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Introduction

Quasi variational inequalities (QVIs) were introduced by Bensoussan and Lions in a series
of papers [4, 5, 6] in connection with the study of impulse control problems and soon they
turned out to be a powerful modeling tool capable of describing complex equilibrium
situations that can appear in such different fields as generalized Nash games (see e.g.
[3, 32, 36, 58]), mechanics (see e.g. [2, 7, 33, 38, 51, 52]), economics (see e.g. [36, 62]),
statistics (see e.g. [37]), transportation (see e.g. [8, 11]), and biology (see e.g. [31]). We
refer the reader to the basic monographs of Mosco [44] and Baiocchi and Capelo [2] for a
more comprehensive analysis of QVIs.

Although in the literature hundreds of papers were devoted to various and very impor-
tant aspects of QVIs, like existence, uniqueness and stability of its solutions, in this thesis
we concentrate our work only in one of the most challenging ones: the numerical solution
of finite-dimensional QVIs.

State-of-the-art in the numerical solution of QVIs

In spite of their modeling power, relatively few studies have been devoted to the
numerical solution of finite-dimensional QVIs; a topic which, beside being of great
interest in its own, also forms the backbone of solution methods for infinite-dimensional
QVIs.

Motivated by earlier research on the implicit complementarity problem [44, 54, 55],
Chan and Pang introduced in [9] what is probably the first globally convergent algorithm for
a QVI. In this seminal paper, the authors use a fixed point argument to prove convergence
of a projection-type algorithm only in the case in which the QVI falls within the
so-called “moving set” class.

It is safe to say that practically all subsequent works, where globally convergent algo-
rithms are analyzed, consider variants or extensions of the basic setting proposed in [9]
and then, still following a fixed point approach, although they are successful in extending
the field of “moving set” QVIs for which globally convergence can be garanteed, however
fail to detect new numerical tractable classes of QVIs, see e.g. [45, 46, 48, 59, 61]
and references therein.

In a departure from this setting, Pang and Fukushima [58] proposed a sequential penalty
approach to general QVIs. The method in [58] reduces the solution of a QVI to the
solution of a sequence of Variational Inequalities (VIs); however, even if this approach is
very interesting and promising, its global convergence properties are in jeopardy since they
ultimately hinge of the capability of solving a sequence of possibly very challenging VIs.

More recently, Fukushima [27] studied a class of gap functions for QVIs, reducing
the solution of a QVI to the global minimization of a nondifferentiable gap function, but
no algorithms are explicitly proposed in [27] (see [39] for a further and more detailed
application of this approach in a specialized game setting).

This essentially completes the picture of globally convergent proposals for the solution
of QVIs. We also mention that Outrata and co-workers studied some interesting local
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Newton methods, see [51, 52, 53], but the globalization of these methods is not discussed.
In Section 1 we briefly describe more in detail some important methods (previously

cited) in order to compare them to our algorithm.

Main contributions of this thesis

In this thesis we propose a totally different approach to the solution of a QVI. Given the
blanket assumption that the feasible set mapping can be described by a finite number
of parametric inequalities, we consider the Karush-Kuhn-Tucker (KKT) conditions of the
QVI, reformulate them as a system of constrained equations and then apply a powerful
interior-point method (which was introduced in [43]). It turns out that the convergence
properties of the resulting algorithm depend essentially on the nonsingularity of a certain
Jacobian matrix JH. Our main contributions are both theoretical:

• an in-depth analysis of the nonsingularity of JH, showing that global convergence
of our method can be obtained in the “moving set” case, but also in many
other situations covering a wide array of new and significant settings, thus
enlarging considerably the range of QVIs that it is possible to solve with theoretical
guarantees,

• a discussion of the boundedness of the sequence generated by the algorithm,

and numerical:

• a collection of test problems from diverse sources which, being the largest test set
for QVIs considered so far, gives a uniform basis on which algorithms for the solution
of QVIs can be tested and compared,

• an implementation of our new method and a numerical testing demonstrating
its effectiveness and robustness even if compared to the best solver for comple-
mentarity systems: the PATH solver [26].

Organization of the thesis

This thesis is divided into three parts. In Part I we formally define the QVI problem
and briefly describe some important solution methods available in the literature (Section
1). In Part II we describe our method and establish global convergence results for many
interesting instances of QVIs, vastly broadening the class of problems that can be solved
with theoretical guarantees. In particular in Section 2 we present the Potential Reduc-
tion Algorithm, in Section 3 we define classes of QVIs for which our algorithm globally
converges, in Section 4 we give some further assumptions on the QVI in order to garantee
boundedness of the sequence generated by our algorithm and in Section 5 we specialize
results developed in previous sections for generalized Nash equilibrium problems. Part III
is devoted to numerical issues: in Section 6 we present the collection of test problems and
its Matlab interface and in Section 7 we describe an implementation and report numerical
testing results of our algorithm and its comparison with PATH.
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Further information
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Matematica, Dipartimento di Matematica della Seconda Universit di Napoli, vol.
27, pp. 137-174 (2012).
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Notations

R+ : set of nonnegative numbers;

R++ : set of positive numbers;

Mm×n : set of m× n matrices;

‖ · ‖ : Euclidean norm operator for vectors; spectral norm for matrices, i.e. the norm
induced by the Euclidean vector norm (we recall that M ∈Mm×n, ‖M‖ = max{

√
λ |

λ is an eigenvalue of MTM}; the spectral norm is compatible with the Euclidean
norm in the sense that ‖Mv‖ ≤ ‖M‖‖v‖, v ∈ Rn);

ΠK(·) : Euclidean projector on K;

JF (x) : Jacobian of a differentiable mapping F : Rn → Rm at x;

∇F (x) : transposed Jacobian of a differentiable mapping F : Rn → Rm at x;

JyF (y, x) : partial Jacobian with respect to y of a differentiable mapping F : Rn × Rn →
Rm at (y, x);

∇yF (y, x) : transposed partial Jacobian with respect to y of a differentiable mapping
F : Rn × Rn → Rm at (y, x);

µm(M) : minimum eigenvalue of M ∈Mn×n symmetric;

µ+
m(M) : minimum positive eigenvalue of M ∈Mn×n symmetric;

µsm(M) : minimum eigenvalue of the symmetric part of M ∈Mn×n (i.e. µm(1
2
(MT +M)));

◦ : Hadamard (componentwise) product operator (i.e. x, y ∈ Rn, x ◦ y = (xiyi)
n
i=1 ∈ Rn);

(·)−1 : componentwise inverse operator (i.e. x ∈ Rn, x−1 = ( 1
xi

)ni=1 ∈ Rn);

intK : interior of K;

b·c : floor-function;

Mij : (i, j)th entry of M ∈Mm×n, 1 ≤ i ≤ m, 1 ≤ j ≤ n;

Mi∗ : ith row of M ∈Mm×n, 1 ≤ i ≤ m;

M∗j : jth column of M ∈Mm×n, 1 ≤ j ≤ n;

diag(v) : (square) diagonal matrix whose diagonal entries are the elements of v ∈ Rn;

I : (square) identity matrix.
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1 Quasi Variational Inequalities

In this section we formally describe the quasi variational inequality problem and, under
some assumptions, we derive its KKT conditions, which are fundamental for our subse-
quent analysis. Then we briefly describe some important solution methods available in
the literature in order to make a theoretical comparison of our algorithm. Moreover we
report some existence result (with an algorithmic genesis) for QVIs, among the multitude
obtainable from the literature, because we recall them in the sequel.

1.1 Problem Definition

Let F : Rn → Rn be a (point-to-point) continuous mapping and K : Rn ⇒ Rn a point-to-
set mapping with closed and convex images. The quasi variational inequality QVI (K,F )
is the problem of finding a point x∗ ∈ K(x∗) such that the following holds

F (x∗)T (y − x∗) ≥ 0, ∀y ∈ K(x∗). (1)

For sake of simplicity, we always assume that all functions involved are defined over Rn,
even if this request could easily be weakened. A particularly well known and studied case
occurs when K(x) is actually independent of x, so that, for all x, K(x) = K for some
closed convex set K. In this case, the QVI becomes the Variational Inequality VI (K,F ),
that is the problem of finding x∗ ∈ K such that F (x∗)T (y − x∗) ≥ 0, ∀y ∈ K. For this
latter problem, an extensive theory exists, see for example [23].

In most practical settings, the point-to-set mapping K is defined through a parametric
set of equality and inequality constraints:

K(x) := {y ∈ Rn |M(x)y + v(x) = 0, g(y, x) ≤ 0}, (2)

where M : Rn → Mp×n, v : Rn → Rp and g : Rn × Rn → Rm. We will use the following
assumption

Assumption 1.1 gi(·, x) is convex and continuously differentiable on Rn, for each x ∈ Rn

and for each i = 1, . . . ,m.

The convexity of gi(·, x) is obviously needed in order to guarantee that K(x) be convex,
while we require the differentiability assumption to be able to write down the KKT con-
ditions of the QVI. We say that a point x ∈ Rn satisfies the KKT conditions if multipliers
ζ ∈ Rp and λ ∈ Rm exist such that

F (x) +M(x)Tζ +∇yg(x, x)λ = 0,

M(x)x+ v(x) = 0,

0 ≤ λ ⊥ g(x, x) ≤ 0.

(3)

Note that M(x)x+v(x) = 0 and g(x, x) ≤ 0 mean that x ∈ K(x) and recall that ∇yg(x, x)
indicates the partial Jacobian of g(y, x) with respect to y evaluated at y = x. These KKT
conditions parallel the classical KKT conditions for a VI, see [23], and it is quite easy to
show the following result.
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Theorem 1.2 Suppose Assumption 1.1 holds. If a point x, together with two suitable
vectors ζ ∈ Rp and λ ∈ Rm of multipliers, satisfies the KKT system (3), then x is a
solution of the QVI (K,F ). Vice versa, if x is a solution of the QVI (K,F ) and the
constraints g(·, x) satisfy any standard constraint qualification, then multipliers ζ ∈ Rp

and λ ∈ Rm exist such that (x, ζ, λ) satisfies the KKT conditions (3).

Proof. It is well known that x is a solution of the QVI if and only if x is a global solution
of the following optimization problem:

min
y

F (x)Ty, s.t. M(x)y + v(x) = 0, g(y, x) ≤ 0. (4)

By the convexity of g(·, x), the optimization problem (4) is convex in y. Therefore, under
the assumption that a constraint qualification holds, the KKT conditions (3) are necessary
and sufficient optimality conditions for the problem (4) and then for the QVI. �

In the theorem above, by “any standard constraint qualification” we mean any classical
optimization constraint qualification for g(·, x) at y = x such as the linear independence
of the active constraints, the Mangasarian-Fromovitz constraint qualification, Slater’s one
and so on.

The KKT conditions (3) are central to the approach described in this thesis as our
potential reduction algorithm aims at finding KKT points of the QVI (K,F ). In view of
Theorem 1.2, the solution of these KKT conditions is essentially equivalent to the solution
of the underlying QVI and, in any case whenever we can find a solution of the KKT
conditions, we are sure that the corresponding x-part solves the QVI itself.

For simplicity, in Part II of this thesis, we suppose that the set K of the QVI is
defined only through the inequalities g (we recall that it is always possible to rewrite
M(x)y + v(x) = 0 as M(x)y + v(x) ≤ 0 and −M(x)y − v(x) ≤ 0). In this case the KKT
conditions are the following

F (x) +∇yg(x, x)λ = 0,

0 ≤ λ ⊥ g(x, x) ≤ 0.
(5)

1.2 Existence

Existence analysis on QVIs goes beyond the scope of this thesis. In this subsection we
report only some simple existence (and uniqueness) results from the literature on QVIs
that stems from algorithmic frameworks, because we recall them in the sequel of the thesis.

The following theorem proves the existence of at least one solution of a QVI whose
feasible set satisfies some boundedness and nonemptiness conditions. It is an adaptation
of Corollary 3.1 in [9] to QVIs.

Theorem 1.3 Suppose that there exists a nonempty compact convex set C such that:

(i) ∪x∈C K(x) ⊆ C,
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(ii) K(x) 6= ∅, ∀x ∈ C,

then there exists a solution of the QVI (K,F ).

In [9] the previous result is proved for generalized quasi variational inequalities (GQVI for
short) that is a more complex problem that we do not consider in this thesis. Moreover
always in [9] authors showed a way to slightly weaken the previous assumption (i) with
some technicalities.

Another existence (and uniqueness) result (improving the original one in [49]) is given
in Corollary 2 in [45], we report it below.

Theorem 1.4 Suppose that the following assumptions hold:

(i) Operator F is Lipschitz continuous and strongly monotone with constants L and σ > 0
respectively.

(ii) There exists α < σ
L

such that

‖ΠK(x)(z)− ΠK(y)(z)‖ ≤ α‖x− y‖, ∀x, y, z ∈ Rn,

(we recall that ΠK is the Euclidean projector on K).

Then the QVI (K,F ) has a (unique) solution.

Following this way other papers has been devoted to give (slightly different) existence (and
uniqueness) results for QVIs, see for example [47].

In section 4 we give some new existence results and compare their assumptions with
those of theorems in this subsection to show that they are in some sense weaker.

1.3 Solution Methods

In this subsection we briefly report and analyze global convergence properties for some
solution methods for QVIs available in the literature. Methods described in this section
consider QVIs in their general form, however we must mention that other very important
algorithms with strong global convergence properties for QVIs with specific structures were
proposed for example in [30, 52].

1.3.1 Projection Methods

One of the first algorithm with global convergence properties was proposed by Chan and
Pang [9]. Their method consists in reformulating the QVI as a fixed point problem by
using a projection operator.

11



Algorithm 1: Projection Algorithm for QVIs

(S.0) : Choose x0 ∈ Rn, ρ > 0, ε > 0 and set k = 0.

(S.1) : If ‖xk − ΠK(xk)(x
k − ρF (xk))‖ ≤ ε: STOP.

(S.2) : Set
xk+1 := ΠK(xk)(x

k − ρF (xk)),

k ← k + 1, and go to (S.1).

