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Table of Notations
Symbol Description

x,y, z Points in Rd, with d ě 3.
x1 First d´ 1 components of the point x that is x1 “ px1, ¨ ¨ ¨ , xd´1q.
rx Given a point x P Rd

´, rx represents the reflected point px1,´xdq.
Rd
´ It denotes the half-space tx “ px1, ¨ ¨ ¨ , xdq P Rd : xd ă 0u.

Rd´1 Boundary of the half-space Rd
´.

Brpxq It denotes the d-dimensional ball with centre x and radius r ą 0.
Ω Bounded Lipschitz domain in Rd.
ωd Area of the pd´ 1q-dimensional unit sphere.
u,v,w, . . . Vectors in Rd.
n Unit outer normal vector to a surface.
u ¨ v Inner product between vectors u and v.
uˆ v Cross vector between u and v.
ub v Tensor product between vectors u and v.
A,B, . . . Matrices and secon-order tensors.
I Identity matrix.
AT Transpose of the matrix A.
pA Symmetric part of the matrix A, that is pA “ 1

2

`

A`AT
˘

.
A : B Inner product between the two matrices A and B

that is A : B “
ř

i,j aijbij.
|A| Norm induced by the matrix inner product, that is |A| “

?
A : A.
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Symbol Description

I In Chapter 2 it represents the identity map.
Γ pxq Fundamental solution of the Laplace operator.
SΩϕpxq Single layer potential for the Laplace operator relative to the function ϕ.
DΩϕpxq Double layer potential for the Laplace operator relative to the function ϕ.
Npx,yq Neumann function of the half-space for the Laplace operator.
κd Constant in the definition of Γ function, κd :“ 1{ωdp2´ dq.
A,B, . . . Fourth-order tensors.
C Fourth-order elasticity tensor.
I Fourth-order identity tensor such that IA “ pA.
µ, λ Lamé parameters of the linear elasticy theory.
ν Poisson ratio. The identity ν “ λ{2pλ` µq holds.
L Elastostatic Lamé operator, that is Lu :“ µ∆u` pλ` µq∇divu.
Bu

Bν
Conormal derivative, that is Bu

Bν
:“ pCp∇uqn “ λpdivuqn` 2µpp∇uqn.

Γpxq Fundamental solution of the lamé operator (Kelvin-Somigliana matrix).
Npx,yq Neumann function of the half-space related to the Lamé operator.

Npx,yq “ Γpx,yq `Rpx,yq, with R regular part.
N pkqpx,yq k-th column vector of the Neumann function N.
SΓϕpxq Single layer potential related to the Lamé operator with kernel Γ.
DΓϕpxq Double layer potential related to the Lamé operator with kernel Γ.
SRϕpxq Single layer potential with kernel R.
DRϕpxq Double layer potential with kernel R.
cν Constant cν :“ 4p1´ νqp1´ 2νq.
c1ν Constant c1ν :“ p1´ 2νq{p8πp1´ νqq.
Cµ,ν Constant Cµ,ν :“ 1{p16πµp1´ νqq.
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CHAPTER 1

Introduction: from the physical problem
to the mathematical model

This thesis is devoted to the mathematical study of a model arising from
the volcanology. More precisely we establish a mathematical approach for
surface deformation effects generated by a magma chamber embedded deep
into the earth and exerting on it a uniform hydrostatic pressure. In the first
part of this introduction, we will describe the underlying geophysical problem
in order to better understand and appreciate the mathematical model under
investigation. In the second part we will explain the tools developed for the
mathematical analysis of the model and the results obtained.

1.1 Volcano deformation
Monitoring of volcanoes activity is usually performed by combining dif-

ferent types of geophysical measurements. Ground deformations, seismic
swarms and gravity changes are the principal means used to assess the risks
of a possible imminent eruptive activity.

Ground deformations are among the most significant data being directly
available. In fact, modern techniques of space geodesy, such as the Global
Positioning System (GPS) and satellite radar interferometry (InSAR), now
provide a large number of data of high quality both from temporal and
spatial point of view [12, 14, 15, 56]. Modeling of the pattern and rate of
displacement before and during eruptions can reveal much about the physics
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of active volcanoes [27]. This is especially true when studying stratovolca-
noes or basaltic shield volcanoes, since their fast, short-term deformation is
well associated with magma accumulation and eruptions, see [12, 15] and
references therein. Specifically, the monitoring of ground deformation has
showed a cyclical volcanic activity of inflation and deflation period [56],[57].
When magma accumulates in crustal reservoirs, volcanoes inflate (see Figure
1.1(a) and Figure 1.1(b)). The observations indicate relatively long period of
volcanic uplift. After that, rapid periods of subsidence follow. These defla-
tion episodes are accompanied either by eruptions or by dike intrusion into
the flanks of the volcano (see Figure 1.1(c)).

(a) Magma comes from the mantle
into the magma reservoir

(b) The inflation produces deforma-
tions

(c) Deflation period after an eruption

Figure 1.1. Inflation-deflation cycle. Courtesy Hawaiian Volcano
Observatory website http://hvo.wr.usgs.gov/howwork/subsidence/inflate_
deflate.html

http://hvo.wr.usgs.gov/howwork/subsidence/inflate_deflate.html
http://hvo.wr.usgs.gov/howwork/subsidence/inflate_deflate.html
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Without being exaustive, we can briefly explain and simplify the physi-
cal phenomenon in this way: as magma migrates toward the earth’s surface,
it forces aside and exerts stresses on the surrounding crust causing ground
deformations and in some cases, since the crust is brittle, earthquakes. Con-
sequently, the redistribution of the mass at depth generates changes in the
material density producing as an effect small anomalies in the gravity field.
All these signals can be measured. However, since the subsurface structures
beneath active volcanoes are extremely complex, the identification of the
source of unrest is not straightforward. In fact, caldera unrest may be also
caused by aqueous fluid intrusions, or interaction between the hydrothermal
system and magma intrusions [17, 28, 59]. We highlight that the deforma-
tion measurements are sensitive only to changes in volume and pressure of
the source hence they cannot give information on the material density. Grav-
ity measurements, however, can constrain the mass of the intrusion. Given
the significant density difference between silicate melts (2500 kg/m3) and
hydrothermal fluids (1000 kg/m3), it is reasonable to use density estimates
from gravity to distinguish between these two possible sources of caldera
unrest.

In light of this, the main challenge is to interpret geodesy and gravity
measurements jointly (see [12, 16, 53]) with the following goals

1. determine the geometry of subsurface magma bodies i.e., whether the
source of deformation is a dike, a roughly equidimensional chamber, or a
hybrid source (mixture of different mantle sources);

2. to quantify parameters of the source, for example its depth, dimensions,
volume, density and internal magma pressure [56].

To achieve these objectives a simplified/conceptual model has been con-
ceived with a central magma chamber that is supplied with melt from the
mantle. The pressure increases, hence the ground is deformed producing
gravity anomalies and changes in volcano shape. After some time, the in-
creasing pressure causes the fracture of the walls and a dike propagates car-
rying magma either to the surface or into the volcano flanks [56].

From a modeling point of view, based on the elastic behaviour of the
Earth’s crust, the ground deformations are interpreted in the framework of
the linear elasticity theory, see [13, 27, 57]. The gravity anomalies using the
potential theory, see [12] and reference therein.

In this thesis we will focus the attention to the mathematical analysis of
the most common elastic model which we now turn to present.
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1.2 Towards the mathematical model
A well-established model is the one proposed by Mogi, [50], following

previous results (see description in [26, 45, 56]). Mogi’s model is based on
the assumption that ground deformation effects are primarily generated by
the presence of an underground magma chamber exerting a uniform pressure
on the surrounding medium. Precisely, the model relies on three key founding
schematisations:

1. Geometry of the model. The earth’s crust is an infinite half-space
(with free air/crust surface located on the plane x3 “ 0) and the magma
chamber, buried in the half-space, is assumed to be a spherical cavity with
radius r0 and depth d0 such that r0 ! d0.

2. Geophysics of the crust. The crust is a perfectly elastic body,
isotropic and homogeneous, whose deformations are described by the lin-
earized elastostatic equations, hence are completely characterized by the
Lamé parameters µ, λ (or, equivalently, Poisson ratio ν and shear modulus
µ). The free air/crust boundary is assumed to be a traction-free surface.

3. Crust-chamber interaction. The cavity describing the magma
chamber is assumed to be filled with an ideal incompressible fluid at equilib-
rium, so that the pressure p exterted on its boundary on the external elastic
medium is hydrostatic and uniform.

In detail, assuming that the center of the sphere is located at z “

pz1, z2, z3q with z3 ă 0, the displacement u “ pu1, u2, u3q at a surface point
y “ py1, y2, 0q is given by

uαpyq “
p1´ νq
µ

ε3ppzα ´ yαq

|z ´ y|3
, u3

pyq “ ´
p1´ νq
µ

ε3p d0

|z ´ y|3
(1.1)

in the limit ε :“ r0{d0 Ñ 0 (see Figure 1.2), for α “ 1, 2, where d0 “ ´z3.
A second-order approximation has been proposed by McTigue [47] with the
intent of providing a formal expansion able to cover the case of a spherical
body with finite (but small) positive radius.

Being based on the assumption that the ratio radius/depth ε :“ r0{d0
is small, the Mogi model corresponds to the assumption that the magma
chamber is well-approximated by a single point producing a uniform pressure
in the radial direction; as such, it is sometimes referred to as a point source
model. However, even if the source is reduced to a single point, the model still
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Figure 1.2. Normalized Mogi displacement profiles given in (1.1): horizontal compo-
nents uα, α “ 1, 2, dashed line; vertical component u3, continuous line.

records the spherical form of the cavity. Different geometrical form may lead
to different deformation effects (as will be clear in the subsequent analysis).

The Mogi model has been widely applied to real deformation data of
different volcanoes to infer approximate location and strength of the magma
chamber. The main benefit of such strategy lies in the fact that it provides
a simple formula of the ground deformation expressed in terms of the basic
physical parameters depth and total work (combining pressure and volume)
and, thus, that it can be readily compared with real deformation data to
provide explicit forecasts.

The simplicity of Mogi’s formulas (1.1) makes the application model vi-
able, but it compensates only partially the intrinsic reductions of the ap-
proach. As a consequence, variations of the basic assumptions have been
proposed to provide more realistic frameworks. With no claim of complete-
ness, we list here some generalizations of the Mogi model available in the
literature.

Since real data sets often exhibit deviations from radially symmetric de-
formations, different shapes for the point source have been proposed. Guided
by the request of furnishing explicit formulas, such attempt has primarily
focused on ellipsoidal geometries and, in particular, on oblate and prolate
ellipsoids, see [25, 61]. With respect to the spherical case, these new configu-
rations are able to indicate the presence of some elongations of the chamber
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and possible tilt with respect to the surface. As a drawback, formulas for
ellipsoid cavities turn to be rather complicated, involving, in the general case,
elliptic integrals.

Different configurations, such as rectangular dislocations (see [52]) and
horizontal penny-shaped cracks (see [33]), have also been considered still
with the target of furnishing an explicit formula for ground deformation to
be compared with real data by means of appropriate inversion algorithms.
Still relative to the geometry of the model, efforts have also been directed
to the case of a non-flat crust surface, with the intent of taking into account
the specific topography, as given by the local elevation above mean sea level
of the region under observation [60, 23].

Studies have been addressed to a finer description of the geophysical prop-
erties of the crust, with special attention to the case of heterogeneous rhe-
ologies. Indeed, different parts of the crust may exhibit different mechan-
ical properties due to the presence of stiff (lava flows, welded pyroclasts,
intrusions) and soft layers (non-welded pyroclasts, sediments), see [46] and
references therein. Variations of elastic parameters may also arise as a con-
sequence of the thermic properties of the magma inside the chamber, which
determines different local behaviours in the neighborhood of the cavity, so
that the presence of an additional layer surrounding the chamber could be
appropriate. Additionally, nonuniform pressure distribution on the boundary
of the chamber may arise, as an example, from a nonuniform nature of the
material filling the cavity (see discussion in [26]). Incidentally, we stress that
the use of nonlinear elastic models in this area is still in a germinal phase
and it would require a more circumstantial analysis.

For completeness, we mention also the attempts of combining elastic prop-
erties with gravitational effects and time-dependent processes modeling of the
crust by means of elasto-dynamic equations or viscoelastic rheologies (among
others, see [12] and [22]).

In all cases, refined descriptions have the inherent drawback of requiring
a detailed knowledge of the crust elastic properties. In absence of reliable
complete data and measurements, the risk of introducing an additional degree
of freedom in the parameter choice is substantial. This observation partly
supports the approach of the Mogi model which consists in keeping as far as
possible the parameters choice limited and, consequently, the model simple.

As the above overview shows, the geological literature on the topic is
extensive. On the contrary, the mathematical contributions seem to be still
lacking. In the following section we summarize the principal aim of this
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thesis, showing the mathematical generalization of the Mogi model referred
to the shape of the cavity which will be not forced to be neither a sphere nor
an ellipsoid, but an arbitrary bounded domain of the half-space.

1.3 The mathematical model
Let us introduce in detail the boundary value problem which arises from

the previous assumptions on the geometry of the model, geophysics of the
crust and crust-chamber interaction (see previous section) in the case of a
generic shape for the magma chamber. Denoting by R3

´ the (open) half-space
described by the condition x3 ă 0, the domain occupied by the Earth’s crust
is R3

´zC, where C Ă R3
´, describing the magma chamber, is assumed to be

an open set with connected and bounded Lipschitz boundary BC. Hence, the
boundary of R3

´zC is composed by two disconnected components: the two-
dimensional plane R2 :“ ty “ py1, y2, y3q P R3 : y3 “ 0u, which constitutes
the free air/crust border, and the set BC, corresponding to the crust/chamber
edge.

Given A P R3ˆ3 we denote by pA its symmetric part, that is pA “
1
2pA`AT q. We introduce the elastic description of the medium filling R3

´zC.
Assuming that the medium is homogeneous and isotropic and subjected to
small elastic deformations, we derive the following boundary value problem
for the displacement field u, that is

$

’

’

’

’

’

&

’

’

’

’

’

%

divpCp∇uq “ 0 in R3
´zC

pCp∇uqn “ pn on BC

pCp∇uqe3 “ 0 on R2

u “ op1q, ∇u “ op|x|´1q |x| Ñ 8,

(1.2)

where C :“ λIb I` 2µI is the fourth-order isotropic elasticity tensor with I
the 3ˆ 3 identity matrix and I the fourth-order tensor defined by IA :“ pA,
C is the cavity modelling the magma chamber, p is a constant representing
the pressure and p∇u the strain tensor.

At this point, the model provides the displacement u of a generic finite
cavity C. The next step is to deduce a corresponding point source model, in
the spirit of the Mogi spherical one. To this aim, we assume the cavity C of
the form

C “ d0z ` r0Ω
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where d0, r0 ą 0 are charateristic length-scales for depth and diameter of the
cavity, its center d0z belongs to R3

´ and its shape Ω is a bounded Lipschitz
domain containing the origin. The Mogi model (1.1) corresponds to Ω given
by a sphere of radius 1.
Introducing the rescaling px,uq ÞÑ px{d0,u{r0q and denoting the new vari-
ables again by x and u, the above problem takes the form

$

’

’

’

’

’

&

’

’

’

’

’

%

divpCp∇uq “ 0 in R3
´zCε

pCp∇uqn “ pn on BCε
pCp∇uqe3 “ 0 in R2

u “ op1q, ∇u “ op|x|´1q |x| Ñ 8,

(1.3)

where ε “ r0{d0, Cε :“ z ` εΩ and p is a “rescaled” pressure, ratio of the
original pressure p and ε. Denoting by uε the solution to the boundary
value problem (1.3), the point reduction consists in considering the limit-
ing behaviour as ε Ñ 0 of uε and, precisely, in determining an asymptotic
expansion valid for y P R2 of the form

uεpyq “ εαpUpz,yq ` opεαq as εÑ 0` py P R2
q

for some appropriate exponent α ą 0 and principal term U .
The well-posedness of (1.2) and the asymptotic analysis of (1.3) are the

main subjects of this thesis.

1.4 An overview of the mathematical literature
The derivation of asymptotic expansions, in the presence of small inclu-

sions or cavities, has been very successful in the field of the inverse problems.
A pioneering work is due to Friedman and Vogelius during the 80s, see

[36], where the authors analyse the electrostatic problem for a conductor
consisting of finitely many small inhomogeneities of extreme conductivity
(infinite or zero conductivity) represented by regular domains. They first
establish an asymptotic formula of first order for the perturbed potential.
Secondly, from that, they prove that locations and relative sizes of the inho-
mogeneities depend Lipschitz-continuously on the potential measurement on
any open subset of the boundary.
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After this work, much effort has been made to improve and generalize
the results, treating also the elasticity case [4], for its potential application
in medical diagnosis or nondestructive evaluation of materials, see for ex-
ample [5, 7]. In particular, the extensions to generic inhomogeneities, not
necessarily regular and not perfectly conducting or insulating, and the imple-
mentation of reconstruction algorithms have been addressed, see [5, 7, 19, 38]
and the reference therein for a vast bibliography. Specifically, starting from
boundary measurements given by the couple potentials/currents or deforma-
tions/tractions, in the case, respectively, of electrical impedence tomography
and linear elasticity, information about the conductivity profile and the elas-
tic parameters of the medium have been inferred. We recall that without any
a priori assumptions on the unknown inhomogeneities/cavities (for example
without the smallness assumption), the reconstruction procedures give poor
quality results. This is due to the severe ill-posedness of the inverse boundary
value problem modelling both the electrical impedance tomography [2] and
the elasticity problems [3, 51]. However, in certain situations one has some
a priori information about the structure of the medium to be reconstructed.
These additional details allow to restore the well-posedness of the problem
and, in particular, to gain uniqueness and Lipschitz continuous dependence
of inclusions or cavities from the boundary measurements. The smallness
of the inhomogeneities, embedded in a medium with a smooth background
conductivity or with smooth elastic parameters, is one of the way to obtain
the well-posedness of the inverse problem as pointed out by Friedman and
Vogelius in [36]. Therefore, by means of partial or complete asymptotic for-
mulas of solutions to the conductivity/elastic problems and some efficient
algorithms, information about the location and size of the inclusions can be
reconstructed, see [4, 7, 38].

It is essential to highlight that the approach introduced by Ammari and
Kang, see for example [4, 7], based on layer potentials techniques has been a
powerful method to obtain asymptotic expansion of any order for solutions to
the transmission problems and, as a particular case, to cavities and perfectly
conducting inclusions’ problem. For this reason, we decide to follow the same
approach in this thesis. Despite the extensive literature in this field [4, 6,
7, 8, 19, 36, 38, 40], we remark that the mathematical problem of this work
represents an intriguing novelty because we have to deal with a pressurized
cavity, that is a hole with nonzero tractions on its boundary, buried in a half-
space. These two peculiarities do not allow to reduce the boundary value
problem to a classical one based on cavities (see, for example, problems
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in [4, 7] and reference therein). In fact, we can not create a background
displacement vector field, which is both indipendent from the geometry of
the hole and satisfies the decay conditions at infinity, in order to nullify the
traction datum on the boundary of the pressurized cavity.

1.5 Organization of the thesis and main results
Guided by the historical approach summarized in Section 1.4, for which

the electrostatic problem was the first one considered in the field of the
asymptotic analysis in the presence of small inclusions, in Chapter 2 we
analyse a simplified scalar version of the elastic model presented in Section
1.3. Specifically, denoting by Rd

´ the half-space and Rd´1 its boundary, with
d ě 3, we consider the boundary value problem

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

∆u “ 0 in Rd
´zC

Bu

Bn
“ g on BC,

Bu

Bxd
“ 0 on Rd´1,

upxq Ñ 0 as |x| Ñ `8

(1.4)

where C is the analogous of the pressurized cavity in the elastic case, g P
L2pBCq and n is the unit outer normal vector. Obviously, the choice to
focus the attention on dimensions greater than two comes from the limitation
imposed by the elastic physical problem.

As far as we know, this boundary value problem does not have a real
physical meaning. On the other hand, being mathematically more manage-
able than the system of elasticity, it is useful to mark and shed light on the
path to solve the elastic problem.

To prove the well-posedness of this boundary value problem we use the
method of reflection. Let x1 “ px1, ¨ ¨ ¨ , xd´1q, we consider the cavity image
rC “ tpx1, xdq, px

1,´xdq P Cu and the function G defined as

Gpxq :“
#

gpx1, xdq if xd ď 0
gpx1,´xdq if xd ą 0
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Then we look at the extended problem
$

’

’

’

’

&

’

’

’

’

%

∆U “ 0 in Rdz

´

C Y rC
¯

BU

Bn
“ G on BC Y B rC

U Ñ 0 as |x| Ñ `8

(1.5)

where the condition U Ñ 0 is equivalent to |U | “ Op|x|2´dq. Classic theory
on the exterior problems for harmonic functions guarantees existence and
uniqueness of the solution U . Moreover, symmetry ensures the equivalence
between (1.4) and the extended problem (1.5) in the half-space. In fact, the
unique solution Upxq of the extended problem (1.5), for x P Rdz

´

C Y rC
¯

,
satisfies the scalar problem (1.4) when xd ď 0.

