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Abstract. We consider the initial value boundary problem with
zero Neumann data for an equation modelled after the porous me-
dia equation, with variable coefficients. The spatial domain is un-
bounded and shaped like a (general) paraboloid, and the solution
u is integrable in space and non-negative. We show that the as-
ymptotic profile for large times of u is one-dimensional and given
by an explicit function, which can be regarded as the fundamental
solution of a one-dimensional differential equation with weights.

In the case when the domain is a cone or the whole space
(Cauchy problem) we obtain a genuine multi-dimensional profile
given by the well known Barenblatt solution.
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1. Introduction

Consider in ST = Ω × (0, T ) the following Neumann problem for the
filtration equation

∂u

∂t
− ∂

∂xj

(

aij(x, t)
∂um

∂xi

)

= 0 , in ST = Ω × (0, T ) , (1.1)

aij(x, t)
∂um

∂xi

νj = 0 , on ∂Ω × (0, T ) , (1.2)

u(x, 0) = u0(x) , x ∈ Ω . (1.3)
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Notice that we understand throughout summation with respect to re-
peated indexes. Here Ω ⊂ R

N is a domain with sufficiently smooth
non compact boundary, N ≥ 2, m > 1, ν = (ν1, . . . , νN) is the unit
outer normal to ∂Ω, u0 ∈ L1(RN ) is a non-negative function, and the
coefficients aij ∈ L∞(ST ), i, j = 1, . . . N , (x, t) ∈ ST are such that for
a constant c0 ≥ 1 and for all ξ = (ξ1, . . . , ξN) ∈ R

N , a.e. (x, t) ∈ S∞

we have

c−1
0 |ξ|2 ≤ aij(x, t)ξiξj ≤ c0|ξ|2 . (1.4)

The main goal of this paper is to get the asymptotic profile as t → ∞
of solutions to (1.1)–(1.3) in S = S∞ under additional assumptions on
the coefficients and on the geometry of the domain Ω (see (1.8)).

Since (1.1) is degenerate on {u = 0} we must understand the concept
of solution in a weak sense. We denote by BR(x) the ball of radius R
centered at x ∈ R

N .

Definition 1.1. We say that u ≥ 0 is a weak solution of (1.1)–(1.3) in
ST if

u ∈ C((0, T ); L1(Ω)) ∩ L∞
loc((0, T ); L∞(Ω)) ,

|∇ um| ∈ L1(ST ) ∩ L2
loc(0, T ; L2(Ω ∩ BR(0))) , for all R > 0,

and for any test function ϕ ∈ C∞(ST ) with ϕ(x, T ) = 0 the following
identity holds:
¨

ST

(

− uϕt + aij(x, t) (um)xi
ϕxj

)

dx dt =

ˆ

Ω

u(x, 0)ϕ(x, 0) dx . (1.5)

�

It is well known (see [5]) that a weak solution in the sense of Defini-
tion 1.1 is in fact locally Hölder continuous in ST .

If aij(x, t) = δij where δij denotes the Kronecker symbol, then (1.1)
is the porous media equation (PME). It is well known (see [13], [18])
that if Ω = R

N and u0 ∈ L1(R
N) then as t → ∞ we have

t
N
β |u(x, t) − E(x, t)| → 0 , (1.6)

uniformly in x ∈ R
N , where β = N(m−1)+2 is the so called Barenblatt

exponent and E(x, t) is the fundamental solution of the PME with the
same total mass as u0(x). More explicitly

E(x, t) = t− N
β



C − c(m, N)

(

|x|
t1/β

)2




1
m−1

+

. (1.7)
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Here c(m, N) = (2β)−1(m−1) and C is chosen so that ‖u0‖1 = ‖E(t)‖1

for t > 0. Note that in the aforementioned papers the uniqueness of the
fundamental solution plays an important role. Such a result was proven
first in [15] and in [13] with alternative approaches. More recently the
approach of [13] was simplified in [16]. In the case of bounded domains
we quote the recent paper [7].

1.1. Geometry of the domain. Let us turn now to our problem. We
define namely the paraboloid-like domains

Ω(α) =
{

x ∈ R
N | xN > 0 , |x′| < xα

N

}

, (1.8)

where 0 ≤ α ≤ 1 and x′ = (x1, . . . , xN−1). Actually the two extreme
cases α = 0 and α = 1 hardly deserve the definition of paraboloid-like
domain, corresponding respectively to the case of the cylinder and of
the cone.

Essentially, we prove that when α < 1 the asymptotic profile of the
solution to (1.1)–(1.3) is one-dimensional. When α = 1 instead the
profile is genuinely N -dimensional; in this instance our results cover
also the case of the Cauchy problem. Indeed to the best of our knowl-
edge, for equations containing variable coefficients aij , even the latter
case was not treated in the literature, so we believe our approach is of
interest in view both of the geometry of the domain and of the structure
of the equation it allows.

For this choice of Ω in (1.1)–(1.3) we know from [3] that a solution
u satisfies

‖u(t)‖∞ ≤ γ max







‖u0‖2/β
1

tN/β
,

‖u0‖2/b(α)
1

tn(α)/b(α)







, for any t > 0. (1.9)

Here and below we denote by γ a generic positive constant depending
only on the parameters N , m, α, and use the notation for −1/(N −1) <
s ≤ 1

n(s) = s(N − 1) + 1 , b(s) = n(s)(m − 1) + 2 ,

λ(s) = Nb(s)β−1 − n(s) > 0 , if s < 1,

and let β = b(1) = N(m − 1) + 2 be the usual Barenblatt number.
Notice that n(α) is nothing but the dimension at infinity of Ω(α),
while n(1) = N is the topological dimension of Ω(α). This remark is
made precise by the equality

|ΩR| =
ωN−1

n(α)
Rn(α) , R > 0 , ΩR := Ω(α) ∩ {xN < R} , (1.10)
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where ωN−1 is the (N − 1)-dimensional measure of the unit ball in
R

N−1, and by the observation that the asymptotics for large R of
|Ω(α) ∩ BR(0)| are given by the same power function as in (1.10).

