [63].
It has been found, indeed, that long-term rapamycin treatment may
cause a strong or a partial inhibition of Ser473 Akt phosphorylation
[63]. The response of mMTORC2 to long-term rapamycin treatment can
be represented by decreasing the model parameters containing the syn-
thesis rate b,rorce, i.€. the parameters a$;,a$y,aly. Figure shows
the simulation results that are qualitatively in agreement with the ex-
perimental data of cells highly sensitive to rapamycin (for instance, the
PC3 cells) reported in [63]. A different mTOR inhibitor is PP242 that
reduces both mTOR complexes. In the model, PP242 action is rep-
resented by a reduction of ays for mTORC1 and a19,a;; for mTORC2
[125).

In conclusion, the proposed model appears to be appropriate to quanti-
tatively asses the role of the proteins that are key regulators of the insulin
signaling network. It may be useful to better identify the network reactions
that are critical for the transitions of cellular states from normal to disease
scenario and to give a contribution in the design of anti-diabetic drugs. In-
deed, if a drug is targeting a particular enzyme in our network system, the
present model allows to envisage its effects on the substrate cascade.
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Figure 4.14: Response to short-term and long-term rapamycin treatment
of mTORC1, mTORC2, and pAkt (Serd473). Model predictions of mTORCI,
mTORC2, and pAkt (Ser473) in control (green boxes) and after short-term (yellow boxes)
and long-term (pink boxes) rapamycin treatment at 10 nM insulin. Short- and long-term
treatments: aqs4 in Eq. m set to 0.1 of control. Long-term treatment: parameters
ass, a$g, ajy of Akt in Eqgs. (3.2.107)-(3.2.109) set to 0.1 of control. The other parameters
are set to the values estimated for L6 cells. Compared to control, short-term treatment in-
hibits mTORCI1, but enhances mTORC2 due to the downregulation of negative feedback.
By contrast, the prolonged treatment strongly inhibits mTORC2 because rapamycin binds
to newly synthesized mTOR and the formation of mMTOR complex is prevented. mTORC2
inhibition causes a decrement of S473 Akt as well as of double Akt phosphorylation and,
as a consequence, also mTORCI is further downregulated.
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Chapter 5

Link between the ISN and the cell
proliferation: response to mTOR
inhibitors with antitumor activity

The insulin signaling network interacts with other biochemical networks
to regulate various physiological and cellular processes. Nowadays, a ma-
jor goal of biochemical simulations involves integrating outputs of distinct
signaling networks to study cell functional outcomes such as proliferation,
polarization of cells, or migration. With this aim, in the present chapter
we focus on the link that exists between the ISN and the cell proliferation.
Indeed, it is widely recognized in literature that Akt and the two mTOR
complexes have a major role also in the regulation of the cell growth, and
then in cancer development [5, [I5, [9]. Moreover, S6K1 is involved in the
regulation of protein synthesis and the growth of cell size, and FoxO1 in the
induction of apoptosis and autophagy [135].

We investigated how the components of ISN, and in particular Akt and
its substrates, may influence the progression of the cells in the cell cycle. In
order to correlate these two cellular processes, we considered the response of
the ISN and of a AML (acute myeloid leukemia) cell population to mTOR
inhibitors with antitumor activity, i.e. the dual ATP-competitive mTOR
inhibitor AZD8055 ([65], 136]). The cell population response was represented
by the mathematical model, described in the next section, which is similar
to the model proposed in [I37] and the final goal was to correlate parameters
describing tumour cell proliferation with the response to AZD8055 of the
ISN.
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5.1 The eukaryotic cell cycle

The eukaryotic cell cycle is generally divided into four discrete phases
shown in Figure [138]: 1) a first phase G; (gap 1) in which the cell is
metabolically active and continuously grows but does not replicate its DNA;
2) the S phase (synthesis), during which DNA replication takes place; 3)
the G, phase (gap 2), during which cell growth continues and proteins are
synthesized in preparation for mitosis; and 4) the mitosis (M) corresponding
to the separation of daughter chromosomes (nuclear division) and usually
ending with cell division (cytokinesis) [I38]. Moreover, some kinds of cells
are characterized by also a quiescent stage of the cycle called Gg, where they
remain metabolically active but no longer proliferate unless called on to do
so by appropriate extracellular signals. Mitosis is the most dramatic stage
of the cell cycle and lasts only about an hour, so approximately 95% of the
cell cycle is spent in interphase (the period between mitoses). The cell grows
at a steady rate throughout interphase but the duration of every cell cycle
phase can vary considerably among different kinds of cells.

e

Figure 5.1: Phases of the eukaryotic cell cycle. Figure replotted from [I38] that
represents the four main phases of the eukaryotic cell cycle: G1, S, G2 and M. The relative
lengths of the cell cycle phases shown here are typical of rapidly replicating mammalian
cells.