To apply the integral approach, we first look for an integral representa-
tion formula of the solution. To do this, we take advantage of the explicit
expression of the Neumann function for the Laplace operator in the half-space

Npx,yq “ Γ px´ yq ` Γ prx´ yq,

where Γ is the fundamental solution of the Laplacian, x,y P Rd
´ and rx is

the symmetric point of x with respect to the xd-plane, in order to get a rep-
resentation formula containing only integral contributions on the boundary
of C. In detail, we find that

upxq “

ż

BC

“

Npx,yqgpyq ´
B

Bny
Npx,yqfpyq

‰

dσpyq, x P Rd
´zC,

where f is the trace of the solution u on BC. From the point of view of
the inverse problem we are interested in evaluating the solution u on the
boundary of the half-space; since Γ px ´ yq “ Γ prx ´ yq, for x P Rd´1, the
integral formula becomes

upxq “ 2
ż

BC

“

Γ px´ yqgpyq ´
B

Bny
Γ px´ yqfpyq

‰

dσpyq, x P Rd´1.

Taking Ω a bounded Lipschitz domain containing the origin and z P Rd
´ we

consider Cε :“ C “ z` εΩ with the assumption that distpz,Rd´1q ě δ0 ą 0.
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We also define g7pζ; εq “ gpz ` εζq, with ζ P Ω, and SΩϕ the single layer
potential

SΩϕpxq :“
ż

BΩ

Γ px´ yqϕpyqdσpyq, x P Rd.

Then, denoting with uε the dependence of u from ε and taking g P L2pBCεq
such that g7 is independent on ε, at any x P Rd´1, the following asymptotic
expansion holds

uεpxq “ 2εd´1Γ px´ zq

ż

BΩ

g7pζqdσpζq

` 2εd∇Γ px´ zq ¨
ż

BΩ

#

nζ

ˆ

1
2I`KΩ

˙´1

Sg7pζq ´ ζg7pζq

+

dσpζq `Opεd`1
q,

as ε Ñ 0, where Opεd`1q denotes a quantity uniformly bounded by Cεd`1

with C “ Cpδ0q which tends to infinity when δ0 goes to zero. The singular
integral operator KΩ is defined by

KΩϕpxq “
1
ωd
p.v.

ż

BΩ

py ´ xq ¨ ny
|x´ y|d

ϕpyqdσpyq, x P BΩ,

where ωd is the area of the pd´ 1q-dimensional unit sphere.
Finally, with the asymptotic expansion at hand, we consider the specific

Neumann boundary datum g “ ´p ¨ n where p is a constant vector in
Rd. This particular choice has a double purpose: to imitate the constant
boundary conditions of the elastic model and to make more explicit the
integrals in the asymptotic formula. The result gives the same polarization
tensor obtained by Friedman and Vogelius in [36] for cavities in a bounded
domain. Specifically, it holds

uεpxq “ 2 εd|Ω|∇Γ px´ zq ¨Mp`Opεd`1
q, x P Rd´1,

where M is the symmetric positive definite tensor given by

M :“ I`
1
|Ω|

ż

BΩ

`

nζ bΨpζq
˘

dσpζq

and the auxiliary function Ψ has components Ψi, i “ 1, . . . , d, solving
$

’

’

’

’

&

’

’

’

’

%

∆Ψi “ 0 inRdzΩ

BΨi

Bn
“ ´ni on BΩ

Ψi Ñ 0 as |x| Ñ `8.
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In Chapter 3 we finally analyse the elastic problem (1.2) presented in
Section 1.3. For the well-posedness of (1.2) we cannot use the same ap-
proach employed in the scalar case because the extention of the problem by
symmetry in R3 doesn’t work. In fact, it is impossible to build an extended
problem to the whole space such that the third component u3 of the dis-
placement vector field u is continuous across the boundary of the half-space.
One way to overcome this obstacle is to prove directly the invertibility of the
boundary operators that come out from the integral representation formula
of the solution u. To do that, we need the Neumann function N of the Lamé
operator, solution to

$

&

%

divpCp∇Np¨,yqq “ δyI in R3
´,

pCp∇Np¨,yqqn “ 0 on R2

with the decay conditions at infinity

N “ Op|x|´1
q, |∇N| “ Op|x|´2

q.

N has an explicit expression and can be decomposed as N “ Γ`R, where Γ
is the fundamental solution of the Lamé operator and R is the regular part
(see Chapter 3 for details). Given A P R3ˆ3 we represent the transpose as
AT . From that, we find the following representation formula for the solution
u to (1.2)

upyq “

ż

BC

“

pNpx,yqnpyq ´ pCp∇Npx,yqnpyqqTfpyq
‰

dσpxq, y P R3
´zC

where f is the trace of u on BC. In particular, f solves the integral equation
`1

2I`K`DR
˘

f “ p
`

SΓn` SRn
˘

, on BC

where DR, SR are, respectively, the double and single layer potentials related
to R while SΓ is the single layer potential relative to Γ (see Chapter 3). In
this framework, the well-posedness of the problem (1.2) follows showing the
invertibility of the operator 1

2I ` K ` DR in L2pBCq. In order to prove
the injectivity of this operator, we show the uniqueness of u following the
classical approach based on the application of the Green’s formula and the
energy method. In particular, we consider two solutions, u1 and u2, of the
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problem (1.2) and their difference u “ u1 ´u2. Then, we cut the half-space
with a hemisphere of radius r containing the cavity and we represent u in
integral formulation by means of N. The uniqueness result follows using the
decay conditions at infinity of N and u as r Ñ `8. From the injectivity, it
follows the existence of u proving the surjectivity of 1

2I`K`DR in L2pBCq
which is obtained by the application of the index theory regarding bounded
and linear operators.

Afterwards, taking again a cavity of the form Cε “ z ` εΩ, with z P R3
´

and Ω is a bounded Lipschitz domain containing the origin, we find the
asymptotic expansion of the solution to problem (1.3) for y P R2,

ukεpyq “ pε3
|Ω|p∇zN

pkq
pz,yq : MI`Opε4

q,

for k “ 1, 2, 3, as ε Ñ 0, where ukε stands for the k-th component of the
displacement vector and N pkq for the k-th column vector of the matrix N.
Here p ε3 represents the total work exerted by the cavity on the half-space.
M is the fourth-order moment elastic tensor defined by

M :“ I`
1
|Ω|

ż

BΩ

Cpθqrpζq b npζqq dσpζq,

for q, r “ 1, 2, 3, where I is the symmetric identity tensor, C is the isotropic
elasticity tensor and n is the outward unit normal vector to BΩ.
Finally, the functions θqr, with q, r “ 1, 2, 3, are solutions to

divpCp∇θqrq “ 0 inR3
zΩ,

Bθqr

Bν
“ ´

1
3λ` 2µCn on BΩ,

with the decay conditions at infinity

|θqr| “ Op|x|´1
q, |∇θqr| “ Op|x|´2

q, as |x| Ñ 8.





CHAPTER 2

The scalar model

The aim of this chapter is to provide a detailed mathematical study of the
simplified scalar version of the elastic problem presented in the introduction.
In particular, recalling that Rd

´ is the half-space and Rd´1 its boundary, for
d ě 3, we consider the Laplace equation

∆u “ 0 in Rd
´zC (2.1)

with boundary conditions

Bu

Bn
“ g on BC, Bu

Bxd
“ 0 on Rd´1, upxq Ñ 0 as |x| Ñ `8

(2.2)
where C is a cavity (analogous to the pressurized one for the elastic case), g is
a function defined on BC. After proving the well-posedness of this boundary
value problem, we will consider the case of a cavity of the form C “ z` εΩ,
where z P Rd

´ and Ω is a Lipschitz bounded domain containing the origin.
The aim is to establish an asymptotic expansion of the solution of the problem
as εÑ 0.

As far as we know, this model does not have a real physical application,
however the mathematical result has an interest on its own. In fact, as
explained in the Introduction, it belongs to the same stream of the asymptotic
analysis of the conductivity equation in bounded domains. With respect
to the vast literature in this field, see for example [5, 6, 7, 8, 36] and the
reference therein, the principal novelty of this chapter concern the asymptotic
analysis in the case of unbounded domain with unbounded boundary and
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with non-homogeneous Neumann datum on the boundary of the hole. To
tackle the issue of the well-posedness of this boundary value problem and
the corresponding asymptotic analysis, we follow the approach of Ammari
and Kang based on integral equations.

This chapter is organized as follows. In Section 2.1 we recall some well-
known results about harmonic functions and layer potentials tecnhiques for
the Laplace operator useful in the next. In Section 2.2 we examine the
well-posedness of the scalar problem and we get an integral representation
formula of the solution. In Section 2.3, we state and prove a spectral result
crucial for the derivation of our main asymptotic expansion in the case of
regular domains. In Section 2.4 we present and prove the theorem on the
asymptotic expansion and finally we illustrate the result for the particular
choice g “ ´p ¨ n.

2.1 Preliminaries
The main aim here is to collect together the various concepts, basic def-

initions and key theorems useful for the next sections. In detail, we recall
some important properties about the decay rate of harmonic functions in
unbounded domains and single and double layer potentials for the Laplace
operator on Lipschitz domains. As already explained, we focus the attention
only to dimension d ě 3; however we remark that most of the results we
recall are true also for d “ 2.

We skip the proofs of the basic concepts while we give them for some
theorems that may be unfamiliar. Results about harmonic functions in un-
bounded domains are contained, for example, in [30, 35, 55]; those on prop-
erties of single and double layer potentials can be found in [7, 29, 43, 58].

2.1.1 Harmonic functions in exterior domains
The specific symmetry of the half-space permits to show the well-posedness

of the scalar model by extending the problem to an exterior domain, viz. the
complementary set of a bounded set. Hence, it is useful to recall the clas-
sical results on the asymptotic behaviour of harmonic functions in exterior
domains.

Theorem 2.1.1. If v is harmonic in RdzΩ, with d ě 3, the following state-
ments are equivalent



1. v is harmonic at infinity.

2. vpxq Ñ 0 as |x| Ñ 8.

3. |vpxq| “ O
`

|x|2´d
˘

as |x| Ñ 8.

In addition, from the behaviour of the gradient of harmonic functions on
the boundary of the d´dimensional balls, that is if v is a harmonic function
in BRpxq, then

|∇v| ď d

R
max
BBRpxq

|v| (2.3)

we can deduce the behaviour of the gradient of harmonic functions at infinity.
We summarize the results in the following theorem

Theorem 2.1.2. If v is harmonic in RdzΩ, d ě 3, and vpxq Ñ 0 as |x| Ñ 8,
then there exist r and a constant M , depending on r, such that if |x| ě r,
we have

|v| ď
M

|x|d´2 , |∇v| ď M

|x|d´1 (2.4)

In conclusion, we recall the Green’s second identity which plays a crucial
role to convert differential problems into integral ones.

Proposition 2.1.3. Let Ω be a Lipschitz domain in Rd. Given the pair of
functions pu, vq defined in Ω it holds
ż

Ω

p∆upxqvpxq ´ upxq∆vpxqq dx “
ż

BΩ

ˆ

Bu

Bn
pxqvpxq ´ upxq

Bv

Bn
pxq

˙

dσpxq

(2.5)

2.1.2 Single and double layer potentials
Denoting with ωd the area of the pd´1q-dimensional unit sphere, we recall

the fundamental solution of the Laplace operator, that is the solution to

∆Γ pxq “ δ0pxq,

where δ0pxq represents the delta function centered at 0. It is well known
that Γ is radially symmetric and has this expression

Γ pxq “
1

ωdp2´ dq|x|d´2 . (2.6)



Given a bounded Lipschitz domain Ω Ă Rd and a function ϕpyq P L2pBΩq,
we introduce the integral operators

SΩϕpxq :“
ż

BΩ

Γ px´ yqϕpyq dσpyq, x P Rd

DΩϕpxq :“
ż

BΩ

BΓ px´ yq

Bny
ϕpyq dσpyq, x P Rd

zBΩ

(2.7)

which are called, respectively, single and double layer potentials relative to the
set Ω.
We summarize some of their properties below

i. By definition, SΩϕpxq and DΩϕpxq are harmonic in RdzBΩ.

ii. SΩϕpxq “ Op|x|2´dq as |x| Ñ `8.

iii. If
ş

BΩ
ϕpxq dσpxq “ 0 then SΩϕpxq “ Op|x|1´dq as |x| Ñ `8.

iv. DΩϕpxq “ Op|x|1´dq as |x| Ñ `8.

Next, we introduce the boundary operator KΩ : L2pBΩq Ñ L2pBΩq

KΩϕpxq “
1
ωd
p.v.

ż

BΩ

py ´ xq ¨ ny
|x´ y|d

ϕpyq dσpyq (2.8)

and its L2´adjoint

K˚
Ωϕpxq “

1
ωd
p.v.

ż

BΩ

px´ yq ¨ nx
|x´ y|d

ϕpyq dσpyq (2.9)

where p.v. denotes the Cauchy principal value. The operators KΩ and K˚
Ω

are singular integral operators, bounded on L2pBΩq.
Given a function v defined in a neighbourhood of BΩ, we set

vpxq
ˇ

ˇ

ˇ

˘
:“ lim

hÑ0`
vpx˘ hnxq, x P BΩ,

Bv

Bnx
pxq

ˇ

ˇ

ˇ

˘
:“ lim

hÑ0`
∇vpx˘ hnxq ¨ nx, x P BΩ.

(2.10)

The following theorem about the jump relations of the single and double po-
tentials for Lipschitz domains is a consequence of Coifman-McIntosh-Meyer
results on the boundedness of the Cauchy integral on Lipschitz curves, see



[21], and the method of rotations of Calderón, see [18].
In the sequel, t1, ¨ ¨ ¨ , td´1 represent an orthonormal basis for the tangent
plane to BΩ at a point x and B{Bt “

řd´1
k“1 B{Btk tk the tangential derivative

on BΩ.

Theorem 2.1.4. Let Ω Ă Rd be a bounded Lipschitz domain. For ϕ P

L2pBΩq the following relations hold, a.e. in BΩ,

SΩϕpxq
ˇ

ˇ

ˇ

`
“ SΩϕpxq

ˇ

ˇ

ˇ

´

BSΩϕ

Bt
pxq

ˇ

ˇ

ˇ

`
“
BSΩϕ

Bt
pxq

ˇ

ˇ

ˇ

´

BSΩϕ

Bnx
pxq

ˇ

ˇ

ˇ

˘
“

ˆ

˘
1
2I `K

˚
Ω

˙

ϕpxq

DΩϕpxq
ˇ

ˇ

ˇ

˘
“

ˆ

¯
1
2I `KΩ

˙

ϕpxq

(2.11)

Using Green’s identity it follows that DΩp1q “ 1 hence, by the jump
relations for the double layer potential, we have KΩp1q “ 1{2.

In the sequel, to determine the well-posedness of the scalar model, pre-
sented at the beginning of this chapter, rewritten in terms of integral equa-
tions, we will need to generalize the result about the invertibility of the
operators 1{2I ` K˚

Ω and 1{2I ` KΩ when a regular compact operator is
added. Therefore we recall here what is known about the eigenvalues of K˚

Ω

and KΩ in L2pBΩq and then the invertibility of the operators λI ´K˚
Ω and

λI´KΩ, for suitable λ P R. These results, for the case of Lipschitz domains,
are contained in [29]. We define

L2
0pBΩq :“

!

ϕ P L2
pBΩq,

ż

BΩ

ϕ dσ “ 0
)

Theorem 2.1.5. Let λ be a real number. The operator λI ´K˚
Ω is injective

on

(a) L2
0pBΩq if |λ| ě 1{2;

(b) L2pBΩq if λ P p´8,´1
2s Y p

1
2 ,`8q.



Proof. By contradiction, let λ P p´8,´1{2s Y p1{2,`8q and suppose there
exists ϕ P L2pBΩq, not identically zero, satisfying pλI ´ K˚

Ωqϕ “ 0. Since
KΩp1q “ 1{2, it follows by duality that ϕ has mean value zero on BΩ, in fact

0 “ x1, pλI ´K˚
ΩqϕyL2pBΩq “ xλ´KΩp1q, ϕyL2pBΩq

“ xλ´ 1{2, ϕyL2pBΩq.

Thus, from the properties of single layer potential, SΩϕpxq “ Op|x|1´dq and
∇SΩϕpxq “ Op|x|´dq for |x| Ñ 8. Since ϕ is not identically zero, the two
numbers

A “

ż

Ω

|∇SΩϕ|2 dx, B “

ż

RdzΩ

|∇SΩϕ|2 dx

cannot be zero. Applying the divergence theorem and the jump relations of
the single layer potentials in Theorem 2.1.4 to A and B, we get

A “

ż

BΩ

`

´
1
2I `K

˚
Ω

˘

ϕSΩϕdσpxq, B “ ´

ż

BΩ

`1
2I `K

˚
Ω

˘

ϕSΩϕdσpxq.

Since pλI ´K˚
Ωqϕ “ 0, it follows that

λ “
1
2
B ´ A

B ` A
,

hence |λ| ă 1{2, which is a contradiction. This implies that the operator
λI ´K˚

Ω is injective in L2pBΩq for λ P p´8,´1{2s Y p1{2,8q.
Instead, in the case λ “ 1{2, we suppose by contradiction there exists ϕ P
L2

0pBΩq, not identically zero, such that p1{2I ´K˚
Ωqϕ “ 0. Then, we define

A and B as before, but in this case we find

A “

ż

BΩ

`

´
1
2I `K

˚
Ω

˘

ϕSΩϕdσpxq “ 0,

hence SΩϕ “ cost in Ω. By the continuity property of single layer potential
on BΩ (see Theorem 2.1.4) we have that SΩϕ is constant on BΩ. Moreover,
SΩϕ is harmonic in RdzBΩ and behaves like Op|x|1´dq as |x| Ñ 8 because
ϕ P L2

0pBΩq. Therefore, by the decay rate at infinity we find that SΩϕ “ 0 in
Rd, hence ϕ “ 0 on BΩ. This contradicts the hypothesis, hence 1{2I ´K˚

Ω

is injective in L2
0pBΩq.



The invertibility results of λI´K˚
Ω and λI´KΩ are not straightforward.

If the domain Ω is regular, at least C1, it can be proven that the boundary
operators KΩ and K˚

Ω are compact, hence the invertibility of λI ´K˚
Ω and

λI ´KΩ can be obtained by the Fredholm theory. Instead, in the Lipschitz
domains, KΩ and K˚

Ω lose the compactness property, see the example pro-
posed by Fabes, Jodeit and Lewis in [31], hence we cannot use the Fredholm
theory to infer the invertibility. Verchota in [58] solved this problem showing
the fundamental idea that the Rellich identities are the appropriate substi-
tutes of compactness in the case of Lipschitz domains. Here, we recall the
Rellich identity for the Laplace equation.

Proposition 2.1.6. Let Ω be a bounded Lipschitz domain in Rd. Let u be a
function such that either

(i) u is Lipschitz in Ω and ∆u “ 0 in Ω,
or

(ii) u is Lipschitz in RdzΩ and ∆u “ 0 in RdzΩ with |u| “ Op|x|2´dq
Let α be a C1-vector field in Rd with compact support. Then

ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bn

ˇ

ˇ

ˇ

2
“

ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bt

ˇ

ˇ

ˇ

2
´ 2

ż

BΩ

`

α ¨
Bu

Bt

˘ Bu

Bn

`

$

’

’

’

’

&

’

’

’

’

%

ż

Ω

2p∇α∇u ¨∇uq ´ divα|∇u|2 if u satisfies (i)
ż

RdzΩ

2p∇α∇u ¨∇uq ´ divα|∇u|2 if u satisfies (ii)

(2.12)

As a consequence of the previous Rellich formula we have there exists a
positive constant C depending only on the Lipschitz character of Ω such that

1
C

›

›

›

Bu

Bt

›

›

›

L2pBΩq
ď

›

›

›

Bu

Bn

›

›

›

L2pBΩq
ď C

›

›

›

Bu

Bt

›

›

›

L2pBΩq
. (2.13)

In the proof of the invertibility of the operators λI ´ K˚
Ω a crucial role is

played by the following theorem.

Theorem 2.1.7. For 0 ď h ď 1 suppose that the family of operators Ah :
L2pRd´1q Ñ L2pRd´1q satisfy

(i) }Ahϕ}L2pRd´1q ě C}ϕ}L2pRd´1q, where C is independent of h;



(ii) hÑ Ah is continuous in norm;

(iii) A0 : L2pRd´1q Ñ L2pRd´1q is invertible.

Then, A1 : L2pRd´1q Ñ L2pRd´1q is invertible.