Convergence result proposed by Chan and Pang is based on Brouwer fixed point theorem
by giving conditions on the QVI to obtain the projection operator to be a contraction.
However they only prove convergence for “moving set” problems, that is QVIs in which
the feasible mapping K(·) is defined by a nonempty closed convex set Q ⊆ Rn and a
“trajectory” described by c : Rn → Rn according to:

K(x) = c(x) +Q. (6)

Theorem 1.5 Consider the QVI (F,K) in which the set K is defined by (6). Suppose
that both F and c are Lipschitz continuous and strongly monotone with moduli L, σ, α and
τ respectively. Suppose that

ρ2L2 + 2ρ(αL− σ)− 2(τ − α) < 0. (7)

Then the operator ΠK(·)((·)− ρF (·)) is a contraction and thus has a fixed point x̄ρ. More-
over, Algorithm 1 globally converges to x̄ρ which is the (unique) solution of the QVI.

Where the proof of Theorem 1.5 is based on the fact that:

ΠK(x)(y) = c(x) + ΠQ(y − c(x)).

It is not difficult to see that condition (7) and ρ > 0 together means that

−(αL− σ) +
∣∣∣√(αL− σ)2 + 2L2(τ − α)

∣∣∣ > 0, (8)

which is the condition for the solvability of the QVI by using Algorithm 1.

1.3.2 Sequential VI Methods

To the best of our knowledge, the method that improves more than any other Chan and
Pang’s convergence result was proposed by Nesterov and Scrimali in [45]. This method
consists in solving a sequence of VIs generated by sequentially parameterizing at each
iteration the feasible set of the QVI by using the solution of the VI at the previous iterate:

Algorithm 2: Sequential VI method for QVIs

(S.0) : Choose x0 ∈ Rn such that K(x0) 6= ∅ and set k = 0.

(S.1) : If xk is a solution of QVI (F,K): STOP.

(S.2) : Set xk+1 equal to the solution of VI (F,K(xk)),
k ← k + 1, and go to (S.1).
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Clearly Algorithm 2 is well defined only if each VI generated during its iterations has a
solution. In [45] authors proved global convergence for moving set QVIs:

Theorem 1.6 Consider the QVI (F,K) in which the set K is defined by (6). Suppose
that F is Lipschitz continuous and strongly monotone with moduli L and σ respectively,
and that c is Lipschitz continuous with modulus α. Suppose that

α <
σ

L
, (9)

then Algorithm 2 globally converges to the (unique) solution of the QVI.

Note that, under the assumptions of Theorem 1.6, Algorithm 2 is well defined, in fact by
(9) each VI generated by the algorithm has a (unique) solution.

It is not difficult to see that condition (8) implies condition (9), in fact it sufficies to
note that:

0 < −(αL− σ) +
∣∣∣√(αL− σ)2 + 2L2(τ − α)

∣∣∣
≤ −(αL− σ) +

∣∣∣√(αL− σ)2

∣∣∣
= −(αL− σ) + |αL− σ| ,

that is (αL − σ) < 0. Then we can conclude that global convergence conditions for
Algorithm 2 are weaker than those for Algorithm 1 in the moving set case.

Another sequential VI approach to general QVIs is described in [58]. This method
reduces the solution of a QVI to the solution of a sequence of VIs by using a penalization
strategy; however, even if this approach is very interesting and promising, its global con-
vergence properties are in jeopardy since they ultimately hinge of the capability of solving
a sequence of possibly very challenging VIs.

1.3.3 Gap Function Methods

An attempt to reformulate a QVI by using a gap function is imputable to Fukushima in
[27]. In his paper, the gap function is defined as follows:

f(x) := − inf {ϕ(x, y) | y ∈ Γ(x)} ,

where

ϕ(x, y) := F (x)T (y − x) +
1

2
(y − x)TG(y − x),

with a positive definite symmetric matrix G, and

Γ(x) := {y ∈ Rn | gi(x, x) +∇y gi(x, x)T (y − x) ≤ 0, i = 1, . . . ,m} .

To solve the QVI, the method proposed by Fukushima consists in finding a global solution
(with zero value) of the following optimization problem:

min f(x), s.t. g(x, x) ≤ 0. (10)
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Despite its practical utility, from the theoretical point of view this method does not improve
global convergence results for QVIs. In fact Fukushima only proves that f is continuous
and directionally differentiable, then finding a global solution of problem (10) is not easy
in general.

1.3.4 KKT Methods

KKT methods try to solve the QVI (1) by solving its KKT system (5). Different approches
are possible, in fact the KKT system may be reformulated as:

• a semismooth system of equations by using complementarity functions like the Fischer-
Burmeister one (see [13] for a description of this method for generalized Nash equi-
librium problems): it has been showed in [13] that these methods require stronger
assumptions for global convergence than those required by the potential reduction
algorithm proposed in this thesis;

• a differentiable constrained system of equations (the approach proposed in this thesis,
see Part II for details);

• a nonmonotone VI (the basis for the solution of a QVI by using the PATH solver
[12], see Part III for details): despite its poor global convergence properties, from
the practical point of view this method has been widely used to numerically solve
QVIs; however in Part III we will show the effectiveness of our potential reduction
algorithm and its robustness even if compared to the PATH solver.

Motivated by considerations developed in [13] for Nash games, in this thesis we will show
that the potential reduction algorithm described in Section 2 is (so far) the best method
for the solution of QVIs from both the theoretical (Part II) and the numerical (Part III)
point of view.
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Part II

Theoretical Results
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2 Potential Reduction Algorithm

As we already mentioned, we propose to solve the KKT conditions (5) by an interior-
point method designed to solve constrained systems of equations. In order to reformulate
system (5) as a constrained system of equations (CE for short), we introduce slack variables
w ∈ Rm and consider the CE system

H(z) = 0, z = (x, λ, w) ∈ Z (11)

with

H(x, λ, w) :=

 L(x, λ)
h(x) + w
λ ◦ w


and where

L(x, λ) := F (x) +∇yg(x, x)λ, h(x) := g(x, x) (12)

and
Z := {z = (x, λ, w) | x ∈ Rn, λ ∈ Rm

+ , w ∈ Rm
+}.

It is clear that the couple (x, λ) solves system (5) if and only if (x, λ), together with a
suitable w, solves the CE (11). From now on, we will aim at solving the CE (11) by the
interior-point method described next.

Let r : Rn × Rm
++ × Rm

++ → R be the function

r(u, v) := ζ log(‖u‖2 + ‖v‖2)−
2m∑
i=1

log(vi), (u, v) ∈ Rn × Rm
++ × Rm

++, ζ > m,

and let
ψ(z) := r(H(z))

be the potential function of the CE, which is defined for all

z ∈ ZI := H−1(Rn × Rm
++ × Rm

++) ∩ int Z,

(we reacall that intZ denotes the interior of the set Z). In order to be able to define our
potential reduction interior-point method we need some further differentiability conditions.

Assumption 2.1 F (x), h(x) and ∇yg(x, x) are continuously differentiable on Rn.

The following algorithm is precisely the interior-point method from [43]; see also [23] for
further discussion and [13] for an inexact version.
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Algorithm 3: Potential Reduction Algorithm (PRA) for CEs

(S.0) : Choose z0 ∈ ZI , β, γ ∈ (0, 1), and set k := 0, aT = (0Tn, 1T2m).

(S.1) : If H(zk) = 0: STOP.

(S.2) : Choose ρk ∈ [0, 1) and find a solution dk of the linear system

JH(zk)dk = −H(zk) + ρk
aTH(zk)

‖a‖2
a. (13)

(S.3) : Compute a stepsize tk := max
{
β` | ` = 0, 1, 2, . . .

}
such that

zk + tkd
k ∈ ZI

and
ψ(zk + tkd

k) ≤ ψ(zk) + γtk∇ψ(zk)Tdk. (14)

(S.4) : Set zk+1 := zk + tkd
k, k ← k + 1, and go to (S.1).

Algorithm 3 will generate a sequence {zk} := {(xk, λk, wk)} with λk > 0 and wk > 0 for
every k. The core of this approach is the calculation of a Newton-type direction for the
system H(z) = 0. According to standard procedures in interior point methods, the Newton
direction is “bent” in order to follow the central path. Operatively this means that the
search direction used in this method is the solution of the system (13). Once this direction
has been calculated, a line-search is performed by using the potential function ψ.

Algorithm 3 is well-defined as long as the Jacobians JH(zk) in (13) are nonsingular.
Actually, the following theorem, which can be found in [43] and [23], shows that this
condition also guarantees that every limit point of the sequence generated by the algorithm
is a solution.

Theorem 2.2 Suppose that Assumptions 1.1 and 2.1 hold. Assume that JH(z) is non-
singular for all z ∈ ZI , and that the sequence {ρk} from (S.2) of Algorithm 3 satisfies the
condition lim supk→∞ ρk < 1. Let {zk} be any sequence generated by Algorithm 3. Then
the following statements hold:

(a) the sequence {H(zk)} is bounded;

(b) any accumulation point of {zk} is a solution of CE (11).

In view of Theorem 2.2, the main question we must answer in order to make our approach
viable is: for which classes of QVIs can we guarantee that the Jacobian matrices JH(z) are
nonsingular for all z ∈ ZI? A related, albeit practically less crucial, question is whether we
can guarantee that the sequence {zk} generated by Algorithm 3 is bounded. This obviously
would guarantee that the algorithm actually has at least a limit point and therefore that
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a solution is certainly found. The first question will be answered in detail in Section 3,
whereas the second question will be dealt with in Section 4.
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3 Solvability: Nonsingularity Conditions

As noted before, the main topic in order to guarantee global convergence of Algorithm 3
to a solution of CE (11) (and then the QVI) is the nonsingularity of JH(z). The structure
of this Jacobian is given by

JH(x, λ, w) =

 JxL(x, λ) ∇yg(x, x) 0
Jxh(x) 0 I

0 diag(w) diag(λ)

 .

This section is devoted entirely to the study of classes of QVIs for which the nonsingu-
larity of JH can be established. It is not too difficult to give conditions that guarantee
the nonsingularity of JH, what is less obvious is how we can establish sensible and signif-
icant conditions for interesting classes of QVIs. This we achieve in two stages: in the next
subsection we give several sufficient or necessary and sufficient conditions for the nonsingu-
larity of JH which are then used in the following subsections to analyze various classes of
QVIs. In particular, we will discuss and establish nonsingularity results for the following
classes of QVIs:

• Problems where K(x) = c(x)+Q (the so called “moving set” case, already mentioned
in the introduction and described in Section 1);

• Problems where K(x) is defined by a linear system of inequalities with a variable
right-hand side;

• Problems where K(x) is defined by box constraints with parametric upper and lower
bounds;

• Problems where K(x) is defined by “binary constraints”, i.e. parametric inequalities
g(x, y) ≤ 0 with each gi actually depending only on two variables: xj and yj;

• Problems where K(x) is defined by bilinear constraints.

While we refer the reader to the following subsections for a more accurate description of
the problem classes, we underline that, as far as we are aware of and with the exception
of the moving set case, these problem classes are all new and we can establish here for the
first time convergence results, according to Theorem 2.2.

3.1 General Nonsingularity Conditions

The results in this subsection do not make explicit reference to a specific structure of the
QVI and, in particular, of the feasible set mapping K. However, they are instrumental in
proving the more specific results in the following subsections. The first result we present
is a necessary and sufficient condition for the nonsingularity of JH.
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Theorem 3.1 Suppose that Assumptions 1.1 and 2.1 hold. Let (x, λ, w) ∈ Rn×Rm
++×Rm

++

be given. Then the matrix

N(x, λ, w) := JxL(x, λ) +∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxh(x) (15)

is nonsingular if and only if JH(x, λ, w) is nonsingular.

Proof. We first prove the only-if-part. Let q =
(
q(1), q(2), q(3)

)
be a suitably partitioned

vector such that JH(x, λ, w)q = 0. This equation can be rewritten in partitioned form as

JxL(x, λ)q(1) +∇yg(x, x)q(2) = 0, (16)

Jxh(x)q(1) + q(3) = 0, (17)

diag(w)q(2) + diag(λ)q(3) = 0. (18)

Solving (18) for q(3) gives
q(3) = − diag

(
λ−1 ◦ w

)
q(2). (19)

Inserting this expression into (17) yields

Jxh(x)q(1) − diag
(
λ−1 ◦ w

)
q(2) = 0

which, in turn, gives
q(2) = diag

(
w−1 ◦ λ

)
Jxh(x)q(1). (20)

Substituting this expression into (16) finally yields[
JxL(x, λ) +∇yg(x, x) diag

(
w−1 ◦ λ

)
Jxh(x)

]
q(1) = 0.

However, the matrix in brackets is precisely the matrix N(x, λ, w) from (15) and, therefore,
nonsingular. Hence, it follows that q(1) = 0 which then also implies q(2) = 0 and q(3) = 0.

Now, to prove the if-part, we show that if N(x, λ, w) is singular, then JH(x, λ, w) is
singular, too. If N(x, λ, w) is singular, there exists a nonzero vector q(1) such that[

JxL(x, λ) +∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxh(x)

]
q(1) = 0.

Now, let q(2) and q(3) be vectors defined by (20) and (19), respectively. Then (16)–(18)
hold, and hence JH(x, λ, w)q = 0 for q =

(
q(1), q(2), q(3)

)
6= 0. This shows that JH(x, λ, w)

is singular and, therefore, completes the proof. �

We next state a simple consequence of Theorem 3.1.

Corollary 3.2 Suppose that Assumptions 1.1 and 2.1 hold and let (x, λ, w) ∈ Rn×Rm
++×

Rm
++ be given. Suppose that JxL(x, λ, w) is positive definite and one of the following con-

ditions holds:

(a) ∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxh(x) is positive semidefinite, or
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(b) ∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxg(x, x) is positive semidefinite.

Then JH(x, λ, w) is nonsingular.

