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EFFECTS OF COMMUNICATION EFFICIENCY AND EXIT
CAPACITY ON FUNDAMENTAL DIAGRAMS FOR PEDESTRIAN

MOTION IN AN OBSCURE TUNNEL—A PARTICLE SYSTEM
APPROACH∗

EMILIO N. M. CIRILLO† , MATTEO COLANGELI‡ , AND ADRIAN MUNTEAN§

Abstract. Fundamental diagrams describing the relation between pedestrians’ speed and density
are key points in understanding pedestrian dynamics. Experimental data evidence the onset of
complex behaviors in which the velocity decreases with the density, and different logistic regimes are
identified. This paper addresses the issue of pedestrian transport and of fundamental diagrams for a
scenario involving the motion of pedestrians escaping from an obscure tunnel. We capture the effects
of communication efficiency and exit capacity by means of two thresholds controlling the rate at
which particles (walkers, pedestrians) move on the lattice. Using a particle system model, we show
that in the absence of limitation in communication among pedestrians, we reproduce with good
accuracy the standard fundamental diagrams, whose basic behaviors can be interpreted in terms
of exit capacity limitation. When the effect of limited communication ability is considered, then
interesting nonintuitive phenomena occur. In particular, we shed light on the loss of monotonicity of
the typical speed-density curves, revealing the existence of a pedestrian density optimizing the escape.
We study both the discrete particle dynamics and the corresponding hydrodynamic limit (a porous
medium equation and a transport (continuity) equation). We also point out the dependence of the
effective transport coefficients on the two thresholds—the essence of the microstructure information.

Key words. pedestrian transport in the dark, lattice model, hydrodynamic limits, porous media
equation, continuity equation, fundamental diagrams, evacuation scenario
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1. Introduction. Fundamental diagrams representing the dependence of pedes-
trian speed on their local density are one of the basic methods in studying pedestrian
dynamics. They contain macroscopic information useful in identifying the key ef-
fects affecting the general behavior of pedestrian flows and in testing the validity of
pedestrian models. In [1, 2], e.g., the main properties of fundamental diagrams are
discussed, and experimental tests are performed. In particular it is seen that many
different effects, such as passing maneuvers, space reduction, and internal friction,
have to be taken into account to explain the main features of the diagrams.

In this paper, we use zero range processes (ZRP), originally proposed by Spitzer
[3], to recover the same behaviors of the fundamental diagrams, excepting perhaps
the existence of an upper density above which the pedestrian velocity drops to zero.
Our attention focuses on pedestrians moving in dark corridors, where the lack of
visibility hinders them from finding the exit. This research line follows a path similar
to that in [4, 5, 6, 7], where the authors used a kinetic formulation to investigate

∗Received by the editors July 15, 2015; accepted for publication (in revised form) February 29,
2016; published electronically June 23, 2016.

http://www.siam.org/journals/mms/14-2/M103096.html
†Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via
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Fig. 1. Sketch of pedestrians moving through a cell of the obscure tunnel driven by a two-
threshold biased dynamics. Left: The smaller filled circles represent the individuals located inside a
cell; the bigger circles encompassing the smaller black ones represent the interaction range of each
individual. For an efficient communication network to be settled, a certain overlap among the bigger
circles is needed, which is hence guaranteed by requiring that the number of individuals in the cell
exceed the activation threshold A. Right: As soon as the front row of the cell is full, the number
of individuals occupying that front row, corresponding to the saturation threshold S, fixes an upper
bound to the escape rate from the cell.

the role of the leaders in controlling crowd evacuation when visibility is reduced, and
extends our previous works on this topic; compare, e.g., [8, 9, 10] (group formation
and cooperation in the dark).

For the current framework, we assume that more particles can occupy the same
site of a one-dimensional array of discrete positions (modeling a long dark corridor)
and that no interaction among the individuals takes place. The dynamics of the
system is determined only by the escape rate, namely, the frequency at which a site
releases individuals. The key idea in our model is to assume that the escape rate is
proportional to the number of individuals at the site up to a saturation threshold,
above which such a rate stays constant. The second ingredient we use is that escape
is kept low until a certain activation threshold is reached.

The rationale behind our modeling ideas fits the following Gedanken experiment.
Imagine a flow of pedestrians on a lane, and consider a partition of this lane into
squared (or rectangular) cells; cf. Figure 1. The rate at which a walker leaves one cell
is proportional to the number of pedestrian occupying the cell up to a limit which is
reached when the “forward row” of the cell is full; cf. the right panel of Figure 1. In this
case, indeed, the pedestrians at the back are prevented from exiting the cell due to the
presence of an obstacle. Thus, the escape rate from a cell increases proportionally to
the number of pedestrians within the cell until this number reaches the total number
of walkers that can be fit into the first row. On the other hand, the escape rate
from a cell increases proportionally to the number of individuals, provided that an
efficient communication network (allowing the individuals to exchange information
about the location of the exit) can be established inside the cell. Now, assuming that
the interaction range (cf. the left panel of Figure 1) between any pair of individuals is
finite and much less than the size of the cell, the onset of an efficient communication
network requires the number of individuals to exceed a minimal value which allows a
proper interaction inside the cell.

