
PhD Thesis

Insulin signaling network:
mathematical modeling and parameter

estimation from experimental data

Department of Computer, Control and Management
Engineering

PhD in Automatica and Operations Research
ING/INF 04

Cycle XXVIII

Candidate

Federica Conte

Advisor

Prof. Serenella Salinari

Co-Advisor

Dr. Alessandro Bertuzzi



To my family and Fabio.
I love you.



Summary

The insulin signaling network (ISN) is an important metabolic network

that, upon the insulin binding to its receptor at the cell surface, triggers

the glucose uptake into the cell. The study of this mechanism within muscle

cells, hepatocytes and cells of the adipose tissue is of major interest since it is

crucial for understanding more clearly the factors that may induce the insulin

resistance. However, the structure and the behaviour of the insulin signaling

network are only partially known and the current research on this topic is

fragmented into various lines of investigation. Because of the high degree

of complexity of the ISN, it is difficult to understand, without a theoretical

framework, how the network responses evidenced from the experimental data

determine the cell behaviour.

In the present thesis, we proposed a detailed mathematical model of the

ISN in order to investigate the factors that affect the basal concentrations

and the dose-response curves (i.e., the steady state concentrations at given

insulin levels) of the main components of the whole network. Our model con-

centrated particularly on single and double phosphorylation of Akt protein,

and hypothesized the existence of a putative factor released by the small

intestine that induces insulin resistance by activating the mammalian target

of rapamycin complex 2 (mTORC2) in an insulin-independent manner and

possibly operating through the IGF-1 receptor. Such hypothesis is based on

clinical and experimental observations.

The parameters of the ISN model were estimated from the experimen-

tal data of two skeletal muscle cell lines using a least squares approach. As

the available data consisted in the equilibrium concentrations of many of the
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known signaling components at given values of the insulin, we derived the

concentrations of the chemicals at the steady-state from the kinetic equa-

tions and then we implemented an algorithm that minimizes the distance

between the model outputs and the data. For the numerical solution, we

used a local optimization routine based on a derivative-free algorithm for

bound constrained optimization. The ISN model was able to adequately fit

the available experimental data. The model could thus become a useful tool

to generate and test hypotheses, leading to a deeper understanding of the

molecular mechanisms underlying insulin resistance and, in future perspec-

tive, to find drugs able to counterbalance the effects of this disease.

Finally, as it is now widely recognized that Akt and mTOR complexes

have a major role also in the regulation of cell proliferation, and then in can-

cer development, we combined the ISN model with a mathematical model

that described the evolution of a AML (acute myeloid leukemia) cell popu-

lation in order to investigate the effects of mTOR inhibitors with antitumor

activity on the ISN and on the cell population response. Based on literature

data of AML cell response to mTOR inhibitors with antitumor activity (the

dual ATP-competitive mTOR inhibitor AZD8055), the two models provided

simple relationships between the concentrations of proteins of the ISN and

parameters representative of cell cycle progression and cell death.
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Introduction

Physiological and cellular processes of the living systems are controlled

by metabolic, signaling and transcription networks, specialized for cell cycle

control, growth regulation, stress response, and many other cell functions.

In particular, cell signaling networks are complex cascades of reactions

triggered by the binding of a ligand to a receptor on the plasma membrane.

Inside the cell, signaling networks involve changes in protein-protein interac-

tions permitting cells to communicate with other cells and with the external

environment and to undergo phenotypic changes, such as cellular division,

differentiation, death and others. Hence, these networks can be considered as

information processing devices that translate input signals into output sig-

nals in which information is often coded by concentrations, modifications,and

localization of proteins, either in the stationary levels or in temporal patterns.

Systems biology research helps us to understand the structure of cell

signaling networks and how changes in these networks may affect the trans-

mission of information. Malfunctioning of signaling networks may alter phys-

iological processes of cells, potentially leading to severe consequences on the

organism. The most common pathologies caused by altered cellular signal-

ing networks concern heart diseases, metabolic disorders and immunological

abnormalities. Moreover, it has been demonstrated that networks malfunc-

tioning are involved with oncogenic properties of cancer cells [1].

The insulin signaling network (ISN) is an important metabolic network

that, upon the insulin binding to its receptor at the cell surface, triggers the

glucose uptake into the cell. The study of this mechanism within muscle

cells, hepatocytes and cells of the adipose tissue is of major interest since
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it is crucial for understanding the mechanisms underlying insulin resistance,

which represents the common denominator of a series of diseases, including

obesity, type 2 diabetes (T2D), metabolic syndrome and cancer. However,

the dynamics of the insulin signaling pathway is only partially known and

the current research is fragmented. The complexity of the ISN derives not

only from the enormous amount of different molecules involved in the pro-

cess (often shared among pathways initiated by distinct receptors), but also

from the presence of several feedback and feedforward signals, both negative

and positive. Such links generate signaling networks rather than a linear

pathway. So, the analysis of ISN requires a combination of experimental and

theoretical approaches including the development and analysis of mathemati-

cal models and simulations. Without a theoretical framework, it is difficult to

understand how the complexities evident from experimental data determine

cell behaviour. We need a systems approach in order to achieve a deeper un-

derstanding of the molecular mechanisms underlying insulin resistance and,

in the future perspective, to find drugs able to counterbalance the effect of

the disease.

The main components and interconnections within the insulin signaling

pathway are well established [2, 3, 4, 5], with the protein kinase B (PKB),

also known as Akt, and the two mammalian Target of Rapamycin Complexes

(mTORC1 and mTORC2) playing a special role. Akt is phosphorylated on

Thr308 by the phosphoinositide-dependent protein kinase-1 (PDK1) and on

Ser473 by mTORC2 [6], and the maximal Akt activity is achieved when the

molecule is phosphorylated on both residues, allowing the translocation of the

insulin-regulated glucose transporters (GLUT4) from the cytoplasmic pool

to the plasma membrane (PM) in muscle and adipose cell [7, 8]. PDK1 and

mTORC2 respond to the activation of the insulin receptors and also of the

insulin-like growth factor 1 (IGF1) [5], via the insulin receptor substrate 1

(IRS1), the phosphatidylinositide 3-kinase (PI3K), and the phosphatidylinos-

itol 3,4,5-trisphosphate (PIP3). Akt activation results in the activation and

inhibition of a variety of targets, such as mTORC1, the glycogen synthase
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kinase 3 (GSK3) and the Forkhead box protein O1 (FoxO1).

The kinase cascade through the insulin receptor (IR) up to mTORC1,

as well as the mTORC1 activation by amino acids and energy, are clearly

assessed [9]. By contrast, the upstream regulation of mTORC2 is not yet

well-characterized [10]. The tuberous sclerosis complex 1/2 (TSC1/TSC2)

appears to be required for mTORC2 activation [11, 4]. However, this view

was questioned in a study that reported the experimental time courses of

several proteins of the ISN under amino acids and insulin stimulation [12].

Interpreting the data by a dynamic model of the network, it was argued that

mTORC2 activation pathway may originate from the IR or IRS1, possibly

via a variant of PI3K [12]. A still different view emerged from experiments in

non-diabetic mice both in vivo and in muscle biopsies, and in L6 cells exposed

to a medium enriched with proteins secreted by the small intestine of diabetic

rats and to serum from insulin resistant humans [13]. This study showed

that jejunal factor/s induce insulin resistance and that these factors activate

mTORC2, as revealed by the increased value of Ser473 Akt phosphorylation

even in the absence of insulin stimulation. The presence of such intestinal

factors was also suggested by the decrease of insulin resistance following

bariatric surgery, a procedure in which a portion of the stomach and of the

small intestine are removed or bypassed [14].

As the mTORC1 substrate S6 kinase 1 (S6K1) is involved in the reg-

ulation of protein synthesis and the growth of cell size, and FoxO1 in the

regulation of proliferation and apoptosis, the ISN appears to have a main

role not only in obesity and diabetes but also in cancer [5, 15, 9].

Following the seminal papers of Wanant and Quon [16] and of Sedaghat et

al. [17], several studies have investigated the insulin-induced behavior of the

ISN, or of some of its components, by means of mathematical models and the

analysis of experimental data. Complex dynamical models, supported by the

analysis of the time-course of protein concentrations after insulin stimulation,

were developed and investigated in [12, 18, 19]. Other studies [20, 21] consid-

ered the dose-response curves (i.e., the steady state concentrations at given
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insulin levels), that are largely used in the literature to assess the behavior

of ISN components at various levels of insulin stimulation and to evaluate

the response to perturbing agents and drugs.

Aim of the present PhD thesis is to investigate the factors that affect the

basal protein concentrations and the dose-response curves of the ISN. We

developed a mathematical model of the network at the steady state, focusing

mainly on the single and double Akt phosphorylation and on the upstream

signaling of mTORC2. Experimental data of C2C12 myoblasts with the

phosphatase and tensin homologue (PTEN) suppressed and data of L6 my-

otubes with induced insulin resistance have been analyzed by the model.

The factors that induce insulin resistance have been modeled according to

the findings in [13].

In detail, in Chapter 1 the main mechanisms underlying glucose-insulin

homeostatic control both at organ/tissue level and at molecular level are

discussed: we first show how the plasma glucose level is regulated by the

insulin from a top-down point of view with the main combined experimental-

modeling tools which are currently employed in investigating the behaviour of

the glucose-insulin system; then, we detail the biochemical chain of reactions

giving rise to glucose uptake in order to identify the key components of the

ISN.

Chapter 2 contains an overview of the main computational approaches

used to model signaling networks along with the most common methods of

parameter estimation for biochemical systems.

Chapter 3 describes several models of the insulin signaling network pro-

posed in the literature. The mathematical model used in the present work to

analyze the available experimental data is then introduced. The present ISN

model was developed in three stages: 1) the chemical reactions characterizing

the network were established and written according to the Michaelis-Menten

scheme; 2) as our goal was to investigate the factors affecting the basal con-

centrations and the dose-response curve of the main components of ISN, the

steady-state concentrations of the chemicals were derived from the kinetic
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equations; 3) the expressions of steady-state concentrations were written in

a normalized form to reduce the number of unknown parameters.

Chapter 4 discusses the estimation of the parameters values of the pro-

posed ISN model. The model equations in the normalized form were fit to

the experimental data of two different skeletal muscle cell lines of rodents (L6

myoblasts and C2C12 myotubes) through minimization of a least-squares in-

dex. This chapter also reports a detailed description of the experimental

data used for the parameter estimation and of the optimization algorithm.

Moreover, a sensitivity analysis was performed in order to investigate how

changes of model parameters influence the system behaviour at the steady

state and to identify those parameters that have the greatest impact on the

system output. We also used the model to predict the effects of gene silencing

as well as the effects of inhibitors and drugs.

Finally, in view of the close relationship between insulin resistance and

cancer, Chapter 5 focuses on the combination of the insulin signaling model

with a cell population model. In order to link these two models, we considered

the response of the ISN and of an acute myeloid leukemia cell population to

a mTOR inhibitor with antitumor activity (AZD8055).
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Chapter 1

Glucose homeostasis and insulin action:

from the organ and tissue level to the

molecular level

Glucose is the major source of energy for living cells. The body makes

glucose from all three elements of food (protein, fats, and carbohydrates)

but the largest amount of glucose derives from carbohydrates. However,

cells cannot use glucose without the help of insulin.

Insulin is the major hormone controlling energy homeostasis in human

body and dysfunction in the insulin control perturbs glucose homeostasis

leading to diseases such as type 2 diabetes (T2D) and its complications

(e.g. cardiovascular disease, nephropathy, and neuropathy). The glucose

homeostasis depends on the balance between hepatic glucose production and

glucose utilization by the major insulin-dependent tissues, such as liver, adi-

pose, and muscle, and by insulin-independent tissues, such as brain and

kidney. This balance is tightly regulated by pancreatic hormones: in normal

individuals, the response to increased plasma glucose levels is an increase in

secretion of insulin from beta-cells of the pancreatic islets. This increase in

insulin levels stimulates glucose transport into peripheral tissues and inhibits

hepatic gluconeogenesis. In addition to its primary effects on glucose home-

ostasis, insulin also promotes a number of other important cellular events

[22, 23].

Mainly due to the high social impact of diabetes (particularly of T2D in

industrialized societies, given its link with obesity [24]), the glucose-insulin

homoeostatic control has been one of the most intensely modeled biomedical

problems. Modeling attempts to represent quantitatively the main features
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of the system, to improve the identification of the mechanisms involved, to

predict the future conditions of a given patient.

In general, two different but complementary strategies can be applied

to model physiological and biochemical systems: top-down and bottom-up

approaches [25]. In a top-down approach an overview of the system is formu-

lated, specifying but not detailing any first-level subsystems. Each subsystem

is then refined with more details, sometimes in many additional subsystem

levels, until the entire specification is reduced to base elements. In a bottom-

up approach the individual base elements of the system are first specified

in great detail. These elements are then linked together to form larger sub-

systems, until a complete top-level system is formed. In other words, the

top-down modeling stars from the physiological functions and moves to un-

derstand underlying mechanisms, while the bottom-up modeling starts from

the molecular details and build toward physiology.

Given the vastity of the field and the large number of important results

obtained over the past four decades or so, it is impossible to present in this

thesis all facets of the glucose homeostasis problem. However, to clearly un-

derstand the events leading to insulin-resistant states and the pathophysiol-

ogy of insulin deficiency, it is necessary to have a total body point view, that

is to consider the main mechanisms underlying the glucose-insulin homeo-

static control both at organ/tissue level and at molecular level. For this

reason, in the present chapter we first show how the plasma glucose level

is regulated by the insulin from a top-down point of view, with the main

combined experimental-modeling tools which are currently employed in in-

vestigating the behaviour of the glucose-insulin system. Then, we detail the

chain of biochemical reactions, known as the insulin signaling network (ISN),

that give rise to glucose uptake into the cell.

1.1 The regulation of the plasma glucose level by the

insulin

The glucose-insulin system can be viewed as a feedback control system

with a controller (the pancreas) and multiple effectors (muscle, liver, fat

tissue), where the only state variable of interest is the level of glucose in blood

(glycemia) that needs to be kept within a narrow range (110 ± 30 mg/dl).

Abnormally low glucose concentrations (hypoglycaemia) give rise to anxiety,

tremors, aggressiveness, obfuscation, coma and eventually death while, on
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the other hand, excessive plasma glucose concentrations (hyperglycaemia)

produce microvascular damages and neural damages, leading among others

to blindness and chronic renal insufficiency.

Figure 1.1: Action of insulin and glucagon on blood glucose level regulation.If
the blood glucose level falls to dangerous levels (as in very heavy exercise or lack of food
for extended periods), the alpha cells of the pancreas release glucagon, a hormone that
stimulate liver cells to convert glycogen into glucose (glycogenolysis) which then is released
into the bloodstream.Otherwise, when level of blood sugar rises, whether as a result of
glycogen conversion, or from digestion of a meal, insulin is released from beta cells found
in the islets of Langerhans in the pancreas. Insulin causes the liver to convert more glucose
into glycogen (glycogenesis), and to force cells (primarily muscle and fat tissue cells) to
uptake glucose from the blood, thus decreasing blood sugar.

The glycemia is monitored and regulated by the cells in the pancreas’s

islets of Langerhans through the mechanism shown in Fig. 1.1. When in-

sulin secretion by the pancreas is insufficient or absent, due to autoimmune

destruction of β-cells, the clinical picture of Type 1 Diabetes (T1D) results;

when insulin is secreted in normal, or supranormal amounts, but it is ineffec-

tive in lowering glycemia to normal levels, Type 2 Diabetes (T2D) is present.

T2D accounts for about 90 to 95 percent of all diagnosed cases and it often
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begins as insulin resistance, a condition where the body produces insulin, but

the cells do not use it properly. As the need for insulin increases, the pan-

creas progressively loses its ability to produce the hormone. It appears that

both genetic and environmental factors are responsible for the progression

from normal glucose tolerance to T2D [26, 27].

In the last decades, several works aimed to develop mathematical mod-

els of the glucose-insulin system in order to analyze experimental data, to

identify and quantify relevant biophysical and biochemical parameters, to de-

sign clinical trials and to evaluate diabetes prevention or disease modification

therapies. In the literature we find models focused on the pancreatic insulin

production, short-term organ/tissue models accounting for the intra-venous

and the oral glucose tolerance tests as well as for the euglycemic hyperin-

sulinemic clamp, and long-term diabetes models aiming to represent disease

progression in terms of β-cells population dynamics over a long period of

years.

In the following sections we review the main combined experimental-

modeling tools which are currently employed in investigating the behaviour

of the glucose-insulin system at the organ and tissue levels without getting

too deep into the molecular/subcellular details. These models describe the

glucose/insulin dynamics from a phenomenological viewpoint, after an exter-

nal perturbation within a relatively short time period and prove information

on goodness of pancreatic insulin secretion and the peripheral glucose uptake

in the subject under investigation. The clinical experiments, and the mathe-

matical models aimed at their interpretations, are very interesting since they

offer the possibility to estimate a set of key markers of T2D development.

1.1.1 The intra-venous glucose tolerance test (IVGTT)

The intra-venous glucose tolerance test (IVGTT) is a clinical experiment

where a glucose bolus is rapidly injected intra-venously into the forearm of

a subject. Glucose and insulin samples are acquired in the following 3 h,

during which glycemia and insulinemia return to their basal values. The glu-

cose injection is modeled as an instantaneous change in the plasma glucose

concentration. In healthy subjects, pancreatic insulin secretion consists of

two contributions: a first-phase release, which is a quick response to a sud-

den change in glycemia, and a second-phase release, which occurs some ten

minutes after the bolus injection. The first-phase of insulin response may
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be modeled as an instantaneous change in the plasma insulin concentration,

whereas the second phase is described by the model equations. Many mathe-

matical models exist to represent the dynamics of this process, but the most

famous and of still widespread use is the so-called minimal model (m.m.),

proposed by Bergman et al. [28]. The m.m., in the first formulation, is com-

posed of two parts: one describing the dynamics of the glucose uptake after

the external stimulus, regarding the insulin concentration as a known forcing

function; the other describing the dynamics of the pancreatic insulin release

in response to the glucose stimulus, with the glucose concentration regarded

as a known forcing function. The model equations for the glucose dynamics

are:

dG

dt
= −(p1 +X(t))G(t) + p1Gb, G(0) = Gb + ∆G ,

dX

dt
= −p2X(t)G(t) + p3(I(t)− Ib), X(0) = 0 . (1.1.1)

This two-compartment model shows that the plasma glucose concentration

G(t) does not directly depend on the plasma insulin concentration I(t), but

on the insulin concentration in a remote compartment, through the auxiliary

function X(t), called insulin action, whose dynamics depends on the plasma

insulinemia. ∆G is the instantaneous change of glycemia due to the glucose

bolus injection and is computed as the ratio D/VG, where D is the dose of

glucose injected and VG is the apparent distribution volume of glucose. Gb

and Ib are the basal concentrations of blood glucose and insulin, respectively

and p1, p2, p3 model parameters.

The second part of the m.m., which is no longer used in the recent ap-

plications of the m.m., concerns the insulin kinetics and consists of a single

compartment model:

dI

dt
= −n(I(t)− Ib) + γt[G(t)− h]+ , I(0) = Ib + ∆I . (1.1.2)

The insulin kinetics exhibits a linear clearance rate n, and the insulin secre-

tion rate is modeled by a time-varying forcing function proportional (accord-

ing with the parameter γ) both to the hyperglycemia attained and to the

time elapsed from the glucose stimulus. Parameter h is the target glycemia

that the actual plasma glucose concentration needs to exceed to stimulate the

second-phase pancreatic insulin production. The first phase insulin release

is modeled by ∆l.
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The four unknown parameters of m.m. to be estimated from the data

(values of glucose and insulin concentration in plasma at given time points)

are: p1 (also denoted as SG, glucose effectiveness), p2, p3 and VG.

The m.m. has played a crucial role in modeling the glucose-insulin system

and, although many criticisms have been raised in the last decade [29], [30],

it is still widely used in the clinical practice because of its ability to provide

some important markers of insulin efficacy. Among these markers the most

important is the insulin sensitivity index, defined as the quantitative influence

of basal insulin concentration to increase the glucose effectiveness at steady

state, [28]:

SI =
∂

∂Ib

ï
− ∂

∂G

dG

dt

ò
steadystate

=
p3

p2
. (1.1.3)

1.1.2 The oral glucose tolerance test (OGTT)

The oral glucose tolerance test (OGTT) is a simple clinical test where,

after an oral glucose load of 75 g, plasma glucose and insulin concentrations

are measured at times 0, 15, 30, 60, 90, 120 and 180min. C-peptide must

also be measured to compute indexes of the insulin secretion. The OGTT

is currently used to aid diagnosis of glucose intolerance and T2D since this

test mimics the physiological conditions of the glucose/insulin system more

closely than the Euglycemic hyperinsulinemic clamp (EHC) or the IVGTT.

However, the analysis of the OGTT data by a mathematical model is very

difficult as the time course of the delivery to plasma of exogenous glucose

and even the total amount of glucose delivered are unknown and influenced

by several factors. Experimental determinations of the rate of appearance,

Ra, of exogenous glucose in plasma have been obtained using a double tracer

technique by Ferrannini et al. [31, 32]. The Authors found a similar profile

for Ra in healthy subjects and diabetic patients. Other groups reported Ra

data during an OGTT or a meal test (MTT) (for instance, see [33]).

A mathematical model, developed with the aim of describing the kinetics

of the glucose/insulin system during an OGTT or an MTT, and of estimating

the parameters of clinical interest, was proposed by Caumo et al. in [34]. This

OGTT minimal model extends to the oral test the basic model proposed

for the IVGTT, with the difference that the glucose administration does no

longer appear as a bolus dose in the initial condition of the glucose equation,

but as the input function Ra, rate of appearance of the exogenous in the
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plasma. The model equations are as follows:

dG

dt
= −(p1 +X(t))G(t) +

Ra(t)

VG
, G(0) = Gb ,

dX

dt
= −p2X(t) + p3(I(t)− Ib), X(0) = 0 , (1.1.4)

where G is the plasma glucose concentration (basal value, Gb), I is the plasma

insulin concentration (basal value, Ib), X represents the insulin action and VG

is the glucose distribution volume. In [33] parametric descriptions of the rate

of appearance were evaluated. The Authors represented the Ra in (1.1.4) by

a piecewise linear function with a given number (n) of break points:

Ra(t) =

 αi−1 +
αi−αi−1
ti−ti−1

(t− ti−1) ti−1 ≤ t ≤ ti , i = 1, . . . , n

0 otherwise

with t0 = 0 and a0 = 0 (Ra(0) = 0). The ai values are to be estimated from the

glucose concentration data. The a priori identifiability of model parameters

is guaranteed if p1 and VG are assumed to be known [33].

Several more complex OGTT models were prosed in the literature as, for

instance, the models proposed by Breda et al. [35] that considered also the

insulin secretion, and the model proposed by Salinari et al. [36] where also

the incretin kinetics was taken into account.

1.1.3 Euglycemic hyperinsulinemic clamp (EHC)

The gold standard for investigating and quantifying yhe insulin resis-

tance is the euglycemic hyperinsulinemic clamp (EHC) [37] that measures

the amount of glucose necessary to compensate for an increased insulin level

without causing hypoglycemia. Indeed, insulin resistance expresses the im-

balance between the amount of pancreatic insulin, delivered in response to a

glucose load, and the levels of plasma glucose reached. To obtain the same

plasma glucose concentration, higher levels of plasma insulin are necessary

in insulin-resistant subjects than in normal controls.

EHC is the gold standard method for determining insulin sensitivity, in

spite of its long and intensive execution: through a peripheral vein a priming

dose of short-acting human insulin is given during the initial 10 min of the test

in a logarithmically decreasing manner, in order to raise acutely the plasma

insulin to the desired level; thereafter, insulin is infused at 10-120 mU per m2

12



per minute and, to compensate for the insulin infusion, glucose is also infused

(blood glucose levels have to be between 5 and 5.5 mmol/l); the glucose and

insulin levels are monitored every 5 min and every 20 min, respectively, and

the rate of glucose infusion is adjusted following an ad hoc algorithm; the rate

of glucose infusion during the last 30-60 min of the test determines insulin

sensitivity. If high levels (7.5 mg/min or higher) are acquired, the patient is

diagnosed insulin-sensitive. Low levels (4.0 mg/min or lower) indicate that

the subject is insulin-resistant. Levels between 4.0 and 7.5 mg/min suggest

impaired glucose tolerance that may generate insulin resistance.

A mathematical model to explain the oscillations of glycemia occurring

in response to the hyperinsulinization and to the continuous glucose infusion

at varying speeds characterizing EHC, was proposed in [38].

1.2 The intracellular insulin control of glucose uptake:

the insulin signaling network

At the molecular level, insulin regulates glucose homeostasis by stimulat-

ing the uptake of the glucose into the insulin sensitive tissues. In addition,

insulin also promotes a number of other cellular events including the regula-

tion of ion and amino acid transport, lipid metabolism, glycogen synthesis,

gene transcription and mRNA turnover, protein synthesis and degradation,

and DNA synthesis [22, 23] (see Fig. 1.2).

The biochemical network that, upon the insulin binding to a specific cell

surface receptor, triggers the glucose uptake into the cells is known as insulin

signaling network (ISN) [22].

Glucose uptake into the various tissues of the body is accomplished by

two general types of glucose transporters, Na+-dependent and facilitative

glucose transporters [39]. Na+-dependent glucose transporters are present in

the intestinal tract and kidney and are not known to be regulated by insulin.

Glucose uptake into all other types of tissue is accomplished by the facil-

itative glucose transporters. Five different facilitative glucose transporters

have been identified and are referred to as GLUTl-5. GLUT1 was the first

facilitative transporter to be identified, and it is present in placenta, brain,

kidney, colon and in lower amount in adipose tissue and muscle. GLUT2

is present predominantly in liver and pancreatic beta-cells and appears to

be involved in the glucose-regulated pathway leading to insulin secretion.

GLUT 3 is found in multiple tissues including brain, placenta, and kidney.
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Figure 1.2: Effects of insulin at molecular level. The insulin signaling system affects
numerous intracellular processes.

GLUT5 is found predominantly in the small intestine. GLUT1, GLUT3, and

GLUT5 are thought to be the major transporters involved in basal glucose

uptake. GLUT4 is the only glucose transporter that is regulated by insulin

and is found exclusively in the insulin-sensitive tissue cells, i.e. muscle cells,

hepatocytes and adipocytes [40]. In the absence of insulin, almost all of the

GLUT4 resides in an intracellular vesicular pool. The binding of the insulin

to its receptor on the plasma membrane activates a series of cascade re-

actions of phosphorylation/dephosphorylation (activation/inactivation) that

lead to a redistribution of the glucose transporter GLUT4 from the intra-

cellular storage sites to theplasma membrane resulting in an increase in the

rate of glucose uptake.

In the following sections, the most important elements of the ISN are ex-

amined, giving particular attention to the molecular interactions which gov-

ern the dynamics of the metabolic response triggered by insulin. We present

in more details the main elements constituting ISN that can be divided in

three main subsystems:

1. From insulin binding to PI3K activation;

2. Akt phosphorylation/dephosphorylation;
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3. Activation/inhibition of Akt substrates.

1.2.1 From insulin binding to PI3K activation

Insulin action initiates upon insulin binding to its receptor on the cell

surface.