Proof. In view of Theorem 3.1, it suffices to show that the matrix N(x, λ, w) from (15) is
nonsingular. Since JxL(x, λ) is positive definite by assumption, the statement is trivially
satisfied under condition (a). Hence, suppose that (b) holds. Since h(x) = g(x, x), we have
Jxh(x) = Jyg(x, x) + Jxg(x, x). This implies

N(x, λ, w) = JxL(x, λ) +∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxh(x)

= JxL(x, λ) +∇yg(x, x) diag
(
w−1 ◦ λ

)
Jyg(x, x)

+∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxg(x, x).

Now, the first term JxL(x, λ) in the last expression is positive definite by assumption,
the second term is obviously positive semidefinite since λ,w > 0, and the third term is
positive semidefinite by condition (b). Consequently, N(x, λ, w) is positive definite, hence
nonsingular. �

Note that the previous proof actually shows that condition (b) from Corollary 3.2 implies
condition (a) which, therefore, is a weaker assumption in general, whereas condition (b)
might be easier to verify in some situations.

We now state another consequence of Theorem 3.1.

Corollary 3.3 Suppose that Assumptions 1.1 and 2.1 hold and let (x, λ, w) ∈ Rn×Rm
++×

Rm
++ be given. Suppose that JxL(x, λ) is nonsingular and

M̄(x, λ) := Jxh(x)JxL(x, λ)−1∇yg(x, x)

is a P0-matrix. Then JH(x, λ, w) is nonsingular.

Proof. For notational simplicity, let us write

A(x, λ, w) := JxL(x, λ)−1∇yg(x, x) diag
(
w−1 ◦ λ

)
Jxh(x).

We note that diag
(
w−1 ◦ λ

)
is a positive definite diagonal matrix and can therefore be

written as a product DD, where D is another positive definite diagonal matrix.
We have that the matrix N(x, λ, w) is nonsingular if and only if I + A(x, λ, w) is non-

singular. In turn, recalling that µ is an eigenvalue of A(x, λ, w) if and only if 1 + µ is
an eigenvalue of I + A(x, λ, w), we see that N(x, λ, w) is surely nonsingular if A(x, λ, w)
has all real eigenvalues nonnegative. But it is well known that, given two square matri-
ces A,B, the matrix product AB has the same eigenvalues as the matrix product BA,
see [35, Theorem 1.3.20], hence it follows that A(x, λ, w) has the same eigenvalues as
DJxh(x)JxL(x, λ)−1∇yg(x, x)D which is exactly the matrix DM̄(x, λ)D. By assumption,
we have that M̄(x, λ) is a P0 matrix, hence DM̄(x, λ)D is also a P0 matrix since D is
diagonal and positive definite, and then it has all real eigenvalues nonnegative, see [10,
Theorem 3.4.2]. This completes the proof. �

The remaining part of this section specializes the previous results to deal with specific
constraint structures.
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3.2 The Moving Set Case

As we mentioned in the introduction, this is the most studied class of problems in the
literature and (variants and generalizations apart) essentially the only class of problems for
which clear convergence conditions are available (see Section 1). In this class of problems,
the feasible mapping K(·) is defined by a closed convex set Q ⊆ Rn and a “trajectory”
described by c : Rn → Rn according to:

K(x) = c(x) +Q.

Figure 1: Example of moving set: the set K is between the dashed and the continuous
curve lines.

In order to proceed in our analysis, we suppose that Q is defined by a set of convex
inequalities:

Q = {x ∈ Rn | q(x) ≤ 0},

where q : Rn → Rm and each qi is convex on Rn. It is easy to see that, in this setting, we
have

K(x) = {y ∈ Rn | q(y − c(x)) ≤ 0}. (21)

By exploiting this structure, we can prove the following theorem.

Theorem 3.4 Let K(x) be defined as in (21), with qi convex for every i = 1, . . . ,m. Let
a point x ∈ Rn be given and assume that around x it holds that F and c are C1 and q is
C2. Suppose further that JF (x) is nonsingular and that

‖Jc(x)‖ ≤ µsm(JF (x)−1)

‖JF (x)−1‖
. (22)

Then JH(x, λ, w) is nonsingular for all positive λ and w.
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Proof. We are going to show that the conditions from Theorem 3.1 are satisfied. First
of all note that the hypotheses imply Assumptions 1.1 and 2.1. Taking into account (21),
we have, using the notation in (2) and (12),

g(y, x) = q(y − c(x)), h(x) = q(x− c(x))

and, hence,

∇yg(x, x) = ∇q(x− c(x)), Jxh(x) = Jq(x− c(x))(I − Jc(x)).

Therefore we can write

N(x, λ, w) = JF (x) + S̄(I − Jc(x)),

where

S̄ =
m∑
i=1

λi∇2qi(x− c(x)) +∇q(x− c(x)) diag(w−1 ◦ λ)Jq(x− c(x)).

Note that, for any positive λ and w, S̄ is positive semidefinite and symmetric. Therefore, we
can write S̄ = SST for some suitable square matrix S. Recalling that JF (x) is nonsingular
by assumption, we have that the matrix N(x, λ, w) is nonsingular if and only if

I + JF (x)−1SST (I − Jc(x))

is nonsingular. In turn, since µ is an eigenvalue of JF (x)−1SST (I − Jc(x)) if and only
if 1 + µ is an eigenvalue of I + JF (x)−1SST (I − Jc(x)), we see that N(x, λ, w) is surely
nonsingular if JF (x)−1SST (I−Jc(x)) has all real eigenvalues nonnegative. But, similar to
the proof of Corollary 3.3, it follows that JF (x)−1SST (I−Jc(x)) has the same eigenvalues
as ST (I−Jc(x))JF (x)−1S. If we can show that (I−Jc(x))JF (x)−1 is positive semidefinite,
we obviously also have that ST (I−Jc(x))JF (x)−1S is positive semidefinite and, therefore,
has all the real eigenvalues (if any) nonnegative. Hence, to complete the proof, we only
need to show that (22) implies that (I − Jc(x))JF (x)−1 is positive semidefinite. In order
to see this, it is sufficient to observe that for any v ∈ Rn we can write

vTJc(x)JF (x)−1v ≤ ‖Jc(x)‖‖JF (x)−1‖‖v‖2 ≤ µsm(JF (x)−1)‖v‖2 ≤ vTJF (x)−1v,

where the second inequality follows from (22). From this chain of inequalities the positive
semidefiniteness of (I − Jc(x))JF (x)−1 follows readily and this concludes the proof. �

Note that in assumptions of Theorem 3.4 the request to have JF (x) nonsingular and the
(22) implicitly imply that JF (x) must be positive definite. Moreover note that (22) is a
condition purely in terms of F and c, neither q nor the values of λ and w are involved. The
fact that q is not involved simply indicates that the nonsingularity of N is not related to the
“shape” of the set Q, but only to the trajectory the moving set follows. More precisely, as
will also become more clear in the following corollary, (22) requires the trajectory described
by c to be not “too steep”, where the exact meaning of “too steep” is given by (22). The
following corollary shades some further light on this condition.
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Remark 3.5 In part (d) of the following Corollary, and in the rest of this section we freely
use some notation and definitions for Lipschitz and monotonicity constants that are fully
explained and discussed at length in the Appendix A.

Corollary 3.6 Assume the setting of Theorem 3.4 and consider the following conditions:

(a) The matrix N(x, λ, w) is nonsingular on Rn × Rm
++ × Rm

++;

(b) Condition (22) holds for all x ∈ Rn;

(c) It holds that

sup
x∈Rn
‖Jc(x)‖ ≤ inf

x∈Rn
µsm(JF (x)−1)

‖JF (x)−1‖
;

(d) c is Lipschitz continuous on Rn with Lipschitz modulus α, F is Lipschitz continuous
on Rn and strongly monotone on Rn, the moduli of Lipschitz continuity and strong
monotonicity of F−1 are L−1 and σ−1, respectively, and

α ≤ σ−1

L−1

. (23)

Then it holds that
(d) =⇒ (c) =⇒ (b) =⇒ (a).

Proof. The only implication that needs a proof is (d) =⇒ (c). By Proposition A.2 (a)
in the Appendix, we have α = supx∈Rn ‖Jc(x)‖. We now recall that since F is strongly
monotone on Rn, its range is Rn, see [50, Theorem 5.4.5]. Therefore, by Proposition A.2
in the Appendix and taking into account that JF−1(F (x)) = JF (x)−1, we can write

σ−1

L−1

=
infy∈Rn µ

s
m(JF−1(y))

supy∈Rn ‖JF−1(y)‖
=

infx∈Rn µ
s
m(JF (x)−1)

supx∈Rn ‖JF (x)−1‖
≤ inf

x∈Rn
µsm(JF (x)−1)

‖JF (x)−1‖
.

This completes the proof. �

Although the sufficient condition (23) is the strongest one among those we analyzed, it
gives a clear geometric picture of the kind of conditions we need in order to guarantee
nonsingularity. Note that Lipschitz continuity and strong monotonicity of F imply that
also the inverse of F enjoys the same properties, see Proposition A.4 in the Appendix A,
so that L−1 and σ−1 are well defined. Furthermore, observe that (σ−1/L−1) ≤ 1 (this
is obvious from the very definition of these constants, see Appendix A). Therefore (23)
stipulates that c(x) is rather “flat” and consequently, K(x) varies “slowly”, in some sense.

Remark 3.7 Reference [45] is one of the most interesting papers where the moving set
structure has been used in order to show convergence of some algorithms for QVIs. It
is shown in [45] that if α ≤ σ

L
, where α and L are the Lipschitz moduli of c and F ,

respectively, and σ is the strong monotonicity modulus of F , then a certain gradient
projection type method converges to the unique solution of the QVI (see Section 1). It is
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then of interest to contrast this condition to our condition α ≤ σ−1

L−1
in Corollary 3.6 (d)

(which is the strongest among the conditions we considered). If the function F is a gradient
mapping, then Proposition A.5 in the Appendix implies that σ/L = σ−1/L−1, so that our
condition and that in [45] are exactly the same. However, in general σ−1/L−1 < σ/L and
σ−1/L−1 > σ/L can both occur. In fact, consider the function

F (x) =

 1 0 1
0 1 0
0 1 1

x.

It is easy to see that σ(Rn, F ) = 1− 1√
2

and L(Rn, F ) ' 1.8019. Moreover, we have

F−1(x) =

 1 1 −1
0 1 0
0 −1 1

x.

Again, it is easy to see that σ(Rn, F−1) = 1
2

and L(Rn, F−1) ' 2.2470. Therefore, we have

σ(Rn, F )

L(Rn, F )
' 0.1625 < 0.2225 ' σ(Rn, F−1)

L(Rn, F−1)
,

and then for this function our condition is less restrictive than that in [45]. But it is
sufficient to switch the function with its inverse to get exactly the opposite. Therefore
there is no one condition that dominates the other one in general. �

The following example shows how condition (c) in Corollary 3.6 simplifies in certain situ-
ations and the way it can be used (i) to show how interesting classes of problems can be
analyzed and (ii) to easily check whether this condition is actually satisfied in a concrete
situation.

Example 3.8 The discretization of many (elliptic) infinite-dimensional QVIs involving
suitable partial differential operators often leads to linear mappings of the form F (x) =
Ax + b for some positive definite matrix A, see e.g. [29, 30]. Furthermore, in many
application in mechanics an implicit-obstacle-type constraint described by the set K(x) :=
{y | y ≤ c(x)} for some smooth mapping c is present, see [38]. In these cases K(x)
belongs to the class of moving sets with q being the identity mapping in (21). Taking

into account that JF (x) = A, we can easily calculate µsm(JF (x)−1)
‖JF (x)−1‖ which is obviously a

positive constant. It actually turns out that there are intereseting applications where A
is symmetric. Furthermore the minimum and maximum eigenvalues of A, here denoted
by λmin(A) and λmax(A) respectively, are even known analytically in some cases, e.g., if A
corresponds to a standard finite difference-discretization of the two-dimensional Laplace
operator on the unit square (0, 1)× (0, 1). In this setting we can write

µsm(JF (x)−1)

‖JF (x)−1‖
=
λmin(A−1)

‖A−1‖
=

1/λmax(A)

1/λmin(A)
=
λmin(A)

λmax(A)
> 0.
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Hence condition (c) in Corollary 3.6 holds provided that ‖Jc(x)‖ is less or equal to this
positive constant, i.e. provided that c is Lipschitz continuous with a sufficiently small
Lipschitz constant. �

3.3 Linear Constraints with Variable Right-hand Side

We now pass to consider the case in which the feasible set K(x) is given by

K(x) = {y ∈ Rn | g(y, x) := Ey − b− c(x) ≤ 0}, (24)

where E ∈ Rm×n is a given matrix, c : Rn → Rm and b ∈ Rm. In this class of QVIs, the
feasible set is defined by linear inequalities in which the right-hand side depends on x.

Figure 2: Example of linear constraints with variable right-hand side: here E = (e1 e2)T

and e1 < 0, e2 > 0.

Theorem 3.9 Let g be defined as in (24), let x ∈ Rn be a given point, and assume that
F and c are C1 around x. Suppose further that JF (x) is positive definite and that

‖Jc(x)‖ ≤ µ+
m(x)

‖JF (x)−1‖‖E‖
, (25)

where

µ+
m(x) = min{µ+

m(A) | A is a principal submatrix of
1

2
E(JF (x)−1 + JF (x)−T )ET},

µ+
m(A) denotes the minimum positive eigenvalue of the matrix A, and A−T is the transpose

of the inverse of A. Then JH(x, λ, w) is nonsingular for all positive λ and w.

Proof. We will show that the assumptions from Corollary 3.3 hold. First of all note
that the hypotheses imply Assumptions 1.1 and 2.1. Taking into account (24), we have
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∇yg(x, x) = ET and Jxh(x) = E − Jc(x). Since JF (x) is nonsingular by assumption, we
can write

M̄ := M̄(x, λ) = (E − Jc(x))JF (x)−1ET .

In view of Corollary 3.3, we need to show that M̄ is a P0 matrix.
To this end, we first observe that the rank of M̄ is obviously less or equal to n (the rank

of JF (x)). Hence each principal minor of M̄ with dimension greater than n is equal to
zero. Therefore, it suffices to show that each principal minor of M̄ with size less or equal
to n is nonnegative.