With all the ingredients at hand we can state and prove the invertibility
theorem of the operators λI´K˚

Ω, for λ in the range expressed in Proposition
2.1.5. These results are due to Verchota [58] (for λ “ ˘1{2) and Escauriaza,
Fabes and Verchota [29].

Theorem 2.1.8 ([29]). Let Ω be a Lipschitz domain. The operator λI´K˚
Ω

is invertible on

(i) L2
0pBΩq if |λ| ě 1

2 ;

(ii) L2pBΩq if λ P p´8,´1
2s Y p

1
2 ,8q.

Proof. We first prove the invertibility of the operators˘1{2I`K˚
Ω : L2

0pBΩq Ñ
L2

0pBΩq. Since KΩp1q “ 1{2 we have that, for all f P L2pBΩq,
ż

BΩ

K˚
Ωfpxq dσpxq “

1
2

ż

BΩ

fpxq dσpxq

hence ˘1{2I ` K˚
Ω maps L2

0pBΩq into L2
0pBΩq. Let upxq “ SΩfpxq, where

f P L2
0pBΩq. Then u satisfies conditions piq and piiq in Proposition 2.1.6.

Moreover by the properties of single layer potentials on the boundary of Ω,
we have that Bu{Bt is continuous across the boundary and the jump relation
holds

Bu

Bn

ˇ

ˇ

ˇ

˘
“

´

˘
1
2I `K

˚
Ω

¯

f.

Applying (2.13) in Ω and RdzΩ we obtain that

1
C

›

›

`1
2I `K

˚
Ω

˘

f
›

›

L2pBΩq
ď
›

›

`1
2I ´K

˚
Ω

˘

f
›

›

L2pBΩq

›

›

`1
2I ´K

˚
Ω

˘

f
›

›

L2pBΩq
ď C

›

›

`1
2I `K

˚
Ω

˘

f
›

›

L2pBΩq
.

(2.14)

Since
f “

ˆ

1
2I `K

˚
Ω

˙

f `

ˆ

1
2I ´K

˚
Ω

˙

f,



from (2.14) we have that
›

›

ˆ

1
2I `K

˚
Ω

˙

f
›

›

L2pBΩq
ě C}f}L2pBΩq. (2.15)

Localizing the situation, we can assume that BΩ is the graph of a Lipschitz
function in order to simplify as much as possible the proof. Therefore BΩ “
tpx1, xdq : xd “ ϕpx1qu where ϕ : Rd´1 Ñ R is a Lipschitz function. To
show that A “ p1{2qI ` K˚

Ω is invertible we consider the Lipschitz graph
corresponding to hϕ that is

BΩh “
 

px1, xdq : xd “ hϕpx1q
(

, 0 ď h ď 1

and the corresponding operators K˚
Ωh

and Ah. Then A0 “ p1{2qI and A1 “

A. In addition, Ah are continuous in norm as a function of h. Hence, from
the inequality in (2.15) we have that }Ahf}L2pBΩhq ě C}f}L2pBΩhq, since the
constant C is independent of h but depends only on the Lipschitz character of
Ω. Applying the continuity method of Theorem 2.1.7 we find that 1{2I`K˚

Ω

is invertible on L2
0pBΩq. Next, we prove that 1{2I`K˚

Ω is invertible on L2pBΩq
showing that the operator is onto on L2pBΩq. By duality argument, since
KΩp1q “ 1{2, for all f P L2pBΩq we get

ż

BΩ

ˆ

1
2I `K

˚
Ω

˙

f dσpxq “

ż

BΩ

f dσpxq

hence 1{2I `K˚
Ω maps L2pBΩq into L2pBΩq. For g P L2pBΩq we consider

g “ g ´ c

ˆ

1
2I `K

˚
Ω

˙

p1q ` c
ˆ

1
2I `K

˚
Ω

˙

p1q,

where
c “

1
|BΩ|

ż

BΩ

g dσpxq.

Defining g0 :“ g ´ cp1{2I `K˚
Ωqp1q, since

ż

BΩ

p
1
2I `K

˚
Ωqp1q dσpxq “ |BΩ|,

we have that g0 P L
2
0pBΩq. Let f0 P L

2
0pBΩq be such that

ˆ

1
2I `K

˚
Ω

˙

f0 “ g0.



Then, defining f :“ f0 ` c we find that
ˆ

1
2I `K

˚
Ω

˙

f “ g0 ` c

ˆ

1
2I `K

˚
Ω

˙

p1q “ g.

This means that 1{2I `K˚
Ω is onto in L2pBΩq.

For the operator ´1{2I `K˚
Ω we can follow the same argument both for the

case L2
0pBΩq and L2pBΩq.

Next, suppose that |λ| ą 1{2. To prove the invertibility of the operators
in the general case we use the Rellich identity. Let f P L2pBΩq, c0 a fixed
positive number and set upxq “ SΩfpxq. Let α be a vector field with support
in the set dist(x,BΩ)ă 2c0, @x P BΩ, such that α ¨ n ě δ, for some δ ą 0.
Therefore, from the Rellich identity (2.1.6), we have

ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bn

ˇ

ˇ

ˇ

2
“

ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bt

ˇ

ˇ

ˇ

2
´ 2

ż

BΩ

`

α ¨
Bu

Bt

˘ Bu

Bn

`

ż

Ω

2p∇α∇u ¨∇uq ´ divα |∇u|2.
(2.16)

Observe that on BΩ

Bu

Bn

ˇ

ˇ

ˇ

´
“

ˆ

´
1
2I `K

˚
Ω

˙

f “

ˆ

λ´
1
2

˙

f ´ pλI ´K˚
Ωqf.

Since α “ pα ¨ nqn`
řd´1
k“1pα ¨ tkqtk and ∇Sfpxq|` “ 1{2nf `Kf where

Kfpxq “ 1
ωd

p.v.

ż

BΩ

x´ y

|x´ y|d
fpyq dσpyq,

we find that
p∇u ¨αq “ Bu

Bn
pα ¨ nq ` pα ¨

Bu

Bt
q

“ ´
1
2pα ¨ nqf `Kαf,

(2.17)

where
Kαfpxq “

1
ωd

p.v.

ż

BΩ

ppx´ yq ¨αpxqq

|x´ y|d
fpyq dσpyq.



We also have
ż

Ω

|∇u|2 dx “
ż

BΩ

u
Bu

Bn

ˇ

ˇ

ˇ

´
dσpxq

“

ż

BΩ

SΩf

„ˆ

λ´
1
2

˙

f ´ pλI ´K˚
Ωqf



dσpxq.

By using the following integral identity obtained by multiplying (2.17) for
Bu{Bn, that is

´2
ż

BΩ

´

α ¨
Bu

Bt

¯

Bu

Bn
dσpxq “ ´ 2

ż

BΩ

Bu

Bn

„

´
1
2pα ¨ nqf `Kαf



dσpxq

` 2
ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bn

ˇ

ˇ

ˇ

2
dσpxq,

we get from the Rellich formula (2.16) that

1
2

ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bn

ˇ

ˇ

ˇ

2
dσpxq “ ´

1
2

ż

BΩ

pα ¨ nq
ˇ

ˇ

ˇ

Bu

Bt

ˇ

ˇ

ˇ

2
dσpxq

`

ż

BΩ

Bu

Bn

„

´
1
2pα ¨ nqf `Kαf



dσpxq

´

ż

Ω

„

p∇α∇u,∇uq ` 1
2divα |∇u|

2


dσpxq.

Thus it holds

1
2

ˆ

λ´
1
2

˙2 ż

BΩ

pα ¨ nqf 2 dσpxq

ď

ż

BΩ

„

´
1
2pα ¨ nqf `Kαf

 „ˆ

λ´
1
2

˙

f ´ pλI ´K˚
Ωqf



dσpxq

` C}f}L2pBΩq

`

}SΩf}L2pBΩq ` }pλI ´K
˚
Ωqf}L2pBΩq

˘

` C}SΩf}L2pBΩq}pλI ´K
˚
Ωqf}L2pBΩq ` C}pλI ´K

˚
Ωqf}

2
L2pBΩq,



where C depends on the Lipschitz character of Ω and λ. By multiplying the
integrand of the right-hand side integral we get

1
2

ˆ

λ2
´

1
4

˙
ż

BΩ

pα ¨ nqf 2 dσpxq ď

ˆ

λ´
1
2

˙
ż

BΩ

fKαf dσpxq

` C}f}L2pBΩq

`

}SΩf}L2pBΩq ` }pλI ´K
˚
Ωqf}L2pBΩq

˘

` C}SΩf}L2pBΩq}pλI ´K
˚
Ωqf}L2pBΩq ` C}pλI ´K

˚
Ωqf}

2
L2pBΩq.

Denoting with K˚
α the adjoint operator in L2pBΩq of Kα we find

K˚
α `Kα “ Rαf “

1
ωd
p.v.

ż

BΩ

rpx´ yq ¨ pαpxq ´αpyqqs

|x´ y|d
fpyq dσpyq.

By duality, we have
ż

BΩ

fKαf dσpxq “
1
2

ż

BΩ

fRαf dσpxq.

Since |λ| ą 1{2 and α ¨ n ě δ ą 0, the norm }f}L2pBΩq in the left-hand side
can be hidden thus getting

}f}L2pBΩq ď C
`

}pλI ´K˚
Ωqf}L2pBΩq ` }SΩf} ` }Rαf}L2pBΩq

˘

. (2.18)

Since SΩ and Rα are compact in L2pBΩq, we conclude from the above esti-
mate that λI ´K˚

Ω has a closed range.
Now, we prove the surjectivity of the operator λI´K˚

BΩ in L2pBΩq. From this
result and the injectivity proved in Theorem 2.1.5 the invertibility follows.
Suppose on the contrary that for some λ real, |λ| ą 1{2, λI ´ K˚

Ω is not
invertible in L2pBΩq. Then the intersection of the spectrum of K˚

Ω and the
set tλ P R : |λ| ą 1{2u is not empty and so there exists a real number λ0 that
belongs to this intersection and it is a boundary point of the set. To reach a
contradiction it suffices to show that λ0I ´K˚

Ω is invertible. We know that
λ0I´K

˚
Ω is injective and by (2.18) has a closed range. Therefore there exists

a constant C such that for all f P L2pBΩq the following estimate holds

}f}L2pBΩq ď C}pλ0I ´K
˚
Ωqf}L2pBΩq. (2.19)

Since λ0 is a boundary point of the intersection of the spectrum of K˚
Ω and

the real line there exists a sequence of real numbers λk with |λk| ą 1{2,



λk Ñ λ0, as k Ñ 8, and λkI ´K˚
Ω is invertible on L2pBΩq. Therefore, given

g P L2pBΩq there exists a unique fk P L2pBΩq such that pλkI ´K˚
Ωqfk “ g.

If t}fk}L2pBΩqu has a bounded subsequence then there exists another subse-
quence that converges weakly to some f0 P L

2pBΩq and it holds
ż

BΩ

hpλ0I ´K
˚
Ωqf0 dσpxq “ lim

kÑ`8

ż

BΩ

fkpλ0I ´KΩqh dσpxq

“ lim
kÑ`8

ż

BΩ

hpλ0I ´K
˚
Ωqfk dσpxq “

ż

BΩ

gh dσpxq.

Therefore pλ0I ´ K˚
Ωqf0 “ g. In the opposite case we may assume that

}fk}L2pBΩq “ 1 and pλ0I ´K
˚
Ωqfk converges to zero in L2pBΩq. However from

(2.19)
1 “ }fk}L2pBΩq ď C}pλ0I ´K

˚
Ωqfk}L2pBΩq

ď C |λ´ λk| ` C}pλkI ´K
˚
Ωqfk}L2pBΩq

Since the right-hand side converges to zero as k Ñ 8, we get a contradiction,
hence for each λ real, |λ| ą 1{2, λI ´K˚

Ω is invertible.

Remark 2.1.9. The invertibility of the operator 1{2I`KΩ follows exploiting
the Banach’s closed range theorem starting from the result for 1{2I ` K˚

Ω.
In particular, the result follows from the fact that 1{2I `K˚

Ω has closed and
dense range in L2pBΩq. For more details see [58].

2.2 The scalar problem
Thanks to the instruments of the preliminaries section, we are now ready

to analyse the boundary value problem
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

∆u “ 0 in Rd
´zC

Bu

Bn
“ g on BC

Bu

Bxd
“ 0 on Rd´1

uÑ 0 as |x| Ñ `8

(2.20)

where C is the cavity, g is a function defined on BC and d ě 3.



In particular, we establish the well-posedness of the problem and pro-
vide an integral representation formula for any bounded Lipschitz domain C
contained in the half-space.

Only in the next section, making the smallness assumption on the cavity,
we find the asymptotic expansion.

2.2.1 Well-posedness
Proving existence and uniqueness results in the half-space and, in general,

in unbounded domain with unbounded boundary, is much more difficult with
respect to the case of bounded or exterior domains. The main obstacle is the
control of both solution decay and integrability on the boundary. Indeed, it is
typical to treat these problems by means of weighted Sobolev spaces, see for
example [9]. Here, in order to mantain a simple mathematical interpretation
of the results, we choose to use the particular symmetry of the half-space
to prove the well-posedness of the problem (2.20). Therefore, we extend the
problem to the whole space, specifically to an exterior domain, establishing
the well-posedness in a standard Sobolev setting.

Given a bounded Lipschitz domain C Ă Rd
´ and the function g : BC Ñ R,

we define
rC :“ tpx1, xdq : px1,´xdq P Cu,

0

C

rC

Rd´1
xd

Rd
´

Figure 2.1. Reflection of the geometry

see Figure 2.1, and G : BC Y B rC Ñ R as

Gpxq :“
#

gpxq if x P BC
gprxq if x P B rC.

(2.21)



Theorem 2.2.1. The problem (2.20) has a unique solution. This solution
coincides with the restriction to the half-space Rd

´ of the solution to
$

’

’

’

’

&

’

’

’

’

%

∆U “ 0 in Rdz

´

C Y rC
¯

BU

Bn
“ G on BC Y B rC

U Ñ 0 as |x| Ñ `8.

(2.22)

Proof. The proof is divided into three steps: uniqueness for (2.22), existence
for (2.22), equivalence between (2.20) and (2.22).

1. For Λ :“ C Y rC, let R ą 0 be such that Λ Ă BRp0q and set ΩR :“
BRp0qzΛ. Given two solutions, U1 and U2, to problem (2.22), the difference
W :“ U1 ´ U2 solves the corresponding homogeneous problem. Multiplying
equation ∆W “ 0 by W and integrating over the domain ΩR “ BRp0qzΛ,
we infer

0 “
ż

ΩR

W pxq∆W pxqdx

“

ż

BΩR

W pxq
B

Bn
W pxqdσpxq ´

ż

ΩR

ˇ

ˇ∇W pxq
ˇ

ˇ

2
dx

“

ż

BBRp0q

W pxq
B

Bn
W pxqdσpxq ´

ż

ΩR

ˇ

ˇ∇W pxq
ˇ

ˇ

2
dx,

using integration by parts and boundary conditions. Exploiting the be-
haviour of the harmonic functions in exterior domains, as described in (2.1.2),
we get

ˇ

ˇ

ˇ

ż

BBRp0q

W pxq
B

Bn
W pxq dσpxq

ˇ

ˇ

ˇ
ď

C

Rd´2 .

Then, as RÑ 8, we find
ż

RdzΛ

ˇ

ˇ∇W pxq
ˇ

ˇ

2
dx “ 0

which implies W “ 0.
2. We represent the solution of (2.22) by means of single layer potential

SΛψpxq “

ż

BΛ

Γ px´ yqψpyqdσpyq, x P Rd
zΛ, (2.23)



with function ψ to be determined. By the properties of single layer potential,
SΛψ is harmonic in RdzBΛ, SΛψpxq=Op|x|2´dq as |x| Ñ 8 and we have

BSΛψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

“
1
2ψ `K

˚
Λψ, x P BΛ.

From the injectivity result on L2pBΛq of the operator 1{2I`K˚
Λ, in Theorem

2.1.5, there exists a function ψ such that
ˆ

1
2I `K

˚
Λ

˙

ψpxq “ Gpxq, x P BΛ, (2.24)

observing that G P L2pBΛq.
3. Let upx1, xdq :“ Upx1, xdq

ˇ

ˇ

xdă0. From the boundary value problem
(2.22) for U and the definition (2.21) of the function G, we have

$

’

’

’

’

&

’

’

’

’

%

∆u “ 0 in Rd
´zC

Bu

Bn
“ g on BC

uÑ 0 as |x| Ñ `8

We have to verify that the normal derivative is null on the boundary of the
half-space. For this purpose we first show that U is even with respect to the
xd-plane. We define

ūpx1, xdq :“ Upx1,´xdq (2.25)

for x P Rdz

´

C Y rC
¯

; then ū solves the following problem

$

’

’

’

’

&

’

’

’

’

%

∆ū “ 0 in Rdz

´

C Y rC
¯

Bū

Bn
“ G on BC Y B rC

ūÑ 0 as |x| Ñ `8

(2.26)

since G is even with respect to xd and on BC X B rC we have

Bū

Bn
px1, xdq “

BU

Bn
px1,´xdq.



Problem (2.26) admits a unique solution ūpxq as a consequence of the previ-
ous points, hence

Upx1,´xdq “ ūpx1, xdq “ Upx1, xdq.

From this last result, we obtain

Bū

Bxd
px1, xdq “

BU

Bxd
px1, xdq “ ´

BU

Bxd
px1,´xdq,

hence the derivative of U with respect to xd computed at any point with
xd “ 0 is zero.

2.2.2 Representation formula
After proving the well-posedness of the boundary value problem (2.20), in

this paragraph we derive an integral representation formula for the solution
u to problem (2.20). This makes use of the single and double layer potentials
defined in (2.7) and of contributions relative to the image cavity rC, given by

rSCϕpxq :“
ż

BC

Γ prx´ yqϕpyqdσpyq, x P Rd,

rDCϕpxq :“
ż

BC

B

Bny
Γ prx´ yqϕpyqdσpyq x P Rd

zB rC.
(2.27)

These operators, referred to as image layer potentials, can be read as single
and double layer potentials on rC applied to the reflection of the function ϕ
with respect to xd coordinate.

Theorem 2.2.2. The solution u to problem (2.20) is such that

upxq “ SCgpxq ´DCfpxq ` rSCgpxq ´ rDCfpxq, x P Rd
´zC, (2.28)

where SC , DC are defined in (2.7), rSC , rDC in (2.27), g is the Neumann bound-
ary condition in (2.20) and f is the trace of u on BC.

Using properties of layer potentials, from equation (2.28), we infer

fpxq “ SCgpxq ´
`

´1
2I `KC

˘

fpxq ´ rDCfpxq ` rSCgpxq, x P BC,



where KC is defined in (2.8). Thus, the trace f satisfies the integral equation
ˆ

1
2I `KC ` rDC

˙

f “ SCg ` rSCg,

which will turn out to be useful in the sequel.
Before proving Theorem 2.2.2, we first recall the definition of the Neu-

mann function for the Laplace operator, see for example [39], that is the
solution N “ Npx,yq to

$

’

&

’

%

∆yNpx,yq “ δxpyq in Rd
´

BN

Byd
px,yq “ 0 on Rd´1,

where δxpyq is the delta function with the center in a fixed point x P Rd and
BN{Byd represents the normal derivative on the boundary of the half-space
Rd
´. The classical method of images provides the explicit expression

Npx,yq “
κd

|x´ y|d´2 `
κd

|rx´ y|d´2 ,

where κd :“ 1{ωdp2 ´ dq. With the function N at hand, the representation
formula (2.28) can be equivalently written as

upxq “ N pf, gqpxq

:“
ż

BC

„

Npx,yqgpyq ´
B

Bny
Npx,yqfpyq



dσpyq, x P Rd
´zC,

(2.29)

which we now prove.

Proof of Theorem 2.2.2. Given R, ε ą 0 such that C Ă BRp0q and Bεpxq Ă
Rd
´zC, let

ΩR,ε :“
´

Rd
´ XBRp0q

¯

z

´

C YBεpxq
¯

.

We also define BBh
Rp0q as the intersection of the hemisphere with the bound-

ary of the half-space, and with BBb
Rp0q the spherical cap (see Figure 2.2).

Applying second Green’s identity to Npx, ¨q and u in ΩR,ε, we get



0

C

BBb
Rp0q

ΩR,ε

xd

BBh
Rp0q

ε
x

Rd´1

Rd
´

Figure 2.2. Domain ΩR,ε used to obtain the integral representation formula
(2.28).

0 “
ż

ΩR,ε

rNpx,yq∆upyq ´ upyq∆yNpx,yqs dy

“

ż

BBhRp0q

„

Npx,yq
Bu

Byd
pyq ´

B

Byd
Npx,yqupyq



dσpyq

`

ż

BBbRp0q

„

Npx,yq
Bu

Bny
pyq ´

B

Bny
Npx,yqupyq



dσpyq

`

ż

BBεpxq

„

B

Bny
Npx,yqupyq ´Npx,yq

Bu

Bny
pyq



dσpyq

´

ż

BC

„

Npx,yq
Bu

Bny
pyq ´

B

Bny
Npx,yqupyq



dσpyq

“I1 ` I2 ` I3 ´N pf, gqpxq.