The IR belongs to a family of ligand-activated receptors characterized by

intrinsic tyrosine kinase activity that includes, in addiction to IR, the insulin-

like growth factor-1 receptor (IGF-1R), the insulin receptor-related receptor

(IRR), the epidermal growth factor receptor (EGFR), the platelet-derived

growth factor receptor (PDGFR) and others. These transmembrane signal-

ing proteins are fundamental regulators of cell differentiation, growth, and

metabolism. Generally, each receptor is produced starting from two chains,

termed α and β, that are covalently linked by a disulfide bond. The α chains

contribute to the formation of ligand-binding domain, while β chains carry

the kinase domain. In the case of insulin, two α chains and two β chains are

linked together forming a biologically active receptor heterotetramer (α2β2).

Figure 1.3 shows the structure of the IR that can be divided in two main

parts, the extracellular and the intracellular regions [22]. Although the chains

constituting IR are covalently linked, these two domains function indepen-

dently. The extracellular domain of IR consists of the entire α-subunits and

about one third of the β-subunits. This region is responsible for the insulin

binding and, precisely, the α-subunits contain the primary ligand-binding

site. The intracellular region can be divided into several sub-domains with

different functions and characteristics: the juxtamembrane region (JM), that

is implicated in regulating the IR internalization; the tyrosine kinase (TK)

domain containing the kinase-insert region; and the carboxyl-terminus do-

main, that contains two autophosphorylation sites.

Upon insulin binding, IR rapidly internalizes with a multistep process

and the internalized receptors undergo a sorting that determines whether

they will be subjected to degradation in lysosomes or they will recycle back

to the membrane surface. The IR on the plasma membrane are phospho-

rylated on the tyrosine residues. The activation of the insulin receptor Tyr

kinase leads to the phosphorylation of several endogenous substrates, includ-

ing insulin receptor substrates (IRS1, 2, 3, 4), Shc, GA B1, Cbl and others

that are phosphorylated on tyrosine residues [41]. Each of these phospho-

rylated proteins serve as docking proteins for other signaling proteins that
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Figure 1.3: Structure of insulin receptor. Model of the insulin receptor showing its
various structural and functional domains.

contain the Src-homology-2 domains (SH2 domains). Some SH2 proteins are

enzymes, such as the P-Tyr phosphatase SHP2 (SH-PTP2). Other SH2 pro-

teins, such as the p85 regulatory subunit of phosphatidyl-inositide 3-Kinase

(PI3K), function as adaptor proteins for downstream effectors that further

propagate the metabolic and the growth-promoting effects of insulin.

A number of protein tyrosine phosphatases (PTPases) can dephosphory-

late the insulin receptor, reducing its kinase activity and thereby attenuating

insulin action. Two PTPases have been implicated in the negative regulation

of the insulin receptor, PTP1B and LAR. Elevated expression of each these

phosphatases has been reported in the insulin-resistant patients [42].

IRS1 is a high-molecular-weight cytosolic protein, which contains 20 po-

tential tyrosine phosphorylation sites and over 40 potential serine/threonine

phosphorylation sites, and has been shown to be a major substrate for both

the insulin and IGF-1 receptors [43]. It has a conserved pleckstrin homology

(PH) domain that serves to anchor such receptors. IRS1 phosphorylated on

tyrosine residues serve as docking sites for SH2 domain-containing the p85

regulatory subunit of PI3K, leading to its activation. Several Ser/Thr phos-

phorylation sites of IRS1, if phosphorylated, reduce the ability of this protein

to interact with the insulin receptor and undergo Tyr phosphorylation thus
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impairing the insulin signaling and inducing insulin resistance. In particular,

the Ser302 phosphorylation of IRS1 by S6-Kinase (S6K) constituting one of

the most important negative-feedback loop present in the ISN . This negative

feedback inhibits upstream insulin signaling upon mammalian target of ra-

pamycin Complex 1 (mTORC1) and S6K1 activation. Also IRS1, as well as

IR, may be dephosphorylated by the PTP1B that thus negatively regulates

the insulin signaling pathway.

PI3-kinase plays a central role in the metabolic and growth-promoting

actions of insulin [44]. It is a heterodimeric enzyme constitued of a p110 cat-

alytic subunit and a p85 regulatory subunit. The regulatory subunit main-

tains the p110 catalytic subunit in a low-activity state. Activation of PI3-

kinase occurs upon direct interaction of the regulatory subunit with adaptor

proteins such as the IRS proteins [43].

1.2.2 Akt phosphorylation/dephosphorylation

The association of p85-p110 complex with IRS molecules results in the

production of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) [45, 44]

. The most relevant function of PI(3,4,5)P3 is the ability to interact with the

phosphoinositide-dependent kinase 1 (PDK1), the protein kinase B (PKB),

also known as Akt, and other signaling molecules. These interactions result in

the recruitment of these proteins to the plasma membrane triggering changes

in their structure, function and their substrate availability. In the case of

PDK1, binding of its PH domain to PI(3,4,5)P3 enables it to phosphorylate

several downstream effectors, such as protein kinase C (PKC) and PKB/Akt

and thus to further propagate the metabolic and growth promoting functions

of insulin.

Moreover, two important lipid phosphatases are commonly present in

the system and they mainly operate decreasing the levels of PI(3,4,5)P3:

the phosphatase and tensin homologue, PTEN, and the SH2 domain con-

taining inositol-5-phosphatase, SHIP2. In particular, PTEN acts removing

the phosphate in the 3-position of the inositol ring from phosphatidylinos-

itol PI(3,4,5)P3 to produce PI(4,5)P2. SHIP2 specifically hydrolyzes the

5-phosphate of PI(3,4,5)P3 to produce PI(3,4)P2. Thus both enzymes coop-

erate as antagonists of the PI3K/Akt/mTOR pathway modulating cell cycle

progression and cell survival. PI3K and PDK1 also trigger the activation of

the atypical PKC isoforms (PKCζ and PKCλ). Two specific sites, Thr410
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and Thr560, need to be phosphorylated for full activation of this molecule

which has, as main function, the regulation of GLUT4 translocation to the

cellular membrane and subsequent induction of glucose transport inside the

cell. PKC plays an important role constituting a negative feedback control

mechanism that serves to terminate insulin action. This feedback loop in-

volves the phosphorylation of IRS proteins and leads to IRS dissociation from

IR, thereby terminating insulin signaling.

Akt is a serine/threonine-specific protein kinase and is one of the major

substrates of PDK1 [41]. It is implicated in mediating numerous aspects of

insulin action, including the regulation of glucose transport, glycogen synthe-

sis, protein synthesis, the antilipolytic effects of insulin, as well as cell growth

and cell survival induced by insulin [5]. Akt contains a PH domain that al-

lows the binding to PI(3,4,5)P3 following PI3K activity and its targeting to

the PM. Akt association with PI(3,4,5)P3 brings it to the proximity of PM

facilitating the phosphorylation of Akt at Thr308 by PDK1 while mTORC2

(mammalian target of rapamycin complex 2) catalyzes Akt phosphorylation

on Ser473 [6]. The maximal Akt activity seems to be achieved when the

molecule is phosphorylated on both Thr308 and Ser473 residues, allowing

the translocation to Pm of GLUT4 glucose transporters in muscle and adi-

pose tissue [7, 8, 46]. The protein phosphatase PHLPP dephosphorylates

Akt at Ser473 and the phosphatase PP2A dephosphorylates Akt at Thr308.

Moreover, Akt may inactivate PTP1B upon phosphorylation at Ser50, which

enhances insulin signaling via a positive feedback loop [47]. Indeed, phospho-

rylation of PTP1B by Akt impairs the ability of PTP1B to dephosphorylate

insulin receptors and IRS. As PTP1B itself negatively modulates insulin sig-

naling, the downstream negative regulation of an upstream negative signaling

element represents a positive feedback loop for insulin signaling.

1.2.3 Activation/inhibition of Akt substrates

Akt with its phosphorylated forms may be considered the core of the ISN

because it promotes the phosphorylation of a series of substrates that play a

key role in the regulation of glucose uptake, glycogen and protein synthesis.

The first action is achieved by Akt mediating the translocation of GLUT4

glucose transporter to the cell membrane. This mechanismi involves AS160,

which is a Rab GTPase-activating protein, for the translocation and target-

ing of trasporters to the PM [46], and SNARE regulatory proteins for the
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fusion event [48]. Despite recent studies tried to uncover this mechanism,

several steps in GLUT4 trafficking, including endocytosis and sorting are

still unclear.

The glycogen synthesis involves the phosphorylation and inactivation by

Akt of glycogen synthase kinase 3β (GSK3β) at Ser9. Phosphorylation at

this site causes a conformational change, preventing the access of substrates

to the active site. GSK3β acts phosphorylating and inactivating the glycogen

synthase (GYS) that has a key role in the conversion of glucose to glycogen.

It is also known that the inactivation of GSK3β also plays an important role

in the Wnt signalling pathway which is critical for embryonic development

[49].

The regulation of protein synthesis implicates the phosphorylation and

inhibition of the tuberous sclerosis complex 1/2 dimer (TSC1-TSC2) by Akt.

The TSC1-TSC2 complex acts as a GTPase-activating protein (GAP) for the

small GTPase Ras homologue enriched in brain (GTP/Rheb) and the pri-

mary function of this complex is as a critical negative regulator of mTORC1

activation. Since Akt-mediated phosphorylation of TSC1-TSC2 complex im-

plies the conversion of GTP/Rheb into GDP/Rheb, and GDP-loaded Rheb is

unable to activate mTORC1, TSC complex effectively shuts off mTORC1 sig-

naling. Moreover, several studies suggest that the TSC1-TSC2 complex can

also positively regulates mTORC2 in a manner independent of its GTPase-

activating protein activity toward Rheb. In [11], the Authors found that

mTORC2 isolated from a variety of cells lacking a functional TSC1-TSC2

complex was impaired in its kinase activity toward Akt. The defect in the

mTORC2 activity in these cells was found to be separated from the known

feedback mechanisms (via mTORC1) affecting IRS1 and then PIP3 that it

is recognized as a mTORC2 activator [9].

The mammalian target of rapamycin (mTOR) is considered as a central

controller of cellular metabolism and also of cellular growth. In the past

few years, several studies focused on mTOR functions have revealed its cru-

cial involvement in the onset and progression of diabetes, cancer and ageing

[15, 9]. In particular, mTOR regulates the anabolic and catabolic processes,

including translation, ribosome biogenesis and autophagy, in response to hor-

mones, growth factors (insulin), nutrients (amino acids), energy and stress

signals. Deregulation of the mTOR pathway occurs in several human dis-

ease [50, 51, 52]. Small molecules that target mTOR are becoming of great

clinical interest in view of their ability to arrest the growth of the cancer.
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Over-stimulation of the mTOR pathway by excess food consumption may

be a crucial factor underlying the diabetes epidemics. Recent findings sug-

gest that mTOR signalling controls the rate at which cells and tissues age,

and then inhibiting mTOR may represent a promising avenue to increase

longevity.

mTOR is the catalytic subunit of the two distinct complexes mTORC1

and mTORC2, which are involved in different biological processes as schemat-

ically represented in Figure 1.4.

Figure 1.4: mTORC1 and mTORC2 complexes. mTORC1 responds to amino
acids, stress, oxygen, energy, and growth factors and is acutely sensitive to rapamycin.
It promotes cell growth by inducing and inhibiting anabolic and catabolic processes, re-
spectively, and also drives cell-cycle progression. mTORC2 responds to growth factors and
regulates cell survival and metabolism, as well as the cytoskeleton. mTORC2 is insensitive
to acute rapamycin treatment but chronic exposure to the drug can disrupt its structure.

mTORC1 is constituted by the DEP domain-containing mTOR-interacting

protein (DEPTOR), the mammalian lethal with SEC13 protein 8 (mLST8

or GβL), the regulatory-associated protein of mTOR (RAPTOR) and the

40 kDa Prorich Akt substrate (PRAS40). mTORC2 has DEPTOR and

mLST8 in common with mTORC1 but, differently from it, contains the

rapamycin-insensitive companion of mTOR (RICTOR) and the mammalian

stress-activated map kinase interacting protein 1 (mSIN1).

mTORC1 is the better characterized of the two mTOR complexes while

much less is known about the mTORC2 [5]. Activated mTORC1 up-regulates

protein synthesis by phosphorylating key regulators of mRNA translation and

ribosome synthesis. mTORC1 substrates are the S6-kinase (p70-S6K), the

translation initiation regulator 4E-binding protein (4E-BP) and the mTORC1-

inhibitor PRAS40. Activation of p70-S6K is regulated by a wide range of

extracellular signals including growth factors, hormones, nutrients (glucose

and amino acids), and stress. Works from many research groups have revealed
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the complexity of S6K1 activation via sequential phosphorylation at multiple

sites [53, 54]. The best characterized sites are Thr-229 (T229) and Thr-389

(T389) and it is known that PDK1 and mTOR can phosphorylate T229 and

T389, respectively. In particular, mTORC1 phosphorylates T389, creating

a docking site for PDK1, which is then able to phosphorylate the activation

loop T229. More recently, it has been found that Ser-371 (S371) is essential

for T389 phosphorylation and S6K1 activity [15]. However, it remains un-

clear how the S371 phosphorylation is regulated. Fully actived p70-S6K is

an important element in insulin pathway also because of the phosphorylation

and the inhibition it carries out on IRS. Precisely, p70-S6K phosphorylates

IRS at multiple serine residues, resulting in the accelerated degradation of

IRS. Thus it constitutes a negative-feedback loop that inhibits upstream in-

sulin signaling. The action of this negative feedback is widely described in

the literature (see, for instance, [2, 4, 55, 56]).

Unphosphorylated 4E-BP1 suppresses mRNA translation. More pre-

cisely, when phosphorylated by mTORC1 at Thr37, Thr46, Ser65 and Thr70,

4E-BP1 dissociates from the eukaryotic translation initiation factor 4E (eIF4E),

which is involved in several cellular processes including enhanced transla-

tional efficiency, splicing, mRNA stability, and RNA nuclear export.

PRAS40 contributes to the inhibition of mTORC1 activity [57, 58]. In

response to insulin, mTORC1 phosphorylates PRAS40 at Ser183 and this

action causes the release of PRAS40 from the complex and relieves its in-

hibitory effect on mTORC1 which is allowed to phosphorylate the remaining

substrates. Moreover, also Akt phosphorylates PRAS40 so causing it to bind

to cytosolic anchor proteins and preventing it from inhibiting mTORC1 [59].

In addition to regulating the production of proteins, mTORC1 controls

the synthesis of lipids required for proliferating cells to generate membranes

[60]. In yeast and mammals, an important mTOR inhibitor is rapamycin

that inhibits the ability of mTORC1 to phosphorylate its substrates [61].

Rapamycin binds the small protein 12 kDa FK506-binding protein (FKBP12)

and, in turn, rapamycin-FKBP12 binds and inhibits the kinase activity of the

RAPTOR-bound mTOR. Because acute treatment with rapamycin does not

perturb mTORC2 signaling and rapamycin-FKBP12 cannot bind to intact

mTORC2, this complex was originally thought to be rapamycin insensitive

[62]. However, the situation turns out to be much more complex as long term

treatment with rapamycin reduces mTORC2 signaling in some, but not all,

cell types and does so by suppressing mTORC2 assembly [63].
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In general, the upstream and downstream regulators of mTORC2 are

less characterized compared to mTORC1. Recent findings have revealed

mTORC2 mediates the phosphorylation of Akt at Ser473 and then it is im-

portant for the full activation of Akt [6]. mTORC2 may favour cell survival

through Akt-mediated inhibition of the forkhead box protein O1 (FOXO1)

and FOXO3: phosphorylation of FOXO1 and FOXO3 by Akt effectively

prevents them from translocating to the nucleus and activating the gene ex-

pression programmes that promote apoptosis. Moreover, mTORC2 activates

PKC-α that regulates cell shape in cell-type-specific fashion by affecting the

actin cytoskeleton [62].

1.2.4 Pathologies related to dysfunctions of the insulin signaling

network

The previous sections have stressed as the ISN components have key roles,

not only in the glucose metabolism, but also in other important cellular pro-

cesses such as apoptosis, cell proliferation, transcription and cell migration.

Malfunctioning of the ISN may alter these physiological processes of cells,

potentially leading to severe consequences on the organism. So, investigat-

ing the mechanisms responsible for insulin signaling impairment is of primary

importance. The most common pathologies caused by an altered ISN are the

insulin resistance, T2D and cancer [5, 15, 52]. Moreover, insulin resistance

is often associated with central obesity, hypertension, and atherosclerosis,

and diabetes involves many long-term complications including heart diseases,

strokes, diabetic retinopathy, kidney failure and poor circulation in the limbs

which may lead to amputations.

A detailed analysis of regulatory processes in the ISN may permit to

develop new insights about the origin of these pathologies and, in future

perspective, to find a drug or combination of drugs able to counterbalance

the effect of the diseases. Such purpose has been followed by several research

groups in the last decades. For instance, Guertin et al. [64] demostrated

that the development of prostate cancer caused by Pten delection in mice

requires mTORC2, but that for normal prostate epithelial cells, mTORC2

activity is nonessential. So, the selective requirement for mTORC2 in tumor

development suggests that mTORC2 inhibitors may be of substantial clinical

utility. Chresta et al. [65] studied the in vivo and in vitro antitumour activity

of AZD8055, a potent mTOR inhibitor. In [55], the Authors showed how
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the absence of S6K1 protects against age- and diet-induced obesity while

enhancing insulin sensitivity.
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Chapter 2

Mathematical modeling of cell

signaling networks and parameter

estimation in biochemical pathways

Biochemical pathways are the molecular mechanism involved in the var-

ious physiological and cellular processes of the living systems. These path-

ways can be categorized into three major groups: metabolic, signaling and

gene regulatory networks, which control the expressions of some sets of genes,

proteins or chemical compounds to regulate different phenotypic expressions.

Therefore, the study of the various biochemical pathways is very important

to identify their roles in several human diseases, such as cancer or diabetes.

Signaling pathways are complex, interdependent cascades of signals that

sense input stimuli (e.g. extracellular ligands or intracellular metabolites)

and transmit, process, and integrate this information to provide output sig-

nals that accordingly regulate the cell activity. Signaling networks permit

cells to communicate with each others and with external environment and to

undergo phenotypic changes, such as cellular division, differentiation, death

and others. Hence, these networks can be considered as information process-

ing devices that translate input signals into output signals in which infor-

mation is often coded by concentrations, modifications, and localization of

proteins, either in the stationary levels or in temporal patterns. In biologi-

cal systems, signal transmission occurs mostly through two mechanisms: (i)

protein-protein interactions and enzymatic reactions such as protein phos-

phorylation and dephosphorylation, (ii) protein degradation or production

of intracellular messengers.

Despite substantial progresses over the past three decades in biochemistry,
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molecular biology and cell physiology, together with emerging techniques for

detecting protein-protein interaction, the construction and the analysis of

cellular signaling networks remains too complicated for the human mind.

The complexity of the signal transduction pathways inside the cells de-

rives not only from the enormous amount of different molecules involved in

the process but also from the presence of numerous feedback and feedfor-

ward loops, both negative or positive, concerning the pathway itself, and

the crosstalks involving distinct pathways. For instance, a negative feedback

loop can give rise to adaptation and desensitization, while a positive feed-

back loop can lead to emergent network properties such as ultrasensitivity

and bistability 1 [66]. Furthermore, cellular components rarely function in

just one location, but dynamically shuttle between cellular organelles [67, 68].

The network resulting from multiple interactions and dynamic localization

enables the cells to process information in a context-dependent manner.

Due to this high degree of complexity, it has been necessary to develop

mathematical models to more deeply understand the system behavior of sig-

naling networks, and to predict higher order functions that can be validated

by the experiments.

In the present chapter, different types of mathematical representations

for the modeling of the signaling networks are described and the advantages

and disadvantages of each type are discussed. Then, we discuss the main

problems arising in the assessment of model parameter values and the most

common methods used to estimate the parameters from the experimental

data.

2.1 Mathematical tools for modeling regulatory cellu-

lar networks

Experimental biology alone may not provide a strategy for a detailed anal-

ysis of complex signaling networks, that instead requires a combination of

experimental and computational approaches including the development and

analysis of mathematical models. This is the idea at the basis of Systems Bi-

ology. Kitano [69] states “to understand complex biological system requires

the integration of experimental and computational research - in other words a

1In biological context, a system exhibiting bistability might shift from ‘low’ to ‘high’
steady state in response to a signal of sufficient duration and amplitude.
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systems biology approach.” Computational methods provide useful informa-

tion to guide experimental design, whereas data collected from experiments

help the implementation and refinement of computational models, providing

more accurate predictions on the behaviour of biological systems.

Computational methods used to study cell signaling networks are typ-

ically classified into two main categories: structural and dynamic network

analysis [70].

Structural network analysis depicts the regulatory network as a connec-

tion map (makes use of graph theory), in which the nodes represent the

distinct chemical species populating the system, and the edges (with sign)

their interactions. The aim is to give information about the network connec-

tivity and to deduce some properties of the global network as well as some

functions of the individual proteins. An advantage of these models is that

they can be developed for large numbers of components and interactions.

However, these connection maps are largely qualitative and then have lim-

ited use in understanding how networks behave dynamically in space and

time.

An example of structural analysis is the boolean method. In the boolean

model the signal transduction is discretized and can be either present or

absent. This two-states modeling represents an extreme simplification of the

underlying biochemistry and cannot be used to predict the time course of

protein concentrations.

Dynamic network analysis utilizes the network connectivity information

and makes use of the kinetic parameters characterizing the biochemical reac-

tions in order to determine how the system changes in time and spaceunder

external stimulation. Kinetics parameters, also known as kinetic rate con-

stants, give information about the speed of a chemical reaction and thus

about how fast the reactants are transformed into products.

Typically, the dynamic models are built in three steps. The first step

is to generate a connection map and to identify regulatory features. After

writing out the reaction schemes and collecting the necessary parameters, the

modeler generates the mathematical model using the appropriate framework.

Once the simulations have been performed, comparison between in silico and

in vivo/in vitro experiments enables the estimation of the parameters that

are not experimentally accessible with the current technology. Finally, the

model has to be validated. Besides verifying whether a proposed molecular

mechanism is correct, modeling identifies major regulatory hubs of signal-
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ing networks, and helps to uncover possible targets for the pharmacological

intervention in diseases.

However, even though the dynamic models are more informative than the

structural models, they require the additional knowledge of a large number of

numerical values describing the kinetics of the reactions. The implementation

of dynamic models easily presents problems due to the limited data available

from experiments. Moreover, the values of kinetics parameters often depend

on cell type, experimental conditions and other factors. These values may

differ of a order of magnitude from test to test, and in some cases they may

remain under-determined or non-uniquely estimated. Despite these difficul-

ties, dynamic models are widespread and they have been currently used by

many research groups with successful results.

Broadly, the mathematical models used to describe the dynamics of bio-

chemical reactions can be deterministic or stochastic. In deterministic mod-

els, the change in time of the components’ concentration is completely deter-

mined by specifying the initial, and in some cases, boundary conditions. By

contrast, the changes in concentration of components with respect to time

cannot be fully predicted in stochastic models. During a given period, the

reaction might or might not occur and the probability of occurrence is related

to the kinetic rate constant.

The choice of the modeling methodology depends on the cellular process

that is being investigated and the experimental tools that are available. De-

terministic models are a good description when the distributions of reactants

can reasonably be assumed to be continuous. This holds when the number

of molecules is large enough (> 102 − 103 molecules per reactant)[71]. In the

eukaryotic metabolism and signal transduction, these numbers justify the use

of deterministic kinetic models. On the other hand, the use of a stochastic

model is necessary for problems in which fluctuations have a significant role,

such as in phenotypic variations and in gene regulation. The biochemical

fluctuations or ‘noise’ inherent in such stochastic systems are often exploited

in cellular functions, resulting in spontaneous switching from one biochemical

state to another [72].

In the following, we focus mainly on the deterministic models describing

the three most commonly used types, that is: chemical kinetics models,

compartmental models, and diffusion-reaction models [73].
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2.1.1 Chemical kinetics models

The most commonly used approach to model cellular signaling networks

uses the formalism derived from the chemical kinetics theory. The governing

equation that describes the dynamics of a signaling network component X

has the form:

dX

dt
= production− consumption (2.1.1)

The equation above states that the rate of change in concentration of any

molecule (called substrate) is equal to the difference between the rate of

production and the rate at which it is consumed. The generation and con-

sumption terms can be a constant (e.g., synthesis), first order reactions (e.g.,

degradation), or nonlinear (e.g., second order reactions or Michelis-Menten

kinetics for enzymes). Chemical kinetics models are implemented using a

set of ordinary differential equations (ODEs) where the only independent

variable is the time. In these models, the concentrations of chemicals are

assumed to be independent of space. The advantage of ODE-based models

is that, although analytical solutions are not guaranteed (in most cases, it

cannot be obtained), various numerical methods for solving ODEs systems

are well developed.

An example of a chemical kinetics model is the mass action law that states

that the rate of any chemical reaction is proportional to the product of the

masses of the reacting substances, with each mass raised to a power equal

to the coefficient that occurs in the chemical reaction. Thus, for instance,

a bimolecular reaction, A + B
k−→ C, proceeds at a rate proportional to the

product of the concentrations of the substrates, k[A][B] (the squares brackets

denote concentrations).

Michaelis-Menten kinetics

In biochemistry, Michaelis-Menten (MM) kinetics is one of the best-known

models of enzyme kinetics. It involves an enzyme E binding to a substrate

S to form a complex C, which in turn may give back the substrate or be

converted into a product P plus the unmodified enzyme [74]. MM kinetics

may be represented schematically as

S + E
ka−⇀↽−
kd

C
kc−→ P + E (2.1.2)
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where ka, kd, and kc denote, respectively, the association, dissociation and

catalytic rate constants. The double arrows between S and C represent the

fact that enzyme-substrate binding is a reversible process whereas the final

catalytic step is irreversible. The MM scheme in (2.1.2) is used in a variety

of biochemical situations other than enzyme-substrate interaction, includ-

ing antigen-antibody binding, DNA-DNA hybridization, and protein-protein

interaction [75].

Applying the mass action law to the two chemical reactions in (2.1.2),

we can write the following system of four non-linear ordinary differential

equations:



dS

dt
= −kaES + kdC

dE

dt
= −kaES + kdC + kcC

dC

dt
= kaES − kdC − kcC

dP

dt
= kcC

(2.1.3)

with the initial conditions:
S(0) = Stot ,

E(0) = Etot ,

C(0) = 0 ,

P (0) = 0 ,

(2.1.4)

and the conservation laws

Stot = S + C + P , (2.1.5)

Etot = E + C . (2.1.6)

The quantities S,E,C, P are time-dependent concentrations. Note that, be-

cause of (2.1.5)-(2.1.6), the system (2.1.3) of four ODEs can be reduced to a

system of only two non linear differential equations with the corresponding

initial conditions:
dS

dt
= −ka(Etot − C)S + kdC S(0) = Stot ,

dC

dt
= +ka(Etot − C)S − (kd + kc)C C(0) = 0 .

(2.1.7)

The systems (2.1.3) cannot be solved in closed form, but only numerically,
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for any specific values of the initial conditions and the kinetic parameters.

Actually, it would be very useful to have a closed form expression for the

rate of the reaction S → P , because that expression could be compared to the

experiments and the rate constants could be determined.

Michaelis and Menten [74], in their original analysis, assumed that the

substrate is in instantaneous chemical equilibrium (equilibrium approxima-

tion) with the complex and derived an approximate formula. In particular,

they assumed

kaES = kdC .