These effects are captured by using ZRP with, respectively, a saturation and an
activation threshold [11]. In essence, our modeling is rather simple: no interaction
between pedestrians in different cells is taken into account. This choice is deliberate—
we want to keep the level of modeling as low as possible to show that, even in such
cases, it is possible to recover the qualitative behavior of the fundamental diagrams.

In the particular ZRP introduced in this paper, the two thresholds can be tuned
so as to switch from an independent motion of the particles to a motion that can be
mapped to a simple exclusion process. When considering the hydrodynamic limits of
our model ((i) reversible dynamics, (ii) dynamics with a drift), the resulting macro-
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908 E. N. M. CIRILLO, M. COLANGELI, AND A. MUNTEAN

scopic dynamics exhibits a nontrivial dependence on the thresholds, which is, to our
knowledge, yet unexplored.

The motivation for this study stems from our interest in the motion of pedestrian
flows in dark or in heavily obscured corridors, where the internal dynamics of pedestri-
ans can change depending on their willingness to cooperate (here: to adhere to large
groups) or to be selfish (here: to perform independent random walks); see [8, 9, 10]
for more details in this direction.

To be able to understand the behavioral change leading individuals from coop-
eration to selfishness and eventually back again, we thus opted for the introduction
of two thresholds affecting the microscopic dynamics of the particle system. From
the evacuation point of view, the central question is: Which values of the thresholds
yield higher evacuation fluxes (currents), or, in other words, allow for lower (average)
residence times? It is worth noting that this particular traffic scenario is intimately
related to the dynamics of molecular motors seen from the perspective of processivity
(cf., e.g., [12]). For transporting at molecular scales, one distinguishes between pro-
cessive and nonprocessive motors. The processive ones perform best when working
in small groups (porters), while the nonprocessive motors work best in large groups
(rowers). Their joint collective dynamics has been investigated in [13]. If the motors
suddenly change their own processivity from porters to rowers (for instance, due to
particular environmental conditions, or due to a command control from a hierarchi-
cal structure), then our approach based on ZRP with threshold does a good job of
approximating conceptually the changing-in-processivity dynamics.

Threshold effects are not new in microscopic dynamics. They are usually in-
troduced to model dynamics undergoing sudden changes when some dynamical ob-
servable exceeds an a priori prescribed value. A natural application of this point of
view appears in the context of infection propagation models, where an individual gets
infected if the number of infected neighbors is large enough. A very well-studied sit-
uation is the bootstrap percolation problem [14] in which, for instance, on a square
lattice, a site becomes infected as soon as the number of its neighboring infected
sites is larger than a fixed threshold value. In this context, the most interesting and
surprising situation is the one in which the threshold is precisely half of the total
neighboring sites. In such a case, new scaling laws have been discovered in the infinite
volume limit [15, 16].

In the next sections we will focus on the hydrodynamic limit of our ZRP built on
thresholds, subjected to periodic boundary conditions, and equipped with either sym-
metric or asymmetric jump probabilities. The asymmetry in the jump probabilities
breaks the condition of detailed balance and hence gives rise to a net particle current
across the system. We will explicitly highlight the effect of the thresholds (microscopic
information) on the macroscopic transport equations and discuss, in particular, the
dependence of the structure of the effective diffusion coefficient and of the effective
current on both the thresholds and the local pedestrian density. Our analysis allows
us to recover some known results available for the independent particle model and for
the simple exclusion process, and also sets the stage for a deeper understanding of
the hydrodynamic limit of ZRP with a fixed number of thresholds.

2. The model. We consider a positive integer L and define a ZRP [17, 18] on
the finite torus (periodic boundary conditions) Λ := {1, . . . , L} ⊂ Z. We fix N ∈ Z+

and consider the finite state space ΩL,N :

(1) ΩL,N =

{
ω ∈ {0, . . . , N}Λ :

L∑
x=1

ωx = N

}
,
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where the integer ωx denotes the number of particles at the site x ∈ Λ in the state ω.
We pick A,S ∈ {1, . . . , N} with S ≥ A, the activation and saturation thresholds,

respectively. Next we define the intensity function:

(2) g(k) =


0 if k = 0,
1 if 1 ≤ k ≤ A,
k −A+ 1 if A < k ≤ S,
S −A+ 1 if k > S

for each k ∈ Z+. The intensity function, and all the quantities that we shall define
below, do depend on the two thresholds A and S, but we omit them from the notation
for simplicity.