Progression through the stages of the cell cycle is controlled by a reg-
ulatory apparatus, which not only coordinates the different events so that
they occur in the appropriate order but also gets extracellular signals that
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control cell proliferation. It is critically important that cell entries into the
next phase if and only if the events of the preceding phase have been com-
pleted. For example, if the mitotis starts when replication of the genome
has not been completed, some mutations could appear. Several cell cycle
checkpoints exist to ensure that incomplete or damaged chromosomes are
not replicated and passed on to daughter cells. One of the most clearly de-
fined of these checkpoints occurs in G, and prevents the initiation of M phase
before completion of S phase, so cells remain in G, until the genome has
been completely replicated. This G, checkpoint senses unreplicated DNA,
which generates a signal that leads to cell cycle arrest. The cell cycle is also
arrested at the G, checkpoint in response to DNA damage in order to allow
the damage repair. DNA damage arrests the cell cycle in another important
checkpoint, the checkpoint in G;, that allow to repair the damage before
the cell enters S phase, where the damaged DNA would be replicated. A
further important cell cycle checkpoint exists the end of mitosis monitoring
the alignment of chromosomes on the mitotic spindle, thus ensuring that a
complete set of chromosomes is distributed accurately to the daughter cells.

Chromosome
misalignment

Unreplicated or
darmaged DA

/Gy

Damaged
A

Figure 5.2: Cell cycle checkpoints. Figure replotted from [I38] that represents the
most clearly defined checkpoints of cell cycle.

To analyse the progression in the cell cycle, it is necessary to identify the
cells at the different stages discussed above. Mitotic cells can be distinguished
microscopically, while cells in other phases (Go/G1, S, and Gz) must be iden-
tified by biochemical criteria. For example, cells in S phase can be readily
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identified by means of the radioactive [*H]thymidine incorporation, which
is used exclusively for DNA synthesis [139]. Indeed, it is generally known
that, once cells begin DNA replication, they progress without interruption
through S phase and incorporate added [*H|thymidine into their newly syn-
thesized DNA. After a short period of exposure, the cells are analyzed by
autoradiography and the cell fraction that is found to be radioactively la-
beled corresponds to the fraction of cells in S phase. Such fraction of labeled
cells upon autoradiography is defined as Labeling Indez (LI) and it is used to
estimate the size of the S-phase compartment in various tumors. Obviously,
this assay requires the assumption that [*HJthymidine is incorporated by all
S-phase tumor cells. Variations of such cell labeling experiments can also be
used to determine the length of the other phases of the cell cycle. Let us
suppose that the cells are exposed for a short period of time (for instance
15 minutes) to radioactive thymidine, after which the radioactive substance
is removed. The radioactively labeled cells that were in S phase during the
time of exposure will be observed for several hours as they progress through
the remainder of S and G,. In contrast, radioactively labeled mitotic cells
will not be observed until 4 hours after labeling. This 4-hour lag time corre-
sponds to the average length of G, (the minimum time required for a cell that
incorporated radioactive thymidine at the end of S phase to enter mitosis).

Cells at different phases of the cell cycle can also be distinguished by their
DNA content. Animal cells in G; contains two copies of each chromosome
(diploid), so, if we indicate by n the haploid DNA content of the genome,
the DNA content of G; cells is 2n. During the S phase, because of the DNA
replication, the genome content doubles so that cells in S have DNA contents
ranging from 2n to 4n. DNA content remains at 4n for cells in G, and M,
decreasing to 2n after cytokinesis. Experimentally, cellular DNA content
can be determined by incubation of cells with a fluorescent dye that binds to
DNA, followed by analysis of the fluorescence intensity of individual cells in a
flow cytometer or a fluorescence-activated cell sorter, thereby distinguishing
cells in the G4, S, and G2/M phases of the cell cycle.

5.2 The mathematical model of the cell proliferation

To analyze the behavior of the AML cell population in the presence of the
dual ATP-competitive mTOR inhibitor AZD8055, we used a mathematical
model of cell cycle based on the age formalism, similar to that proposed in
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[137] and represented by the block diagram of Figure [5.3|

N
B = |
T T:
Go/Gi M s ] gM"
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Figure 5.3: Scheme of the mathematical model used for the analysis of AML
cell population data in the absence and presence of AZD8055. The blocks rep-
resent Go/Gq, S and GoM cells, with the X2 block denoting binary cell division. A; is the
rate constant of G; — S transition, Ts and T3 the transit times in S and GoM phases, and
/f the rate constant of cell loss. Dy — D3 represent cells lost from viable compartments
but still measurable, and A the apoptotic bodies and fragments, with ,u” the rate constant
of cell fragmentation and pgeq the loss rate constant from A.