Remark 1.2. Some general remarks on the interplay between the geom-
etry of the domain and the behavior of solutions to partial differential
equations like (1.1) are perhaps in order. The classical approach to the
existence theory of solutions to problem (1.1)–(1.3) (see for example
[19]) relies upon suitable embedding results yielding compactness of
a sequence of compactly supported approximating solutions. In turn,
embedding results rely on isoperimetric inequalities, which leads us to
consider the classes of domains treated in [8, 9, 10], [3, 4]. For domains
in these classes the L∞ estimates which are the main tool in our ap-
proach were proven in [2, 3, 4], for a wide class of Neumann problems
for doubly degenerate parabolic equations including (1.1). However in
this paper we deal only with model domains as in (1.8), which dis-
penses us from giving here the general definitions of the admissible
classes. This restriction allows us in fact to apply rescaling arguments
without cumbersome complications. �

Next we introduce the following fundamental solution which appears
in our main result as the one-dimensional asymptotic profile; let

Eα(y, t) = t
−

n(α)
b(α)



C − m − 1

2mb(α)

(

y

t
1

b(α)

)2




1
m−1

+

, t > 0 , y > 0 .

(1.11)
Then, for a suitable choice of C > 0, Eα solves the problem

y(N−1)α ∂V

∂t
− ∂

∂y

(

y(N−1)α ∂V m

∂y

)

= 0 , t > 0 , y > 0 , (1.12)

y(N−1)α ∂V m

∂y
= 0 , t > 0 , y = 0 , (1.13)

y(N−1)αV (y, 0) = Mδ(y) , y > 0 , (1.14)

where δ denotes Dirac’s mass, and we let

M = ω−1
N−1‖u0‖1 .

It is straightforward to check that Eα solves (1.12)–(1.14) in the fol-
lowing sense.
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Definition 1.3. A function V : (0, +∞) × (0, +∞) → [0, +∞) is a
weak solution to (1.12)–(1.14), if for dq = y(N−1)α dy,

V , (V m)y ∈ L1
(

(0, R) × (0, T ); dq
)

; (1.15)

(V m)y ∈ L2
(

(0, R) × (τ, T ); dq
)

, (1.16)

for all R > 0, T > τ > 0, In addition we ask that

+∞
ˆ

0

+∞
ˆ

0

y(N−1)α
(

− V ϕt + (V m)yϕy

)

dy dt = Mϕ(0, 0) , (1.17)

for all ϕ ∈ C1([0, +∞) × [0, +∞]), ϕ(y, t) = 0 when y ≥ R or t ≥ T ,
for suitable R, T > 0. �

In fact V = Eα is immediately seen to satisfy also, for a suitable
c1 > 0,

V (y, t) ≤ c1t
−

n(α)
b(α) , y > 0 , t > 0 : (1.18)

V (y, t) = 0 , y ≥ c1t
1

b(α) ; (1.19)

‖V (t)‖L1(0,+∞; dq) = M , t > 0 . (1.20)

This fact will be relevant in the proof of the following uniqueness result,
which is essential to us.

Theorem 1.4. Any solution V to (1.12)–(1.14) in the sense of Defini-

tion 1.3 coincides with Eα, provided V also fulfills requirements (1.18)–
(1.20).

1.2. Main results. Further we need some assumptions on the asymp-
totic behavior of the coefficients aiN , i = 1, . . . , N . Let δiN , i = 1, . . . ,
N be the standard Kronecker symbol. Then we assume for i = 1, . . . ,
N that

lim
ρ→∞

ρ−(n(α)+b(α))

ρb(α)
ˆ

0

ˆ

Ωρ

|aiN(y, t) − δiN |2 dy dt = 0 . (1.21)

We remark that the quantity appearing in (1.21) is essentially an inte-
gral average.

Before stating our main results we introduce the following notation:
the set

PR =
{

(x, t) | x ∈ Ω(α) | xN < Rt
1

b(α)

}

,

for any given R > 0 is called interior domain, while S∞ \ PR is called
outer domain. As far as we know, no general uniqueness result is
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available for our problem; thus in the Theorems below we refer to any
solution obtained as outlined in Remark 1.2.

Our first result is

Theorem 1.5. Let u be a solution of (1.1)–(1.3) in S∞ = Ω(α) ×
(0, ∞) with 0 ≤ α < 1 in the sense above, and let Eα be as in (1.11).

Assume that (aiN) fulfills condition (1.21). Then u approaches Eα

as t → +∞ in the following sense, for all p ∈ [1, +∞).
Interior domain: For all R > 0, T > τ > 0,

t
n(α)
b(α)

p

tT
 

tτ

 

Ω
t1/b(α)R

|u(y, s) − Eα(yN , s)|p dy ds → 0 . (1.22)

If in addition aij = aij(x),

t
n(α)
b(α)

p

 

Ω
t1/b(α)R

|u(y, t) − Eα(yN , t)|p dy → 0 . (1.23)

Outer domain: For a suitable Γ > 0:

t
n(α)
b(α) ‖u(t) − Eα(t)‖∞,{xN >Γ t1/b(α)} → 0 .

Next we consider the case of cones, i.e., α = 1; in this case the
asymptotic profile is N -dimensional, in the following sense.

Theorem 1.6. Let u be a solution of (1.1)–(1.3) in S∞ = Ω(1) ×
(0, ∞) in the sense above, and let E be as in (1.7), with C such that

‖E(t)‖1,Ω(1) = ‖u0‖1,Ω(1).

Assume that (aij) fulfills the condition

lim
ρ→∞

ρ−(N+β)

ρβ
ˆ

0

ˆ

Ωρ

|aij(y, t) − δij |2 dy dt = 0 , 1 ≤ i, j ≤ N .