The ZRP considered in this paper is the Markov process (ωt)t≥0 ∈ ΩL,N such that
each site x ∈ Λ is updated with intensity g(ωx(t)) and, once such a site x is chosen,
a particle jumps with probability p ∈ [0, 1] to the neighboring right site x+ 1 or with
probability 1 − p to the neighboring left site x − 1. (Recall that periodic boundary
conditions are imposed.) For more detail we refer the reader to [18, 19]. In our model,
the intensity function is related to the (time-dependent, in general) hop rates

r(x,x−1)(ωx(t)) = (1− p)g(ωx(t)) and r(x,x+1)(ωx(t)) = pg(ωx(t))

and coincides, hence, with the escape rate r(x,x−1)(ωx(t))+ r(x,x+1)(ωx(t)) = g(ωx(t))
at which a particle leaves the site x.

Thus, the effect of the thresholds is to control the escape rate from the site. More
precisely, the activation threshold A keeps the escape rate low and fixed to unity
for all sites for which ωx(t) ≤ A, regardless of the number of particles on x. The
saturation threshold S, instead, holds the escape rate fixed to a maximum value for
all sites for which ωx(t) ≥ S, regardless, again, of the number of particles on x. In
the intermediate case, A < ωx(t) < S, the escape rate increases proportionally to the
actual number of particles on x; see (2).

We remark that in the limiting case A = 1 and S = N the intensity function
becomes g(k) = k for k > 0; hence the well-known independent particle model is
recovered. A different limiting situation is the one in which the intensity function is
set equal to 1 for any k ≥ 1 and equal to zero for k = 0. In this case, the configurations
of the ZRP can be mapped to the simple exclusion model states (see, e.g., [17]), and
we shall thus refer to the latter case as the simple exclusion-like model. Such a model
is found, in our setup, when A = S. We point out that one of the interesting features
of our model is the fact that it is able to tune between two very different dynamics,
namely, the independent particle and simple exclusion-like behaviors [17]: this tuning
can be realized in two ways, i.e., by keeping S = N and varying A, or by keeping
A = 1 and varying S.

We are interested in studying the hydrodynamic limit of this model, i.e., as N →
∞ and L → ∞. In particular, we shall exploit the fact that the intensity function
is not decreasing to use well-established theories and derive in our setup the limiting
(effective) diffusion coefficient as well as the limiting (effective) current in the presence
of the two thresholds. As we shall discuss later, the behavior of such macroscopic
quantities with the local density will exhibit very peculiar features inherited from the
microscopic properties of the dynamics. In particular, it will be possible to give a
nice interpretation of the diagrams in terms of pedestrian motion, and the related
fundamental diagrams will be explained in the framework of our very simple model.
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910 E. N. M. CIRILLO, M. COLANGELI, AND A. MUNTEAN

We let the Gibbs measure with fugacity z ∈ R of the ZRP introduced above be
the product measure on NΛ,

(3)

L∏
x=1

νz(ηx) for any η = (η1, . . . , ηL) ∈ NΛ,

with

(4) νz(0) = Cz and νz(k) = Cz
zk

g(1) · · · g(k)
for k ≥ 1,

where Cz is a normalizing factor depending in general on z, A, and S, namely,

(5) Cz =

[
1 +

∞∑
k=1

zk

g(1) · · · g(k)

]−1

.

It is of interest to compute the mean value (against the Gibbs measure) of the
intensity function g. By using (4), we get
(6)

νz[g(ωx)] =

∞∑
k=0

νz(k) g(k) =

∞∑
k=1

νz(k) g(k) = Czz + Czz

∞∑
k=2

zk−1

g(1) · · · g(k − 1)
= z,

where we have used that g(0) = 0 and, in the last step, we recalled (5).
Note that the expression of such an expectation, as a function of the activity,

does not depend on the particular choice of the intensity function. Note also that the
intensity is a site-dependent function, whereas its expected value, with respect to the
Gibbs measure given in (3), is not. This is due to the fact that the Gibbs measure
itself is not site-dependent, which, in turn, stems from the imposed periodic boundary
conditions and from the translationally invariant jump probabilities.

In discussing the hydrodynamic limit, a special role is played by the function

(7) ρ̄(z) =

∞∑
k=0

k νz(k).

It is possible to prove a nice expression for the function ρ̄ independent of the particular
choice of the intensity function. Indeed, recalling (4), equation (7) can be rewritten
as

ρ̄(z) = Cz

∞∑
k=1

k
zk

g(1) · · · g(k)
= z Cz

d

dz

∞∑
k=1

zk

g(1) · · · g(k)
= z Cz

d

dz

1

Cz

∞∑
k=1

νz(k),

which implies

(8) ρ̄(z) = z Cz
d

dz

1

Cz
= − z

Cz

d

dz
Cz = −z d

dz
logCz.