We considered three main phases (Go/G;, S and GoM) and assumed that
the cell transition into the Go/G; phase is random with an exponential dis-
tribution and rate constant \;, while the S and G,M phases are deterministic
with transit times denoted by T, and Tj, respectively. Cells may be randomly
lost from Go/G;, S and G,M with the same rate constant »' (cell loss from
compartments of viable cells) and enter the compartments D;, i = 1,2,3 that
contain dead cells but still transiently measurable. Cells exit randomly from
Di, i = 1,2,3 with the rate constant of cell fragmentation ,u” and enter the
compartment A of the apoptotic bodies and fragments. From A, cells exit
with the rate constant jige,.

We observe that, in the simple scheme of cell progression across cell cycle
shown in Fig. the rate constant \; represents the activity of the cyclins
(as cyclin D) and the cyclin-dependent kinases that regulate the G; to S
transition. The rate constant ' may be related to the activity of the proteins
that regulate the autophagia and/or the early phases of apoptosis, whereas
¢ may be related to late apoptosis.

Denoting by Ni(t) the number of Gy/G; cells at time ¢, and by n;(a;, 1),
with i = 2,3, the cell density at time ¢ with respect to age a; for cells in S and
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GoM phases (a; is measured from cell entry into the corresponding phase), we
have the balance equations

dNy(t ’
MO~ —n 4 )N 0) + 2T 1) (5.2.1)
oni(a;,t)  Ong(a;t) o o .
Y + 90, —p ng(ag,t), =23, (5.2.2)
with boundary conditions
nQ(O,t) = )\1]\[1(t>7 n3(07t> :ng(TQ,t). (523)

The number of S-phase cells at time ¢ is given by

Nz(t) = /0T2 TLQ(GQ,t)dCLQ, (524)

and similarly, for the number of G2M-phase cells, we have

T3
Ng(t) = /O n3(a3,t)da3. (525)

Moreover, denoting the number of cells lost from the three viable compart-
ments by D;(t),i =1,2,3, we have

dD;(t)

Apoptotic bodies and fragments are eventually gathered in a further com-
partment that obeys the equation

%Et) = —aegA(t) + 1" (D1(t) + D2(t) + Da(t)) (5.2.7)

where the material that leaves this compartment with rate constant puge, is
no longer measurable.

Assuming that the cell population is in balanced exponential growth (or
is declining under the treatment) with rate constant a, it is:

Nl(t) :Nleat, (528)

ni(a;,t) = nje P i=2,3 (5.2.9)
where N;, n;, with i = 2, 3, represent the initial conditions and 8 = a +
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1. Moreover, in exponential growth,the following relation among the model
parameters can be obtained:

i
a4 Ay = 226 (@0 ) (T24T3) (5.2.10)

From (5.2.1)-(5.2.9)), the fractions of cells in the cell cycle phases and in
the apoptotic compartment at the generic time ¢ can be obtained. Since, as

in [137], we assumed that cells lost from the viable population can still be
transiently measurable, the fractions of cells in the cell cycle phases measured
by propidium iodide (PI) staining and flow cytometry (see next section), must
be derived accounting for the dead cells in compartments D;(t),i = 1,2,3,
together with the viable cells in the respective phase. So, fg: is computed
as (N1 + D1)/Nyo: and, similary, fs = (No + D2)/Nyot and feonr = (N3 + D3)/Niot,
with N; the total amount of cells and fragments. It is easy to verify that:

/ / "
(o + p ) (o + praeg) (o + pp + )

Jfe1 = )

(a + i+ M (1- e—(a+ul)(T2+T3))) (p//l,l/ + (a0 paeg) (o + 1’ + M”))

(5.2.11)
!
fs= N R R T CRIR T

<a i (1 e—<a+//)<T2+T3>)) <//u” + (0 + praeg)(a + 1 + u”))

(5.2.12)
I /
fean = Ae” T (1 — e (T T8 ) 0+ praeg) (o4 + )

(a o+ N (1 - e‘(a”/)(T?*TS))) (//u” + (0 + prdeg)(a + 1 + u"))

(5.2.13)
Obviously, the fraction of apoptotic materials is given by
fa=1-fe1—fs— feom - (5.2.14)

In addition, the total fraction of dead cells and fragments can be computed
as:

3 / /
M(Oé+Mdeg+M)

cad = fa + P = — ; — 5.2.15

Jpeed = Ja ;fD W A (@A praeg)(a+p + ) ( )
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with fp; the cell fraction in the respective compartment D;.

