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Abstract 

Statistical Methods for Bioinformatics: Estimation 
of Copy Number and Detection of Gene 

Interactions 

by 

Beibei Guo 

Identification of copy number aberrations in the human genome has been an impor­

tant area in cancer research. In the first part of my thesis, I propose a new model 

for determining genomic copy numbers using high-density single nucleotide polymor­

phism genotyping microarrays. The method is based on a Bayesian spatial normal 

mixture model with an unknown number of components corresponding to true copy 

numbers. A reversible jump Markov chain Monte Carlo algorithm is used to im­

plement the model and perform posterior inference. The second part of the thesis 

describes a new method for the detection of gene-gene interactions using gene expres­

sion data extracted from micro array experiments. The method is based on a two-step 

Genetic Algorithm, with the first step detecting main effects and the second step 

looking for interacting gene pairs. The performances of both algorithms are exam­

ined on both simulated data and real cancer data and are compared with popular 

existing algorithms. Conclusions are given and possible extensions are discussed. 
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Chapter 1 

Introduction 

1.1 Overview 

Statistical genomics is an application area of probability and statistics. It involves the 

development of models and methods for the analysis and interpretation of genomic 

data. It has recently received renewed interest because of significant advancements in 

biotechnology and breakthroughs in genetics and molecular biology. Diverse genomic 

data generated by high-throughput biotechnologies requires new computational and 

statistical methods for proper analysis and interpretation. 

Bioinformatics is the application of statistics and computer science to biological 

fields including molecular biology and genomics. It now entails the creation and 

advancement of databases, algorithms, computational and statistical techniques and 

theories to solve formal and practical problems arising from the management and 

analysis of biological data. Identification of genetic differences between two sample 

classes is essential to disease diagnosis, treatment and prevention. In recent years, 

microarrays have become powerful tools to address this problem. 

The present dissertation investigates two problems in bioinformatics: copy num-

1 
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ber variation and classification of disease status based on gene-gene interactions. 

Copy number is the number of copies of a particular segment of DNA sequence. It 

was generally thought that DNA sequences were almost always present in two copies 

in a genome. However, discoveries have revealed that segments of DNA, ranging in 

size from single-nucleotide to millions of DNA bases, can vary in copy-number. We 

define copy number gain if copy number is greater than two, and loss if copy number 

is fewer than two. In cancer, copy number losses and gains are known to contribute to 

alterations in the expression of tumour-suppressor genes and oncogenes, respectively; 

see, for example Knuutila [1998] and Knuutila [1999]. Developmental abnormalities, 

such as Down(Izraeli S. [2005]), Prader Willi (Donlon [T.A. et a~), Angelman and Cri 

du Chat syndromes (wikipedia), result from gain or loss of one copy of a chromosome 

or chromosomal region. Thus, detection and mapping of copy number abnormali­

ties provide an approach for associating aberrations with disease phenotype and for 

identifying critical genes. A factor that seems to affect detecting of copy number 

aberrations is the fact that many cancer samples (with copy number aberrations) are 

"contaminated" by normal cells. The estimation of copy number would be much more 

accurate if we can account for normal cell contamination. 

In the study of human genetics, mapping of complex traits is a major challenge. 

In contrast to mendelian traits, which can be attributed to mutations of single genes, 

complex traits involve more than one gene. Complex traits are much more com­

mon in the population and include asthma, hypertension, heart disease, Alzheimer's 

disease, and diabetes, among many others. Understanding how interactions among 

genes contribute to the trait is having a large impact on biomedical research, agricul­

ture and evolutionary biology. Most current strategies of selecting informative genes 

for classification are based on predictor variables representing individual genes. The 

simplest example is a t-test. These tests are very easy to perform, but they ignore 
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information contained in gene-gene interactions. A review of current techniques for 

detection of gene-gene interactions is given in Musani et al [2007] We believe that 

taking into account gene-gene interactions can help improve classification accuracy. 

This thesis discusses some of the current methods and their limitations for the 

problems of copy number inference and classification based on gene-gene interactions. 

A new approach is proposed for each problem. The new methods are assessed by 

simulation studies, as well as applications involving real cancer data. 

1.2 Outline 

The dissertation is organized as follows. In Chapter 2 we discuss copy number esti­

mation, including biology background, existing statistical methods to estimate copy 

number, the proposed Bayesian mixture model, and the application to simulated and 

real data. Chapter 3 covers the detection of gene-gene interactions, with it's own parts 

of biology, existing methods and the proposed method, as well as the applications. 

The thesis concludes with discussions of possible extensions. 



Chapter 2 

Estimation of Genomic Copy 

Number with Single Nucleotide 

Polymorphism Genotyping Arrays 

2.1 Introduction 

Gene dosage variations occur in many diseases, as well as in normal populations (e.g., 

Pinkel et al. [1998], Wang et al [2009]). In cancer, copy number losses and gains 

are known to contribute to alterations in the expression of tumour-suppressor genes 

and oncogenes, respectively; see, for example Knuutila [1998, 1999]. Developmental 

abnormalities, such as Down(Izraeli S. [2005]), Prader Willi (Donlon [T.A. et a~), 

Angelman and Cri du Chat syndromes (wikipedia), result from gain or loss of one 

copy of a chromosome or chromosomal region. Thus, detection and mapping of copy 

number abnormalities provide an approach for associating aberrations with disease 

phenotype and for identifying critical disease-causing genes. As an example, Redon 

et al. [2006] constructed a first-generation copy number variation (CNV) map of the 

human genome through the study of 270 HAPMAP normal individuals from four 

populations (30 parent-offspring trios of the Yoruba from Nigeria (YRI) , 30 parent-

4 
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offspring trios of European descent from Utah, USA (CEU), 45 unrelated Japanese 

from Tokyo, Japan (JPT) and 45 unrelated Han Chinese from Beijing, China (CHB)) 

with ancestry in Europe, Africa or Asia, Consortium IH [2003]. A copy number variant 

(CNV) is a segment of DNA in which differences of copy-number (number of copies of 

a molecule or portions of it) have been found by comparison of two or more genomes. 

A total of 1,447 copy number variable regions, covering 360 megabases (i.e., 12% of 

the genome), were identified in this study. These CNVRs contained genes, disease 

loci, functional elements and segmental duplications. Their map of copy number 

variation in the human genome demonstrates the ubiquity and complexity of this 

form of genomic variation. The abundance of functional sequences of all types both 

within and flanking areas of copy number variation suggests that the contribution of 

CNV s to phenotypic variation is likely to be appreciable. 

DNA from the individuals in the study of Redon et al. [2006] was analyzed for 

CNV using two technologies: single-nucleotide polymorphism (SNP) genotyping ar­

rays and comparative genomic hybridization (CGH). Comparative genomic hybridiza­

tion (CG H) is a molecular-cytogenetic method for the analysis of copy number changes 

(gains/losses) in the DNA content of a given subject's DNA and often in tumor cells. 

Array-based Comparative Genomic Hybridization (aCGH) is a technique to detect 

genomic copy number variations at a higher resolution level than chromosome-based 

CGH (Pinkel et al. [1998]). The method is based on hybridization of fluorescently la­

beled tumor DNA and reference DNA on a microarray platform containing Bacterial 

Artificial Chromosome (BAC) clones. As a gold standard, it is robust in identify­

ing long (say, greater than 1MB) segments of chromosomal alterations. However, 

although the resolution of aCGH has been improved, it is still not high enough to de­

tect amplifications or deletions ofrelatively short segments (less than 10 kb), Toruner 

[2007] and Redon et al. [2006]. The high-density SNP array, which can accommodate 

hundreds of thousands of SNP probe sets simultaneously, is an alternative approach to 

detect genome wide copy number aberrations with much higher resolution than CGH, 
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see Bignell [2004]. Compared to CGH, SNP array based experiments are newer and 

are becoming more popular for copy number analysis. Below I provide more detail 

on these studies. 

2.2 Biology Background 

2.2.1 Basic Genetics 

The human body is built from 100 trillion cells. The human genome inside the nu­

cleus of each cell is comprised of 3 billion nucleotides packaged into two sets of 23 

chromosomes, one set inherited from each parent. Each chromosome is a DNA double 

helix. The nucleotides that make up DNA include A (adenine), T (thymine), G (gua­

nine), C (cytosine), with A pairing with T and G pairing with C. A gene is a specific 

contiguous subsequence of DNA whose A-T-G-C sequence is the code required for 

constructing a protein. Roughly 1.2 percent of the genome is made of genes. The 

central dogma of molecular biology is the process of DNA ---* mRNA ---* protein, with 

the two intervening steps called transcription and translation, respectively. 

Copy number is the number of copies of a particular segment of DNA sequence. It 

was generally thought that DNA sequences were almost always present in two copies 

in a genome. However, discoveries have revealed that segments of DNA, ranging in 

size from single-nucleotide to millions of DNA bases, can vary in copy-number. There 

are two primary mechanisms of genomic rearrangements that lead to copy number 

changes; non-allelic homologous recombination (NAHR) is the most common form 

and non-homologous end-joining is also known but seems to occur less often (Shaw 

[2004]). The NAHR mechanism is characterized by the presence of low copy repeats 

(LCRs) that serve as substrates for the recombination. Briefly, two LCRs, A and B, 

that are directly oriented misalign so that one is atop the other (imagine an S-shaped 

curve), and subsequent homologous recombination results in a deletion with a sin-
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gle recombinant LCR. Similar mechanisms lead to gains. DNA replication errors is 

another source of copy number change. As found in Redon et al. [2006], 12% of the 

genome of normal population has copy number gains or losses. 

Differences in the DNA sequence of our genomes contribute to our uniqueness. These 

changes influence most traits including susceptibility to disease. Copy number changes 

in DNA can cause abnormal mRNA transcript amounts and consequently affect the 

functioning of proteins. In particular, amplification of an oncogene or deletion of a 

tumor suppressor gene are important steps in elucidating mechanisms for tumorigen­

esis. There are many examples of copy number change associated with disease. Down 

Syndrome is the most common numerical abnormality found in newborns, which is 

characterized by trisomy chromosome 21. Cancer is also associated with copy number 

changes. In an analysis of breast cancer (Shadeo [A et a~), seven cell lines showed 75 

gains and 48 losses in the genome. A prostate cancer study (Wolf [M et a~) across 

4 cell lines showed association with 28 gains and 18 losses, while a colorectal cancer 

study (Douglas [E et a~) across 48 cell lines and 37 primary CRCs showed gain of 

chromosome 20, 13, and 8q and smaller regions of amplification such as chromosome 

17ql1.2-qI2. Thus, studying DNA copy number is important in biological and medi­

cal research. 

2.2.2 Studies for copy number estimation 

There are many different ways to detect copy number variation. Among them, kary­

otyping, comparative genomic hybridization (CGH), array CGH, and SNP microar­

rays are standard well-known methods. 

Karyotyping is the study of chromosomes and the related disease states caused 

by numerical and structural chromosome abnormalities. A variety of cell or tissue 
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types can be used to perform these studies. Normally chromosomes can't be seen 

with a light microscope but during cell division they become condensed enough to 

be easily analyzed at 1000X. Under the microscope chromosomes appear as thin, 

thread-like structures. Karyotyping images can only show large (~ 20kb) segments of 

copy number change; for example, chromosome arms. Figure 2.1 shows a karyotype 

of Down syndrome defined as having three copies of chromosome 21. 
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Figure 2.1: A Karyotyping image. 
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Source: Cytogenetics information site (http://home.comcast.net/ dmgt350/cytogenetics). 
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Comparative genomic hybridization Comparative genomic hybridization (CGH) 

is a molecular-cytogenetic method for the analysis of copy number changes (gains/losses) 

in the DNA content of a given subject's DNA and often in tumor cells. Array-based 

Comparative Genomic Hybridization (aCGH) is a technique to detect genomic copy 

number variations at a higher resolution level than chromosome-based CGH (pinkel 

et al. [1998]). The method is based on the hybridization of fluorescently labeled tu­

mor DNA and reference DNA on a microaray platform containing Bacterial Artificial 

Chromosome (BAC) clones or spotted DNA. Using image analysis, regional differ­

ences in the fluorescence ratio of tumor to reference DNA can be detected and used 

for quantifying copy number changes. In CGH experiments (Figure 2.2), DNA from 

test (tumor) tissue and from normal tissue is labeled with different dyes. After mixing 

test and reference DNA, the mixture is hybridized to normal metaphase chromosomes 

or, for array-CGH (aCGH) to a slide containing thousands of defined BAC probes. 

The (fluorescence) color ratio along the chromosomes is used to evaluate regions of 

DNA gain or loss in the test sample. As shown in Figure 2.2, the more green we 

get, the smaller the copy number is, and the more red we get, the larger the copy 

number is. Array-CGH (aCGH) gives a higher resolution (~ 20Kb) than conventional 

CGH (the BAC clones are smaller). As a gold standard, it is robust to identify long 

segments of chromosomal alterations. However, although the resolution of aCGH has 

been improved, it is still not high enough to detect amplifications or deletions of rel­

atively short segments (Toruner [2007] and Redon et al. [2006]). 
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Figure 2.2: Technology of CGH and aCGH. 

Source: www.array-cgh.de 
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SNP Microarrays are also used for copy number studies and are quickly becom­

ing the standard approach to these studies. CGH, as a gold standard, is very robust 

in identifying relatively longer segments of chromosomal alterations. SNP arrays pro­

vide higher resolution, and thus can detect amplifications or deletions of relatively 

short segments. Compared to CGH, SNP array based experiments are newer, cheaper 

and easier to run (Winchester [2009]). 

A SNP (single nucleotide polymorphism) is a DNA sequence variation occurring 

when a single nucleotide in the genome differs between members of a population. 

Almost all common SNPs are operationally defined by two alleles. They occur ap­

proximately every 1-2kb in the human genome. SNPs are used to help researchers 

pinpoint genes that are associated with disease. Since DNA copy number may occur 

on a very short region, platforms that provide higher resolutions are desirable. The 

technology for production of high-density oligonucleotide arrays was pioneered by 

Affymetrix, a biotechnology company. These arrays were originally designed as geno­

typing arrays and can accommodate hundreds of thousands of SNPs, simultaneously. 

They provide much higher resolution (about 10kb)(Bignell [2004]) than aCGH and 

thus can hopefully measure much smaller segments of copy number variation. Cur­

rently, there is no specific platform for evaluating SNP copy number. However, SNP 

genotyping arrays can and are being used for copy number studies. Both Affymetrix 

and another biotechnology company, Illumina, manufacture genotyping arrays that 

are popular platforms for copy number estimation. 

Figure 2.3 shows the Affymetrix platform used to generate the data I have analyzed. 

The surface of the Affymetrix chip is like a giant checkerboard with hundreds of thou­

sands of squares that has been shrunk down to the size of a thumbnail. Each square 

on the checkerboard holds millions of copies of one unique type of probe. In this 

format a probe is 25 base-pairs long and 20 different probe pairs (PM (perfect match) 
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and MM (mis-match)) are used to interrogate each SNP. The observable measure­

ments are the hybridization intensities, which represent the amount of target bound 

to the probes on the microarray. The simple average of PM-MM differences for all 

probe pairs in a probe set is used as the copy number index for the target SNP. The 

40 probes for the same SNP are designed according to a probe quartet unit. A probe 

quartet includes four probes: a probe pair for allele A and a probe pair for allele B. A 

probe pair includes a perfect match and a mismatch. To make the SNP copy number 

estimates more reliable multiple probe quartets are used per SNP, each distinguished 

by a location shift of the SNP from the center (location 13) of the 25-mer probe. 

Probe quartets defined by sense/antisense strands and five shifts (-2, -1 , 0, 1, 2) lead 

to 40 probes per SNP. In Figure 2.4, the upper left panel shows definition of a probe 

and PM and MM definitions. For each SNP, the perfect match (PM) is a 25 base­

pair long probe that is completely complementary, and the mis-match (MM) probes 

are shifted, as shown in the upper right panel. So at each SNP location, there are 

'replications'. The lower panel shows cells identifying the probes by genotypes. 

Hybridized Probo FeMure 

Figure 2.3: Technology of SNP microarray. 

Image: Affymetrix 
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A simple description of the method is the following: For a given subject, DNA is 

obtained and fragmented at known locations so that the SNPs are far away from the 

ends of these fragments; the fragmented DNA is amplified with a polymerase chain 

reaction (PCR) reaction; the sample is labeled and hybridized to an array containing 

probes designed to interrogate the resulting fragments; the array is rinsed so that 

any DNA that didn't pair is washed away; a laser scanner detects and measures 

the intensity of the fluorescent signal being emitted for each probe. This is done 

separately for tumor DNA and normal DNA. The ratios of tumor to normal samples 

are then used to estimate copy number at each SNP location. 

The raw data from SNP arrays are fluorescent intensities that must be normalized 

and then ultimately transformed to log-ratios. 

2.3 Existing Methods 

In order to estimate copy number from the various data types described we need 

statistical methods to optimize the signal-to-noise ratio. The first analytical methods 

were simple but often effective, involving smoothing of the log-ratios and applying a 

threshold to determine if the ratio over a potential region signified an amplification 

or a deletion. For example, a moving average was used to process the ratios, and a 

'normal versus normal' hybridization was used to compute a threshold level (Pollack 

et al [2002]). 

A number of statistical methods have been proposed to estimate copy numbers from 

various platforms. Two of the most popular methods for SNP arrays are dChip and 

Copy Number Analyser for GeneChip (CNAG). Zhao et al. [2004] proposed dChip, 

an algorithm that derives model-based estimates of SNP copy numbers that incorpo­

rate probe effects and a hidden Markov model (HMM) to infer integer-valued copy 

numbers. Although the current version of the dChip software can accommodate the 
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newer SNP arrays, such as the Affymetrix 250K array, it is not optimized for it. 