The term I1 is zero since both the normal derivative of the function N and
u are zero above the boundary of the half-space.

Next, taking into account the behaviour of harmonic functions in exterior
domains, formulas (2.4), we deduce

ˇ

ˇ

ˇ

ż

BBbRp0q

B

Bny
Npx,yqupyq dσpyq

ˇ

ˇ

ˇ
ď

C

R2d´3

ż

BBbRp0q

dσpyq “
C

Rd´2 ,

ˇ

ˇ

ˇ

ż

BBbRp0q

Npx,yq
Bu

Bny
pyq dσpyq

ˇ

ˇ

ˇ
ď

C

R2d´3

ż

BBbRp0q

dσpyq “
C

Rd´2 ,

where C denotes a generic positive constant. As RÑ `8, I2 tends to zero.
Finally, we decompose I3 as

I3 “ I31´I32 “

ż

BBεpxq

B

Bny
Npx,yqupyq dσpyq´

ż

BBεpxq

Npx,yq
Bu

Bny
pyqdσpyq.



Using the expression of N and the continuity of u, we derive

I31 “

ż

BBεpxq

B

Bny
Npx,yqupyqdσpyq

“ upxq

ż

BBεpxq

B

Bny
Npx,yqdσpyq

`

ż

BBεpxq

rupyq ´ upxqs
B

Bny
Npx,yqdσpyq,

which tends to upxq as εÑ 0. Moreover, we infer
ˇ

ˇI32
ˇ

ˇ ď C sup
yPBBεpxq

ˇ

ˇ

ˇ

Bu

Bny

ˇ

ˇ

ˇ

ż

BBεpxq

ˇ

ˇ

ˇ
Npx,yq

ˇ

ˇ

ˇ
dσpyq

ď C 1 sup
yPBBεpxq

ˇ

ˇ

ˇ

Bu

Bny

ˇ

ˇ

ˇ

„
ż

BBεpxq

1
εd´2dσpyq `

ż

BBεpxq

1
|rx´ y|d´2 dσpyq



.

Observing that both the integrals tend to zero when ε goes to zero because
the second one has a continuous kernel while the first one behaves as Opεq,
we infer that I32 Ñ 0 as ε Ñ 0. Putting together all the results, we obtain
(2.29).

2.3 Spectral analysis
Following the approach of Ammari and Kang, see [7, 8], in this section,

we prove the invertibility of the operator 1
2 I`KC ` rDC showing that, under

suitable assumptions, the following inclusion holds

σpKC ` rDCq Ă p´1{2, 1{2s .

Such task is accomplished by determining the spectrum of the adjoint op-
erator K˚

C `
rD˚C in L2pBCq, relying on the fact that the two spectra are

conjugate.
The explicit expression of K˚

C is in (2.9). Computing the L2-adjoint of
rDC is straightforward: indeed, given ψ P L2pBCq, we have
ż

BC

ψpxq rDCϕpxqdσpxq “

ż

BC

ψpxq

ˆ

1
ωd

ż

BC

py ´ rxq ¨ ny
|rx´ y|d

ϕpyqdσpyq

˙

dσpxq

“

ż

BC

ϕpyq

ˆ

1
ωd

ż

BC

py ´ rxq ¨ ny
|rx´ y|d

ψpxq dσpxq

˙

dσpyq



and thus
rD˚Cϕpxq “

1
ωd

ż

BC

px´ ryq ¨ nx
|ry ´ x|d

ϕpyqdσpyq. (2.30)

Note that the kernel of the integral operator rD˚C is smooth on BC.
As recalled in Theorem 2.1.5 and Theorem 2.1.8 the eigenvalues of K˚

C

on L2pBCq lie in p´1{2, 1{2s. With the same approach, it can be shown that
the same property holds true for K˚

C `
rD˚C .

Theorem 2.3.1. Let C be an open bounded domain with Lipschitz boundary.
Then

σpK˚
C `

rD˚Cq Ă p´1{2, 1{2s .

For completeness, we provide here a complete proof of such fact.
Firstly, we observe that the regular operator rD˚C on the boundary of the

cavity can be seen as the normal derivative of an appropriate single layer
potential.

Lemma 2.3.2. Given ϕ P L2pBCq we have that

rD˚Cϕpxq “
B

Bnx

`

S
rC rϕpxq

˘

, x P BC,

where rϕ P L2pB rCq is defined by rϕpxq :“ ϕprxq.

Proof. Using the expression (2.30) of rD˚C and the identity

∇x

ˆ

1
p2´ dq|x´ y|d´2

˙

“
x´ y

|x´ y|d
,

we find that

rD˚Cϕpxq “ ∇x

ˆ
ż

BC

κd ϕpyq

|ry ´ x|d´2 dσpyq

˙

¨ nx,

where κd “ 1{ωdp2 ´ dq. Given ϕ P L2pBCq and rϕ P L2pB rCq as previously
defined, we have

ż

BC

ϕpyq

|ry ´ x|d´2 , dσpyq “

ż

B rC

ϕprzq

|rrz ´ x|d´2
dσpzq

“

ż

B rC

ϕprzq

|z ´ x|d´2 dσpzq “

ż

B rC

rϕpzq

|z ´ x|d´2 dσpzq,

which gives the conclusion.



We are now ready to prove the main result of this section.

Proof of Theorem (2.3.1). Given ϕ P L2pBCq, let ψ be defined by ψ :“ SCϕ`
S

rC rϕ. By the known properties of single layer potentials, we derive on BC

Bψ

Bn

ˇ

ˇ

ˇ

˘
“

´

˘1
2I `K

˚
C `

rD˚C

¯

ϕ

and, as a consequence,

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

`
Bψ

Bn

ˇ

ˇ

ˇ

ˇ

´

“ 2
´

K˚
C `

rD˚C

¯

ϕ,
Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

´
Bψ

Bn

ˇ

ˇ

ˇ

ˇ

´

“ ϕ. (2.31)

Taking a linear combination of the two relations in (2.31), we deduce
´

λI ´K˚
C ´

rD˚C

¯

ϕ “ λ

ˆ

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

´
Bψ

Bn

ˇ

ˇ

ˇ

ˇ

´

˙

´
1
2

ˆ

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

`
Bψ

Bn

ˇ

ˇ

ˇ

ˇ

´

˙

“

ˆ

λ´
1
2

˙

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

´

ˆ

λ`
1
2

˙

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

´

.

If λ is an eigenvalue of K˚
C `

rD˚C with eigenfunction ϕ, then
ˆ

λ´
1
2

˙

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

´

ˆ

λ`
1
2

˙

Bψ

Bn

ˇ

ˇ

ˇ

ˇ

´

“ 0, on BC.

Multiplying such relation by the function ψ and integrating over BC, we get
ˆ

λ´
1
2

˙
ż

BC

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

dσpxq ´

ˆ

λ`
1
2

˙
ż

BC

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

´

dσpxq “ 0.

(2.32)
Integrating by parts we have

ż

BC

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

´

dσpxq “

ż

C

ψpxq∆ψpxq dx`
ż

C

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx

“

ż

C

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx.

(2.33)

The first integral in (2.32) can be dealt with as done in the proof of Theorem
2.2.2. Precisely, given large R ą 0, applying the Green’s formula in ΩR :“



`

Rd
´ XBRp0q

˘

zC, we get
ż

BC

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

dσpxq

“

ż

BBhRp0q

ψpxq
Bψ

Bxd
pxq dσpxq `

ż

BBbRp0q

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

dσpxq

´

ż

ΩR

ψpxq∆ψpxq dx´
ż

ΩR

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx,

where BBh
Rp0q is the intersection of the hemisphere with the half-space and

BBb
Rp0q is the spherical cap. The quantity Bψ{Bn is identically zero on the

boundary of the half-space since the kernel of the operator is the normal
derivative of the Neumann function which, by hypothesis, is null on Rd´1.
Moreover, ψ is harmonic in ΩR, so we infer
ż

BC

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

dσpxq “

ż

BBbRp0q

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

dσpxq ´

ż

ΩR

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx.

Recalling the asymptotic behaviour of simple layer potential,
ˇ

ˇSCϕ
ˇ

ˇ`
ˇ

ˇS
rCϕ

ˇ

ˇ “ Op|x|2´dq,
ˇ

ˇ∇SCϕ
ˇ

ˇ`
ˇ

ˇ∇S
rCϕ

ˇ

ˇ “ Op|x|1´dq as |x| Ñ 8.

we obtain, for some C ą 0,
ˇ

ˇ

ˇ

ˇ

ż

BBbRp0q

ψpxq
Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

dσpxq

ˇ

ˇ

ˇ

ˇ

ď

ż

BBbRp0q

ˇ

ˇ

ˇ
ψpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bψ

Bn
pxq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
dσpxq

ď
C

R2d´3

ż

BBbRp0q

dσpxq “
1

Rd´2 .

Passing to the limit RÑ `8, we find
ż

BC

ψpxq
Bψ

Bn

ˇ

ˇ

ˇ

ˇ

`

dσpxq “ ´

ż

Rd
´
zC

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx. (2.34)

Plugging (2.33) and (2.34) into (2.32), we infer the identity
ˆ

λ´
1
2

˙
ż

Rd
´
zC

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx`

ˆ

λ`
1
2

˙
ż

C

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx “ 0,



that is
pA`Bqλ “

1
2pA´Bq

with
A :“

ż

Rd
´
zC

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx and B :“

ż

C

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx.

The coefficient of λ is non-zero. On the contrary, if A`B “ 0 then ∇ψ “ 0
in Rd

´ which means that ψ ” 0, hence, from the second equation in (2.31),
we get ϕ “ 0 in BC.

Therefore, solving with respect to λ, we finally get

λ “
1
2 ¨

A´B

A`B
P

„

´
1
2 ,

1
2



. (2.35)

The value λ “ ´1{2 is not an eigenvalue for the operator K˚
C `

rD˚C . Indeed,
in such a case, we would have

A “

ż

Rd
´
zC

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx “ 0,

and thus ψ “ 0 in Rd
´zC. By definition of ψ, we deduce that ψ “ 0 on BC

and since ψ is harmonic in C, we get that ψ “ 0 also in C. As before, by
(2.31), this would imply that ϕ “ 0 in BC.

For completeness, let us observe that the value λ “ 1{2 is an eigenvalue
with geometric multiplicity equal to one. Indeed, identity (2.35) implies that,
for such value of λ,

B “

ż

C

ˇ

ˇ∇ψpxq
ˇ

ˇ

2
dx “ 0,

hence ψ is constant in C. Normalizing ψ “ 1 in C, the function ψ in Rd
´zC

is given by the restriction of the solution U to the Dirichlet problem in the
exterior domain Rdz

´

C Y rC
¯

with boundary data equal to 1. Then, by the
second equation in (2.31), the function ϕ is the normal derivative of U at
BC.



2.4 Asymptotic expansion
In this section, we derive an asymptotic formula for the solution to the

problem (2.20) when the cavity C is small compared to the distance from
the half-space Rd´1. For the reader’s convenience, we recall that the cavity
C has the structure

Cε :“ C “ z ` εΩ

where Ω is a bounded Lipschitz set containing the origin. Moreover, we
assume that

distpz,Rd´1
q ě δ0 ą 0 (2.36)

otherwise, for the application we have in mind, the problem does not have a
real physical meaning. To emphasize the dependence of the solution to the
direct problem by the parameter ε we denote it by uε. For brevity, we denote
the layer potentials relative to Cε by the index ε, viz.

Sε “ SCε , Dε “ DCε , rSε “ rSCε , rDε “ rDCε , Kε “ KCε

and the trace of the solution uε on BCε by fε. In this way the representation
formula (2.28) reads as

uε “ Sεg ´Dεfε ´ rDεfε ` rSεg.

At x P Rd´1, taking into account that x “ rx, it follows that

Sεgpxq “

ż

BCε

Γ px´ yqgpyq dσpyq “

ż

BCε

Γ prx´ yqgpyq dσpyq “ rSεgpxq

and

Dεfεpxq “

ż

BCε

B

Bny
Γ px´ yqfεpyq dσpyq “

ż

BCε

B

Bny
Γ prx´ yqfεpyq dσpyq

“ rDεfεpxq

Hence, we obtain the equality
1
2 uεpxq “ Sεgpxq ´Dεfεpxq, x P Rd´1.

Associating with the relation at the boundary BCε
´

1
2I `Kε ` rDε

¯

fεpxq “ Sεgpxq ` rSεgpxq, x P BCε, (2.37)



we get the identity
1
2uεpxq “ J1pxq ` J2pxq, x P Rd´1, (2.38)

where

J1pxq :“
ż

BCε

Γ px´ yqgpyq dσpyq,

J2pxq :“ ´
ż

BCε

B

Bny
Γ px´ yq

´

1
2I `Kε ` rDε

¯´1 ´
Sεg ` rSεg

¯

pyq dσpyq.

Analyzing in details the dependence with respect to ε of such relation, we ob-
tain an explicit expression for the first two terms in the asymptotic expansion
of uε at Rd´1.

In what follows, for any fixed value of ε ą 0, given h : BCε Ñ R, we
introduce the function h7 : BΩ Ñ R defined by

h7pζ; εq :“ hpz ` ε ζq, ζ P BΩ.

This definition is useful to consider integrals over a set that is independent
on ε.

Theorem 2.4.1. Let us assume (2.36). There exists ε0 such that for all
ε P p0, ε0q and g P L2pBCεq such that g7 is independent on ε, at any x P Rd´1

the following expansion holds

uεpxq “ 2εd´1Γ px´ zq

ż

BΩ

g7pζq dσpζq

` 2εd∇Γ px´ zq ¨
ż

BΩ

!

nζ
`1

2I `KΩ

˘´1
SΩg

7
pζq ´ ζg7pζq

)

dσpζq `Opεd`1
q,

(2.39)
where Opεd`1q denotes a quantity uniformly bounded by Cεd`1 with C “

Cpδ0q which tends to infinity when δ0 goes to zero.

To prove this theorem we first show the following expansion for the op-
erator

´

1
2I `Kε ` rDε

¯´1
.

Lemma 2.4.2. We have
´

1
2I `Kε ` rDε

¯´1 ´
Sεg ` rSεg

¯

pz`εζq “ ε
`1

2I `KΩ

˘´1
SΩg

7
pζq`Opεd´1

q

(2.40)
for ε sufficiently small.



Proof. We analyse, separetely, the terms
´

1
2I `Kε ` rDε

¯

and Sε ` rSε, col-
lecting, at the very end, the corresponding expansions.

At the point z ` εζ, where ζ P BΩ, we obtain

Kεϕpz ` εζq “
1
ωd

p.v.
ż

BCε

py ´ z ´ εζq ¨ ny
|z ` εζ ´ y|d

ϕpyq dσpyq

“
1
ωd

p.v.
ż

BΩ

pη ´ ζq ¨ nη
|ζ ´ η|d

ϕ7pηq dσpηq “ KΩϕ
7
pζq,

and

rDεϕpz ` εζq “

ż

BCε

B

Bny
Γ prz ` εrζ ´ yqϕpyq dσpyq

“ εd´1
ż

BΩ

B

Bnη
Γ prz ` εrζ ´ z ´ εηqϕ7pηq dσpηq “ εd´1Rεϕ

7
pζq

where
Rεϕ

7
pζq :“

ż

BΩ

B

Bnη
Γ
´

rz ´ z ` εprζ ´ ηq
¯

ϕ7pηq dσpηq

is uniformly bounded in ε.
Let us evaluate the term Sε ` rSε. We have

Sεgpz ` εζq “

ż

BCε

Γ pz ` εζ ´ yqgpyqdσpyq

“ ε

ż

BΩ

Γ pζ ´ θqg7pθqdσpθq “ εSΩg
7
pζq

and
rSεgpz ` εζq “

ż

BCε

Γ
´

rz ` εrζ ´ y
¯

gpyqdσpyq

“ εd´1
ż

BΩ

Γ
´

rz ´ z ` εprζ ´ θq
¯

g7pθqdσpθq

“ εd´1Γ prz ´ zq

ż

BΩ

g7pθqdσpθq `Opεdq

where we have used the zero order expansion for Γ . Collecting we infer
´

Sεg ` rSεg
¯

pz ` εζq “ εSΩg
7
pζq `Opεd´1

q



To conclude, from (2.37) we have
´1

2I `KΩ

¯´

I ` εd´1
´1

2I `KΩ

¯´1
Rε

¯

f 7 “ εSΩg
7
pζq `Opεd´1

q.

From the continuous property ofRε and the invertibility result of the operator
1{2I `KΩ as explained in Remark 2.1.9, we have

›

›

›

´1
2I `KΩ

¯´1
Rε

›

›

›
ď C,

where C ą 0 is independent from ε. On the other hand, choosing εd´1
0 “

1{2C, it follows that for all ε P p0, ε0q we have that I ` εd´1
´

1
2I `KΩ

¯´1
Rε

is invertible and
´

I ` εd´1
´1

2I `KΩ

¯´1
Rε

¯´1
“ I `Opεd´1

q.

Therefore
f 7 “ ε

´1
2I `KΩ

¯´1
SΩg

7
pζq `Opεd´1

q.

Remark 2.4.3. If the domain Cε is more regular, at least a C1-domain, we
have compactness of the operators Kε and K˚

ε . Thefore we can prove the
asymptotic expansion of the operator

´

1
2I `Kε ` rDε

¯´1
in an alternative

way. In fact, since Kε ` rDε is compact and its spectrum is contained in
p´1{2, 1{2s, there exists δ ą 0 such that

σ
´

Kε ` rDε

¯

Ă p´1{2` δ, 1{2s.

Then, the operator
Aε :“ 1

2I ´Kε ´ rDε

is such that σ pAεq Ă r0, 1 ´ δq and thus has spectral radius strictly smaller
than 1. As a consequence, taking the powers of the operator Aε one finds

}Ahε } ď 1 @h and }Ah0
ε } ă 1 for some h0. (2.41)



The inverse operator of I ´ Aε “
1
2I ` Kε ` rDε can be represented by the

Neumann series that is

pI ´ Aεq
´1
“

`8
ÿ

h“0
Ahε “

`8
ÿ

h“0

ˆ

1
2I ´Kε ´ rDε

˙h

.

Taking Rε of the proof of Lemma (2.4.2), we calculate Ahε highlighting the
term that do not contain ε and the one of order d´ 1, that is

Ahε “

ˆ

1
2I ´KΩ

˙h

´ εd´1Eh,ε

where

Eh,ε “
h
ÿ

j“1
Aε ¨ ¨ ¨Aε Rε

loomoon

j´th

Aε ¨ ¨ ¨Aε.

For h0 as in (2.41) and h ą h0 we have
}Eh,ε} ď }Rε}}Aε}

2h0}Ah0
ε }

rh{h0s´1
ď }Rε}}Aε}

2h0}Ah0
ε }

h{h0´1,

where r ¨ s denotes the integer part, and thus
`8
ÿ

h“0
}Eh,ε} ď C

`8
ÿ

h“0
}Ah0

ε }
h{h0

giving the absolute convergence of
ř

Eh,ε. Summarizing we conclude that

pI ´ Aεq
´1
“

ˆ

1
2I `KΩ

˙´1

`Opεd´1
q. (2.42)

Proof of Theorem 2.4.1. To prove (2.39), we analyse the two integrals J1 and
J2 in (2.38).

For x, ζ P Rd with x ‰ 0 and ε sufficiently small, we have
Γ px´ εζq “ Γ pxq ´ ε∇Γ pxq ¨ ζ `Opε2

q.

Hence, for x P Rd´1, we get

J1 “ εd´1
ż

BΩ

Γ px´ z ´ εζq g7pζq dσpζq

“ εd´1Γ px´ zq

ż

BΩ

g7pζq dσpζq

´ εd∇Γ px´ zq ¨
ż

BΩ

ζ g7pζq dσpζq `Opεd`1
q.

(2.43)



Next we consider the second integral in (2.38), written as

J2 “ ´ε
d´1

ż

BΩ

B

Bnζ
Γ px´ z ´ εζqh7εpζq dσpζq,

where the function h7ε is given by

h7εpζq “

ˆ

1
2I `Kε ` rDε

˙´1
´

Sεg ` rSεg
¯

pz ` εζq (2.44)

For x, ζ P Rd with x ‰ 0 and ε sufficiently small, it holds

∇xΓ px` εζq “ ∇xΓ pxq `Opεq, (2.45)

therefore, taking advantage of the expansion (2.40),

J2 “ εd´1
ż

BΩ

B

Bnζ
Γ px´ zqh7εpζq dσpζq `Opε

d
q

“ εd
ż

BΩ

B

Bnζ
Γ px´ zq

`1
2I `KΩ

˘´1
SΩg

7
pζq dσpζq `Opεd`1

q.