To assess the effect of the drug on cell cycle progression, as discussed in the
next sections, we used data of labeling index (LI) accounting for the radioac-
tive [*H]thymidine incorporation. So, in order to estimate the parameters of
the cell proliferation model, we had to derive the LI expression from the model
equations. As in [I37], for simplicity, the labeling process was accounted for
by assuming that cells were exposed to a rectangular [*H|thymidine pulse of
length A. The pulse length A was taken to be shorter that the GoM transit
time. Moreover, we assumed that even a sojourn of infinitesimal duration in
S during the pulse suffices for a cell to be labeled. Thus, letting time ¢ be
counted from the start of the [*HJthymidine injection, at ¢t = 0% all S-phase
cells are labeled; at t = A, all cells in S, plus the GoM cells with age a3 between
0 and A, are labeled. With these assumptions [I137], we found that:

Mo+ p)

LI(A) = fa1 (04+M/)(04+,U/+MN)

ol (1 _ e—<a+u’><Tz+A>)

, 1 (a+ //)A _ —(a+ /)T ( g ”)A _
- A((e " 1) e(atu)Ta(cls - 1))]' (5.2.16)

o Jr /U,/I M/ o M//

5.3 Model parameter estimation from data of AML
cells

We estimated the unknown parameters OZ,)\l,TQ,T&M/,,U/H and pg4e, of the
model shown in Fig. for an AML cell population model both in the ab-
sence and presence of the dual ATP-competitive mTOR inhibitor AZD&055.
Note that Eq. is an independent relationship among parameters
that actually reduces the number of unknowns. For instance, we derived )\,
as function of the remaining parameters. Moreover, while a, Ay, T», Ts, 1, 1t
are expected to be different in the control (absence of AZD8055) and in the
populations treated with different drug doses, it is likely that 4., does not
change and, for simplicity, was taken equal to the value of 4" in the control.

For the parameter estimation we used the experimental data reported in
[136]. The Authors reported the fractions of cells in the cell cycle phases
and the fraction of the apoptotic fragments obtained by propidium iodide
(PI) staining and flow cytometry (Figure [5.4)), the data of PH]thymidine
incorporation (Figure and the fractions of annexin V and Pl-positive
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Figure 5.4: Data on cell cycle progression in AML obtained by propidium
iodide (PI) staining and flow cytometry. Figure replotted from [I36] showing how
AZD8055 decreases cell proliferation and cell cycle progression in AML.

cells (Figure at increasing AZD8055 concentrations. The in vivo effect
of the drug in mice bearing MV4-11 xenografts is also shown (Figure .

The growth rate constant o of the untreated population was obtained
from the growth curve of tumor size in the xenograft (black curve in Fig.
5.7), which is approximately exponential, and we assumed that a similar
value holds for the MV4-11 cell line. From the data of cell fractions in cell-
cycle phases given by flow cytometry and the data of PI-positive cell fraction
represented by the quantity fpe.q in Eq. , we estimated A, Ty, T3, ,u/, u"
by least squares method using (5.2.10)-(5.2.15)). Equation provided
the value of the labeling index in control, not given in [I36]. Such value was
computed with the labeling period A = 6hrs [136].
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Figure 5.6: Fractions of annexin V and PI-positive cells. Figures replotted from
[136] showing fractions of annexin V (upper panel) and PI-positive (lower panel) cells at
different experimental conditions.
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Figure 5.7: In vivo effects of AZD8055 in nude mice transplanted with MV4-
11. In [136] MV4-11 cells were xenografted in nude mice treated with captisol (black) or
with 20mg/kg/day AZD8055 (red) and tumor size was evaluated some days after graft.

For treated cells, the rate constant o was not available and the drug
dose of 20 mg/kg/day AZD8055 administered to mice could not be reliably
converted to a drug concentration in the culture medium. The LI values of
treated populations, expressed in Fig. as ratios treated/control, were
multiplied for the LI of control (31.2%) in order to obtain the actual values
to be compared with the model-predicted LI.

Table reports the parameter estimates for the untreated cells and at
increasing drug concentrations (10, 100 and 1000 nM).

1"

a(hr1) po(hr7y ) (Tt Ta(hr) Ty(hr) g (et

Control 7.43-107% 852-107* 1.81-107! 10.61 8.73 3.4-1072

AZD 10 nM  —1.42-1072 1.62-1072 1.98-107! 87.82 52.89  3.82-1072

AZD 100 nM  —2.12-1072 2.16-1072 1.1-107! 97.91 72.6 4.56 -1074

AZD 1000 nM  —3.69-1072 3.72-1072 8.8-107? 97.16 77.07  3.81-107%

Table 5.1: Estimates of parameters of the cell population model in control and in cells
exposed to 10, 100, and 1000 nM AZDS&055.