At the same level of generality, it is not difficult to prove that ρ̄(z) is an increasing
function of the fugacity. Indeed, after some straightforward algebra, one can prove
that

(9)
∂

∂z
ρ̄(z) =

∂

∂z
Cz

∞∑
k=1

kzk

g(1) · · · g(k)
=

1

z
[νz(η

2
1)− (νz(η1))2] > 0.
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Fig. 2. (a) Graph of the function ρ̄(z) for A = 1 and for different values of the saturation
threshold, i.e., S = 1, 2, 5,∞. (b) Graph of the function ρ̄(z) for S = ∞ and for different values
of the activation threshold, i.e., A = 1, 2, 5,∞. (c) Graph of the function ρ̄(z) for A = 3 and for
S = 3, 4, 10,∞. (d) Graph of the function ρ̄(z) for S = 10 and for A = 1, 2, 5, 10.

The above result is strictly connected to the fact that (− logCz) is a convex function.
Finally, we observe that ρ̄ is defined for any positive z if A is finite and S = ∞.

On the other hand, it displays a singularity, i.e. it is defined for z small enough, if S
is finite or when A = S (simple exclusion-like model); see Figure 2.

3. Hydrodynamic limit for reversible dynamics. The dynamics with p =
1/2 is reversible with respect to the invariant measure. The evolution of the distribu-
tion of the particles on the space Λ for the ZRP with thresholds A and S introduced
above can be described in the diffusive hydrodynamic limit via the time evolution of
the density function ρ(x, t), with the space variable x varying in the interval [0, 1] and
t ≥ 0.

In the framework of one-dimensional ZRP, hydrodynamic equations are derived
rigorously under the assumption that the intensity function is not decreasing. We refer
to [18, Chapter III] and [19, Chapter 5] for a detailed discussion and the rigorous proof.
The first proof of this result can be found in [20] and is based on the results reported
in [21]. It suffices here to recall the main findings: one can prove that for p = 1/2 the
continuous space density ρ(x, t) is the solution of the partial differential equation

(10)
∂

∂t
ρ = − ∂

∂x
J(%),

where the macroscopic flux J(%) is defined as

(11) J(%) = −1

2
D(ρ)

∂

∂x
ρ
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with the diffusion coefficient D given by

(12) D(ρ) =
∂

∂ρ
νz̄(ρ) [g(ω1)] .

Note that the diffusion coefficient is here computed in terms of the mean of the
intensity function evaluated against the single site Gibbs measure with fugacity cor-
responding to the local value of the density.

Note that, even if it is not coded in the notation, the diffusion coefficient D
depends on the values of the thresholds. One of the main multiscale aspects of our
analysis is, indeed, precisely the link between the two thresholds A and S and the
effective diffusion coefficient D.

We shall first recall the well-known results which hold in the limiting cases cor-
responding to the independent particles and simple exclusion-like dynamics.

Remark 3.1 (independent particle model). For A = 1 and S = ∞, one has
Cz = exp{−z}. Hence, by (8), it holds that ρ̄(z) = z. Thus, recalling (6) and the
definition of z̄ given below (9), one finds νz̄(ρ) [g(ω1)] = νρ [g(ω1)] = ρ. Thus, by using
(12), the diffusion coefficient reads D(ρ) = 1.

Remark 3.2 (simple exclusion-like model). For A = S (either finite or infinite),
one has g(k) = 1 for any k ≥ 1 and g(0) = 0. Hence, Cz = 1 − z, and it holds that
ρ̄(z) = z/(1 − z). Thus, proceeding as above, one finds the law D(ρ) = 1/(1 + ρ)2;
cf. [22].

Hence, in the two limiting cases, one can easily determine the expression of the
diffusion coefficient. In the general case, i.e., for arbitrary values of the thresholds A
and S, we exploit the following strategy. We use, first, (5) and (8) to compute ρ̄(z),
whose explicit expression in terms of special functions is reported in Appendix A.
Then, we compute the diffusion coefficient via (12), where we use (6) to express the
average of the intensity function with respect to the Gibbs measure and invert the
function ρ̄(z) to obtain z̄(ρ). More concisely, we write

(13) D(ρ) =
∂

∂ρ
νz̄(ρ) [g(ω1)] =

∂

∂ρ
z̄(ρ) =

(
∂

∂z
ρ̄(z)

)−1 ∣∣∣
z=z̄(ρ)

.

We remark that the explicit expression of the quantity ∂ρ̄(z)/∂z appearing in (13) is
quite lengthy and will be omitted here. By performing the above computation, we
thus obtain the expression of the diffusion coefficient D(ρ).

Figure 3 shows the behavior of the diffusion coefficient as a function of the local
density and parameterized by the values of the thresholds. In particular, Figure 3(a)
refers to the case A = 1 and for different values of S: the simple exclusion-like model
is recovered for S = 1, while the independent particle model is attained for S = ∞.
Similarly, panel (b) illustrates the case with S =∞ and for different values of A: here
the independent particle model corresponds to A = 1, and the simple exclusion-like
model is found for A = ∞. As shown in both the upper panels of Figure 3, in the
independent particle case the diffusion coefficient is constant with respect to the local
density and is equal to unity.