N annya et al. [2005] developed the CN AG algorithm, which accounts for the length 

and GC content of the PCR products. Accounting for the length and content of 

GC elements in the probes seems to improve copy number inference (Nannya et al. 

[2005]). Another source of variation that can affect a copy number analysis is the 

so-called "genome wave" (Marioni et al [2007]; Diskin et al [2007]) a genome-wide 

spatial autocorrelation pattern in signal intensity. Since the genome wave may be 

confounded with the copy number profile across a chromosome, investigators should 

examine their intensity data for its presence and adjust the data accordingly. Since 

the genomic wave is thought to be in large part due to GC content (Marioni et al 

[2007]), the CNAG algorithm can also be thought of as an adjustment for wave effects 

possibly present in SNP array data. Again, an HMM is used to infer integer copy 

numbers. 

The HMM approach can also be found in the algorithms underlying QuantiSNP 

(Colella et al [2007]) and PennCNV (Wang et al [2007]), both of which use the log-R­

ratio and B-allele frequency to infer the copy number state of each SNP. The B-allele 

frequency is the frequency of one allele. These two methods consider a six-state 

Markov model which distinguishes copy-neutralloss-of-heterozygosity from the nor­

mal state. Most HMM based algorithms use the Viterbi algorithm (Rabiner [1989]) 

to infer integer copy numbers. 

To date, there are a handful of Bayesian methods for copy number inference. Most 

are for CGH data, but a few exist for SNP data. Rueda et al [2007] proposed RJaCGH, 

a nonhomogeneous HMM in a Bayesian context for CGH data. Instead of prespeci­

fying the number of states as a conventional HMM, a reversible jump Markov Chain 

Monte Carlo (MCMC) method is used to allow for varying numbers of hidden states. 

Bayesian model averaging is used to obtain final estimates. Pique-Regi et al [2008] 

developed a method called Genome Alteration Detection Algorithm (GADA) that is 

based on sparse Bayesian learning (Tipping [2001]). The approach takes advantage of 
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the a priori assumption that the number of copy number alterations (break points) is 

sparse with respect to the number of probes. As with several other methods, advan­

tage is also taken of the fact that the copy number pattern across a chromosome can 

be modeled as a piecewise constant function or vector. The GADA output gives copy 

number results in the form of a segmentation, viz., a collection of ordered segments 

defined by their breakpoints and amplitudes. To obtain integer-valued copy numbers 

or alteration status (loss, normal, gain), the identified segments must be analyzed by 

a thresholding procedure, such as that proposed by Pique-Regi et at [2008]. GADA 

can be applied to both CGH and SNP based data. Rancoita et at [2009] also make use 

of piecewise constant modeling in their algorithm, mBPCR, which is a modification 

of the original Bayesian Piecewise Constant Regression (BPCR) method developed 

by Hutter [2007]. This method is general for data that take the form of a piecewise 

constant function with unknown segment numbers, boundaries, and levels. Rancoita 

et al. illustrate the mBPCR method using SNP data, but it appears that log-ratios 

based on CGH data can also be analyzed. 

In addition to those described above, several other statistical methods have been 

developed for copy number analysis. They vary in their assumptions, inference (seg­

mentation, alteration status, integer copy number), platform (CGH, SNP), input data 

(e.g., CEL files or generic normalized log-ratio), and software implementation (e.g., 

commercial, web-based, customized academic program). Winchester [2009] describe 

and compare a number of methods. No method stands out as uniformly best and 

Winchester et al. suggest analyzing copy number data with at least two different 

methods to assess consistency and robustness of results. Several of the methods cited 

above are included in the comparison. 

Most of the copy number methods assume normalized log-ratios as input. Rel­

atively few include adjustments for known factors affecting inference. GC content 

and fragment length have been mentioned as factors affecting copy number infer­

ence. Another factor from tumor samples is normal cell contamination. Indeed, most 



17 

tumor samples are heterogeneous and include both cancer cells (with copy number 

aberrations) and normal cells (that can also include copy number aberrations). The 

larger percentage of normal cells present, the more difficult it is to infer copy number 

aberrations in the tumor cells; the log-ratios tend to shrink to the null value of zero. 

None of the above methods implement an adjustment for normal cell contamination. 

Below we show how our proposed method can account for this factor. Below I focus 

on the methods most closely related to the work I have done. 

2.3.1 Normal Mixtures for CGHData 

Broet and Richardson [2006] proposed a three-state (gain/loss/normal) normal mix­

ture model based framework for CGH data. Denote Zi,k as a random variable corre­

sponding to the normalized log-ratio measurement for the ith BAC ordered along chro­

mosome k. Let Li,k be an unobserved categorical variable taking the values c = 1,2,3 

with probabilities {Wc,i,k : c = 1,2, 3} where 0 :::; Wc,i,k :::; 1 and ~~=1 Wc,i,k = l. 

Li,k = c indicates that BAC i of chromosome k is in state c. Here c = 1 corresponds 

to the loss copy state, c = 2 the normal copy state and c = 3 the gain copy state. For 

each fixed c, we model the log-ratio measurement as arising from a normal distribu­

tion with mean J.Lc and variance lT~. The marginal density of Zi,k can thus be written 

in the form of a three-component normal mixture: 

3 

!(Zi,k) = L Wc,i,k X N(Zi,klJ.Lc, lT~). 
c=l 

The quantities Wc,i,k are the weights for BAC i of chromosome k. We know that the 

log-ratios across the chromosome are not independent; they are correlated. Neighbor­

ing BACs tend to be in the same state, and in particular, they tend to have the same 

weights. Thus, Broet and Richardson [2006] introduced a spatial structure on the 

weights for each chromosome. They relate the weights Wc,i,k to three latent Markov 

random fields, Xc,k = {Xc,i,k : 1 :::; i :::; nk}, where nk is the number of BACs on 

chromosome k. By a logistic transformation, the weights are a function of the MRF, 
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exp(Xc,i,k) 
Wc i k = -;;-3 -"--'--"':"":""-'---

, , 2:1=1 exp(Xl,i,k) 

Here Xc,k are three independent latent vectors, each distributed according to a 

Gaussian conditional autoregression model: 

( 1 ~ r;k) Xci k ! Xc (-i) k, r rv N -- XcI k; -'-
" " m " m i,k lE6. i,k .,k 

where X c,( -i},k is the vector x with the ith element removed. This is the nearest 

neighbour Markov random field model where each BAG sequence has two adjacent 

neighbours, except for the sequences at the ends of the chromosome. di,k is the set of 

indices for the neighbors of BAG i for chromosome k, and mi,k is the corresponding 

number of neighbours. In this model, r;'k acts as a smoothing prior for the spatial 

fields and consequently controls the dependence among the weights. In particular, 

small values correspond to smoother realizations. In the paper, 2 neighbors for each 

BAG are used, and the first and last BAG simply have 1 neighbor. 

Let's recall the Gaussian conditional augoregression model. Suppose X = (Xl, ... Xn)T 

has density 

where Q is positive definite symmetric matrix. Then 

n 

Xi!X-i rv N(~ (3ijXj, kj ) 

j=l 

where {3ii = 0, (3ij = -Qij/Qii(i =1= j) and ki = I/Qii > O. When the specification 

of the density is based on the precision matrix Q rather than on the dispersion matrix 

V = Q-l, it is usually referred to as a conditional autoregressive formulation. 
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In a Bayesian framework, all unknown quantities are given prior distributions. For 

r;'k, they specify a Gamma(.01, .01). The mean parameter J-l2 is fixed to zero. They 

choose flat priors for the other means, in the observed range of data [a, b]' a < 0, b > ° 
so that J-ll rv U(a, 0) and J-l3 '" U(O, b). For the variance component, 0";, they use an 

inverse gamma I G ( .1, .1). Inference for parameters of interest is undertaken by sam­

pling from their joint posterior distribution using an MCMC sampler. In particular, 

the posterior probabilities Pc,i,k of belonging to each state for each BAC i of chromo­

some k can be directly estimated as averages of the weights from the output of the 

algorithm. 

The authors demonstrated the performance of this model through comparison with 

other existing methods using both simulated and real cancer data. They found that 

the Bayesian method for aCGH platform perform better than their frequentist coun­

terparts. There are two limitations of the current method. First it does not in­

corporate the distance between BACs, and second it does not consider overlapping 

BACs. 

2.3.2 Probe based Models for SNP Data 

Li and Wong [2001] describe model-based estimates of gene expression that incor­

porate probe effects. Their model was motivated by the fact that intensities from 

different probes associated with the same SNP are highly variable. The model has 

been extended to copy number estimation as follows. For any given SNP, let ()i be a 

copy number index for the SNP in the ith sample. Assume that the intensity value 

of a probe will increase linearly as ()i increases, but that the rate of increase will be 

different for different probes. It is also assumed that within the same probe pair, the 

PM intensity will increase at a higher rate than the MM intensity. The MM and PM 

models are: 
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P Mij = 1/j + Oi(};j + OiCPj + Eij 

where P Mij and M Mij denote the PM and MM intensity values for the ith array 

and jth probe pair for this SNP, 1/j is the baseline response of the jth probe pair, 

(};j is the rate of increase of MM of the jth probe pair, CPj is the additional rate of 

increase in the corresponding PM response, and E is random error. The model for 

individual probe responses implies a simple model for the PM-MM differences: 

Yij = PMij - MMij = OiCPj + Eij 

where PM and MM are normalized intensities, and Eij are iid normal distributed 

with mean 0 and unknown variance. The least square estimate for Oi is used as the 

copy number index for the SNP in the ith sample. For each SNP, the estimates copy 

number indices index of all the normal samples are averaged to obtain a mean signal 

associated with 2 copies. The" raw copy number" for test sample i is defined as 

2(estimated index/mean signal of normal samples). To infer integer copy numbers 

from the raw data, they use a Hidden Markov Model. The emission probabilities 

are assumed to be t distributed with 40 degree of freedom. Transition probabilities 

are given by Haldane's map function 0 = HI - e-2d ) where d is the genetic distance 

between the SNP of interest and a neighbor SNP, and 20 is the probability that 

the copy number of the SNP of interest will return to the background distribution, 

independent from the copy number of the previous SNP. Assume N is the number of 

copy number classes, so consecutive copy numbers from 0, 1, ... ,N -1 are assumed as 

classes. The background distribution is taken as 0.9 for the 2-copy state and O.I/(N-l) 

for other copy number states, where N is the largest copy number integer considered. 

These background distributions are used as the initial probabilities of the HMM. The 

Viterbi algorithm is used to obtain the most likely underlying copy number sequence. 
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The HMM is applied to all of the chromosomes and all the samples separately. 

By applying the algorithm to real cancer data, Li and Wong successfully identified 

many known regions of copy number variation as well as several novel homozygous 

deletions and high-level amplifications. dChip, which is the software to implement 

this method, has been used with many diseases, such as malignant melanoma, acute 

myeloid leukemias, and lung carcinoma. 

2.3.3 Robust eN Algorithms for SNP Data 

Nannya et al. [2005J developed a robust algorithm (CNAG) for copy number by ac­

counting for the length and GC content of the PCR products (probes), based on 

the fact that log-ratios can be biased due to DNA fragment length (in bp) and CG 

content of the fragment that includes the SNP. Briefly, in the PCR process longer 

segments need more time to replicate than shorter segments, which results in different 

amounts of DNA. The GC content affects the efficiency of hybridization. Adjustments 

for these known biases would presumably lead to better estimates of copy number 

(N annya et al. [2005]). 

Let Si denote the sum of signals from the 10 perfect match probes for the A al­

lele and those for the B allele for SNP i. Denote the relative copy number at the ith 

SNP locus between two samples by A~,2 = l092 (s:amplel / s:ample2). To adjust for GC 

content and fragment length the following model includes their effects via quadratic 

polynomial regression to generate adjusted log-ratios, 

2 

A~,2 = CA~,2 + I)aj + bjXj + CjX;) 
j=l 

where c A~,2 represents the adjusted or corrected copy number and Xl and X2 rep­

resent the length and GC content of the fragment that contains the SNP. This com­

pensation provides a more accurate estimate C A~,2 of copy number, showing a lower 
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SD than the unadjusted copy number (Ai,2). The inferred integer copy number is 

derived through an HMM simlar to the HMM used with dchip except that CNAG 

uses Kosambi's map function, ~tanh(2e), as transition probabilities, where e is the 

recombination fraction between two neighboring SNPs. Nannya et al. [2005] applied 

the model to real data and the results showed a dramatic reduction in SD values and 

it works well for high density arrays. This methodology has been used to identify 

copy number variation in many DNA samples from diseases such as leukemia, rectal 

cancer, mental retardation and multiple myeloma. 

2.3.4 Comparison of the three algorithms 

CGH technology is considered the gold standard for copy number inference. SNP 

based experiments are newer, cheaper, and easier to run. However, their relative 

accuracy is not well understood yet. dChip is a very popular method to estimate 

SNP copy number and it is the first to give integer copy numbers based on SNP data. 

However, CNAG may be the most popular way to estimate high density SNP array 

copy numbers. CGHmix is a relative new method to estimate CGH copy number, 

which proposed to use spatially correlated mixture models. The three algorithms have 

their own merits and disadvantages. CGHmix incorporates spatial dependence into 

a three state mixture model, which has an intuitive interpretation and the Bayesian 

context makes the model very flexible. It also estimates parameters based on the 

whole genome instead of chromosome-wide. However, the MCMC algorithm it uses 

cannot deal with cases where there is only one cluster (one CN along a chromosome) 

because the model assumes there are exactly three clusters. dChip considers probe 

effects and gives integer copy numbers, but it does not take into account the PCR con­

ditions. And, although the current version of the dChip software can accommodate 

the AfIymetrix 250k arrays, it is not optimized for it. CNAG improves the log-ratios 
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dramatically by accounting for PCR products and also gives integer copy numbers. 

Drawbacks to both dchip and CNAG: they apply the algorithm to one chromosome 

at a time, and thus do not consider neighboring information along the entire genome. 

Also, the Viterbi algorithm for the HMM has some problems that can lead to over­

fitting. 

For comparative purposes, I applied dChip and CNAG to real datasets. Figure 2.5 

and Figure 2.6 consider two different subjects with dChip on the left and CNAG on 

the right. In the plots, each dot stands for a SNP. The green dots represent log­

ratios and the red dots represent inferred integer copy numbers from either dchip 

or CNAG. For the case in Figure 2.5, both dchip and CNAG do well in the sense 

that the inferred copy numbers show little noise (very few scattered red dots). The 

two algorithms give very similar integer copy number estimates. We see that almost 

everywhere the inferred copy number is normal, except that there are losses at the 

beginning of chromosome 2, gain of q-arm of chromosome 11, loss at the beginning of 

chromosome 17, and gain of chromosome X in both. Generally, the CNAG results are 

better than dchip in the sense that the log-ratios are less noisy, but as with the case 

in Figure 2.6 we still see that CNAG can result in noisy integer inferred copy number 

as illustrated by sporadic red dots between chromosomes 4 through 8. Ideally, the red 

dots would appear as contiguous non-overlapping segments. dChip does even worse. 
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Figure 2.5: Comparison of dChip and CNAG. 
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Figure 2.6: Comparision of dChip and CNAG. This shows more noise than previous 

one. 
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2.4 Comparison of copy number estimates from 

CGH and SNP arrays 

CGH serves as the gold standard for copy number estimation. However, since its 

resolution is relatively low, investigators are interested in SNP arrays to obtain more 

reliable copy number information. SNP microarrays have higher resolution so hope­

fully they can detect smaller copy number variation segments. In order to see if we 

can depend on SNP arrays in place of aCGH, I compared copy number estimates 

from SNP arrays and CGH platforms. The main conclusion is that the two estimates 

are mostly concordant, but some cases do show discrepancies. There are two main 

reasons for the differences. First, the BACs used for CGH platform are big ('" 100bp) 

fragments, so their copy number estimates may reflect averages of different copy num­

bers within the BAC iteself. Second, most CGH algorithms make use of the whole 

genome instead of one chromosome at a time for reference. Figure 2.7 and Figure 2.8 

show a concordant case and a discordant case, respectively, with the SNP platform 

shown on the top panel and the CGH platform on the bottom panel. The data are 

ENP samples from Texas Children's Hospital. In the top panel, each dot represents 

a SNP. The green dots represent log-ratios and red dots represent inferred integer 

copy numbers. In the bottom panel, each dot represents a BAC. The black boxes on 

top show cytobands. Yellow, red and green represent normal, gain (CN >= 3), and 

loss (CN = 0, or 1) respectively. However, red and green dots with crosses on them 

mean that they are outliers, so should be considered normal instead. Figure 2.7 is 

a perfect concordant case where all the chromosomes are identified as normal status 

for both platforms. Figure 2.8 is a discordant case where, for example, chromosome 

4 and chromosome 7 are identified as normal under the SNP platform, but as gains 

under the CGH platform. 