Figure displays the data of cell fractions in cell cycle phases and the
model fitting. The same figure also displays data and model predictions of
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Figure 5.8: Data of AML cells used for the parameter estimation and the
model fitting. Data of cell fractions in cell cycle phases in control and cells treated with
10, 100, and 1000 nM AZD8055 (closed squares), and model fitting (solid lines). The panel
also displays data and model fitting of LI normalized to control, and of total fraction of
dead cells and fragments.

labeling index and of the total fraction of dead cells and fragments. Note
the cell accumulation in Gy/G; and the depletion of S and G,M phases in the
treated populations. The rate constant \; of the transition from Gy/G; to S
exhibits a marked concentration-dependent decrement, whereas the transit
times in S and G,M, and the loss rate constant x' from the viable compart-
ment, increase (see Table [5.1). Accordingly, o (population doubling time
In2/a = 3.860 days in control) turns out to be negative in treated populations
(halving times 2.036,1.364, and 0.783 days at 10,100, and 1000nM AZD8055).
These results confirm that a major factor that inhibits cell proliferation is
the block of cells in the Go/G; phase [51].

There is an intricate interplay between autophagia and apoptosis, and
these modes of cell death may antagonize or cooperate [140]. We did not try
to represent these pathways, hence the simple model used for the analysis
of data cannot allow to unambiguously relate the parameters p' and ' to
autophagia or apoptosis. The present model, indeed, represents cell death as
a two—stage process and o depends directly on i’ but not on " as shown by
. However, as depicted by Fig. m, we note that the fraction of dead
cells % | fp; nicely correlates with the increase of acridine orange staining
(an indicator of autophagy) reported in [65] for a different cell line, so the
parameter 1 might mainly be related to cell death caused by autophagia.
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Figure 5.9: Correlation between data of acridine orange staining in A549 cells
and fraction of dead cells. We found that the data of acridine orange staining reported
in [65] and the fraction of dead cells Zle fpi correlate linearly at increasing concentrations
of AZD8055.

5.4 Akt/mTOR signaling and cell proliferation

The last step to investigate how the insulin signaling network can influ-
ence the progression of the cells in the cell-cycle was to correlate the estimated
parameters that describe the kinetics of AML cell population with the re-
sponse to AZD8055 of the ISN. For this aim, we used the experimental data
reported in [136] showing the inhibition of p-70S6K Thr389 in the MV4-11
human AML cell line, in untreated cells and at increasing drug concentra-
tions (10, 100 and 1000 nM). These data are replotted from [I36] in Fig.
IO

In order to fit the pS6K1 (Thr389) inhibition profile in the MV4-11 human
AML cell line in [I36], the parameters ao, a1, and az4 in Egs. and
that regulate the inhibition of mMTORC1 and mTORC2 signaling
were then estimated, keeping the other parameters to the values estimated
for L6 cells (see Table [1.1). We accounted for the constitutive activation
of PI3K/Akt signaling, frequently found in AML [141], by representing this
activation as an equivalent insulin signal (7. in Eq. equals 0.2 nM)
that drives PI3K, from 0.28 - 1072 at zero insulin to 0.52-1072. The fitting
results are shown in Fig. [5.11} With the estimated values of the parameters
of mMTOR complexes, we computed other ISN model outputs at the steady
state related to the different drug concentrations.

113



. B p-NDRG1 T346
~*= |p p-PTO5EK T332

| [

CTR AZDMD AIDNOD  AZD1000

phospho rylEked
protein / actin ratio

Figure 5.10: The inhibition of p-7T0S6K Thr389 and p-NDRG1 Thr346 in the
MV4-11 human AML cell line with increasing AZD8055 concentrations Data
replotted from [I36] showing the inhibition of p-70S6K Thr389 and p-NDRG1 Thr346 in
the MV4-11 human AML cell line with increasing AZD8055 concentrations. Results are
expressedas a ratio to the control incubation without AZD8055.

Figure [5.12 highlights the simple relationships found between the model-
predicted changes in the concentrations of ISN proteins, induced by mTOR
inhibition, and the changes in the AML cell population model parameters,
which correspond to alterations of the proliferative capacity of the popula-
tion. In particular, a simple non linear function provided a good fit of the
relation between pAkt (Serd73), predicted by insulin signaling model, and
the population model parameter )\, (panel A of Figure , showing how
these two quantities decrease when the drug concentration increases and how
the extent of the block of G1 — S transition is related to mTORC2 inhibi-
tion. Similar functions also fit the relations between \; and pGSK33(Ser9),
cytosolic FoxO1 and pS6K1(Thr389) (Figure panels A and B).