Combining the above expression with the enzyme conservation law (2.1.6),

they obtained

ka(Etot − C)S = kdC .

and then

C =
EtotS

Kd + S
,

with Kd = ka/kd. Hence, the velocity v of the reaction (the rate at which P is

formed) is:

v =
dP

dt
=

VmaxS

Kd + S
(2.1.8)

where Vmax = kcEtot is the maximum reaction velocity, obtained as S tends to

infinity.

In 1925, the British botanist G. E. Briggs and the British geneticist J. B.

S. Haldane undertook an alternative analysis of the system (2.1.3) [76]. They

assumed that the concentration of the intermediate complex does not change

on the time-scale of product formation, that is, the dynamics of the complex is

faster than the substrate dynamics. Mathematically, this assumption, known

as the standard quasi-steady-state approximation (sQSSA), means that:

dC

dt
= 0⇒ kaES = kdC + kcC (2.1.9)

Combining this relationship with the enzyme conservation law (2.1.6), the
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concentration of complex is given by

C =
EtotS

Km + S
,

where

Km =
kd + kc
ka

(2.1.10)

is the so-called Michaelis-Menten constant. Thus, the reaction rate v becomes

v =
dP

dt
= −dS

dt
=
kcEtotS

Km + S
. (2.1.11)

Figure 2.1: Michaelis-Menten saturation curve for an enzyme reaction showing
the relation between the substrate concentration and the reaction rate.

The reaction rate increases with the substrate concentration and asymp-

totically tends to its maximum Vmax = kcEtot, attained when all the enzyme

is bound to substrate (Figure 2.2). The constant kc, the turnover number, is

the maximum number of substrate molecules converted to product per en-

zyme molecule per second, and the constant kc/Km (catalytic efficiency) is a

measure of how efficiently an enzyme converts a substrate into the product.

The MM constant Km represents the substrate concentration at which the

reaction rate is at half of Vmax and is an inverse measure of the affinity of the

substrate for the enzyme (a small Km indicates high affinity, meaning that

the rate will approach Vmax more quickly).

The parameters Vmax and Km describe completely the kinetics of a MM

reaction in sQSSA and they can be computed from experiments [77]. The
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advantage of the sQSSA is that it reduces the dimensionality of the system

(2.1.3) and thus speeds up the numerical simulations, especially for large net-

works as found in vivo. Moreover, the kinetic constants ka, kd, kc are usually

unknown, whereas finding the kinetic parameters Km and Vmax is a standard

in vitro procedure in biochemistry [77].

The resulting reaction rates predicted by the two approaches (equilib-

rium approximation vs sQSSA) are similar, with the only difference that

the equilibrium approximation defines the constant as Kd, whilst the quasi-

steady-state approximation uses Km (see (2.1.8) and (2.1.11)). However, each

approach is founded upon a different assumption. The Michaelis-Menten

equilibrium analysis is valid if the substrate reaches equilibrium on a much

faster time-scale than the product is formed or, more precisely, if

ka
kc
� 1 .

By contrast, the Briggs-Haldane quasi-steady-state analysis is valid if:

Etot
Km + Stot

� 1 , (2.1.12)

i.e., the total enzyme concentration must be much lower than the sum of the

total substrate concentration and the MM constant[78, 79].

According to the procedure described by Segel [78], the first step in at-

tempting to determine the parameter ranges for which the sQSSA is valid

is to estimate two time scales. Recalling that the simplifying assumptions

of the sQSSA are that the complex dynamics is faster than the substrate

dynamics and that during this fast complex transient the substrate does not

decrease appreciably, we have: τf , the time that characterizes the duration of

the fast transient, and τs, the time interval required for a significant change

in S during the post-transient period (see Figure 2.2).

The estimated values are (see [78] for the details):

τf =
1

ka(Stot +Km)
(2.1.13)

and

τs =
total change in S after fast transient

max{|Ṡ|}after fast transient
. (2.1.14)
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Figure 2.2: Time-concentration profiles of enzyme E, substrate S, complex C
and product P in a Michealis-Menten model.

Assuming the validity of the steady state assumption, the numerator of

(2.1.14) is approximately Stot and the denominator is given by (2.1.11) with

S = Stot, i.e.:

τs =
Stot +Km

kcEtot
. (2.1.15)

The first condition necessary for the sQSSA is τf � τs that, from (2.1.13)

and (2.1.15), implies:

Etot
Stot +Km

�
Å

1 +
kd
kc

ãÅ
1 +

Stot
Km

ã
(2.1.16)

Secondly, to insure that S(0) = Stot can be taken as initial condition, there

must be only a negligible decrease ∆S in the substrate concentration during

the fast transient, i.e. |∆S/Stot| � 1 during τf . Overestimating the decrease

∆S by the product of the initial maximal rate of depletion of S, kaEtotStot
(obtained by setting t = 0 in the first equation of (2.1.3)) with the time

duration τf , yields ∣∣∣∣∆SStot
∣∣∣∣ =

1

Stot

∣∣∣∣dSdt
∣∣∣∣
max

· τf =
Etot

Km + Stot
� 1 . (2.1.17)

If (2.1.17) holds then (2.1.16) holds. Thus, it is demonstrated that (2.1.12)
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guarantees the validity of the steady state assumption.

The condition (2.1.12) is usually fulfilled for the in vitro experiments, but

often breaks down in vivo [80].

In order to simulate physiologically realistic in vivo scenarios, Borghans

et al. [81] recently introduced the total quasi steady-state approximation

(tQSSA) and showed that it is valid for a broader range of parameters cov-

ering both high and low enzyme concentrations. The term total refers to the

fact that the tQSSA yields an equation for the total substrate concentration

(S̄ = S + C becomes the new substrate variable).

Several recent papers have reviewed and extended the results by Borghans

et al. [80, 82, 83, 84]. Tzafriri rederived and corrected the tQSSA both for

irreversible enzyme kinetics [80] and for reversible enzyme kinetics [82]. Ped-

ersen et al [83, 84] extended the tQSSA to more complex reaction schemes, as

the fully competitive reactions, the double phosphorylation, and the Goldbeter-

Koshland switch 2.

We avoid to discuss further about the tQSSA because, as shown in the

following chapters, the ISN model proposed in this thesis was developed and

analysed assuming the sQSSA. This assumption is justified by the fact that

the experimental data used for the parameter estimation are in vitro data

and, as stressed above, the condition (2.1.12) is usually fulfilled for in vitro

experiments.

We conclude this section with two remarks.

First, in general, in an enzymatic process the product formation can be

reversible but the irreversibility is a necessary simplification in order to yield

a tractable analytic solution [82]. Thus, the enzyme reaction is more correctly

described as

S + E
k1−−−⇀↽−−−
k−1

C
k2−−−⇀↽−−−
k−2

P + E (2.1.18)

The assumption of irreversibility is correct in situations where one of the

below condition is true:

• the concentration of substrate is very much larger than the concentra-

tion of products (S � P );

2Goldbeter-Koshland switch [85] is used to describes the cycle of phosphorylation and
dephosphorylation of a substrate, that is one the most important processes to activate and
inactivate enzymes in all intracellular pathways.
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• the energy released in the reaction is very large .

These conditions are true in vitro and for many in vivo biological reactions,

particularly when the product is continually removed by a subsequent re-

action. In situations where neither of these two conditions hold (that is,

the reaction is low energy and a substantial pool of product(s) exists), the

MM scheme in (2.1.2) breaks down, and more complex modeling approaches

explicitly taking the forward and reverse reactions into account must be con-

sidered to understand the enzyme biology.

The last remark is linked to the observation that, in biochemistry and

pharmacology, the binding of a ligand to a macromolecule is often enhanced

if other ligands are already present on the same macromolecule (the so-called

cooperative binding) [86]. If we want to represent this enhancement for a

substrate having more than one binding site, the Michaelis-Menten equation

(2.1.11) is no longer appropriate to study the rate of reaction. Indeed, the

plot of the reaction rate as function of the substrate assumes a sigmoidal

shape instead of the hyperbolic one reported in Figure 2.2.

The first description of the cooperative binding to a multi-site protein

was developed by A.V. Hill [87], who suggested the following equation:

Y =
[X]n

K + [X]n
, (2.1.19)

where Y is the fraction of the ligand-binding sites on the receptor protein,

[X] is the free (unbound) ligand concentration, K is an apparent dissociation

constant, and n is the so-called Hill coefficient. The total number of ligand

binding sites is an upper bound for n. If n < 1, the system exhibits negative

cooperativity, whereas the cooperativity is positive if n > 1. A coefficient

n = 1 indicates that the affinity of the enzyme for a ligand molecule is not

dependent on whether or not other ligand molecules are already bound.In the

latter case, the Hill equation has the form of the Michaelis-Menten equation

normalized with respect to the maximal reaction rate (see Eq. (2.1.11)).

2.1.2 Compartmental models

The basic limitation in using equations such as (2.1.1) to describe a com-

plex system, such as a subcellular system, is the assumption of spatial homo-

geneity. However, since the activity of biological molecules is often controlled

by their microenvironment, it is desirable to incorporate this feature into the
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models. The simplest way to take into account the spatial distribution of

some quantities in a system is by making a compartmental approximation.

In a compartmental model, the molecules in different compartments are

treated as separate species. The exchange of molecules among compartments

is modeled as a flux, which is determined from either a priori knowledge of

the biology or from empirical observations. Compartmental modeling has

been used extensively in the modeling of dynamical systems in biology and

medice, and more recently, in the modeling of networks involved in protein

secretion and trafficking (e.g. [88]).

For a component X that dynamically shuttles between the plasma mem-

brane and the cytoplasm, (2.1.1) might be extended as:

dXPM

dt
= production− consumation

− export to cytoplasm + membrane recruitment (2.1.20)

Similar equations can be written for the concentrations of components in

the cytoplasmic compartment. Thus, like the chemical kinetics models, com-

partmental models are also based on ordinary differential equations (ODEs).

However, for the cases where the explicit dependence on the spatial variables

is needed, a partial differential equation (PDE)-based model has to be used

(see, for instance, [89]).

As the same component in different compartments is described by dif-

ferent equations, the biological realism of the model increases along with

the computational complexity of the model. Moreover, the experimental

complexity increases because it becomes necessary to use the flux terms that

must be estimated from indirect measurements. Currently, the flux terms are

estimated by means of experiments that use the photoactivation of labeled

proteins.

2.1.3 Diffusion-reaction models

At a more fine-grained level, the spatiotemporal dynamics of cellular com-

ponents can be modeled by the reaction-diffusion equation:

∂X

∂t
= D

∂2X

∂x2
− ν ∂X

∂x
+R (2.1.21)
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where X is the concentration of the molecule, t is time, D is the diffusion

coefficient, x is the spatial variable, ν is the convective velocity, and R is

the rate of generation and consumption. The diffusion-reaction models are

based on partial differential equations (PDEs) because the concentrations

depend on multiple independent variables, in the case of (2.1.21) time and

one space variable. Physically, Equation (2.1.21) states that the rate of

change of concentration of a component at any particular location depends

on diffusion (the first term), active transport or convection (second term),

and biochemical reactions (the last term).

PDE problems can require many more parameters compared to ODE

problems. Indeed, in addition to the initial concentrations and kinetics

parameters, PDE-based models require the diffusion coefficients, and the

mandatory specification of concentration and/or flux at the boundary. More-

over, PDE problems require far greater computational skills, resources, and

time than their ODE counterparts.

2.2 Assessment of the parameter values from the

experimental data

One of the greatest hurdles in the modeling of the biological systems is

the estimation of the parameter values [90]. Values for specific parameters

measured in vivo are rare and the parameters are often estimated from ex-

perimental measurements made in vitro or by fitting of model equations to

the available experimental data.

The minimum requirements for modeling the biochemical reactions using

chemical kinetics models are the concentrations of the signaling components

at the basal state and the kinetic parameters, such as the forward and back-

ward reaction rates. Currently, these values exist only for a small fraction

of the enzymatic and chemical reactions occurring within any cell of inter-

est. Furthermore, even in cases where the rate constants are measured, the

experiments are usually performed in vitro with purified components. The in-

teractions may have largely different kinetics in vivo, because many biological

reactions take place on cell scaffold, microdomains, or PM, that essentially

increase the local concentrations of the reactants. Thus far, techniques for

measuring rate constants and concentrations of reactants in their natural

compartmentalized environment have not generally available.

A further key area of research is the multidimensional parameter esti-
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mation. Because of the paucity of quantitative data, it is often necessary

to estimate several parameters from a single dose-response curve or a single

concentration time course. As the number of parameters to be estimated

increases, the difficulty and the time required for parameter estimation also

increase.

In general, a simple data set consists of n points (xi, yi), i = 1, . . . , n where

xi is the independent variable and yi is the dependent variable which is mea-

sured. The relationship between x and y is described by the regression model

y = ȳ(x, θ) + v, (2.2.1)

where ȳ ∈ Rn is the input-output function of the model that describes a set

of specific dynamic/mechanicistic assumptions, θ ∈ Rm is the vector of the

(deterministic) unknown parameters and v ∈ Rn represents the measurement

(random) error assumed with mean zero. As well as v, y is a stochastic vector.

Moreover, the regression model (2.2.1) can be linear or non-linear, depending

on whether the model function ȳ(x, θ) is or is not a linear combination of the

parameters in θ.

If n data points are observed, with n < m , the classical approaches of

the regression analysis cannot be used since the system of equations defining

the regression model is underdetermined and there are not enough data to

recover θ.

If exactly n = m data points are observed, and the function ȳ is linear

in θ, the system y = ȳ(x, θ) can be solved exactly rather than approximately.

Indeed, we have to solve a set of n equations with n unknowns (the elements

of θ), which has a unique solution as long as the x are linearly independent.

If ȳ is non linear in θ, a solution may not exist, or many solutions may exist.

The most common situation is when n > m data points are observed. In

this case, the regression model results an overdetermined system in θ and in

principle there is enough information in the data to estimate a value for θ

that best fits the measurements.

Let us show some of the most common methods to determine the unknown

parameter vector θ from the available data using the regression model in

(2.2.1).
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2.2.1 Maximum likelihood method

In the regression model (2.2.1), if the probability distribution of the vector

v, and then of y, is known, the estimator of the paramenter vector θ, denoted

by θ̂, can be obtained by the Maximum Likelihood Method (MLM) [91]. Given

the probability distribution of y, f(y; θ), the Maximum Likelihood Estimator

(MLE) of θ is defined as the value of θ that maximizes the so called likelihood

function Ly(θ) = f(y; θ).

For instance, let us suppose that v has a Gaussian distribution with mean

zero and covariance matrix Σ, independent of θ and known. Thus, also the

observation vector y has a Gaussian distribution with mean ȳ(θ) and covari-

ance matrix Σ. To obtain the MLE θ̂, we need to maximize with respect to

θ the likelihood function

Ly(θ) =
1

(2π)n/2(detΣ)1/2
exp
Å
−1

2
[y − ȳ(θ)]TΣ−1[y − ȳ(θ)]

ã
. (2.2.2)

Equivalently, we can minimize the function -lnLy(θ) that, as Σ is known,

means to minimize, with respect to θ, the index

R(θ) = [y − ȳ(θ)]TΣ−1[y − ȳ(θ)] . (2.2.3)

Note that the estimator θ̂ is unique if n ≥ m, i.e. the number of available

data points is larger than the number of unknown parameters.

MLE enjoys good asymptotic properties. Under not particularly restric-

tive conditions and when the sample size tends to infinity, the MLE has the

properties of: 1) consistency, i.e. the estimator θ̂ converges in probability to

the true value; 2) asymptotic normality, i.e. the distribution of θ̂ tends to the

Gaussian distribution with mean θ and covariance matrix Σ; 3) efficiency, i.e.

the estimator achieves the Cramér-Rao lower bound (its covariance matrix

Σ is equal to the inverse of the Fisher information matrix). The property of

efficiency guarantees that no consistent estimator has lower asymptotic mean

squared error than the MLE (or other estimators attaining the Cramér-Rao

bound).

In the study of biochemical models, because of the complexity of the

measurements processes, it is very difficult to assign a specific probability

distribution to the measurement errors and then the application of the max-

imum likelihood method is not allowed. When the error distribution is un-

known, the most common method used to fit the model equations to the
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experimental data is the Least Squares Method.

2.2.2 Least squares method

The Least Squares Method (LSM) determines the unknown parameter val-

ues minimizing the sum of squared residuals, i.e. the differences between the

model-based predictions and the observed values. Thus, a problem of param-

eter estimation solved by the LSM coincidesin general with an optimization

problem in which the objective function is:

obj(parameters) = (model output - data)2 ,

where the squared term prevents the negative deviations from canceling out

the positive deviations.

Let us now introduce the different types of Least Squares Estimator (LSE)

[91].

Let us consider the generic ODE model

ẋ = f(x, θ) ,

where x is the state vector and θ the parameter vector. The observed value of

the model output is described by the measurement equation (2.2.1) with the

only assumption E[v] = 0. As no other information about the distribution of v

is known, the simplest way to determine θ from the available data is to find the

value θ̂ which minimizes the distance ||y − E(y)||2, where E(y) ≡ E(ȳ(θ)) ≡ ȳ(θ)

is the expected value of y, i.e. the cost function

R(θ) = [y − ȳ(θ)]T [y − ȳ(θ)] =
n∑
i=1

(yi − ȳi(θ))2 (2.2.4)

Such estimator θ̂ is called Ordinary Least Squares Estimator (OLSE).

The OLSE is a particular case of the so called Generalized Least Squares

Estimator (GLSE) or Weighted Least Squares Estimator(WLSE) defined as

θ̂GLS = min
θ

(
[y − ȳ(θ)]TW−1[y − ȳ(θ)]

)
, (2.2.5)

where W is a symmetric and positive defined matrix.

Denoting by Cov(v) the covariance matrix of the error v in (2.2.1), defined
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as

Cov(v) = E[vvT ] = E[(y − ȳ(θ))(y − ȳ(θ))T ] , (2.2.6)

it is easy to verify that, if W = Cov(v) and v has a Gaussian distribution,

GLSE coincides with the MLE (see(2.2.3) and (2.2.5)). We recall that, in

view of central limit theorem, the errors can be considered approximately

normally distributed when the dimension of data set n increases.

Under the assumption that the errors vi, i = 1, . . . , n are uncorrelated each

other, i.e. Cov(v) is diagonal and each non-zero element is the variance σ2
i , i =

1, . . . , n of the i-th component of the error vector, the GLSE becomes

θ̂ = min
θ

n∑
i=1

(yi − ȳi(θ))2

σ2
i

. (2.2.7)

Obviously, if the variance of the errors is constant over the observations we

obtain again the OLSE.

Both the OLSE and the GLSE can be linear or non-linear function of θ.

In the linear least squares, the model function ȳ(x, θ) of (2.2.1) must be

linear with respect to the parameters, not necessarily with respect to the

state variable. This means that, even if the model is linear in x, the fitting of

the data can require the non linear least squares estimator if the state matrix

contains the parameters.

The linear least-squares problem is convex and has a closed-form solution

that is unique, provided that the number of data points used for fitting equals

or exceeds the number of unknown parameters. Indeed, given the regression

model

y = Xθ + v, (2.2.8)

where y ∈ Rn, θ ∈ Rm, m ≤ n, X is a matrix nxm with the m coloumns linearly

independent, and v a random vector with mean zero, the GLSE, θ̂GLS, is

θ̂GLS = (XTWX)−1XTWy , (2.2.9)

i.e. the value of θ that minimizes [y −Xθ]TW−1[y −Xθ].
Obviously, for the linear OLSE Eq. (2.2.9) holds with W = I.

The linear OLSE is important in view of the Gauss-Markov Theorem that

states:
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Theorem 2.2.1 In a linear regression model in which the errors have zero

expectation, are uncorrelated, and have equal variance, the best linear unbi-

ased estimator (BLUE) of the coefficient vector is given by the OLSE as it is

the most efficient as compared to other unbiased, linear estimators.

Unfortunately, the problem of parameter estimation in the biochemical

pathways is often non-linear, so that it must be solved by using numerical

algorithms that minimize the sum of squared residuals iteratively until some

convergence criteria are satisfied. Moreover, the optimization problem can

be non-convex with multiple optima for the objective function.

2.3 Sensitivity analysis in systems biology modeling

In the previous section, we stressed that one of the main hurdles in the

development and identification of mathematical models of biological systems

is that a large number of model parameters remain unknown and difficult

to be estimated. In most cases, parameter estimates are associated with

significant uncertainty, and examining the influence of these uncertainties on

the model behaviour is crucial to enhance the predictive capacity of the model

and to generate hypotheses about the biological mechanisms. Therefore, each

model should be checked with respect to its sensitivity to parameter changes.

The term sensitivity analysis(SA) refers to an important tool used to

determine how parameter changes influence the system behaviour and to

identify those parameters that have the greatest impact on the system output

both in steady and transient states. Moreover, SA can allow to simplify high

dimensional models that arise in systems biology and can be used to indicate

prospective molecular targets for new drugs.

A good overview of the sensitivity methods and their applicability can be

found in [90]. Here, we give only few hints about these methods.

In general, there are two main classes of SA, local and global [92]. The

local sensitivity analysis (LSA) investigates the effect on the system output

of a small deviation in a single parameter around its nominal value. Global

sensitivity analysis (GSA) describes the effects of simultaneous parameter

variations over relatively wide ranges, and allows us to explore the effects of

interactions among the parameters.
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2.3.1 Local sensitivity analysis

Let us consider the generic non linear ODE model used to describe the

dynamic behaviour of a cell signaling network:

dX

dt
= f(X,u, θ) , (2.3.1)

where X = [x1 x2 . . . xn]T is the state vector with xi denoting the molar con-

centration of molecules of type i, u is an input variable and θ ∈ Rm contains

the model parameters (i.e. the kinetic constants).

The LSA is not related to the experimental measurements and, therefore

the state is considered to be the output. In particular, the model output

is the solution of (2.3.1), X(θn, t), where θn denotes the nominal parameter

vector.

Denoting by xi the i-th state in X and by θj the j-th parameter in θ,

the effect of the change in parameter θj on a species of interest xi can be

expressed by a Taylor series expansion:

xi(θj + ∆θj , t) = xi(θj , t) +
m∑
j=1

∂xi
∂θj

∆θj +
1

2

m∑
l=1

m∑
j=1

∂2xi
∂θl∂θj

∆θl∆θj + . . . (2.3.2)

In the expression (2.3.2), the partial derivatives ∂xi/∂θj are called the first

order local concentration sensitivity coefficients, while ∂2xi/∂θl∂θj are the

second-order local concentration sensitivity coefficients, etc. Normally, only

the first-order sensitivity coefficients are considered.

The absolute sensitivity matrix is defined as

S =
∂X

∂θ
=


s11 s12 . . . s1m

s21 s22 . . . s2m

...
...

. . .
...

sn1 sn2 . . . snm

 (2.3.3)

where the first order sensitivity coefficients

sij =
∂xi
∂θj

, (2.3.4)

are actually sensitivity functions (as they change in time) describing the

influence of the j-th parameter on the time course of the i-th state variable.

The matrix S can be obtained by computing the partial derivatives in
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(2.3.4) if the analytical solution of (2.3.1) is available. Unfortunately, this is

very rare for cell network systems whose dynamics is described by complex

nonlinear ODEs. Therefore, in these cases, numerical methods have to be

applied to obtain S at each sample time.

One of the most commonly used numerical methods applies the finite

difference approximation, computing the sensitivity coefficient sij by means

of the difference between the nominal and perturbed solution [93]

sij(t) =
∂xi(t)

∂θj
∼=
xi(θj + ∆θj , t)− xi(θj , t)

∆θj
. (2.3.5)

Obviously, for ∆θj → 0, we obtain the definition of derivative. This method is

straightforward in that only the calculation of xi is required with the nominal

and the perturbed parameter value, even if the numerical values obtained

may vary significantly with the size of ∆θj.

In the models describing biological systems, the parameters as well as

the state variables may take values that are distributed over several orders

of magnitude. Therefore, instead of the absolute sensitivities, the relative

sensitivities defined as

s̄ij =
∂xi
∂θj
· θj
xi

(2.3.6)

are often considered. Such normalization makes it possible to compare the

relative influence of any parameter change on system behaviour, regardless

of the scale of either the parameter or the state variable. The analysis of the

relative sensitivities allows to:

- check which parameters are relevant for the steady state and which for

the transient dynamics;

- create a ranking of parameters indicating, consequently, which pro-

cesses are the most important for the behaviour of the signaling network

and also providing suggestions for experimental research;

- find correlations among parameters so to simplify the parameter esti-

mation of the model.

For the ranking of the parameters, it is necessary to define cumulative

indices that can be calculated either for each state variable separately, or
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for the whole system [92]. In particular, the cumulative effect of the j-th

parameter on the i-th state variable can be measured as

S∗ij =
1

T

∫ T

0

|sij(τ)|dτ , (2.3.7)

where T denotes the time horizon of the simulation, or:

S∗ij =
1

N

Ã
N∑
k=1

|sij(k)|2 , (2.3.8)

where N denotes the number of integration steps in the simulation and the

sum includes the consecutive values of sij computed in the simulation.

Similarly, the overall effect of the j-th parameter change on the whole

system can be measured as

Stotj =
n∑
i=1

S∗ij . (2.3.9)

2.3.2 Global sensitivity analysis

In a generic system, multiple parameters can be changed simultaneously

and some of these changes can increase and some decrease the effect on the

system behaviour compared with the change of a single parameter. To cap-

ture the general sensitivity of the system, several methods for global sensitiv-

ity analysis (GSA) have been developed. Most of them consist in simulation

of the model for a large number of parameter sets and subsequent inter-

pretations of the results. So, the sampling methods of the parameter space

has a key role for the good performance of GSA. Usually, for signaling net-

work models, parameter values are randomly generated from: i) a normal or

Gamma distribution, if the nominal value of the parameter has already been

determined or known from literature; ii) a uniform distribution, defined on

a wide range of biologically acceptable parameters, if the parameters are not

known.

Afterwards, one of the following methods is applied [92, 94]:

• calculating local sensitivities for each simulation and subsequently av-

eraging them over all simulations;

• variance-based sensitivity methods, where
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- the ratio of a model output variance to its average value is calcu-

lated and then used as a sensitivity index, or

- the variance of a model output is decomposed into partial variance

contributes caused by changes in individual parameters, and the

sensitivity indices are subsequently derived from the ratio of the

partial variance to the total variance of model output.

Among the variance-based sensitivity methods, the most known is the

so called Sobol’s method widely detailed in [95]. In few words, this method

calculates two kinds of sensitivity indices: one is a first-order sensitivity that

measures the fractional contribution of the change of a single parameter to

the variance of the output; the other is the total effect sensitivity, or the

sum of all the sensitivities involving the model inputs of interest over the full

range of parameters values explored.

However, we do not detail the various GSA methods further because, in

the present thesis, the sensitivity analysis of the ISN was performed through

LSA methods (see Chapter 4). Works devoted to the GSA, dealing with both

theoretical and pratical aspects, can be found in the literature [92, 93, 96, 97].
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Chapter 3

Mathematical modeling of the insulin

signaling network

The ISN represents a typical example of complex signaling network be-

cause of the large number component molecules and the various types of

interactions between these elements. This complex network of interacting

elements can be described by means of a mathematical model to analyse in

detail its dynamics. The resulting model can be used to make predictions of

the behaviour of the signaling pathway in physiological/pathological states

and to test hypotheses leading to a deeper understanding of the process. In

the previous chapter, we have shown that the dynamic models of cell sig-

naling networks are commonly described by a system of ordinary differential

equations (ODEs) as (2.3.1). An important property of these systems is that

for any time t all variables are non-negative.