(1.24)
Then we have

t
N
β ‖u(t) − E(t)‖∞ → 0 , t → ∞ .

The same result holds true if Ω(1) is formally replaced with R
N above,

that is in the case of the Cauchy problem.

In Section 2 we present the proof of Theorem 1.5 and the few changes
needed to prove Theorem 1.6. The uniqueness result Theorem 1.4
is proved in Section 3; finally Sections 5 and 4 are devoted to some
necessary technical results.
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2. Proof of Theorem 1.5.

In the first steps of the proof we use the rescaling arguments intro-
duced by Kamin in an essential way (see [11, 17, 12, 13, 19, 1, 6] and
references therein). In the following we denote Ω = Ω(α) for the sake
of simplicity.

Let uk(x, t) = kn(α)u(kαx′, kxN , kb(α)t), k ≥ 1. Then uk(x, t) is a
weak solution to the equation

∂uk

∂t
=

∂

∂xj

(

Ak
ij(x, t)(um

k )xi

)

, (2.1)

where for i, j = 1, . . . N − 1,

Ak
ij = k2(1−α)ak

ij , Ak
Nj = k1−αak

Nj , Ak
jN = k1−αak

jN , Ak
NN = ak

NN ,

ak
ij(x, t) = aij(k

αx′, kxN , kb(α)t) .

In addition, also in a standard weak sense,

Ak
ij(x, t)

∂um
k

∂xi

νj = 0 , on ∂Ω × (0, T ), (2.2)

and
uk(x, 0) = uk0(x) = kn(α)u0(k

αx′, kxN ) , x ∈ Ω . (2.3)

Notice that for t > 0
ˆ

Ω

uk(x, t) dx =

ˆ

Ω

u(x, t) dx =

ˆ

Ω

u0(x) dx . (2.4)

As a direct consequence of the definition of uk and of estimate (1.9) we
have for k ≥ 1 the estimates for uk

‖uk(t)‖∞ ≤ γ∗ max











‖u0‖
2
β

1

t
N
β kλ(α)

,
‖u0‖

2
b(α)

1

t
n(α)
b(α)











≤ γ∗ max











‖u0‖
2
β

1

t
N
β

,
‖u0‖

2
b(α)

1

t
n(α)
b(α)











, for all t > 0. (2.5)

Next we need the following auxiliary result, where we use the nota-
tion

ST,R = ΩR × (0, T ) , ST,R,τ = ΩR × (τ, T ) ,

∇x′ =
(

∂

∂x1

, . . . ,
∂

∂xN−1

)

.

We also understand in the following that indexes denoted by i′ range
over 1, . . . , N − 1.
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Proposition 2.1. Under the conditions of Theorem 1.5, we have for

all k ≥ 1, T > τ > 0, R > 0

T̂

τ

ˆ

ΩR

|(um
k )xN

|2 dx dt + k2(1−α)

T̂

τ

ˆ

ΩR

|∇x′ um
k |2 dx dt ≤ γ , (2.6)

where the constant on the right-hand side depends on c0, ‖u0‖1, τ , T ,

R but not on k.

Proof. Multiply both sides of the equation (2.1) by um
k ζ2(xN )(t − τ/2)

where ζ(xN) is a smooth cutoff function in (0, 2R) such that ζ = 1 in
[0, R] and |ζxN

| ≤ γ/R. Then integrating by parts over ST,R we obtain
ˆ

Ω2R

uk(x, T )m+1

m + 1

(

T − τ

2

)

ζ2 dx

+

T̂

τ
2

ˆ

Ω2R

Ak
ij(u

m
k )xi

(um
k )xj

(

t − τ

2

)

ζ2 dx dt

=

T̂

τ
2

ˆ

Ω2R

um+1
k

m + 1
ζ2 dx dt

+ 2

T̂

τ
2

ˆ

Ω2R

Ak
iN (um

k )xi
um

k

(

t − τ

2

)

ζζxN
dx dt .

On applying the Cauchy inequality and (1.4) to this equality we obtain

c0
τ

2

T̂

τ

ˆ

ΩR

|(um
k )xN

|2 dx dt + c0
τ

2
k2(1−α)

T̂

τ

ˆ

ΩR

|∇x′um
k |2 dx dt ≤

γ

T̂

τ
2

ˆ

Ω2R

um+1
k ζ2 dx dt +

γ

R2

T̂

τ
2

ˆ

Ω2R

u2m
k

(

t − τ

2

)

dx dt . (2.7)

The right-hand side of (2.7) can be estimated by (2.5), whence the
sought after estimate follows. �

Let ϕ(xN , t) be a smooth function in [0, +∞) × [0, +∞) such that

ϕ(xN , t) = 0 , xN ≥ R ; ϕ(xN , t) = 0 , t ≥ T .
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Then from the weak formulation of problem (2.1)–(2.3) for uk we obtain

¨

ST,R

(

− ukϕt + ak
NN (um

k )xN
ϕxN

)

dx dt =

− k1−α

¨

ST,R

ak
i′N (um

k )xi′
ϕxN

dx dt +

ˆ

ΩR

uk(x, 0)ϕ(x, 0) dx . (2.8)

Our purpose is to take the limit k → ∞ in (2.8). First we remark
that by making use of (2.5) one can prove (following for example [4]
Proposition 3.2 that for any τ > 0

τ
ˆ

0

ˆ

ΩR

(

uk|ϕt| +
∣

∣

∣Ak
iN (x, t)(um

k )xi
ϕxN

∣

∣

∣

p )

dx dt ≤ γ(ϕ, u0)τ
ω , (2.9)

where γ and ω > 0 also depend on p ∈ [1, (Nm + 2)/(Nm + 1)), but
not on k.