Panel C of Figure depicts the relationship between the average cell
cycle time, an index of the rate of protein synthesis obtained from the cell
population model, and pS6K1(Thr389). The average cell cycle time is an
index of the rate of protein synthesis and it is computed as sum of 1/\;, T,
and T3. In panel D, the model predicted pS6K1(Thr389) is plotted versus
the loss parameter 4, showing how mTORC1 inhibition is also related with
the increment of cell loss from the compartment of viable cells. The above
findings agree with the notion that mTORC?2 inhibition activates cyclins
D1-D2 via Akt (Ser473) and FoxO1 inhibition, and that mTORCI inhibition
activates autophagy via ULK1/ATG13 inhibition [5]. Rapamycin derivatives
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Figure 5.11: pS6K1 (Thr389) vs AZD8055 concentration. Normalized data (mean
+ SD) of pS6K1 (Thr389) vs AZD8055 concentration (green diamonds) replotted from
[136] and model outputs (black squares), together with the fitting line y = 6.35/(6.34 +
2071,

have indeed been found that inhibit both mTOR complexes and decrease the
levels of CCND1 and CCND2 in AML [142].

In summary, we proved that the proposed ISN model permits to inves-
tigate the insulin signaling network in the insulin resistance states and in
cancer, focusing on the role played by Akt phosphorylated at Serd73 and
by the mTOR complexes, as well as on the drug effects. However, although
it would be tempting to use the found relations to couple the two math-
ematical models, it is worth noting that we have used data obtained in a
particular experimental setting, so these relations are likely to be not valid
in different settings. The relations found are a rough representation of the
complex machinery that regulates cell cycle progression, entry and exit from
quiescence, and occurrence of cell death. Indeed, we found relationships be-
tween the rate constant \; of the G1 to S transition and different proteins
(pAkt (Serd73), pGSK3s(Ser9), FoxO1 and pS6K1(Thr389)), but the molec-
ular pathways that link and coordinate the action of these proteins in cell
cycle regulation remain undetermined. Similarly, pS6K1(Thr389) is related
to parameters of cell cycle progression and cell death, but its specific role
in these pathways is not specified. The cell population model of Fig. is
very far from the complexity and richness of behaviors that can be exhibited
by the real system. Sophisticated models have been proposed to represent
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Figure 5.12: ISN response to the mTOR inhibitor AZD8055. (A) Relationship
between the decrease of pAkt(Serd73) (squares) and that of A\; at increasing drug con-
centrations. The fitting line (black line) is given by y = 1.03z/(0.18 - 1072 + z), with
y=pAkt(Serd73) and x =X;. A similar function (orange line) fits the relation between
GSK3p(Ser9) (triangles) and A;. (B)Relationship between the decrease of pS6K1 (Thr389)
(squares) and that A; at increasing concentrations of the drug. The fitting line (black line)
has equation y = 1.102/(0.35 - 1072 + z), with y= pS6K1 (Thr389) and x=X\;. A similar
function (orange line) fits the relation between FoxOlcyt (triangles) and A;. (C) Decrease
of pS6K1(Thr389) with drug concentration and relation with the average cell cycle time
predicted by the cell population model. The fitting line is y = 17.71/(15.61 + x). (D)
Decrease of pS6K1(Thr389) with the drug concentration and relation with the parameter
1 predicted by cell population model. Fitting line is y = (3.63-1077)/(3.15-10~7 4-23-57).
In each panel data are normalized to control and represented for the different drug con-
centrations with the color code: control (blue), AZD10 (red), AZD100 (green), AZD1000

(cyan).
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the reactions involving the cyclins and the cyclin-dependent kinases, see for
instance a complex model proposed for cell cycle control in mammalian cells
[143]. It must also be noticed that we have considered the steady-state re-
sponse to a drug of the insulin signaling network and the response of the in
vitro AML cell population. Studying the in vivo response would be much
harder, as the drug pharmacokinetics and the transport into cells must be
accounted for, together with the transient response of the protein network
and the pharmacodynamics of the drug [65].
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Conclusions

In the present PhD thesis, a detailed mathematical model of the insulin
signlaing network (ISN) was proposed and used to analyze two different data
sets of skeletal muscle cells available in the literature. The first data set
included experimental data of L6 myotubes with induced insulin resistance
[13] whereas the second one consisted of data of C2C12 myoblasts with PTEN
protein suppressed [123].

We used the proposed model to investigate the basal concentrations and
the dose-response curves of the main known components of the ISN and
to identify the players having a key role in the insulin-stimulated uptake
of glucose into the cells. A detailed analysis of the regulatory processes
constituting ISN may permit to develop new insights about the origin of
the pathologies related to dysfunctions of the ISN and to find drugs able to
counterbalance the effect of these diseases.

The most widespread pathology caused by ISN malfunctioning is the in-
sulin resistance, which is the common denominator of several diseases in-
cluding type 2 diabetes and cancer. Indeed, it is widely recognized that
some ISN components have key roles, not only in the glucose metabolism,
but also in other important cellular processes such as apoptosis, cell pro-
liferation, transcription and cell migration and they are thus involved also
in cancer development. So, investigating the mechanisms responsible for in-
sulin signaling impairment is of primary importance and it is the object of
many experimental and theoretical research works. In the last decades, sev-
eral studies were published on the mechanisms regulating ISN and several
research groups proposed mathematical models to represent the complexity
of this network.