A noteworthy feature of the diffusion coefficient, clearly visible in Figure 3(b) as
well as in panels (c)–(d), is the loss of monotonicity of the function D(ρ) occurring at
values of ρ exceeding some critical value (depending, in general, on A and S). This
remark can be interpreted as the effect, at the hydrodynamic level, of an activation
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Fig. 3. (a) Behavior of the diffusion coefficient D(ρ) vs. ρ for A = 1 and for different values
of the saturation threshold, i.e., S = 1, 2, 5,∞. (b) Behavior of the diffusion coefficient D(ρ) vs. ρ
for S = ∞ and for different values of the activation threshold, i.e., A = 1, 2, 5,∞. (c) Behavior of
the diffusion coefficient D(ρ) vs. ρ for A = 3 and for S = 3, 4, 10,∞. (d) Behavior of the diffusion
coefficient D(ρ) vs. ρ for S = 10 and for A = 1, 2, 5, 10.

threshold A > 1 and/or S <∞ acting at the more microscopic, dynamical, level: both
conditions locally pull the dynamics away from the independent particle behavior.

Note, for instance, the behavior of D(ρ) displayed in Figure 3(c), referring to the
case A = 3. Considering, in particular, the green curve corresponding to S = 10,
one observes the onset of a double loss of monotonicity of the function D(ρ): for
small values of the density, D stays close to the simple exclusion-like behavior and
decreases with ρ; then, after one first critical value of the density, it starts rising, until
it eventually drops down again when ρ exceeds an upper critical value. This reflects
precisely the existence of a double threshold for the intensity function, described by
(2). More precisely, if the local density is smaller than some critical value (close to
the activation threshold A), the behavior is essentially simple exclusion-like, because
the intensity function is fixed to unity for the typical values of the number of on-site
particles corresponding to such a density. On the other hand, if the local density
exceeds this first critical value, the typical number of on-site particles happens to fall
above the activation threshold. Hence, since in this regime the intensity function is
proportional to the number of on-site particles, the diffusion coefficient starts growing
as a function of the local density. Finally, if the local density exceeds a second critical
value (close to the saturation threshold S), the intensity function attains a constant
value independent of the number of on-site particles, and the diffusion coefficient
behaves, as it again pertains to the simple exclusion-like regime, as a decreasing
function of the local density.

The effect of the two thresholds on the diffusion coefficient is, therefore, clear:
at fixed saturation threshold, the diffusion coefficient decreases when the activation
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Fig. 4. Plot of the solution of (10), ρ(x, t) vs. x, with a given initial condition and with pe-
riodic boundary conditions. Dotted and dashed lines refer to the two limiting cases corresponding,
respectively, to the independent particle (Remark 3.1) and to the simple exclusion-like process (Re-
mark 3.2). Solid lines refer to intermediate cases A = 5 and S = 10 (gray) and A = 2 and S = 10
(black). Different panels, in lexicographic order, report data referring to times t = 0, t = 0.01,
t = 0.02, and t = 0.1.

threshold increases. On the other hand, at fixed activation threshold, the diffusion
coefficient increases with increasing saturation threshold. Moreover, in the presence
of reversible dynamics, the dependence of the diffusion coefficient on the density may
become nonmonotonic.

The resulting behavior of the diffusion coefficient can be better understood by
also recalling that the number N (t) of particles departing from the site x ∈ [0, 1] is
described by a nonhomogeneous Poisson process with time-dependent rate parameter
g(ωx(t)) (the escape rate). Thus, given a small δ > 0, we have

Pt[N (δ) = 1] ' g(ωx(t))δ,

where Pt[N (δ) = 1] is the probability of exactly one change in ωx(t) in the time
interval (t, t+δ). Then, for values of the threshold A and S different, respectively, from
1 and ∞ (i.e., the independent particle model), g(ωx) takes a lower value compared
to that derived from the independent particle model, with a minimum (corresponding
to g(ωx) = 1) attained when A = S (i.e., the simple exclusion-like model).

The effect of the threshold on the dynamics, in the hydrodynamic limit, is also
visible in Figure 4, which shows the profiles, at different times, of the function ρ(x, t)
solving (10)–(11) for four different choices of the thresholds. The numerical solutions
of the partial differential equation (10) exhibit the fastest decay in the independent
particle case and the slowest one in the simple exclusion-like case, whereas in the two
other plotted cases the decay rate is intermediate. This is in perfect agreement with
the data plotted for the diffusion coefficient in Figure 3: indeed, such a coefficient
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Fig. 5. The same as in Figure 4. Different panels, in lexicographic order, report data corre-
sponding to times t = 0.0001, t = 0.0002, t = 0.0005, t = 0.0008.

is maximal in the independent particle case and minimal in the simple exclusion-like
situation.