Next we have for 0 < τ < T
¨

ST,R,τ

ak
NN(um

k )xN
ϕxN

dx dt = I +

¨

ST,R,τ

(um
k )xN

ϕxN
dx dt , (2.10)

where

|I| =

∣

∣

∣

∣

∣

∣

∣

∣

¨

ST,R,τ

(

ak
NN − 1

)

(um
k )xN

ϕxN
dx dt

∣

∣

∣

∣

∣

∣

∣

∣

≤









¨

ST,R,τ

(

ak
NN − 1

)2
dx dt









1
2








¨

ST,R,τ

(um
k )2

xN
ϕ2

xN
dx dt









1
2

=: J
1
2 D

1
2 .

(2.11)

Let y′ = kαx′, yN = kxN , s = tkb(α). Then

J = k−n(α)−b(α)

T kb(α)
ˆ

τkb(α)

Rk
ˆ

0

ˆ

|y′|≤yα
N

(

aNN (y, s) − 1
)2

dy′ dyN ds , (2.12)

so that J → 0 as k → ∞ when we take into account our assumption
(1.21). Moreover D is bounded uniformly on k ≥ 1 due to Proposi-
tion 2.1. Therefore I → 0 as k → ∞. A similar argument, still invoking
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(1.21), proves that as k → ∞
∣

∣

∣

∣

∣

∣

∣

∣

k1−α

¨

ST,R,τ

ak
i′N(um

k )xi′
ϕxN

dx dt

∣

∣

∣

∣

∣

∣

∣

∣

≤









¨

ST,R,τ

(

ak
i′N

)2
dx dt









1
2

×









k2(1−α)

¨

ST,R,τ

|∇x′ um
k |2ϕ2

xN
dx dt









1
2

→ 0 .

(2.13)

In order to prove compactness for um
k in an integral sense, when we

take into account the estimate (2.6), we only need obtain a suitable
regularity in time. To this end we obtain the following result from
combining the bounds obtained for uk in (2.5) and in (2.6), which are
uniform with respect to k ≥ 1, with classical arguments in the theory
of parabolic equations.

Lemma 2.2. For every set ST,R,τ there exists a constant γ depending

on R > 0, T > τ > 0, but not on k, such that for all 0 < h < 1 and

k ≥ 1
¨

ST,R,τ

|uk(x, t + h) − uk(x, t)|m+1 dx dt ≤ γ
√

h . (2.14)

If in addition we assume aij = aij(x), then for t ∈ [τ, T ]
ˆ

ΩR

|uk(x, t + h) − uk(x, t)| dx ≤ γh
1

2(m+3) . (2.15)

The proof of this Lemma, involving a careful check of the effects of
the strong anisotropy in (2.1), is presented in Section 4.

The estimates (2.6) and (2.14) together with the sup bound (2.5)
imply compactness of the sequence uk in L2

loc(0, T ; L2(ΩR)). Possibly
by extracting a subsequence we then have uk → u∞ as k → ∞ in
L2

loc(0, T ; L2(ΩR)), and a.e. in S∞. Moreover we may assume by invok-
ing (2.6) that

∇um
k → ∇um

∞ , weakly in L2
loc(0, T ; L2(ΩR)); ∇x′um

∞ = 0 ,

so that u∞ is independent of the x′ variables. Finally, it follows easily
from (2.5) that

‖u∞(t)‖∞ ≤ γ∗ ‖u0‖
2

b(α)

1

t
n(α)
b(α)

, for all t > 0. (2.16)
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Thus, by taking into account (2.10)–(2.12) we get for k → ∞
¨

ST,R,τ

(

− ukϕt + ak
NN (x, t)(um

k )xN
ϕxN

)

dx dt

→
¨

ST,R,τ

(

− u∞ϕt + (um
∞)xN

ϕxN

)

dx dt , (2.17)

Therefore as k → ∞ we infer from (2.8) and from (2.13), (2.17), (2.9)
¨

ST,R

(

− u∞ϕt + (um
∞)xN

ϕxN

)

dx dt = lim
k→∞

ˆ

ΩR

uk(x, 0)ϕ(xN , 0) dx .

(2.18)
Let us identify the limit in the right-hand side of (2.18). We have
ˆ

ΩR

uk(x, 0)ϕ(xN , 0) dx

=

ˆ

ΩR

uk(x, 0)
(

ϕ(xN , 0) − ϕ(0, 0)
)

dx + ϕ(0, 0)

ˆ

ΩR

uk(x, 0) dx

=

ˆ

ΩkR

u0(y
′, yN)

(

ϕ(yN/k, 0) − ϕ(0, 0)
)

dy + ϕ(0, 0)

ˆ

ΩkR

u0(y) dy .

Letting k → ∞ and using the global integrability of u0, we obtain

lim
k→∞

ˆ

ΩR

uk(x, 0)ϕ(xN , 0) dx = ϕ(0, 0)

ˆ

Ω

u0(x) dx .

Thus from (2.18), and recalling that the support of ϕ is contained in
ST,R we have
¨

ST,R

(

− u∞ϕt + (um
∞)xN

ϕxN

)

dx dt = ϕ(0, 0)‖u0‖1 = ωN−1ϕ(0, 0)M .

Recalling that the limit function is independent of x′, we infer

T̂

0

∞̂

0

x
α(N−1)
N

(

− u∞ϕt + (um
∞)xN

ϕxN

)

dxN dt = Mϕ(0, 0) . (2.19)

Now it follows from (2.19) and from Theorem 1.4, see Corollary 3.1 in
Section 3 for the details, that u∞ = Eα. Therefore, the whole sequence
uk tends to Eα in L2

loc(0, T ; L2(ΩR)) and actually in Lp
loc(0, T ; Lp(ΩR))

for all R and p ≥ 1, owing to the sup bound (2.5).
11



2.1. The interior domain. Next fix R > 0, T > τ > 0, p ≥ 1 and
compute, by taking advantage of the self-similar form of Eα, and by
changing variables,

Ik =

T
 

τ

 

ΩR

|uk(x′, xN , z) − Eα(xN , z)|p dx dz

=

T
 

τ

 

ΩR

|kn(α)u(kαx′, kxN , kb(α)z) − kn(α)Eα(kxN , kb(α)z)|p dx dz

= kn(α)p

kb(α)T
 

kb(α)τ

 

ΩkR

|u(y, s) − Eα(yN , s)|p dy ds .