Collecting the expansions for J1 and J2, we deduce (2.39).

We show that the term
`1

2I `KΩ

˘´1
SΩgpxq, for x P BΩ, represents the

trace of the solution of the external domain related to the set Ω and with
Neumann boundary condition given by g. To this aim, we consider the
problem

$

’

’

’

’

&

’

’

’

’

%

∆U “ 0 in RdzΩ

BU

Bn
“ g on BΩ

U Ñ 0 as |x| Ñ `8,

(2.46)

where the cavity Ω is such that 0 P Ω.

Proposition 2.4.4. Let us define hpxq :“ Upxq
ˇ

ˇ

xPBΩ
, then

ˆ

1
2I `KΩ

˙´1

SΩgpxq “ hpxq.



0

Ω

BRp0q

DR,ε

R

x

Bεpxq

ε

Figure 2.3. Domain used to get the representation formula for U .

Proof. The thesis comes from, as done in the proof of Theorem 2.2.2, by
the application of the second Green’s identity to the fundamental solution Γ
and U in the domain BRp0qzΩ, with R sufficiently large. We define DR,ε :“
BRp0qzpΩ Y Bεpxqq, with x P pBRp0qzΩq (see Figure 2.3). By the second
Green’s identity, we get

0 “
ż

BDR,ε

”

Upyq
B

Bny
Γ px´ yq ´ Γ px´ yq

B

Bny
Upyq

ı

dσpyq

“

ż

BBRp0q

”

Upyq
B

Bny
Γ px´ yq ´ Γ px´ yq

B

Bny
Upyq

ı

dσpyq

´

ż

BBεpxq

”

Upyq
B

Bny
Γ px´ yq ´ Γ px´ yq

B

Bny
Upyq

ı

dσpyq

´

ż

BC

”

Upyq
B

Bny
Γ px´ yq ´ Γ px´ yq

B

Bny
Upyq

ı

dσpyq

:“ I1 ´ I2 ´ Iph, gqpxq

Using the decay rate of harmonic functions in unbounded domains, see The-
orem 2.1.2, the integral I1 gives

|I1| ď

ˆ

C1

R2d´3 `
C2

R2d´3

˙
ż

BBRp0q

dσpyq “
C

Rd´2

where C is a positive constant. As RÑ `8, I1 tends to zero.



Finally, we decompose I2 as

I2 “ I21 ´ I22

“

ż

BBεpxq

Upyq
B

Bny
Γ px´ yq dσpyq ´

ż

BBεpxq

Γ px´ yq
B

Bny
Upyq dσpyq.

Using the expression of Γ and the continuity of u, we derive

I21 “

ż

BBεpxq

Upyq
B

Bny
Γ px´ yq dσpyq “ Upxq

ż

BBεpxq

B

Bny
Γ px´ yq dσpyq

`

ż

BBεpxq

pUpyq ´ Upxqq
B

Bny
Γ px´ yqdσpyq,

which tends to Upxq as εÑ 0. Moreover, it holds

|I22| ď C 1 sup
yPBBεpxq

ˇ

ˇ

ˇ

BUpyq

Bny

ˇ

ˇ

ˇ

1
εd´2

ż

BBεpxq

dσpyq “ Opεq

which goes to zero as ε goes to zero.
In conclusion we have the following integral representation formula

Upxq “ ´Iph, gqpxq

“

ż

BΩ

”

Γ px´ yqgpyq ´ hpyq
B

Bny
Γ px´ yq

ı

dσpyq

“ SΩgpxq ´DΩhpxq, x P Rd
zΩ

(2.47)

where h is the trace of U on the boundary of the cavity Ω. Therefore, on BΩ
from single and double layer potentials properties

hpxq “ SΩgpxq ´

ˆ

´
1
2I `KΩ

˙

hpxq, x P BΩ,

hence
hpxq “

ˆ

1
2I `KΩ

˙´1

SΩgpxq, x P BΩ,

that is the assertion.



2.4.1 A specific Neumann condition
Now, we want to consider a specific case of the Neumann condition on the

boundary of the cavity Cε so to get an explicit expression of the asymptotic
expansion in terms of the polarization tensor and the fundamental solution.

Corollary 2.4.5. Given p P Rd, let the boundary datum given by

g “ ´p ¨ n.

Then, the following expansion holds

uεpxq “ 2 εd|Ω|∇Γ px´ zq ¨Mp`Opεd`1
q, x P Rd´1, (2.48)

where M is the symmetric positive definite tensor given by

M :“ I`
1
|Ω|

ż

BΩ

`

nζ bΨpζq
˘

dσpζq (2.49)

and the auxiliary function Ψ has components Ψi, i “ 1, . . . , d, solving
$
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∆Ψi “ 0 in RdzΩ

BΨi

Bn
“ ´ni on BΩ

Ψi Ñ 0 as |x| Ñ `8.

Proof. Let us set

J1 :“ ∇Γ px´ zq ¨
ż

BΩ

nζ

ˆ

1
2I `KΩ

˙´1

SΩr´p ¨ nspζq dσpζq,

J2 :“ ∇Γ px´ zq ¨
ż

BΩ

ζ p ¨ nζ dσpζq.

Then, expansion (2.39) with g “ ´p ¨ n gives

1
2uεpxq “ ´ε

d´1Γ px´ zq

ż

BΩ

p ¨ nζ dσpζq ` J1 ` J2 `Opε
d`1
q

“ J1 ` J2 `Opε
d`1
q

(2.50)

since divergence theorem guarantees that the first term in the expansion for
uε is null.



From the equation (2.46), with g “ ´p ¨ n, since the problem for U
is linear, we can decompose U as U “

ř

i Ui where the functions Ui, for
i “ 1, ¨ ¨ ¨ , d, solve

$

’

’

’

’
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’

’
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%

∆Ui “ 0 inRdzΩ

BUi
Bn

“ ´pini on BΩ

Ui Ñ 0 as |x| Ñ `8.

From the definition of the functions Ψi, we deduce U “ p ¨Ψ. Using Propo-
sition 2.4.4, the term J1 can be rewritten as

J1 “ ∇Γ px´ zq ¨
ż

BΩ

pΨpζq ¨ pqnζ dσpζq

“ ∇Γ px´ zq ¨
ż

BΩ

pnζ bΨpζqqp dσpζq.

To deal with the term J2, we observe that
ż

BΩ

pnζ b ζq dσpζq “ |Ω|I.

Indeed, for nζ “ pnζ,1, . . . , nζ,dq, for any i, j P t1, . . . , du, it follows
ż

BΩ

ζi nζ,j dσpζq “

ż

BΩ

nζ ¨ ζiej dσpζq

“

ż

Ω

div pζiejq dζ “
ż

Ω

ej ¨ ei dζ “ |Ω|δij

where ej is the j-th unit vector of Rd. Thus, we get

J2 “ ∇Γ px´ zq ¨
ż

BΩ

pζ b nζqp dσpζq “ |Ω|∇Γ px´ zq ¨ p.

Collecting the expressions for J1 and J2, we obtain formula (2.48).
Symmetry of the tensor M, defined in (2.49), follows from

ż

BΩ

Ψipζqnζ,j dσpζq “ ´

ż

BΩ

Ψipζq
BΨj

Bn
pζq dσpζq

“

ż

RdzΩ
div pΨipζq∇Ψjpζqq dζ

“

ż

RdzΩ
∇Ψipζq ¨∇Ψjpζq dζ



where the last term is obviously symmetric. Taking η P Rd, we consider

η ¨Mη “ |η|2 `
1
|Ω|

ż

BΩ

pnζ ¨ ηqpΨpζq ¨ ηq dσpζq.

The positivity of the tensor follows from the divergence theorem, integration
by parts and the definition of the function Ψ, in fact

ż

BΩ

pnζ ¨ ηqpΨpζq ¨ ηq dσpζq “ ´

ż

BΩ

B

Bn
pΨpζq ¨ ηqpΨpζq ¨ ηq dσpζq

“

ż

RdzΩ
div ppΨpζq ¨ ηq∇pΨpζq ¨ ηqq dσpζq

“

ż

RdzΩ

ˇ

ˇ∇pΨpζq ¨ ηq
ˇ

ˇ

2
dζ,

hence η ¨Mη ą 0.

For specific forms of the cavity Ω, the auxiliary function Ψ can be deter-
mined explicitly, providing a corresponding explicit formula for the polariza-
tion tensor M. The basic case is the one of a spherical cavity (see [36]). If
Ω “ tx P R3 : |x| ă 1u, then a direct calculation shows that, for i “ 1, 2, 3,
it holds Ψipxq “ xi{p2|x|3q, and thus

Ψipζq “
1
2 ζi, ζ P BΩ.

As a consequence, the polarization tensor is a multiple of the identity and,
precisely,

M “
3
2 |Ω|I “ 2πI.

Then, the asymptotic expansion (2.48) becomes

uεpxq “ 4πε3∇Γ px´ zq ¨ p`Opε4
q, x P R2.

Explicit formulas can be provided also in the case of ellipsoidal cavities (see
[5, 7, 8]).

In general, for given shapes of the cavity Ω, such auxiliary function can
be numerically approximated and, thus, the first term in the expansion (2.48)
can be considered as known in practical cases.





CHAPTER 3

The Elastic model

In this chapter we establish a sound mathematical approach for surface
deformation effects generated by a magma chamber embedded into Earth’s
interior and exerting on it a uniform hydrostatic pressure. Modeling assump-
tions translate the problem into classical elasto-static system (homogeneous
and isotropic) in an half-space with an embedded pressurized cavity. The
boundary conditions are traction-free for the air/crust boundary and uni-
formly hydrostatic for the chamber boundary. These are complemented with
zero-displacement condition at infinity (with decay rate). Therefore, repre-
senting the displacement vector field with u we get, from the mathematical
point of view, the linear elasto-static boundary value problem
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divpCp∇uq “ 0 in R3
´zC

Bu

Bν
“ pn on BC

Bu

Bν
“ 0 on R2

u “ op1q, ∇u “ op|x|´1q |x| Ñ 8,

where C is the elasticity tensor, C is the cavity, p is a constant representing
the pressure and p∇u “ 1

2

`

∇u ` ∇uT
˘

the strain tensor. With Bu{Bν we
depict the conormal derivative on the boundary of a domain, that is the
traction vector Bu{Bν :“ pCp∇uqn.

As done in the previous chapter for the scalar model, here we first estab-
lish the well-posedness of the problem and provide an appropriate integral
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formulation for its solution for cavities with general shape. Based on that,
assuming that the chamber is centred at some fixed point z and has di-
ameter r ą 0, small with respect to the depth d, we derive rigorously the
principal term in the asymptotic expansion for the surface deformation as
ε “ r{d Ñ 0`. Such formula provides a rigorous proof of the Mogi point
source model in the case of spherical cavities, presented in the Introduction,
generalizing it to the case of cavities of arbitrary shape. For the application
we have in mind, we focus the attention only to the dimensional case d “ 3.

The chapter is organized as follows. In Section 3.1 we recall some argu-
ments about linear elasticity and layer potentials techniques. In Section 3.2
we present the Neumann function for the Lamé operator in the half-space,
then we analyze the well-posedness of the direct problem via an integral rep-
resentation formula for the displacement field. Section 3.3 is devoted to the
proof of the main result regarding the derivation of the asymptotic formula
for the boundary diplacement field. In addition we analyse the properties of
the moment elastic tensor and, as a consequence of the asymptotic expansion
in the case of spherical cavity, we obtain the classical Mogi’s formula.

3.1 Preliminaries
Let C be a bounded Lipschitz domain in R3 representing the region oc-

cupied by a homogeneous and isotropic elastic medium. Let λ and µ be the
Lamé constants, i.e. the compression modulus and the shear modulus, we
define the fourth-order elasticity tensor

C :“ λIb I` 2µI

which satisfies the minor and major simmetry conditions, that is

Cijkh “ Ckhij “ Cjikh,

for all i, j, k, h “ 1, 2, 3. If λ and µ satisfies the physical range 3λ ` 2µ ą 0
and µ ą 0, the elasticity tensor C is positive definite.
It is also common to use the Poisson ratio ν which is related to λ and µ by
the identity ν “ λ{2pλ` µq.

In a homogeneous and isotropic elastic medium, the elastostatic Lamé
operator L is defined by

Lu :“ divpCp∇uq “ µ∆u` pλ` µq∇divu,



where u represents the vector of the displacements. In terms of the Poisson
ratio it becomes Lu “ µp∆u` 1{p1´ 2νq∇divuq.

The explicit expression of the conormal derivative is given by
Bu

Bν
:“ pCp∇uqn “ λpdivuqn` 2µpp∇uqn

or, equivalently,
Bu

Bν
“ 2µBu

Bn
` λpdivuqn` µpnˆ rotuq.

For the sequel, we recall that the positive definiteness of the tensor C
implies the strong ellipticity of the Lamé operator which corresponds to the
request µ ą 0 and λ` 2µ ą 0, see [37].

We recall Betti’s formulas for the Lamé system which can be obtained
by integration by parts, see for example [4, 44]. Given a bounded Lipschitz
domain C Ă R3 and two vectors u,v P R3, the first Betti formula is

ż

BC

u ¨
Bv

Bν
dσpxq “

ż

C

u ¨ Lv dx`
ż

C

Qpu,vq dx, (3.1)

where the quadratic form Q associated to the Lamé system is

Qpu,vq :“ λpdivuqpdivvq ` 2µp∇u : p∇v.

From (3.1) it is straightforward to find the second Betti formula
ż

C

pu ¨ Lv ´ v ¨ Luq dx “
ż

BC

ˆ

u ¨
Bv

Bν
´ v ¨

Bu

Bν

˙

dσpxq. (3.2)

Formula (3.1) will be used to prove that the solution of the elastic problem
proposed in this thesis is unique, and the equality (3.2) to get an integral
representation formula for it. To accomplish this second goal, a leading role
is played by the fundamental solution of the Lamé system: the Kelvin matrix
Γ (or Kelvin-Somigliana matrix) solution to the equation

divpCp∇Γq “ δ0I, x P R3
zt0u,

where δ0 is the Dirac function centred at 0. Setting Cµ,ν :“ 1{t16πµp1´νqu,
the explicit expression of Γ “ pΓijq is

Γijpxq “ ´Cµ,ν
"

p3´ 4νqδij
|x|

`
xixj
|x|3

*

, i, j “ 1, 2, 3, (3.3)



where δij is the Kronecker symbol and Γij stands for the i-th component of
the displacement when a force is applied in the j-th direction at the point
0. For reader convenience, we write also the gradient of Γ to highlight its
behaviour at infinity

BΓij
Bxk

pxq “ Cµ,ν

"

p3´ 4νqδijxk ´ δikxj ´ δjkxi
|x|3

`
3xixjxk
|x|5

*

, i, j, k “ 1, 2, 3.

(3.4)
Therefore from (3.3) and (3.4) it is straightforward to see that

|Γpxq| “ Op|x|´1
q and |∇Γpxq| “ Op|x|´2

q as |x| Ñ 8. (3.5)

3.1.1 Layer potentials for the Lamé operator
With the Kelvin matrix Γ at hand, we recall the definition of single and

double layer potentials corresponding to the operator L. Given ϕ P L2pBCq
(see [4, 7, 44])

SΓϕpxq :“
ż

BC

Γpx´ yqϕpyq dσpyq, x P R3,

DΓϕpxq :“
ż

BC

BΓ

Bνpyq
px´ yqϕpyq dσpyq, x P R3

zBC,

(3.6)

where BΓ{Bν denotes the conormal derivative applied to each column of the
matrix Γ.

We summarize here some properties of these operators

i. By definition, SΓϕpxq and DΓϕpxq satisfy the Lamé system in R3zBC.

ii. SΓϕpxq “ Op|x|´1q and DΓϕpxq “ Op|x|´2q as |x| Ñ `8.

Next, we introduce K and K˚ that is the L2-adjoint Neumann-Poincaré
boundary integral operators defined, in the sense of Cauchy principal value,
by

Kϕpxq :“ p.v.
ż

BC

BΓ

Bνpyq
px´ yqϕpyq dσpyq,

K˚ϕpxq :“ p.v.
ż

BC

BΓ

Bνpxq
px´ yqϕpyq dσpyq.



As in the previous chapter, in the sequel the subscripts ` and ´ indicate the
limits from outside and inside of the set C, respectively (see (2.10) for the
definition). We recall that t1, ¨ ¨ ¨ , td´1 represent an orthonormal basis for the
tangent plane to BΩ and B{Bt “

řd´1
k“1 B{Btk tk is the tangential derivative on

BΩ.
The following theorem about the jump relations of single and double

potentials for Lipschitz domains is due to Dahlberg, Kenig and Verchota
[24].
Theorem 3.1.1 ([24]). Let C be a bounded Lipschitz domain in R3. For
ϕ P L2pBCq, the following relations hold, a.e on BC,

DΓϕ
ˇ

ˇ

ˇ

˘
pxq “

`

¯1
2I`K

˘

ϕpxq,

BSΓϕ

Bν

ˇ

ˇ

ˇ

˘
pxq “

`

˘1
2I`K˚

˘

ϕpxq,

BSΓϕ

Bt

ˇ

ˇ

ˇ

´
pxq “

BSΓϕ

Bt

ˇ

ˇ

ˇ

`
pxq

(3.7)

It is worth noticing that the two operators K and K˚ are not compact
even on smooth domains, in contrast with the analogous operators for the
Laplace equation (see [7] and the considerations in the previous chapter),
due to the presence in their kernels of the terms

nipxj ´ yjq

|x´ y|3
´
njpxi ´ yiq

|x´ y|3
, i ‰ j, (3.8)

which make the kernel not integrable. Indeed, even in the case of smooth
domains, we cannot approximate locally the terms nˆpx´yq with a smooth
function, that is in terms of powers of |x ´ y| via Taylor expansion, in or-
der to obtain an integrable kernel on BC. Therefore, the analysis to prove
invertibility of the operators in (3.7) is complicated and usually based on a
regularization procedure (see [44]) in the case of smooth domains. For Lip-
schitz domains the analysis is much more involved and, as for the Laplace
operator, based on Rellich formulas. These results are contained in [24] and
its companion article [32]. We recall here only the main aspects for the
three-dimensional case.

Let Ψ be the vector space of all linear solutions of the equations
$

&

%

divpCp∇wq “ 0, inC
Bw

Bν
“ 0 on BC



or, alternatively
Ψ :“

 

w : ∇w ` p∇wqT “ 0
(

.

The space Ψ has dimension 6. Such a function w is called infinitesimal rigid
motion. We recall that w can be expressed as

w “ a`Ax, (3.9)

where A is a skew-symmetric matrix and a P R3. We define

L2
ΨpBCq :“

!

f P L2
pBCq :

ż

BC

f ¨w dσ “ 0, @w P Ψ
)

We have

Proposition 3.1.2 ([24]). The operators

´
1
2I`K˚ : L2

ΨpBCq Ñ L2
ΨpBCq

1
2I`K˚ : L2

pBCq Ñ L2
pBCq

are injective.

We omit the proof since is similar to that one of the scalar case.
The range of ´1{2I`K˚ as an operator on all L2pBCq is contained in L2

ΨpBCq
since

ż

BC

BSΓϕ

Bν

ˇ

ˇ

ˇ

`
pxqwpxq dσ “

ż

BC

SΓϕ
Bw

Bν
dσpxq “ 0

for all w P Ψ. This is because w is a solution to the elastostatic systems
satisfying Bw{Bν “ 0.

In addition, it holds

Proposition 3.1.3 ([24]). The operators

´
1
2I`K˚ : L2

ΨpBCq Ñ L2
ΨpBCq

1
2I`K˚ : L2

pBCq Ñ L2
pBCq

have closed range.



The key point to show that these two boundary operators have closed
range, as in the case of the Laplace operator, is the following inequality

C´1
›

›

›

´

´
1
2I`K˚

¯

ϕ
›

›

›

L2pBCq
ď

›

›

›

´1
2I`K˚

¯

ϕ
›

›

›

L2pBCq
ď C

›

›

›

´

´
1
2I`K˚

¯

ϕ
›

›

›

L2pBCq

where C is a constant independent of ϕ P L2pBCq. However, we stress that
the analysis to get the equivalence of the norms in the elastic case is very
complicated since it is based on the twine of Rellich formulas for the Lamé
operators, estimates derived from them, Korn’s inequalities and results on
the biharmonic equations.

In order to prove the invertibility of the operators, it remains to show
dense range. To do that one can make use of the result on the invertibility for
the same operators in the case of smooth domains. The minimum regularity
we request on the domain is, at least, C1 but here, without loss of generality,
we consider C8 domains. As stated before, even if we use smooth domains
we cannot apply the Fredholm’s theory because K and K˚ are not compact
operators. However, the difference K ´ K˚ yields a compact operator, see
[24] for details.

The following proposition is needed

Proposition 3.1.4. Let H be a Hilbert space. If T : H Ñ H is a bounded
linear operator with closed range, with null space of dimension l ă 8, and
such that T ´ T ˚ is compact, then the range of T has codimension l also.