Similar data, at different times, have been plotted in Figure 5. We note that the
curves corresponding to the two cases A = 5 and S = 10 (gray) and A = 2 and S = 10
(black) swap as time goes by. This behavior is, again, in perfect agreement with that
shown by the diffusion coefficient in the bottom right panel of Figure 3.

4. Hydrodynamic limit in the presence of a drift. In section 3 we discussed
the effect of the thresholds on the diffusion equation describing the macroscopic be-
havior of the system in the hydrodynamic limit. In this section we investigate how
the dynamics depends on the thresholds under the effect of an external field breaking
the condition of detailed balance and inducing a nonvanishing particle current across
the system. That is, we tackle here the analysis of the hydrodynamic limit of the
ZRP with p 6= 1/2 and in the presence of the two thresholds.

The evolution of the distribution of the particles for a ZRP subjected to the
two aforementioned thresholds and to a nonvanishing drift can be described, in the
hydrodynamic limit, in terms of the density function ρ(x, t) with the space variable
x varying in the interval [0, 1] and t ≥ 0.

It can be proven that the equation governing the evolution of the macroscopic
local density % is (10) with the macroscopic current J(%) defined as

(14) J(%) = (2p− 1)νz̄(ρ) [g(ω1)] ,

where we recall that the intensity function is defined in (2) and the Gibbs measure is
defined in (4); see [23, equation (1.3)].

In this out-of-equilibrium regime, the relevant quantity that we look at is the
velocity, defined as v(ρ) = J(ρ)/ρ. In particular, it is worth clarifying here how the
constitutive relation v vs. ρ is affected by the activation and saturation thresholds.
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Fig. 6. (a) Behavior of the velocity v/(2p − 1) vs. ρ for A = 1 and for different values of the
saturation threshold, i.e., S = 1, 2, 5,∞. (b) Behavior of the velocity v/(2p − 1) vs. ρ for S = ∞
and for different values of the activation threshold, i.e., A = 1, 2, 5,∞. (c) Behavior of the velocity
v/(2p− 1) vs. ρ for A = 3 and for S = 3, 4, 10,∞. (d) Behavior of the velocity v/(2p− 1) vs. ρ for
S = 10 and for A = 1, 2, 5, 10.

This point may also lead to a more detailed understanding of the so-called fundamental
diagrams, typically invoked in the context of pedestrian flow investigations.

We can now use our results from section 2 to compute the current. First, note
that, for any value of the threshold, by (6) it holds that

(15) J(ρ) = (2p− 1) z̄(ρ).

It is not possible to write such an expression explicitly except for the independent
particle and simple exclusion-like regimes, in which cases it is straightforward to
derive the well-known results

(16) v(ρ) = 2p− 1 and v(ρ) =
2p− 1

1 + ρ
,

respectively, where we used the results in Remarks 3.1 and 3.2.
Figure 6 shows the behavior of the velocity v as a function of the local density for

different values of A and S. An inspection of Figure 6(a) confirms that the velocity
divided by the bias (2p− 1) is equal to unity for the independent particle model and
behaves as (1 + ρ)−1 in the simple exclusion-like case.

Similarly to the case of the diffusion coefficient, we also notice the presence of a
nonmonotonic behavior of v as a function of ρ, occurring if A > 1 and S � A. Again,
this effect can be ascribed to the peculiar properties of the microscopic dynamics,
constrained by the two thresholds.

In particular, Figure 6(b) shows the case S =∞. In absence of limitations due to
the exit capacity, if no limitation on the communication occurs (A = 1), the typical
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Fig. 7. Comparison of analytical results for the velocity current in the hydrodynamic limit
(cf. Figure 6) with Monte Carlo simulations. The squares and the triangles in the plots denote the
results of simulations obtained with p = 0.6 and p = 0.8, respectively.

speed is maximal and does not depend on the local density. On the other hand, when
A > 1, the speed decreases until the density exceeds a critical value (depending on the
two thresholds), and after that it starts to increase until it attains the ideal maximal
value at large ρ. Indeed, if the density is below such a critical value, the intensity
function is equal to one independently of the typical number of on-site particles; hence
the number of particles that leaves a site per unit of time does not depend on the
number of particles on it. On the other hand, when such a critical value is overcome,
the density function starts to behave proportionally to the number of on-site particles
and the typical velocity starts to increase with the local density. In the extreme case
A = ∞, no communication is possible, however large the density is, and hence the
typical velocity is a monotonic decreasing function of ρ.

In Figure 6(d), the case S = 10 is portrayed: the graphs show that as a result of
the constraints imposed by the two dynamical thresholds, there exists a local value
of the density optimizing the typical speed. Such a density has to be large enough
so that communication is efficient, but also small enough that the limitation on the
escape capacity does not cause an abrupt drop of the typical velocity.