Starting from some of the best known models of the insulin signaling net-

work proposed in the literature, we present in this chapter the mathematical

model used in the present thesis to analyze the available experimental data.

Such model explicitly represents many known insulin signaling components

and incorporates feedback pathways, both positive and negative.

3.1 State of the art

In the last decades, several studies have investigated the behavior of the

ISN by mathematical models and analysis of experimental data providing

new insights at different levels, for instance: (i) insulin binding to the insulin

receptor [98, 16], (ii) insulin signaling and cellular responses [17], and (iii)

integration of intracellular insulin signaling with whole-body glucose home-
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ostasis [99].

Following the seminal papers of Wanant and Quon [16] and of Sedaghat

et al. [17], some studies focused on the response to a step increase of the

extracellular insulin concentration and give the time course of the protein

phosphorylation/dephosphorylation reactions, whereas in other studies the

dose-response curves, i.e., the steady state concentrations at given insulin

levels, are considered.

The transient response of insulin binding and the subsequent autophos-

phorylation of insulin receptor have been described in [16, 17, 100, 101, 19].

In particular, the complex mathematical model proposed by Kiselyov et al.

[100] accounted for both the high and low affinity sites in the two monomers

of insulin receptor. Brännmark et al. [101] studied possible schemes that

explain the peculiar behavior observed in the phosphorylation of insulin re-

ceptor and insulin receptor substrate. More complete dynamical models,

supported by the analysis of the time-course of protein concentrations after

insulin stimulation, were developed and investigated in [12, 18, 19].

Based on previous models of insulin-IR binding [16] and regulation of

the insulin sensitive glucose transporter GLUT4 [98], Sedaghat et al. [17]

built a mathematical model of insulin signaling that contained most of the

accepted mechanisms and intermediates in downstream signaling to control

the glucose uptake. This model contains kinetic equations from the insulin

receptor (including the binding of two insulin molecules and the cytosolic IR

pool) up to PIP3, PKC, and total phosphorilated Akt(pAkt). Intracellular

and surface GLUT4, and both negative and positive feedback loops were

included. Model parameters were assessed from literature data of 3T3-L1

adipocytes and the model response to a 15 min insulin pulse was computed.

In addition, a comparison of steady-state surface GLUT4 against literature

data is also reported.

The model in [17] was extended to include amino acids, the mammalian

target of rapamycin, and some other aspects of the signaling network by

Vinod et al. [102].

A more complete scheme of the ISN was investigated in [19]. The model

proposed by Brannmark et al. [19] is based on data of adipocytes isolated

from subcutaneous adipose tissue of patients with T2D and non-diabetic

subjects. Data consist of the time course of IR and IRS1 up to PKB/Akt,

mTORC1 and mTORC2, S6K and S6, AS160 and GLUT4 together with

glucose uptake, after insulin stimulation. Dose-response data were also ob-
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tained. In adipocytes from T2D patients compared to control the Authors

found that the positive feedback from mTORC1 to IRS1(Ser307) was reduced

to 15% of control and IR and GLUT4 concentrations were reduced to 55%

and 50% of control, respectively. The response to rapamycin was used for

model validation.

Other studies focused maily on the steady state of the ISN system, us-

ing experimental data of the insulin dose-response curve, which can be more

easily determined and are available in the literature for a variety of cells

(mainly adipocytes and skeletal muscle cells). Giri et al. [20] and Wang

[21] studied the behavior of the dose response curves of the components of

the insulin signaling pathway versus the extracellular insulin concentration,

with the aim of determining the conditions that produce a hysteresis in the

curves as the result of the interactions between negative and positive feed-

back loops present in the system. In [20], many of the signaling intermediates

and parameters were re-used from the Sedaghat model [17]. The main find-

ing was bi-stability, in other words, the notion that two steady-states might

coexist for given parameters and constant insulin stimulation. However, no

experimental validation of the results was presented. By applying singu-

larity analysis, in [21] regions of the model parameters were identified that

correspond to diabetes and cancer.

Some preliminary attempts to link the insulin signaling models with mod-

els of glucose homeostasis have recently been published [103], [104], [105],

[18]. Such multi-level models are important because diseases emanate from,

and drugs act at, the intracellular molecular level, whereas diseases are mani-

fested and diagnosed at the whole-body level. In [18], a minimal model of the

insulin signaling in the adipose tissue was analyzed using constraints from a

whole-body glucose homeostasis model developed by Dalla Man et al. [106].

Nyman et al.[18] considered, as inputs, the interstitial glucose and the insulin

concentrations of the tissue and, as output, the glucose uptake computed by

the minimal model.

In other works, the crosstalking of the ISN with other pathways, such as

the epidermal growth factor (EGF) signaling and the MAP kinase pathway

[107], have been also studied.
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3.2 The ISN model proposed to analyse the available

experimental data

The model proposed in this thesis represents the main protein-protein

interactions of the PI3K-Akt-mTOR pathway, according to the current view

of ISN [17, 4, 5, 108]. The model, reported in Figure 3.1, includes negative

feedback loops to IRS1 and Rictor, plus a positive feedback to PTP1B, but it

does not include (among others): the intracellular pool of IR and the IR re-

cruitment to plasma membrane (PM); phosphatidylinositol 4,5-bisphosphate

PI(4,5)P2 with the phosphatase SHIP; the transport of PDK1 and Akt from

cytosol to PM; the complex TSC1/TSC2 that, stimulating the conversion

from the active GTP-Rheb to the inactive GDP-Rheb, acts as a functional

unit in the suppression of mTORC1 activity [4]; the possible mTORC2 acti-

vation by TSC2 [11, 51]. Similarly, we did not include the activation of S6K1

by GSK3 [53] and the protein kinase C (PKC) action on GLUT4 transloca-

tion [3]. .

Our model concentrats particularly on the single and double phosphory-

lation of Akt, because recent studies have shown that its action on glucose

uptake is maintained almost unaltered when it is phosphorylated only on

Thr308, while Akt phosphorylation on Ser473 seems to have a key role in

the oneset of insulin resistance [13] and in the cancer development [5, 9].

Moreover, we assumed that mTORC2 activation may also be promoted in-

dependently by a putative factor which is related to signaling from the prox-

imal small intestine and possibly operates through the IGF-1 receptor. Such

hypothesis is based on the clinical observation that bariatric surgery, a proce-

dure in which a portion of the stomach and of the small intestine are removed

or bypassed, induces a remission of T2D very soon after surgery and far too

early to be attributed to weight loss [109], [110], [14]. The mechanisms re-

sponsible for the improvement in glycemic control after bariatric surgery are

still not well understood but, as bariatric operations reroute food through

the upper small intestine, an hypothesis can be that gastrointestinal removal

or bypass reduce the production of putative intestinal factor/s inducing in-

sulin resistance. Such hypothesis was experimentally tested by Salinari et al.

in [13] where the Autors collected experiments in non-diabetic mice both in

vivo and in muscle biopsies, and in L6 cells exposed to a medium enriched

with proteins secreted by the small intestine of diabetic rats and to serum

from insulin resistant humans. The Authors found that jejunal factor/s in-
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Figure 3.1: Scheme of the insulin signaling network model. Activation by insulin
I of IR catalyzes tyrosine phosphorylation of IRS1. Phosphorylated IRS1 binds the p85
regulatory subunit of PI3K, activating the p110 catalytic subunit. PI3K mediates phos-
phorylation of PI(4,5)-bisphosphate (PIP2) to PI(3,4,5)-trisphoshpate (PIP3) near PM
and PTEN dephosphorylates PIP3 back to PIP2. PIP3 recruits Akt and PDK1 to PM,
where PDK1 phosphorylates Akt at Thr308 (phosphatase PP2A). mTORC2 is activated
by PIP3 and by the jejunal factor J, and catalyzes Akt phosphorylation on Ser473 (phos-
phatase PHLPP). Maximal Akt activity is achieved when the molecule is phosphorylated
on both Thr308 and Ser473 residues, allowing translocation of GLUT4 glucose transporters
to PM. GSK3 and FoxO1 are direct Akt substrates. Akt also activates mTORC1, which
in turn activates S6K1. Activated S6K1 phosphorylates IRS1 and Rictor in negative feed-
back loops. The positive feedback loop from Akt to PTP1B is also included. Feedback
loops are represented by bold lines. Points of action of rapamycin and PP242 are also
shown.
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duce insulin resistance and that these factors activate mTORC2, as revealed

by an increased value of Ser473 Akt phosphorylation, even in the absence of

insulin stimulation.

Most of the reactions in the scheme of Fig. 3.1 are represented by the

classical Michaelis-Menten scheme (see Chapter 2) composed of the reversible

formation of complex E:S of substrate S and enzyme E, with ka and kd the

association and the dissociation constant, respectively. The complex C un-

dergoes an irreversible catalytic step with catalytic constant kc that leads to

product P [85, 111, 112]. Since substrates and enzymes are continuously syn-

thesized and degraded within the cell, synthesis and degradation rates were

also accounted for in the mathematical model, and denoted by the symbols

b and, respectively, µ (endowed with the suitable subscripts). The synthesis

rate and degradation rate constants were assumed to not change with time

and do not depend on the insulin signal. This assumption may fail during

chronic insulin treatment: e.g., after 12 h treatment, IRS1 amount is reduced

to 13.6% of control level in 3T3-L1 adipocytes [113]. However, experimental

data and model simulations of insulin signaling pathway ([17], [18], [19]) show

that the response to a step insulin increase may reach a steady state within

a shorter time, so the horizon is here limited to times that do not include

these long-range changes. Moreover, we assumed that the degradation rate

constant of the complex enzyme-substrate is negligible compared with the

sum of dissociation and catalytic constants according to the observations in

[114]. This assumption allowed us to write the model equations in a simpler

form.

In addition, we assumed that: i) an (approximate) steady state of insulin

signaling is attained in cells in culture; ii) intracellular localization (e.g.,

cytosolic vs. membrane-associated) and compartmentalization (for instance,

see [115]), as well as intracellular trafficking, can be neglected; iii) similarly,

the presence of isoforms (for instance the three isoforms of Akt [116]) was

not considered ; iv) interactions with other receptors (e.g., IGF-1 receptor)

and signaling pathways (e.g., effects of nutrient supply on mTOR/S6K1, see

[55] are also neglected; v) protein complexes (e.g., mTORC1 and mTORC2)

are treated as simple molecular components.

The network model was developed in three stages: first, we established

the chemical reactions that characterizes the network; then, as our goal was

to investigate the factors affecting the basal concentrations and the dose-

response curve of the main components of ISN, we derived the concentra-
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tions of the chemicals at the steady-state from the kinetic equations; finally,

to reduce the number of unknown parameters, we rewrote the steady-state

concentrations in a normalized form.

3.2.1 Reactions within the PI3K-Akt-mTOR network

In the following, we detail the chemical reactions that are included in the

network shown in Fig. 3.1.

IR phosphorylation/dephosphorylation with inhibition of dephosphorylation

by pAkt

Insulin binding and autophosphorylation of the insulin receptor IR upon

insulin binding have been described by complex mathematical models in

[16, 17, 20, 101, 18, 100]. Kiselyov et al. [100] accounted for both the high

and the low affinity site in the two IR monomers and Cedersund et al.[101, 18]

investigated possible schemes that explain the transient response. In the

present model, the binding of one or two insulin molecules to IR, as well as

the receptor internalization and recycling, are neglected. Phosphorylation at

multiple tyrosine residues is here treated as one-site phosphorylation. Insulin

binding and receptor autophosphorylation are represented according to the

reaction scheme (phosphate group omitted)

I + IR � C0 → I + IRY (3.2.1)

where I denotes insulin, IR the free insulin receptor, C0 the complex IR:I and

IRY the tyrosine-phosphorylated, but still insulin-bound, insulin receptor.

The reaction constants are denoted by k0a, k0d, k0c and Km,0 = (k0d + k0c)/k0a.

Spontaneous IR autophosphorylation at zero insulin (according to [101]),

that leads to IRY
b , is regulated by a phosphorylation rate constant, kb.

As shown in Fig. 3.1, IR dephosphorylation occurs via PTP1B [117]. It

has also been found that PTP1B may be inactivated upon phosphorylation

at Ser50 by Akt, so that insulin signaling may be enhanced via a positive

feedback loop [17, 47]. IR dephosphorylation and the possible inactivation

of PTP1B by the phosphorylated Akt, pAkt (possibly Akt phosphorylated at

Ser473 and Thr308), may be described by the following reactions:

IRY + PTP1B � C1 → IR + PTP1B (3.2.2)

pAkt + PTP1B � CP → PTP1Bi + pAkt (3.2.3)

53



where C1 is the complex IRY : PTP1B with k1a, k1d, k1c the reaction constants

and Km,1 = (k1d + k1c)/k1a. The same reaction constants also regulate the

complex IRY
b : PTP1B, denoted by C

′
1. CP is the putative complex of PTP1B

with the inhibitor pAkt, with kPa, kPd, kPc the reaction constants and Km,P =

(kPd + kPc)/kPa , and PTP1Bi is the inactive form of PTP1B. The inverse tran-

sition PTP1Bi → PTP1B is simply regulated by a rate constant k−P . Similar

symbols will be used in the following reactions.

IRS1 phosphorylation/dephosphorylation with serine phosphorylation by mTORC1

signaling

For the phosphorylation/dephosphorylation of IRS1 we consider, according

to [17], two coupled cycles that account for IRS1 phosphorylation at tyro-

sine and serine residues. Several IRS1 serine residues are phosphorylated

by downstream kinases: IRS1 is phosphorylated at Ser318 by the atypical

protein kinase Cζ, at Ser632 by mTORC1, at Ser302 by the S6K1, at Ser9 by

GSK3 [3]. To simplify, we assume that IRS1 is only phosphorylated at Ser302

by the activated S6K1 (Ser302 phosphorylation by S6K1 disrupts IRS1 abil-

ity to interact with activated IR, [15, 118]), whereas it is phosphorylated at

tyrosine residues by IRY. We have:

IRS1 + IRY � C2 → IRS1Y + IRY (3.2.4)

IRS1Y + PTP1B � C3 → IRS1 + PTP1B (3.2.5)

IRS1 + S6K1 � C4 → IRS1S + S6K1 (3.2.6)

IRS1S + PP � C5 → IRS1 + PP (3.2.7)

where IRS1 is the unphosphorylated insulin receptor substrate-1, IRS1Y is the

tyrosine phosphorylated IRS1, and PTP1B dephosphorylates IRS1Y. PP is a

protein serine phosphatase. C2,C3,C4 and C5 are the complexes IRY : IRS1,

IRS1Y : PTP1B, IRS1 : S6K1 and IRS1S : PP, respectively, with kia, kid, kic, i =

2, 3, 4, 5 the respective reaction constants and Km,i = (kid + kic)/kia, i = 2, 3, 4, 5.

IRS1 phosphorylation at serine residues represents a negative feedback, widely

described in the literature (see, for instance, [2, 55, 56, 4]). The formation

of complex CP by reaction (3.2.3) with the PTP1B inactivation represents a

putative positive feedback since it attenuates IRY and IRS1Y dephosphoryla-

tion (see reactions (3.2.2) and (3.2.5)) and enhances insulin signaling.

PI3K activation/deactivation
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The formation of PI3K occurs through the recruitment of the catalytic sub-

unit p110 to the PM and the p110 binding to the regulatory subunit p85.

Both steps of the process are assumed to be regulated by a complex IRS1Y/p85.

We have:

IRS1Y/p85 + p110cyt � C
′
6 → IRS1Y/p85 + p110PM � C6 → IRS1Y + PI3K (3.2.8)

where C
′
6 and C6 are the complexes and the kinetic constants are defined

accordingly. Transport of p110 from PM to cytosol and deactivation of

PI3K occur according to rate constants k
′
−6 and k−6. PI3K activation by

IRS-independent mechanisms can also occur upon growth factor stimulation

(IGF-1 and EGF receptor signaling, see [119, 108]).

Phosphatidylinositol phosphates and PDK1

PI3K phosphorylates the phosphatidylinositol 4,5-bisphosphate PI(4,5)P2 on

the 3
′−position to form the second messenger PI(3,4,5)P3 (PIP3), whereas

PIP3 dephosphorylation to PI(4,5)P2 occurs through the phosphatase and

tensin homologue PTEN 3
′−lipid phosphatase [120]. We neglect PIP3 for-

mation from PI(3,4)P2 and the SHIP1/2 phosphatases. PIP3 activates the

PDK1 [4] and then the following reactions can be written:

PI(4, 5)P2 + PI3K � C7 → PIP3 + PI3K (3.2.9)

PIP3 + PTEN � C8 → PI(4, 5)P2 + PTEN (3.2.10)

PIP3 + PDK1i � C9 → PIP3 + PDK1 (3.2.11)

C7,C8,C9 denote the complexes in (3.2.9)-(3.2.11) and the kinetic constants

are defined accordingly. The transition from active to inactive form of PDK1,

PDK1i , is regulated by the rate constant k−9.

Activation/deactivation of mTORC2

It is currently accepted that the mTOR complex 2 (mTORC2) is the kinase

that promotes Akt phosphorylation at Ser473 ([6]). As suggested in [9],

PIP3 may activate mTORC2, reaction (3.2.12). The inverse transition to

the inactive form, mTORC2 → mTORC2i , is regulated by a rate constant

k−10. We assume that mTORC2 activation is also promoted independently

by a factor, J in the reaction (3.2.13), which is related to signaling from the

proximal small intestine and possibly operates through the IGF-1 receptor
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[13]. The inverse transition is regulated by the rate constant k−11. We have:

mTORC2i + PIP3 � C10 → mTORC2 + PIP3 (3.2.12)

mTORC2i + J � C11 → mTORC2 + J (3.2.13)

where the subscript “i” denotes the inactive form and C10,C11 the com-

plexes in reactions (3.2.12)-(3.2.13), with the kinetic constants defined ac-

cordingly. Although the TSC1/2 complex has been shown to positively reg-

ulate mTORC2 kinase activity [11, 4], we did not include this pathway in

the model in view of the results reported in [12]. Moreover, S6K1 negatively

regulates mTORC2 by phosphorylation of Rictor (a component of mTORC2)

at Thr1135, so impairing mTORC2 ability to phosphorylate Akt at Ser473

[108]. We have:

mTORC2 + S6K1 � C12 → mTORC2T + S6K1 (3.2.14)

where mTORC2T denotes the mTOR complex 2 with Rictor phosphorylated

at Thr1135. The inverse transition is assumed to be regulated by a rate

constant k−12.

Akt phosphorylation/dephosphorylation

The first step in Akt activation is the protein translocation to plasma mem-

brane through interaction with PIP3. For simplicity, we have not considered

this step as well as the recruitment of PDK1 to PM, assuming that Akt

translocation to PM and Thr308 Akt phosphorylation are a unique step di-

rectly regulated by PDK1. At the membrane, mTORC2 phosphorylates Akt

at Ser473. The protein phosphatase PHLPP dephosphorylates Akt at Ser473

and the phosphatase PP2A dephosphorylates Akt at Thr308 (Fig 3.1). In

some cases a hierarchical scheme where Ser473 Akt phosphorylation precedes

phosphorylation at Thr308 was considered but this point is controversial [10].

So, we assumed that two pathways may in principle be followed to achieve
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full Akt phosphorylation and obtain the following reactions:

Akt + PDK1 � C13 → AktT + PDK1 (3.2.15)

AktT + PP2A � C14 → Akt + PP2A (3.2.16)

Akt + mTORC2 � C15 → AktS + mTORC2 (3.2.17)

AktS + PHLPP � C16 → Akt + PHLPP (3.2.18)

AktS + PDK1 � C17 → AktS,T + PDK1 (3.2.19)

AktS,T + PP2A � C18 → AktS + PP2A (3.2.20)

AktT + mTORC2 � C19 → AktT,S + mTORC2 (3.2.21)

AktT,S + PHLPP � C20 → AktT + PHLPP (3.2.22)

where AktT denotes Akt phosphorylated at Thr308, AktS denotes Akt phos-

phorylated at Ser473, and AktS,T or AktT,S denote the dual phosphorylated

protein. C13-C20 denote the complexes in reactions (3.2.15)-(3.2.22).

Activation/deactivation of the Akt substrates FoxO1 and GSK3β

Upon phosphorylation by AktS and AktS,T, FoxO1 leaves the nucleus and enters

cytoplasm, where it is degraded. We have

FoxO1nucl + AktS � C21 → AktS + FoxO1cyt (3.2.23)

and similarly for AktS,T with the same kinetic constants. The inverse tran-

sition are also regulated by equal rate constants. We assume that GSK3β

is phosphorylated at Ser9 and deactivated by pAkt, but it may also be se-

questered in cytoplasmic vesicles [49]. We have

GSK3β + pAkt � C23 → pAkt + GSK3βi (3.2.24)

Binding with the factor W that promotes sequestration and GSK3β seques-

tration/recruitment are similarly represented.

Activation/deactivation of the pathway to mTORC1 and S6K1

AktT and AktT,S phosphorylate and inactivate the tuberous sclerosis complex

2 (TSC2). TSC2 inactivation inhibits the formation of the complex Rheb/GDP

and thus enhances the active complex Rheb/GTP, which in turn activates the

mTOR complex 1 [5]. To simplify the model, we consider that mTORC1 is

57



activated directly by AktT and AktT,S:

AktT + mTORC1i � C24 → AktT + mTORC1 (3.2.25)

and similarly for AktT,S with the same kinetic constants. The inverse tran-

sition is regulated by a rate constant. For the full activation of S6K1, we

neglect Ser371 phosphorylation by GSK3β [53] and we assume that phos-

phorylation at Thr229 by PDK1 precedes the Thr389 phosphorylation by

mTORC1 [54].

S6K1i + PDK1 � C25 → S6K1
′
+ PDK1 (3.2.26)

S6K1
′
+ mTORC1 � C26 → S6K1 + mTORC1 (3.2.27)

where S6K1i denotes the inactive form, S6K1
′

the Thr229-phosphorylated

form, and S6K1 the active form phosphorylated at both Thr229 and Thr389.

The inverse transitions, S6K1
′ → S6K1i and S6K1 → S6K1

′
, are regulated rate

constants. As seen in reaction (3.2.6), the fully activated S6K1 promotes the

serine phosphorylation of IRS1.

Exocytosis/endocytosis of GLUT4

AktT and fully activated Akt phosphorylate and inactivate AS160, thus re-

lieving from the inactive state some Rab proteins implicated in vesicular

traffic processes [3, 121, 8]. According to Sedaghat et al. [17], we assume

that GLUT4 also undergoes trafficking between cytoplasm and plasma mem-

brane in basal conditions. Insulin stimulation promotes GLUT4 exocytosis

according to the following reaction:

AS160 + AktT � C28 → AktT + AS160i (3.2.28)

AS160 + Rab � C29 → AS160 + Rabi (3.2.29)

GLUT4cyt + Rab � C30 → Rab + GLUT4pm (3.2.30)

and similarly as (3.2.28) for AktT,S. The inverse reactions are regulated by

rate constants, and the subscript “i” denotes the inactive form. The rate

constants of exocytosis and endocytosis are denoted as kexo and, respectively,

kendo. We remark that AS160 is here inhibited by pAkt(Thr308) and fully

activated Akt whereas in the model proposed in [19] AS160 is inhibited by

pAkt(Ser473) and fully activated Akt. Our assumption is supported by the
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results reported in [122], where muscle-specific deletion of rictor in mice re-

duced pAkt(Ser473) to less than 10% of control, but pAS160(Thr642) was

still at 80% of control, with data from glucose and insulin tolerance tests not

substantially different from control.

3.2.2 Kinetic and equilibrium equations

The concentrations at the equilibrium of the chemicals are obtained from

the kinetic equations by setting the time derivatives to zero. Synthesis and

degradation rates are denoted by the symbols b and, respectively, µ (with the

suitable subscripts).

We show now in detail the derivation of the kinetic equations for reac-

tions (3.2.1)-(3.2.8), denoting the concentration with the same symbol of the

chemical species written in italic. A similar procedure allows obtaining the

concentrations at equilibrium of all other species.

For the complexes C0-C6 and CP the following equations hold:

dC0

dt
= k0aIR · I − (k0d + k0c)C0 , (3.2.31)

dC1

dt
= k1aIR

Y · PTP1B − (k1d + k1c)C1 , (3.2.32)

dC2

dt
= k2aIR

Y · IRS1− (k2d + k2c)C2 , (3.2.33)

dC3

dt
= k3aIRS1Y · PTP1B − (k3d + k3c)C3 , (3.2.34)

dC4

dt
= k4aIRS1 · S6K1− (k4d + k4c)C4 , (3.2.35)

dC5

dt
= k5aIRS1S · PP − (k5d + k5c)C5 , (3.2.36)

dC
′
6

dt
= k

′
6aIRS1Y · p110cyt − (k

′
6d + k

′
6c)C

′
6 , (3.2.37)

dC6

dt
= k6aIRS1Y · p110PM − (k6d + k6c)C6 , (3.2.38)

dCP
dt

= kPaPTP1B · pAkt− (kPd + kPc)CP , (3.2.39)

where we have assumed that the degradation rate constant of a complex is

negligible compared with the sum of the dissociation and catalytic constants

according to the observations in [114]. An equation similar to (3.2.32) with
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IRYb instead of IRY holds for C
′
1. Moreover, in (3.2.37)-(3.2.38), IRS1Y denotes

the concentration of the complex IRS1Y/p85.

Recalling that the Michaelis-Menten constant is defined as Km = (kd +

kc)/ka and the specificity constant as kc/Km, at the equilibrium (time deriva-

tives equal to zero), we write

C0 =
IR · I
Km,0

, C1 =
IRY · PTP1B

Km,1
, (3.2.40)

C2 =
IRS1 · IRY

Km,2
, C3 =

IRS1Y · PTP1B

Km,3
, (3.2.41)

C4 =
IRS1 · S6K1

Km,4
, C5 =

IRS1S · PP
Km,5

. (3.2.42)

Similarly, for the complexes CP , C
′
6 and C6 we have

CP =
PTP1B · pAkt

Km,P
, C

′
6 =

IRS1Y · p110cyt

K
′
m,6

, (3.2.43)

C6 =
IRS1Y · p110pm

Km,6
.