Now, we state the invertibility result for smooth domains.

Lemma 3.1.5 ([24]). Let C be a bounded smooth domain with connected
boundary in R3. Let us consider the operators ˘1{2I`K˚ on BC. Then

(i) ´1
2I`K˚ :: L2

ΨpBCq Ñ L2
ΨpBCq

(ii) 1
2I`K˚ : L2pBCq Ñ L2pBCq

are invertible operators.

Proof. Let us prove piq (the same argument yield for piiq also). From the
previous two propositions we know that the operator ´1{2I`K˚ is one-to-
one and has closed range. Moreover, the dimension of the null space is less
than or equal to 6 and the codimension is greater than or equal to 6. Since
p´1{2I`K˚q ´ p´1{2I`Kq is compact, applying the Proposition 3.1.4, we
have the assertion.



Now, we briefly explain the sequence of steps to deduce the invertibility
of the operators ˘1{2I ` K˚ in the case of Lipschitz domains, giving only
the main ideas.

The starting point is to consider a sequence of C8 domains, which we call
Cj, that converge to the Lipschitz domain C (for all the details see Theorem
1.12 in [58]). In such a scheme the BCj can be projected homeomorphically
to BC so that the boundaries converge uniformly and so that the Lipschitz
characters of the Cj are controlled by that of C. In fact, the unit normal
vectors to the Cj will converge pointwise a.e. to those for C and in LppBCq
for all 1 ď p ď 8. If Kj denotes the singular operatos defined on BCj we
may project it onto BC and prove that

lim
jÑ`8

›

›

›
K˚
jf ´K˚f

›

›

›

L2pBΩjq
“ 0

and a result analogous for the adjoint operator K. Then, since

dim
´

Ker
´

˘
1
2I`K˚

¯¯

ď dim
´

Ker
´

˘
1
2I`K˚

j

¯¯

“ dim
´

Coker
´

˘
1
2I`K˚

j

¯¯

“ l

ď dim
´

Coker
´

˘
1
2I`K˚

¯¯

where l ă 8 is independent of j, under other suitable assumptions, it can be
proven that

dim
´

Coker
´

˘
1
2I`K˚

¯¯

“ dim
´

Ker
´

˘
1
2I`K˚

¯¯

“ l.

Finally, using the invertibility Lemma 3.1.5 about smooth domains we find

Theorem 3.1.6. Let C be a bounded Lipschitz domain with connected bound-
ary in R3. Then

(i) ´1
2I`K˚ :: L2

ΨpBCq Ñ L2
ΨpBCq

(ii) 1
2I`K˚ : L2pBCq Ñ L2pBCq

are invertible operators.

Now, we have all the instruments to analyse the elastic boundary value
problem.



3.2 The elastic problem
In this section we analyse the bounday value problem presented at the

beginning of this chapter, that is
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divpCp∇uq “ 0 in R3
´zC

Bu

Bν
“ pn on BC

Bu

Bν
“ 0 on R2

u “ op1q, ∇u “ op|x|´1q |x| Ñ 8,

(3.10)

where C is the cavity and p the pressure.
In particular we provide an integral representation formula and establish

the well-posedness of this problem. To do that, we give the expression of the
Neumann function N of the half-space with null traction on the boundary,
found by Mindlin in [48, 49]. Then we represent the solution to (3.10) by an
integral formula through the Neumann function. Finally, all these objects
will be used to prove the well-posedness of the problem (3.10).

3.2.1 Fundamental solution of the half-space
In this subsection we show the explicit expression of the Neumann func-

tion for the half-space presented for the first time in [48] by means of Galerkin
vector and nuclei of strain of the theory of linear elasticity, and secondly in
[49] using the Papkovich-Neuber representation of the displacement vector
field and the potential theory. Here, we follow the second approach.

We consider the boundary value problem
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divpCp∇vq “ b inR3
´

Bv

Bν
“ 0 onR2

v “ op1q, ∇v “ op|x|´1q as |x| Ñ `8.

(3.11)

The Neumann function of (3.11) is the kernel N of the integral operator

vpxq “

ż

R3
´

Npx,yqbpyq dy, (3.12)



giving the solution to the problem.
Given y “ py1, y2, y3q, we set ry :“ py1, y2,´y3q.

Theorem 3.2.1. The Neumann function N of problem (3.11) can be decom-
posed as

Npx,yq “ Γpx´ yq `R1
px´ ryq ` y3R2

px´ ryq ` y2
3 R3

px´ ryq,

where Γ is the Kelvin matrix, see (3.3), and Rk, k “ 1, 2, 3, have components
Rk
ij given by

R1
ijpηq :“ Cµ,ν

 

´pf̃ ` cν g̃qδij ´ p3´ 4νqηiηj f̃ 3
` cν

“

δi3ηj ´ δj3p1´ δi3qηi
‰

f̃ g̃

` cνp1´ δi3qp1´ δj3qηiηj f̃ g̃2(

R2
ijpηq :“ 2Cµ,ν

 

p3´ 4νq
“

δi3p1´ δj3qηj ` δj3p1´ δi3qηi
‰

f̃ 3

´ p1´ 2δ3jqδijη3f̃
3
` 3p1´ 2δ3jqηiηjη3f̃

5(

R3
ijpηq :“ 2Cµ,νp1´ 2δj3q

 

δij f̃
3
´ 3ηiηj f̃ 5(.

for i, j “ 1, 2, 3, where cν :“ 4p1´ νqp1´ 2νq, Cµ,ν “ 1
16πµp1´νq and

f̃pηq :“ 1
|η|

, g̃pηq :“ 1
|η| ´ η3

.

The matrix R, defined by

Rpη, y3q :“ R1
pηq ` y3 R2

pηq ` y2
3 R3

pηq, (3.13)

gives the regular part of the Neumann function since the singular point η “ 0
corresponds to y “ py1, y2,´y3q with y3 ă 0, which belongs to R3

`.
In order to prove this theorem, we recall the basic steps to deduce (3.12)

using the potential approach in [49].

Papkovich-Neuber potentials

The starting point is the Helmholtz decomposition of the vector field v
in (3.11) as

v “ ∇φ`∇ˆψ, (3.14)

where φ is a scalar potential and ψ a vector potential. Since the divergence
of ψ is arbitrary, ψ can be chosen in such a way that divψ “ 0. From



the Lamé operator with volume forces b and the Helmholtz representation
(3.14), we find that

∆
”

v `
1

p1´ 2νq∇φ
ı

“
b

µ
.

We define
h :“ 4πµ

”

v `
1

p1´ 2νq∇φ
ı

, (3.15)

where the constant 4πµ has been added to simplify the calculations in the
sequel, hence

∆h “ 4πb, divh “ 8πµp1´ νq
1´ 2ν ∆φ. (3.16)

By the identity ∆px ¨ hq “ x ¨∆h ` 2divh and the relation ∆h “ 4πb, we
find that

divh “ 1
2

“

∆px ¨ hq ´ 4πx ¨ b
‰

. (3.17)

Combining this expression with the second one in (3.16) we get

∆
„

8πµp1´ νq
1´ 2ν φ´

x ¨ h

2



“ ´2πx ¨ b.

We define the scalar quantity β as

β :“ 16πµp1´ νq
1´ 2ν φ´ x ¨ h, (3.18)

hence
∆β “ ´4πx ¨ b.

Using the definition (3.18) of β, we can avoid the dependence from φ into
the relation (3.15), that is

v “ Cµ,νt4p1´ νqh´∇ pβ ` x ¨ hqu, (3.19)

where h and β are the Papkovich-Neuber potentials. Let us introduce the
functions

φpxq :“ 1
|x|

and ψpxq :“ φpxq

1´ x3φpxq
“

1
|x| ´ x3

,



observing that, apart from Biφ “ ´xiφ
3, i “ 1, 2, 3, the following identities

hold true for α “ 1, 2,

φ´ ψ “ ´x3φψ, Bαψ “ ´xαφψ
2, B3ψ “ φψ, B3pφψq “ φ3.

We denote by φ and rφ the values φpx`e3q and φpx´e3q, respectively, with
analogous notation for ψ.

Proposition 3.2.2. Let I be the identity matrix and δ the Dirac delta con-
centrated at ´e3. Then, the matrix-valued function N “ N pxq solution to

Lv :“ div
`

Cp∇v
˘

“ δI in R3
´,

`

Cp∇v
˘

e3 “ 0 in R2,

is given by

Nαα “ ´Cµ,ν
 

p3´ 4νqφ` x2
αφ

3
` rφ` rp3´ 4νqx2

α ´ 2x3srφ
3
` 6x2

αx3rφ
5

` cν
`

rψ ´ x2
α
rφ rψ2˘(

Nαβ “ ´Cµ,νxαxβ
 

φ3
` p3´ 4νqrφ3

` 6x3rφ
5
´ cν rφ rψ2(

N3α “ ´Cµ,νxα
 

px3 ` 1qφ3
` p3´ 4νqpx3 ` 1qrφ3

` 6x3px3 ´ 1qrφ5
´ cν rφ rψ

(

Nα3 “ ´Cµ,ν xα
 

px3 ` 1qφ3
` p3´ 4νqpx3 ` 1qrφ3

´ 6x3px3 ´ 1qrφ5
` cν rφ rψ

(

N33 “ ´Cµ,ν
 

p3´ 4νqφ` px3 ` 1q2φ3
` p1` cνqrφ

`
“

p3´ 4νqpx3 ´ 1q2 ` 2x3
‰

rφ3
´ 6x3px3 ´ 1q2rφ5(

(3.20)
where Cµ,ν “ 1{t16πµp1´ νqu, cν “ 4p1´ νqp1´ 2νq and α “ 1, 2.

To establish (3.20), we observe that the columns N piq of N are determined
by solving the equation Lv “ eiδ for i “ 1, 2, 3 and using the Papkovich–
Neuber representation

v “ Cµ,ν
 

4p1´ νqh´∇
`

x ¨ h` β
˘(

with
#

∆h “ 4πeiδ
∆β “ 4πδi3δ.

(3.21)

where δij is the Kronecker symbol. The coupling between h and β is deter-
mined by the boundary conditions on the plane tx3 “ 0u, which are

p1´ 2νqpB3hα ` Bαh3q ´ x ¨ B
2
α3h´ B

2
α3β “ 0, pα “ 1, 2q,

2ν divh` 2p1´ 2νq B3h3 ´ x ¨ B
2
33h´ B

2
33β “ 0,

for x3 “ 0.

(3.22)



Set
Gpx,yq :“ ´φ

`

x´ y
˘

` φ
`

x´ ry
˘

.

Denoting by xf, gy the action of the distribution f on the function g, we
determine h and β taking advantage of the relation (which descends from
the second Green identity)

F pxq “ 1
4π x∆F,Gpx, ¨qy, (3.23)

applied to different choices of F .

Proof of Proposition 3.2.2. To determine N , we consider separately the case
of horizontal and vertical forcing. By symmetry, x1 and x2 can be inter-
changed.

Horizontal force: Lv “ e1δ. We choose h2 “ 0, so that boundary
conditions become

$

’

&

’

%

p1´ 2νqpB3h1 ` B1h3q ´ x1B
2
13h1 ´ B

2
13β “ 0,

p1´ 2νqB2h3 ´ x1B
2
23h1 ´ B

2
23β “ 0,

2ν B1h1 ` 2p1´ νq B3h3 ´ x1B
2
33h1 ´ B

2
33β “ 0,

for x3 “ 0,

Differentiating the first equation with respect to x1, the second with respect
to x2 and taking the difference, we obtain

0 “ p1´ 2νqB2
23h1 ` B

2
23h1 “ 2p1´ νqB2

23h1 for x3 “ 0,

which suggests, after integration with respect to x2, the choice F :“ B3h1.
Applying (3.23),

B3h1 “ ´By3G
ˇ

ˇ

y“´e3
“ ´B3pφ` rφq, for x3 ă 0,

and thus h1 “ ´pφ` rφq.
Being B3h1 null for x3 “ 0, integration of the second boundary condition

encourages the choice F :“ p1´ 2νqh3´B3β which is zero for x3 “ 0. Hence,
since ∆F “ 0, we deduce

p1´ 2νqh3 ´ B3β “ 0, for x3 ă 0. (3.24)

Concerning the third boundary condition, for x3 “ 0 we observe that

B1h1 “ x1pφ
3
` rφ3

q “ 2x1rφ
3
“ ´2B1rφ

x1B
2
33h1 “ x1pφ

3
` rφ3

´ 3φ5
´ 3rφ5

q “ 2x1prφ
3
´ 3rφ5

q “ ´2
`

B1rφ´ B
2
13
rφ
˘

,



since φ and rφ coincide when x3 “ 0. Substituting in the third boundary
condition, we obtain

F :“ 2p1´ νqB3h3 ´ B
2
33β ` 2p1´ 2νqB1rφ´ 2B2

13
rφ “ 0 for x3 “ 0.

Since ∆F “ 0, we infer

2p1´ νqB3h3 ´ B
2
33β ` 2p1´ 2νqB1rφ´ 2B2

13
rφ “ 0 for x3 ă 0,

and thus, being B1rφ “ ´x1rφ
3 “ ´B3px1rφ rψq,

2p1´ νqh3 ´ B3β “ ´2x1rφ
3
` 2p1´ 2νqx1rφ rψ for x3 ă 0,

Coupling with (3.24), we deduce
#

h3 “ ´2x1rφ
3
` 2p1´ 2νqx1rφ rψ

B3β “ ´2p1´ 2νqx1rφ
3
` 2p1´ 2νq2x1rφ rψ

for x3 ă 0.

Recalling that rφ3 “ B3prφ rψq and rφ rψ “ B3 rψ, by integration,

β “ ´2p1´ 2νqx1rφ rψ ` 2p1´ 2νq2x1 rψ for x3 ă 0.

Using the identity px3 ´ 1qrφ rψ “ rψ ´ rφ, we infer

x3h3 ` β “ x1
 

´2p1´ 2νqrφ´ 2x3rφ
3
` cν rψ

(

.

Substituting in (3.21), we get the expressions for Ni1 given in (3.20).

Vertical force: Lv “ e3δ. Choosing h1 “ h2 “ 0, conditions (3.22)
become

#

p1´ 2νqBαh3 ´ B
2
α3β “ 0 pα “ 1, 2q,

2p1´ νqB3h3 ´ B
2
33β “ 0,

for x3 “ 0.

Integrating the first relation with respect to xα, we obtain
#

p1´ 2νqh3 ´ B3β “ 0,
2p1´ νqB3h3 ´ B

2
33β “ 0,

for x3 “ 0.

Since ∆h3 “ ∆β “ δ, identity (3.23) with F :“ p1´ 2νqh3 ´ B3β gives

p1´ 2νqh3 ´ B3β “
 

p1´ 2νqG` By3G
(
ˇ

ˇ

y“´e3

“ p1´ 2νqp´φ` rφq ´ px3 ` 1qφ3
´ px3 ´ 1qrφ3,

(3.25)



for x3 ă 0. Applying (3.23) to F :“ 2p1´ νqB3h3 ´ B
2
33β, we deduce

2p1´ νqB3h3 ´ B
2
33β “

 

´2p1´ νqBy3G´ B
2
y3y3G

(ˇ

ˇ

y“´e3

“ B3
 

´2p1´ νqpφ` rφq ` B3pφ´ rφq
(

, for x3 ă 0.

Integrating with respect to x3, we infer

2p1´ νqh3´B3β “ ´2p1´ νqpφ` rφq ´ px3` 1qφ3
` px3´ 1qrφ3, for x3 ă 0.

Coupling with (3.25), we get explicit expressions for h3 and B3β, namely
#

h3 “ ´φ´ p3´ 4νqrφ` 2px3 ´ 1qφ̃3,

B3β “ px3 ` 1qφ3
´ cν rφ` p3´ 4νqpx3 ´ 1qrφ3

for x3 ă 0.

Differentiation of B3β with respect to xα gives

B
2
3αβ “ ´3xαpx3 ` 1qφ5

` cνxαrφ
3
´ 3p3´ 4νqxαpx3 ´ 1qrφ5

“ B3
 

xαφ
3
` cνxαrφ rψ ` p3´ 4νqxαrφ3(

and thus

Bαβ “ xα
 

φ3
` cν rφ rψ ` p3´ 4νqrφ3(, for x3 ă 0.

Recalling identity (3.21), we deduce the corresponding expressions for Ni3 in
(3.20).

With the explicit expression of function N pxq at hand we can now prove
the Theorem 3.2.1.

Proof of Theorem 3.2.1. Uniqueness of the solution to (3.11) is similar to the
one for problem (3.10) which we present in the following section.

The fundamental solution N “ Npx,yq in the half-space tx3 ă 0u is such
that its columns v1,v2 and v3 solve Lvi “ δyei where δy is the Dirac delta
concentrated at y “ py1, y2, y3q with y3 ă 0. Thus, the Neumann function N
is given by

Npx,yq “
1
|y3|

N
ˆ

x1 ´ y1

|y3|
,
x2 ´ y2

|y3|
,
x3

|y3|

˙

, (3.26)

as a result of the homogeneity of δ and the second order degree of L.



Recalling the definitions of φ, rφ, rψ and computing at px1´y1, x2´y2, x3q{|y3|,
we obtain the identities

f :“ ´ φ

y3
“

1
|x´ y|

, f̃ :“ ´
rφ

y3
“

1
|x´ ry|

,

g̃ :“ ´
rψ

y3
“

1
|x´ ry| ´ x3 ´ y3

,

where ry “ py1, y2,´y3q. Hence, the components of C´1
µ,νN are given by

C´1
µ,νNαα “ ´p3´ 4νqf ´ pxα ´ yαq2f 3

´ f̃ ´ p3´ 4νqpxα ´ yαq2f̃ 3
´ cν g̃

` cνpxα ´ yαq
2f̃ g̃2

´ 2x3y3f̃
3
` 6pxα ´ yαq2x3y3f̃

5

C´1
µ,νNαβ “ pxα ´ yαqpxβ ´ yβq

 

´f 3
´ p3´ 4νqf̃ 3

` cν f̃ g̃
2
` 6x3y3f̃

5(

C´1
µ,νN3α “ pxα ´ yαq

 

´px3 ´ y3qf
3
´ p3´ 4νqpx3 ´ y3qf̃

3
` cν f̃ g̃

` 6x3y3px3 ` y3qf̃
5(

C´1
µ,νNα3 “ pxα ´ yαq

!

´px3 ´ y3qf
3
´ p3´ 4νqpx3 ´ y3qf̃

3
´ cν f̃ g̃

´ 6x3y3px3 ` y3qf̃
5
)

C´1
µ,νN33 “ ´p3´ 4νqf ´ px3 ´ y3q

2f 3
´ p1` cνqf̃ ´ p3´ 4νqpx3 ` y3q

2f̃ 3

` 2x3y3f̃
3
´ 6x3y3px3 ` y3q

2f̃ 5.

Recollecting the expression for fundamental solution Γ in the whole space and
using the relation f̃ “ g̃ ´ px3 ` y3qf̃ g̃, the above formulas can be rewritten
as N “ Γ ` R where Γ is computed at x ´ y and the component Rij, for
i, j “ 1, 2, 3, of R are given by

Rαα “ Cµ,ν
 

´pf̃ ` cν g̃q ´ p3´ 4νqη2
αf̃

3
` cνη

2
αf̃ g̃

2
´ 2x3y3

`

f̃ 3
´ 3η2

αf̃
5˘(

Rβα “ Cµ,νηαηβ
 

´p3´ 4νqf̃ 3
` cν f̃ g̃

2
` 6x3y3f̃

5(

R3α “ Cµ,νηα
 

´p3´ 4νqpη3 ´ 2y3qf̃
3
` cν f̃ g̃ ` 6x3y3η3f̃

5(

Rα3 “ Cµ,νηα

!

´p3´ 4νqpη3 ´ 2y3qf̃
3
´ cν f̃ g̃ ´ 6x3y3η3f̃

5
)

R33 “ Cµ,ν
 

´pf̃ ` cν g̃q ´ p3´ 4νqη2
3 f̃

3
` cνη3f̃ g̃ ` 2x3y3

`

f̃ 3
´ 3η2

3 f̃
5˘(,

where ηα “ xα ´ yα for α “ 1, 2 and η3 “ x3 ` y3, which can be recombined



as

Rij “ Cµ,ν
 

´pf̃ ` cν g̃qδij ´ p3´ 4νqηiηj f̃ 3

` 2p3´ 4νqy3
“

δ3ip1´ δ3jqηj ` δ3jp1´ δ3iqηi
‰

f̃ 3

` cν
“

δi3ηj ´ δ3jp1´ δ3iqηi
‰

f̃ g̃ ` cνp1´ δ3jqp1´ δ3iqηiηj f̃ g̃
2

´ 2p1´ 2δ3jqx3y3
`

δij f̃
3
´ 3ηiηj f̃ 5˘(

for i, j “ 1, 2, 3. Since x3 “ η3 ´ y3, we obtain the decomposition Rij :“
R1
ij `R

2
ij `R

3
ij where

R1
ij :“ Cµ,ν

 

´pf̃ ` cν g̃qδij ´ p3´ 4νqηiηj f̃ 3
` cν

“

δ3iηj ´ δ3jp1´ δ3iqηi
‰

f̃ g̃

` cνp1´ δ3jqp1´ δ3iqηiηj f̃ g̃
2(

R2
ij :“ 2Cµ,νy3

 

p3´ 4νq
“

δ3ip1´ δ3jqηj ` δ3jp1´ δ3iqηi
‰

f̃ 3
´ p1´ 2δ3jqδijη3f̃

3

` 3p1´ 2δ3jqηiηjη3f̃
5(

R3
ij :“ 2Cµ,νp1´ 2δ3jqy

2
3
 

δij f̃
3
´ 3ηiηj f̃ 5(,

that is the assertion.