The ISN scheme here considered is based on a consolidated view that
emerges from recent literature [4, [5, [12) [16] 17, T08]. We focused particu-
larly on single and double Akt phosphorylation because recent studies [122]
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have shown that Akt activity is maintained almost unaltered when it is phos-
phorylated only on Thr308, while Ser473 phosphorylation seems to play an
independent role in both insulin resistance and cancer. That Akt can ac-
complish its enzymatic function without undergoing Ser473 phosphorylation
is demonstrated by the finding that muscle-specific rictor KO mice simply
present with a moderately decreased insulin-stimulated glucose uptake and
glucose intolerance, but not diabetes. Thr308 Akt phosphorylation is in
fact able to activate GLUT4 translocation and it is sufficient to mediate the
phosphorylation of GSK3. A scheme where Akt can be independently phos-
phorylated at Thr308 and Serd73 residues, and where both sites can lead
to complete Akt activation, like the one presented in this thesis, does not
appear to have previously been considered.

Moreover, in the present model a new characterization of the upstream
signaling of mMTORC?2 is proposed. mTORC2 is assumed to be activated by
PIP3, as suggested in [5, O], and by a putative factor (denoted by J), not
dependent on PI3K, which is released by the small intestine and that induces
insulin resistance possibly operating through the growth factor receptors [13].
This hypothesis is based on the clinical observation that bariatric surgery, a
procedure in which a portion of the stomach and of the small intestine are
removed or bypassed, induces a remission of T2D very soon after surgery
and far too early to be attributed to weight loss. As bariatric operations
reroute food through the upper small intestine, an hypothesis for explaining
this mechanism can be that the gastrointestinal removal or bypass reduce the
production of putative intestinal factor/s inducing insulin resistance. Such
hypothesis was experimentally tested by Salinari et al. [I3], showing that L6
cells exposed to a medium enriched with proteins secreted by the small intes-
tine of diabetic rats activated mTORC2, as revealed by an increased value
of Ser473 Akt phosphorylation, even in the absence of insulin stimulation.

The model was formulated without including, for simplicity, some estab-
lished pathways of the network (as for instance, the IR intracellular pool and
the receptor recycling) and by describing most of the chemical reactions by
the classical Michaelis-Menten scheme. As our aim was the analysis of the
dose-response curves, we then derived the concentrations of the chemicals
at the equilibrium and, to reduce the number of model parameters to be
estimated, we rewrote the model equations in a normalized form.

The model parameters were estimated for both the L6 and C2C12 cells
by an ordinary least-squares approach. The proposed ISN model was able
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to adequately fit all the available experimental data and thus, it can be used
as a tool to generate and test hypotheses. The parameter estimates are
rather different between C2C12 and L6 cells, but this is not surprising since
C2C12 is a line of mouse myoblasts whereas L6 is a line of rat myotubes.
In particular, we found that C2C12 cells are more insulin-resistant than L6
cells. Ideed, the value of extracellular insulin at which insulin receptor is half
of its maximal was found equal to about 45 nM in C2C12 and about 10 nM
in L6 cells. We found also that db/db L6 cells have a value of the factor
J substantially larger compared to control (0.07 vs. 0.001) confirming the
hypothesis in [13].

In order to identify those parameters that have the greatest impact on the
system output, we also performed a sensitivity analysis for both cell lines at
the respective optimum. The general pattern of the sensitivities was found
to be similar, confirming that the model is able to represent both types of
data.

Moreover, the capacity of the proposed model to represent the effects of
inhibitors and of conditions such as gene knockout or RNA interference was
tested. For instance, we verified that the model is appropriate to study the ef-
fect of the UCN-01, a PDK1 inhibitor used in cancer therapies [I133]. UCN-01
inhibits Thr308 but not Ser473 Akt phosphorylation and impairs Akt kinase
activity with the subsequent inhibition of the GLUT4 translocation to the
cellular membrane [132]. The model predictions reported in Figure [4.13]show
the marked decrease of pAkt(Thr308), with the resulting insulin resistance
elicited by the drug in treated cells compared to control (the concentration of
the glucose transporters increases up to 61.8% in control and 36.7% in treated
cells). We also simulated the model response to rapamycin treatments and
the obtained results (Figure are qualitatively in agreement with the
experimental data in [63].