I also did some numerical comparisons for a more objective measure of relative 
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accuracy. First, to make SNP copy numbers comparable with BAC copy numbers, 

we assign a copy number status to each SNP according to the inferred copy number: 

normal if it is 2; gain if it is greater than 2; loss if it is less than two. We then match 

the SNPs and BACs according to their positions along the chromosome. Considering 

only the matched SNPs, ignoring those that are not in any BAC, we compute the 

percentage (across each chromosome) of the matched SNPs that have the same copy 

number status as their corresponding BACs. This is obtained for each chromosome 

per subject (n = 16). These percentages are shown in Table 2.1 and are measures 

of concordance between BAC copy numbers and SNP copy numbers. Using a 5% 

significance level, simple z-tests show concordance of approximately 89%, meaning 

that 89% of the null hypotheses are not rejected. A corresponding heatmap is also 

shown in Figure 2.9. Here we note that a main source of discrepancy is that due 

to subject-to-subject variation; that is, SNP and CGH copy number differences are 

largely confined to within subject, which may be a quality control issue. 
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Figure 2.7: A concordant case between SNP and CGH copy number inference. The 

data are ENP samples from Texas Children's Hospital. In the top panel, each dot 

represents a SNP. Each green dot represents log-ratio and red dot represents inferred 

integer copy numbers. In the bottom panel, each dot represents a BAC. The black 

boxes on top show cytobands. Yellow, red and green represent normal, gain (CN 

>= 3), and loss (CN = 0, or 1) respectively. However , red and green dots with 

crosses on them mean that they are outliers, so should be considered normal instead. 
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Figure 2.8: A discordant case between SNP and CGH copy number inference. The 

data are ENP samples from Texas Children's Hospital. In the top panel, each dot 

represents a SNP. Each green dot represents log-ratio and red dot represents inferred 

integer copy numbers. In the bottom panel, each dot represents a BAC. The black 

boxes on top show cytobands. Yellow, red and green represent normal, gain (CN 

>= 3) , and loss (CN = 0, or 1) respectively. However , red and green dots with 

crosses on them mean that they are outliers, so should be considered normal instead. 



Table 2.1: Concordance between SNP and BAC copy number. The entry represents the percentage. The 16 columns 

represent the 16 EPN samples, and the 22 rows represent the 22 autosome. 

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ehrl 1 1 0.994 0.984 1 1 1 1 1 1 0.543 0 0 1 1 1 

ehr2 1 1 1 0.885 1 1 1 1 0.875 1 1 1 1 1 1 1 

ehr3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

chr4 1 1 0 0.785 1 1 0.185 0.95 0.95 1 1 1 0.981 1 1 1 

chr5 1 1 0.915 1 1 1 0.996 1 1 1 0.921 1 1 I, 1 1 

chr6 1 1 1 0.889 1 1 1 1 1 1 1 1 1 1 1 1 

ehr7 1 1 0.062 0 1 1 0 1 1 1 1 1 0 1 1 1 

chr8 1 1 1 0.956 1 1 0.939 1 1 1 1 1 1 1 1 1 

chr9 1 1 0 0.782 1 1 0.993 0.993 1 1 0.995 1 0 0.659 1 1 

ehrlO 1 1 1 0.003 1 1 1 1 1 1 0.996 1 1 1 1 1 

chrll 1 0.052 0.047 0.07 1 1 1 0.979 0.42 1 1 1 1 1 1 1 

ehr12 1 1 0 1 1 1 0.02 1 1 1 1 1 0.99 1 1 1 

ehr13 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

ehr14 1 1 1 1 1 1 1 1 1 1 1 1 0.982 1 1 1 

ehr15 0.995 0.996 0 0.008 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 

ehr16 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0.948 1 

chr17 1 1 1 0.068 1 1 1 0 0.507 1 1 0 0.082 1 1 1 
I 

ehr18 1 1 0.143 0 1 1 1 0.994 1 1 1 1 1 1 1 1 

chr19 1 1 0.692 0 1 0.923 0 0 
I 

1 1 1 0.077 0.077 0 1 1 

ehr20 1 1 1 0.977 1 1 0 1 1 1 1 0 1 1 1 1 

ehr21 1 1 1 0.969 1 1 1 1 1 1 1 1 1 1 1 1 

ehr22 0.974 0.974 0.974 0.026 0.974 0.974 0.026 0.026 0.974 0.974 0.974 0.026 0.026 0.974 0.974 0.9741 

C.:l 
o 
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Figure 2.9: Heatmap of concordance. We have 16 samples (16 columns) and 22 

autosome (22 rows). The more red the cell is , the larger the p-value is; the more 

white the cell is , the smaller the p-value is. 
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2.5 Finite mixture models for SNP arrays 

Finite normal mixture models with k components have densities of the form 

k 

f(Yj) = L 1fi<!)(Yj; /-ti, ~i). 
i=l 

They are nowadays applied in such diverse areas as biometrics, genetics, medicine, 

and marketing finance. There exist various features of finite mixture distributions that 

render them useful in statistical modelling. First, finite mixture distributions arise 

in a natural way as a marginal distribution for statistical models involving discrete 

latent variables such as clustering. On the other hand, mixture models can capture 

many specific properties of real data such as multimodality and skewness. They are 

flexible in modeling and easy to implement. Applying mixtures to the SNP copy 

number context, we have 

where PL,PN,PC are proportions of loss, normal and gain and they sum to one. 

There are several standard parameter estimation methods for mixture models as­

suming iid data, such as the EM algorithm and standard Bayesian approaches. In 

brief, for the EM algorithm we introduce unobserved allocation variables. In the E­

step, we take conditional expectations of the allocation variables given the data. In 

the M-step, we calculate ML estimates of proportions and distributions parameters. 

In the Bayesian approach we assign all unknown variables (conjugate) priors and use 

a Gibbs sampler to simulate posterior distributions. I applied these two algorithms 

to real data. The results for one case are shown in Figure 2.10. The clusters are 

very noisy since these two algorithms assume independent data while here SNP copy 

numbers are correlated. As with CGH data, mixture models for correlated data are 

needed for SNP based copy number estimation. 
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Figure 2.10: SNP copy number inference based on normal mixtures implemented 

with EM and Bayesian algorithms. Both algorithms assume (spatially) independent 

log-ratios. 
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2.6 Gaussian Markov random field 

Gaussian Markov random fields have been widely used in spatial statistics and Bayesian 

image analysis, where they are intended to describe dependencies between random 

variables at fixed sites in Euclidean space. The main appeal of these distributions is 

in the Markovian interpretation of their full conditionals. 

Suppose that the random vector X = (Xl,··· ,Xn)T has density 

where Q is an n x n positive definite symmetric matrix. It follows that 

XilX-i ex N('I:J (3ijXj, ki) 
j 

(2.1) 

(2.2) 

where (3ii = 0, (3ij 

requires that 

-Qij/Qii' i =1= j, and ki = l/Qii > 0. The symmetry of Q 

(2.3) 

Note that i and j are "neighbors" if and only if (3ij =1= 0, in which case we write i f"'oJ j. 

The variable x on the right-hand side of (2.1) can be replaced by X-I-', where I-' is 

an arbitrary real n-vector, to allow for location shift. 

Positive definiteness of Q may need to be checked on an individual basis but the 

identity 

XTQX = L Qi+X~ - L Qij(Xi - Xj)2 
i<j 

(2.4) 

where subscripts + denote summation over replaced indices, implies that a sufficient 

condition is that the (3:jS are all non-negative and (3i+ ~ 1 for all i,with strict inequal­

ity for at least one i. When the specification of p(x) is based on a precision matrix 

Q, rather than on the dispersion matrix V = Q-l, the model is usually referred to as 

a conditional autoregressive model. 
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Since the value of any Xi only depends on it's neighbors, neighboring XIs have similar 

values. If we consider a line, representing a chromosome, then by using GMRF, we 

can borrow strength across SNP locations. In this case, neighbors are simply al SNPs 

on the left and a2 SNPs on the right. 

2.7 Proposed Method - Bayesian model for copy 

number estimation 

Generally, Bayesian estimates are more accurate than frequentist estimates. Another 

issue is the fact that the sample of cancer cells is always contaminated by normal 

cells. The larger percentage of normal cells present, the more difficult it is to infer 

copy number aberrations for the tumor cells; the log-ratios tend to shrink to zero. 

As of this writing, we are not aware of any method that accounts for normal cell 

contamination and gives integer copy numbers. For these reasons, there is a need for 

a novel copy number approach to address these issues. 

Here we propose a Bayesian spatial normal mixture model for inferring SNP-based 

integer copy number. Bayesian mixture models were used by Broet and Richardson 

[2006] for CGH-based copy number estimation. There the authors considered a three­

state (loss/normal/gain) mixture model and introduced a spatial structure to reflect 

correlated segments (e.g. BACs). Spatial correlation was induced through the weights 

of the mixture via Markov random fields. In our approach, instead of considering 

three states, we allow for an unknown number of mixture components and achieve 

inference using a reversible jump Markov chain Monte Carlo method, because the 

number of components is unknown. As in Broet and Richardson [2006] we use Markov 

random fields to account for correlated neighboring SNPs. In contrast to models 

that incorporate HMMs to infer integer copy numbers, our modeling approach uses 

information (neighboring SNPs) on both sides of a SNP. In addition, we account for 
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cell contamination by shrinking the theoretical copy number log-ratios towards zero. 

The implementation only requires ordered (normalized) log-ratios and, therefore, may 

be applied to data from any platform suitable for copy number estimation. 

Let Yi be the preprocessed log-ratio of SNP i ordered along the chromosome. 

Following the notation of Fernandez and Green [2002], we consider a normal mixture 

model with k unknown components corresponding to k copy numbers, 

k 

p(Yil k ,w,J.l,a2 ) = LWijN(YilJ.lj,aJ) 
j=l 

(2.5) 

where J.l = (J.l1, ... , J.lk) and a2 = (ai, ... ,a~) represent the vectors of means and vari-

ances of the k components. The matrix of weights W = (Wij) is such that 0 :::; Wij :::; 1 

and I:~=1 Wij = 1, for all i. In our application the components represent the true 

copy numbers (Le., copy number equals to 0,1,2,3, ... ). Given a chromosome with 

n SNPs, let Zl, ... ,Zn be the allocation variables, indicating to which mixture com­

ponent SNP i belongs. These are marginally distributed according to a multinomial 

distribution with 

(2.6) 

for j = 1, ... ,k. Since copy number aberrations tend to occur over contiguous seg­

ments, we impose that neighboring SNPs have similar multinomial probabilities of 

belonging to the copy number classes. To this end, for k components we introduce 

k independent Gaussian Markov random fields (GMRF), Xj = (Xij, i = 1, ... ,n), for 

j = 1,· .. ,k, see Fernandez and Green [2002] and Broet and Richardson [2006]. Each 

GMRF, x, is assumed to have joint density 

(2.7) 

where I:i~i' denotes the sum over all neighbors of i and where c(h) = (27r)-~ rr=l (1+ 

hgi) ~, with gl, ... ,gn the eigenvalues of a matrix A = (aii') coding the adjacencies, 
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with aii = IIi (number of neighbors of location i, and off-diagonal elements aii' = -1 

if locations i and if are neighbors and zero otherwise). For each j, Xj is a realization 

of spatial correlation. For neighbors of a certain SNP, we use al SNPs on the left 

and a2 SNPs on the right. Since the conditional distribution of Xi only depends on 

its neighbors, neighboring Xi'S will tend to have similar values. The parameter h 

is non-negative and controls smoothing among neighboring SNPs: large values of h 

induce smoother realizations in the GMRF, and as h --+ 0 independent realizations 

take place. For the weights, Wij, there are constraints that they are non-negative and 

sum to one, so we borrow spatial correlation from the GMRF's by defining logistic 

transformations of the type 

Wij = k ' 
~l=l exp(xil/¢) 

exp(Xij/¢) 
j=1, ... ,k, i=1, ... ,n, (2.8) 

where ¢ is a positive scaling factor specified by the user. As h increases, all the 

X~jS shrink toward zero. 4> can compensate for this. In the simulation study in the 

next section, we will investigate robustness of the results to different values of ¢ and 

varying number of neighbors. 

2.7.1 Prior distributions 

In this section we discuss the prior distributions for the model parameters, including 

the number k of mixture components, the normal mixture means and variances, and 

the smoothing parameter h. 

1. Number of mixture components, k 

The number of components k is given a truncated Poisson distribution with a 

mean of 2, 

k '" TPoisson{1, ... , kmax }, (2.9) 

with kmax a pre-specified integer representing the largest number of components. 
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The probability mass function is 

(2.10) 

where 

c = Li=km~x ~ (2.11) 
i=l t! 

We take kmax = 7 for illustration purposes, corresponding to copy numbers 

0,1,2,3,4,5, and> 5. Here 7 is arbitrary, and we can use any positive value 

that makes sense for the data under consideration. If kmax = 7, it means we will 

have at most 7 classes. And the classes are not necessarily consecutive numbers. 

2. Normal mixture means 

We deviate from the approach of Fernandez and Green [2002] by constructing 

kmax uniform distributions, {l/j = U(aj, bj ), j = 1, ... , kmax } for the copy num­

ber class means, and assuming that each component mean P,i follows one of 

these uniform distributions, independently of all others. The uniform interval 

boundaries are very important. We choose the intervals to be non-overlapping 

and to contain the theoretical copy number values. According to Nannya et al. 

[2005], the observed mean values for the 7 components without contamination 

are approximately -1.24, -.49,0, .365, .657, .899 and 1.106, for copy numbers 

0,1,2,3,4,5 and> 5, respectively. However, due to normal cell contamina­

tion, the true log-ratios tend to shrink towards zero. Accordingly, we chose 

the intervals to contain the theoretical mean values and then set their extreme 

values to obtain disjoint intervals. In particular, results reported here were ob­

tained using the following intervals: (-2, -.8), (-.6, -.25), (-.05, .05), (.15, .4), 

(.45, .65), (.75, .9), (.95,1.3), corresponding to copy numbers 0,1,2,3,4,5, > 5, 

respectively. These intervals are the default values we use in the application 

and have worked well in most cases. Our results did not show sensitivity to the 

actual values we used for the extremes of the intervals; i.e., other disjoint sets 

of intervals worked well, too. 
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Remark 1: Due to normal cell contamination, the true log-ratios tend to shrink 

toward zero, and in practice some degree of normal cell contamination tends to 

be present. We thus decided to center the uniform distributions closer toward 

the null value of zero rather than at the theoretical means given above, except 

for CN =0 and CN > 5. These exceptions are largely due to where we wanted 

to locate the respective uniform support; see Remark 3 below. 

Remark 2: Moving the uniform intervals closer to zero resulted in some of the 

theoretical means being located close to a uniform boundary. For example, for 

CN=5, the theoretical mean of .899 is just inside the right boundary of .9. This 

does not cause a problem of misclassification since normal cell contamination 

brings the mean closer to the left boundary. 

Remark 3: We also varied the length of the uniform intervals since the log 

scale makes the consecutive theoretical values become increasingly closer to 

each other; the consecutive pairwise distances between the theoretical means 

from -1.24 to 1.106 are .75, .49, .365, .292, .242, .207. If the uniform intervals 

were forced to be of equal length we would have either relatively short non­

overlapping intervals or over-lapping long intervals. Since the uniform intervals 

are not of equal length, the gaps between the intervals are unequal, as well. 

In cases where the percentage (p) of normal cells is known or approximately 

known, then such intervals can be chosen to be centered at 

l [2P + j(1 - p) + b] 
092 2 + b ' 

for any copy number j, with background factor b, (N annya et al. [2005]) and 

then choosing the length of the intervals so that the kmax intervals are non­

overlapping. 

3. Normal mixture variances 
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We assign an inverse gamma prior distribution to a}. In the application we 

center this distribution on 0.2 (from empirical data) and induce a vague speci­

fication by letting the variance be large. 

4. Smoothing parameter 

We assign h a uniform distribution with a wide range, h f'V U(O, hmax ) , with 

hmax = 1,000,000, to induce smooth realizations. 

I will provide further discussion of these prior selections below in the next secion 

in the context of the simulations and real data applications. 

2.7.2 Posterior inference 

We employ MCMC with reversible jump to achieve posterior inference. Below is a 

brief step-by-step description of the method and additional details are given in Ap­

pendix A. 

First, a brief introduction to Gibbs and Metropolis-Hastings sampling is presented. In 

Bayesian analysis, we give each unknown parameter a prior distribution. Combined 

with the likelihood, we get the posterior distribution for each parameter. If it's a 

known distribution, we can just sample from it, which is called Gibbs sampler. If the 

posterior distribution is not any known distribution, we apply Metropolis-Hastings 

algorithm. We draw samples from an arbitrary distribution q. Suppose the new draw 

is x' and the current value is x, define the acceptance ratio as a = min(1, ;~:;:~~ll;~. 

Then with probability a, we accept the new draw, and with probability 1 - a we 

reject the new draw and keep the previous one. 

• Updating k: This step causes creation or deletion of mixture model compo­

nents, therefore requiring the sampler to jump between subspaces with different 

dimensions. To implement the sampler, we use reversible jump MCMC (RJM­

CMC), see Green [1995] and Richardson and Green [1997]. We update k' = k+1 
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with probability bk , and k' = k - 1 with probability 1 - bk (b1 = 1, bkTnBX = 0, 

bk = .5 for k = 2, ... , kmax -1). If k' = k+ 1, we draw a new component * from 

the remaining kmax - k components with equal probability, and draw 1-£* from 

the corresponding uniform distribution. We also draw a; and x* from the prior 

distributions. We use the fast sampling algorithm of Rue [2001] to generate 

a new GMRF, x*. We then increase the dimensions of the vector parameters 

1-£' = (1-£,1-£*), a2' = (a2 , a;), and x' = (x, x*) and accept the new component 

with probability: 

(2.12) 

distribution on {1, ... , k} and remove 1-£*, a;, x* from 1-£, a2 , x. Similarly, the 

acceptance probability is 

(2.13) 

• Updating x: We update each location using a Metropolis-Hastings step, see 

Metropolis et al. [1953] and Hastings [1970]. We perform these n updates se­

quentially. 