To convert the problem (3.10) into an integral form, bounds on the decay
at infinity of the Neumann function and its derivative at infinity are needed.

Proposition 3.2.3. For any Mx,My ą 0, there exists C ą 0 such that

|Npx,yq| ď C |x|´1 and |∇Npx,yq| ď C |x|´2 (3.27)

for any x,y P R3
´ with |x| ěMx and |y| ďMy.

Proof. If φ is a homogeneous function of degree α defined and continuous in
R3
´zt0u, then there exists a constant C such that

|φpxq| ď C|x|α, x P R3
´zt0u.

Thus, since Rk are homogeneous of degree ´k, for k “ 1, 2, 3, and

|η| ´ η3 ě |η| “ |x´ ry| ě |x| ´My

for |x| sufficiently large, the term R is bounded by

|R| ď |R1
| ` |y3||R2

| ` |y3|
2
|R3

| ď C

ˆ

1
|x|

`
|y3|

|x|2
`
|y3|

2

|x|3

˙

ď
C

|x|
.



Coupling with (3.5), we deduce the bound for N.
The estimates on |∇N| is consequence of the homogeneity of derivatives

of homogeneous functions together with the observation that f̃ and g̃ are C1

in R3
´zt0u.

3.2.2 Representation formula
Next, we derive an integral representation formula for u solution to the

problem (3.10). For, we make use of single and double layer potentials de-
fined in (3.6) and integral contributions relative to the regular part R of the
Neumann function N, defined by

SRϕpxq :“
ż

BC

pRpx,yqqTϕpyq dσpyq, x P R3
´,

DRϕpxq :“
ż

BC

ˆ

BR
Bνpyq

px,yq

˙T

ϕpyq dσpyq, x P R3
´,

(3.28)

where ϕ P L2pBCq.

Theorem 3.2.4. The solution u to (3.10) is such that

u “ pSΓn´DΓf ` pSRn´DRf , in R3
´zC (3.29)

where SΓ, DΓ are defined in (3.6), SR, DR in (3.28), pn is the boundary
condition in (3.10) and f is the trace of u on BC.

Before proving this theorem, we observe that f solves the integral equa-
tion

`1
2I`K`DR

˘

f “ p
`

SΓn` SRn
˘

, on BC, (3.30)
obtained by the application of the trace properties of the double layer poten-
tial (3.7) in formula (3.29).

Proof of Theorem 3.2.4. Given r, ε ą 0 such that C Ă Brp0q and Bεpyq Ă
R3
´zC, let

Ωr,ε “
`

R3
´ XBrp0q

˘

z pC YBεpyqq

with r sufficiently large such that to contain the cavity C; additionally, we
define BBh

r p0q as the intersection of the hemisphere with the boundary of



Figure 3.1. Domain Ωr,ε.

the half-space, and with BBb
rp0q the spherical cap (see Figure 3.1). Now, we

apply Betti’s formula (3.2) to u and the k-th column vector of N, indicated
by N pkq, for k “ 1, 2, 3, in Ωr,ε, hence

0 “
ż

Ωr,ε

“

upxq ¨ LN pkq
px,yq ´N pkq

px,yq ¨ Lupxq
‰

dx

“

ż

BBbrp0q

„

BN pkq

Bνx
px,yq ¨ upxq ´N pkq

px,yq ¨
Bu

Bνx
pxq



dσpxq

´

ż

BBεpyq

„

BN pkq

Bνx
px,yq ¨ upxq ´N pkq

px,yq ¨
Bu

Bνx
pxq



dσpxq

´

ż

BC

„

BN pkq

Bνx
px,yq ¨ upxq ´N pkq

px,yq ¨
Bu

Bνx
pxq



dσpxq

:“ I1 ` I2 ` I3,

since, from (3.10) and the boundary condition in (3.11),
ż

BBhr p0q

„

BN pkq

Bνx
px,yq ¨ upxq ´N pkq

px,yq ¨
Bu

Bνx
pxq



dσpxq “ 0.

We show that the term I1 goes to zero by using the behaviour at infinity of
u given in (3.10) and of the Neumann function given in (3.27). Indeed, we



have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBbrp0q

BN pkq

Bνx
px,yq ¨ upxq dσpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

BBbrp0q

|u|

ˇ

ˇ

ˇ

ˇ

ˇ

BN pkq

Bνx

ˇ

ˇ

ˇ

ˇ

ˇ

dσpxq

ď
C

r2

ż

BBbrp0q

|upxq|dσpxq.

This last integral can be estimated by means of the spherical coordinates
x1 “ r sinϕ cos θ, x2 “ r sinϕ sin θ, x3 “ r cosϕ where ϕ P rπ{2, πs, since
Bb
rp0q is a hemisphere in R3

´, and θ P r0, 2πq, indeed

C

r2

ż

BBbrp0q

|u| dσpxq “ C

π
ż

π
2

2π
ż

0

|upr, θ, ϕq| sinϕdθ dϕ

ď C sup
θPr0,2πq,ϕPrπ2 ,πs

|upr, θ, ϕq| Ñ 0,

as r Ñ `8, since u “ op1q. Similarly
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBbrp0q

N pkq
px,yq ¨

Bu

Bνx
pxq dσpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

BBbrp0q

|N pkq
|

ˇ

ˇ

ˇ

Bu

Bνx

ˇ

ˇ

ˇ
dσpxq

ď
C

r

ż

BBbr

ˇ

ˇ

ˇ

Bu

Bνx

ˇ

ˇ

ˇ
dσpxq.

Again, passing through spherical coordinates, we get
C

r

ż

BBbrp0q

ˇ

ˇ

ˇ

Bu

Bνx

ˇ

ˇ

ˇ
dσpxq ď C sup

θPr0,2πq,ϕPrπ2 ,πs
r
ˇ

ˇ

ˇ

Bu

Bν
pr, θ, ϕq

ˇ

ˇ

ˇ
Ñ 0, (3.31)

as r Ñ `8, since |∇u| “ opr´1q.
Integral I2 gives the value of the function u in y as ε goes to zero. Indeed,
we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεpyq

N pkq
px,yq ¨

Bu

Bνx
pxq dσpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

BBεpyq

|N pkq
|

ˇ

ˇ

ˇ

Bu

Bνx

ˇ

ˇ

ˇ
dσpxq

ď sup
xPBBεpyq

ˇ

ˇ

ˇ

Bu

Bνx

ˇ

ˇ

ˇ

ż

BBεpyq

“

|Γpkq| ` |Rpkq|
‰

dσpxq “ Opεq,



since the second integral has a continuous kernel. On the other hand

´

ż

BBεpyq

BN pkq

Bνx
px,yq ¨ upxq dσpxq “ ´upyq ¨

ż

BBεpyq

BN pkq

Bνx
px,yq dσpxq

`

ż

BBεpyq

rupyq ´ upxqs ¨
BN pkq

Bνx
px,yq dσpxq.

The latter integral tends to zero when ε goes to zero because
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεpyq

rupyq ´ upxqs ¨
BN pkq

Bνx
px,yq dσpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
xPBBεpyq

|upyq ´ upxq|

ż

BBεpyq

ˇ

ˇ

ˇ

ˇ

ˇ

BN pkq

Bνx

ˇ

ˇ

ˇ

ˇ

ˇ

dσpxq

and this last integral is bounded when ε goes to zero. Let finally observe
that

´upyq ¨

ż

BBεpyq

BN pkq

Bνx
px,yq dσpxq “ ´upyq ¨

ż

BBεpyq

BpΓpkq `Rpkqq

Bνx
px,yq dσpxq

“ ´upyq ¨

ż

BBεpyq

BΓpkq

Bνx
px´ yq dσpxq ´ upyq ¨

ż

BBεpyq

BRpkq

Bνx
px,yq dσpxq,

(3.32)
where the latter integral tends to zero as ε Ñ 0, since Rpkq, for k “ 1, 2, 3,
represents the regular part of the Neumann function. To deal with the first
integral, we preliminarly observe that direct differentiation gives
ˆ

BΓpkq

Bνx

˙

h

px´ yq “ ´c1ν

#

nkpxq
B

Bxh

1
|x´ y|

´ nhpxq
B

Bxk

1
|x´ y|

`

«

δhk `
3

p1´ 2νq
B|x´ y|

Bxk

B|x´ y|

Bxh

ff

B

Bnpxq

1
|x´ y|

+

,

(3.33)
where c1ν :“ p1´ 2νq{p8πp1´ νqq.
We substitute this expression into the integral (3.32) and we take into account



that
nhpxq “

xh ´ yh
|x´ y|

,
B

Bxk

1
|x´ y|

“ ´
xk ´ yk
|x´ y|3

,

hence
ż

BBεpyq

nhpxq
B

Bxk

1
|x´ y|

dσpxq “ ´

ż

BBεpyq

pxh ´ yhqpxk ´ ykq

|x´ y|4
dσpxq.

To solve this last integral we use spherical coordinates, that is

x1 ´ y1 “ ε sinϕ cos θ, x2 ´ y2 “ ε sinϕ sin θ, x3 ´ y3 “ ε cosϕ,

where ϕ P r0, πs and θ P r0, 2πq. From a simple calculation it follows

´

ż

BBεpyq

pxh ´ yhqpxk ´ ykq

|x´ y|4
dσpxq “

#

0 ifh ‰ k

´4
3π ifh “ k.

(3.34)

Therefore, from (3.33) and (3.34), we have
ż

BBεpyq

ˆ

nkpxq
B

Bxh

1
|x´ y|

´ nhpxq
B

Bxk

1
|x´ y|

˙

dσpxq “ 0, (3.35)

for any h and k. Hence, (3.32) becomes

´ upyq ¨

ż

BBεpyq

BN pkq

Bνx
px´ yq dσpxq

“ c1ν

3
ÿ

h“1
uhpyq

ż

BBεpyq

ˆ

δhk `
3

p1´ 2νq
B|x´ y|

Bxk

B|x´ y|

Bxh

˙

B

Bnx

1
|x´ y|

dσpxq

`Opεq.

Employing again the spherical coordinates and the definition of c1ν , we find
that

1´ 2ν
8πp1´ νq

ż

BBεpyq

δhk
B

Bnx

1
|x´ y|

dσpxq “

#

´ 1´2ν
2p1´νq ifh “ k

0 ifh ‰ k.
(3.36)



Similarly

3
8πp1´ νq

ż

BBεpyq

ˆ

B|x´ y|

Bxk

B|x´ y|

Bxh

˙

B

Bnx

1
|x´ y|

dσpxq

“

#

´ 1
2p1´νq ifh “ k

0 ifh ‰ k.

(3.37)

Putting together all the results in (3.36) and (3.37), we find that

lim
εÑ0

¨

˚

˝

´upyq ¨

ż

BBεpyq

BN pkq

Bνx
px´ yq dσpxq

˛

‹

‚

“ ´ukpyq.

Using the definition of single and double layer potentials (3.6), (3.28) and
splitting N as Γ`R formula (3.29) holds.

From the behaviour of the Neumann function given in (3.27) and the
representation formula in (3.29), we immediately get

Corollary 3.2.5. If u is a solution to (3.10), then

upyq “ Op|y|´1
q as |y| Ñ 8. (3.38)

3.2.3 Well-posedness
The well-posedness of the boundary value problem (3.10) reduces to show

the invertibility of

1
2I`K`DR : L2

pBCq Ñ L2
pBCq. (3.39)

In particular, in order to prove the injectivity of the operator (3.39) we show
the uniqueness of u following the classical approach based on the application
of the Betti’s formula (3.1) and the energy method, see [34, 44]. From the
injectivity, it follows the existence of u proving the surjectivity of (3.39)
which is obtained by the application of the index theory regarding bounded
and linear operators.

First of all, let us recall the closed range theorem due to Banach (see
[41, 62]).



Theorem 3.2.6 ([41, 62]). Let X and Y be Banach spaces, and T a closed
linear operator defined in X into Y such that DpT q “ X. Then the following
propositions are all equivalent:

a. ImpT q is closed in Y ; b. ImpT ˚q is closed in X˚;
c. ImpT q “ pKerpT ˚qqK; d. ImpT ˚q “ pKerpT qqK.

Through this theorem we can prove

Lemma 3.2.7. The operator 1
2I `K : L2pBCq Ñ L2pBCq is invertible with

bounded inverse.

Proof. The assertion of this lemma is based on the invertibility of the oper-
ator 1

2I`K˚ studied in [24]; it is known that

1
2I`K˚ : L2

pBCq Ñ L2
pBCq

is a bounded linear operator, injective and with dense and closed range.
Therefore, from Theorem 3.2.6 we have

Ker
`1

2I`K
˘

“ t0u, Im
`1

2I`K
˘K
“ t0u

and Imp1{2I ` Kq is closed. Then, it follows that the operator 1
2I ` K :

L2pBCq Ñ L2pBCq is bijective and the assertion follows exploiting the bounded
inverse theorem.

Since DR has a continuous kernel we prove its compactness adapting the
arguments contained in [43].

Lemma 3.2.8. The operator DR : L2pBCq Ñ L2pBCq is compact.

Proof. For the sake of simplicity, we call

Hpx,yq :“ BR
Bν
px,yq, x,y P BC

and we denote by Hpkq, k “ 1, 2, 3, the column vectors of the matrix H.
Let S be a bounded set such that S Ă L2pBCq, that is }ϕ}L2pBCq ď K,

for any ϕ P S. Then, applying Cauchy-Schwarz inequality

|pDRϕpyqqk|
2
ď }Hpkq

p¨,yq}2L2pBCq}ϕ}
2
L2pBCq ď K|BC| max

x,yPBC
|Hpkq

|,



with k “ 1, 2, 3, for all y P BC and ϕ P S. Hence |DRpϕq| ď K 1, with
K 1 ą 0, which implies that DRpSq is bounded. Moreover, for all ε ą 0
there exist ϕ,ϕ1 P S and δ ą 0 such that if }ϕpyq ´ ϕ1pyq}L2pBCq ă δ then,
applying again the Cauchy-Schwarz inequality

|DR
pϕ´ϕ1qpyq| ă ε.

Thus DRpSq Ă CpBCq where CpBCq indicates the space of continuous func-
tion on BC. Since each component of the matrix H is uniformly continuous
on the compact set BC ˆ BC, for every ε ą 0 there exists δ ą 0 such that

|Hpkq
pz,xq ´Hpkq

pz,yq| ď
ε

?
3K|BC|1{2

,

for all x,y, z P BC with |x´ y| ă δ. Since

|pDRϕqkpxq ´ pD
Rϕqkpyq| ď

ż

BC

|Hpkq
pz,xq ´Hpkq

pz,yq||ϕpzq| dσpzq

ď }Hpkq
p¨,xq ´Hpkq

p¨,yq}L2pBCq}ϕ}L2pBCq

ď
ε
?

3
,

for k “ 1, 2, 3, hence

|pDRϕqpxq ´ pDRϕqpyq| ď ε,

for all x,y P BC and ϕ P S, that is DRpSq is equicontinuous. The assertion
follows from Ascoli-Arzelà Theorem and noticing that CpBCq is dense in
L2pBCq.

We now prove

Theorem 3.2.9 (uniqueness). The boundary valure problem (3.10) admits
a unique solution.

Proof. Let u1 and u2 be solutions to (3.10). Then the difference v :“ u1´u2

solves the homogeneous version of (3.10), that is

divpCp∇vq “ 0 in R3
´zC (3.40)



with homogeneous boundary conditions
Bv

Bν
“ 0 on BC, Bv

Bν
“ 0 on R2 (3.41)

v “ Op|x|´1
q ∇v “ op|x|´1

q |x| Ñ 8,

where we make use of the decay condition at infinity comes from Corollary
3.2.5 for v.
Applying Betti’s formula (3.1) to v in Ωr “ pR3

´ XBrp0qqzC, we find
ż

BΩr

v ¨
Bv

Bν
dσpxq “

ż

Ωr

Qpv,vq dx

where Q is the quadratic form Qpv,vq “ λpdivvq2 ` 2µ|p∇v|2. From the
behaviour of v and the boundary conditions (3.41), we estimate the previous
integral defined on the surface of Ωr; contributions over the surface of the
cavity and the intersection of the hemisphere with the half-space are null by
means of (3.41), whereas on the spherical cap

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBbrp0q

v ¨
Bv

Bν
dσpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

BBbrp0q

|v|
ˇ

ˇ

ˇ

Bv

Bν

ˇ

ˇ

ˇ
dσpxq ď

C

r

ż

BBbrp0q

ˇ

ˇ

ˇ

Bv

Bν

ˇ

ˇ

ˇ
dσpxq.

As already done in (3.31) to obtain the representation formula, this integral
can be evaluated by spherical coordinates; in particular, it tends to zero when
r Ñ `8. Therefore

ż

R3
´
zC

!

λpdivvq2 ` 2µ|p∇v|2
)

dx “ 0.

Since the quadratic form is positive definite for the parameters range 3λ `
2µ ą 0 and µ ą 0, we have that

p∇v “ 0 and divv “ 0 in R3
´zC, (3.42)

It follows that the rigid displacements v “ a ` Ax, with a P R3 and A
belonging to the space of the anti-symmetric matrices (see (3.9) and, for more
details, [4, 20]), could be the only nonzero solutions which satisfy (3.40), the
boundary conditions in (3.41) and (3.42). However, in this case they are
excluded thanks to the behaviour of the function v at infinity. Hence, we
obtain that v “ 0, that is u1 “ u2 in R3

´zC.



The uniqueness result for the problem (3.10) ensures the injectivity of the
operator (3.39). In order to prove the surjectivity of the operator (3.39) we
recall, for the reader convenience, the definition of the index of an operator
(see [1, 41])

Definition 3.2.1 ([1, 41]). Given a bounded operator T : X Ñ Y between
two Banach spaces, the index of the operator T is the extended real number
defined as

ipT q “ dimpKerpT qq ´ dimpY {ImpT qq,
where dimpKerpT qq is called the nullity and dimpY {ImpT qq the defect of T .
In particular, when the nullity and the defect are both finite the operator T
is said to be Fredholm.

We remember also an important theorem regarding the index of a bounded
linear operator perturbed with a compact operator (see [1]).

Theorem 3.2.10 ([1]). Let T : X Ñ Y be a bounded linear operator and
K : X Ñ Y a compact operator from two Banach spaces. Then T ` K is
Fredholm with index ipT `Kq “ ipT q.

Now all the ingredients are supplied in order to prove the surjectivity of
the operator.

Theorem 3.2.11. The operator 1
2I`K`DR is onto in L2pBCq.

Proof. From Lemma 3.2.7 we have that the operator 1
2I ` K : L2pBCq Ñ

L2pBCq is Fredholm with index i
`1

2I`K
˘

“ 0, because both the nullity
and the defect of this operator are null. Moreover, since the operator DR is
compact from Lemma 3.2.8, it follows by means of Theorem 3.2.10 that

i
`1

2I`K`DR
˘

“ 0.

Hence

dim
`

Ker
`1

2I`K`DR
˘˘

“ dim
`

L2
pBCq{Im

`1
2I`K`DR

˘˘

.

Since the operator 1
2I`K`DR is injective it shows that dimpKerp1

2I`K`

DRqq “ 0. Finally, dimpL2pBCq{Imp1
2I`K`DRqq “ 0, that is

Im
`1

2I`K`DR
˘

“ L2
pBCq.



Summing up, it follows

Corollary 3.2.12. There exists a unique solution to (3.10).

Proof. Uniqueness follows from Theorem 3.2.9 and the existence from The-
orem 3.2.11.

3.3 Rigorous derivation of the asymptotic expan-
sion

In this section, with the integral representation formula (3.29) at hand, we
consider the hypothesis that the cavity C is small compared to the distance
from the boundary of the half-space. The aim is to derive an asymptotic
expansion of the solution u.