The kinetics of IR, IRY and of the spontaneously autophosphorylated IR,

denoted as IRYb , is described by

dIR

dt
=− k0aIR · I + k0dC0 + k1cC1 + k1cC

′
1 + bIR − µIRIR− kbIR , (3.2.44)

dIRY

dt
=k0cC0 − k1aIR

Y · PTP1B + k1dC1 − k2aIR
Y · IRS1

+ (k2d + k2c)C2 − µIRIRY , (3.2.45)

dIRYb
dt

=kbIR− k1aIR
Y
b · PTP1B + k1dC

′
1 − µIRIRYb , (3.2.46)

where bIR, expressed as concentration over time, is the rate of biosynthe-

sis (and transport to PM) of the insulin receptor, µIR is a rate constant

representing internalization and degradation, and kb is the rate constant of

spontaneous IR autophosphorylation.
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For IRS1 and PTP1B, we write:

dIRS1

dt
=− k2aIRS1 · IRY + k2dC2 + k3cC3 − k4aIRS1 · S6K1

+ k4dC4 + k5cC5 + bIRS1 − µIRS1IRS1 , (3.2.47)

dIRS1Y

dt
=k2cC2 − k3aIRS1Y · PTP1B + k3dC3 − k

′
6aIRS1Y · p110cyt

+ (k
′
6d + k

′
6c)C

′
6 − k6aIRS1Y · p110PM

+ (k6d + k6c)C6 − µIRS1IRS1Y , (3.2.48)

dIRS1S

dt
=k4cC4 − k5aIRS1S · PP + k5dC5 − µIRS1IRS1S , (3.2.49)

dPTP1B

dt
=− k1aIR

Y · PTP1B + (k1d + k1c)C1 − k3aIRS1Y · PTP1B

+ (k3d + k3c)C3 − kPaPTP1B · pAkt+ kPdCP

+ k−PPTP1Bi + bPTP1B − µPTP1BPTP1B , (3.2.50)

dPTP1Bi
dt

=kPcCP − k−PPTP1Bi − µPTP1BPTP1Bi . (3.2.51)

In view of (3.2.31)-(3.2.33), Eqs. (3.2.44)-(3.2.46) at the equilibrium give

−k0cC0 + k1cC1 + bIR − µIRIR− kbIR+ k1CC
′
1 = 0 , (3.2.52)

+k0cC0 − k1cC1 − µIRIRY = 0 , (3.2.53)

+kbIR− k1CC
′
1 − µIRIRYb = 0 , (3.2.54)

where C2 does not appear because its degradation rate constant has been

taken equal to zero. The sum of (3.2.52)- (3.2.54) provides the relation

IR+ IRY + IRYb =
bIR
µIR

. (3.2.55)

The above equation and (3.2.53)-(3.2.54) are a linear system in IR, IRY and

IRYb , which is easily solved providing

IRY =
bIR
µIR

k0c

Km,0
I

kb + µIR +
k1cPTP1B

Km,1
+

k0c

Km,0
I

, (3.2.56)

IRYb =
bIR
µIR

kb

kb + µIR +
k1cPTP1B

Km,1
+

k0c

Km,0
I

. (3.2.57)

61



The expression of IR is similarly found. We impose for the insulin the con-

servation equation

Ie = I + C0 + IRY , (3.2.58)

where Ie is total insulin concentration, the insulin in the complex IRY : IRS1

was neglected and terms in the right-hand-side refer to equal volumes. Using

the expressions of IR and IRY , the conservation equation yields a second-

order equation that gives I as a function of Ie:

I =
1

2

ï
− (ab + a

′′
0 + a

′′
1PTP1B − Ie)+»

(ab + a
′′
0 + a

′′
1PTP1B − Ie)2 + 4(ab + a

′
0 + a

′
1PTP1B)Ie

ò
, (3.2.59)

with the following unknown parameters:

ab = kb

¡Å
k0c

Km,0

ã
, a

′
0 = µIR

¡Å
k0c

Km,0

ã
, a

′
1 =

Å
k1c

Km,1

ã¡Å
k0c

Km,0

ã
a
′′
0 = a

′
0 +

bIR
µIR

a
′
0

Km,0
+
bIR
µIR

, a
′′
1 = a

′
1 +

bIR
µIR

a
′
1

Km,0
,

where the choice of the positive sign in the square root is required to have

I ≥ 0. Equation (3.2.59) allows us to express IRY and IRYb as functions of Ie.

If Ie = 0 and kb > 0 , only IRYb survives and its expression shows that kb is

likely to be much smaller than k1cPTP1B/Km,1. Note that the unit of ab and

a0 is a concentration and a1 is nondimensional.

Proceeding similarly, Eqs. (3.2.47)-(3.2.49) at the equilibrium give

−k2cC2 + k3cC3 − k4cC4 + k5cC5 + bIRS1 − µIRS1IRS1 = 0 , (3.2.60)

k2cC2 − k3cC3 − µIRS1IRS1Y = 0 , (3.2.61)

k4cC4 − k5cC5 − µIRS1IRS1S = 0 , (3.2.62)

and the sum of (3.2.60)-(3.2.62) provides the relation

IRS1 + IRS1Y + IRS1S =
bIRS1

µIRS1
. (3.2.63)
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Using the expressions of the complexes in Eqs. (3.2.61), (3.2.62) we obtain

k2c
IRY · IRS1

Km,2
−
Å
k3c

PTP1B

Km,3
+ µIRS1

ã
IRS1Y = 0 , (3.2.64)

k4c
S6K1 · IRS1

Km,4
−
Å
k5c

PP

Km,5
+ µIRS1

ã
IRS1S = 0 . (3.2.65)

Given IRY , PTP1B,S6K1 and PP , Eqs. (3.2.63)-(3.2.65) are a linear system

in IRS1, IRS1Y and IRS1S whose solution in IRS1Y and IRS1S is given by:

IRS1Y =
bIRS1

µIRS1

α
k2c

Km,2
IRY

αβ + β
k4c

Km,4
S6K1 + α

k2c

Km,2
IRY

(3.2.66)

IRS1S =
bIRS1

µIRS1

β
k4c

Km,4
S6K1

αβ + β
k4c

Km,4
S6K1 + α

k2c

Km,2
IRY

(3.2.67)

with

α = µIRS1 +
k5c

Km,5
PP , β = µIRS1 +

k3c

Km,3
PTP1B .

Moreover, at the equilibrium, from Eqs. (3.2.50) and (3.2.51) we have

PTP1Bi + PTP1B =
bPTP1B

µPTP1B
(3.2.68)

and, using (3.2.68) and the expression of Cp with pAkt = AktS,T (that is, the

fully active, but not the partially active Akt phosphorylates PTP1B), we get

PTP1B =
bPTP1B

µPTP1B

1

1 +
1

µPTP1B + k−9
· kPc
Km,P

AktS,T
. (3.2.69)

From Eq. (3.2.56) it is found, as expected, that IRY increases with the

insulin concentration Ie and (3.2.66) shows that IRS1Y increases with IRY

and thus with Ie, provided that PTP1B, PP and S6K1 are constant. How-

ever, according to (3.2.66), the downstream kinase S6K1 exerts an inhibitory

effect on the IRS1 tyrosine phosphorylation and thus on insulin signalling

(negative feedback). In addition, the fully phosphorylated Akt inhibits the

phosphatase PTP1B as shown by (3.2.69), and thus tends to increase IRY (see

Eq. (3.2.56)) and to decrease the factor β in (3.2.66)-(3.2.67). Consequently,
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Akt phosphorylation might exert a positive feedback on insulin signaling, es-

pecially upon inhibition of S6K1. In the absence of the positive feedback,

PTP1B is constant and simpler expressions hold for the phosphorylated IR

and IRS1.

Following the same approach, and without reporting from now on the

kinetic equations, it is found that

PI3K =
bp110

µp110

k
′
6c

K
′
m,6

k6c

Km,6
(IRS1Y )2

E + F · IRS1Y +
k
′
6c

K
′
m,6

k6c

Km,6
(IRS1Y )2

, (3.2.70)

where

E = (µp110 + k
′
−6)(µp110 + k−6) , F = µp110

Ç
k
′
6c

K
′
m,6

+
k6c

Km,6

å
+

k
′
6c

K
′
m,6

k−6 .

According to reactions (3.2.9)-(3.2.11), we get

PI(4, 5)P2 + PIP3 =
bPI
µPI

, (3.2.71)

PDK1i + PDK1 =
bPDK1

µPDK1
, (3.2.72)

and

PIP3 =
bPI
µPI

k7c

Km,7
PI3K

µPI +
k8c

Km,8
PTEN +

k7c

Km,7
PI3K

, (3.2.73)

PDK1 =
bPDK1

µPDK1

k9c

Km,9
PIP3

µPDK1 + k−9 +
k9c

Km,9
PIP3

. (3.2.74)

Equation (3.2.73) predicts that the concentration of the second messenger

PIP3 increases with PI3K if PTEN is constant and still increases after PTEN

deletion. Note that the spontaneous IR autophosphorylation leads to nonzero

PIP3 and PDK1 concentrations for Ie = 0.
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Turning to the mTOR complex 2, we find:

mTORC2 =
bmTORC2

µmTORC2

Å
µmTORC2 + k−12

ãÅ
k10c

Km,10
PIP3 +

k11c

Km,11
J

ã
D

, (3.2.75)

where

D =

Å
µmTORC2 + k−12

ãÅ
µmTORC2 + k−10 + k−11

k10c

Km,10
PIP3 +

k11c

Km,11
J

ã
+

k12c

Km,12
S6K1

Å
µmTORC2

k10c

Km,10
PIP3 +

k11c

Km,11
J

ã
, (3.2.76)

showing how mTORC1 negatively regulates mTORC2 via S6K1.

The concentrations of Akt, AktT, AktS and AktS,T at the steady state are

derived from reactions (3.2.15)-(3.2.22) by solving a system of four linear

equations, one of them given by

Akt+AktT +AktS +AktS,T =
bAkt
µAkt

. (3.2.77)

We obtain the following expressions:

AktT =
bAkt
µAkt

PDK1

D1

Å
k13c

Km,13

k17c

Km,17
PDK1θ+

k15c

Km,15

k17c

Km,17
mTORC2 (γ − η) +

k13c

Km,13
γε

ã
, (3.2.78)

AktS =
bAkt
µAkt

mTORC2

D1

Å
k15c

Km,15

k19c

Km,19
mTORC2η+

+
k13c

Km,13

k19c

Km,19
PDK1 (γ − θ) +

k15c

Km,15
γδ

ã
, (3.2.79)

AktT,S =
bAkt
µAkt

PDK1 ·mTORC2

D1

(
k15c

Km,15

k17c

Km,17

Å
k19c

Km,19
mTORC2 + δ

ã
+

k13c

Km,13

k19c

Km,19

Å
k17c

Km,17
PDK1 + ε

ã)
(3.2.80)

65



where the the denominator D1 is given by

D1 =
k13c

Km,13

k17c

Km,17
PDK12

Å
k19c

Km,19
mTORC2 + θ

ã
+

k15c

Km,15

k19c

Km,19
mTORC22

Å
k17c

Km,17
PDK1 + η

ã
+

PDK1 ·mTORC2

Å
k15c

Km,15

k17c

Km,17
(γ + δ − η) +

k13c

Km,13

k19c

Km,19
(γ + ε− θ) +

k17c

Km,17

k19c

Km,19
(η + θ − γ)

ã
+

PDK1

Å
k13c

Km,13
γε+

k17c

Km,17
δθ

ã
+mTORC2

Å
k15c

Km,15
γδ +

k19c

Km,19
εη

ã
+ γδε (3.2.81)

and the quantities γ, δ, ε, η, θ express the activity of the phosphatases:

γ = µAkt +
k18c

Km,18
PP2A+

k20c

Km,20
PHLPP , (3.2.82)

δ = µAkt +
k14c

Km,14
PP2A , (3.2.83)

ε = µAkt +
k16c

Km,16
PHLPP , (3.2.84)

η = µAkt +
k18c

Km,18
PP2A , (3.2.85)

θ = µAkt +
k20c

Km,20
PHLPP . (3.2.86)

Equations (3.2.78)-(3.2.80) show that in the absence of insulin, when the

concentrations of PDK1, AktT and AktS,T are likely to be very small, the con-

centration of AktS may still be large because of mTORC2 signaling throught

the factor J (Eq. (3.2.75)). This behavior cannot be described by a hierar-

chical scheme in which Thr308Akt phosphorylation is necessary for phospho-

rylation at Ser473. The phosphorylation at threonine and serine measured

in the absence of insulin may be related to: 1) basal autophosphorylation

of the insulin receptor [101]; 2) signaling from other receptors (e.g., IGF − 1

receptor); 3) PIP3 activation by PI(3, 4)P2; 4) nonspecific binding of the anti

pAkt antibodies.
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The cytoplasmic FoxO1 concentration is given by

FoxO1cyt =
bFoxO
µFoxO

k21c

Km,21

(
AktS +AktT,S

)
µdeg + k−21 +

k21c

Km,21

(
AktS +AktT,S

) . (3.2.87)

The concentration of phosphorylated GSK3β is obtained as

GSK3βcyt =
bGSK3

µGSK3
·

k23c

Km,23

Å
1

µGSK3 + k−23

ã (
AktT +AktT,S

)
1 +

k24c

Km,24

Å
1

µGSK3 + k−24

ã
W +

k23c

Km,23

Å
1

µGSK3 + k−23

ã (
AktT +AktT,S

) , (3.2.88)

where W is the concentration of the putative factor that promotes GSK3β

sequestration and decreased response [49].

For the cascade of reactions (3.2.25)- (3.2.27) leading to the activation

of mTORC1 and S6K1, the following expressions for the concentrations of the

active mTORC1 and S6K1 may be obtained:

mTORC1 =
bTORC1

µTORC1

k24c

Km,24

(
AktT +AktT,S

)
µmTORC1 + k−24 +

k24c

Km,24

(
AktT +AktT,S

) , (3.2.89)

S6K1 =
bS6K1

µS6K1

k26c

Km,26
PDK1

k27c

Km,27
mTORC1

D2
, (3.2.90)

where

D2 = (µS6K1 + k−26) (µS6K1 + k−27) + µS6K1
k27c

Km,27
mTORC1

+
k26c

Km,26
PDK1

Å
µS6K1 + k−27

k27c

Km,27
mTORC1

ã
(3.2.91)

Finally, for the concentration of GLUT4 at the plasma membrane, reac-
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tions (3.2.28)-(3.2.30) provide the following equation in terms of AktT +AktT,S:

GLUT4pm =
bGLUT
µGLUT

·

ωρ+ [ω (µRab + k−29) + σ]

ρ+ [µRab + k−29 + σ]
·

1 +
k28c

(µAS + k−28)Km,28

(
AktT +AktT,S

)
1 +

k28c

(µAS + k−28)Km,28

(
AktT +AktT,S

) (3.2.92)

where

ω =
kexo

µGLUT + kexo + kendo
, (3.2.93)

ρ =
k29c

Km,29

bAS
µAS

, (3.2.94)

σ =
k−29

µGLUT + kexo + kendo

k30c

Km,30

bRab
µRab

, (3.2.95)

with ω possibly much smaller than 1. Equation (3.2.92) shows that a decrease

in ω impairs GLUT4 translocation to plasma membrane. Moreover, at zero

insulin, GLUT4pm may increase when AS160 expression is silenced (ρ driven

close to zero), according to the function of “brake” of AS160 [8].

We note that most of model parameters, as seen in the previous equations,

are in the form of the specificity constant kc/Km.

3.2.3 Model equations in normalized form

The model equations at the equilibrium, obtained in section 3.2.2, are here

rewritten in a simple non-dimensional form in order to reduce the number

of unknown parameters. The concentrations of all molecules, except insulin

and factor J in (3.2.75), are normalized to the ratio of production rate (ex-

pressed as concentration · time−1) over degradation rate constant (time−1)

and denoted by the subscript n. We recall that synthesis rate and degrada-

tion rate constants are assumed to not change with time and do not depend

on the insulin signal. All the normalized concentrations are nonnegative and

smaller than the unity for any value of the extracellular insulin concentration

Ie. The model parameters are modified accordingly, and are combinations of

the original parameters of the kinetic equations.

Let us start considering Eqs. (3.2.56)-(3.2.59), from which it is simple to

68



obtain the equation for the total tyrosine phosphorylated IR in normalized

form (i.e., normalized to bIR/µIR). In particular, assuming for simplicity

that the positive feedback is not active (PTP1Bn = 1), we have the following

simplified expression:

IRYn =
IRY + IRYb
bIR/µIR

=
ab + I

ab + a0 + I
, (3.2.96)

where the free insulin concentration I is expressed as a function of total

insulin Ie by

I =
1

2

ï
− (ab + a0 + a1 − Ie) +

»
(ab + a0 + a1 − Ie)2 + 4(ab + a0)Ie

ò
, (3.2.97)

with

ab = kb

¡Å
k0c

Km,0

ã
, a0 =

Å
µIR +

k1c

Km,1

bPTP
µPTP

ã¡Å
k0c

Km,0

ã
,

a1 =
bIR
µIR

·
Å

1 +
a0

Km,0

ã
.

Since IRYb = ab/(ab + a0) can be experimentally measured, ab can be written

as a0ρ/(1 − ρ), where ρ denotes this experimental value. Therefore, (3.2.96)-

(3.2.97) allow to obtain two meaningful quantities function of a0, a1 and ρ,

i.e. the value of Ie at IRYn = 0.5

Ie,0.5 =
(
a0 +

a1

2

) 1− 2ρ

1− ρ
(3.2.98)

and the slope at Ie,0.5

S0.5 =
1− ρ

a1 + 4a0(1− ρ)
, (3.2.99)

where Ie,0.5 has the dimension of a concentration and S0.5 is a concentration−1.

Assuming that PP , and so α, is constant, Eqs. (3.2.66) and (3.2.67) are

rewritten with IRS1Y and IRS1S normalized to bIRS1/µIRS1 as follows:

IRS1Yn =
IRYn

(a2 + a3PTP1Bn)(1 + a4S6K1n) + IRYn
, (3.2.100)

IRS1Sn =
(a2 + a3PTP1Bn)a4mTORC1n

(a2 + a3PTP1Bn)(1 + a4S6K1n) + IRYn
, (3.2.101)
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where

a2 = µIRS1

Å
k2c

Km,2
· bIR
µIR

ã−1

, a3 =
k3c

Km,3
· bPTP1B

µPTP1B

Å
k2c

Km,2
· bIR
µIR

ã−1

,

a4 =
k4c

αKm,4
· bS6K1

µS6K1
,

with a2-a4 nondimensional.

Equation (3.2.69) becomes

PTP1Bn =
1

1 + aPAkt
S,T
n

(3.2.102)

with aP given by

aP =
kPc

(µPTP1B + k−P )Km,P
· bAkt
µAkt

.

In the absence of the positive feedback, aP = 0 and PTP1Bn = 1.

Proceeding similarly, Eq. (3.2.70) normalized to bPI3K/µPI3K rewrites as

PI3Kn =
a6(IRS1Yn )2

1 + a
′
6IRS1Yn + a6(IRS1Yn )2

, (3.2.103)

with

a
′
6 =

F

E
· bIRS1

µIRS1
, a6 =

1

E

k
′
6c

K
′
m,6

k6c

Km,6

Å
bIRS1

µIRS1

ã2

.

Equations (3.2.73) and (3.2.74) become

PIP3n =
PI3Kn

a7 + a8PTENn + PI3Kn
(3.2.104)

PDK1n =
a9PIP3n

1 + a9PIP3n
(3.2.105)

with

a7 = µPI

¡Å
k7c

Km,7
· bPI3K
µPI3K

)
, a8 =

Å
k8c

Km,8
· bPTEN
µPTEN

ã¡Å
k7c

Km,7
· bPI3K
µPI3K

ã
,

a9 =
k9c

(µPDK1 + k−9)Km,9
· bPIP3

µPIP3
.

For the mTOR complex 2, (3.2.75) provides the following equation:

mTORC2n =
a10PIP3n + a11J

1 + (1 + a12S6K1n)(aµ10 + a10PIP3n + a11J)
(3.2.106)
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with

a10 =
k10c

(k−10 + k−11)Km,10

bPIP3

µPIP3
, a11 =

k11c

(k−10 + k−11)Km,11
,

a12 =
k12c

(µmTORC2 + k−12)Km,12

bS6K1

µS6K1
, aµ10 =

µmTORC2

k−10 + k−11
,

where a10, a
µ
10, a12 are nondimensional and a11 is the inverse of a concentration.

Assuming PP2A and PHLPP (and so γ, δ, ε, η, θ defined by (3.2.82)-(3.2.86))

constant, Eqs. (3.2.78)-(3.2.80) may be rewritten in terms of eight parame-

ters as follows:

AktTn =
PDK1n

D
′
1

Å
aδ13a

γ
17aθεPDK1n + aε15(aδ17 − a

γ
17aηδ)mTORC2n + aδ13

ã
(3.2.107)

AktSn =
mTORC2n

D
′
1

Å
aε15a

γ
19aηδmTORC2n + aδ13(aε19 − a

γ
19aθε)PDK1n + aε15

ã
(3.2.108)

AktS,Tn =
PDK1nmTORC2n

D
′
1

Å
aε15a

δ
17a

γ
19mTORC2n + aδ13a

ε
19a

γ
17PDK1n+

aε15a
γ
17 + aδ13a

γ
19

ã
(3.2.109)

with

D
′
1 =aδ13a

γ
17PDK12

n(aε19mTORC2n + aθε) + aε15a
γ
19mTORC22

n(aδ17PDK1n + aηδ)

+ PDK1nmTORC2n(aδ13(aε19 − a
γ
19aθε) + aε15(aδ17 − a

γ
17aηδ) + aγ17(aε15 + aε19aηδ)

+ aγ19(aδ13 + aδ17aθε)− aδ17a
ε
19) + PDK1n(aδ13 + aγ17aθε)

+mTORC2n(aε15 − a
γ
19aθε) + 1
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and

aδ13 =
k13c

Km,13
· bPDK1

µPDK1

1

δ
, aε15 =

k15c

Km,15
· bmTORC2

µmTORC2

1

ε
,

aδ17 =
k17c

Km,17
· bPDK1

µPDK1

1

δ
, aε19 =

k19c

Km,19
· bmTORC2

µmTORC2

1

ε
,

aγ17 =
k17c

Km,17
· bPDK1

µPDK1

1

γ
, aγ19 =

k19c

Km,19
· bmTORC2

µmTORC2

1

γ
,

aθε =
θ

ε
, aηδ =

η

δ
,

where all parameteres are nondimensional.

Concerning the Akt substrates, we assumed that singly and doubly phos-

phorylated Akt molecules have the same catalytic activity. So, the normal-

ized cytoplasmic FoxO1 concentration is given by

FoxO1n =
a21

(
AktSn +AktT,Sn

)
1 + a21

Ä
AktSn +AktT,Sn

ä , (3.2.110)

with

a21 =
1

µFoxO + k−21

k21c

Km,21

bAkt
µAkt

.

The normalized concentration of phosphorylated GSK3β is obtained as

GSK3βn =
a23

(
AktTn +AktT,Sn

)
1 + a

′
23W + a23

Ä
AktTn +AktT,Sn

ä , (3.2.111)

with

a23 =
1

µGSK3 + k−23

k23c

Km,23

bAkt
µAkt

, a
′
23 =

1

µGSK3 + k
′
−23

k
′
23c

K
′
m,23

.

Equation (3.2.89) for the normalized concentration of mTORC1 becomes:

mTORC1n =
a24

(
AktTn +AktT,Sn

)
1 + a24

Ä
AktTn +AktT,Sn

ä , (3.2.112)

with

a24 =
1

µmTORC1 + k−24

k24c

Km,24

bAkt
µAkt

.

For the normalized S6K1 from (3.2.90) we have:

S6K1n =
a26PDK1na27mTORC2n

1 + a26PDK1n + (aµ26 + a26PDK1n)a27mTORC1n
(3.2.113)
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where

a26 =
1

µS6K1 + k−26

k26c

Km,26

bPDK1

µPDK1
, aµ26 =

µS6K1

µS6K1 + k−26
,

a27 =
1

µS6K1 + k−27

k27c

Km,27

bmTORC1

µmTORC1
.

The equation (3.2.92) for the normalized GLUT4pm (here simply denoted

as GLUT4n ) may be written as:

GLUT4n =
a28 + a29(AktTn +AktT,Sn )

1 + a30(AktTn +AktT,Sn )
, (3.2.114)

with

a28 =
ωρ+ ω (µRab + k−29) + σ

ρ+ µRab + k−29 + σ
,

a29 =
ω (µRab + k−29) + σ

(ρ+ µRab + k−29 + σ) (µAS + k−28)
· k−28

Km,28
· bGLUT
µGLUT

,

a30 =
µRab + k−29 + σ

(ρ+ µRab + k−29 + σ) (µAS + k−28)
· k−28

Km,28
· bGLUT
µGLUT

.

Parameters a28, a29, a30 account in a simple way for the various steps that

promote GLUT4 translocation to plasma membrane [8]. Moreover, it may

be easily verified that a28 < 1 and a29 < a30.

In summary, given the concentrations of insulin and of the factor J, plus

the constant parameters defined above, Eqs. (3.2.96)-(3.2.114) provide the

dose-response curve of each component in the scheme of Fig. 3.1 of the

insulin signaling network.
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Chapter 4

Model parameter estimation from

experimental data of skeletal muscle

cells

In general, the typical building cycle of the model representing a biolog-

ical process starts from a goal definition and some a priori knowledge (i.e.

preliminary data and initial hypotheses) that suggest the model structure.

From the available data, parameter estimation is then performed and, finally

the initial model must be validated with new experiments. If the validation

reveals a number of model deficiencies, a new model structure and/or a new

experimental design must be planned and the process is repeated iteratively

until the validation step is considered satisfactory.

In the previous chapter, we presented a mathematical model of the ISN

developed to investigate the mechanisms that regulates the glucose uptake

into insulin-sensitive cells such as muscle cells, hepatocytes and cells of the

adipose tissue.

Skeletal muscle is the main tissue involved in the insulin-induced stimula-

tion of glucose uptake in rodents and humans. Reduction of glucose uptake in

muscles in the state of insulin resistance is the principal factor that accounts

for reduced systemic glucose utilization. For this reason, skeletal muscle cells

have long been regarded as a critical organ/cellular system for the investiga-

tion of insulin resistance and the pathogenesis of type 2 diabetes.

As described in this chapter, the ISN model parameters were estimated

by fitting the model equations at the steady state (3.2.96)-(3.2.114) to the

experimental data of two different skeletal muscle cell lines of rodents (L6

myoblasts and C2C12 myotubes) through minimization of a least-squares

74



index. A preliminary observation of the data obtained from the two different

cell lines [13, 123] suggested that, although L6 and C2C12 are both skeletal

muscle cells, their response to insulin stimuli can be significantly different

as well as their parameter values. Moreover, the observation of the data

suggested that there could exist some differences in the ISN model structure

for the two cell lines as detailed in the following sections.

The present chapter presents the main results of this thesis project and

shows the potential applications that the ISN model here proposed could

have.

4.1 Experimental data used for the ISN parameter

estimation

The ISN model parameters were estimated using (separately) the ex-

perimental data sets related to two different skeletal muscle cell lines: L6

myotubes with induced insulin resistance and C2C12 myoblasts with PTEN

protein suppressed.

L6 myotubes are derived from rat skeletal muscle, and this cell line is

one of the most frequently used cellular model systems to investigate the

insulin-stimulated glucose transport. In these cells insulin induces significant

glucose uptake and the extent of such uptake is related to the expression and

function of the muscle-specific GLUT4 glucose transporters. In addition,

the GLUT1 glucose transporter responsible for basal glucose uptake is also

expressed. Thus, this cell line serves as an ideal model system to investigate

both insulin-dependent and insulin-independent glucose transport.

We used the experimental data of L6 cell line to estimate the parameter

values of the ISN model in this line with the aim of obtaining a useful tool

to generate and test hypotheses, leading to a deeper understanding of the

molecular mechanisms underlying insulin resistance. Then, to test the ability

of our model to reproduce the effect of gene knockout, we estimated the ISN

model parameters starting from the second data set that showed the effect

of PTEN knockout in C2C12 myotubes of mouse [123].

Let us show now in detail the two data sets, available in the literature,

used for the parameter estimation.