A generic principal submatrix of M̄ with dimension s ≤ n is defined by

(Ei∗ − Jc(x)i∗)i∈IsJF (x)−1(Ei∗)
T

i∈Is

where Is is a subset of {1, . . . ,m} with cardinality equal to s. Therefore, each of these
subsets of indices defines a principal submatrix of M̄ . Now we have two cases: EIs :=
(Ei∗)i∈Is has full row rank or not. If not, the principal minor corresponding to Is is equal
to zero. Otherwise, if EIs has full row rank, then we can prove that the principal submatrix
corresponding to Is is positive semidefinite. In fact, we can write

vTEIsJF (x)−1ET

Isv ≥ µ+
m(x)‖v‖2

(25)

≥ ‖Jc(x)‖ ‖JF (x)−1‖ ‖E‖ ‖v‖2

≥ ‖Jc(x)Is‖ ‖JF (x)−1‖ ‖EIs‖ ‖v‖2

≥ vTJc(x)IsJF (x)−1EIsv, ∀v ∈ Rn,

where the third inequality follows from the fact that the spectral norm of a submatrix is
less or equal to the spectral norm of the matrix itself. Then we have

vT (EIs − Jc(x)Is)JF (x)−1ET

Isv ≥ 0, ∀v ∈ Rn.

Hence M̄ is a P0 matrix, and using Corollary 3.3, we have the thesis. �

By the inclusion principle (see, for example, [35, Theorem 4.3.15]) and recalling condition
(25), it is clear that if the matrix E has full row rank, then we have

µ+
m(x) = µsm(EJF (x)−1ET ).

This allows us to state the following immediate corollary.

Corollary 3.10 Let g be defined as in (24), let x ∈ Rn be a given point, and assume that
F and c are C1 around x. Moreover, suppose that E has full row rank. Suppose that JF (x)
is positive definite and that

‖Jc(x)‖ ≤ µsm(EJF (x)−1ET )

‖JF (x)−1‖‖E‖
.

Then JH(x, λ, w) is nonsingular for all positive λ and w.
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Technicalities apart, the meaning of Theorem 3.9 is that c(x) should not vary “too quickly”.
The following result parallels Corollary 3.6 and gives stronger, but more expressive

conditions for the nonsingularity of JH.

Corollary 3.11 Assume the same setting as in Theorem 3.9 and consider the following
conditions:

(a) The matrix N(x, λ, w) is nonsingular on Rn × Rm
++;

(b) For all x ∈ Rn, JF (x) is positive definite and condition (25) holds;

(c) For all x, JF (x) is positive definite and it holds that

‖Jc(x)‖ ≤ µsm(JF (x)−1)

‖JF (x)−1‖
µ+
m

‖E‖
,

where µ+
m = min{µ+

m(A) | A is a principal submatrix of EET};

(d) The Jacobian JF (x) is positive definite for all x ∈ Rn, and it holds that

sup
x∈Rn
‖Jc(x)‖ ≤ inf

x∈Rn
µsm(JF (x)−1)

‖JF (x)−1‖
µ+
m

‖E‖
;

(e) c is Lipschitz continuous on Rn with Lipschitz modulus α, F is Lipschitz continuous
on Rn and strongly monotone on Rn, the moduli of Lipschitz continuity and strong
monotonicity of F−1 are L−1 and σ−1, respectively, and

α ≤ σ−1

L−1

µ+
m

‖E‖
,

where µ+
m is defined as before.

Then the following implications hold:

(e) =⇒ (d) =⇒ (c) =⇒ (b) =⇒ (a).

Proof. We only prove the implication (c) =⇒ (b), the other ones are very similar to those
of Corollary 3.6, hence they are left to the reader.

In order to verify the implication (c) =⇒ (b), we have to show that

µ+
m(x) ≥ µsm(JF (x)−1)µ+

m, ∀x ∈ Rn (26)

holds. Take an arbitrary x, and let I∗s be a set of indices such that 1
2
EI∗s (JF (x)−1 +

JF (x)−T )ET
I∗s

is a submatrix of 1
2
E(JF (x)−1 + JF (x)−T )ET for which one obtains the

minimum positive eigenvalue µ+
m(x) for the given x (where as before EI∗s := (Ei∗)i∈I∗s ). Let
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v̄ be an eigenvector of the matrix 1
2
EI∗s (JF (x)−1 + JF (x)−T )ET

I∗s
associated to µ+

m(x); we
may assume without loss of generality that ‖v̄‖ = 1. Then we have

v̄TEI∗s JF (x)−1ET

I∗s
v̄ =

1

2
v̄TEI∗s (JF (x)−1 + JF (x)−T )ET

I∗s
v̄ = µ+

m(x)‖v̄‖2 = µ+
m(x). (27)

Since the eigenvectors corresponding to different eigenvalues of a symmetric matrix are
orthogonal to each other, we have v̄ ⊥ null

(
1
2
EI∗s (JF (x)−1 + JF (x)−T )ET

I∗s

)
. However,

it is easy to see that, for any positive definite (not necessarily symmetric) matrix A,
the two matrices EI∗sAE

T
I∗s

and EI∗sE
T
I∗s

have the same null space. Hence we also have

v̄ ⊥ null
(
EI∗sE

T
I∗s

)
. Now, assuming that EI∗sE

T
I∗s

is an s × s-matrix, let EI∗sE
T
I∗s

= QDQT

with Q ∈ Rs×s orthogonal and D = diag(λ1, . . . , λs) be the spectral decomposition of
EI∗sE

T
I∗s

, i.e. λi are the eigenvalues with corresponding eigenvectors vi being the i-th column
of Q. Suppose further that the null space of this matrix has dimension r ≤ s and that the
eigenvalues are ordered such that λ1 ≤ . . . ≤ λs. Then λ1 = . . . = λr = 0 (and λr+1 ≥ µ+

m

in our notation) and the eigenvectors v1, . . . , vr form a basis of the null space of EI∗sE
T
I∗s

.
We therefore have v̄Tvi = 0 for all i = 1, . . . , r. Consequently, wi = 0 for all i = 1, . . . , r,
where w := QT v̄. It therefore follows that

v̄TEI∗sE
T

I∗s
v̄ = v̄TQDQT v̄ = wTDw =

s∑
i=1

λiw
2
i

=
s∑

i=r+1

λiw
2
i ≥ µ+

m

s∑
i=r+1

w2
i = µ+

m

s∑
i=1

w2
i = µ+

m‖w‖2 = µ+
m‖v̄‖2 = µ+

m.

Combining this inequality with (27), we obtain

µ+
m(x) = v̄TEI∗s JF (x)−1ET

I∗s
v̄ ≥ µsm(JF (x)−1)v̄TEI∗sE

T

I∗s
v̄ ≥ µsm(JF (x)−1)µ+

m,

and this shows that (26) holds. �

We illustrate the previous result by the following example which comes from a realistic
model described in [52], and which is also used as a test problem in Section 7 (test problems
OutKZ31 and OutKZ41).

Example 3.12 Consider the problem of an elastic body in contrast to a rigid obstacle. In
particular assume that Coulomb friction is present. After discretization, this class of QVIs
is characterized by a linear function F (x) := Bx− g with a positive definite matrix B, and
by the following constraints:

ai − yi ≤ 0, ai =

{
l, if i ∈ {1, ..., n} is even,

φ xi+1, if i ∈ {1, ..., n} is odd,

yi − bi ≤ 0, bi =

{
u, if i ∈ {1, ..., n} is even,

−φxi+1, if i ∈ {1, ..., n} is odd,

with l < u ≤ 0 and where φ ∈ R is the friction coefficient. Let x∗ ∈ Rn be a solution of the
described QVI, then odd elements of x∗ are interpreted as tangential stress components on
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the rigid obstacle in different points of such obstacle, while even elements are interpreted
as outer normal stress components. This example fits into the framework of this subsection
with

E :=

(
−I
I

)
, ‖Jc(x)‖ =

√
2φ, ‖E‖ =

√
2,

µ+
m = min

{
µ+
m(A) : A is a principal submatrix of

(
I −I
−I I

)}
= 1.

According to Corollary 3.11 (c)→(a), we can say that if

φ ≤ 1√
2

µsm(B−1)

‖B−1‖
µ+
m

‖E‖
=

1√
2

µsm(B−1)

‖B−1‖
1√
2

(
≤ 1

2

)
,

then we are sure that JH(x, λ, w) is nonsingular for all λ and w positive. Note that this
condition holds for all sufficiently small friction coefficients φ. �

So far, in this subsection we have considered only QVIs that are linear in the y-part.
This restriction has allowed us to give conditions that do not depend on the multipliers λ.
However, we can extend the results we have obtained to the more general setting in which

K(x) = {y ∈ Rn | g(y, x) := q(y)− c(x) ≤ 0}, (28)

where both q and c are functions from Rn to Rm. We can prove the following theorem, in
which nonsingularity conditions now also depend on the Lagrange multiplier λ. The proof
follows lines identical to those of Theorem 3.9 and is therefore omitted.

Theorem 3.13 Let g be defined as in (28), let a point (x, λ) ∈ Rn × Rm
++ be given and

assume that F and c are C1 while q is C2 around x. Suppose further that JxL(x, λ) is
positive definite and that

‖Jc(x)‖ ≤ µ+
m(x, λ)

‖JxL(x, λ)−1‖‖Jq(x)‖
,

where µ+
m(x, λ) = min{µ+

m(A) | A is a principal submatrix of 1
2
Jq(x)(JxL(x, λ)−1+JxL(x, λ)−T )

Jq(x)T} and µ+
m(A) denotes once again the minimum positive eigenvalue of a symmetric

matrix A. Then JH(x, λ, w) is nonsingular for all positive w.

We conclude by considering a particular structure of the constraints of the QVI that is a
subclass of that studied in this section. Suppose that

g(y, x) :=

 l − y
y − u

I± (y − c(x))

 ≤ 0, (29)

where I± is a diagonal matrix with elements equal to 1 or -1, that is there are box con-
straints for y with lower bounds l and upper bounds u, and n special linear constraints
with variable right-hand side.
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Theorem 3.14 Let g be defined as in (29), let a point x ∈ Rn be given and assume that
around x it holds that F and c are C1. Suppose that JF (x) and I−Jc(x) are row diagonally
dominant with positive diagonal entries. Then JH(x, λ, w) is nonsingular for all positive
λ and w.

Proof. Let

D :=

 D1 0 0
0 D2 0
0 0 D3

 := diag(w−1 ◦ λ),

where D1, D2, D3 ∈ Rn×n and w = (w1, w2, w3), λ = (λ1, λ2, λ3) denote the slack vari-
ables and Lagrange multipliers corresponding to the three blocks in the definition of the
inequality constraints from (29), respectively. Then we can write

N(x, λ, w) = JF (x) +
(
−I I I±

)
D

 −I
I

I±(I − Jc(x))


= JF (x) +D1 +D2 +D3 (I − Jc(x)) .

Note that D3 (I − Jc(x)) is a row diagonally dominant matrix with positive diagonal entries
for all λ and w positive. Hence N(x, λ, w) is a strictly row diagonally dominant matrix
for all λ and w positive since it is the sum of two row diagonally dominant matrices
with positive diagonal entries (JF (x) and D3 (I − Jc(x))) and two strictly row diagonally
dominant matrices with positive diagonal entries (D1 and D2). Recalling that every strictly
row diagonally dominant matrix is nonsingular, we obtain the thesis. �

It is possible to generalize constraints (29) by imposing that lower or upper bounds may
not exist for every variable and that the number of special linear constraints with variable
right-hand side may be less or greater than n:

g(y, x) :=


(li − yi)i∈L
(yi − ui)i∈U(

yi − cji (x)
)j∈C(i)

i∈S+(
−yi + dji (x)

)j∈D(i)

i∈S−

 ≤ 0, (30)

where L,U, S−, S+ ⊆ {1, . . . , n} and for any i ∈ S+, C(i) ⊆ {1, 2, . . .} and for any i ∈ S−,
D(i) ⊆ {1, 2, . . .}. For QVIs with these constraints a result similar to Theorem 3.14 can
be given. The proof of this theorem is akin to that of Theorem 3.14 and hence it is left to
the reader.

Theorem 3.15 Let g be defined as in (30), let a point x ∈ Rn be given and assume that
around x it holds that F , c and d are continuously differentiable. Suppose that JF (x) is
row diagonally dominant with positive diagonal entries and such that for every i /∈ L ∪ U
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it holds that JF (x)ii >
∑

k=1,...,n, k 6=i |JF (x)ik|. Suppose further that for all i ∈ S+ and all
j ∈ C(i) it holds that

1− ∂cji (x)

∂xi
≥

∑
k=1,...,n, k 6=i

∣∣∣∣∣∂cji (x)

∂xk

∣∣∣∣∣ ,
and that for all i ∈ S− and all j ∈ D(i) it holds that

1− ∂dji (x)

∂xi
≥

∑
k=1,...,n, k 6=i

∣∣∣∣∣∂dji (x)

∂xk

∣∣∣∣∣ .
Then JH(x, λ, w) is nonsingular for all positive λ and w.

3.4 Box Constraints and “Binary Constraints”

We now consider the situation where each component gi of the constraint function from
(2) depends only on a single pair (yj, xj) for some index j ∈ {1, . . . , n}. In particular, this
includes the case of bounds having parametric bound constraints. We use the terminol-
ogy “binary constraints” for this class of problems. The following result shows how the
nonsingularity Theorem 3.1 can be applied.

Theorem 3.16 Let x ∈ Rn and λ > 0 be given. Suppose that each constraint gi(·, ·) (i =
1, . . . ,m) depends only on a single couple (yj(i), xj(i)) for some j(i) ∈ {1, . . . , n} and that
Assumptions 1.1 and 2.1 hold. Assume further that one of the following conditions holds:

(a) JxL(x, λ) is a P -matrix and ∇yj(i)gi(xj(i), xj(i))∇xj(i)hi(xj(i)) ≥ 0 for all i, or

(b) JxL(x, λ) is a P0-matrix and ∇yj(i)gi(xj(i), xj(i))∇xj(i)hi(xj(i)) > 0 for all i.