In particular, let us take the cavity, that from now on we denote by Cε
to highlight the dependence from ε, as

Cε “ z ` εΩ

where Ω is a bounded Lipschitz domain containing the origin. At the same
time, we write the solution of the boundary value problem (3.10) as uε. From
(3.29), recalling that N “ Γ`R, we have

ukεpyq “ p

ż

BCε

N pkq
px,yq ¨ npxq dσpxq ´

ż

BCε

BN pkq

Bν
px,yq ¨ fpxq dσpxq

:“ I
pkq
1 pyq ` I

pkq
2 pyq, y P R2

(3.43)
for k “ 1, 2, 3, where ukε indicates the k-th component of the displacement
vector and f is the solution of (3.30), that is

`1
2I`Kε `DR

ε

˘

fεpxq “ p
`

SΓ
ε pnqpxq ` SRε pnqpxq

˘

, x P BCε (3.44)

where we add the dependence from ε to all the layer potentials to distin-
guish them, in the sequel, from the layer potential defined over a domain
independent from ε. In what follows, with I we indicate the fourth-order
symmetric tensor such that IA “ pA and for any fixed value of ε ą 0, given
h : BCε Ñ R3, we introduce the function h7 : BΩ Ñ R3 defined by

h7pζq :“ hpz ` εζq, ζ P BΩ.



Moreover, we consider the functions θqr, for q, r “ 1, 2, 3, solutions to

divpCp∇θqrq “ 0 inR3
zΩ,

Bθqr

Bν
“ ´

1
3λ` 2µCn on BΩ, (3.45)

with the decay conditions at infinity

|θqr| “ Op|x|´1
q, |∇θqr| “ Op|x|´2

q, as |x| Ñ 8, (3.46)

where the condition Bθqr{Bν has to be read as
ˆ

Bθqr

Bν

˙

i

“ ´
1

3λ` 2µCijqrnj.

We now state our main result

Theorem 3.3.1 (asymptotic expansion). There exists ε0 ą 0 such that for
all ε P p0, ε0q at any y P R2 the following expansion holds

ukεpyq “ ε3
|Ω|pp∇zN

pkq
pz,yq : MI`Opε4

q, (3.47)

for k “ 1, 2, 3, where Opε4q denotes a quantity bounded by Cε4 for some
uniform constant C ą 0, and M is the fourth-order elastic moment tensor
defined by

M :“ I`
1
|Ω|

ż

BΩ

Cpθqrpζq b npζqq dσpζq, (3.48)

where θqr, for q, r “ 1, 2, 3, solve the problem in (3.45) and (3.46).

Before proving the theorem on the asymptotic expansion of uε, we need
to present some results

Lemma 3.3.2. The integral equation (3.44), when x “ z` εζ, with ζ P BΩ,
is such that

`1
2I`K` ε2ΛΩ,ε

˘

f 7pζq “ εpSΓ
pnqpζq `Opε2

q, (3.49)

where
ΛΩ,εf

7
pηq :“

ż

BΩ

BR
Bνpηq

pz ` εη, z ` εζqf 7pηq dσpηq

is uniformly bounded in ε. Moreover, when ε is sufficiently small, we have

f 7pζq “ εp
`1

2I`K
˘´1 SΓ

pnqpζq `Opε2
q, ζ P BΩ.



Proof. At the point z ` εζ, where ζ P BΩ, we obtain

DR
ε fpz ` εζq “

ż

BCε

BR
Bνptq

pt, z ` εζqfptq dσptq

“ ε2
ż

BΩ

BR
Bνpηq

pz ` εη, z ` εζqf 7pηq dσpηq.

Therefore, recalling that the kernel BR{Bνpηq is continuous we get

DR
ε “ ε2ΛΩ,ε (3.50)

where }ΛΩ,ε} ď C 1, with C 1 independent from ε.
For the integral

Kεfpz ` εζq “ p.v.
ż

BCε

BΓ
Bνptq

pt´ z ´ εζqfptq dσptq

we use the explicit expression of the conormal derivative of the fundamental
solution of the Lamé operator given in (3.33). In particular, since (3.33) is
a homogeneous function of degree -2, with the substitution t “ z ` εη, we
find
ˆ

BΓpkq

Bν

˙

h

pεpη ´ ζqq

“ ´
1

4πε2

#

„

1´ 2ν
2p1´ νqδhk `

3
2p1´ νq

ηk ´ ζk
|η ´ ζ|

ηh ´ ζh
|η ´ ζ|



B

Bnpηq

1
|η ´ ζ|

`
1´ 2ν

2p1´ νqnhpηq
ηk ´ ζk
|η ´ ζ|3

´
1´ 2ν

2p1´ νqnkpηq
ηh ´ ζh
|η ´ ζ|3

+

“
1
ε2

ˆ

BΓpkq

Bν

˙

h

pη ´ ζq,

for h, k “ 1, 2, 3. Therefore, we immediately obtain that

Kεfpz ` εζq “ p.v.
ż

BΩ

BΓ

Bνpηq
pη ´ ζqf 7pηq dσpηq “ Kf 7pζq. (3.51)



Evaluating the other integrals in (3.44) we obtain

SΓ
ε pnqpz ` εζq “

ż

BCε

Γpt´ z ´ εζqnptq dσptq

hence, choosing t “ z ` εη, with η P BΩ, we find

SΓ
ε pnqpz ` εζq “ ε2

ż

BΩ

Γpεpη ´ ζqqnpηq dσpηq “ εSΓ
pnqpζq, (3.52)

where the last equality follows noticing that the fundamental solution is
homogeneous of degree -1. In a similar way

SRε pnqpz ` εζq “
ż

BCε

Rpt, z ` εζqnptq dσptq,

hence, taking again t “ z ` εη, we find

SRε pnqpz ` εζq “ ε2
ż

BΩ

Rpz ` εη, z ` εζqnpηq dσpηq

and since R is regular it follows that

SRε pnqpz ` εζq “ Opε2
q. (3.53)

Relation (3.49) follows putting together the result in (3.50), (3.51), (3.52)
and (3.53).

To conclude, from (3.49) we have
`1

2I`K
˘

´

I` ε2 `1
2I`K

˘´1 Λε,Ω

¯

f 7 “ εpSΓ
pnq `Opε2

q, on BΩ.

From Lemma 3.2.7 and the continuous property of Λε,Ω described before, we
have

›

›

›

`1
2I`K

˘´1 Λε,Ω

›

›

›
ď C

where C ą 0 is independent from ε. On the other hand, choosing ε2
0 “ 1{2C,

it follows that for all ε P p0, ε0q we have

I` ε2 `1
2I`K

˘´1 Λε,Ω



is invertible and
´

I` ε2 `1
2I`K

˘´1 Λε,Ω

¯´1
“ I`Opε2

q.

Therefore
f 7 “ εp

`1
2I`K

˘´1 SΓ
pnq `Opε2

q, on BΩ,
that is the assertion.

For ease of reading, we define the function w : BΩ Ñ BΩ as

wpζq :“ ´
`1

2I`K
˘´1 SΓ

pnqpζq, ζ P BΩ. (3.54)

Taking the problem

div
´

Cp∇v
¯

“ 0 inR3
zΩ,

Bv

Bν
“ ´n on BΩ (3.55)

with decay conditions at infinity

v “ Op|x|´1
q, |∇v| “ Op|x|´2

q as |x| Ñ `8, (3.56)

we show that wpxq, for x P BΩ, is the trace of v on the boundary of Ω.
The well-posedness of this problem is a classical result in the theory of linear
elasticity so we remind the reader, for example, to [34, 37, 44].

Proposition 3.3.3. The function w, defined in (3.54), is such that w “

v
ˇ

ˇ

xPBΩ
where v is the solution to (3.55) and (3.56).

Proof. Applying second Betti’s formula to the fundamental solution Γ and
the function v into the domain Brp0qzpΩ Y Bεpxqq, with ε ą 0 and r ą 0
sufficiently large such that to contain the cavity Ω, we obtain, as done in a
similar way in the proof of the Theorem 3.2.4,

vpxq “ ´SΓnpxq ´DΓvpxq, x P R3
zΩ

Therefore, from the single and double layer potential properties for the elas-
tostatic equations, we find

vpxq “ ´SΓnpxq ´
`

´1
2I`K

˘

vpxq, x P BΩ

hence
vpxq “ ´

`1
2I`K

˘´1 SΓ
pnqpxq, x P BΩ

that is the assertion.



We note that the function v, as well as its trace w on BΩ, can be written
in terms of the functions θqr. Indeed, taking

v “ θqrδqr,

where we use the convention to sum up the repeated indices, and using (3.45)
and (3.46), it is straightforward to see that the elastostatic equation and the
boundary condition in (3.55) are satisfied.

Proof of Theorem 3.3.1. We study separately the two integrals Ipkq1 , I
pkq
2 de-

fined in (3.43). Since y P R2 and x P BCε “ z`εζ, with ζ P BΩ, we consider
the Taylor expansion for the Neumann function, that is

N pkq
pz ` εζ,yq “N pkq

pz,yq ` ε∇N pkq
pz,yqζ `Opε2

q, (3.57)

for k “ 1, 2, 3. By the change of variable x “ z ` εζ and substituting (3.57)
in Ipkq1 , we find

I
pkq
1 “ ε2pN pkq

pz,yq ¨

ż

BΩ

n dσpζq ` ε3p

ż

BΩ

npζq ¨∇N pkq
pz,yqζ dσpζq `Opε4

q

:“ p
´

ε2I
pkq
11 ` ε

3I
pkq
12

¯

`Opε4
q.

Integral Ipkq11 is null, in fact, applying the divergence theorem
ż

BΩ

npζq dσpζq “ 0.

For the integral Ipkq12 , we use the equality n ¨∇N pkqζ “ ∇N pkq : pnpζq b ζq,
therefore

I
pkq
1 “ ε3p∇N pkq

pz,yq :
ż

BΩ

`

npζq b ζ
˘

dσpζq `Opε4
q, k “ 1, 2, 3. (3.58)

For the term I
pkq
2 we use the result in Lemma 3.3.2 and the Taylor expansion

of the conormal derivative of Npkqpx,yq, for k “ 1, 2, 3. In particular, for
x “ z ` εζ, when ζ P BΩ and y P R2, we consider only the first term of the
asymptotic expansion, that is

BN pkq

Bνpxq
px,yq “

BN pkq

Bνpζq
pz,yq `Opεq, k “ 1, 2, 3.



Therefore
I
pkq
2 “ ´ε2

ż

BΩ

BN pkq

Bνpxq
pz ` εζ,yq ¨ f 7pζq dσpζq

“ ε3p

ż

BΩ

BN pkq

Bνpζq
pz,yq ¨wpζq dσpζq `Opε4

q,

for any k, where w is defined in (3.54). Since BN pkq{Bνpζq “ Cp∇N pkqnpζq,
we have

Cp∇N pkqnpζq ¨wpζq “ Cp∇N pkq : pwpζq b npζqq.

Therefore

I
pkq
2 pyq “ ε3 pCp∇N pkq

pz,yq :
ż

BΩ

pwpζq b npζqq dσpζq `Opε4
q. (3.59)

Collecting the result in (3.58) and (3.59), equation (3.43) becomes

ukεpyq “ I
pkq
1 pyq ` I

pkq
2 pyq

“ ε3p

«

∇N pkq
pz,yq :

ż

BΩ

pnb ζq dσ ` Cp∇N pkq
pz,yq :

ż

BΩ

pw b nq dσ

ff

`Opε4
q.

Now, handling this expression, we higlight the moment elastic tensor. We
have

ż

BΩ

pnpζq b ζq dσpζq “ |Ω|I, (3.60)

indeed, for any i, j “ 1, 2, 3, it follows
ż

BΩ

ζi nj dσpζq “

ż

BΩ

n ¨ ζiej dσpζq

“

ż

Ω

div pζiejq dζ “
ż

Ω

ej ¨ ei dζ “ |Ω|δij,

where ej is the j-th unit vector of R3. Hence, by (3.60) and taking the
symmetric part of ∇N pkq, for any k, we find

ukε “ ε3p

«

p∇N pkq : I|Ω| ` Cp∇N pkq :
ż

BΩ

w b n dσpζq

ff

`Opε4
q.



Using the symmetries of C, we have

ukε “ ε3
|Ω|pp∇N pkq :

«

I`
1
|Ω|

ż

BΩ

Cpw b nq dσpζq

ff

`Opε4
q,

for k “ 1, 2, 3. Now, taking into account that I “ II and using the equality
w “ θqrδqr, we have the assertion.

3.3.1 Properties of the moment elastic tensor
In this section we analyse the symmetry and positivity properties of the

moment elastic tensor M. Starting from the problem (3.45) and passing
through the weak formulation in BRp0qzΩ, we find
ż

BRp0qzΩ

Cp∇θkh : p∇ϕ dx

“

ż

BBRp0q

pCp∇θkhnq ¨ϕ dσpxq ´
ż

BΩ

pCp∇θkhnq ¨ϕ dσpxq

“

ż

BBRp0q

pCp∇θkhnq ¨ϕ dσpxq ` 1
3λ` 2µ

ż

BΩ

Cpnbϕq dσpxq

Choosing ϕ “ θrs, with r, s “ 1, 2, 3 we have
ż

BRp0qzΩ

Cp∇θkh : p∇θrs dx

“

ż

BBRp0q

pCp∇θkhnq ¨ θrs dσpxq ` 1
3λ` 2µ

ż

BΩ

Cpnb θrsq dσpxq

Using the decay condition at infinity (3.46) of the functions θ, we get. as
RÑ `8,

ż

BBRp0q

pCp∇θkhnq ¨ θrs dσpxq Ñ 0,

hence
ż

R3zΩ

Cp∇θkh : p∇θrs dx “ 1
3λ` 2µ

ż

BΩ

Cpnb θrsq dσpxq (3.61)



or in components, summing up the repeated indices,
ż

R3zΩ

Cijlmpp∇θkhqlmpp∇θrsqij dx “
1

3λ` 2µ

ż

BΩ

Cijkh niθ
rs
j dσpxq.

Positivity

Now, we prove the positivity of the tensor M, i.e. MA : A ą 0, for all
A P R3ˆ3. By the definition (3.48) of M and applying (3.61) we have

MkhrsAkhArs “ |A|2 ` p3λ` 2µq
ż

R3zΩ

Cp∇θkh : p∇θrsAkhArs dx

“ |A|2 ` p3λ` 2µq
ż

R3zΩ

Cp∇pθkhAkhq : pp∇θrsArsq dx ą 0

since C is positive definite.

Symmetries

First, we notice that from w “ θkhδkh we have w “ θhkδhk, hence θhk
satisfy the same problem (3.45) and (3.46). Again, by the definition (3.48),
the weak formulation (3.61) and the symmetries of the elastic tensor C, it
is straightforward to obtain the following symmetries for the moment elastic
tensor

Mkhrs “Mhkrs “Mkhsr “Mrskh,

where k, h, r, s “ 1, 2, 3.

3.3.2 The Mogi model
In this subsection, starting from the asymptotic expansion (3.47), that is

ukεpyq “ ε3
|Ω|pp∇zN

pkq
pz,yq : MI`Opε4

q, k “ 1, 2, 3,

where M is the tensor given in (3.48), we recover the Mogi model, presented
within the Introduction (precisely in Section 1.2), related to a spherical cav-
ity. We first recall that

MI “

»

–I`
1
|Ω|

ż

BΩ

Cpθqr b nq dσpζq

fi

fl I “ I`
1
|Ω|

ż

BΩ

Cpw b nq dσpζq,



where, in the last equality, we use the link between the functions w and θqr
that is w “ θqrδqr, q, r “ 1, 2, 3. Therefore, to get the Mogi’s formula, we
first find the explicit expression of w when the cavity Ω is the unit sphere
and then we calculate the gradient of the Neumann function N.

We recall that w is the trace on the boundary of the cavity of the solution
to the external problem

divpCp∇vq “ 0 in R3
zB1p0q,

Bv

Bν
“ ´n on BB1p0q,

where B1p0q “ tx P R3 : |x| ď 1u with decay at infinity

v “ Op|x|´1
q, |∇v| “ Op|x|´2

q as |x| Ñ `8.

We look for a solution with the form

vpxq “ φprqx with r :“ |x|,

so that

∆vi “
"

φ2 `
4φ1
r

*

xi, divv “ rφ1 ` 3φ, ∇divv “
"

φ2 `
4φ1
r

*

x.

By direct substitution, since n “ x on BB, we get

divpCp∇vq “ pλ` 2µq
ˆ

φ2 `
4φ1
r

˙

x,

Bv

Bν
“
 

pλ` 2µqrφ1 ` p3λ` 2µqφ
(

x

Thus, we need to find a function φ : r1,`8q Ñ R such that

φ2 `
4φ1
r
“ 0, pλ` 2µqrφ1 ` p3λ` 2µqφ

ˇ

ˇ

r“1 “ ´1, φ
ˇ

ˇ

r“`8
“ 0.

Condition at infinity implies that B “ 0 and A “ 1{4µ. Therefore, the
solution is vpxq “ x{4µ|x|3, which implies that

wpxq :“ vpxq
ˇ

ˇ

ˇ

|x|“1
“
x

4µ.

With the function w at hand, we have that

I`
1

|B1p0q|

ż

BB1p0q

Cpwpζq b npζqq dσpζq “ I`
3

16πµ

ż

BB1p0q

Cpζ b ζq
|ζ|3

dσpζq.



Through the use of spherical coordinates and ortogonality relations for the
circular functions, it holds

ż

BB1p0q

ζ b ζ

|ζ|3
dσpζq “

4π
3 I,

hence the second-order tensor MI is given by

MI “
3pλ` 2µq

4µ I.

It implies

ukεpyq “
πpλ` 2µq

µ
ε3pTrpp∇zN

pkq
pz,yqq `Opε4

q, k “ 1, 2, 3. (3.62)

For the Neumann’s function N (see the proof of the Theorem 3.2.1 for the
explicit expression of the singular components of the matrix N), we are in-
terested only to the trace of ∇zNpz,yq computed at y3 “ 0.

Evaluating N “ Npz,yq at y3 “ 0, we get

κ´1
µ Nαα “ ´f ´ pzα ´ yαq

2f 3
´ p1´ 2νqg ` p1´ 2νqpzα ´ yαq2fg2

κ´1
µ Nβα “ pzα ´ yαqpzβ ´ yβq

 

´f 3
` p1´ 2νqfg

(

κ´1
µ N3α “ pzα ´ yαq

 

´z3f
3
` p1´ 2νqfg

(

κ´1
µ Nα3 “ pzα ´ yαq

!

´z3f
3
´ p1´ 2νqfg

)

κ´1
µ N33 “ ´2p1´ νqf ´ z2

3f
3

where α, β “ 1, 2 and κµ “ 1{p4πµq, with

f “ 1{|z ´ y|, and g “ 1{p|z ´ y| ´ z3q.

Let ρ2 :“ pz1 ´ y1q
2 ` pz2 ´ y2q

2. Using the identities

ρ2f 2
“ 1´ z2

3f
2, p1´ z3fqg “ f

and the differentiation formulas

Bzαf “ ´pzα ´ yαqf
3, Bz3f “ ´z3f

3

Bzαg “ ´pzα ´ yαqfg, Bz3g “ fg,

Bzαpfgq “ ´pzα ´ yαqpf ` gqf
2g, Bz3pfgq “ f 3,



we deduce the following formulas for some of the derivatives of κ´1
µ Nij

κ´1
µ BzαNαα “ pzα ´ yαq

 

´f 3
` 3pzα ´ yαq2f 5

` p1´ 2νq
“

3f ´ pzα ´ yαq2f 2
pf ` 2gq

‰

g2(

κ´1
µ BzβNβα “ pzα ´ yαq

 

´f 3
` 3pzβ ´ yβq2f 5

` p1´ 2νq
“

f ´ pzβ ´ yβq
2f 2
pf ` 2gq

‰

g2(

κ´1
µ Bz3N3α “ pzα ´ yαq

 

´2νf 3
` 3z2

3f
5(

κ´1
µ BzαNα3 “ ´z3f

3
` 3pzα ´ yαq2z3f

5

` p1´ 2νq
“

´1` pzα ´ yαq2pf ` gqf
‰

fg

κ´1
µ Bz3N33 “ ´2νz3f

3
` 3z3

3f
5.

As a consequence, we obtain

Tr
`

∇̂N pαq
˘

“ 2κµp1´ 2νqpzα ´ yαqf 3, forα “ 1, 2
Tr
`

∇̂N p3q˘
“ 2κµp1´ 2νqz3f

3.
(3.63)

Combining (3.62), (3.63) and using the explicit expression for f , we find

uαε pyq “
1´ ν
µ

ε3ppzα ´ yαq

|z ´ y|3
`Opε4

q, forα “ 1, 2

u3
εpyq “

1´ ν
µ

ε3p z3

|z ´ y|3
`Opε4

q,

that are the components given in (1.1).
We highlight that, in general, for other shapes of the cavity Ω, the trace

on BΩ of the auxiliary functions θqr, with q, r “ 1, 2, 3, can be numerically
approximated (if it can not be calculated explicitly) and, thus, the first term
in the asymptotic expansion (3.47) can be considered as known in practical
cases.
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