• Updating h: We use a Metropolis-Hastings random walk with a proposal 

defined by a truncated normal distribution, h' f'V T N(h, a~)I(O ::; h' ::; hmax ). 

In applications we chose ah to have acceptance ratios between 40% and 70%. 

• Updating allocations: Using a Gibbs step, we draw the n allocations inde­

pendently from 

(2.14) 
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• Updating J.t, a2: For each J.ti, we find one of the kmax intervals which has the 

largest posterior probability, and sample J.ti from a truncated normal distribu­

tion at this interval. In the iterations it may happen that two or more J.t~s are 

sampled to the same interval. In this case, we combine these components and 

update k. The new J.ti, ai, Xi for the newly formed component are taken to be 

the weighted sum of the previous ones, where the weights are the sample sizes. 

We then redefine z and calculate w. We draw a; from its full conditional, which 

is again a inverse gamma distribution. 

For posterior inference, the primary parameters of interest are the weights, w's. 

We propose an allocation rule as follows: at each iteration we record the probability 

of each SNP belonging to each of the kmax components (we assign zero if a component 

is empty). After the MCMC is done, we average all the w's and assign a SNP to the 

component that has the largest probability. We check reproducibility of the clustering 

with different starting values. 

The run-times of the various copy number algorithms can range from less than 

a minute to days depending on the algorithm and the probe density of the array 

platforms. When applied to newer high-density arrays almost all methods have rel­

atively high run-times (Pique-Regi et al [2008]). Reversible jump MCMC methods 

such as ours and RJaCGH (Rueda et al [2007]) tend to be computationally expensive. 

Our current implementation may require several hours to more than 1 day per chip. 

However, our current version is implemented in MatLab and we have not attempted 

to optimize the code. Programming in some version of C and parallel computing by 

chromosome and/or chromosome arm will likely significantly reduce the time. 

2.8 Simulation Study 

We first investigate the performance of our model through simulation experiments. In 

the next Section we compare our method with an alternative method in the context 
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of actual tumor samples from leukemia and ependymoma cancers. 

We conducted two sets of simulations studies. The first set was designed to exam­

ine the influence of hyper parameters in the prior specifications: the scaling parameter, 

cp, of the logistic transformation for the GMRF and the number of smoothing neigh­

bors, nb. Based on the results of the first set of experiments we then conducted a 

second set of experiments by setting these two parameters at fixed (default) values in 

order to assess performance of our algorithm. 

In the first set of simulation studies we found that a small range of cp was suitable 

over different configurations. In particular, we investigated sensitivity by choosing 

different values in the set {.005, .01, .5, .1}. For the number of neighboring SNPs (on 

either side) over which to smooth in the GMRF, we considered the two values, 1 

and 4, for of total of 2 or 8 neighbors for each SNP. Boundary SNPs at the ends 

of the chromosomes simply used fewer SNPs. Based on the results of the first set 

of experiments we then conducted a second set of experiments by setting these two 

parameters at fixed values, cp = 0.01 and nb = 4, and varying the signal-to-noise ratio 

and location of the copy number breakpoints. We also varied the number of SNPs 

constituting the aberration regions. In all simulations, the standard deviation (O"h) 

of the proposal distribution (see section 2.7.2) to update the smoothing parameter, 

h, was chosen so that acceptance ratios (see section 2.7.2) would be between 40% 

and 70%. For all cases reported we used 50, 000 sampling draws for inference after a 

50,000 iteration burn-in period. 

For the first set of simulations, we simulated 8 data sets representing 8 sets of 

(normalized) SNP log-ratios. Four data sets represent the case where there is a clear 

separation among three contiguous segments whose ordered copy numbers are 2, 4, 

and 2, corresponding to normal/gain/normal. We call this scenario the "non-overlap" 

case. The four versions differ by how many SNPs are in the gain segment: 100, 50, 

25, 10. The second set of four data sets are analogous to the first set except for the 

fact that the log-ratios of the gain segment are not well separated from the normal 
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(CN=2) log-ratios on either side. We call this case the "overlap" case. In all cases 

examined we computed misclassification numbers and false negative fractions (Le., 

numbers of false negatives divided by the numbers of non-normal SNPs). We com­

ment on some of the results below. 

Non-overlap Case 

In the non-overlap scenario the log-ratios corresponding to CN=2 SNPs were in­

dependently drawn from a N(O, .12 ) distribution. The log-ratios corresponding to 

CN=4 SNPs were drawn from a N(.6, .12), for all four SNP sample sizes of 10,25,50, 

and 100. We pick the mean to be .6 to make the components non-overlapping. The 

SNR here is 6. For this case we obtained excellent results and observed no sensitivity 

to the parameter </> and to the number of neighbors. 

Overlap Case 

In the overlap case the log-ratios of the normal copy number SNPs were sampled 

from a N(O, .152), and the gains from a N(.3, .152). Here SNR is 2. For this case 

we obtained excellent results in all cases except one. When </> = .1 the algorithm 

can detect the three cases with 100/50/25 SNPs in the middle, but cannot detect the 

short segment of 10 SNPs. 

From the first set of simulation experiments, we see that the results are not sen­

sitive to the number of neighbors and the value of the parameter </> as long as it's 

small. So in the second set of simulation studies, we fix the number of neighbors to 

be 4 on either side and </> = .01. 
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For the second set of simulations we designed two patterns of copy number seg­

ments. For each pattern, we simulated four scenarios of SNP log-ratios. In practice, 

the log-ratios would be suitably normalized. The four scenarios are different configu­

rations of true copy number, signal-to-noise ratio (SNR), normal cell contamination, 

and number of SNPs within the CNA region. For each scenario we report misclas­

sification, false-negative and false-positive rates. All rates in Table 2.2-Table 2.4 are 

based on 50 sample replicates. 

The misclassification rate reported is defined as P( C N =I- j I true C N = j), for 

j =I- 2. For the special case j = 2 we obtain the false-positive rate, F P = P( C N =I-

2 I true C N = 2). The false-negative rate is defined as the chance of a true loss or gain 

classified as a normal copy number, F N = P(CN = 2 I true CN =I- 2). We do not find 

it very useful to cite global rates since each depends on several factors, including the 

true CN, signal-to-noise ratio (SNR), normal cell contamination, and number of SNPs 

within the CNA region. We therefore report misclassification, false-negative and false 

positive rates given various combinations of these parameters. Other authors (e.g., 

Pique-Regi et al [2008]) define performance accuracy by breakpoint detection. This 

results in slightly different definitions of false-positive and false-negative rates than 

we do here. Since our model is based on mixture components corresponding to integer 

copy numbers it makes more sense for us to consider more specific false-negative and 

false-positive rates. As shown below, these rates also depend on factors other than 

true copy number. 

A number of authors have used the simulation data of Willenbrock et al [2005] 

to assess their proposed copy number algorithms for aCGH data. However, we are 

specifically interested in how well SNP data performs. We, therefore, generated our 

own simulation data since the Willenbrock and Fridlyand simulated data was gener­

ated to emulate real tumor data from the aCGH copy number algorithm, DNAcopy. 

As such, their simulated data represents levels, variance, and breakpoints (segmen­

tation) specific to aCGH data analyzed with a specific algorithm. We also note that 
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our simulations generated simple text files of log-ratios. Therefore, we were unable 

to compare our method to those whose software implementation requires special data 

files, such as Affymetrix CEL files. The real data studies, however, did allow for such 

comparisons as we were able to obtain log-ratios from their analysis. In short, the 

simulations were for assessing our own method and the real data with validation were 

for performance assessment under real conditions and comparative purposes. 

Table 2.2 shows misclassification rates (%) for eight different scenarios. Table 2.3 

and Table 2.4 show false-negative and false-positive rates, respectively. We first dis­

cuss the misclassification (MC) rates in Table 2.2. 

Scenarios 1-4: These scenarios assume the following ordered copy number seg­

ments with number of SNPs given in parentheses: 2(10), 3(5), 2(50), 1(10), 2(50), 

3(20), 2(50), 3(40), 2(10). The widths of the copy number segments (5, 10, 20, 40, 

50) correspond to those considered by Rancoita et al. Rancoita et al [2009]. The 

SD and SNR are given on the log2 ratio scale under a true CN of 3. Since in this 

table we report misclassification rates, we do not show the segments corresponding 

to a true copy number of 2, which would be the false-positive rate (Table 2.4). The 

rows are ordered by segment as given above, excluding segments with a normal copy 

number. Figure 2.11 shows a typical data set under Scenario 1 in which the SNR 

of 7.3 leads to clearly non-overlapping log-ratios across the segments. In this case, 

the MC rate is 0% independent of CN aberration and number of SNPs defining the 

respective segments. Scenarios 2, 3, and 4 have increasingly smaller SNRs and for a 

given true CN aberration the MC rate increases with decreasing SNR (left to right 

across columns). Figure 2.12 shows a data set under Scenario 2 with a SNR of 2.4. 

The overlap between CN classes is mild, but clear change points can still be observed 

when there are at least 10 SNPs. Here, a few of the CN=3 cases between SNPs 11-15 

are classified as normals. Conversely, at about SNPs #190 and 250, normal CNs 

are classified as CN=3. The largest MC rate (16%) under Scenario 2 is that corre­

sponding to a segment with true CN =3 and 5 SNPs. The other three cases under 
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Scenario 2 with at least 10 SNPs have a MC rate of no more than 5%. Figures 3A 

and 3B show two data sets under Scenario 3 with a SNR under 2, namely SNR = 

1.8. Figure 2.13A shows correct classification of 4 of 5 CN=3 cases between SNPs 

11-15, while Figure 2.13B shows all 5 of these CN=3 cases misclassified as normals. 

However, Figure 3A shows more misclassifications of the CN =3 cases between SNPs 

230 and 240 than that in Figure 3B. With at least 10 SNPs in a segment, the MC 

rate is no more 11% under Scenario 3. Under Scenario 4 the SNR is 1.5 and as with 

Scenario 3 (SNR = 1.8) the MC rate is about 50% when only 5 SNPs define the 

segment. With a SNR as small as 1.5, a relatively large (~ 20) number of SNPs are 

needed to accurately classify a copy number. 

Scenarios 5-8: These represent the following ordered copy number segments with 

number of SNPs in parentheses: 2(10),4(5), 2(50), 3(10), 2(50),0(20), 2(50), 3(40), 

2(10). As with Scenarios 1-4, for a given combination of CN and number of SNPs 

in the segment, the MC rate increases with decreasing SNR. Segments with a larger 

number of SNPs also lead to smaller MC rates than those with fewer SNPs. One 

interesting comparison is that between row 1 of Scenarios 1-4 (CN =3 with 5 SNPs) 

with row 1 of Scenarios 5-8 (CN=4 with 5 SNPs). Figure 2.14 shows a sample data set 

from Scenario 8 and there we observe that all five SNPs with CN=4 at positions 11-15 

are classified as CN =3. Examining the misclassifications across all 50 replicates for 

this configuration we found that the vast majority of SNPs with CN =4 were labelled 

as a 3; hence, the misclassification rate of 98%. Note that the false-negative rate for 

this situation (Table 2.3, row 1, Scenario 8) was only 6%. On the other hand, the MC 

rate under Scenario 4 with CN=3 with 5 SNPs was 50%, approximately half that for 

CN =4 in Scenario 8 . In general, larger copy number aberrations are more difficult 

to correctly identify than smaller ones. Indeed, the log scale shrinks the larger copy 

number ratios toward smaller ones, leading to misclassifications. Line 3 shows MC 

rates under a true copy number of O. Figure 2.14 shows how distinct this aberration 

is from its neighbors regardless of the size of the SNR; the MC is constantly 0%. 
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Table 2.3 shows false-negative rates. Except for minor differences, the false­

negative rates for Scenarios 1-4 are the same as the broader misclassification rates 

(Table 2.2). This shows that most ofthe misclassifications in Scenarios 1-4 were losses 

and gains that were called normal. Where there are differences between Table 2.2 and 

Table 2.3, we see that misclassification rates are at least as large as the false-negative 

rates as we would expect. It is worth noting that the aberrations studied in Scenarios 

1-4 are "neighbors" of normal copy number, viz., CN=3 is one additional copy and 

CN=1 is one less copy. As such, it is not too surprising that the misclassification 

rates agreed with the false-negative rates. Especially in the presence of normal cell 

contamination we expect the log-ratios to regress toward the mean value of o. This 

is contrast to Scenarios 5-8, which include more extreme aberrations of CN=O and 

CN=4. Comparing the misclassification rates (Table 2.2) with the corresponding FN 

rates (Table 2.3), we see that the latter can be much smaller than the former. Large 

differences of MC vs FN rates are seen for CN=4 in Scenarios 6 (87% vs 0%), 7 

(77% vs 4%), and 8 (98% vs 6%). Taken together this implies that almost all of the 

misclassifications for CN=4 were called as CN=3 and very few as CN=2. A manual 

calculation of the calls confirms this conclusion. Smaller differences between MC and 

FN rates occur in Scenario 6 with CN=3 and 10 SNPs (line 2, Table 2.2 and Ta­

ble 2.3); the MC rate is 14% and the FN rate is 7%. Here, half of the 14% is due to 

normal calls and the other half to calls of CN=4. In Scenario 7 with true CN=3 and 

10 SNPs the MC rate of 31% is 20% CN=2 (false-negative) and 11% CN=4. Similarly, 

the MC rates of 9% and 17% for Scenarios 6 and 7 with CN=3 and 40 SNPs (line 4, 

Table 2.2 and Table 2.3), respectively, are only due to false calls of CN= 2 and CN=4. 

It is, therefore, seen that when a true copy number of 3 is misclassified, it tends to be 

called a CN=4 with a smaller percentage of normal calls, CN=2. And, as discussed 

above, a true CN=4 tends to be called a 3 when misclassified. In this sense, if an 

investigator is only calling loss/normal/gain, even though misclassifications occur un­

der true copy numbers of 3 and 4, they would both be correctly called as gains with 



49 

a small percentage of CN=2 (false-negative) calls. This is at least the behavior of the 

Bayes mixture model; other methods may apportion the misclassifications differently. 

In all scenarios (1-8) we observe a misclassification rate and a false-negative rate of 

0% for CN=O and 20 SNPs. No matter the signal-to-noise ratio, the distribution of 

log-ratios for CN =0 is well separated from the other copy number distributions and 

its call is constantly correct. For CN=l, the misclassification rates and corresponding 

false-negative rates are equal, showing that when misclassified this copy number is 

called a normal (false-negative). 

Table 2.4 shows false-positive (FP) rates defined as a true normal copy number 

being classified as a gain or loss: P(CN i= 2 I CN = 2). Since the two patterns 

of copy number structure differed only in their gain and loss patterns we combined 

the data for the normal copy number segments. Thus the FP rates are based on 100 

replicates instead of 50 as with the MC and FN rates in Tables 2.2 and 2.3. As with 

the FN rate, for a fixed number of SNPs defining the normal segment, the FP positive 

rate increases with decreasing SNR. And, for a given combination of SNR and normal 

cell contamination, the FP rate decreases with an increasing number of SNPs in the 

segment. Under the most difficult configuration considered, 10 SNPs with a SNR of 

1.5 and 20% contamination, the false-positive rate was only 9%. 

Rancoita et al [2009] compared their mBPCR method with six other methods and 

found that in general no method, including their own, was able to detect aberrations 

of width 5-10 probes. Lai et al [2005] reached similar conclusions. Use of alternative 

estimators for a certain covariance parameter led to the detection of these smaller 

segments, but this was accompanied by dividing larger segments into sub-segments. 

Our method, too, had trouble with regions defined by only 5 probes, although regions 

with at least 10 probes were fairly well identified unless the signal-to-noise ratio was 

on the order of 1.5 or higher. 
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Figure 2.11: Scenario 1 
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CN #SNP .05/7.3/0 .15/2.4/0 .2/1.8/0 .2/1.5/20 

3 5 0 16 51 50 

1 10 0 2 11 37 

3 20 0 5 9 11 

3 40 0 1 6 6 

Scenario 5 Scenario 6 Scenario 7 Scenario 8 

CN # SNP .05/7.3/0 .15/2.4/0 .2/1.8/0 .2/1.5/20 

4 5 6 87 77 98 

3 10 0 14 31 31 

0 20 0 0 0 0 

3 40 0 9 17 4 

Table 2.2: Misclassification rates from simulation study. 

The entry is the misclassification rate over 50 replicates of one chromosome. Eight 

scenarios were simulated and defined by the given combination of true CN, number 

SNPs within the region of aberration, and SD /SNR/percent contamination. The SD 

and SNR are given on the log2 ratio scale under a true CN of 3. The true CN 

profile for Scenarios 1-4 is CN(#SNPs): 2(10), 3(5), 2(50), 1(10), 2(50), 3(20), 

2(50), 3(40), 2(10). The true CN profile for Scenarios 5-8 is CN(#SNPs):2(10), 4(5), 

2(50),3(10),2(50),0(20),2(50),3(40),2(10). 



Scenario 1 Scenario 2 Scenario 3 Scenario 4 

CN #SNP .05/7.3/0 .15/2.4/0 .2/1.8/0 .2/1.5/20 

3 5 0 16 47 50 

1 10 0 2 11 37 

3 20 0 5 5 11 

3 40 0 1 3 6 

Scenario 5 Scenario 6 Scenario 7 Scenario 8 

CN # SNP .05/7.3/0 .15/2.4/0 .2/1.8/0 .2/1.5/20 

4 5 0 0 4 6 

3 10 0 7 20 31 

0 20 0 0 0 0 

3 40 0 1 4 4 

Table 2.3: False negative rates from simulation study. 