L6 myotubes data The L6 data set includes data reported in [13] and

in [124]. In [13], the Authors aimed to investigate the possible molecular
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mechanism/s underlying the decrease of insulin resistance and remission of

type 2 diabetes observed after the bariatric surgey. Indeed, several and recent

studies ([109], [110], [14]) demonstrated that bariatric surgery, a procedure

in which a portion of the stomach and of the small intestine are removed or

bypassed, induces a remission of type 2 diabetes very soon after surgery and

far too early to be attributed to weight loss. The mechanisms responsible

for the improvement in glycemic control after bariatric surgery are still not

well understood but, as bariatric operations reroute food through the upper

small intestine, it has been hypothesised that gastrointestinal removal or

bypass reduce the production of putative intestinal factor/s inducing insulin

resistance. To test such hypothesis, Salinari et al. [13] collected experimental

data on the effects of jejunal proteins, secreted by diabetic mice (db/db) or

Swiss mice, on the glucose uptake in vivo in Swiss mice and in vitro in both

Swiss mice soleus and L6 skeletal muscle cells.

To perform the parameter estimation, we considered the data of L6

cells collected in [13]. These data represent the phosphorylation levels of

some of ISN components for several insulin values normalized with respect

to the respective saturation levels. In particular: the normalized levels of

pAkt(Ser473) and (Thr308) at zero insulin and at insulin concentrations of

0.1, 1, 10, and 100 nM; pGSK3β(Ser9) at zero and 100 nM insulin; the basal

(zero insulin) pAkt(Ser473) and pS6K1(Thr389) in the presence of the in-

hibitors Rapamycin and PP242 (that targets both mTOR complexes) [125].

The data, reported in Fig. 4.1, were measured in the control medium, en-

riched by proteins secreted by the jejunal mucosa of non-diabetic mice, and

in conditioned medium (CM) enriched by proteins secreted by the mucosa of

diabetic mice (db/db CM).

The phosphorylation of ISN components was measured by Western blot

analysis 1 and quantified by densitometry.

As extensively discuss in Chapter 2, one of the main problems in the

estimation of the biological parameter values from experimental data is that

the number of available data is not large enough compared to the number of

parameters. Another problem is related to the substantial differences in the

parameter values that may be found among different cell types.

Such problems also characterized our study. So, in order to increase the

amount of data for the estimation of L6 parameters, we used in addition some

1Western Blotting is a technique used in biochemistry for analysis of individual proteins
in a protein mixture.
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Figure 4.1: Experimental data of L6 myoblasts reported in [13] and used for the
parameter estimation of the ISN model. Data are expressed as fold change versus
control condition (control at 100 nM insulin set at 100). Data are mean ± s.d. Panel A:
Dose-response curve of pAkt(Ser473) vs insulin concentration (nM) in logarithmic scale
in the absence (squares) or presence (circles) of db/db CM proteins. Panel B : Effect of
mTORC inhibitors (Rapamycin or PP242) on basal 473Ser Akt phosphorylation in both
control and db/db CM treated cells. Panel C : Dose-response curve of pAkt(Thr308)
vs insulin concentration (nM) in logarithmic scale in the absence (squares) or presence
(circles) of db/db CM proteins. Panel D : Effect of mTORC inhibitors (Rapamycin or
PP242) on basal 389Thr p70S6K1 phosphorylation in both control and db/db CM treated
cells. Panel E : 9Ser GSK3β phosphorylation in control, in Swiss CM treated cells (data
not used for the parameter estimation), and db/db CM treated cells with or without
insulin.
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Figure 4.2: Experimental data of L6 myoblasts reported in [124] and used for
the parameter estimation of the ISN model. 2-deoxyglucose uptake measured in L6
myoblasts in the presence (black bars) or absence (white bars) of bradykinin (10−7 mol/l)
after preincubation with various concentrations of insulin (0, 10−10, 10−9, 10−8 and 10−7

mol/l. Results are expressed as the mean ± s.d. (n=6).

of the data reported by Miyata et al. in [124]. In this work, the Authors

wanted to determine how bradykinin, a peptide involved in multiple biological

processes (such as vasodilatation, increase in capillary permeability, smooth

muscle relaxation/contraction, and inflammation) affected insulin-stimulated

glucose uptake in dog skeletal muscle and rat L6 myoblasts. They found that

bradykinin significantly increased 2-deoxyglucose (2-DG) uptake in isolated

muscle and L6 myoblasts in the presence of insulin in a dose-dependent man-

ner, but not in the absence of insulin (Fig. 4.2). 2-Deoxyglucose is a glucose

molecule which has the 2-hydroxyl group (one oxygen atom connected by a

covalent bonding to one hydrogen atom) replaced by hydrogen, so that it

cannot undergo glycolysis when taken up by the cell. 2-DG is taken up by

the glucose transporters of the cell (GLUT4 for the skeletal muscle cells) and,

therefore, cells with higher concentrations of glucose transporters also have a

higher uptake of 2-DG. We assumed that there exists a proportional relation

between the levels of 2-DG measured by Miyata et al. [124] in L6 myoblasts

in the absence of bradykinin at the various concentrations of insulin, and

the GLUT4 levels ate plasma menbrane in the same cell line and the same

condition. In view of this assumptions, to estimate the GLUT4 parameters,

we used the data of Fig. 4.2 (white bars) normalized to the value of the

maximal insulin concentration.
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C2C12 myoblasts data In order to verify the present ISN model is able

to represent data from different cell lines and different experimental condi-

tions, we used the data reported in [123] to estimate the ISN parameters of

the C2C12 cells. In [123] the Authors investigated the effects on insulin sig-

naling regulation of selective inhibitions of PIP3 phosphatases (SKIP, SHIP2

and PTEN) by small interfering RNA (siRNA) in the C2C12 myoblasts. As

widely discussed in Chapter 1, PTEN (phosphatase and tensin homologue)

acts by removing the phosphate in the 3-position of PI(3,4,5)P3 to produce

PI(4,5)P2 while SHIP2 (SH2 domain-containing inositol polyphosphate phos-

phatase) specifically hydrolyzes the 5-phosphate of PI(3,4,5)P3 to produce

PI(3,4)P2. SKIP (skeletal muscle and kidney enriched inositol polyphos-

phate 5-phosphatase) is an other phosphatase abundantly expressed in the

skeletal muscle that hydrolyzes PI(3,4,5)P3 to downregulate its intracellular

levels [126]. SKIP is localized to the endoplasmic reticulum under basal con-

ditions and is translocated to the membrane ruffles 2 in response to insulin.

The action of SKIP, SHIP2 and PTEN on PIP3 is represented in Figure 4.3.

Several studies have shown that SKIP, SHIP2, and PTEN negatively regulate

insulin-dependent glucose incorporation [126, 127, 128]. Based on these stud-

ies, all of the PIP3 phosphatases are implicated in the regulation of insulin

signaling, but several important findings about the differences between the

PIP3 phosphatases are also reported. It is stated, however, that the exact

role of these PIP3 phosphatases in the regulation of insulin signaling in the

skeletal muscle remains unknown.

In [123] the Authors measured the relative phosphorylation levels of some

players of the ISN for different insulin concentrations in C2C12 myoblasts

transfected with small interfering RNA (siRNA) of PTEN, SKIP and SHIP2

(see Figures 4.4, 4.5, 4.6). Among these data, we used only the experimental

data for control and for PTEN-suppressed cells (PTEN protein concentration

was reduced up to 10% of control) because SKIP and SHIP2 were not included

in the present ISN model. In particular, for the parameter estimation of

C2C12 cells, we used the normalized phosphorylation levels of IR(Tyr1146),

Akt(Ser473) and (Thr308), GSK3β(Ser9) and S6K1(Thr389) at zero insulin

and at insulin concentrations of 1, 10, and 100 nM. In addition, we considered

the normalized concentration of GLUT4pm at the cell surface in basal (zero

insulin) conditions and in cells stimulated with 100 nM of insulin for 15 min

2Membrane ruffles are actin-rich protrusions of the plasma membrane that can be
observed on the surface of many cell types.
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Figure 4.3: Role of PTEN, SKIP and SHIP2 in the regulation of insulin signal-
ing in skeletal muscle cells. PTEN, SKIP and SHIP2 are PIP3 phosphatases that reg-
ulate insulin-dependent glucose incorporation. PTEN acts removing the phosphate in the
3-position of PI(3,4,5)P3 to produce PI(4,5)P2. SKIP and SHIP2 hydrolyze PI(3,4,5)P3
to produce PI(3,4)P2.

(Figure 4.5). The data of PIP3 and AS160(Thr642) shown in Fig. 4.6 were

used for the prediction. All protein levels were measured by Western blotting

analysis and immunoprecipitation and quantified by densitometry.
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Figure 4.4: Experimental data of C2C12 myotubes reported in [123] and used
for the parameter estimation of the ISN model. Phosphorylation levelss in C2C12
cells transfected with specific siRNAs at insulin concentrations of 0, 1, 10, 100 nM. Data
are expressed as fold change versus control condition at 100 nM insulin (data related
to SKIP not considered in for the parameter estimation). Data are mean ± s.e. (error
bars). Panel A: Insulin-stimulated phosphorylation of pIR(Tyr116). Panel B : Insulin-
stimulated phosphorylation of pAkt(Ser473). Panel C : Insulin-stimulated phosphorylation
of pAkt(Thr308). Panel D : Insulin-stimulated phosphorylation of pGSK3β(Ser9). Panel
E : Insulin-stimulated phosphorylation of p70S6K1(Thr389).
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Figure 4.5: Translocation of GLUT4 at the cell surface in the basal or insulin-
stimulated C2C12 cells. Surface-to-total distribution of GLUT4 reporter was analyzed
in C2C12 cells expressing GLUT4 reporter. Cells were stimulated with 100 nM of insulin
for 15 min in control, SKIP-directed and PTEN-directed siRNA.

Figure 4.6: Experimental data of C2C12 myotubes reported in [123] and used
for predictions of the ISN model. Data are presented as the mean ± s.e. (error bars).
Panel A: Relative PI(3,4,5)P3 levels in the insulin-stimulated C2C12 cells transfected with
control, SKIP-, SHIP2- or PTEN-directed siRNA. Panel B : Insulin-stimulated AS160
phosphorylation in C2C12 cells transfected with the indicated siRNAs.
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4.2 Estimation procedure and optimization algorithm

The optimal values of the ISN model parameters were estimated by fit-

ting the model equations at the steady state (3.2.96)-(3.2.114) to the ex-

perimental data through minimization of a least-squares index. In other

words, according to the Ordinary Least Squares (OLS) method described

in section 2.2.2 of Chapter 2, we implemented an estimation algorithm that

aimed to minimize the sum of squared residuals, i.e. the differences between

the model-based predictions and the available data. Such optimization al-

gorithm, implemented using the C programming language, consists in the

following steps:

1. The model parameter values are initialized.

2. For any insulin concentrations, model equations (3.2.96)-(3.2.114) are

solved numerically by reducing to a non-linear system in only two vari-

ables, PDK1n and mTORC2n, through a series of cascade substitutions.

3. As the experimental data were normalized to have a unity value at

maximal insulin concentration in control, the concentrations of the

measured quantities are computed according to this constraint.

4. The cost function defined as the sum of squared residuals is computed.

5. A numerical optimization routine searches for the cost function mini-

mum repeating Steps 2-4. When the routine converges, the algorithm

stops providing the optimal parameter values.

To find the numerical solution of the optimization problem, we used a

local routine implementing a derivative-free algorithm for bound constrained

optimization problems (Package SDBOX available at the Software Library

of the Department of Computer and System Science, Sapienza University of

Rome). The choice of a local optimization routine, whose performance may

depend on the initial parameter vector, was motivated by the availability of

a priori information about this initial value, obtained both from a careful

analysis of the literature and from an extensive series of preliminary numeri-

cal simulations. Moreover, we constrained the local routine to search for the

optimal parameter values in the wide range [0,500].

The parameter estimation for the two cell lines was characterized by some

differences and some common hypothesis suggested by the data observation
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and the literature knowledge. Such differences and common assumptions will

be detailed in the following sections.

4.3 Estimates of ISN model parameters and optimal

fitting curves for L6 myoblasts

We used the L6 data described in section (4.1) to estimate the following

parameters of the ISN model: the value of Ie,0.5 defined in (3.2.98) letting S0.5

fixed as no IR data were available; the IRS1 parameters a3 and a4; the PI3K

parameters a6 and a
′
6; the PIP3 parameter a8; the PDK1 parameter a9 assumed

equal to the mTORC2 parameter a10 as no data on the phosphorylation of

PDK1 and mTORC2 were available; the mTORC2 parameter a12; the factor

J that activates mTORC2 for db/db with a11 set to 1; the Akt parameters

aδ13, a
ε
15, a

δ
17, a

γ
17, a

δ
19, a

γ
19, aθε and aηδ; the GSK3β parameters a23 and a

′
23 (only

for db/db as a
′
23 is zero for control); the mTORC1 parameter a24; the S6K1

parameters a26, a
µ
26 and a27; and the GLUT4 parameters a28, a29 and a30.

We fit the experimental data assuming that: i) J has negligible concen-

tration in control medium and a larger concentration, to be estimated, in

db/db medium; ii) insulin resistance also increases because of an increased

IRS1 degradation due to enhancement of mTORC2 signaling [129]. So, to fit

the data of cells exposed to db/db medium, we reduced the values of a
′
6 and

a6 in Eq. (3.2.103) according to a twofold increase of IRS1 degradation rate

constant (µIRS1);iii) as the L6 data suggested that, for this cell line, GSK3β

is activated by pAkt(Ser473), we changed AktT
n into AktS

n in Eq. (3.2.111)

and assumed a
′
23 > 0 with W = 1 in db/db to represent the putative GSK3β

sequestration; iv) the action of Rapamycin was accounted for by reducing a24

in (3.2.112) by a factor 0.1, and the action of PP242 by reducing a10 and a11

in Eq. (3.2.106) and a24 in Eq. (3.2.112) by a factor 0.15; v) to reduce the

number of parameters to be estimated, the parameters a2, a7 and aµ10 in Eqs.

(3.2.100), (3.2.104), (3.2.106), that are likely to be small, were set to zero and

the positive feedback loop from Akt to PTP1B was not included (aP = 0 and

then PTP1Bn = 1 from (3.2.102)); vi) the remaining parameters were fixed,

i.e. ρ = 0.03 in (3.2.98), S0.5 = 2.5 · 10−2 in (3.2.99), W = 1 in (3.2.111), a21 = 0.5

in (3.2.110).

We remark that the normalized experimental data of pAkt(Ser473) were

fit by the sum AktSn + AktS,Tn , given by Eqs. (3.2.108)-(3.2.109), because the

specific monoclonal antibody is likely to bind Akt phosphorylated on Ser473
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irrespective of the presence of the phosphorylated Thr308. Similarly, the data

of pAkt(Thr308) were fit by AktTn + AktS,Tn . All parameters to be estimated

were constrained to be nonnegative and to belong to the box [0, 500]. More-

over, in view of the definition of some model parameters, further constrains

were necessary. In particular, since from (3.2.98), (3.2.99) IR parameters a0

and a1 are related to Ie,0.5 and S0.5 by the equations

a0 =

Å
1

2S0.5
− Ie,0.5

1− 2ρ

ã
1− ρ
1− 2ρ

, (4.3.1)

a1 =

Å
4Ie,0.5

1− ρ
1− 2ρ

− 1

S0.5

ã
1− ρ
1− 2ρ

, (4.3.2)

the terms in parenthesis were constrained to be positive to ensure the positiv-

ity of a0 and a1. The quantities aδ17−a
γ
17aηδ and aε19−a

γ
19aθε in (3.2.107)-(3.2.109)

were constrained to be positive. In addition, noting that aγ17a
ε
19aηδ+aγ19a

δ
17aθε−

aδ17a
γ
19 in D

′
1 equals aδ17a

γ
19(µAkt/γ), we assumed µAkt/γ � 1.

Table 4.1 (4th and 5th columns) reports the parameter estimates and Fig-

ure 4.7 shows the experimental data of L6 cells, replotted from [13] and [124],

along with the optimal fitting curves. The phosphorylation data measured

in the experiments with db/db medium are fit with a value of J substantially

larger compared to control (0.07 vs. 0.001). pAkt(Ser473) at zero insulin is

largely increased, but its response to insulin is blunted (see Fig. 4.7 panel

A). We observe that a high value of pAkt(Ser473) at zero insulin can only

be obtained if mTORC2 is also activated through a signaling pathway inde-

pendent of PI3K, and if the Thr308 Akt phosphorylation is not required for

Ser473 phosphorylation. The response of pAkt (Thr 308) and of pGSK3β(Ser9)

is also depressed (panels B and C of Fig. 4.7). The 2-DG uptake data in con-

trol reported in Fig. 4.7 D were adequately fit by the model. The predicted

2-DG uptake in the presence of db/db medium was computed by assuming

that the rate constants that regulate GLUT4 translocation to plasma mem-

brane are smaller compared to control [7, 8]. Actually, in T2D subjects,

GLUT4 mRNA and protein levels are reduced in adipose tissue (GLUT4

concentration reduced to 50% of control in [19]) but not in skeletal muscle

[7], suggesting that a defective regulation of GLUT4 translocation may con-

tribute to insulin resistance in L6 cells exposed to the db/db medium. We

accounted for the diminished capacity of GLUT4 vesicles to reach plasma

membrane in the presence of db/db medium by decreasing the parameters

a28 and a29 in Eq. (3.2.114) (see Table 4.1).
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The data measured in the presence of Rapamycin and PP242 are shown

Fig. 4.7 panels E-F. The model adequately fits the inhibition of basal (no

insulin) pS6K1(Thr389) both in control and db/db medium (panel F). In

the basal pAkt(Ser473) data (Fig. 4.7, panel E), the poor prediction for cells

exposed to db/db medium is likely caused by experimental variability and

the data were not used for model fitting. In cells treated with Rapamycin, the

attenuated negative feedback led to an increase of mTORC2n, thus enhancing

pAkt. By contrast, PP242 affects Akt phosphorylation at Ser473, so AktS

and AktT,S are strongly reduced. Overall, it appears that the present model

provides an adequate fitting of the L6 data.

A subset of model predictions is displayed in Fig. (4.8). We stress that

mTORC1 inhibition leads in turn, because of attenuated negative feedback

via S6K1, to a decrease in IRS1S
n and an increase in IRS1Y

n thus enhancing

insulin signaling (panels A-D). In panel E of (4.8) we plotted the values

assumed by PDK1n and mTORC2n when Ie increases from zero to 100 nM for

control and db/db medium while panel F gives a 3D representation of the

components of pAkt. At 100 nM insulin, total pAkt is 78.7% of total Akt in

control.

The L6 cell data were also analyzed in the presence of the positive feed-

back, with the constant aP in Eq. (3.2.102) set to a smaller value for the

cells in db/db medium compared to control. The results, however, did not

appear to improve on those obtained without the positive feedback.

We also performed a sensitivity analysis in order to investigate how pa-

rameter changes influence the system behaviour at the steady state and to

identify those parameters that have the greatest impact on the system output.

The sensitivities of the normalized concentrations of proteins with respect to

model parameters were computed (both for control and for cells exposed to

conditioned (db/db) medium), as the derivative of log concentration with

respect to log parameter at the optimum (see section 2.3). The use of these

relative sensitivities provids nondimensional quantities that do not depend on

the absolute values of concentrations and parameters. Sensitivities were eval-

uated numerically upon a ±10% perturbation of the parameters. The results

are presented in the form of matrices where the numerical values, which are

positive for a positive regulation and negative for an inhibition, are converted

to a color. Figure (4.9) shows the sensitivities of protein concentrations to

the estimated model parameters at the extracellular insulin concentration of

9.69 nM (estimated Ie,0.5). We remark that the sensitivities to a
′
6 and a

′
23 are
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small according to the small values of the estimates whereas, as expected, the

sensitivities to the factor J increase in cells exposed to the db/db medium

compared to control. The sensitivity to a12 is small suggesting that the effect

of the negative feedback loop from S6K1 to mTORC2 can be negligible.
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Proteins Parameters C2C12 L6

Ctr db/db

IR Ie,0.5 (nM) 44.68 9.69 -

S0.5 (nM)−1 0.01 0.025 -

IRS1 a3 8.26 1.88 -

a4 24.12 4.70 -

PI3K a
′

6 0 1.3 · 10−3 0.66 · 10−3

a6 124 14.50 3.62

PIP3 a8 0.05 1.85 -

PDK1 a9 0.49 6.61 -

a10 0.49 6.61 -

mTORC2 a11 0 1 -

a12 5 · 10−3 1.2 · 10−7 -

aδ13 9.2 · 10−4 0.34 -

aε15 0.22 5.80 -

aδ17 0.92 3.84 -

Akt aγ17 0.20 0.29 -

aε19 7.95 0.67 -

aγ19 12.88 0.65 -

aθε 0.62 1.0 -

aηδ 0.11 2.5 · 10−3 -

FoxO1 a21 0.5 0.5 -

GSK3β a23 2.92 12.54 -

a
′

23 0 0 3.35

mTORC1 a24 0.01 0.17 -

a26 66.01 39.06 -

S6K1 aµ26 0.13 0.90 -

a27 74.12 460 -

a28 0.14 0.22 0.15

GLUT4 a29 24.67 1.20 0.67

a30 28.16 2.01 -

Table 4.1: Parameters estimated from data of C2C12 and L6 cells.
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Figure 4.7: Experimental data of L6 myotubes and model fitting. Data (mean
± SD) replotted from Ref. [13] except in panel D from Ref. [124]. Data (squares) and
model fitting (solid lines) plotted in black for control and in blue for cells exposed to
conditioned (db/db) medium. (A, B) Relative pAkt(Ser473) and pAkt(Thr308). (C)
Relative pGSK3β(Ser9) at zero (white box) and 100 nM (gray box) insulin. (D) Relative
2-DG uptake in rat L6 myoblasts. (E) Relative pAkt(Ser473) at zero insulin in control
(black) and cells exposed to db/db medium (red), in the absence of inhibition and in
cells treated with rapamycin (50 nM) and PP242 (500 nM). The red color indicates that
experimental values do not preserve the increase in basal pAkt(Ser473) from control to
db/db medium in the absence of inhibition, and asterisks point out that these data were
not used in model fitting. The boxes represent model fitting with the color code: green
(no inhibitor), yellow (rapamycin), and pink boxes (PP242).(F) Relative pS6K1(Thr389)
at zero insulin in the absence of inhibition and in treated cells. The boxes represent model
fitting with the same color code of Panel E.
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Figure 4.8: Model predictions for L6 myotubes. (A, B) Model prediction of IRS1Y
n

(panel A) and IRS1S
n(panel B) for cells in control medium at zero and 10 nM insulin

in the absence of inhibitor (green), and in the presence of 50 nM rapamycin (yellow)
and 500 nM PP242 (pink). (C, D) Model predictions as in (A) and (B), but for cells
exposed to db/db medium. Panels A-D show the different effect of the decreased negative
feedback on the tyrosine and serine residues of IRS1. (E) Plot of values assumed by
PDK1n (abscissa) and mTORC2n (ordinate) when Ie increases from zero to 100 nM for
control and db/db medium. (F) 3D plot of AktT

n , AktS
n , and AktT,S

n as a function of
PDK1n and mTORC2n according to Eqs. (3.2.107)-(3.2.109). With the present estimates
of Akt model parameters, AktS

n increases with mTORC2n and decreases with PDK1n,
while AktT,S

n , and less clearly AktT
n , increase with both PDK1n and mTORC2n.
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Figure 4.9: Sensitivity analysis for the ISN model of L6 myotubes. The plot
shows the sensitivities of protein concentrations to the estimated parameters of the model
at the extracellular insulin concentration of 9.69 nM (Ie,0.5) for control cells (upper panel)
and cells in db/db medium (lower panel).
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4.4 Estimates of ISN model parameters and optimal

fitting curves for C2C12 myotubes

From the C2C12 data, we estimated: the quantities Ie,0.5 and S0.5 char-

acterizing the dose-response curve of IRY
n (see (3.2.98), (3.2.99)); the IRS1

parameters a3 and a4; the PI3K parameter a6; the PIP3 parameter a8; the

PDK1 parameter a9 assumed equal to the mTORC2 parameter a10 as no data

on the phosphorylation of PDK1 and mTORC2 were available; the mTORC2

parameter a12; the Akt parameters aδ13, a
ε
15, a

δ
17, a

γ
17, a

δ
19, a

γ
19, aθε and aηδ; the

GSK3β parameter a23; the mTORC1 parameter a24; the S6K1 parameters a26,

aµ26 and a27; and the GLUT4 parameters a28, a29 and a30.

To fit the C2C12 data, we assumed that: i) PTEN normalized concentra-

tion was equal to 1 in control and to 0.1 in PTEN-silenced cells in according

with the experiments in [123]; ii) basal IR autophosphorylation at zero in-

sulin (denoted as ρ in (3.2.98), (3.2.99)) was set to 0.03 in view of the data in

[123]; iii) the parameter aP of positive feedback in (3.2.102) was set to zero

because IR tyrosine phosphorylation is similar in control and PTEN-silenced

cells (Fig. 4.4 panel A); iv) the factor J was considered negligible and then

a11 in (3.2.106) was set to zero; v) to reduce the number of parameters to be

estimated, the model parameters a2, a7 and aµ10 in Eqs. (3.2.100), (3.2.104),

(3.2.106), that are likely to be small, were set to zero as well as a
′
6 in (3.2.103)

and a
′
23 in (3.2.111).

Moreover, as for the L6 cells, the normalized experimental data of pAkt(Ser473)

and pAkt(Thr308) were fit by the sum AktSn+AktS,Tn and AktTn +AktS,Tn , respec-

tively, and all parameters were constrained to be nonnegative and to belong

to the box [0, 500]. We implemented the constraints that guarantee the posi-

tivity of a0 and a1 (see (4.3.1)) and of the quantities aδ17−a
γ
17aηδ and aε19−a

γ
19aθε

in (3.2.107)-(3.2.109). Finally, recalling that aγ17a
ε
19aηδ +aγ19a

δ
17aθε−aδ17a

γ
19 in D

′
1

is equal to aδ17a
γ
19(µAkt/γ), we also imposed µAkt/γ � 1.

Table 4.1 reports in the third column the parameter estimates for C2C12

cells. It is worth noting that Ie,0.5 was found equal to 44.68 nM, a value

larger than that of L6 cells. Moreover, we note that the parameter estimates

reported in Table 4.1 are rather different between C2C12 and L6 cells, which

however is not surprising since C2C12 is a line of mouse myoblasts whereas

L6 is a line of rat myotubes. Figure 4.10 displays the data of C2C12 cells,

replotted from [123], and the optimal fitting curves computed by the present

model. The ISN model was able to adequately fit the available C2C12 data.
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Figure 4.10: Experimental data of C2C12 myoblast cells and model fit-
ting. Data (mean ± SEM) replotted from [123] for control (black squares) and PTEN-
suppressed (red squares) cells. Solid lines are the dose-response curves (logaritmic scale)
predicted by the model for control (black) and PTEN-suppressed cells (red). (A) Relative
pIR(Tyr1146). (B, C) Relative pAkt(Ser473) and pAkt(Thr308). (D) Relative pGSK3
β(Ser9). (E) Relative pS6K1(Thr389). (F) Relative GLUT4 at PM at zero (white box)
and 100 nM (gray box) insulin.

As expected, PTEN deletion enhances the insulin response and basal level

increased in almost all proteins and, in particular, PTEN protein suppression

causes an increase in basal Ser473 Akt phosphorylation, which may phospho-

rylate and deactivate FoxO1 with the possible enhancement of signaling to

the pathways that regulate cell proliferation.