We also run a set of Monte Carlo simulations for a ZRP on a finite lattice equipped
with periodic boundary conditions, in order to check the consistency of the results
for the velocity v(ρ) obtained above in the hydrodynamic limit. The dynamics on the
finite lattice was obtained using the following steps:

(i) A number τ is chosen at random with exponential distribution of parameter∑L
x=1 g(ωx(t)), and the time is correspondingly updated to t+ τ .

(ii) A site is chosen at random with probability g(ωx(t))/
∑L
x=1 g(ωx(t)).

(iii) A particle is moved from the selected site to one of its nearest neighbors on
the right or on the left with probability p or, respectively, 1− p.

Starting from an arbitrary initial configuration ωo at time t = 0, the simulation is
then allowed to evolve for ntot ∼ 107 steps. The stationary current is then obtained by
computing the difference between the total number of particles hopping from the site
L to the site 1 and that of particles jumping from 1 to L, and dividing the resulting
value by the total time.

It is worth also remarking that the considered magnitude of ntot was chosen large
enough to guarantee the achievement of a stationary value of the current.

In Figure 7 we show the results of the Monte Carlo simulations obtained with
p = 0.6 and p = 0.8, L = 100, and for increasing values of N , together with the
corresponding curves shown in Figure 6 and referring to the hydrodynamic limit. The
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left plot of Figure 7 shows two cases, the first corresponding to A = 1 and S = 5,
and the second to A = 3 and S = 10. Similarly, the right plot shows two different
cases, the first with A = 5 and S = 10, and the second with A = 5 and S = N .
The plots reveal that our numerical simulations succeed in quantitatively reproducing
the predicted behavior of v(ρ) which holds in the hydrodynamic limit, including, in
particular, the nonmonotonic behavior of the velocity present for finite values of the
two thresholds A and S.

5. Possible interpretations of the two thresholds. It is worth pointing out
that working with two thresholds leads to rich descriptions in terms of modeling.
In particular, a double-threshold dynamics is amenable to interpretation in multiple
fashions, such as the following:

(i) Porous media interpretation: Essentially, the bulk porosity estimates how
many particles can be accommodated in a cell. This connects to the satu-
ration threshold. The saturation threshold is essentially proportional to the
surface porosity, since it is a measure of the exit capacity. We refer the reader
to [24] for building a possible closer look into the porous media interpretation.

(ii) Mechanical interpretation: Imagine, for a moment, that the tunnels are
equipped with valve-like doors whose opening results from the balance be-
tween the pressure inside the cell and an outer pressure exerted by a spring.
A minimal—structural—opening of the door, with the spring maintained at
rest, corresponds to the presence of an activation threshold. Any further
opening of the door is hence achieved by compensating the external pressure
of the spring, which is considered to increase proportionally to the displace-
ment of the door, as dictated by the Hooke’s law of mechanics. Finally, the
maximal opening of the door, in the presence of the minimum elongation of
the spring, corresponds to the saturation threshold. See, e.g., [25] for a sce-
nario describing how pressure/temperature-controlled shape-memory alloys
facilitate the functioning of Japanese rice cooking machines.

(iii) Psychologico-geometrical interpretation: The activation threshold is a mea-
sure of the domain of communication between the individuals, who may hence
produce a collective decision on the motion (either on orientation in the dark
or on the chosen speed). Essentially, we imagine that this activation threshold
is inversely proportional to the level of trust (see our interpretations proposed
in [26]). The saturation threshold is then directly proportional to the capacity
of the exit(s).

(iv) A phase transitions perspective: The assumption here is that pedestrians
evacuating the obscure tunnel first undergo a transition of the first kind (like
the ice-water transition; cf. Landau’s classification): from being trapped in
the dark tunnel to being free to go in corridors where they can choose their
own desired velocity. The parallel can be made a bit more precise by applying
the Clapeyron equation in this context to translate difference in temperatures
into difference in pressures. The two thresholds can now be seen as the direct
counterparts of the accumulated heat content (number of phonons) needed to
melt the ice (the activation threshold) and the amount of accumulated heat
content needed to evaporate water (the saturation threshold). Essentially, we
mean here that the dynamics is “frozen” for densities below the activation
threshold, and people “evaporate” from the tunnel for densities on the order of
magnitude of the saturation threshold. Remotely related connections to phase
transitions supposed to happen in social systems are reported, for instance,
in [27, 28].
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6. Discussion.

6.1. Multiscale modeling perspectives. We considered a one-dimensional
ZRP equipped with periodic boundary conditions and characterized by symmetric or
asymmetric jump probabilities. The novelty of our approach stems from introducing
the two thresholds A and S affecting the stochastic dynamics, together with their
interpretations in terms of communication efficiency and exit capacity.

From the mathematics viewpoint, the thresholds can be tuned to control the
magnitude of the intensity function, thus making it possible to span a broad vari-
ety of zero range dynamics, ranging from independent particle models to the simple
exclusion-like processes.