Then JH(x, λ, w) is nonsingular for all positive w.

Proof. We verify the statement under condition (a) since the proof under (b) is essentially
identical.

We assume without loss of generality that the constraints g are ordered in such a way
that the first m1 constraints depend on the pair (y1, x1) only, the next m2 constraints
depend on the couple (y2, x2) only, and so on, with the last mn constraints depending on
(yn, xn) only. Note that mi might be equal to zero for some of the indices i ∈ {1, . . . , n},
and that we have m1 + m2 + . . . + mn = m. Taking this ordering into account, it is not
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difficult to see that

Jxh(x) =



∇x1h1(x1) 0 · · · 0
∇x1h2(x1) 0 · · · 0

...
...

...
∇x1hm1(x1) 0 · · · 0

0 ∇x2hm1+1(x2) 0
...

...
...

0 ∇x2hm1+m2(x2) 0

0 0
. . . 0

...
...

...
...

... 0 ∇xnhm−mn+1(xn)
...

...
...

...
0 0 0 ∇xnhm(xn)



,

whereas ∇yg(x, x) is given by ∇y1g1(x1, x1) · · · ∇y1gm1(x1, x1) 0 · · · · · · 0

0 · · · 0
. . . 0 · · · 0

0 · · · · · · 0 ∇yngm−mn+1(xn, xn) · · · ∇yngm(xn, xn)

 .

Then, an easy calculation shows that the matrix N(x, λ, w) from (15) is given by

N(x, λ, w) = JxL(x, λ) +D

with the diagonal matrix

D :=


∑m1

i=1
λi
wi
∇y1gi(x1, x1)∇x1hi(x1) 0

. . .

0
∑m

i=m−mn+1
λi
wi
∇yngi(xn, xn)∇xnhi(xn)

 .

In view of assumption (a) together with λ,w > 0, it follows that JxL(x, λ) is a P -matrix and
the diagonal matrix D is positive semidefinite. This implies that N(x, λ, w) is nonsingular
for all positive w, and then from Theorem 3.1 we obtain the thesis. �

We give below a specialization which deals with the most important case of Theorem 3.16:
the case in which the constraints are bound constraints of the type

ui(yi, xi) := yi − aixi ≤ ci ∀i = 1, . . . , n and (31)

li(yi, xi) := −yi + bixi ≤ di ∀i = 1, . . . , n. (32)

For this class of QVIs, Theorem 3.16 easily gives the following corollary.

Corollary 3.17 Let x ∈ Rn be given, and consider a QVI whose feasible set is defined by
the constraints (31) and (32) and suppose that F is C1 around x. Assume that one of the
following conditions hold:
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(a) JF (x) is a P0-matrix and ai < 1, bi < 1 for all i = 1, . . . , n, or

(b) JF (x) is a P -matrix and ai ≤ 1, bi ≤ 1 for all i = 1, . . . , n.

Then JH(x, λ, w) is nonsingular for all positive λ and w.

In principle, QVIs with box constraints can be viewed as a subclass of QVIs with linear
constraints and variable right-hand sides, see (30). However, the conditions we got here
are somewhat weaker. Note in particular that the conditions in Theorem 3.15 require JF
to be diagonally dominant with positive diagonal elements, which implies that JF must
be P0, while a P0 matrix is not necessarily diagonally dominant.

3.5 Bilinear Constraints

We conclude this section on nonsingularity results for JH by considering the case of bilinear
constraints which can be considered as a natural variant of the case of (linear) constraints
with variable right-hand side in which the right-hand sides are fixed, but the coefficients
of the linear part vary. Specifically, we consider a QVI in which the feasible set is defined
by some convex “private” constraints qi(y) ≤ 0 (that depend only on y) and some bilinear
constraints of the form

xTQiy − ci ≤ 0

in which each matrix Qi is symmetric and positive semidefinite. Hence we consider con-
straints of the form

g(y, x) :=



q1(y)
...

qp(y)
xTQ1y − c1

...
xTQby − cb


≤ 0. (33)

In order to deal with these constraints we give a preliminary result on QVIs in which the
feasible set satisfies the condition

∇xh(x) = ∇yg(x, x)D+, (34)

where D+ is a diagonal matrix with nonnegative entries. Although this is a technical result,
it is the key to the analysis of QVIs with bilinear constraints.

Theorem 3.18 Suppose that Assumptions 1.1 and 2.1 hold. Let x ∈ Rn and λ > 0 be
given. Assume that g and h satisfy equation (34) in x, and that JxL(x, λ) is a positive
definite matrix. Then JH(x, λ, w) is nonsingular for all positive w.

Proof. It is easy to see that the matrix M̄ from Corollary 3.3 is given by

M̄(x, λ) = D+∇yg(x, x)TJxL(x, λ)−1∇yg(x, x),

34



Figure 3: Example of bilinear constraints: here y ≥ d > 0, c > 0 and Q > 0.

which is the product of a diagonal matrix with nonnegative entries and a positive semidef-
inite matrix. It is well known that a matrix with this form is P0 (see Proposition B.12 in
Appendix B), and then by Corollary 3.3 the thesis holds. �

Now, it is not difficult to see that the constraints (33) satisfy condition (34) with D+ having
the first p entries equal to 1 and the last b entries equal to 2. Therefore, the nonsingularity
of JH follows immediately from Theorem 3.18.

Corollary 3.19 Consider the constraints (33), with each qi, i = 1, . . . , p, convex and C2

and each Qj, j = 1, . . . , b, positive semidefinite and symmetric and suppose that F is C1.
Let x ∈ Rn and λ > 0 be given and assume that JxL(x, λ) is a positive definite matrix.
Then JH(x, λ, w) is nonsingular for all positive w.

Note that JxL(x, λ) is certainly positive definite if either F is strongly monotone, or at
least one qi is strongly convex or at least one Qj is positive definite.
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4 Existence: Boundedness Conditions

In this section, we consider conditions guaranteeing that a sequence generated by Algorithm
3 is bounded and, therefore, has an accumulation point. We first discuss a general result
and then its application to the moving set case. Application of the general result to the
remaining settings considered before does not require any specific investigation, so we
conclude the section with a few more examples and general considerations.

4.1 General Boundedness Conditions

We begin with a general result that shows that under a sort of coercivity condition ((a1)
below) and constraint qualification ((a2) below) we can guarantee boundedness of the
sequence generated by Algorithm 3. We recall that we assume that K(x) is defined by (2)
and that h(x) := g(x, x).

Theorem 4.1 Let the setting and the assumptions of Theorem 2.2 be satisfied and suppose,
in addition, that

(a1) lim
‖x‖→∞

‖max{0, h(x)}‖ =∞,

(a2) for all x ∈ Rn there exist a d such that ∇ygi(x, x)Td < 0 for all i ∈ {i : hi(x) ≥ 0}.

Then any sequence generated by Algorithm 3 remains bounded, and any accumulation point
is a solution of the QVI.

Proof. By Theorem 2.2 (a), it is enough to show that ‖H(x, λ, w)‖ has bounded level
sets over ZI . To this end, suppose that a sequence {(xk, λk, wk)} ⊆ ZI exists such that
limk→∞ ‖(xk, λk, wk)‖ =∞. We will show that ‖H(xk, λk, wk)‖ → ∞ as k →∞.

We first claim that the sequence {xk} is bounded. Assume we have ‖xk‖ → ∞. Then
condition (a1) would imply ‖max{0, h(xk)}‖ → ∞. Hence there would exist an index
j ∈ {1, . . . ,m} such that, on a suitable subsequence, hj(x

k) → +∞, and therefore also
‖h(xk) + wk‖ → ∞ since wk > 0. But this would imply ‖H(xk, λk, wk)‖ → ∞ and gives
the desired contradiction. Hence it remains to consider the case in which ‖(λk, wk)‖ → ∞
and {xk} is bounded.

Suppose that ‖wk‖ → ∞ and {xk} is bounded. Then {h(xk)} is also bounded due
to the continuity of h. We therefore obtain ‖h(xk) + wk‖ → ∞. This, in turn, implies
‖H(xk, λk, wk)‖ → ∞ which, again, is a contradiction. Thus we have to consider only the
case where ‖λk‖ → ∞ and {(xk, wk)} is bounded.

For ‖λk‖ → ∞, let Jλ be the set of indices such that {λkj} → ∞, whereas, subsequencing
if necessary, we may assume that the remaining components stay bounded. Without loss
of generality, we may also assume that xk → x̄ and wk → w̄. If, for some j ∈ Jλ, we
have w̄j > 0, it follows that λkjw

k
j → +∞ and, therefore, again ‖H(xk, λk, wk)‖ → ∞.

Consequently, it remains to consider the case where w̄j = 0 for all j ∈ Jλ.
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Since (xk, λk, wk) belongs to ZI , we have hj(x
k)+wkj > 0 which implies hj(x̄) ≥ 0 for all

j ∈ Jλ. Hence we can apply condition (a2) and obtain a vector d such that ∇ygj(x̄, x̄)Td <
0, ∀j ∈ Jλ. This implies

lim
k→∞

L(xk, λk)Td = lim
k→∞

(
F (xk)Td+

∑
j 6∈Jλ

λkj∇ygj(x
k, xk)Td

)
+

+ lim
k→∞

(∑
j∈Jλ

λkj∇ygj(x
k, xk)Td

)
= −∞

since the first term is bounded (because {xk} → x̄ and the functions F and ∇yg are
continuous, and because all sequences {λkj} for j 6∈ Jλ are bounded by definition of the
index set Jλ), whereas the second term is unbounded since λkj → +∞ and ∇ygj(x̄, x̄)Td < 0
for all j ∈ Jλ. Using the Cauchy-Schwarz inequality, we therefore obtain

‖L(xk, λk)‖ ‖d‖ ≥ |L(xk, λk)Td| → ∞

for k →∞. Since d is a fixed vector, this implies ‖L(xk, λk)‖ → ∞ which, in turn, implies
‖H(xk, λk, wk)‖ → ∞ for k → ∞. This contradiction, together with Theorems 1.2 and
2.2, completes the proof. �

Note that condition (a1) in Theorem 4.1 guarantees boundedness of the x- and w-parts,
whereas (a2) is needed for the λ-part. In principle, if we knew an upper bound for the
multipliers value, we could add this bound to the constrained equation reformulation of the
KKT system and dispense with assumption (a2) altogether; we do not elaborate further
on this idea for lack of space.

Condition (a1) is a mild coercivity condition that implies neither the boundedness of
K(x) for any x nor the existence of a compact set K such that K(x) ⊆ K for all x, as one
might think at first sight.

Example 4.2 Consider a problem with K(x) = {y ∈ R | y+x2 ≤ 1}. In this case, for every
x, the set K(x) is unbounded and yet (a1) is easily seen to hold, since h(x) = x+ x2 − 1.
�

Example 4.3 Consider a problem with K(x) = {y ∈ R2 | ‖y + x‖2 ≤ 1}. In this case, for
every x, the set K(x) is a ball of radius 1 and center in −x. We have ∪x∈RnK(x) = Rn.
But h(x) = 4‖x‖2 − 1 and so (a1) holds. �

However, uniform boundedness of K(x) implies (a1) if some, very common and natural,
further structure is assumed. So suppose K(x) = K ∩ K ′(x), i.e. suppose that K(x) is
given by the intersection of a fixed set K and a point to set mapping K ′. Analytically,
this simply means that if K(x) = {y ∈ Rn | g(x, y) ≤ 0}, then some of the gi actually only
depend on y. Obviously, if K is bounded, K(x) is uniformly bounded when x varies. In
the proposition below we assume for simplicity that K is a bounded polyhedron (a quite
common case, but see the remark following the proposition for a simple generalization).
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Proposition 4.4 Let K(x) be defined by (2) with g continuous and convex in y for every
x ∈ Rn. Suppose that the first p inequalities of g are of the form Ay ≤ b and that the
polyhedron defined by these inequalities is bounded. Then (a1) in Theorem 4.1 holds.

Proof. Denote by K the bounded polyhedron defined by the inequalities Ay ≤ b. By
Hoffman’s error bound, we know there exists a positive constant c such that for every
x ∈ Rn we have dist(x,K) ≤ c ‖max{0, Ax − b}‖. Since K is bounded, this shows that
lim‖x‖→∞ ‖max{0, Ax− b}‖ =∞. But then (a1) in Theorem 4.1 follows readily. �

Remark 4.5 It is clear that the polyhedrality of the set K is only used to deduce that
an error bound holds. Therefore, it is straightforward to generalize the above result in the
following way: Suppose that the first inequalities of g define a bounded set K = {gi(y) ≤
0, i = 1, . . . , p} and that an error bound holds for this system of p inequalities. Then (a1) in
Theorem 4.1 holds. The literature on error bounds is vast and there are many conditions
that ensure the error bound condition, polyhedrality is just one of them. We refer the
interested reader to [23, 56]. �

Condition (a2) in Theorem 4.1 is a very mild constraint qualification. It is related to
the well-known Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ) for
a system of inequalities.

Definition 4.6 We say that a system of continuously differentiable inequalities f(x) ≤ 0,
with f : Rn → Rm, satisfies the EMFCQ if, for all x ∈ Rn, there exists a vector d ∈ Rn

such that ∇fi(x)Td < 0, for all i such that fi(x) ≥ 0.

For each given x, the set K(x) is defined by the system of inequalities g(y, x) ≤ 0. It is
then clear that condition (a2) is the requirement that an EMFCQ-like conditions holds
just at the point y = x and that this is a much weaker requirement than requiring the
EMFCQ to hold for the system g(y, x) ≤ 0. We give an example to clarify this point.