Now for any given t ≥ 1 we select k = t1/b(α) so that by virtue of the
compactness following from (2.14)

lim
t→∞

t
n(α)
b(α)

p

tT
 

tτ

 

Ω
Rt1/b(α)

|u(y, s) − Eα(yN , s)|p dx ds = lim
k→∞

Ik = 0 .

Whence (1.22) is proved; (1.23) is proved similarly, on invoking (2.15).

2.2. The outer domain. We define

Ωr = Ω \ Ωr , µk
r(t) = sup

0<τ<t

ˆ

Ωr

uk(x, τ) dx , µr(t) = µ1
r(t) .

where uk is as above and we recall that u1 = u. We state first the
following variant of (2.5).

Lemma 2.3. Under the assumptions of Theorem 1.5 we have for any

t > 0

‖uk(t)‖∞,ΩR ≤ γ∗δ−ω max







µk
(1−δ)R(t)

2
β

t
N
β kλ(α)

,
µk

(1−δ)R(t)
2

b(α)

t
n(α)
b(α)







, (2.20)

for 0 < δ ≤ 1/2, ω = ω(N) > 0, provided

R ≥ C∗(N, m, α) max
{

‖u0‖
m−1

β

1 t
1
β k−

β−b(α)
β , ‖u0‖

m−1
b(α)

1 t
1

b(α)

}

. (2.21)

We also need the following estimate.

Lemma 2.4. Under the assumptions of Lemma 2.3 with C∗ large

enough, the following estimate holds

µk
R(t) ≤ 2µk

R/2(0) . (2.22)
12



The proofs of the two Lemma above are postponed to Section 5.
We have as a consequence of (2.20) and (2.22) that

‖uk(t)‖∞,ΩR ≤ γ max







µk
R/4(0)

2
β

t
N
β

,
µk

R/4(0)
2

b(α)

t
n(α)
b(α)







, (2.23)

under assumption (2.21). We select in (2.23) t = 1, k = T 1/b(α), R = Γ ,
where Γ is the value taken by the right hand side of (2.21) when t = 1,
k = 1, whence we obtain

T
n(α)
b(α) ‖u(T )‖

∞,ΩΓ T 1/b(α) ≤ γ max
{

µΓ T 1/b(α)/4(0)
2
β , µΓ T 1/b(α)/4(0)

2
b(α)

}

.

Reverting to the name of variable t we have proved that

t
n(α)
b(α) ‖u(t)‖

∞,ΩΓ t1/b(α) → 0 , t → ∞ .

Next we take into account that supp Eα(t) ⊂ BR(t)(0), where R(t) =

γCt1/b(α). Since we may assume without loss of generality that Γ ≥ γC,
we get

t
n(α)
b(α) ‖u(t) − Eα(t)‖

∞,ΩΓ t1/b(α) → 0 , as t → ∞.

The proof of Theorem 1.5 is concluded.

Proof of Theorem 1.6. The proof in this case proceeds formally along
the same lines as above, setting α = 1. The key difference between
the cases of the cone and of the paraboloid is that in the former no
essential anisotropy appears in the rescaled equation for uk.

Thus the energy inequality in the analogue of Proposition 2.1 is a
standard isotropic one, and the limiting function u∞ really depends on
all the space variables, solving the standard porous media equation in
Ω(1). This remark motivates the necessity of an assumption controlling
the asymptotic behavior of the full matrix of coefficients, as in (1.24).

As a by-product of the stability of the structure of the rescaled equa-
tions, we may apply the results of [5] to the sequence {uk}, obtaining a
uniform modulus of continuity for the functions uk. Thus we have uni-
form convergence to u∞ = E in each bounded set ΩR × (τ, T ), R > 0,
0 < τ < T , implying by a reasoning similar to the one used above to
prove (1.22)

‖u(t) − E(t)‖∞,{xN <Rt1/β } → 0 , t → ∞ .

The convergence in the outer domain is proved in the same way as in
the case α < 1. �
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3. Uniqueness of the fundamental solution.

Proof of Theorem 1.4. The proof is based on the approach of [16].
Consider for 0 < h ≤ 1 the net

uh(xN , t) = h
n(α)
b(α) V (h

1
b(α) xN , ht) .

Notice that by its definition, uh satisfies the same sup bound as in
(1.18), and solves (1.12) as well. Also, by mass conservation law (1.20),
we have

∞̂

0

uh(xN , t)x
α(N−1)
N dxN =

∞̂

0

V (xN , ht)x
α(N−1)
N dxN = M ,

for any h > 0. On making use of the uniform sup bound recalled above,
and of the results in [5], we conclude that {uh} is locally Hölder con-
tinuous with a uniform modulus of continuity, so that we may assume,
perhaps extracting and relabelling a subsequence, that uh(·, 1) → u∗(·)
as h → 0 uniformly in any compact subset of (0, ∞).

Let now t > 0 be fixed, and assume xN ≥ c1t1/b(α), where c1 is
the constant appearing in (1.19). Then it follows from (1.19) and the
definition of uh that uh(xN , t) = 0. Thus also the support of u∗(t) is
contained in ΩR for R ≥ c1t

1/b(α), and we also infer uh(1) → u∗ in
L1((0, +∞)) as h → 0.

Let v(xN , t) be the solution of problem (1.12)–(1.13) in (0, +∞) ×
(1, +∞) with initial data v(1) = u∗; the corresponding modification
of Definition 1.3 is straightforward. We remark that the calculations
below can then be obtained by approximation since uniqueness of solu-
tions to problems of this kind, with bounded initial data, can be proved
along the lines of [19], Chapter 5.