We then investigated the hydrodynamic limit of the considered ZRP for different
values of the thresholds, and discussed the effect of such dynamical constraints on
some macroscopic quantities, e.g., the effective diffusion coefficient, the particle den-
sity, and the effective outgoing current. We recovered known results in the limiting
scenarios and also provided explicit formulas for arbitrary thresholds, provided that
the activation and saturation thresholds coincide. Our investigation thus provides a
noteworthy bridge between the features of the microscopic stochastic dynamics and
some macroscopic observables relevant in the hydrodynamic description of the model,
which are also experimentally accessible. Further investigations are needed to ex-
tend our results to the even more challenging scenario characterized by the use of
nonperiodic boundary conditions in the zero range dynamics.

From the pedestrian evacuation viewpoint, we explored the effects of communica-
tion on the effective transport properties of the crowd of pedestrians. More precisely,
we were able to emphasize the effect of two thresholds on the structure of the effective
nonlinear diffusion coefficient. One threshold models pedestrians’ communication ef-
ficiency in the dark, while the other one describes the tunnel capacity. Essentially, we
observe that if the evacuees show a maximum trust (leading to a fast communication),
they tend to quickly find the exit, and hence the collective action tends to prevent
the occurrence of disasters. In our context, “a high activation threshold increases
the diffusion coefficient” means that “higher trust among pedestrians improves com-
munication in the dark,” and therefore the exits can be found more easily. The exit
capacity is accounted for by the magnitude of the saturation threshold. Consequently,
a higher saturation threshold leads to an improved capacity of the exists (e.g., larger
doors, or more exits [29]), and hence the evacuation rate is correspondingly higher.

Similarly, in the presence of a drift, the fundamental diagrams become nonmono-
tonic with respect to the local pedestrian density. We were able to point out that
the fundamental diagrams become independent of the local density as soon as the
exit capacity is unbounded. Interestingly, we were able to detect situations (see, for
instance, Figure 6) in which there are particular pedestrian densities optimizing the
speed. (See, e.g., Figure 2b in [30] for real pedestrian traffic cases where this effect
has been observed.) It appears that such an optimizing density must be large enough
so that communication is efficient, but also small enough so that the limitation on
the escape capacity does not cause an abrupt drop in the typical flow velocity.

6.2. Qualitative validation. If one wants to make predictions, then models
must be calibrated with empirical data. Designing a crowd experiment to test our
pedestrians-moving-in-the-dark model is a challenge from many perspectives (includ-
ing ethical and practical aspects) that we don’t undertake here. As a future plan, we
wish to adapt our model to make progress toward a quantitative validation for sce-
narios involving pedestrians moving in regions filled with dense smoke, with specific
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reference to the crowd experiments made by the Department of Fire Safety Engi-
neering of Lund University, Sweden; see, e.g., [29, 31] and references cited therein.
In that case, the main target would be to set up a parameter identification proce-
dure at the ZRP level for finding suitable combinations of the thresholds A and S to
recover typical smoke concentration-dependent speed-density relations (fundamental
diagrams). Our simulations based on the current ZRP model with two thresholds give
hope in this direction in the sense that, for the drift-dominated dynamics endowed
with full communication among pedestrians (i.e., for A = 1), we are able to recover
for the saturation threshold S = 5 the same monotonic shape of the real pedestrian
traffic fundamental diagrams as reported in, e.g., [32]. To see this trend, compare
Figure 6(a) (S = 5). Furthermore, we note in the same figure that as the density
increases, the fundamental diagram tends towards a linear profile regardless of the
choice of the threshold S. Such a situation is considered as standard for pedestrian
dynamics; compare, for instance, [33, Figure 3.4, p. 33] or [34].

Appendix A. Some explicit formulas for arbitrary values of the thresh-
olds. We provide here the general form of the normalization constant Cz and the
function ρ̄(z) for arbitrary values of the thresholds A and S. We have

Cz = z

[
z − zA

1− z
+

z2+S

Γ(2 + S −A)

(
1

1− z + S −A
+ ezE(−1−S+A)(z)

)]−1

,

where

Γ(x) =

∫ ∞
0

sx−1e−sds

is the Gamma function and

En(x) =

∫ ∞
1

e−xs

sn
ds

denotes the generalized exponential integral function [35]. Moreover,

ρ̄(z) = Czz

[
z2 + zA(1−A(1− z)− 2z)

z(1− z)2
+

z1+S

Γ(2 + S −A)

×
(
z + (A+ z)(1− z + S −A)

(1− z + S −A)2
+ ez(−1 +A+ z)E(−1−S+A)(z)

)]
.(17)

One can then verify that, by taking A = 1 and S = ∞, one recovers the expressions
for Cz and ρ̄(z) corresponding to the independent particle model (see Remark 3.1),
whereas for A = S one obtains the results pertaining to the simple exclusion-like
model (see Remark 3.2).
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