Finally, in view of the close and widely recognized relationship between
insulin resistance and cancer, we investigated how the components of ISN,
and in particular Akt and its substrates, may influence the progression of
the cells in the cell cycle. In order to correlate these two cellular processes,
we considered the response of the ISN and of a cell population of AML to
an mTOR inhibitor with antitumor activity, i.e. the dual ATP-competitive
mTOR inhibitor AZD8055. Using literature data of the AML cell popu-
lation, we found simple relationships between the model-predicted changes
in the concentrations of proteins of the ISN, induced by mTOR inhibition,
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and the changes in the population model parameters which correspond to
alterations of the proliferative capacity of the population. In particular, a
simple nonlinear monotonic function provides a good fit of the relation be-
tween the values of pAkt(Serd73), predicted by the insulin signaling model,
and the population model parameter describing the transition from the G,
to S phases of the cell cycle (see Figure . These two quantities are
even more reduced as the drug concentration increases suggesting that the
extent of the block of G; — S transition is related to the mTORC2 inhibi-
tion. Moreover, the model-predicted pS6K1(Thr389) was plotted versus the
rate constant of cell loss, showing how mTORCI inhibition is also related
with the increment of such loss. Although it would be tempting to use the
relations found to couple the two mathematical models, it is worth noting
that: 1) such relations are a rough representation of the complex machinery
that links and coordinates the action of ISN proteins in cell cycle regulation;
2) we have used data obtained in a particular experimental setting, so these
relations are likely to be not valid in different settings; 3) we have considered
the steady-state response of the ISN to a drug and the response of the in
vitro AML cell population.

In spite of the simplifying assumptions made in view of the ISN com-
plexity, we can conclude that the proposed ISN model, focusing on the role
played by Akt and by the mTOR complexes, as well as on the drug effects,
permits to investigate the insulin signaling network in the insulin resistance
states and in cancer. Although the numerical values of model parameters will
certainly change with the cell type, the general structure of the model can
be considered valid for any cell type as shown by the qualitative agreement
observed between the model predictions and the experimental data from cell
types different from skeletal muscle, such as AML cells and PC3 cells. Model
behavior has been tested on a variety of conditions: muscle cells with Pten
KO or with induced insulin resistance, cells treated with rapamycin, cells
with anticancer drugs such as AZD8055 and UCN-01. The proposed model
should thus be useful to elucidate the impact of pathologic or therapeutic
alterations on the operating states of the network so to support research and
development in the field of both diabetes and oncology, and the pharmaceu-
tical industries in the drug design.
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Acronyms

ISN
PM
T2D
T1D
OGTT
IVGTT
MTT
EHC
MM
sQSSA
£QSSA
PDE
ODE
MLE
OLSE
WLSE
IR
IGF-1
EGF
SH2
IRS1

Insulin Signaling Network

Plasma Membrane

Type 2 Diabetes

Type 1 Diabetes

Oral Glucose Tolerance Test
Intra-Venous Glucose Tolerance Test
Meal Tolerance Test

Euglycemic Hyperinsulinemic Clamp
Michaelis-Menten

standard Quasi-Steady-State Approximation
total Quasi-Steady-State Approximation
partial differential equation

ordinary differential equation

Maximum Likelihood Estimator
Ordinary Least Squares Estimator
Weighted Least Squares Estimator
Insulin Receptor

Insulin-like Growth Factor 1

Epidermal Growth Factor
Src-Homology-2

Insulin Receptor Substrate-1
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PTP1B
PI3K
PI(3,4,5)P3
PTEN
SHIP2
PDK1
PKC

Akt

PKB

PP2A
PHLPP
FoxO1
mTOR
mTORC1
mTORC2
DEPTOR
RAPTOR
RICTOR
PRAS40
GAP
GTP/Rheb
TSC1/TSC2
S6K1
4E-BP
AS160
GSK3p3
GYS

Protein Tyrosine Phosphatases 1B
Phosphatidylinositide 3-Kinase
Phosphatidylinositol 3,4,5-trishosphates
Phosphatase and Tensin Homologue
SH2 domain containing inositol polyphosphate phosphatase
Phosphoinositide-dependent Protein Kinase-1

Protein Kinase C

RAC-alpha Serine/Threonine-protein Kinase

Protein Kinase B

Protein Phosphatase 2A

PH domain and Leucine rich repeat Protein Phosphatases
Forkhead box protein O1

Mammalian Target of Rapamycin

Mammalian Target of Rapamycin Complex 1

Mammalian Target of Rapamycin Complex 2

DEP domain-containing mTOR-interacting protein
Regulatory-associated Protein of mTOR
Rapamycin-Insensitive Companion of mTOR

40 kDa Prorich Akt Substrate

GTPase-Activating Protein

GTPase Ras homologue enriched in brain

Tuberous Sclerosis Complex 1/2

Substrate S6 Kinase 1

4E-Binding Protein

Akt Substrate of 160 kDa

Glycogen Synthase Kinase 3-8

Glycogen Synthases
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GLUT4
2-DG
CM
AML
UCN-01
LI

Glucose Transporter-4

2-deoxyglucose

Conditioned Medium

Acute Myeloid Leukemia

Protein Kinase Inhibitor 7-Hydroxystaurosporine

Labeling Index
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