Then by the contraction principle we have for all t > 1

∞̂

0

∣

∣

∣uh(xN , t) − v(xN , t)
∣

∣

∣x
α(N−1)
N dxN

≤
∞̂

0

∣

∣

∣uh(xN , 1) − v(xN , 1)
∣

∣

∣x
α(N−1)
N dxN → 0 , (3.1)

as h → 0. Denote for each h > 0, t > 0,

ωh(t) =

∞̂

0

∣

∣

∣uh(xN , t) − Eα(xN , t)
∣

∣

∣x
α(N−1)
N dxN .
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Then the contraction principle yields that ωh is nonincreasing in time.
Moreover by appealing to the selfsimilarity of Eα and to the definition
of uh we get by a change of integration variable

ωh(t) =

∞̂

0

∣

∣

∣u1(yN , ht) − Eα(yN , ht)
∣

∣

∣ y
α(N−1)
N dyN = ω1(ht) ,

so that ωh(t) is nonincreasing both in time and in h. Clearly mass
conservation implies that ωh(t) is bounded by 2M . Then the following
limits exist by monotonicity and are finite

lim
h→0

ωh(1) = lim
h→0

ω1(h) = lim
h→0

ω1(2h) = lim
h→0

ωh(2) =: ω0 .

Therefore by (3.1)

ω0 = lim
h→0

ωh(1) = lim
h→0

ωh(2) =

∞̂

0

|v(xN , 2) − Eα(xN , 2)| x
α(N−1)
N dxN .

We claim that ω0 = 0. We proceed by contradiction and assume that
ω0 > 0. Define u(xN , t) and u(xN , t) as the solutions of problem (1.12)–
(1.13) for t > 1 with initial data

u(·, 1) = max
{

v(·, 1), Eα(·, 1)
}

, u(·, 1) = min
{

v(·, 1), Eα(·, 1)
}

,

Then by comparison we have

u ≥ max
{

v, Eα

}

≥ min
{

v, Eα

}

≥ u , in (0, ∞) × (1, ∞).

Since we are assuming that v(2) 6= Eα(2), and for t ≥ 1

∞̂

0

Eα(xN , t)x
α(N−1)
N dxN =

∞̂

0

v(xN , t)x
α(N−1)
N dxN = M ,

it follows that
∞̂

0

(u(xN , 2) − u(xN , 2))x
α(N−1)
N dxN >

∞̂

0

[

max
{

v, Eα

}

(xN , 2) − min
{

v, Eα

}

(xN , 2)
]

x
α(N−1)
N dxN

=

∞̂

0

|v(xN , 2) − Eα(xN , 2)| x
α(N−1)
N dxN = ω0 .
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On the other hand by the contraction principle

∞̂

0

(u(xN , 2) − u(xN , 2))x
α(N−1)
N dxN

≤
∞̂

0

(u(xN , 1) − u(xN , 1))x
α(N−1)
N dxN

=

∞̂

0

|v(xN , 1) − Eα(xN , 1)| x
α(N−1)
N dxN = ω0 ,

that is an inconsistency. Therefore ω0 = 0. Since ω1(t) is nonincreasing
in time, we conclude that ω1(t) = 0 for all t > 0. �

Corollary 3.1. For u∞ defined as in Section 2, and Eα as in Section 1,

we have u∞ = Eα.

Proof. We only need to check that u∞ satisfies the assumptions of The-
orem 1.4.

Requirements (1.15) and (1.16) follow by the approximation uk →
u∞ and from Proposition 2.1 and from (2.9). Equation (1.17) amounts
to (2.19).

The bound in (1.18) has been proved in (2.16). As to the support
estimate (1.20), we remark that for

R ≥ C∗‖u0‖
m−1
b(α)

1 t
1

b(α) , (3.2)

where C∗ is the constant appearing in (2.21), we have by Fatou’s lemma

ˆ

ΩR

u∞(yN , t) dy ≤ lim inf
k→∞

ˆ

ΩR

uk(yN , t) dy

≤ 2 lim inf
k→∞

ˆ

ΩR

uk(yN , 0) dy = 0 .

Indeed we may apply Lemma 2.4 since for large k our assumption (3.2)
implies (2.21).

Then conservation of mass as in (1.20) follows again from approxi-
mation and from Lemma 2.4. �
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4. Proof of Lemma 2.2.

4.1. Proof of (2.14). We write, as a consequence of the weak formu-
lation of problem (2.1)–(2.3),
¨

ST,R,τ

{

− (uk(x, t + h) − uk(x, t))ζt + Aj(x, t, h)ζxj

}

dx dt = 0 , (4.1)

where we set R > 0, T > τ > 2h > 0,

Aj(x, t, h) = Ak
ij(x, t + h)(um

k )xi
(x, t + h) − Ak

ij(x, t)(um
k )xi

(x, t) ,

and select for h > 0

ζ(x, t) = −ζ1(xN)ζ2(t)

t+h
ˆ

t

um
k (x, s) ds .

Here ζ1 ∈ C1
0([0, R)), ζ1(xN ) = 1 for 0 ≤ xN ≤ R/2, and ζ2 ∈

C1
0((τ, T )) are standard cut-off functions. On using the elementary

inequality valid for a, b ≥ 0, (am − bm)(a− b) ≥ |a− b|m+1 we find after
routine calculations

¨

ST,R/2,τ

|uk(x, t + h) − uk(x, t)|m+1 ζ2(t) dx dt ≤ γ1h

+

¨

ST,R,τ

{

AN(x, t, h)ζ1xN
(xN )ζ2(t)

t+h
ˆ

t

um
k (x, s) ds

}

dx dt

+

¨

ST,R,τ

{

Aj(x, t, h)ζ1(xN)ζ2(t)

t+h
ˆ

t

(um
k )xj

(x, s) ds
}

dx dt .

(4.2)

Here γ1 depends on R, T , τ , ‖ζ2t‖∞ and on the bounds in (2.5), but
not on k.