A subset of model predictions is displayed in Fig. 4.11. Panel A shows

the prediction, obtained by the estimated model, of pAS160(Thr642) to-

gether with the data that were not used in the estimation procedure. While

the profile of pAS160(Thr642) data was followed rather accurately, the model

failed to predict PIP3 concentration data in the PTEN-silenced cells (panel
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Figure 4.11: Experimental data of C2C12 myoblasts not used in the parameter
estimation and model predictions. Data (mean ± SEM) in panels A and B are
replotted from [123]. (A) Relative pAS160 (Thr642) concentration in control (black)
and PTEN-suppressed (red) cells, together with the dose-response curves predicted by
the model. The equation for pAS160 (Thr642) (inactive form) is given by pAS160n =
0.5(AktTn +AktT,Sn )/[1 + 0.5(AktTn +AktT,Sn )]. (B) Relative PIP3 concentration in control
(black squares) and PTEN-suppressed (red squares) cells with model prediction at zero
insulin (white boxes) and 10 nM insulin (blue boxes). (C, D) Fitting of the relative
pAkt(Ser473) and prediction of relative PIP3 in the hypothesis that mTORC2 is activated
by PI3K instead of PIP3. (E) Model prediction of PDK1n in control and PTEN-suppressed
cells at zero (white boxes) and 100 nM insulin (gray boxes). (F) Model prediction of total
pAktn in control and PTEN-suppressed cells at zero (white boxes) and 100 nM insulin
(gray boxes).
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B). We note that if mTORC2 were activated by PI3K instead of PIP3,

the model could not adequately fit pAkt(Ser473) data at zero and low in-

sulin in PTEN-silenced cells, nor the prediction of PIP3 concentration data

would improve (Fig. 4.11, panels C, D). Moreover, we found that the total

pAkt(AktT
n + AktS

n + AktT,S
n ) at 100 nM insulin in control is 8.61% of total Akt

(Fig. 4.11 panel F) and GLUT4 at the plasma membrane is about 50% of

total GLUT4. These values agree with the model results reported in [17],

where pAkt is about 9% of total Akt and surface GLUT4 attains 40% of total

GLUT4 after 15 min 100 nM insulin.

We performed a sensitivity analysis around the optimal parameter val-

ues also for the C2C12 cells. Figure 4.12 shows the sensitivities of protein

concentrations upon a ±10% perturbation of the estimated parameters at the

extracellular insulin concentration of 44.68 nM. As this concentration equals

Ie,0.5, the sensitivity to S0.5 is vanishing. The same occurs for the sensitivities

to a12, a
δ
13 and aγ17 that have small values. The largest positive sensitivities are

found for a9 and a10, whose values were set equal (see Table 4.1) as no data

on the phosphorylation of PDK1 and mTORC2 were available. The sensitiv-

ity to a12 is again small as in L6 cells, suggesting that the negative feedback

loop from S6K1 to mTORC2 has a negligible role in both cell lines. The

parameters that directly affect the downstream proteins, as mTORC1 and

S6K1, also affect the upstream proteins, as IRS1 and PI3K, because of signal-

ing through the negative feedback loop. The opposite behavior of IRS1Y and

IRS1S is also noted. We also stress the negative sensitivity to a8 of all proteins

downstream PTEN, whereas IRS1Y and PI3K are positively regulated. Let

us note that the sensitivity values in control cells and in PTEN-suppressed

cells belong to different ranges. Moreover, the general pattern of the sensi-

tivities for the C2C12 cells is similar to that found for L6 cells, confirming

that the model is able to represent both types of data.
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Figure 4.12: Sensitivity analysis for the ISN model of C2C12 myocytes.The
plot shows the sensitivities of protein concentrations to the estimated parameters of the
model at the extracellular insulin concentration of 44.68 nM in control cells (upper panel)
and in PTEN-suppressed cells (lower panel).
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4.5 Effects of inhibitors and of gene knockout and iden-

tification of potential drug targets

A test of model validity is that of ascertaining whether it is able to repre-

sent the effects of inhibitors and of conditions such as gene knockout or RNA

interference. For instance, our model may represent the following particular

conditions:

• PI3K inhibitors. The effect of PI3K inhibitors, such as Wortmannin

and PIK-90, may be represented by a reduction of the catalytic con-

stant k6c in (3.2.70). A strong decrease in k6c drives PI3K, PIP3 and

PDK1 close to zero and substantially reduces mTORC2 as shown by Eqs.

(3.2.70)-(3.2.74) and (3.2.75). So Ser473 and Thr308Akt phosphorylation

are inhibited [125].

• Pten knockout. When the concentration of PTEN vanishes, as in PtenKO

cells, PIP3, and thus PDK1, mTORC2, and Akt signalling are enhanced

[123]. In the model, Pten knockout is simulated by reducing the vari-

able PTENn in Eq. (3.2.104). An increase in pAkt(Ser473) (2.1-fold) and

pAkt(Thr308) (3.2-fold) in PtenKO β-cell of mice compared with control

is reported in [130].

• PDK1 knockout and inhibition. Hashimoto et al. in [131] showed that

PDK1 ablation in mice β-cells reduced Thr308 Akt phosphorylation

without affecting the phosphorylation at Ser473. PDK1 knockout effect

is reproduced by the model by setting bPDK1 close to zero. It has been

shown [132] that the protein kinase inhibitor 7-Hydroxystaurosporine

(UCN-01), a PDK1 inhibitor [133] used in cancer therapies, had a

similar effect on Akt activation: UCN-01 inhibits pAkt(Thr308), and

then the GLUT4 translocation to the cellular membrane, in a dose-

dependent manner at all insulin concentrations even in the face of al-

most an completely unaffected Ser473 phosphorylation. Figure 4.13

shows how the model proposed is able to reproduce such effects, i.e.

the marked decrease of AktT
n and AktT,S

n , with the resulting insulin resis-

tance elicited by the drug in treated cells compared to control(GLUT4pm

increase of 61.8% in control and 36.7% in treated cells).

• Rictor knockout. Muscle extracts from mice with muscle-specific ric-

torKO showed an impaired Ser473 Akt phosphorylation (85% reduc-
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Figure 4.13: Response of the insulin signaling network to the PDK1 inhibitor
UCN-01 in L6 cells. Model predictions of AktT

n , AktS
n, AktS,T

n and GLUT4pm at 1 and
100 nM insulin in control (white boxes) and in cells exposed to UCN-01 (black boxes). To
simulate the effect of UCN-01, the parameter a9 (function of the PDK1 catalytic constant
k9c) in (3.2.105) was tenfold decreased, keeping the other parameters to values estimated
for L6 cells.
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tion) and an increased basal but almost normal Thr308 Akt phospho-

rylation (similarly for pS6K1(Thr389)) upon insulin stimulation. Thr642

AS160 phosphorylation was reduced but mice did not differ in the in-

sulin tolerance test and only partially in the glucose tolerance test [122].

Accordingly, Eqs. (3.2.78)-(3.2.80) and (3.2.92) show that, if mTORC2

is driven close to zero by setting bmTORC2
∼= 0, pAkt (Ser473) is inhib-

ited, while AktT and GLUT4pm may respond almost normally to insulin

stimulation.

• mTOR inhibitors. mTORC1 signalling is inhibited by rapamycin that

inhibits Ser2481 mTORC1 and thus Thr389 S6K1 phosphorylation

[134]. Rapamycin action on mTORC1 is represented by reducing the

catalytic constant k24c and thus a24 in Eq. (3.2.112). Althougth ra-

pamycin cannot bind to preformed mTORC2 [62], it may bind to free

mTOR. Therefore, the newly synthesized mTOR does not bind to ric-

tor and mTORC2 assembly is partially or completely inhibited [63].

It has been found, indeed, that long-term rapamycin treatment may

cause a strong or a partial inhibition of Ser473 Akt phosphorylation

[63]. The response of mTORC2 to long-term rapamycin treatment can

be represented by decreasing the model parameters containing the syn-

thesis rate bmTORC2, i.e. the parameters aε15, a
ε
19, a

γ
19. Figure 4.14 shows

the simulation results that are qualitatively in agreement with the ex-

perimental data of cells highly sensitive to rapamycin (for instance, the

PC3 cells) reported in [63]. A different mTOR inhibitor is PP242 that

reduces both mTOR complexes. In the model, PP242 action is rep-

resented by a reduction of a24 for mTORC1 and a10, a11 for mTORC2

[125].

In conclusion, the proposed model appears to be appropriate to quanti-

tatively asses the role of the proteins that are key regulators of the insulin

signaling network. It may be useful to better identify the network reactions

that are critical for the transitions of cellular states from normal to disease

scenario and to give a contribution in the design of anti-diabetic drugs. In-

deed, if a drug is targeting a particular enzyme in our network system, the

present model allows to envisage its effects on the substrate cascade.
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Figure 4.14: Response to short-term and long-term rapamycin treatment
of mTORC1, mTORC2, and pAkt (Ser473). Model predictions of mTORC1,
mTORC2, and pAkt (Ser473) in control (green boxes) and after short-term (yellow boxes)
and long-term (pink boxes) rapamycin treatment at 10 nM insulin. Short- and long-term
treatments: a24 in Eq. (3.2.112) set to 0.1 of control. Long-term treatment: parameters
aε15, a

ε
19, a

γ
19 of Akt in Eqs. (3.2.107)-(3.2.109) set to 0.1 of control. The other parameters

are set to the values estimated for L6 cells. Compared to control, short-term treatment in-
hibits mTORC1, but enhances mTORC2 due to the downregulation of negative feedback.
By contrast, the prolonged treatment strongly inhibits mTORC2 because rapamycin binds
to newly synthesized mTOR and the formation of mTOR complex is prevented. mTORC2
inhibition causes a decrement of S473 Akt as well as of double Akt phosphorylation and,
as a consequence, also mTORC1 is further downregulated.
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Chapter 5

Link between the ISN and the cell

proliferation: response to mTOR

inhibitors with antitumor activity

The insulin signaling network interacts with other biochemical networks

to regulate various physiological and cellular processes. Nowadays, a ma-

jor goal of biochemical simulations involves integrating outputs of distinct

signaling networks to study cell functional outcomes such as proliferation,

polarization of cells, or migration. With this aim, in the present chapter

we focus on the link that exists between the ISN and the cell proliferation.

Indeed, it is widely recognized in literature that Akt and the two mTOR

complexes have a major role also in the regulation of the cell growth, and

then in cancer development [5, 15, 9]. Moreover, S6K1 is involved in the

regulation of protein synthesis and the growth of cell size, and FoxO1 in the

induction of apoptosis and autophagy [135].

We investigated how the components of ISN, and in particular Akt and

its substrates, may influence the progression of the cells in the cell cycle. In

order to correlate these two cellular processes, we considered the response of

the ISN and of a AML (acute myeloid leukemia) cell population to mTOR

inhibitors with antitumor activity, i.e. the dual ATP-competitive mTOR

inhibitor AZD8055 ([65, 136]). The cell population response was represented

by the mathematical model, described in the next section, which is similar

to the model proposed in [137] and the final goal was to correlate parameters

describing tumour cell proliferation with the response to AZD8055 of the

ISN.
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5.1 The eukaryotic cell cycle

The eukaryotic cell cycle is generally divided into four discrete phases

shown in Figure 5.1 [138]: 1) a first phase G1 (gap 1) in which the cell is

metabolically active and continuously grows but does not replicate its DNA;

2) the S phase (synthesis), during which DNA replication takes place; 3)

the G2 phase (gap 2), during which cell growth continues and proteins are

synthesized in preparation for mitosis; and 4) the mitosis (M) corresponding

to the separation of daughter chromosomes (nuclear division) and usually

ending with cell division (cytokinesis) [138]. Moreover, some kinds of cells

are characterized by also a quiescent stage of the cycle called G0, where they

remain metabolically active but no longer proliferate unless called on to do

so by appropriate extracellular signals. Mitosis is the most dramatic stage

of the cell cycle and lasts only about an hour, so approximately 95% of the

cell cycle is spent in interphase (the period between mitoses). The cell grows

at a steady rate throughout interphase but the duration of every cell cycle

phase can vary considerably among different kinds of cells.

Figure 5.1: Phases of the eukaryotic cell cycle. Figure replotted from [138] that
represents the four main phases of the eukaryotic cell cycle: G1, S, G2 and M. The relative
lengths of the cell cycle phases shown here are typical of rapidly replicating mammalian
cells.

Progression through the stages of the cell cycle is controlled by a reg-

ulatory apparatus, which not only coordinates the different events so that

they occur in the appropriate order but also gets extracellular signals that
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control cell proliferation. It is critically important that cell entries into the

next phase if and only if the events of the preceding phase have been com-

pleted. For example, if the mitotis starts when replication of the genome

has not been completed, some mutations could appear. Several cell cycle

checkpoints exist to ensure that incomplete or damaged chromosomes are

not replicated and passed on to daughter cells. One of the most clearly de-

fined of these checkpoints occurs in G2 and prevents the initiation of M phase

before completion of S phase, so cells remain in G2 until the genome has

been completely replicated. This G2 checkpoint senses unreplicated DNA,

which generates a signal that leads to cell cycle arrest. The cell cycle is also

arrested at the G2 checkpoint in response to DNA damage in order to allow

the damage repair. DNA damage arrests the cell cycle in another important

checkpoint, the checkpoint in G1, that allow to repair the damage before

the cell enters S phase, where the damaged DNA would be replicated. A

further important cell cycle checkpoint exists the end of mitosis monitoring

the alignment of chromosomes on the mitotic spindle, thus ensuring that a

complete set of chromosomes is distributed accurately to the daughter cells.

Figure 5.2: Cell cycle checkpoints. Figure replotted from [138] that represents the
most clearly defined checkpoints of cell cycle.

To analyse the progression in the cell cycle, it is necessary to identify the

cells at the different stages discussed above. Mitotic cells can be distinguished

microscopically, while cells in other phases (G0/G1, S, and G2) must be iden-

tified by biochemical criteria. For example, cells in S phase can be readily
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identified by means of the radioactive [3H]thymidine incorporation, which

is used exclusively for DNA synthesis [139]. Indeed, it is generally known

that, once cells begin DNA replication, they progress without interruption

through S phase and incorporate added [3H]thymidine into their newly syn-

thesized DNA. After a short period of exposure, the cells are analyzed by

autoradiography and the cell fraction that is found to be radioactively la-

beled corresponds to the fraction of cells in S phase. Such fraction of labeled

cells upon autoradiography is defined as Labeling Index (LI) and it is used to

estimate the size of the S-phase compartment in various tumors. Obviously,

this assay requires the assumption that [3H]thymidine is incorporated by all

S-phase tumor cells. Variations of such cell labeling experiments can also be

used to determine the length of the other phases of the cell cycle. Let us

suppose that the cells are exposed for a short period of time (for instance

15 minutes) to radioactive thymidine, after which the radioactive substance

is removed. The radioactively labeled cells that were in S phase during the

time of exposure will be observed for several hours as they progress through

the remainder of S and G2. In contrast, radioactively labeled mitotic cells

will not be observed until 4 hours after labeling. This 4-hour lag time corre-

sponds to the average length of G2 (the minimum time required for a cell that

incorporated radioactive thymidine at the end of S phase to enter mitosis).

Cells at different phases of the cell cycle can also be distinguished by their

DNA content. Animal cells in G1 contains two copies of each chromosome

(diploid), so, if we indicate by n the haploid DNA content of the genome,

the DNA content of G1 cells is 2n. During the S phase, because of the DNA

replication, the genome content doubles so that cells in S have DNA contents

ranging from 2n to 4n. DNA content remains at 4n for cells in G2 and M,

decreasing to 2n after cytokinesis. Experimentally, cellular DNA content

can be determined by incubation of cells with a fluorescent dye that binds to

DNA, followed by analysis of the fluorescence intensity of individual cells in a

flow cytometer or a fluorescence-activated cell sorter, thereby distinguishing

cells in the G1, S, and G2/M phases of the cell cycle.

5.2 The mathematical model of the cell proliferation

To analyze the behavior of the AML cell population in the presence of the

dual ATP-competitive mTOR inhibitor AZD8055, we used a mathematical

model of cell cycle based on the age formalism, similar to that proposed in
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[137] and represented by the block diagram of Figure 5.3.

Figure 5.3: Scheme of the mathematical model used for the analysis of AML
cell population data in the absence and presence of AZD8055. The blocks rep-
resent G0/G1, S and G2M cells, with the X2 block denoting binary cell division. λ1 is the
rate constant of G1 → S transition, T2 and T3 the transit times in S and G2M phases, and
µ

′
the rate constant of cell loss. D1 − D3 represent cells lost from viable compartments

but still measurable, and A the apoptotic bodies and fragments, with µ
′′

the rate constant
of cell fragmentation and µdeg the loss rate constant from A.

We considered three main phases (G0/G1, S and G2M) and assumed that

the cell transition into the G0/G1 phase is random with an exponential dis-

tribution and rate constant λ1, while the S and G2M phases are deterministic

with transit times denoted by T2 and T3, respectively. Cells may be randomly

lost from G0/G1, S and G2M with the same rate constant µ
′

(cell loss from

compartments of viable cells) and enter the compartments Di, i = 1, 2, 3 that

contain dead cells but still transiently measurable. Cells exit randomly from

Di, i = 1, 2, 3 with the rate constant of cell fragmentation µ
′′

and enter the

compartment A of the apoptotic bodies and fragments. From A, cells exit

with the rate constant µdeg.

We observe that, in the simple scheme of cell progression across cell cycle

shown in Fig. 5.3, the rate constant λ1 represents the activity of the cyclins

(as cyclin D) and the cyclin-dependent kinases that regulate the G1 to S

transition. The rate constant µ
′
may be related to the activity of the proteins

that regulate the autophagia and/or the early phases of apoptosis, whereas

µ
′′

may be related to late apoptosis.

Denoting by N1(t) the number of G0/G1 cells at time t, and by ni(ai, t),

with i = 2, 3, the cell density at time t with respect to age ai for cells in S and
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G2M phases (ai is measured from cell entry into the corresponding phase), we

have the balance equations

dN1(t)

dt
= −(λ1 + µ

′
)N1(t) + 2n3(T3, t) (5.2.1)

∂ni(ai, t)

∂t
+
∂ni(ai, t)

∂ai
= −µ

′
ni(ai, t), i = 2, 3, (5.2.2)

with boundary conditions

n2(0, t) = λ1N1(t) , n3(0, t) = n2(T2, t) . (5.2.3)

The number of S-phase cells at time t is given by

N2(t) =

∫ T2

0

n2(a2, t)da2 , (5.2.4)

and similarly, for the number of G2M-phase cells, we have

N3(t) =

∫ T3

0

n3(a3, t)da3 . (5.2.5)

Moreover, denoting the number of cells lost from the three viable compart-

ments by Di(t), i = 1, 2, 3, we have

dDi(t)

dt
= −µ

′′
Di(t) + µ

′
Ni (5.2.6)

Apoptotic bodies and fragments are eventually gathered in a further com-

partment that obeys the equation

dA(t)

dt
= −µdegA(t) + µ

′′(
D1(t) +D2(t) +D3(t)

)
(5.2.7)

where the material that leaves this compartment with rate constant µdeg is

no longer measurable.

Assuming that the cell population is in balanced exponential growth (or

is declining under the treatment) with rate constant α, it is:

N1(t) = N̄1e
αt , (5.2.8)

ni(ai, t) = n̄ie
−βaieαt i = 2, 3 (5.2.9)

where N̄1, n̄i, with i = 2, 3, represent the initial conditions and β = α +
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µ
′
. Moreover, in exponential growth,the following relation among the model

parameters can be obtained:

α+ µ
′
+ λ1 = 2λ1e

−(α+µ
′
)(T2+T3) (5.2.10)

From (5.2.1)-(5.2.9), the fractions of cells in the cell cycle phases and in

the apoptotic compartment at the generic time t can be obtained. Since, as

in [137], we assumed that cells lost from the viable population can still be

transiently measurable, the fractions of cells in the cell cycle phases measured

by propidium iodide (PI) staining and flow cytometry (see next section), must

be derived accounting for the dead cells in compartments Di(t), i = 1, 2, 3,

together with the viable cells in the respective phase. So, fG1 is computed

as (N1 +D1)/Ntot and, similary, fS = (N2 +D2)/Ntot and fG2M = (N3 +D3)/Ntot,

with Ntot the total amount of cells and fragments. It is easy to verify that:

fG1 =
(α+ µ

′
)(α+ µdeg)(α+ µ

′
+ µ

′′
)Å

α+ µ′ + λ1

(
1− e−(α+µ

′
)(T2+T3)

)ãÅ
µ′µ′′ + (α+ µdeg)(α+ µ′ + µ′′)

ã ,
(5.2.11)

fS =
λ1(1− e−(α+µ

′
)T2)(α+ µdeg)(α+ µ

′
+ µ

′′
)Å

α+ µ′ + λ1

(
1− e−(α+µ

′
)(T2+T3)

)ãÅ
µ′µ′′ + (α+ µdeg)(α+ µ′ + µ′′)

ã ,
(5.2.12)

fG2M =
λ1e
−(α+µ

′
)T2(1− e−(α+µ

′
)T3)(α+ µdeg)(α+ µ

′
+ µ

′′
)Å

α+ µ′ + λ1

(
1− e−(α+µ

′
)(T2+T3)

)ãÅ
µ′µ′′ + (α+ µdeg)(α+ µ′ + µ′′)

ã .
(5.2.13)

Obviously, the fraction of apoptotic materials is given by

fA = 1− fG1 − fS − fG2M . (5.2.14)

In addition, the total fraction of dead cells and fragments can be computed

as:

fDead = fA +
3∑
i=1

fDi =
µ
′
(α+ µdeg + µ

′
)

µ′µ′′ + (α+ µdeg)(α+ µ′ + µ′′)
, (5.2.15)
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with fDi the cell fraction in the respective compartment Di.

To assess the effect of the drug on cell cycle progression, as discussed in the

next sections, we used data of labeling index (LI) accounting for the radioac-

tive [3H]thymidine incorporation. So, in order to estimate the parameters of

the cell proliferation model, we had to derive the LI expression from the model

equations. As in [137], for simplicity, the labeling process was accounted for

by assuming that cells were exposed to a rectangular [3H]thymidine pulse of

length ∆. The pulse length ∆ was taken to be shorter that the G2M transit

time. Moreover, we assumed that even a sojourn of infinitesimal duration in

S during the pulse suffices for a cell to be labeled. Thus, letting time t be

counted from the start of the [3H]thymidine injection, at t = 0+ all S-phase

cells are labeled; at t = ∆, all cells in S, plus the G2M cells with age a3 between

0 and ∆, are labeled. With these assumptions [137], we found that:

LI(∆) = fG1
λ1(α+ µ

′′
)

(α+ µ′)(α+ µ′ + µ′′)

[
eα∆

Å
1− e−(α+µ

′
)(T2+∆)

ã
+ µ

′
e−µ
′′

∆

Å
(e(α+µ

′′
)∆ − 1)

α+ µ′′
− e−(α+µ

′
)T2(e(µ

′
−µ
′′

)∆ − 1)

µ′ − µ′′
ã]

. (5.2.16)

5.3 Model parameter estimation from data of AML

cells

We estimated the unknown parameters α, λ1, T2, T3, µ
′
, µ
′′

and µdeg of the

model shown in Fig. 5.3 for an AML cell population model both in the ab-

sence and presence of the dual ATP-competitive mTOR inhibitor AZD8055.

Note that Eq. (5.2.10) is an independent relationship among parameters

that actually reduces the number of unknowns. For instance, we derived λ1

as function of the remaining parameters. Moreover, while α, λ1, T2, T3, µ
′
, µ
′′

are expected to be different in the control (absence of AZD8055) and in the

populations treated with different drug doses, it is likely that µdeg does not

change and, for simplicity, was taken equal to the value of µ
′′

in the control.

For the parameter estimation we used the experimental data reported in

[136]. The Authors reported the fractions of cells in the cell cycle phases

and the fraction of the apoptotic fragments obtained by propidium iodide

(PI) staining and flow cytometry (Figure 5.4), the data of [3H]thymidine

incorporation (Figure 5.5) and the fractions of annexin V and PI-positive
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Figure 5.4: Data on cell cycle progression in AML obtained by propidium
iodide (PI) staining and flow cytometry. Figure replotted from [136] showing how
AZD8055 decreases cell proliferation and cell cycle progression in AML.

cells (Figure 5.6) at increasing AZD8055 concentrations. The in vivo effect

of the drug in mice bearing MV4-11 xenografts is also shown (Figure 5.7).

The growth rate constant α of the untreated population was obtained

from the growth curve of tumor size in the xenograft (black curve in Fig.

5.7), which is approximately exponential, and we assumed that a similar

value holds for the MV4-11 cell line. From the data of cell fractions in cell-

cycle phases given by flow cytometry and the data of PI-positive cell fraction

represented by the quantity fDead in Eq. (5.2.15), we estimated λ1, T2, T3, µ
′
, µ
′′

by least squares method using (5.2.10)-(5.2.15). Equation (5.2.16) provided

the value of the labeling index in control, not given in [136]. Such value was

computed with the labeling period ∆ = 6hrs [136].
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Figure 5.5: Data on thymidine incorporation at increasing AZD8055 concen-
trations. Figure replotted from [136] showing [3H]thymidine incorporation (labeling in-
dex, LI) of AML cells with and without AZD8055. Results are expressed as a ratio between
each condition and the control condition.

Figure 5.6: Fractions of annexin V and PI-positive cells. Figures replotted from
[136] showing fractions of annexin V (upper panel) and PI-positive (lower panel) cells at
different experimental conditions.
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Figure 5.7: In vivo effects of AZD8055 in nude mice transplanted with MV4-
11. In [136] MV4-11 cells were xenografted in nude mice treated with captisol (black) or
with 20mg/kg/day AZD8055 (red) and tumor size was evaluated some days after graft.

For treated cells, the rate constant α was not available and the drug

dose of 20 mg/kg/day AZD8055 administered to mice could not be reliably

converted to a drug concentration in the culture medium. The LI values of

treated populations, expressed in Fig. 5.2.16 as ratios treated/control, were

multiplied for the LI of control (31.2%) in order to obtain the actual values

to be compared with the model-predicted LI.

Table 5.1 reports the parameter estimates for the untreated cells and at

increasing drug concentrations (10, 100 and 1000 nM).

α (hr−1) µ
′
(hr−1) µ

′′
(hr−1) T2 (hr) T3 (hr) λ1 (hr−1)

Control 7.43 · 10−3 8.52 · 10−3 1.81 · 10−1 10.61 8.73 3.4 · 10−2

AZD 10 nM −1.42 · 10−2 1.62 · 10−2 1.98 · 10−1 87.82 52.89 3.82 · 10−2

AZD 100 nM −2.12 · 10−2 2.16 · 10−2 1.1 · 10−1 97.91 72.6 4.56 · 10−4

AZD 1000 nM −3.69 · 10−2 3.72 · 10−2 8.8 · 10−2 97.16 77.07 3.81 · 10−4

Table 5.1: Estimates of parameters of the cell population model in control and in cells
exposed to 10, 100, and 1000 nM AZD8055.