Example 4.7 Consider a problem with K(x) = {y ∈ R | y2 + x2 − 1 ≤ 0}. We have
∇yg(x, x) = 2x. It is clear that we can find a d ∈ R such tht 2xd < 0 at any point except
at x = 0. Therefore, (a2) holds because we have h(0) < 0. The EMFCQ, instead, is not
satisfied for the set K(1). In fact ∇yg(y, 1) = 2y and for y = 0 it is immediate to verify
that the EMFCQ fails. It is interesting to observe that for this problem also (a1) clearly
holds.

Furthermore, if x is greater than 1, we have K(x) = ∅, hence this simple example
also shows that (a1) and (a2) together do not imply K(x) 6= ∅ for all x. The latter is a
condition often encountered in papers dealing with algorithms for the solution of QVIs. �

Armed with the developments so far, we can now study the applicability of Theorem 4.1
to the moving set case, which is the only setting, among those considered in the previous
section, for which an additional analysis is useful.
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4.2 The Moving Set Case

Consider the QVI structure defined in subsection 3.2:

K(x) := c(x) +Q = {y ∈ Rn | q(y − c(x)) ≤ 0}, Q := {y ∈ Rn | q(y) ≤ 0}.

We recall that, in the previous section, we have given sufficient conditions for nonsingu-
larity of JH. Such conditions presuppose that ‖Jc(x)‖ ≤ 1 for all x ∈ Rn. In the next
proposition, we show that if the constraints q(x) ≤ 0 define a full-dimensional bounded set
and ‖Jc(x)‖ is uniformly bounded away from 1, then conditions (a1) and (a2) of Theorem
4.1 hold.

Proposition 4.8 In the setting described above, assume that c and q are continuously
differentiable. Suppose that:

(b1) ‖Jc(x)‖ ≤ α < 1 for all x ∈ Rn;

(b2) Q is compact and the system q(y) ≤ 0 satisfies Slater’s condition, i.e. there exists ȳ
such that q(ȳ) < 0.

Then conditions (a1) and (a2) of Theorem 4.1 hold.

Proof. Since ‖Jc(x)‖ ≤ α for all x ∈ Rn, the Cauchy-Schwarz inequality implies
yTJc(x)y ≤ α‖y‖2 for all x, y ∈ Rn. Therefore, yT (I − Jc(x))y ≥ (1 − α)‖y‖2 for all
x, y ∈ Rn, hence the function x − c(x) is strongly monotone on Rn and, consequently,
lim‖x‖→∞ ‖x − c(x)‖ = ∞. Now, since qi is convex for all components i, it follows that
max{0, qi} and, therefore, also ‖max{0, q(z)}‖ is convex. Hence, the corresponding level
sets are bounded for all levels if and only if at least one level set is bounded. But the level
set with level zero is precisely the set Q which was assumed to be compact. It therefore
follows that all level sets of the function z 7→ ‖max{0, q(z)}‖ are bounded. But then
lim‖x‖→∞ ‖x − c(x)‖ = ∞ implies lim‖x‖→∞ ‖max{0, q(x − c(x))}‖ = ∞, hence condition
(a1) holds.

To show that also (a2) is satisfied, we first note that ∇yg(x, x) = ∇q(x− c(x)). There-
fore, taking d := ȳ − (x − c(x)), with ȳ being the Slater point from assumption (b2), the
convexity of qi implies

0 > q(ȳ) ≥ qi(x− c(x)) +∇qi(x− c(x))T
(
ȳ − (x− c(x)

)
for all components i such that hi(x) = qi(x − c(x)) ≥ 0. But this immediately gives
∇ygi(x, x)Td < 0 for all i with hi(x) ≥ 0. �

4.3 Final Examples and Comments

We complete our discussion by giving a few additional examples on which we apply the
results of both this and the previous section in order to show the ability of our algorithm
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to solve problems that are not solvable by other methods. This will also give us the
opportunity to discuss very briefly some existence implications of the results obtained so
far.

An often used assumption in the analysis of algorithms and also in many existence
proofs is that either K(x) is nonempty for all x ∈ Rn or that there exists a convex compact
set T ⊂ Rn such that K(T ) ⊆ T and K(x) is nonempty for all x ∈ T , see Theorem 1.3.
The following example shows that this assumption is not implied by our conditions.

Example 4.9 Consider a one dimensional QVI with F (x) = x3 and K(x) = {y ∈ Rn | y2+
x2 + x4 − 1 ≤ 0}. First of all note that K(x) = ∅ if x 6∈ [−a, a], where a ≈ 0.7862 is
the only positive root of the equation x2 + x4 = 1. Furthermore, it is not difficult to see
that there cannot exist a convex compact set T (which would be a closed interval in our
case) such that K(T ) ⊆ T holds and K(x) is nonempty for all x ∈ T . In fact, it should be
T ⊆ [−a, a] since otherwise K(x) is empty for some x ∈ T . Furthermore, 0 can not belong
to T , otherwise K(0) = [−1, 1] 6⊆ T . Then T should be an interval of either all negative or
all positive numbers. But if nonempty, K(x) always contains both positive and negative
points.

Nevertheless, we can show that the conditions of Theorem 3.16 (a) are satisfied. We
have h(x) = 2x2 + x4 − 1, so that ∇yg(x, x)∇xh(x) = (2x)(4x + 4x3) = 8(x2 + x4) ≥ 0.
Furthermore JxL(x, λ) = 3x2 + 2λ which, for every x and positive λ, is positive. So
Theorem 3.16 (a) tells us that JH(x, λ, w) is nonsingular for any x and positive λ and w.

We next verify that also the assumptions of Theorem 4.1 are met. Condition (a1) is
obvious from the expression of h(x), so we consider (a2). We have ∇yg(x, x) = 2x, and
if x 6= 0, it is sufficient to take d = −x to have ∇yg(x, x)d < 0. If x = 0, this is not
possible, but in this case we also have h(x) < 0 so that (a2) is satisfied. We can then
conclude that every sequence generated by our interior-point method will be bounded and
that every limit point is a solution of the QVI. Note that this also gives an algorithmic
proof of the existence of a solution. We do not know any method that could provably solve
this example. Also proving existence by using other known results seems not obvious. �

As far as we are aware of, all methods for which convergence to a solution can be proved
make assumptions that imply the existence of a (at least locally) unique solution and
require the function F to be strongly monotone. In the following example, we present a
problem with a monotone, but not strongly monotone F , that has infinitely many solutions
and for which we can prove convergence of our method.

Example 4.10 Consider again a one dimensional problem with

F (x) =


−(x+ 1)4 if x ≤ −1,

0 if x ∈ [−1, 0],

x4 if x ≥ 0

and K(x) = {y ∈ R | − 10 ≤ y ≤ −2x}. The function F is monotone, but not strongly
monotone, and the solutions of the problem are all points in [−1, 0]. The assumptions of
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Corollary 3.17 are easily checked to be satisfied; in fact a1 = −2, b1 = 0 and since F is
monotone, its Jacobian is positive semidefinite. Also condition (a1) in Theorem 4.1 holds
trivially. Consider then (a2) in the same theorem. We have h(x) = (−x− 10, 3x)T , so that
it is clear that at most one component of h can be positive at any point, a fact that easily
permits to check that also (a2) is satisfied. We conclude that the interior-point method is
able to find a solution of this problem which admits infinitely many solutions. �

We remarked already several times that, when it comes to algorithms, the most studied
QVIs are those with a moving set type of constraints. One of the most interesting papers in
this category is [45] where, among other things, a wider class of problems is studied under
a condition, subsequently used also by other authors, which is implied by the moving set
structure (which actually constitutes the main case in which the condition below can be
verified). This condition is

‖ΠK(x)(z)− ΠK(y)(z)‖ ≤ α‖x− y‖, α < 1, ∀x, y, z ∈ Rn, (35)

where ΠK denotes the Euclidean projector on K and α is a positive constant whose exact
definition is immaterial here (see also Theorem 1.4). Roughly speaking, condition (35) is
a strenghtening of a contraction property of the point-to-set mapping K(·). The following
example shows that our assumptions do not imply condition (35).

Example 4.11 Consider the same problem as in the previous example and, in particular,
its feasible set mapping K(x) = {y ∈ R | − 10 ≤ y ≤ −2x}. Then

‖ΠK(0)(1)− ΠK(1)(1)‖ = ‖0− (−2)‖ = 2 ≤ α‖0− 1‖ = α

implies α ≥ 2, so that condition (35) does not hold, whereas we have already mentioned
in Example 4.10 that our method provably solves this example. �
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5 Generalized Nash Equilibrium Problems

In this section we specialize results developed in Section 2, 3 and 4 for one of the most
important and studied applications for QVIs: the generalized Nash equilibrium problem
(GNEP for short). In a GNEP each player ν (ν = 1, . . . , N) controls xν ∈ Rnν and tries to
solve the optimization problem

min
xν

θν(x
ν , x−ν) s.t. gν(xν , x−ν) ≤ 0 (36)

with given θν : Rn → R and gν : Rn → Rmν . Here, n := n1 + . . . + nN denotes the
total number of variables, m := m1 + . . . + mN will be the total number of (inequality)
constraints, and (xν , x−ν) is a short-hand notation for the full vector x := (x1, x2, . . . , xN),
so that x−ν subsumes all the block vectors xµ with µ 6= ν. A vector x = (x1, . . . , xN)
is called feasible for the GNEP if it satisfies the constraints gν(x) ≤ 0 for all players
ν = 1, . . . , N . A feasible point x̄ is a solution of the GNEP if, for all players ν = 1, . . . , N ,
we have

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν) ∀xν : gν(xν , x̄−ν) ≤ 0,

i.e. if, for all players ν, x̄ν is the solution of the ν-th player’s problem, when the other
players set their variables to x̄−ν .

In the literature on GNEPs it is typical to assume that the following blanket assump-
tions always hold:

Assumption 5.1 θν(·, x−ν) and gνi (·, x−ν) are convex for every x−ν, and for every ν =
1, . . . , N and i = 1, . . . ,mν.

Assumption 5.2 θν and gν are C2 functions for every ν = 1, . . . , N .

This is a very general form of a GNEP, and finding a solution of such a GNEP is a very
hard problem, see [17, 24] for a detailed discussion. In fact, the solution of a GNEP
in this general form is still little investigated. Due to its daunting difficulty, only very
few results are available for the solution of a GNEP at the level of generality described
above, see [14, 16, 18, 22, 28, 57, 58] for some different approaches. Some subclasses, in
particular jointly convex Nash equilibrium problems (where g1 = g2 = . . . = gN are the
same convex functions, defining the same joint constraints for all players) and pure Nash
equilibrium problems (where gν depends on xν alone for all ν = 1, . . . , N), have been more
widely investigated and some reasonably efficient methods for the solution of these latter
problems have been proposed, see [17, 25].

Aim of this section is to study and give convergence results based on the use of the KKT
conditions of the general GNEP (36). This has been done previously in [16, 57], where the
authors were mainly interested in the local convergence behaviour of suitable Newton-type
methods. In particular, it is shown in [16] that one has to expect difficulties in solving
the KKT system due to some singularity problems, hence local fast convergence cannot
be obtained in many standard situations. Apart from these papers, the KKT approach is
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also part of the folklore in the engineering world, but in spite of this, there is still a lack
of any serious analysis dealing with the solution of this peculiar KKT-like system. In fact,
the study of this system is not trivial at all, and deriving convergence results for methods
based on the solution of the KKT system turns out to be a rather involved issue.

Here we fill this gap and provide sound results establishing the viability of the KKT
approach, both at the theoretical and numerical level, and with a special emphasis on the
global behaviour of the methods. In particular, we provide conditions under which the
global convergence is guaranteed. These conditions are reasonable and, to the best of our
knowledge, they are the first set of explicit conditions on a general GNEP under which
global convergence can be established. Global convergence results are also discussed in
[22], where a penalty technique for the solution of a general GNEP is proposed. Although
the results in [22] are of great interest, global convergence for genuine GNEPs can only be
established under restrictive conditions. These conditions depend on the unknown value
of a (penalty) parameter and so their application appears to be problematic in practice.

Let x̄ be a solution of the GNEP (36). Assuming any standard constraint qualification
holds, it is well known that the following KKT conditions will be satisfied for every player
ν = 1, . . . , N :

∇xνθν(x̄
ν , x̄−ν) +

mν∑
i=1

λνi∇xνg
ν
i (x̄ν , x̄−ν) = 0, (37)

λνi ≥ 0, gνi (x̄ν , x̄−ν) ≤ 0, λνi g
ν
i (x̄ν , x̄−ν) = 0 ∀i = 1, . . . ,mν ,

where λν is the vector of Lagrange multipliers of player ν. Vice versa, recalling that the
player’s problems are convex (see Assumption 5.1), we have that if a point x̄ satisfies,
together with a suitable vector of multipliers λ := (λ1, λ2, . . . , λN), the KKT conditions
(37) for every ν, then x̄ is a solution of the GNEP. It then seems rather natural to try to
solve the GNEP by solving the system obtained by concatenating the N systems (37). In
order to use a more compact notation, we introduce some further definitions.

We denote by Lν(x, λν) := θν(x
ν , x−ν) +

∑mν
i=1 λ

ν
i g

ν
i (xν , x−ν) the Lagrangian of player

ν. If we set F(x,λ) := (∇xνL
ν(x, λν))Nν=1 and g(x) := (gν(x))Nν=1, the concatenated KKT

system can be written as

F(x,λ) = 0, λ ≥ 0, g(x) ≤ 0, λTg(x) = 0. (38)

By introducing slack variables w := (wν)Nν=1 , where wν ∈ Rmν , and setting λ ◦ w :=(
λ1

1w
1
1, . . . , λ

N
mN
wNmN

)T
, we can define

H(z) := H(x,λ,w) :=

 F(x,λ)
g(x) + w
λ ◦w

 (39)

and
Z := {z = (x,λ,w) | x ∈ Rn,λ ∈ Rm

+ ,w ∈ Rm
+}. (40)
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It is immediate to verify that a point (x,λ) solves the KKT system (38) if and only if
this point, together with a suitable w, solves the constrained equation defined by (39) and
(40). Then we can apply Algorithm 3 to solve the CE (H,Z) and then the GNEP.