The entry is the false-negative rate over 50 replicates of one chromosome. See 

Table 2.2 for details. 
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Scenario 1/5 Scenario 2/6 Scenario 3/7 Scenario 4/8 

eN # SNP .05/7.3/0 .15/2.4/0 .2/1.8/0 .2/1.5/20 

2 

2 

10 

50 

o 
o 

3 

1 

7 

2 

Table 2.4: False positive rates from simulation study. 

9 

2 

The entry is the false-positive rate over 50 replicates of one chromosome. See 

Table 2.2 for details. 

56 
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2.9 Real data application 

To further assess the Bayes mixture model, we analyzed AfIymetrix 250K array data 

from two sets of patients: anueploidy and ependymoma. Data were obtained from 

Texas Children's Hospital, Houston, TX. A brief description of the data is given 

below. 

• Tumor samples with known aneuploidy: Annonymized tumor samples were 

collected from the clinical cytogenetics laboratory at Texas Childrens Hospital 

as discarded materials after clinical diagnostic evaluation was completed. All 

samples were chosen for aneuploidy identified by cytogenetics. The following are 

the cytogenetic diagnosis for each case: Sample 688 (47 XY: +X, del(6)(q12q21), 

7p-/q+, del(9)(p21)(p16)): Sample 52 (51 XY, +5, +7, +8, +8, +13): Sample 

406 (45 XX, -13): Sample 282 (47 XY, t(1O;12)(q24;p13); +21). 

• Ependymoma is the third most common malignant pediatric brain tumor, with 

over 50% of cases arising in children younger than 5 years of age. Numerical 

and structural chromosomal abnormalities in ependymoma were identified in 

early cytogenetic studies involving karyotypic analysis and comparative genomic 

hybridization. Common genetic abnormalities in ependymoma involve losses on 

chromosomes 1p, 3, 3q, 9p, 10q, 13q, 16p, 17, 21 and 22q and gains of 1q, 4q, 5, 

7, 8, 9, 12q, and 20 (Taylor [2009]). CGH data and 250k AfIymetrix SNP data 

were obtained from Texas Children's Hospital. 

In addition to comparing our results with the popular CNAG software, we also 

provide biological validation. Some of these cases, in fact, had karyotyping and FISH 

data for validation. Others were validated using quantitative PCR on selected regions 

and CGH data. One important feature of the CNAG software used to estimate copy 

number is the fact that it adjusts the observed log-ratios for variation in GC content 

across the probes. Integer copy numbers are subsequently inferred from the GC 

adjusted log-ratios using a hidden Markov model. To make comparable comparisons 
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between the Bayes and the CN AG methods we applied the Bayes model to the GC 

adjusted log-ratios from CNAG. One relatively recent issue arising in the analysis 

copy number aberration detection is the so-called "genome wave" Marioni et al [2007], 

Diskin et al [2007], a genome-wide spatial autocorrelation pattern in signal intensity 

data that may be confounded with the copy number profile across a chromosome. As 

a result the genome wave may lead to inflated false-positive rates in copy number 

calls. The genome wave has been consistently detected in both CGH and SNP based 

platforms. Diskin et al [2007] and the references therein describe possible genomic 

features underlying the wave effect and pre-processing methods to remove the wave 

effect prior to the analysis of copy number. It has been fairly well established that an 

adjustment for GC content largely removes the wave effect from the signal intensities 

(Diskin et al [2007]). Since we are using GC adjusted log-ratios from CNAG for the 

real data application we did not expect to observe a wave effect in our data and 

indeed none was present as shown in Figures 2.15-2.9. 
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Figure 2.15: Case 1 chromosome 6. The red line is the loess curve with window size 

.3. There is no evidence of a genome wave. 
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Figure 2.16: Case 2 chromosome 12. The red line is the loess curve with window size 

.3. There is no evidence of a genome wave. 
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Figure 2.17 shows normalized log-ratios by their genomic location over a segment 

of chromosome 6 from an aneuploidy case (Case 1). For this case, cytogenetics data 

show a loss at 6q1206q21. The inferred integer copy number is indicated by the 

red dots in Figure 2.17. The top panel shows results from CNAG, and the bottom 

panel shows result from the Bayesian model. One major difference in the two sets of 

results is that the Bayesian method gives smoother results as indicated by the longer 

stretches of the same inferred copy number, whereas the CNAG method varies more 

in the inferred copy number over the loss region. In particular, note the region from 

approximately 102Mb to 107Mb, covering 5Mb, which is assigned copy number 2 by 

CNAG. Although the reason for the misclassification is unknown, it would appear 

that it is not due to a small number of SNP loci in the region. A second difference 

between the two methods is that our Bayesian algorithm correctly detects the second 

change-point in going from a loss to a normal copy number at approximately 118Mb, 

while CNAG appears to miss it by about 1Mb; both methods correctly detect the 

first change-point at 99Mb. 

In the next example we consider an ependymoma case (Case 2) for which there 

appears to be a relatively high degree of normal contamination: the mean log-ratio 

of the segment ranging from about 45Mb to 120Mb is -.18, which is consistent with 

about 60% contamination. Figure 2.18 shows chromosome 12 for this case. The main 

difference between the results from the two algorithms centers on the segment from 

around 45Mb to around 120Mb. This segment is identified as CN=2 by CNAG and 

CN=1 by the Bayes algorithm. In order to validate this result we performed qPCR 

on two regions in this stretch. We chose a small region around position 50Mb (region 

1) and a second one around 110Mb (region 2). The average copy numbers based on 

qPCR for these two regions resulted in the values 1.43, 1.55, respectively, with ap­

proximate 95% confidence intervals of (1.2, 1.71), and (1.33, 1.81), respectively. The 

validation results support a loss, in concordance with the Bayes method and in con­

trast to the inference based on CN AG indicating a normal copy number throughout 
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the stretch. To further evaluate this case we analyzed CGH data using the GLAD 

software available in Bioconductor. The aCGH platform we used was a BAC array 

platform, which contains 2,621 BAC clones and has a 3Mb resolution. This array is 

based on a 2-color competitive hybridization platform (Cy3jCy5). The experiments 

were conducted by hybridizing the fluorescent-labeled tumor DNA with reference 

DNA on the array. Figure 2.19 shows results for chromosome 12. In the plot, each 

red and green dot stands for one BAC clone, i.e., a '" 3Mb segment of DNA. Red 

dots represent gains and green dots represent losses. Yellow dots represent inferred 

copy numbers from CN AG, and purple dots represent inferred copy numbers from 

our mixture model. As the plot indicates, the region from around 45Mb to around 

120Mb shows copy number loss, a finding that agrees with the result provided by our 

Bayesian model. Furthermore, the tail region of the chromosome indicates a copy 

number gain, which again confirms our findings and contradicts the CNAG result. 

2.10 Conclusion 

The array-based comparative genomic hybridazation microarray has been the gold 

standard for estimating genomic copy number. As the CGH BACs are relatively 

large segments, the CGH estimates tend to be robust. On the other hand, the large 

segments do not allow detection of small CNV s. The SNP genotyping array provides 

an alternative to CGH, which is expected to identify genomic alterations with a 

higher resolution. Most SNP array algorithms use a hidden Markov model to infer 

integer copy numbers, and the component means tend to be set at the theoretical 

values. However, due to normal cell contamination, which occurs in most tumor 

samples, log-ratios can be shrunk toward zero, indicating a normal copy number. 

Consequently, in the presence of a high percentage of contamination, losses or gains 

may not be detectable. As of this writing, we are not aware of existing algorithms 

that account for this problem. 
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We have developed a Bayesian spatial normal mixture model to estimate copy 

number for SNP array platforms where the means of the components accommodate 

cell contamination. By using neighboring copy number information on either side of 

each SNP locus we can generate smoother maps than those based on HMMs. We 

have shown with a simulation study that our algorithm can detect both long and 

short segments quite precisely. Our results do not show sensitivity to different values 

of the scaling factor ¢ in the prior model and to the number of neighbors as long 

as ¢ is chosen to be small enough. By applying our method to real cancer data, we 

have demonstrated that our algorithm can do as well as CNAG, a very popular and 

accurate algorithm used with SNP arrays, and in certain cases performs better. In 

addition, our algorithm provides smoother realizations than CNAG. The Bayesian 

mixture model could be extended in a few ways. To more precisely smooth over 

neighboring probes, it would be helpful to account for inter-probe distance perhaps 

as a weighting factor when averaging neighboring information. The log-ratio copy 

number means could also be included as parameters with priors reflecting knowledge 

of normal cell contamination. 
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Figure 2.17: A segment of chromosome 6 from case 1. Cytogenetics data show a loss 

at 6q1206q21. 
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Figure 2.18: Chromosome 12 from case 2. We validated two regions using qPCR, 

around positions 50Mb and 110Mb. The average copy numbers based on qPCR for 

these two regions resulted in the values 1.43, 1.55, respectively, with approximate 

95% confidence intervals of (1.2, 1.71), and (1.33, 1.81), respectively. The validation 

results support a loss, in concordance with the Bayes method and in contrast to the 

inference based on CNAG indicating a normal copy number throughout the stretch. 
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Figure 2.19: Case 2 CGH result analyzed using GLAD software in Bioconductor. The 

aCGH platform we used was a BAC array platform, which contains 2,621 BAC clones 

and has a 3Mb resolution. This array is based on a 2-color competitive hybridizat ion 

platform (Cy3/Cy5). The experiments were conducted by hybridizing the fluorescent­

labeled tumor DNA with reference DNA on the array. As the plot indicates, the region 

from around 45Mb to around 120Mb shows copy number loss, a finding that agrees 

with the result provided by our Bayesian model. Furthermore, the tail region of the 

chromosome indicates a copy number gain, which again confirms our findings and 

contradicts the CNAG result. 



Chapter 3 

Detection of Gene Interactions for 

Classification using Gene 

Expression Data 

3.1 Introduction 

In the study of human genetics, mapping of complex traits is a major challenge. In 

contrast to simple traits, which can be attributed to mutations of single genes, com­

plex traits involve more than one factor. Complex traits are much more common in 

the population and include asthma, hypertension, heart disease, Alzheimer's disease, 

and diabetes. Recently high-density oligonucleotide microarrays have been important 

tools to map complex traits. They have become a major tool to study the differences 

between two types of samples, for example tumor and normal samples. Due to the 

large number of genes that are measured in microarray expriments, and the fact that 

the majority of them do not contribute to the class difference, an important step is 

to select 'informative' genes. A large number of methods have been proposed in the 

literature, and most of them are univariate approaches, for which we evaluate one 

gene at a time. The most popular one is the t-test. Dudoit [2002] compared the 
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performance of several discrimination methods (nearest neighbor classifiers, linear 

discriminant analysis, classification trees, bagging and boosting) for the classification 

ability, based on the preliminary selection of genes using the ratio of between-groups 

to within-groups sum of squares. At the end of the article they discussed their concern 

about these kinds of gene selection methods because they ignore interactions between 

genes. Two or more genes can interact in a way that there are no main effects, so 

methods to detect these kinds of interactions are needed. Understanding how inter­

actions among genes contribute to the trait is having a large impact on biomedical 

research, agriculture and evolutionary biology. However, most current strategies are 

marginal approaches, which examines one gene at a time, so they ignore possible 

information contained in gene-gene or gene-environment interactions. In the second 

part of the thesis, I present a new method for detecting gene-gene interactions to 

improve classification using gene expression data from microarrays. 

3.2 Biological background 

William Bateson invented the term 'epistasis' around 100 years ago to describe the 

effect of one allele at a locus masking the effect of the allele at another locus (Bateson 

[1909]). Ever since then the term epistasis has expanded to describe any form of 

interactions among genetic elements, which causes much confusion in the literature. 

Patrick Phillips has classified them into three main categories: compositional epista­

sis, functional epistasis, and statistical epistasis (Philliips [2002]). 

• Compositional epistasis refers to the original usage of epistasis that an allele 

blocks the effect of an allele at another locus. 

• Functional epistasis describes the molecular interactions that genetic ele­

ments have with each other, whether these interactions consist of genetic ele-
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ments that operate within the same pathway or of genetic elements that directly 

form complexs with one another. 

• Statistical epistasis is attributed to Fisher [2005] which addresses the devia­

tion from additivity in the effect of alleles at different genetic loci with respect 

to their contribution to a quantitative phenotype. Epistasis in this sense is close 

to the usual concept of statistical interaction: departure from a specific linear 

model describing the relationship betweeen predictive factors. 

Most of the current statistical methods address this problem in the third context: 

statistical epistasis, where a regression is usually formed with cross terms representing 

interactions (Musani et al [2007], Cordell [2002], Marchini et al. [2005], Hoh [2003]). 

In this work, we are interested in the "interaction" pattern shown in Figure 3.1. In 

the plot, the x-axis represents expression values of one gene and the y-axis represents 

expression values of another gene. Each dot represents a sample. Red and green 

represent the two classes. We can see that with only one gene, either one of the two, 

we cannot find a cutoff to separate the two classes. However, with them together, we 

can see a clear pattern: samples in the (low, low) or (high, high) corners are mostly 

class I and samples in the (low, high) or (high, low) corners are mostly class II. In 

this thesis we try to detect interaction like this in a non-parametric way using gene 

expression data. One narrow definition of gene-gene interaction for classification is: 

their correlation in one group has the opposite sign in the other group. A more gen­

eral definition is the joint distribution in one group is different from that in another 

group. For practical purpose, we tend to use the narrow definition in our discussion 

and application. Further remarks are given in our applications. 

The central dogma of molecular biology is the process of DNA ---t mRNA ---t 

protein, with the two intervening steps called transcription and translation, respec 

tively. Gene expression is the abundance of mRNA a gene makes. If a gene makes any 

mRNA, it is said that this gene is expressed. Not every gene is expressed in each cell 
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Figure 3.1: A hypothetical example of gene interactions 
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type. Each of the cells becomes specialized by obeying just some of the instructions 

in the DNA, resulting in blood, muscle, bone, liver , lungs , brain, etc. A mutated gene 

may signal disease. 

With the advent of microarrays , expression levels of thousands of genes can be 

measured simultaneously. The technology of microarray for gene expression is similar 

to that for genotypes , except that here microarrays are used to measure changes in 

expression levels. So each probe on the microarray is a DNA fragment that represents 

specific gene coding regions. Sample and reference RNA is then fiuorescently labeled 

and hybridized to the microarray. After washing off of non-specific bonding sequences , 

laser scanning is used to get the raw data. Figure 3.2 shows the technology of t he 
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microarray experiments. 

GenoOh Probe .jn4Y 

Figure 3.2: Overview of microarray technology. 

Source: http://www.microarrayworld.com/index.html 

3.3 Existing methods 

In the literature, discussion of epistasis has mainly been based on genotype data, and 

there are very few papers for detection of gene-gene interactions using gene expression 

data (Yan et al. [2008]). Among the methods using gene expression data, the majority 

of them use regression with cross terms indicating interactions. Some use penalized 

regression and others first use certain threshold to select a small number of genes and 

then apply regression on these selected genes only. In this section, we will review one 

of the current techniques which is non-parametric. Before getting into it, we briefly 

describe the genetic algorithms, and why it makes sense to use in our context .. 
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3.3.1 Multigene Expression Profile Model 

Van et al. [2008] developed two feature selection methods that evaluate the infor­

mativeness of a set of genes: the multigene profile association (MPAS) method and 

the signed multigene profile association (sMPAS) method. The authors claim that 

methods considering gene-gene interactions have better classification power (20% im­

provement) in gene expression analysis. 

3.3.1.1 Multigene profile association (MPAS) method 

For each gene, we cluster the expression values in the training set with two classes 

pooled, into three states: high, normal, and low. For a specific set of K genes, a 

measure of association between this set with the class labels is defined as 

T 

MPD = ~:)WI * nil - W2 * ni2)2 
i=l 

(3.1) 

where T = 3K corresponds to the total number of patterns, WI = n2/(nl + n2), 

W2 = nd(nl + n2), nil is the number of profile ~ observed among class I samples 

and ni2 is similarly defined for class II. In order to evaluate the importance of any 

gene Gi in the K genes, we recalculate a MPD score with Gi removed. The MPAS 

statistic is then defined as 

1 
MPAS(Gilcurrent genes) = "2.b.MPD(Giremoved) + 0 (3.2) 

where .b.M P D( Giremoved) = M P D( Giremoved) - M P D and 0 is an adjusting term 

so that MPAS has expected value of 0 under the null hypothesis that this gene has 

no association with the class difference. It is easy to see that MPAS measures the 

importance of each gene given current genes. Negative value of MPAS implies impor­

tance and positive value means that we can delete the gene without information loss. 

Based on this statistic, a backward eliminating process is designed to select important 

genes. Generate B random subsets of genes {Sb, b = 1,··· ,B}. For each gene in Sb, 
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compute MPAS value. If all genes in Sb have negative values, stop the current iter­

ation. Otherwise, remove the gene with the highest positive value and iterate back. 

After the process is done for all B random subsets, compute the selection frequency 

of each gene. Finally, pick the p genes with the highest frequencies. 