Next we bound

|AN(x, t, h)ζ1xN
(xN )| ≤ γ

{

|(um
k )xN

(x, t)| + |(um
k )xN

(x, t + h)|

+ k1−α
N−1
∑

j=1

[

|(um
k )xj

(x, t)| + |(um
k )xj

(x, t + h)|
]

}

. (4.3)

It follows, again taking into account (2.5) and (2.6), that the first
integral on the right hand side of (4.2) can be bounded above by γ1h,
perhaps by means of an inessential redefinition of γ1.
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Finally we turn to estimating the last integral in (4.2); we remark
that

∣

∣

∣

∣

∣

∣

∣

Aj(x, t, h)

t+h
ˆ

t

(um
k )xj

(x, s) ds

∣

∣

∣

∣

∣

∣

∣

≤ γG0 + γk1−αG1 + γk2(1−α)G2 ,

where the quantities Gi are as follows, and γ is independent of k. We
have first

G0 =
[

|(um
k )xN

(x, t)| + |(um
k )xN

(x, t + h)|
]

×
t+h
ˆ

t

|(um
k )xN

(x, s)| ds .

Then we define

G1 =
[

|(um
k )xN

(x, t)| + |(um
k )xN

(x, t + h)|
]

×
N−1
∑

j=1

t+h
ˆ

t

|(um
k )xj

(x, s)| ds

+
[N−1
∑

j=1

[

|(um
k )xj

(x, t)| + |(um
k )xj

(x, t + h)|
]

]

×
t+h
ˆ

t

|(um
k )xN

(x, s)| ds ,

and finally

G2 =
N−1
∑

i,j=1

[

[

|(um
k )xi

(x, t)| + |(um
k )xi

(x, t + h)|
]

×
t+h
ˆ

t

|(um
k )xj

(x, s)| ds
]

.

It follows from a repeated application of Hölder’s inequality, and from
(2.6), that the last integral in (4.2) is bounded by γ1

√
h.

Therefore we have proved (2.14), after a formal redefiniton of T , τ ,
R, and noticing that the case 2h ≥ τ is trivial since the constant in
(2.14) is allowed to depend on τ .

4.2. Proof of (2.15). Assume here that aij = aij(x) and provisionally
that ∂uk/∂t ∈ L1

loc(0, T ; L1(ΩR)).
Define

Hε(s) = max{−1 , min(s/ε, 1)} , s ∈ R ,

so that Hε is a regular approximation of the function sign. Let ζ1 be
as above, while ζ2(t) vanishes for t ≤ t1 − δ, and satisfies ζ2(t1) = 1.
Here T ≥ t1 ≥ τ is given, and t1 > δ > 0 is to be chosen. Define for all
relevant functions f and for 0 < h < 1

∆hf(x, t) = f(x, t + h) − f(x, t) .
18



We easily obtain for Aj as above

t1
ˆ

0

ˆ

ΩR

{

(∆huk)tHε

(

∆hum
k

)

ζ1ζ2 + Aj(x, t, h)
(

∆hum
k

)

xj

H ′
ε

(

∆hum
k

)

ζ1ζ2

+ ANζ1xN
ζ2Hε

(

∆hum
k

)

}

dx dt = 0 . (4.4)

Notice that under our current assumptions

Aj(x, t, h)
(

∆hum
k

)

xj

= Ak
ij(x)

(

∆hum
k

)

xi

(

∆hum
k

)

xj

≥ 0 .

Then we drop the corresponding nonnegative term on the left hand
side of (4.4) and let ε → 0, so that

Hε(∆hum
k ) → sign (∆hum

k ) = sign (∆huk) , for a.e. (x, t).

Then, on integrating by parts in time, we get

ˆ

ΩR

|(∆huk)(x, t1)| ζ1(xN ) dx ≤ γ

t1
ˆ

t1−δ

ˆ

ΩR

{ ∣

∣

∣

∣

(

∆hum
k

)

xN

∣

∣

∣

∣

+ k1−α
N−1
∑

i=1

∣

∣

∣

∣

(

∆hum
k

)

xi

∣

∣

∣

∣

}

dx dt + γδ−1

t1
ˆ

t1−δ

ˆ

ΩR

|∆huk| dx dt . (4.5)

The first integral on the right hand side of (4.5) can be bounded by

means of (2.6) and of Hölder’s inequality, obtaining the majorant γ
√

δ.
On applying again Hölder’s inequality, the last term on the right

hand side of (4.5) can be bounded by

γδ−1δ
m

m+1

[

t1
ˆ

t1−δ

ˆ

ΩR

|∆huk|m+1 dx dt
] 1

m+1 ≤ γδ− 1
m+1 h

1
2(m+1) ,

where we have made use of (2.14). Collecting the estimates above, and
selecting δ = h1/(m+3) we obtain (substituting t1 with the more usual
variable t)

ˆ

ΩR/2

|uk(x, t + h) − uk(x, t)| dx ≤ γh
1

2(m+3) , t ∈ [τ, T ] , (4.6)

where γ depends on R and on τ , T , but not on k. We also have to
assume for example h < τ2(m+3)/3 for the selection of δ as above to be
possible, but the case where the converse holds true is in fact trivial,
as remarked above.
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The extra assumption on the integrability of the time derivative of
uk may be removed by approximation. In fact u and therefore uk are
limits of a sequence {vkn}n≥1 of compactly supported solutions: we can
prove (4.6) for each vkn and then take the limit n → ∞. Indeed, under
our current stipulation aij = aij(x), each ∂vkn/∂t can be proved to be
integrable as required by means of the same approach as in [19].