For the sake of notational simplicity, it is useful to introduce the matrix

E(x) :=

 ∇x1g
1(x) 0

. . .

0 ∇xNg
N(x)

 with ∇xνg
ν(x) ∈ Rnν×mν . (41)

5.1 Nonsingularity Conditions

We recall that the critical issue in applying Theorem 2.2 is establishing the nonsingularity
of

JH(z) :=

 JxF(x,λ) E(x) 0
Jxg(x) 0 I

0 diag(w) diag(λ)

 , (42)

for all λ and w positive.
The following theorem gives a sufficient condition for the nonsingularity of JH in Z.

This condition is interesting because it gives a quantitative insight into what is necessary
to guarantee the nonsingularity of JH.

Theorem 5.3 Let z = (x,λ,w) ∈ Rn × Rm
++ × Rm

++ be given such that JxF(x,λ) is
nonsingular and

µsm
(
E(x)TJxF(x,λ)−1E(x)

)
≥ ‖Jxg(x)− E(x)T‖2

∥∥JxF(x,λ)−1
∥∥

2
‖E(x)‖2 .

Then the Jacobian JH(z) is nonsingular.

Proof. For all u ∈ Rm we have

uTE(x)TJxF(x,λ)−1E(x)u =
1

2
uT
(
E(x)T

(
JxF(x,λ)−1 + JxF(x,λ)−1T

)
E(x)

)
u

≥ µsm
(
E(x)TJxF(x,λ)−1E(x)

)
‖u‖2

2

≥ ‖Jxg(x)− E(x)T‖2

∥∥JxF(x,λ)−1
∥∥

2
‖E(x)‖2 ‖u‖

2
2

≥ |uT (Jxg(x)− E(x)T ) JxF(x,λ)−1E(x)u|
≥ −uT (Jxg(x)− E(x)T ) JxF(x,λ)−1E(x)u.

Using the matrix M̄(x,λ) (defined for QVIs in Corollary 3.3), this implies that uTM̄(x,λ)u =
uTJxg(x) JxF(x,λ)−1E(x)u ≥ 0 for all u ∈ Rm. Therefore M̄(x,λ) is positive semidefi-
nite, hence a P0-matrix, and Corollary 3.3 guarantees nonsingularity of JH(z). �

It should be pointed out that in general, in Theorem 5.3, we do not need the matrix
JxF(x,λ) to be positive (semi-) definite. This is illustrated by the following example.
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Example 5.4 Consider a GNEP with two players, each controlling a single variable. The
problem is given by

Player 1: min
x1

1

2
x2

1 − 2x1 s.t. x2
1 + x2 ≤ 0,

Player 2: min
x2

1

2
x2

2 + (2− x2
1)x2 s.t. x2 ∈ R.

It is easy to see that JxF(x, λ) =

(
1 + 2λ 0
−2x1 1

)
is nonsingular for all x ∈ R2 and all

λ > 0 but it is not positive semidefinite everywhere. However, since a simple calculation
shows that Jxg(x)JxF(x, λ)−1E(x) = 8x2

1/(1 + 2λ) ≥ 0, it follows that the conditions from
Theorem 5.3 are satisfied.

As it is well known, it is possible to reformulate a GNEP as a QVI. Doing this, we can give
new results for GNEPs improving on the ones exposed so far (and which are taken from
[13]).

We consider GNEPs where each player solves a problem whose feasible set is defined by
a system of linear inequalities with variable right-hand side, i.e., player ν (ν = 1, . . . , N)
controls xν ∈ Rnν and tries to solve the optimization problem

min
xν

θν(x
ν , x−ν) s.t. Eνxν − bν − cν(x−ν) ≤ 0 (43)

with given θν : Rn → R, Eν ∈ Rmν×nν and cν : Rn−nν → Rmν , bν ∈ Rmν . It is well known
that a solution of the GNEP (43) can be computed by solving the following QVI:

Find x̄ ∈ {x ∈ Rn : Eνxν − bν − cν(x−ν) ≤ 0, ν = 1, . . . , N} such that

(∇xνθν(x̄))Nν=1

T

(y − x̄) ≥ 0, ∀y ∈ Rn : Eνyν − bν − cν(x̄−ν) ≤ 0, ν = 1, . . . , N. (44)

To simplify the notation, we write

F (x) := (∇xνθν(x))Nν=1 , E :=

 E1 0
. . .

0 EN

 , c(x) :=

 c1(x−1)
...

cN(x−N)

 . (45)

Note that the QVI (44) belongs to the class of QVIs whose constraints are defined by (24).
This fact allows us to rewrite Theorem 3.9 for the GNEP (43).

Theorem 5.5 Consider a GNEP in which each player tries to solve (43). Recalling the
notation in (45), let a point x ∈ Rn be given and assume that F and c are C1 around x.
Suppose further that JF (x) is positive definite and that

‖Jc(x)‖ ≤ µ+
m(x)

‖JF (x)−1‖‖E‖
, (46)

where µ+
m(x) = min{µ+

m(A) | A is a principal submatrix of 1
2
E(JF (x)−1 + JF (x)−T )ET},

and µ+
m(A) is again the minimum positive eigenvalue of the matrix A. Then JH(x,λ,w)

is nonsingular for all positive λ and w.
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Theorem 5.5 gives weaker conditions than those of Theorem 5.3, in fact it is clear that

µsm(EJF (x)−1ET ) ≤ µ+
m(x).

The following example describes a GNEP that satisfies conditions of Theorem 5.5, but
violates those from Theorem 5.3 for all x.

Example 5.6 Consider a GNEP in which there are two players controlling one variable
each one, x1 and x2 respectively. The optimization problems of the players are the following:

min
x1

(x1 − 2)2

s.t. x1 + 1
2
x2 ≤ 1,

x1 ≥ 0,

min
x2

(x2 − 2)2

s.t. x2 + 1
2
x1 ≤ 1,

x2 ≥ 0.

This GNEP has only one equilibrium in (2
3
, 2

3
). Referring to the notation in (45), we write

F (x) =

(
2x1 − 4
2x2 − 4

)
, E =


1 0
−1 0

0 1
0 −1

 , c(x) =


−1

2
x2

0

−1
2
x1

0

 .

Then

JF (x) =

(
2 0
0 2

)
� 0, JF (x)−1 =

(
1
2

0
0 1

2

)
, Jc(x) =


0 −1

2

0 0
−1

2
0

0 0

 .

Since ‖JF (x)−1‖ = 1
2
, ‖E‖ =

√
2, ‖Jc(x)‖ = 1

2
, and

EJF (x)−1ET =
1

2


1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

 ,

conditions of Theorem 5.3 do not hold since µsm(EJF (x)−1ET ) = 0 for all x and therefore
1
2
6≤ 0. However, condition (46) holds because, recalling the notation of Theorem 5.5,

µ+
m(x) = 1

2
for all x, and then we have 1

2
<

1
2

1
2

√
2

= 1√
2
. �

Now we consider games with totally different structure and still get convergence results.
In particular we consider GNEPs that can be reformulated as QVIs with moving sets (see
Subsection 3.2). Suppose that each player ν has to solve the following optimization problem

min
xν

θν(x
ν , x−ν) s.t. qν(xν − cν(x−ν)) ≤ 0 (47)
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with given θν : Rn → R, qν : Rnν → Rmν and cν : Rn−nν → Rnν . The feasible region of
player ν is therefore a “moving set” whose position depends on the variables of all other
players. The GNEP can be reformulated as a QVI (F,K) with

F (x) := (∇xνθν(x))Nν=1 , K(x) := c(x) +Q, (48)

c(x) :=

 c1(x−1)
...

cN(x−N)

 , Q :=
N∏
ν=1

{yν ∈ Rnν | qν(yν) ≤ 0} , (49)

that is a QVI with a moving set to which the nonsingularity results in Section 3.2 can
readily be applied.

Theorem 5.7 Consider a GNEP in which each player tries to solve (47). Recalling the
notation in (48) and (49), let a point x ∈ Rn be given and assume that F and c are C1

around x. Suppose further that JF (x) is positive definite and that

‖Jc(x)‖ ≤ µsm(JF (x)−1)

‖JF (x)−1‖
, (50)

then JH(x,λ,w) is nonsingular for all positive λ and w.

5.2 Boundedness Conditions

The following theorem is about boundedness of Algorith 3 in the solution of KKT system
of GNEPs. Since its proof is similar to that of Theorem 4.1 it is left to the reader.

Theorem 5.8 Suppose that JH(z) is nonsingular for all z ∈ ZI . If it holds that

(a1) lim
‖x‖→∞

‖max{0,g(x)}‖ =∞,

(a2) The Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ)
holds for each player, i.e., for all ν = 1, . . . , N and for all x ∈ Rn,

∃dν ∈ Rnν : ∇xνg
ν
i (x)Tdν < 0 ∀i ∈ Iν≥(x),

where Iν≥(x) :=
{
i ∈ {1, . . . ,mν} | gνi (x) ≥ 0

}
denotes the set of active or violated

constraints for player ν.

Then any sequence generated by Algorithm 3 remains bounded, and any accumulation point
is a solution of the GNEP.
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Part III

Applications and Numerical Results

48



6 Applications

In this section we present a collection of 55 QVI test problems. The problems range
from small (few variables and constraints) to large (several thousands of variables and
constraints). They include academic problems, problems arising from real-world applica-
tions (e.g. Walrasian equilibrium problems) and problems resulting from the discretiza-
tion of infinite-dimensional QVIs modelling diverse engineering and physical problems.
For each problem we provide a succinct, but complete description, along with Matlab
files which allow the user to easily obtain function values and derivatives and that can
be easily incorporated in any solution routine developed in order to solve QVIs. It is
hoped that the availability of this collection, which we plan to maintain and enlarge,
will stimulate the development of new solution methods and will permit a uniform and
fair comparison of existing and future algorithms. The collection can freely be obtained
by writing to facchinei@dis.uniroma1.it, kanzow@mathematik.uni-wuerzburg.de or
sagratella@dis.uniroma1.it.

6.1 Classification of Test Problems

Each QVI, see (1), is defined by the function F and the point-to-set mapping K(x). We
assume that K(x) is defined as the intersection of a fixed set K̄ and a set K̃(x) that
depends on the point x:

K(x) = K̄ ∩ K̃(x).

The sets K̄ and K̃(x) are described by inequalities and equalities:

K̄ := {y ∈ Rn | gI(y) ≤ 0, M Iy + vI = 0},

K̃(x) := {y ∈ Rn | gP (y, x) ≤ 0, MP (x)y + vP (x) = 0}.

The constraints defining the set K̄ are individual constraints that are independent of x,
hence we use the superscript “I” in our notation (for individual/independent of x). On
the other hand, the constraints defining K̃(x) are parametric due to their dependence on
x, therefore, we use the superscript “P” (for parametric). According to Assumption 1.1,

we assume that gI(·) is a vector of convex functions and that each component function of
gPi (·, x) is convex for all x. When we refer to the whole set of inequality or (linear) equality
constraints, we use the notation

g(y, x) :=

(
gI(y)
gP (y, x)

)
, M(x)y + v(x) :=

(
M I

MP (x)

)
y +

(
vI

vP (x)

)
.

For each test problem, we therefore report F and the functions defining K(x) along with
few more information concerning origin of the problem, known characteristics (for example
monotonicity of F , uniqueness of the solution, etc). Furthermore, in some cases we also
give some more details on the construction of the test problem (for example in the case of
a discretization of an infinite-dimensional problem).
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Each problem in the test set comes with a simple problem classification which we
explain below. A problem is classified by the label [XXX/XX/n-mI-pI-mP -pP ]. The first
character in the label defines the type of the operator F . Possible values are:

L : F is linear (L = linear)

N : F is nonlinear (N = nonlinear).

The second character in the label defines the type of constraints gI of the problem. Possible
values are:

A : there are no constraints gI (A = absent)

B : gI defines only bounds on the variables (B = box/bound)

L : gI is linear (L = linear)

Q : gI is quadratic (Q = quadratic)

N : gI is nonlinear (N = nonlinear).

The third character in the label defines the type of constraints gP of the problem. The
classification below is based on the classes of constraints analyzed in Section 3, which are
briefly recalled below. Possible values are:

A : there are no constraints gP (A = absent)

B : gP defines separable box (in the y-part) constraints only: a generic constraint has the
form ayi + b(x)− c ≤ 0 (B = box/bound)

L : gP defines separable linear (in the y-part) constraints only: a generic constraint has
the form aTy + b(x)− c ≤ 0 (L = linear)

O : gP defines constraints different from any of the above (O = other).

Characters immediately following the first slash indicate the primary origin and/or interest
of the problem (one or two characters are allowed here). Possible values are:

A : the problem is academic, that is, has been constructed specifically by researchers to
test one or more algorithms (A = academic)

R : the problem models some real problem: economic, physical, etc. (R = real)

D : the problem is the discretization of an infinite-dimensional problem (D = discretized).

The numbers after the second slash indicate the “dimensions” of the problem, in particular:

- n is the number of variables;

- mI is the number of inequality constraints defining K̄;
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- pI is the number linear equalities in K̄;

- mP is the number of inequality constraints defining K̃(x);

- pP is the number of equalities in the definition of K̃(x).

In Table 1 we report the list of all problems currently in the library, with the corresponding
labels.

6.2 Description of Matlab Functions

Each QVI test problem described below is distributed as a single Matlab M-file function,
whose name is the same as that of the problem. For some of the larger problems, a data
file is also necessary which, again, has the same name as the problem (see below). All these
files are contained in a folder called QVILIB. For each problem, and given two points y
and x, the quantities given in Table 2 can be computed.

Let us give some more explanations. To this end, consider a generic problem whose
name is <QVI_name>; in the folder QVILIB one can find the M-file <QVI_name>.m and,
for some of the problems, a second data file <QVI_name>.dat. The function <QVI_name>

can have up to three input arguments. The first input argument of <QVI_name> is a
mandatory flag and it is used by the user to select the behavior of the function as detailed
in the previous list.