For the prediction part, the authors propose to use both marginal genes and gene 

pairs. A weighted sum of votes is used, with weights being a gene's (or gene pair's) 

level of importance and vote being the gene's (or gene pair's) prediction on a test 

sample. Once the p genes are selected, they are first used as marginal predictors, 

with marginal weights: 
p 

Wi(m) = Pi/ L Fi (3.3) 
i=l 

Where Fi is the selection frequency of the ith gene. For a test sample, the expression 

values of the p selected genes are first discretized using the k-means clustering result 

on the training data. Suppose for gene i, the test sample falls in state h (h takes 

values a, b, or c). The vote of gene i for this sample is then v:(m) = Wl * Q7,l /Q7 

where Q7 = Wl * Q7,l + W2 * Q7,2, is the adjusted total number of training samples 

with gene i's state being h, with Q7,l and Q7,2 being the numbers of class I and II 

samples with gene i's state being h, respectively. The marginal vote for this sample 

is then defined as: 
p 

p(m)(x E class 1) = L ~(m)v:(m) (3.4) 
i=l 

The test sample is classified to class I if the above vote is greater than .5, and to class 

II otherwise. 

For a different approach using joint predictors, the MPAS screening procedure is 

run again on only the p selected genes. Then the selection frequency of each pair 

of genes is obtained and the top p* pairs are used as joint predictors. The vote and 

weight of each selected pair are: 
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(3.5) 
p' 

Wi(j) = Fd L iii (3.6) 
i=l 

The joint vote is then defined as 

p* 

p(j)(X E class!) = L Wi(j)~(i) (3.7) 
i=l 

Finally we combine these two votes: 

P(X E class!) = ap(m)(x E class!) + (1 - a)p(j)(x E class!) (3.8) 

where 0 ::; a ::; 1 is set to .75 to put more weight on marginal vote. For the application 

of this approach, we set B = 500000, K = 10, p = p* = 50. 

3.3.1.2 Signed multigene profile association (sMPAS) method 

This second approach is proposed in order to avoid the discretization of the expression 

values, which depends on the number of states and would also result in information 

loss due to the conversion of continuous data into discrete values. This approach is 

derived from the methods for marked point processes (MPP) (Stoyan et al. [1995]). 

Considering the space of expression profiles spanned by several genes, the discriminant 

analysis between two classes is equivalent to the spatial segregation problem for two 

point processes with different labels. The basic idea is that for any K genes under 

study, define the sMPI value as the number of correct predictions of the nearest 

neighbor classifier for class I using leave-one-out cross validation'. More specifically, 

for K genes under study, denote the expression profile of the ;th sample from class I 

as 

X (I) - ( (I) .. (I) )t 
j - Xlj' . 'XKj (3.9) 

The expression profiles for a sample from class II is defined as XYI). The two marked 

point processes to be segregated are denoted as X(I) and (II). The nearest neighbor 
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distance is a good indicator of separation between clusters of points (Dixon [1948] ,Rip­

ley [1979]). Given a fixed point xjI) in XU), define lI(XY)) as its Euclidean distance 

to the nearest neighbor among points in class I. And define T(XY)) as its Euclidean 

distance to the nearest neighbor among points in class II. Define the sMPI statistic 

as 
nl 

sM P I(XU) = L 1 {v(xJI))~'T(xJI))} 
j=1 

(3.10) 

This is equivalent to counting the number of correct predictions using 1-nearest-

neighbor classifier for class I using LOO. 

Similarly as in the previous approach, for any gene in the current K genes, define 

the sMPAS value as the difference between the sMPI scores without and with this 

gene. Again, negative values of sMPAS indicate importance of this gene given current 

genes. The sMPAS score can be similarly defined for class II. Then a backward elim­

ination screening algorithm is applied just like the procedure in the previous method, 

except that now we run the procedure twice, first using scores for class I and then 

using scores for class II. At the end of the process, we get the selection frequency of 

each pair of genes and select the top p pairs for prediction, half for class I and half 

for class II. 

Once we have the p pairs of genes, we again use a weighted sum of votes to pre­

dict the class labels of the test samples. For any test sample x, let NNDi(X) denote 

the distance between x and its nearest neighbor in the space spanned by the ith 

selected pair of genes. Then this pair of genes gives vote 

1;i(X) = sign(N N) 1 + N ~ Di(X) (3.11) 

where sign(N N) is 1 if the nearest neighbor is from class I and -1 otherwise. For 

each vote's weight, we use the information score sM Ph For pairs selected for class 
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I, the weight is defined as 

(3.12) 

where 01 = (n1 -1) / (n -1). To understand this, suppose we have a random variable X 

which follows the Binomial distribution B(n1, Od. Then Wi is one minus the p-value. 

Similarly for pairs selected for class II, define the weight as 

(3.13) 

where O2 = (n2 - 1)/(n - 1). 

Finally, we classify the test sample x to class I if and only if 

p 

LWiV"i(x) ~ 0 (3.14) 
i=l 

To evaluate the performance of the proposed methods, the authors compared their 

approach to several existing methods using the breast cancer data studied by van't 

Veer et al. [2002] and Tibshirani et al. [2002]. Table 3.1 shows the misclassification 

rates of the evaluated methods on the breast cancer data. In the "corr" method (van't 

Veer et al. [2002]), the correlation coefficient computed between a gene's expression 

and the class label was directly used. In SAM (significance analysis of microarrays), 

a t-type score that computes the mean expression difference of a gene between two 

classes, standardized by a measure of within-class variability, is used to select in­

formative genes. DLDA replies on maximum likelihood discriminant rules when the 

class densities have the same diagonal covariance matrix. In Golub [1999], a weighted 

gene voting scheme which turns out to be a minor variant of a special case of linear 

discriminant analysis is used. From the table, the three algorithms they propose do 

better than the four existing methods and sMPAS has the best overall performance. 

Therefore, the authors claim that methods considering gene-gene interactions have 

better classification power. 
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Gene Selection Classifier Misclassification (Top 50 genes) 

sMPAS sMPAS 0.295 

MPAS MPAS 0.308 

MPAS Marginal 0.346 

Golub Golub 0.385 

Corr Corr 0.385 

P'-value of t-test DLDA 0.41 

SAM DLDA 0.423 

Table 3.1: Misclassification on breast cancer data (van't Veer et al. [2002]). Source: 

Yan et al. [2008]. 

3.3.2 A Introduction to Genetic Algorithm 

In the context of gene selection for classification using gene expression data, our goal 

is to select a subset of informative genes that jointly contribute to the discrimination 

between different classes of samples. Since it's a "small n (sample size)" and "large p 

(number of variables)" situation, many such subsets of genes may exist. The strategy 

we try to explore is to find a large number of such subsets and then assess the relative 

importance of genes by examining the selection frequencies of genes in these subsets. 

To use 'brute force' to compare all subsets of genes is not feasible. For example, 

there are approximately 10100 ways to select 50 genes from 2000 genes. So we need a 

more efficient technique to go through fewer combinations to find optimal solutions. 

A genetic algorithm can be used in this context. Genetic algorithms have been used 

in many combinatorial problems involving high dimensional data (Clark [1996] and 

Forrest [1993]). 

The genetic algorithm (GA) is an adaptive heuristic technique used to find exact 

or nearly optimal solutions to search or optimization problems. The basic concept of 
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GAs is designed to simulate genetic processes in natural evolution, specifically those 

that follow the principles of natural selection and "survival of the fittest" laid down 

by Charles Darwin. 

Pioneered by John Holland (Holland [1975]), genetic algorithms have been widely ap­

plied in many fields of engineering. The genetic algorithm mimics natural evolution 

and selection. In nature, individuals compete with each other for a limited amount 

of resources and to attract a mate. Successful individuals will have larger numbers of 

offspring, while poorly performing individuals have few or even no offspring at all. In 

this way, genes from the 'good' individuals will spread to an increasing number of in­

dividuals in each successive generations. So species evolve to become more and more 

suited to their environment. The genetic algorithm uses an analogy. In GA, each 

individual represents a possible solution to the problem. Each individual is assigned 

a fitness score according to how good the solution is. The highly fit individuals are 

given opportunities to reproduce, and the least fit members are less likely to have 

offspring (Beasley et al. [1993]). In this way, the overall fitness of the new generation 

will be improved. Over many generations, the solutions presented by GA are more 

likely to be globally optimal. 

There are five major components of a genetic algorithm: chromosome, fitness, 

selection, reproduction and termination. 

• Chromosome: Each chromosome consists of a set of parameters that represent a 

potential solution to a problem. In the context of gene selection, a chromosome 

is a set of genes that are selected . 

• Fitness: Fitness is problem dependent. It measures the quality of a particular 

chromosome. In our case, we want to find interactions which can help with the 

classification, so we can use classification accuracy as fitness function. 
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• Selection: During the reproduction phase, a proportion of the current popula­

tion is selected to produce offspring. The selection is fitness-based, where the 

more fit individuals are more likely to get selected. Some 'good' individuals 

may be selected several times while 'poor' ones may not be selected at all. 

• Reproduction: After selection and transmission, individuals produce offspring 

which comprise the next generation. There are two mechanisms: crossover and 

mutation. 

- Crossover: See Figure 3.3 for an illustration of single point crossover. Given 

two parents, cuts their chromosomes at some randomly chosen position, 

to produce two 'head' segments, and two 'tail' segments. The tail seg­

ments are then swapped over to produce two new full length chromosomes. 

Crossover may produce offspring of higher fitness. And, of course, it is also 

possible that it would produce offspring of lower fitness, but these 'bad' 

individuals are not likely to be selected in the next generation. 

- Mutation: See Figure 3.4 for an illustration of single point mutation. Mu­

tation is applied to each child after crossover. The purpose of mutation 

in GAs is to preserve and introduce diversity. Mutations should allow 

the algorithm to avoid local minima by preventing the population of chro­

mosomes from becoming too similar to each other, thus slowing or even 

stopping evolution. 

• Termination: termination is also problem dependent. Common termination 

conditions are: 

- Fixed number of generations is reached 

- The overall fitness of the population becomes stable 

- A solution is found that satisfies some criteria 

- Allocated budget (computation time/money) is reached 
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- The highest ranking solution's fitness is reaching or has reached a plateau 

such that successive iterations no longer produce better results 

Manual inspection 

Combinations of the above 

The first two are not recommended, because they don't guarantee convergence. 

The third and fourth one are commonly used. 

Parents 

Offspring 

Crossover point 

1 0 1 O~O 0 1 1 1 0 

'--y--J~ 

1 0 1 0 0 1 001 0 

Crossover point 

001 llo 100 1 0 

'--y--J~ 

o 0 1 100 1 1 1 0 

Figure 3.3: Single point Crossover 

Source: [Beasley et al. [1993]] 

The flowchart of the procedure is show in Figure 3.5. 

3.3.3 k-Nearest-Neighbor Classifiers 

As mentioned earlier, the fitness in the genetic algorithm is classification accuracy. 

The classifier k-nearest-neighbor algorithm is used here. In classification procedure, 

there is a training set for which we know the class labels. The k-nearest-neighbor 

algorithm is a non-parametric method for classification. The idea is very simple. 



Mutation point 

+ 
Offspring 1 0 1 0 0 1 0 0 1 0 

Mutated Offspring 1010110010 

Figure 3.4: A single mutation 

Source: [Beasley et al. [1993]] 
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Given an object, we find the k training objects closest in distance to this object, 

and then classify using majority vote among the k neighbors. Despite it's simplicity, 

k-nearest-neighbors has been successful in a large number of classification problems, 

including handwriting digits, satellite image scenes and EKG patterns. It is often 

successful where each class has many possible prototypes, and the decision boundary 

is very irregular (Hastie et al. [2001]). The classification accuracy is the percentage 

of samples which are correctly classified. 

3.3.4 Genetic Algorithm/k-nearest-Neighbor Method 

Li et al. [2001a] proposed to combine a Genetic Algorithm and the k-nearest neighbor 

classifier to assess the importance of genes for sample classification based on expres­

sion data. In their study, the genetic algorithm is used to identify a large number of 

subsets of 50 genes that can correctly classify the majority of the samples and then 

use the selection frequency of the genes to assess the relative importance of genes for 

sample classification. The authors applied it to expression data from normal versus 

tumor tissue from human colon. Two distinct clusters were observed, and the major­

ity of the samples were classified correctly. This approach is a multivariate approach 

(samples are compared in multi-gene dimensions), however, the interaction informa-



Initial population 

Niche 1 Niche 2 ... 

II I II I 
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Fitness calculation 
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1 

yes 
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II I 
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f1 f2 ... fm 

no 

~ selection and reproduction 

replace the worst 
chroms in each nich 
by the best chroms 

save the chromosome 

Figure 3.5: Flowchart of the GA procedure 

tion is not extracted. 
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Here is the basic idea of Li et al. [2001a] (Figure 3.5). We start with nniche sub­

populations (or 'niches ') where each contains nchrom chromosomes. In a typical run, 

nniche = 10 and nchrom = 100. Each chromosome consists of d genes, which are ini­

tially selected randomly from the gene pool. Each niche evolves independently, except 

that, the best chromosomes identified at each generation, one from each niche, are 

combined and used to replace the 10 least fit chromosomes in each niche in the next 

generation. 
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Each chromosome is given a fitness score, which measures the 'quality' of the chromo­

some. The k-nearest-neighbor classifier is used here to compute the fitness score. For 

the d genes in the chromosome, each sample is represented by its expression values of 

the d genes. We can compute the distance between a sample and each of the training 

samples using Euclidean distance in the d-dimensional space. A sample is classified 

according to the class membership of its k nearest neighbors: if all of the k nearest 

neighbors of a sample belong to the same class, the sample is classified to that class, 

otherwise, the sample is considered unclassifiable. k = 3 is used in the algorithm. 

To assess the ability of classification of the chromosome, we calculate the number of 

correctly classified training samples and use it as the fitness score of the chromosome. 

Obviously, the larger this value is, the better the chromosome is. 

We set a threshold, 7, which is the number of correct predictions we hope to 

achieve. The largest value of 7 should be equal to the number of samples. If the 

current generation of chromosomes does not include any that achieve 7, then a new 

generation is formed. The selection of chromosomes to go into the next generation is 

based on the principle of survival-of-the-fittest. The single best chromosome (with the 

largest fitness score) from each niche is entered into the respective next generation for 

that niche deterministically, and the remaining positions are filled based on sampling 

that is weighted according to the relative fitness score of the chromosomes in the 

parent generation, probabilistically. Once a chromosome is chosen for transmission, 

we perform mutation, which is to substitute new genes into the chromosomes. The 

number of substitutions is assigned randomly between 1 and 5, with probabilities 

.53125,.25,.125,.0625, and .03125, respectively. In this way, a single replacement is 

given the highest probability while simultaneous multiple replacement has low proba­

bility. This strategy prevents the search from behaving as a random walk as it would 

if many genes were introduced at each generation. When d is small, say less than 10, 

then only one gene is selected for mutation with probability of 1. Once the number 
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is determined, these genes are selected randomly and are substituted by genes that 

are not already in the chromosome. 

The above procedure is repeated until 'Y is achieved in any of the niches. We then 

save the selected 'best' chromosome. And the whole process is restarted. We stop 

the process when a large number (the author use 10000) of 'best' chromosomes are 

obtained. 

After we get the large number of 'best' chromosomes, we calculate the frequency 

with which each gene is selected across all best chromosomes. The top 50 genes with 

the largest frequencies are then used to classify samples in the test set. Finally, we 

obtain classification accuracy based on the final set of genes. 

In a subsequent paper (Li et al. [200lb]), the authors studied the sensitivity, re­

producibility, and the stability to the choice of parameters of the algorithm. It turned 

out that the algorithm is highly repeatable with independently runs and are not sen­

sitive to the parameters, e.g d. The authors successfully applied this algorithm to 

several datasets (colon cancer data, leukemia data, and lymphoma data) and achieve 

great performance. For example, the method correctly classified 33 of the 34 test 

samples of the acute myeloid leukimia datasets. 

3.3.5 Comparison of the three algorithms 

The genetic Algorithm is a stochastic search method. It avoids the comparison of all 

subsets of genes and provide an alternative way to go through fewer combinations to 

find the optimal solution. However, the genetic algorithm in Li et al. [2001a] can only 

detect genes with large main effects and thus ignores possible gene-gene interactions. 

The MPAS method of Yan et al. [2008] is said to consider joint effects by considering 

random subsets of genes. There are two disadvantages of this approach. First, it 
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depends on the discretization of the expression values of each gene into three clusters, 

which are very arbitrary. And some genes may have two or more than three clusters. 

Second, for the prediction part using joint predictors, the MPAS screening process is 

run a second time on the p selected genes only. This procedure will ignore interac­

tions that include a gene having no or little main effects. There are two drawbacks 

to both MPAS and sMPAS. First, we need a huge B to start with, especially when 

the number of genes is large. Second, in the backward eliminating process, if a gene 

gets deleted, it cannot be recovered again. 

To see if the genetic algorithm is comparable with other existing methods, I applied 

the GA version in Li et al. [2001a] to the breast cancer data mentioned above. Its 

misclassification rate is added to Table 3.1 (See Table 3.2). From the table, we can 

see that the genetic algorithm outperforms the four existing popular methods, which 

only evaluate the genes marginally and ignore possible information contained in gene 

interactions, but does worse than the methods proposed in Van et al. [2008], which are 

said to consider joint effects. Therefore, we believe that models which consider joint 

effects (or interactions) can significantly improve the power of the model to select 

informative gene (or interacting gene pairs) and thus help the classification. 

3.4 Proposed GA Method 

As discussed earlier, most current approaches use regression to detect interactions. 