Figure 5.8 displays the data of cell fractions in cell cycle phases and the

model fitting. The same figure also displays data and model predictions of
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Figure 5.8: Data of AML cells used for the parameter estimation and the
model fitting. Data of cell fractions in cell cycle phases in control and cells treated with
10, 100, and 1000 nM AZD8055 (closed squares), and model fitting (solid lines). The panel
also displays data and model fitting of LI normalized to control, and of total fraction of
dead cells and fragments.

labeling index and of the total fraction of dead cells and fragments. Note

the cell accumulation in G0/G1 and the depletion of S and G2M phases in the

treated populations. The rate constant λ1 of the transition from G0/G1 to S

exhibits a marked concentration-dependent decrement, whereas the transit

times in S and G2M, and the loss rate constant µ
′

from the viable compart-

ment, increase (see Table 5.1). Accordingly, α (population doubling time

ln2/α = 3.860 days in control) turns out to be negative in treated populations

(halving times 2.036, 1.364, and 0.783 days at 10, 100, and 1000nM AZD8055).

These results confirm that a major factor that inhibits cell proliferation is

the block of cells in the G0/G1 phase [51].

There is an intricate interplay between autophagia and apoptosis, and

these modes of cell death may antagonize or cooperate [140]. We did not try

to represent these pathways, hence the simple model used for the analysis

of data cannot allow to unambiguously relate the parameters µ
′

and µ
′′

to

autophagia or apoptosis. The present model, indeed, represents cell death as

a two−stage process and α depends directly on µ
′

but not on µ
′′

as shown by

(5.2.10). However, as depicted by Fig. 5.9, we note that the fraction of dead

cells
∑3
i=1 fDi nicely correlates with the increase of acridine orange staining

(an indicator of autophagy) reported in [65] for a different cell line, so the

parameter µ
′

might mainly be related to cell death caused by autophagia.
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Figure 5.9: Correlation between data of acridine orange staining in A549 cells
and fraction of dead cells. We found that the data of acridine orange staining reported
in [65] and the fraction of dead cells

∑3
i=1 fDi correlate linearly at increasing concentrations

of AZD8055.

5.4 Akt/mTOR signaling and cell proliferation

The last step to investigate how the insulin signaling network can influ-

ence the progression of the cells in the cell-cycle was to correlate the estimated

parameters that describe the kinetics of AML cell population with the re-

sponse to AZD8055 of the ISN. For this aim, we used the experimental data

reported in [136] showing the inhibition of p-70S6K Thr389 in the MV4-11

human AML cell line, in untreated cells and at increasing drug concentra-

tions (10, 100 and 1000 nM). These data are replotted from [136] in Fig.

5.10.

In order to fit the pS6K1 (Thr389) inhibition profile in the MV4-11 human

AML cell line in [136], the parameters a10, a11, and a24 in Eqs. (3.2.106) and

(3.2.112) that regulate the inhibition of mTORC1 and mTORC2 signaling

were then estimated, keeping the other parameters to the values estimated

for L6 cells (see Table 4.1). We accounted for the constitutive activation

of PI3K/Akt signaling, frequently found in AML [141], by representing this

activation as an equivalent insulin signal (Ie in Eq. (3.2.97) equals 0.2 nM)

that drives PI3Kn from 0.28 · 10−2 at zero insulin to 0.52 · 10−2. The fitting

results are shown in Fig. 5.11. With the estimated values of the parameters

of mTOR complexes, we computed other ISN model outputs at the steady

state related to the different drug concentrations.
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Figure 5.10: The inhibition of p-70S6K Thr389 and p-NDRG1 Thr346 in the
MV4-11 human AML cell line with increasing AZD8055 concentrations Data
replotted from [136] showing the inhibition of p-70S6K Thr389 and p-NDRG1 Thr346 in
the MV4-11 human AML cell line with increasing AZD8055 concentrations. Results are
expressedas a ratio to the control incubation without AZD8055.

Figure 5.12 highlights the simple relationships found between the model-

predicted changes in the concentrations of ISN proteins, induced by mTOR

inhibition, and the changes in the AML cell population model parameters,

which correspond to alterations of the proliferative capacity of the popula-

tion. In particular, a simple non linear function provided a good fit of the

relation between pAkt (Ser473), predicted by insulin signaling model, and

the population model parameter λ1 (panel A of Figure 5.12), showing how

these two quantities decrease when the drug concentration increases and how

the extent of the block of G1 → S transition is related to mTORC2 inhibi-

tion. Similar functions also fit the relations between λ1 and pGSK3β(Ser9),

cytosolic FoxO1 and pS6K1(Thr389) (Figure 5.12 panels A and B).

Panel C of Figure 5.12 depicts the relationship between the average cell

cycle time, an index of the rate of protein synthesis obtained from the cell

population model, and pS6K1(Thr389). The average cell cycle time is an

index of the rate of protein synthesis and it is computed as sum of 1/λ1, T2

and T3. In panel D, the model predicted pS6K1(Thr389) is plotted versus

the loss parameter µ
′
, showing how mTORC1 inhibition is also related with

the increment of cell loss from the compartment of viable cells. The above

findings agree with the notion that mTORC2 inhibition activates cyclins

D1-D2 via Akt (Ser473) and FoxO1 inhibition, and that mTORC1 inhibition

activates autophagy via ULK1/ATG13 inhibition [5]. Rapamycin derivatives

114



Figure 5.11: pS6K1 (Thr389) vs AZD8055 concentration. Normalized data (mean
± SD) of pS6K1 (Thr389) vs AZD8055 concentration (green diamonds) replotted from
[136] and model outputs (black squares), together with the fitting line y = 6.35/(6.34 +
x0.71).

have indeed been found that inhibit both mTOR complexes and decrease the

levels of CCND1 and CCND2 in AML [142].

In summary, we proved that the proposed ISN model permits to inves-

tigate the insulin signaling network in the insulin resistance states and in

cancer, focusing on the role played by Akt phosphorylated at Ser473 and

by the mTOR complexes, as well as on the drug effects. However, although

it would be tempting to use the found relations to couple the two math-

ematical models, it is worth noting that we have used data obtained in a

particular experimental setting, so these relations are likely to be not valid

in different settings. The relations found are a rough representation of the

complex machinery that regulates cell cycle progression, entry and exit from

quiescence, and occurrence of cell death. Indeed, we found relationships be-

tween the rate constant λ1 of the G1 to S transition and different proteins

(pAkt (Ser473), pGSK3β(Ser9), FoxO1 and pS6K1(Thr389)), but the molec-

ular pathways that link and coordinate the action of these proteins in cell

cycle regulation remain undetermined. Similarly, pS6K1(Thr389) is related

to parameters of cell cycle progression and cell death, but its specific role

in these pathways is not specified. The cell population model of Fig. 5.3 is

very far from the complexity and richness of behaviors that can be exhibited

by the real system. Sophisticated models have been proposed to represent
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Figure 5.12: ISN response to the mTOR inhibitor AZD8055. (A) Relationship
between the decrease of pAkt(Ser473) (squares) and that of λ1 at increasing drug con-
centrations. The fitting line (black line) is given by y = 1.03x/(0.18 · 10−2 + x), with
y=pAkt(Ser473) and x =λ1. A similar function (orange line) fits the relation between
GSK3β(Ser9) (triangles) and λ1. (B)Relationship between the decrease of pS6K1 (Thr389)
(squares) and that λ1 at increasing concentrations of the drug. The fitting line (black line)
has equation y = 1.10x/(0.35 · 10−2 + x), with y= pS6K1 (Thr389) and x=λ1. A similar
function (orange line) fits the relation between FoxO1cyt (triangles) and λ1. (C) Decrease
of pS6K1(Thr389) with drug concentration and relation with the average cell cycle time
predicted by the cell population model. The fitting line is y = 17.71/(15.61 + x). (D)
Decrease of pS6K1(Thr389) with the drug concentration and relation with the parameter
µ

′
predicted by cell population model. Fitting line is y = (3.63 ·10−7)/(3.15 ·10−7 +x3.57).

In each panel data are normalized to control and represented for the different drug con-
centrations with the color code: control (blue), AZD10 (red), AZD100 (green), AZD1000
(cyan).
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the reactions involving the cyclins and the cyclin-dependent kinases, see for

instance a complex model proposed for cell cycle control in mammalian cells

[143]. It must also be noticed that we have considered the steady-state re-

sponse to a drug of the insulin signaling network and the response of the in

vitro AML cell population. Studying the in vivo response would be much

harder, as the drug pharmacokinetics and the transport into cells must be

accounted for, together with the transient response of the protein network

and the pharmacodynamics of the drug [65].
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Conclusions

In the present PhD thesis, a detailed mathematical model of the insulin

signlaing network (ISN) was proposed and used to analyze two different data

sets of skeletal muscle cells available in the literature. The first data set

included experimental data of L6 myotubes with induced insulin resistance

[13] whereas the second one consisted of data of C2C12 myoblasts with PTEN

protein suppressed [123].

We used the proposed model to investigate the basal concentrations and

the dose-response curves of the main known components of the ISN and

to identify the players having a key role in the insulin-stimulated uptake

of glucose into the cells. A detailed analysis of the regulatory processes

constituting ISN may permit to develop new insights about the origin of

the pathologies related to dysfunctions of the ISN and to find drugs able to

counterbalance the effect of these diseases.

The most widespread pathology caused by ISN malfunctioning is the in-

sulin resistance, which is the common denominator of several diseases in-

cluding type 2 diabetes and cancer. Indeed, it is widely recognized that

some ISN components have key roles, not only in the glucose metabolism,

but also in other important cellular processes such as apoptosis, cell pro-

liferation, transcription and cell migration and they are thus involved also

in cancer development. So, investigating the mechanisms responsible for in-

sulin signaling impairment is of primary importance and it is the object of

many experimental and theoretical research works. In the last decades, sev-

eral studies were published on the mechanisms regulating ISN and several

research groups proposed mathematical models to represent the complexity

of this network.

The ISN scheme here considered is based on a consolidated view that

emerges from recent literature [4, 5, 12, 16, 17, 108]. We focused particu-

larly on single and double Akt phosphorylation because recent studies [122]
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have shown that Akt activity is maintained almost unaltered when it is phos-

phorylated only on Thr308, while Ser473 phosphorylation seems to play an

independent role in both insulin resistance and cancer. That Akt can ac-

complish its enzymatic function without undergoing Ser473 phosphorylation

is demonstrated by the finding that muscle-specific rictor KO mice simply

present with a moderately decreased insulin-stimulated glucose uptake and

glucose intolerance, but not diabetes. Thr308 Akt phosphorylation is in

fact able to activate GLUT4 translocation and it is sufficient to mediate the

phosphorylation of GSK3. A scheme where Akt can be independently phos-

phorylated at Thr308 and Ser473 residues, and where both sites can lead

to complete Akt activation, like the one presented in this thesis, does not

appear to have previously been considered.

Moreover, in the present model a new characterization of the upstream

signaling of mTORC2 is proposed. mTORC2 is assumed to be activated by

PIP3, as suggested in [5, 9], and by a putative factor (denoted by J), not

dependent on PI3K, which is released by the small intestine and that induces

insulin resistance possibly operating through the growth factor receptors [13].

This hypothesis is based on the clinical observation that bariatric surgery, a

procedure in which a portion of the stomach and of the small intestine are

removed or bypassed, induces a remission of T2D very soon after surgery

and far too early to be attributed to weight loss. As bariatric operations

reroute food through the upper small intestine, an hypothesis for explaining

this mechanism can be that the gastrointestinal removal or bypass reduce the

production of putative intestinal factor/s inducing insulin resistance. Such

hypothesis was experimentally tested by Salinari et al. [13], showing that L6

cells exposed to a medium enriched with proteins secreted by the small intes-

tine of diabetic rats activated mTORC2, as revealed by an increased value

of Ser473 Akt phosphorylation, even in the absence of insulin stimulation.

The model was formulated without including, for simplicity, some estab-

lished pathways of the network (as for instance, the IR intracellular pool and

the receptor recycling) and by describing most of the chemical reactions by

the classical Michaelis-Menten scheme. As our aim was the analysis of the

dose-response curves, we then derived the concentrations of the chemicals

at the equilibrium and, to reduce the number of model parameters to be

estimated, we rewrote the model equations in a normalized form.

The model parameters were estimated for both the L6 and C2C12 cells

by an ordinary least-squares approach. The proposed ISN model was able
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to adequately fit all the available experimental data and thus, it can be used

as a tool to generate and test hypotheses. The parameter estimates are

rather different between C2C12 and L6 cells, but this is not surprising since

C2C12 is a line of mouse myoblasts whereas L6 is a line of rat myotubes.

In particular, we found that C2C12 cells are more insulin-resistant than L6

cells. Ideed, the value of extracellular insulin at which insulin receptor is half

of its maximal was found equal to about 45 nM in C2C12 and about 10 nM

in L6 cells. We found also that db/db L6 cells have a value of the factor

J substantially larger compared to control (0.07 vs. 0.001) confirming the

hypothesis in [13].

In order to identify those parameters that have the greatest impact on the

system output, we also performed a sensitivity analysis for both cell lines at

the respective optimum. The general pattern of the sensitivities was found

to be similar, confirming that the model is able to represent both types of

data.

Moreover, the capacity of the proposed model to represent the effects of

inhibitors and of conditions such as gene knockout or RNA interference was

tested. For instance, we verified that the model is appropriate to study the ef-

fect of the UCN-01, a PDK1 inhibitor used in cancer therapies [133]. UCN-01

inhibits Thr308 but not Ser473 Akt phosphorylation and impairs Akt kinase

activity with the subsequent inhibition of the GLUT4 translocation to the

cellular membrane [132]. The model predictions reported in Figure 4.13 show

the marked decrease of pAkt(Thr308), with the resulting insulin resistance

elicited by the drug in treated cells compared to control (the concentration of

the glucose transporters increases up to 61.8% in control and 36.7% in treated

cells). We also simulated the model response to rapamycin treatments and

the obtained results (Figure 4.14) are qualitatively in agreement with the

experimental data in [63].

Finally, in view of the close and widely recognized relationship between

insulin resistance and cancer, we investigated how the components of ISN,

and in particular Akt and its substrates, may influence the progression of

the cells in the cell cycle. In order to correlate these two cellular processes,

we considered the response of the ISN and of a cell population of AML to

an mTOR inhibitor with antitumor activity, i.e. the dual ATP-competitive

mTOR inhibitor AZD8055. Using literature data of the AML cell popu-

lation, we found simple relationships between the model-predicted changes

in the concentrations of proteins of the ISN, induced by mTOR inhibition,
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and the changes in the population model parameters which correspond to

alterations of the proliferative capacity of the population. In particular, a

simple nonlinear monotonic function provides a good fit of the relation be-

tween the values of pAkt(Ser473), predicted by the insulin signaling model,

and the population model parameter describing the transition from the G1

to S phases of the cell cycle (see Figure 5.12). These two quantities are

even more reduced as the drug concentration increases suggesting that the

extent of the block of G1 → S transition is related to the mTORC2 inhibi-

tion. Moreover, the model-predicted pS6K1(Thr389) was plotted versus the

rate constant of cell loss, showing how mTORC1 inhibition is also related

with the increment of such loss. Although it would be tempting to use the

relations found to couple the two mathematical models, it is worth noting

that: 1) such relations are a rough representation of the complex machinery

that links and coordinates the action of ISN proteins in cell cycle regulation;

2) we have used data obtained in a particular experimental setting, so these

relations are likely to be not valid in different settings; 3) we have considered

the steady-state response of the ISN to a drug and the response of the in

vitro AML cell population.

In spite of the simplifying assumptions made in view of the ISN com-

plexity, we can conclude that the proposed ISN model, focusing on the role

played by Akt and by the mTOR complexes, as well as on the drug effects,

permits to investigate the insulin signaling network in the insulin resistance

states and in cancer. Although the numerical values of model parameters will

certainly change with the cell type, the general structure of the model can

be considered valid for any cell type as shown by the qualitative agreement

observed between the model predictions and the experimental data from cell

types different from skeletal muscle, such as AML cells and PC3 cells. Model

behavior has been tested on a variety of conditions: muscle cells with Pten

KO or with induced insulin resistance, cells treated with rapamycin, cells

with anticancer drugs such as AZD8055 and UCN-01. The proposed model

should thus be useful to elucidate the impact of pathologic or therapeutic

alterations on the operating states of the network so to support research and

development in the field of both diabetes and oncology, and the pharmaceu-

tical industries in the drug design.
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Acronyms

ISN Insulin Signaling Network

PM Plasma Membrane

T2D Type 2 Diabetes

T1D Type 1 Diabetes

OGTT Oral Glucose Tolerance Test

IVGTT Intra-Venous Glucose Tolerance Test

MTT Meal Tolerance Test

EHC Euglycemic Hyperinsulinemic Clamp

MM Michaelis-Menten

sQSSA standard Quasi-Steady-State Approximation

tQSSA total Quasi-Steady-State Approximation

PDE partial differential equation

ODE ordinary differential equation

MLE Maximum Likelihood Estimator

OLSE Ordinary Least Squares Estimator

WLSE Weighted Least Squares Estimator

IR Insulin Receptor

IGF-1 Insulin-like Growth Factor 1

EGF Epidermal Growth Factor

SH2 Src-Homology-2

IRS1 Insulin Receptor Substrate-1
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PTP1B Protein Tyrosine Phosphatases 1B

PI3K Phosphatidylinositide 3-Kinase

PI(3,4,5)P3 Phosphatidylinositol 3,4,5-trishosphates

PTEN Phosphatase and Tensin Homologue

SHIP2 SH2 domain containing inositol polyphosphate phosphatase

PDK1 Phosphoinositide-dependent Protein Kinase-1

PKC Protein Kinase C

Akt RAC-alpha Serine/Threonine-protein Kinase

PKB Protein Kinase B

PP2A Protein Phosphatase 2A

PHLPP PH domain and Leucine rich repeat Protein Phosphatases

FoxO1 Forkhead box protein O1

mTOR Mammalian Target of Rapamycin

mTORC1 Mammalian Target of Rapamycin Complex 1

mTORC2 Mammalian Target of Rapamycin Complex 2

DEPTOR DEP domain-containing mTOR-interacting protein

RAPTOR Regulatory-associated Protein of mTOR

RICTOR Rapamycin-Insensitive Companion of mTOR

PRAS40 40 kDa Prorich Akt Substrate

GAP GTPase-Activating Protein

GTP/Rheb GTPase Ras homologue enriched in brain

TSC1/TSC2 Tuberous Sclerosis Complex 1/2

S6K1 Substrate S6 Kinase 1

4E-BP 4E-Binding Protein

AS160 Akt Substrate of 160 kDa

GSK3β Glycogen Synthase Kinase 3-β

GYS Glycogen Synthases
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GLUT4 Glucose Transporter-4

2-DG 2-deoxyglucose

CM Conditioned Medium

AML Acute Myeloid Leukemia

UCN-01 Protein Kinase Inhibitor 7-Hydroxystaurosporine

LI Labeling Index
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[116] D. Cozzone, S. Fröjdö, E. Disse, C. Debard, M. Laville, L. Pirola, and

H. Vidal. Isoform-specific defects of insulin stimulation of Akt/protein

kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients.

Diabetologia, 51(3):512–21, 2008.

[117] S.C. Yip, S. Saha, and Chernoff J. PTP1B: a double agent in

metabolism and oncogenesis. Trends Biochem Sci, 35(8):442–9, 2010.

[118] L.S. Harrington, G.M. Findlay, A. Gray, T. Tolkacheva, S. Wigfield,

H. Rebholz, J. Barnett, N.R. Leslie, S. Cheng, P.R. Shepherd, C.P.

Gout, I. amd Downes, and R.F. Lamb. The TSC1-2 tumor suppressor

controls insulin-PI3K signaling via regulation of IRS proteins. J Cell

Biol, 166(2):213–23, 2004.

[119] I. Vivanco and C.L. Sawyers. The phosphatidylinositol 3-Kinase AKT

pathway in human cancer. Nat Rev Cancer, 2(7):489–501, 2002.

[120] A. Shisheva. Phosphoinositides in insulin action on GLUT4 dy-

namics: not just PtdIns(3,4,5)P3. Am J Physiol Endocrinol Metab,

295(3):E536–44, 2008.

[121] H.K. Karlsson, J.R. Zierath, S. Kane, A. Krook, G.E. Lienhard, and

H. Wallberg-Henriksson. Insulin-stimulated phosphorylation of the Akt

substrate AS160 is impaired in skeletal muscle of type 2 diabetic sub-

jects. Diabetes, 54(6):1692–1697, 2005.

139



[122] A. Kumar, T. E. Harris, S. R. Keller, K. M. Choi, et al. Muscle-

specific deletion of rictor impairs insulin-stimulated glucose transport

and enhances basal glycogen synthase activity. Mol Cell Biol, 28(1):61–

70, 2008.

[123] T. Ijuin and T. Takenawa. Regulation of insulin signaling and glu-

cose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-

trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney en-

riched inositol polyphosphate phosphatase (SKIP). J Biol Chem,

87(10):6991–6999, 2012.

[124] T. Miyata, T. Taguchi, M. Uehara, S. Isami, H. Kishikawa, et al.

Bradykinin potentiates insulin-stimulated glucose uptake and enhances

insulin signal through the bradykinin b2 receptor in dog skeletal muscle

and rat l6 myoblasts. Eur J Endocrinol, 138(3):344–352, 1998.

[125] M.E. Feldman, B. Apsel, A. Uotila, R. Loewith, and Z.A. Knight.

Active-site inhibitors of mtor target rapamycin-resistant outputs of

mTORC1 and mTORC2. PLoS Biol, 7(2):e38, 2009.

[126] T. Ijuin and T. Takenawa. Skip negatively regulates insulin-induced

glut4 translocation and membrane ruffle formation. Molecular and Cel-

lular Biology, 23(4):1209–1220, 2003.

[127] T. Sasaoka, H. Hori, T. Wada, M. Ishiki, T. Haruta, H. Ishihara, and

M. Kobayashi. SH2-containing inositol phosphatase 2 negatively regu-

lates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia,

44(10):1258–1267, 2001.

[128] N. Nakashima, P. M. Sharma, T. Imamura, R. Bookstein, and J. M.

Olefsky. The tumor suppressor PTEN negatively regulates insulin sig-

naling in 3t3-l1 adipocytes. J of Biol Chem, 275(17):12889–12895,

2000.

[129] S. J. Kim, M. A. DeStefano, W. J. Oh, C. C. Wu, N. M. Vega-Cotto,

et al. mTOR complex 2 regulates proper turnover of insulin receptor

substrate-1 via the ubiquitin ligase subunit Fbw8. Mol Cell, 48(6):875–

887, 2012.

140



[130] Y. Gu, J. Lindner, A. Kumar, W. Yuan, and M.A. Magnuson. Ric-

tor/mTORC2 is essential for maintaining a balance between beta-cell

proliferation and cell size. Diabetes, 60(3):827–837, 2011.

[131] N. Hashimoto, Y. Kido, T. Uchida, S. Asahara, Y. Shigeyama, et al.

Ablation of PDK1 in pancreatic β cells induces diabetes as a result of

loss of β cell mass. Nat Genet, 38(5):589–593, 2006.

[132] S.B. Kondapaka, M. Zarnowski, D.R. Yver, E.A. Sausville, and

S.W. Cushman. 7 hydroxystaurosporine (UCN-01) inhibition of Akt

Thr308 but not Ser473 phosphorylation: a basis for decreased insulin-

stimulated glucose transport. Clin Cancer Res, 10(21):7192–7198, 2004.

[133] S. Sato, N. Fujita, and T. Tsuruo. Interference with PDK1-Akt sur-

vival signaling pathway by UCN-01 (7-hydroxystaurosporin). Onco-

gene, 21:1727–38, 2002.

[134] G. A. Soliman, H. A. Acosta-Jaquez, E. A. Dunlop, B. Ekim, N. E.

Maj, et al. mTOR Ser-2481 autophosphorylation monitors mTORC-

specific catalytic activity and clarifies rapamycin mechanism of action.

J Biol Chem, 285(11):7866–7879, 2010.

[135] Y. Zhao, J. Yang, W. Liao, X. Liu, H. Zhang, S. Wang, D. Wang,

J. Feng, L. Yu, and W. G. Zhu. Cytosolic Foxo1 is essential for the

induction of autophagy and tumour suppressor activity. Nat Cell Biol,

12(7):665–675, 2010.

[136] L. Willems, N. Chapuis, A. Puissant, T. T. Maciel, A. S. Green, et al.

The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor

activity in acute myeloid leukemia. Leukemia, 26(6):1195–1202, 2012.

[137] A. Bertuzzi, A. Gandolfi, C. Sinisgalli, and D. Iacoviello. Steel’s po-

tential doubling time and its estimation in cell populations affected by

nonuniform cell loss. Math Biosci, 143(2):61–89, 1997.

[138] G. M. Cooper. The cell: A molecular approach, 2nd edn. Sunderland,

MA., 2000.

[139] D. C. Allison, P. F. Ridolpho, S. Anderson, and K. Bose. Variations

in the [3H] thymidine labeling of S-phase cells in solid mouse tumors.

Cancer Res, 45(12 Part 1):6010–6016, 1985.

141



[140] G. Mariño, M. Niso-Santano, E.H. Baehrecke, and G. Kroemer. Self-

consumption: the interplay of autophagy and apoptosis. Nat Rev Mol

Cell Biol, 15(2):81–94, 2014.

[141] S. Park, N. Chapuis, J. Tamburini, V. Bardet, P. Cornillet-Lefebvre,

et al. Role of the PI3K/Akt and mTOR signalling pathways in acute

myeloid leukemia. Haematologica, 95(5):819–828, 2010.

[142] Z. Zeng, D. D. Sarbassov, I. J. Samudio, K. W. Yee, M. F. Munsell,

et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit

Akt activation in AML. Blood, 109(8):3509–3512, 2007.

[143] B. Novák and J.J. Tyson. A model for restriction point control of the

mammalian cell cycle. J Theor Biol, 230(4):563–579, 2004.

142


	Introduction
	Glucose homeostasis and insulin action: from the organ and tissue level to the molecular level
	The regulation of the plasma glucose level by the insulin
	The intra-venous glucose tolerance test (IVGTT)
	The oral glucose tolerance test (OGTT)
	Euglycemic hyperinsulinemic clamp (EHC)

	The intracellular insulin control of glucose uptake: the insulin signaling network
	From insulin binding to PI3K activation
	Akt phosphorylation/dephosphorylation
	Activation/inhibition of Akt substrates
	Pathologies related to dysfunctions of the insulin signaling network


	Mathematical modeling of cell signaling networks and parameter estimation in biochemical pathways
	Mathematical tools for modeling regulatory cellular networks
	Chemical kinetics models
	Compartmental models
	Diffusion-reaction models

	Assessment of the parameter values from the experimental data
	Maximum likelihood method
	Least squares method

	Sensitivity analysis in systems biology modeling
	Local sensitivity analysis
	Global sensitivity analysis


	Mathematical modeling of the insulin signaling network
	State of the art
	The ISN model proposed to analyse the available experimental data
	Reactions within the PI3K-Akt-mTOR network
	Kinetic and equilibrium equations
	Model equations in normalized form


	Model parameter estimation from experimental data of skeletal muscle cells
	Experimental data used for the ISN parameter estimation
	Estimation procedure and optimization algorithm
	Estimates of ISN model parameters and optimal fitting curves for L6 myoblasts
	Estimates of ISN model parameters and optimal fitting curves for C2C12 myotubes
	Effects of inhibitors and of gene knockout and identification of potential drug targets

	Link between the ISN and the cell proliferation: response to mTOR inhibitors with antitumor activity
	The eukaryotic cell cycle
	The mathematical model of the cell proliferation
	Model parameter estimation from data of AML cells
	Akt/mTOR signaling and cell proliferation

	Conclusions
	Acronyms
	List of Figures
	List of Tables
	Bibliography