5. Proof of the localized estimates.

Proof of Lemma 2.3. The inequality

‖u(T )‖∞,Ωρ ≤ γ∗δ−ω max







µ(1−δ)ρ(T )
2
β

T
N
β

,
µ(1−δ)ρ(T )

2
b(α)

T
n(α)
b(α)







, (5.1)

follows as in Lemma 3.1 of [3], see also Remark 3.1 there, provided

T

ρ2
sup

T/2<τ<T
‖u(τ)‖m−1

∞ ≤ 1 . (5.2)

In fact in [3] the localization is performed in Ωr rather than in Ωr, but
this technical difference is irrelevant under our assumptions of global
integrability of the solution in space. Indeed, we have available the
global estimate (1.9), which allows us to infer condition (5.2) from

ρ ≥ γ max
{

‖u0‖
m−1

β

1 T
1
β , ‖u0‖

m−1
b(α)

1 T
1

b(α)

}

. (5.3)

We use (5.1) with ρ, T replaced with Rk, kb(α)t. One sees that the
necessary condition (5.3) follows now from assumption (2.21). Finally,
the statement follows from this version of (5.1) and the definition of
uk. �

Proof of Lemma 2.4. Let Rn = R(1−2−n), n ≥ 1, Rn = (Rn +Rn+1)/2
and let ζn(xN ) be a smooth cutoff function such that ζn(xN ) = 1 for
xN ≥ Rn+1, ζn(xN ) = 0 for of xN ≤ Rn, |ζnxN

| ≤ γ2nR−1. On multi-
plying both sides of equation (1.1) by ζ2

n and integrating by parts over
Ω, we get

ˆ

Ω

ζn(xN )2u(x, t) dx =

ˆ

Ω

ζn(xN )2u(x, 0) dx

− 2m

t
ˆ

0

ˆ

Ω

ζnum−1aiN uxi
ζnxN

dx dτ . (5.4)
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Applying Hölder’s inequality we bound the double integral in (5.4) from
above by

γ







t
ˆ

0

ˆ

Ω

ζ2
nτµu−θ+m−1 |∇ u|2 dx dτ







1
2

×







t
ˆ

0

ˆ

Ω

ζ2
nxN

τ−µuθ+m−1 dx dτ







1
2

=: J
1
2

1 J
1
2

2 . (5.5)

The parameters µ > 0 and θ < 1 will be chosen presently. Next in
order to bound J1 in (5.5) we multiply both sides of (1.1) by ζ2

nτµu1−θ

and integrate by parts. Then after standard calculations we get

J1 ≤ γ

t
ˆ

0

ˆ

ΩRn

τµ−1u2−θ dx dτ + γ

t
ˆ

0

ˆ

Ω

τµζ2
nxN

u−θ+m+1 dx dτ . (5.6)

We now appeal to the L1-L∞ estimate

‖u(t)‖
∞,ΩRn

≤ γbn max







µRn(t)
2
β

t
N
β

,
µRn(t)

2
β(α)

t
N(α)
β(α)







=: γbnBn(t) , (5.7)

where b = b(c0, N, m, α) > 1, which is essentially (5.1), and is valid
under the assumption (5.2) where we replace ρ, T with R, t respectively.
Notice that this assumption is therefore nothing else than (2.21) with
k = 1.

We choose N(m − 1)/β < µ < 1 and θ = 2 − m, and obtain from
(5.6)–(5.7)

J1 ≤ γµRn(t)

t
ˆ

0

[

‖u(τ)‖m−1

∞,ΩRn
τµ−1 +

22n

R2
‖u(τ)‖2(m−1)

∞,ΩRn
τµ
]

dτ

≤ γbnµRn(t)

t
ˆ

0

[

Bn(τ)m−1τµ−1 + R−2Bn(τ)2(m−1)τµ
]

dτ

≤ γbnµRn(t)
[

tµBn(t)m−1 + R−2t1+µBn(t)2(m−1)
]

= γbnµRn(t)tµBn(t)m−1
[

1 + R−2tBn(t)m−1
]

≤ γbnµRn(t)tµBn(t)m−1 ,

where the last inequality follows from the trivial bound µRn(t) ≤ ‖u0‖1,
and from our assumption (2.21) with k = 1. An even simpler argument
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shows that

J2 ≤ bnR−2µRn(t)t1−µ .

Thus, collecting the estimates just found for J1 and J2 we get

µRn+1(t) ≤
ˆ

ΩR/2

u0 dx

+ bnR−1µRn(t)1+ m−1
β max

{

t
1
β , t

1
b(α) µRn(t)

m−1
b(α)

− m−1
β

}

. (5.8)

We reason now by contradiction, and assume the majorization

µR(t) = lim
n→∞

µRn(t) = inf
n≥1

µRn(t) > 2

ˆ

ΩR/2

u0 dx . (5.9)

Then from (5.8) we have

µRn+1(t) ≤ 2bnR−1µRn(t)1+ m−1
β max

{

t
1
β , t

1
b(α) ‖u0‖

m−1
b(α)

− m−1
β

1

}

.

Therefore according to the well known iterative Lemma 5.6 Chap. II of
[14] we have that µRn(t) → 0 as n → ∞ provided

R−1µR1(t)
m−1

β max
{

t
1
β , t

1
b(α) ‖u0‖

m−1
b(α)

− m−1
β

1

}

≤ γ0 ,

which is in turn implied by, when we recall that µR1(t) ≤ ‖u0‖1,

R−1 max
{

t
1
β ‖u0‖

m−1
β

1 , t
1

b(α) ‖u0‖
m−1
b(α)

1

}

≤ γ0 .

This inequality is exactly (2.21) with k = 1, perhaps after an inessential
redefinition of C∗ there. Since we have proved that assumption (5.9)
leads us to an inconsistency, we conclude that

µR(t) =

ˆ

ΩR

u(x, t) dx ≤ 2

ˆ

ΩR/2

u0(x) dx . (5.10)

Finally (2.22) follows by replacing R with kR and t with kb(α)t in
(5.10), which is possible provided

(kR)−1 max
{

(kb(α)t)
1
β ‖u0‖

m−1
β

1 , (kb(α)t)
1

b(α) ‖u0‖
m−1
b(α)

1

}

≤ γ0 .

However this inequality follows from (2.21). �
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