This kind of interaction is in the statistical sense, in which interaction means deviation 

from additivity, thus is very limited. Also, when the number of genes is large, there 

are a huge number of cross terms, which will cause some problems. Li et al. [2001a] 

cannot detect interactions. sMPAS in Van et al. [2008] requires a huge number of 

random sets, especially when the number of genes is large (e.g., thousands), which 

is usually the case. And once the genes in each of the B subsets are chosen, there 
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Gene Selection Classifier Misclassification (Top 50 genes) 

sMPAS sMPAS 0.295 

MPAS MPAS 0.308 

MPAS Marginal 0.346 

GA knn 0.372 

Corr Corr 0.385 

Golub Golub 0.385 

P-value of t-test DLDA 0.41 

SAM DLDA 0.423 

Table 3.2: Misclassification including GA on breast cancer data. 

cannot be new genes introduced. However, in a GA, through mutation, new genes 

can replace useless genes, and thus make the algorithm converge faster. 

In this section, we propose a new method of detecting gene-gene interactions use­

ful for classification using a genetic algorithm. The genetic algorithm has a number 

of advantages. It can efficiently scan a vast solution set, so it's more likely to con­

verge toward a global optimum instead of local optimum. More probable solutions 

are sampled more frequently than less probable ones. Bad solutions do not effect the 

end solution negatively as they are simply discarded. The inductive nature of the GA 

means that it does not have to know any rules of the problem. 

Through simulations studies, we found that main effects tend to mask interaction. 

If some genes have large main effects, and if we don't exclude them, then all the pairs 

we get at the end of the algorithm will have one of them. We propose a two step 

model. In the first step, we directly use the method of Li et al. [2001a] to get the top 

p genes with highest selection frequencies as main effect genes. In the second step, we 

remove these p genes out from the original data, and use the remaining data to get 
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gene-gene interactions. In this way, our algorithm cannot directly detect interaction 

pairs with one gene having a large main effect. However we can look into them by 

examining all pairings that include the gene with large main effect. 

For most algorithms aimed at detecting gene interactions, the frequencies of pairs 

of genes are calculated at the end of the algorithm. For example, in the genetic al­

gorithm proposed by Li et al. [2001a], after we get a large number of nearly optimal 

solutions, we can get the selection frequency of each gene pair, and regard the top p 

gene pairs as interaction pairs. Take Van et al. [2008] as another example, after the 

screening is done for a large number of subsets of genes, we calculate the frequency of 

each gene pair of the remaining genes. In this thesis, instead of looking for gene pairs 

at the end of the algorithm, we propose to directly search for them in the algorithm. 

In our model, each component of a GA-chromosome is a pair of distinct genes, instead 

of a single gene as in Li et al. [2001a]. So now each GA-chromosome consists of d 

distinct pairs of gene pairs. If we have P genes, then we have (~) gene pairs. Each 

pair of genes in a chromosome corresponds to a potential interacting pair. If a pair 

of genes interact and contribute to the class difference, we would expect it to occur 

over and over again. 

In order to use k-nearest-neighbor classifier for the fitness function, we need to define 

a new distance measure based on pairs of genes. For K pairs of genes under study, 

suppose two samples x and y have the expression profiles 

(3.15) 

(3.16) 

where Xij and Yij are the expression values of the genes in the ith pair of sample x and 

Y respectively. Let di be the Euclidean distance between the ith pair of points (XiI, Xi2) 

and (Yil, Yi2). Then define the distance between the two samples as the average of the 
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Euclidean distances between each gene pair: 

K 

d(x,y) = 'LddK (3.17) 
i=l 

Once we have this new distance measure between samples of pairs, we can define the 

fitness function using the k-nearest-neighbor classifier accordingly. We deviate from 

the usage in Li et al. [2001a], where the voting should be unanimous, we propose to 

use a less strict criterion: a sample is classified through majority voting, i.e., if the 

majority of the k nearest neighbors belong to a class, then the sample is classified to 

that class. For k, a too large value would allow less flexibility in detecting subclusters 

and also would increase the computational burden. Too small a value would not be 

large enough to form tight clusters. We use k = 3. 

We propose not to use cross-over in this study because we don't think it helps much 

for the task of finding interacting gene pairs. In our proposed algorithm, each pair 

of genes is considered as da single component in the GA chromosomes. Therefore, 

crossover will not produce new gene pairs and we decide to use mutations for sim­

plicity. 

For the mutation part, we treat the GA-chromosome of d gene pairs as an ordinary 

GA-chromosome consisting of 2d genes. Once a chromosome is chosen for transmis­

sion, we randomly pick genes to mutate. In this way, either one gene or both of the 

two genes in a gene pair have an opportunity to get mutated. 

This method can be easily extended to detection of interactions involving more 

than two genes. For example, if we are interested in finding interacting gene triples, 

we simply use three distinct genes as a component in each GA-chromosome and apply 

the same procedure. 
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In this algorithm, there are two parameters we need to set: d (the number of 

components in a chromosome) and, (the threshold in GA). The algorithm may take 

a few minutes to many hours depending on the size of the data and how difficult the 

classes can be separated. For" we can start with some large value to achieve at least 

80% accuracy; if the algorithm is too slow, we can reduce, and run the program 

again. Generally, we find it works well with a value of, corresponding to 70% to 80% 

accuracy. For d, too small a value would ignore the joint effects of interacting pairs, 

and too large a value would introduce higher level's of noise. In the simulation study 

in the next section, we report on the sensitivity of the results with varying values of 

d. 

3.5 Simulation Study 

In this section, we investigate the performance of the proposed algorithm on simu­

lated data, and compare the results with those from Yan's approach. We simulated 

eight data sets representing eight different scenarios, with each scenario a case-control 

study with sample sizes 50 and 60 for cases and controls respectively. Each subject 

has 500 genes measured with nine of them involved in main effects and interactions. 

Other genes are independent. 

For each of the 8 scenarios, gene 1 and gene 2 have large main effects, and there 

are four pairs of interacting genes: gene 1 with gene 3, gene 5 with gene 10, gene 20 

with gene 40, and gene 50 with gene 60. The other 491 genes independently follow 

the standard normal distribution. The variance of any gene is 1. 

• Scenario 1: For cases (with sample size 50), the mean vector of the expression 

values of the 9 genes is (7,7,3,3,3,3,3,3,3), the correlation vector of the four 

pairs is (.9, .9, .8, .7). For controls (with sample size 60), the mean vector of 

the expression values of the 9 genes is (0,0,3,3,3,3,3,3,3), the correlation 
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vector of the four pairs is (-.9, -.9, -.8, -.7). This setting means that the four 

interacting pairs comprise genes with no main effects. 

• Scenario 2: The setting is the same as Scenario 1 except that the correlation 

between gene 5 and gene 10 for the control group is now the same as that for the 

case group (both .9). So in this scenario, gene 5 and gene 10 do not interact. 

We generate this scenario to make sure the algorithm does not detect genes 

which do not interact. 

• Scenario 3: For cases (with sample size 50), the mean vector of the expression 

values of the 9 genes is (7,7,3,3,3,3,3,3,3), the correlation vector of the four 

pairs is (.9, .9, .8, .7). For controls (with sample size 60), the mean vector of 

the expression values of the 9 genes is (0,0,4,4,4,4,4,4,4), the correlation 

vector of the four pairs is (-.9, -.9, -.8, -.7). This setting means that the four 

interacting pairs comprise genes with small main effects, since the means are 3 

and 4 in cases and controls. 

• Scenario 4: For cases (with sample size 50), the mean vector of the expression 

values of the 9 genes is (7,7,3,3,3,3,3,3,3), the correlation vector of the four 

pairs is (.9, .9, .6, .5). For controls (with sample size 60), the mean vector of the 

expression values of the 9 genes is (0,0,3,3,3,3,3,3,3), the correlation vector 

of the four pairs is (-.9, -.9, -.6, -.5). For this setting, there are still no main 

effects with genes in interacting pairs, but we decrease the correlations to see if 

the algorithm can still detect them. 

• Scenario 5: The setting is the same as Scenario 1 except that the correlation 

between gene 5 and gene 10 for the control group is now .3 instead of -.9. So 

here we design correlations with the same sign, but smaller correlations, instead 

of having the opposite signs. 

• Scenario 6: The setting is the same as Scenario 5, except that the mean vectors 
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for gene 5 and gene 10 are now (3,3) for cases and (4,4) for controls, which 

means we add small main effects to gene 5 and gene 10 . 

• Scenario 7: The setting is the same as Scenario 5, except that the mean vectors 

for gene 5 and gene 10 are now (3,3) for cases and (3.5,3.5) for controls . 

• Scenario 8: The setting is the same as Scenario 5, except that the mean vectors 

for gene 5 and gene 10 are now (3,3) for cases and (4.5,4.5) for controls. 

In all cases, we first use the GA algorithm in Li et al. [2001a] to get individual 

genes with large main effects. In each run, I use varying d's ranging from 2 to 20, 

, = .85, and the number of 'best' chromosomes set to be 5000. 

In the second step, we first exclude gene 1 and gene 2 from the gene pool, and 

then use the proposed genetic algorithm to detect interacting gene pairs. For d, the 

number of pairs, I consider d = (1,2,3,4,5,10). For" I use .80 corresponding to 

around 73% accuracy. The number of 'best' chromosomes is set to be 10,000. In all 

cases we examined, we get the ordered lists of all gene pairs, with the top one being 

the pair with the largest selection frequency, the second one being the pair with the 

second largest frequency, etc. Then we report the ranks of the true interacting pairs 

in the lists. 

We also applied the sMPAS method in Yan et al. [2008] to each of the eight scenar­

ios for comparison. Since for this approach, we get two lists due to the two screening 

processes, we report the orders in both lists. 

For both the genetic algorithm we proposed and Yan's approach, I did three inde­

pendent runs for each parameter setup to see if the results are stable. I list the three 

sets of ranks from Yan's method in the tables below. For our algorithm, the ranks 

are very stable, with most of them the same or off by one or two. Therefore, I did 



92 

not include them in the tables. 

Table 3.3 to Table 3.10 give the ranks of the four true interacting pairs with the 

two different algorithms corresponding to the eight scenarios respectively. 'NA' in 

the table means that the pair is selected 0 times. 

Scenario 1 For step 1, main effects detection, gene 1 and gene 2 have overwhelm­

ing selection frequencies. The selection frequencies are shown in Figure 3.6. We can 

see that genes 1 and 2 are selected about half of the time (2500 out of 5000), while 

other genes are with frequencies less than 100. Thus, in step 2 for interaction detec­

tion, we remove these two genes. For step 2, the ranks of the four true interacting 

pairs from both algorithms are shown in Table 3.3. The second and third columns 

give the ranks from Van's method, with the three numbers separated by comma in 

each column representing the ranks from the three independent runs. Column 4 to 

column 9 give the ranks from our proposed GA with varying d's. Since in our algo­

rithm, we exclude the genes with large main effects, the pair with gene 1 and gene 3 is 

never selected. In Van's method, however, these two genes are not removed, but this 

pair is not detected either. This is because gene 1 itself can correctly classify all the 

samples, so any other gene would not help to achieve better accuracy. For the other 

three pairs, we see that with GA, except when d = 1, the results are very good, with 

these three pairs being the top three pairs. With Van's method, the results are also 

good, except that there are some variations across independent runs. For example, 

in Yan2, the pair 50 and 60 has rank 1 in one run, 16 in the second run, and 26 in 

the third run. If the rank is 26, then this pair will not be selected. 

Scenario 2 For step 1, again, gene 1 and gene 2 have large selection frequencies. 

See Figure 3.7. We remove these two genes for step 2. In the second step of inter­

action detection, the ranks are shown in Table 3.4. Here, the two pairs 1 and 3, 5 
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Figure 3.6: Selection frequencies of each gene for scenario 1 

and 10 cannot be detected by either algorithm. And the two algorithms do about the 

same on the other two pairs. 

Scenario 3 For step 1, the results depend on d. With a smaller d, for example, 

when d = 2, or 3, or 4, the seven genes 5, 10, 20,40, 50, 60 are detected, as well as gene 

1 and gene 2. Although the selection frequencies of the seven are much lower than 

those of gene 1 and gene 2, they do pop out. However , when d is larger , for example 

when d 2:: 10, only gene 1 and gene 2 are detected, these seven genes cannot be de­

tected. See Figure 3.7 for the frequencies. The reason is following: in the algorithm, 

once a chromosome achieves the accuracy threshold, r , the current search is over and 
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Table 3 3· ranks of true interacting pairs for Scenario 1 .. 
true pair YAN1 YAN2 GA GA GA GA GA GA 

(d=1) (d=2) (d=3) (d=4) (d=5) (d=lO 

g5 & glO 2,3,1 26,1,1 11 2 1 1 1 1 

g20 & g40 1,7,5 2,2,3 12 3 3 3 3 3 

g50 & g60 3,8,2 1,16,26 8 1 2 2 2 2 

g1 & g3 NA NA NA NA NA NA NA NA 

Table 34· ranks of true interacting pairs for Scenario 2 

true pair YAN1 YAN2 GA GA GA GA GA GA 

(d=1) (d=2) (d=3) (d=4) (d=5) (d=lO 

g5 & glO > 110000 > 100000 NA NA NA NA NA NA 

g20 & g40 1,4,1 11,39,7 6 1 1 1 1 1 

g50 & g60 2,1,4 5,37,1 NA 10 8 23 20 42 

g1 & g3 NA NA NA NA NA NA NA NA 

this chromosome is a best chromosome. When we use a larger d, we include more 

genes into the chromosomes, so it's more likely that gene 1 or gene 2 is selected. And 

once either of them is selected, the search is over. When we use a small d, it's less 

likely that gene 1 or gene 2 is included, so the search continues until a chromosome 

achieves r. Sometimes when some of the last seven genes are included, a chromosome 

may achieve r. When d equals 2, the number of best chromosomes which do not have 

1 or 2 is 940, and when d equals 10, this number is only 70. In the second step of 

interaction detection, the ranks are shown in Table 3.5. In this scenario, again, the 

pair of 1 and 3 is not detected by either algorithm. For the other three pairs, GA 

does better than Yan's approach. Again, with GA, except when d = 1, the three true 

interacting pairs are the top three, except for an rank of 4 for the pair 20 and 40 

when d = 2, which is still very good. With Yan's approach, the results are also good, 

except for some variations with independent runs. For example, in Yan2, the pair 50 
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Figure 3.7: Selection frequencies of each gene for scenario 2 

and 60 has rank 23 in one run, 11 in a second run, and 1 in the third run. 
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500 

Scenario 4 For step 1, the frequencies are about the same as in scenario 1: gene 1 

and gene 2 have large selection frequencies , and the other 498 genes have frequencies 

less than 100. See Figure 3.8. In the second step of interaction detection after we 

remove gene 1 and gene 2, the ranks of the four true interacting pairs are shown 

in Table 3.6. Now, the two pairs 1 and 3, 50 and 60 cannot be detected by either 

algorithm (correlation between 50 and 60 is low). For the pair 5 and 10, the two 

algorithms perform about the same. For the pair 20 and 40, GA does better. Here 

again, we see huge variation. In YAN1 , the pair 20 and 40 has ranks 2, 2, and 137 

in t he three runs respectively. In YAN2 , this pair has ranks 8, 145, 211 in the t hree 
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Figure 3.8: Selection frequencies of each gene for scenario 3 

runs, respectively. 

Scenario 5 For step 1, again, gene 1 and gene 2 have large selection frequencies. 

See Figure 3.10. In the second step of interaction detection, the ranks are shown 

in Table 3.7. Now, the two pairs 1 and 3, 5 and 10 cannot be detected by either 

algorithm (the two correlations have the same sign). For the other two pairs, GA 

does much better. Notice the huge variation again in Yan's method. In YAN2, the 

pair 50 and 60 has ranks 4683, 69 , 5 in the three runs respectively. 

Scenario 6 For stepl, as in scenario 2, the detection of 5 and 10 depends on 
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Table 3.5: ranks of true interacting pairs for Scenario 3 

true pair YANI YAN2 GA GA GA GA GA GA 

(d=l) (d=2) (d=3) (d=4) (d=5) (d=10 

g5 & g10 10,2,6 5,4,22 3 1 1 1 1 1 

g20 & g40 5,8,4 1,7,12 15 4 3 2 2 2 

g50 & g60 1,4,5 23,11,1 1 2 2 3 3 3 

gl & g3 NA NA NA NA NA NA NA NA 

Table 3.6: ranks of true interacting pairs for Scenario 4 

true pair YANI YAN2 GA GA GA GA GA GA 

(d=l) (d=2) (d=3) (d=4) (d=5) (d=lO 

g5 & g10 1,1,1 1,3,2 5 1 1 1 1 1 

g20 & g40 137,2,2 211,145,8 NA 8 3 5 5 4 

g50 & g60 > 185 > 739 NA NA NA NA NA NA 

gl & g3 NA NA NA NA NA NA NA NA 

Table 3.7: ranks of true interacting pairs for Scenario 5 

true pair YANI YAN2 GA GA GA GA GA GA 

(d=l) (d=2) (d=3) (d=4) (d=5) (d=10 

g5 & g10 2430,327,463 rv 123747 NA NA NA NA NA NA 

g20 & g40 22,86,2 4,19,378 7 1 1 1 1 1 

g50 & g60 1,2,17 4683,69,5 NA 4 2 2 2 3 

gl & g3 NA NA NA NA NA NA NA NA 
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Figure 3.9: Selection frequencies of each gene for scenario4 

d. With a smaller d, we do detect them, and with a large d, we do not. See Fig­

ure 3.11. Again, we remove gene 1 and gene 2. In the second step of interaction 

detection, the ranks are shown in Table 3.8. In this scenario, for pairs 5 and 10, 20 

and 40, GA does better. And for the pair 50 and 60, Van's method does better. No­

tice that the pair 5 and 10 has very small rank in YAN1, and very large rank in YAN2. 

Scenario 7 For step 1, again, gene 1 and gene 2 have large selection frequencies. 

See Figure 3.12. In the second step of interaction detection, the ranks are shown in 

Table 3.9. Now, the two pairs 5 and 10 cannot be detected by Van's method, but can 

be detected by GA when d = 2 or 4. For the other two pairs, GA does better. 
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Figure 3.10: Selection frequencies of each gene for scenario 5 

Scenario 8 For step 1, the detection of 5 and 10 depend on d. See Figure 3.13. 

In the second step of interaction detection, the ranks are shown in Table 3.10. In 

this scenario, GA does better on the pair 5 and 10. Yan's method does better on the 

other two pairs. Because all the pairs detected by GA have either 5 or 10. 

From the simulations studies, we can see that for both steps (step 1 of main effects 

detection, and step 2 of interaction detection), a small d (d = 2,3,4) generally would 

be good. However, d = 1 is not good because it ignores joint effects of the interacting 

pairs. When they are together in a GA-chromosome, the ability to classify is stronger. 

In most cases, GA does better than Yan's method. There are two disadvantages of 

Yan's method. First, the results are not stable across varying d's. Second, the same 
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Table 3.8: ranks of true interacting pairs for Scenario 6 

true pair YANI YAN2 GA GA GA GA GA GA 

(d=l) (d=2) (d=3) (d=4) (d=5) (d=lO 

g5 & g10 1,4,3 > 11758 1 1 1 1 1 1 

g20 & g40 2,2,6 3,45,2 112 16 7 5 38 336 

g50 & g60 40,1,13 1,1,6 NA 163 303 202 608 302 

gl & g3 NA NA NA NA NA NA NA NA 

Table 3.9: ranks of true interacting pairs for Scenario 7 

true pair YANI YAN2 GA GA GA GA GA GA 

(d=l) (d=2) (d=3) (d=4) (d=5) (d=10 

g5 & g10 > 581 > 100000 NA 30 73 48 142 91 

g20 & g40 1,1,11 1,2,2 19 2 1 1 1 1 

g50 & g60 2,2,8 3,1,16 NA 10 5 3 3 31 

gl & g3 NA NA NA NA NA NA NA NA 

Table 3.10: ranks of true interacting pairs for Scenario 8 

true pair YANI YAN2 GA GA GA GA GA GA 

(d=l) (d=2) (d=3) (d=4) (d=5) (d=lO 

g5 & g10 319,87,226 > 8292 22 9 55 1 1 1 

g20 & g40 2,12,1 1,35,2 212 552 984 852 1371 1633 

g50 & g60 1,2,5 6,52,1 350 414 293 435 569 461 

gl & g3 NA NA NA NA NA NA NA NA 
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Figure 3.11: Selection frequencies of each gene for scenario 6 

pair can have quite different ranks in Yan1 and Yan2, which is hard to interpret (like 

small false positive but high false negative , and vice-versa). 
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Figure 3.12: Selection frequencies of each gene for scenario 7 
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Figure 3.13: Selection frequencies of each gene for scenario 8 
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The above results are all based on one sample per scenario only. To see how the 

algorithm works in general, we did 10 replicates for each scenario. The ranks, as 

well as means and medians across replicates, are summarized in the Tables 3.11-3.15. 

Since for Yan's method, the results are highly variable across technical replicates, the 

sample variation will be worse and thus we decided not to do it. 

Table 3.11 shows the ranks of the three pairs for scenario 1. For pairs 5&10 and 

20&40, the ranks are exclusively 1, 2, or 3. For pair 50&60, most ranks are below 

5, with the largest rank of 17. The median ranks are 1, 2, and 3 for the three pairs, 

(5,10), (20,40), (50,60), respectively. 

Table 3.12 shows the ranks of the three pairs for scenario 2. In this case, the ranks 

of pair 5&10 are consistently very large, while the ranks of the other pairs are mostly 

1, 2, or 3 for the three pairs, (5,10), (20,40), (50,60), respectively. 

Table 3.13 shows the ranks of the three pairs for scenario 3. For all three pairs, 

the ranks are mostly below 5. The median ranks are 2, 3, and 2 for the three pairs, 

(5,10), (20,40), (50,60), respectively. 

Table 3.14 shows the ranks of the three pairs for scenario 4. The ranks of the pair 

5&10 are consistently 1. The ranks of the other two pairs are high (:::; 10) in some 

replicates, and low (~ 100) in other replicates. 

Table 3.15 shows the ranks of the three pairs for scenario 5. In this scenario, the 

pair 5&10 is not detected in any replicate. For the other two pairs, the ranks are 

mostly 1 or 2. And the median ranks are 1 and 2. 
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Table 3.11: Ranks of true interacting pairs for 10 replicates for Scenario 1 under the 

proposed GA algorithm 

replicates 5&10 20&40 50&60 

1 1 3 2 

2 1 2 4 

3 1 3 7 

4 1 3 2 

5 2 1 17 

6 1 2 3 

7 1 2 3 

8 1 2 3 

9 1 2 3 

10 1 2 4 

Mean 1.1 2.2 4.8 

Median 1 2 3 
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Table 3.12: Ranks of true interacting pairs for 10 replicates for Scenario 2 under the 

proposed GA algorithm 

replicates 5&10 20&40 50&60 

1 9722 1 8 

2 50883 2 1 

3 50202 2 1 

4 9609 2 3 

5 9445 1 3 

6 50351 1 2 

7 50622 1 3 

8 50549 1 2 

9 51028 2 1 

10 51102 2 1 

mean 38351.3 1.5 2.5 

median 50450 1.5 2 
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Table 3.13: Ranks of true interacting pairs for 10 replicates for Scenario 3 under the 

proposed GA algorithm 

replicates 5&10 20&40 50&60 

1 1 3 2 

2 3 4 5 

3 2 1 3 

4 2 3 1 

5 1 3 2 

6 3 1 2 

7 1 2 7 

8 2 9 1 

9 2 3 1 

10 2 1 4 

mean 1.9 3 2.8 

median 2 3 2 
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Table 3.14: ranks of true interacting pairs for 10 replicates for Scenario 4 under the 

proposed GA algorithm 

replicates 5&10 20&40 50&60 

1 1 3 24271 

2 1 13 2435 

3 1 17 4 

4 1 5 40276 

5 1 159 183 

6 1 2 165 

7 1 298 47 

8 1 3 1162 

9 1 6 12 

10 1 1531 127 

mean 1 203.7 6868.2 

median 1 9.5 174 
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Table 3.15: ranks of true interacting pairs for 10 replicates for Scenario 5 under the 

proposed GA algorithm 

replicates 5&10 20&40 50&60 

1 10100 1 2 

2 340 1 2 

3 2948 1 2 

4 50696 1 2 

5 628 1 2 

6 9296 2 1 

7 50445 1 2 

8 1164 1 25 

9 2942 1 3 

10 3034 2 1 

mean 13159.3 1.2 4.2 

median 2991 1 2 
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3.6 Real data application 

We also applied the algorithm to the breast cancer data studied by van't Veer et al. 

[2002]. In this dataset, expression values of 24881 genes were measured for 44 good 

prognosis breast cancer samples and 34 poor prognosis breast cancer samples. We 

use the 4918 genes obtained by Tibshirani et al. [2002]. Each gene is standardized 

by its mean and standard deviation, so that a gene has mean 0 and variance 1 across 

individuals. 

First, we directly applied the genetic algorithm in Li et al. [2001a] to select genes 

with main effects. We used chromosome length d = 3, threshold 'Y = 60, and number 

of best chromosomes 15000. The selection frequencies are shown in Figure 3.14. 
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Figure 3.14: Selection frequencies of each gene for breast cancer data 
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Second, we removed the top 100 genes with largest selection frequencies, and ran 

the proposed method with 'Y = 61, d = 3, and number of best chromosomes 150000. 

Figure 3.15 to Figure 3.22 show eight pairs of genes which appear in the top part of 

the ordered list. In each of the eight plots, red and green dots represent samples in 

the two classes. Red and green lines are the regression lines of the two sets of samples. 

Red and green curves are the lowess curves with window size .3. X-axis and y-axis 

names are gene names. Table 3.16 lists the pearson and spearman correlations for 

the two groups in each of the eight selected pairs of genes. 

For pair 1, we can see in Figure 3.15 that the expression profiles show the cross 

pattern discussed earlier. The Pearson correlations for the two groups are -.347 and 

.435 respectively. The Spearman correlations are -.279 and .416 respectively. The 

two groups have correlations with opposite signs. 

For pair 2, from Figure 3.16, except for some outliers, the red class has a very tight 

distribution centered around (-.5, -1). The green class, however, is more spread out 

with a negative correlation. The Pearson correlations for the two groups are -.549 

and .268 respectively. The Spearman correlations are -.618 and .076 respectively. 

The two groups have correlations with opposite signs. 

For pair 3 shown in Figure 3.17, we can see that the two classes have very different 

distributions with different means and correlations. The Pearson correlations for the 

two groups are -.382 and .231 respectively. The Spearman correlations are -.464 

and .031 respectively. The two groups have correlations with opposite signs. 

For pair 4 in Figure 3.18, the green class has a clear pattern with positive correla­

tion, while the red class has a tighter distribution. The Pearson correlations for the 

two groups are .626 and 0.076 respectively. The Spearman correlations are .626 and 
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-.23 respectively. The two groups have correlations with opposite signs. 

Pair 5 shows cross pattern as seen in Figure 3.19. The Pearson correlations for 

the two groups are .471 and -.19 respectively. The Spearman correlations are .564 

and -.152 respectively. The two groups have correlations with opposite signs. 

Pair 6 in Figure 3.20 shows some cross pattern. The Pearson correlations for the 

two groups are .254 and -.717 respectively. The Spearman correlations are .22 and 

-.614 respectively. The two groups have correlations with opposite signs. 

Pair 7 also kind of shows the cross pattern. The Pearson correlations for the 

two groups are .652 and -.354 respectively. The Spearman correlations are .544 and 

-.304 respectively. The two groups have correlations with opposite signs. 

In Figure 3.22, pair 8 shows similar pattern as pair 2. The Pearson correlations 

for the two groups are -.429 and .271 respectively. The Spearman correlations are 

-.459 and .169 respectively. The two groups have correlations with opposite signs. 

Table 3.16: Correlations of the two groups 

pair1 pair2 pair3 pair4 pair5 pair6 pair7 pair8 

Pearson gp1 -0.347 -0.549 -0.382 0.626 0.471 0.254 0.652 -0.429 

Spearman gp1 -0.279 -0.618 -0.464 0.626 0.564 0.220 0.544 -0.459 

Pearson gp2 0.435 0.268 0.231 -0.076 -0.190 -0.717 -0.354 0.271 

Spearman gp2 0.416 0.076 0.031 -0.230 -0.152 -0.614 -0.304 0.169 

One thing to mention is that in scenario 4, where the correlations between gene 

pair 50 and 60 are .5 and -.5 for the two classes, this pair cannot be detected in 

most of the replicates. However, in real data application, we detected much weaker 
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Figure 3.15: Joint pattern of gene pair 1 identified by GA 

interactions, for example, pair 1 (with pearson correlations - .347 and .435) and pair 

8 (with pearson correlations -.429 and .271). This suggests that whenever a pair 

has the strongest interaction, it will have high rank, no matter how strong it is. In 

scenario 4, genes 5 and 10 have the strongest interaction, so its rank is mostly 1. The 

pair 50 and 60 has much weaker interaction, so sometimes we cannot detect it. In 

scenario 2, gene 5 and gene 10 do not interact , so now the interaction between 20 and 

40 is the strongest , so its rank is mostly 1. 
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Figure 3.16: Joint pattern of gene pair 2 identified by GA 
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Figure 3.17: Joint pattern of gene pair 3 identified by GA 
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Figure 3.18: Joint pattern of gene pair 4 identified by GA 
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Figure 3.19: Joint pattern of gene pair 5 identified by GA 
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Figure 3.20: Joint pattern of gene pair 6 identified by GA 
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Figure 3.21: Joint pattern of gene pair 7 identified by GA 
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Figure 3.22: Joint pattern of gene pair 8 identified by GA 
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As a comparison, I also present here eight plots (Figure 3.23 to Figure 3.30) for 

eight pairs of genes with selection frequency of o. The corresponding correlations are 

shown in Table 3.17. From the plots and correlations, we don 't see any pattern in 

the expression profiles and the correlations of the two classes are very similar. 
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Figure 3.23: Joint pattern of gene pair 1 with selection frequency of 0 



w 
z 
~ 
(J) 

123 

-----
--------------------

---------------

o 

o 

o 

o 
o 0 ---------

-----------
00 

o 

-4 -2 o 2 4 

FGB 

Figure 3.24: Joint pattern of gene pair 2 with selection frequency of 0 

Table 3.17: Correlations of the two groups 

pair1 pair2 pair3 pair4 pair5 pair6 pair7 pair9 

pearson gp1 -0.194 -0.360 -0.152 -0.040 0.258 -0.085 0.083 0.113 

spearman gp 1 -0.163 -0.097 -0.034 0.035 0.212 -0.156 -0.013 0.099 

pearson gp2 0.433 0.154 0.035 0.101 -0.092 -0.374 0.146 -0.059 

spearman gp2 0.080 0.030 0.078 0.019 -0.050 -0.187 0.055 -0.073 
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Figure 3_25: Joint pattern of gene pair 3 with selection frequency of 0 
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Figure 3.26: Joint pattern of gene pair 4 with selection frequency of 0 
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Figure 3.27: Joint pattern of gene pair 5 with selection frequency of 0 
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Figure 3.28: Joint pattern of gene pair 6 with selection frequency of 0 
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Figure 3.29: Joint pattern of gene pair 7 with selection frequency of 0 



129 

o 

0 

<:) 

u 
0 
0... « 

"7 0 

0 

0 
0 

~ 

0 

'? 

"f 

-4 -2 0 2 4 

FGB 

Figure 3.30: Joint pattern of gene pair 8 with selection frequency of 0 
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3.7 Conclusion 

A reliable classification of cancer is very important to cancer diagnosis, treatment 

and prevention. A very important issue is to select a set of informative genes, and 

then use these genes to classify the samples. Recent technology of microarrays allows 

the expression levels of thousands of genes to be measured simultaneously. Most 

classification methods using gene expression data use some uni-variate approach to 

select informative genes, like t-test. This approach ignores class information contained 

in gene interactions. Most statistical methods aiming at detecting interactions are 

based on regression, with cross terms representing interactions. This is a parametric 

approach, and since the number of cross terms increases rapidly as the number of 

genes increases, most methods first use some threshold to select a small number of 

genes, and then apply regression on these selected genes. This way, interactions with 

no or mild main effects are ignored. We have proposed a new non-parametric method 

to detect gene-gene interaction for classification using genetic algorithm. We have 

shown with a simulation study that our algorithm can detect interacting gene pairs 

very precisely. Our results do not show sensitivity to different values of chromosome 

lengths (d) as long as d is not too large. By applying our method to real cancer data, 

we have demonstrated that our method can detect interactions in the sense we defined 

earlier. The genes in these pairs do not have main effects, so they would escape the 

detection by uni-variate methods like t-test. This method could be extended in a few 

ways. Instead of removing a certain number of genes with main effects based on the 

selection frequency, some threshold can be calculated probabilistic ally to select genes 

to remove. Similarly, in the second step of detecting interactions, we can use some 

threshold to select pairs of genes. The current method cannot detect interacting gene 

pairs with one gene having large main effects. As a future direction, the method can 

be extended to detect these interactions as well. 
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Appendix A 

Details of the derivations of the 

MCMC algorithm 

The full details of the derivations for the MCMC algorithm are reported here. 

1. Updating k: According to Richardson and Green (1997), a new component 

is accepted with probability min{l, a} where a = pfJ,~j;:~i:~L) 18r:.~) I. In our 

model e = (k, 1-", 0'2, x). We have the following distributions 

Since we add a component to the original vector by an identity transformation 

our Jacobian is equal to 1. We therefore have 

(1 - bk+1hc-:hp(k + 1) IT L~~i W~jN(Yill-"j, 0',/) 

a = bkkrna~_kP(k) i=l L~=l wijN(Yill-"j, aJ) 
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which gives (2.12). Similar derivations hold for (2.13). 

2. Updating x: For each location i, the full conditional of (XiI, ... ,Xik) is 

where ni is the number of neighbors at location i. We therefore use a proposal 

distribution of the type 

The acceptance probability is 

. (1 ~;=lW~jN(YiIILj,O})) 
m~n , k 2 

~j=l wijN(YiIILj, a j ) 

where w' are the weights associated to the proposed x. 

3. Updating h: The full conditional for h is 

c(h)'exp ( -~ t ~(Xij - Xi,j)') 1(0 :s; h :s; h...x)' 

We use a Metropolis-Hastings random walk with proposal a truncated normal 

distribution, h' '" TN(h, a~)I(O ~ h' ~ hmax ). The acceptance probability is 

given by, 

4. Updating IL, a 2 : The full conditional for (ILl, ... ILk) is 

rrk (~i.Z-j Yi aff ) ( ) N . ,- ,- I aji < ILj < bji 
j=l nj nj 

The full conditional for a; is 

0'] ~ 1 nver se - Gamma ( ~nj + <:t.' , ~ i~; (Yi - 1';)' + P.' ) 