In this list, it is also shown how many additional input arguments should be used in
correspondence to each admissible value for the flag i, which can take any integer value
between 0 and 11. If the flag value i is out of range or if the number of input arguments
is not correct an exception will be thrown. Note that, if present, the second and third
input argument of <QVI_name> must be column vectors with nVar elements; otherwise, a
corresponding exception will be thrown.

When the function is called with the first argument equal to 0, some preliminary op-
erations are performed, in particular in the scope of the function some global variables
are initialized. This set of global variables always contains the positive integer nVar, i.e.
the number of variables, the nonnegative integer nIneq, i.e. the total number of inequality
constraints, the nonnegative integer nEq, i.e. the total number of equality constraints, the
nonnegative integer nIneqInd, i.e. the number of inequality constraints independent of x,
and the nonnegative integer nEqInd, i.e. the number of equality constraints that do not
depend on x. In order to make these quantities available to the user’s calling function,
one should define them as global also in the user’s calling function(s). When the function
is called with the first argument equal to 0, other global variables might be defined that
store data used by the function when invoked with other flags. All these further variables
begin with the string “QVItest” and therefore it is better to avoid the use of any quantities
which includes this string in the user’s functions. <QVI_name>(0) must be called before
any other function call. If this rule is not respected, an exception will be thrown. If it is
called more than one time, a warning will be displayed since unnecessary operations are
performed.
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Table 1: Problem list.
Academic problems

Problem name Label
OutZ40 - OutZ41 [LBB/A/2-4-0-2-0]
OutZ42 [LBB/A/4-4-0-4-0]
OutZ43 - OutZ44 [LAB/A/4-0-0-4-0]
MovSet1A - MovSet1B - MovSet2A - MovSet2B [LAO/A/5-0-0-1-0]
MovSet3A1 - MovSet3B1 [LAO/A/1000-0-0-1-0]
MovSet3A2 - MovSet3B2 [LAO/A/2000-0-0-1-0]
MovSet4A1 - MovSet4B1 [LAO/A/400-0-0-801-0]
MovSet4A2 - MovSet4B2 [LAO/A/800-0-0-1601-0]
Box1A - Box1B [LAB/A/5-0-0-10-0]
Box2A - Box2B - Box3A - Box3B [NAB/A/500-0-0-1000-0]
BiLin1A - BiLin1B [LBO/A/5-10-0-3-0]
RHS1A1 - RHS1B1 - RHS2A1 - RHS2B1 [LAL/A/200-0-0-199-0]

Problems from real-world models
Problem name Label
WalEq1 [LBO/R/18-18-1-5-0]
WalEq2 [NBO/R/105-105-1-20-0]
WalEq3 [LBO/R/186-186-1-30-0]
WalEq4 [NBO/R/310-310-1-30-0]
WalEq5 [NBO/R/492-492-1-40-0]
Wal2 [NLO/A/105-107-0-20-0]
Wal3 [LLO/R/186-188-0-30-0]
Wal5 [NLO/A/492-494-0-40-0]
LunSS1 [NBA/R/501-1002-0-0-6]
LunSS2 [NBA/R/1251-2502-0-0-6]
LunSS3 [NBA/R/5001-10002-0-0-6]
LunSSVI1 [NBA/R/501-1002-1-0-0]
LunSSVI2 [NBA/R/1251-2502-1-0-0]
LunSSVI3 [NBA/R/5001-10002-1-0-0]

Discretized problems
Problem name Label
Scrim11 [LBA/RD/2400-2400-0-0-1200]
Scrim12 [LBA/RD/4800-4800-0-0-2400]
Scrim21 [LBL/RD/2400-2400-0-2400-0]
Scrim22 [LBL/RD/4800-4800-0-4800-0]
OutKZ31 [LBB/RD/62-62-0-62-0]
OutKZ41 [LBB/RD/82-82-0-82-0]
KunR11 - KunR21 - KunR31 [LAO/RD/2500-0-0-2500-0]
KunR12 - KunR22 - KunR32 [LAO/RD/4900-0-0-4900-0]

When the function is called with the first argument equal to 11, then all global variables
in the scope of the function will be cleared. If used, it must be the last function call.

The function <QVI_name>.m can have one output, or no output at all, depending on
the value of the flag i. When present, the output can be either a column vector, a sparse
matrix or a cell array of sparse matrices. Table 3 summarizes in detail all possible output
formats.
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Table 2: Description of all possible calls to a generic QVI function in the library.
Call Description
<QVI_name>(0) initializes the data that are used when invoking <QVI_name> with

other flags; does not return anything.
In particular sets, as global variables, the following “dimensions”:
nVar: number of variables
nIneq: total number of inequality constraints
nEq: total number of equality constraints
nIneqInd: number of inequality constraints independent of x
nEqInd: number of equality constraints independent of x

<QVI_name>(1,x) returns F (x)

<QVI_name>(2,x) returns JF (x), the Jacobian of F at x

<QVI_name>(3,x,y) returns g(y, x)

<QVI_name>(4,x,y) returns Jyg(y, x), the partial Jacobian of g with respect to y

<QVI_name>(5,x) returns Jh(x), the Jacobian of h(x) := g(x, x)

<QVI_name>(6,x) returns Jsi(x) for all i, the Jacobian of all functions
si(x) := Jygi(y, x)|y=x

<QVI_name>(7,x,y) returns M(x)y + v(x)

<QVI_name>(8,x) returns M(x)

<QVI_name>(9,x) returns Jt(x), the Jacobian of t(x) := M(x)x + v(x)

<QVI_name>(10,x) returns J(Mi∗(x)T ) for all i, where Mi∗(x) denotes the
ith row of the matrix M(x)

<QVI_name>(11) clears all problem data from memory; does not return anything

We already observed that, in order to help the user debugging, some simple checks are
performed when the <QVI_name>.m function is invoked. If these checks fail, a corresponding
error message is provided by throwing an exception or a warning. Some of these have been
mentioned already; we report the complete list in Table 4.

For users convenience short string aliases for the mandatory flag i are enabled. The
complete list of aliases, which are case insensitive, is reported in Table 5.

The library also includes an M-file startingPoints.m that can be used by the user
to get the starting points of each test problem. If the function startingPoints is called
without any input arguments, it displays a list of all test problems available with a brief
description of their starting points. The function startingPoints returns the number of
starting points available for one specific test problem by accepting a string of characters,
corresponding to the test problem name, as the only input argument. Finally the function
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Table 3: Description of outputs of a generic QVI function in the library.
Input flag Output
i= 0 or i= 11 no output

i= 1 column vector of dimension nVar

i= 2 sparse square matrix of dimensions nVar × nVar

i= 3 column vector of dimension nIneq

if nIneq= 0 the output is the empty matrix

i= 4 or i= 5 sparse matrix of dimension nIneq × nVar

if nIneq= 0 the output is the empty matrix

i= 6 cell array of dimension nIneq, each cell in the array contains
a sparse square matrix of dimension nVar × nVar

(the matrices contained in the cells are the evaluations of Jsi(x))
if nIneq= 0 the output is the empty cell array

i= 7 column vector of dimension nEq

if nEq= 0 the output is the empty matrix

i= 8 or i= 9 sparse matrix of dimension nEq × nVar

if nEq= 0 the output is the empty matrix

i= 10 cell array of dimension nEq, each cell in the array contains
a sparse square matrix of dimension nVar × nVar

(the matrices contained in the cells are the evaluations
of J(Mi∗(x)T ))
if nEq= 0 the output is the empty cell array

Table 4: Description of exceptions.
Event Exception/warning thrown
i is not an integer between 0 and 11 QVItest:BadFlagInput

QVI_name is invoked with i between
1 and 10 before invoking it with i = 0 QVItest:DataNotInitialized

QVI_name(0) is invoked
more than once QVItest:MultipleDataInitialization (warning)

QVI_name is invoked with a
wrong number of arguments QVItest:BadInputNumber

the second or third argument
of QVI_name have wrong dimensions QVItest:BadInputArgument

startingPoints returns a starting point for a test problem by accepting in input two
arguments: a string of characters corresponding to the test problem name and a positive
integer which selects the desired starting point of such problem. Table 6 summarizes all
possible utilizations of the function startingPoints.
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Table 5: String aliases for flag i.
String alias Corresponding value for i

Init 0
F 1
JF 2
Ineq 3
JyIneq 4
JhIneq 5
JsIneq 6
Eq 7
JyEq 8
JhEq 9
JsEq 10
Clear 11

Table 6: Possible utilizations of the M-file startingPoints.m.
Call Description
startingPoints displays a list of all test problems available with a

brief description of their starting points

startingPoints(QVIname) returns the number of starting points available for
the test problem QVIname (the input argument
(QVIname must be a string of characters)

startingPoints(QVIname,number) returns the number-th starting point for the test
problem QVIname (the input argument QVIname must
be a string of characters, while the input argument
number must be an integer)

Finally the library also contains the M-file solution.m that can be used by the user
to get one solution for each test problem. The function solution returns a solution for a
test problem by accepting in input a string of characters corresponding to the test problem
name. Note that, except for OutZ40, OutZ41 and OutZ43, all solutions are approximated.

6.3 Test Problems Description

In this subsection we report the test problems. The subsection is divided into three sub-
parts. Subsubsection 6.3.1 contains pure academic problems, subsubsection 6.3.2 contains
QVIs modelling some real problems, while subsubsection 6.3.3 contains discretization of
infinite dimensional problems.

6.3.1 Academic Problems

OutZ40 [LBB/A/2-4-0-2-0]

source: [53, p. 13]
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description:

F (x) :=

(
2 8/3

5/4 2

)
x−

(
34

24.25

)
,

gI(y) :=


−1 0
1 0
0 −1
0 1

 y −


0
11
0
11

 ,

gP (y, x) :=

(
1 0
0 1

)
y +

(
0 1
1 0

)
x−

(
15
15

)
JF: positive definite (everywhere)

comments: this problem was built so that it does not satisfy the assumptions for
the local convergence of the Newton method discussed in [53] at the known
solution listed below

known solution: x∗ = (5, 9)T

OutZ41 [LBB/A/2-4-0-2-0]

source: [53, Example 4.1]

description:

F (x) :=

(
2 8/3

5/4 2

)
x−

(
100/3
22.5

)
,

gI(y) :=


−1 0
1 0
0 −1
0 1

 y −


0
11
0
11

 ,

gP (y, x) :=

(
1 0
0 1

)
y +

(
0 1
1 0

)
x−

(
15
20

)
JF: positive definite (everywhere)

comments: a variant of the OutZ40 that satisfies the assumptions for the local
convergence of the Newton method discussed in [53] at the known solution listed
below

known solution: x∗ = (10, 5)T

OutZ42 [LBB/A/4-4-0-4-0]

source: [53, Example 4.2]
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description:

F (x) :=


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

x+


1
1
1
1

 ,

gI(y) := y,

gP (y, x) :=

 −y1 − 2.5 + x1 + x2
1

...
−y4 − 2.5 + x4 + x2

4


JF: positive definite (everywhere)

known solution: x∗ ≈ (−1.291,−1.5811,−1.5811,−1.291)T

OutZ43 [LAB/A/4-0-0-4-0]

source: [53, Example 4.3]

description:

F (x) := same as for problem OutZ42,

gP (y, x) := −y −


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

x−


1.5
1.5
1.5
1.5


JF: positive definite (everywhere)

comments: this problem satisfies conditions of Theorem 3.14

known solution: x∗ = (−0.9,−1.2,−1.2,−0.9)T

OutZ44 [LAB/A/4-0-0-4-0]

source: [53, Example 4.4]

description:

F (x) := same as for problem OutZ42

gP (y, x) := −y − 1.5


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

x−


2
2
2
2



+0.25


(2x1 − x2 + 1)2

(−x1 + 2x2 − x3 + 1)2

(−x2 + 2x3 − x4 + 1)2

(−x3 + 2x4 + 1)2


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JF: positive definite (everywhere)

known solution: x∗ ≈ (−1.0021,−1.36,−1.36,−1.0021)T

Moving set problems

This is the most studied class of QVIs (see Section 1 and 3), namely problems where the
set K̃(x) is given by

K̃(x) := c(x) +Q

for some function c : Rn → Rn and a fixed set Q ⊆ Rn. Assuming that Q has a represen-
tation of the form

Q := {x ∈ Rn | q(x) ≤ 0},

for some function q : Rn → RmP , it is easy to see that K̃(x) can be rewritten as

K̃(x) := {y ∈ Rn | q(y − c(x)) ≤ 0}

which corresponds to the general setting considered in this paper of a QVI with gP : Rn →
RmP being defined by

gP (y, x) := q(y − c(x)). (51)

MovSet1A - MovSet1B [LAO/A/5-0-0-1-0]

source: this thesis

description:

F (x) := Ax+ b,

gP (y, x) := ‖y − αx‖2 − 0.5

with

A :=

(
19.8699 0.5369 2.9482 0.3358 7.1239
4.1819 16.3484 −5.2030 5.4332 2.7143

−5.6554 0.9422 19.0981 7.1556 −7.3810
−1.8770 0.1918 −5.3596 18.3565 −7.8847
−6.0303 −3.6171 −1.4658 4.6238 15.4085

)
, b :=

(
10
10
10
10
10

)
, (52)

and α := 0.1 for MovSet1A and α := 10 for MovSet1B

JF: positive definite (everywhere)

comments: referring to the general description (51) of gP : q(z) := ‖z‖2 − 0.5,
c(x) := αx. Note that MovSet1A satisfies conditions of Theorem 3.4, while
MovSet1B does not

MovSet2A - MovSet2B [LAO/A/5-0-0-1-0]

source: this thesis
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description:

F (x) := Ax+ b,

gP (y, x) := ‖y − α
(

cos(xi)
)n
i=1
‖2 − 0.5

with A and b as in (52) and α := 0.1 for MovSet2A and α := 10 for MovSet2B

JF: positive definite (everywhere)

comments: referring to the general description (51) of gP : q(z) := ‖z‖2 − 0.5,
c(x) := α

(
cos(xi)

)n
i=1

. Note that MovSet2A satisfies conditions of Theorem 3.4,
while MovSet2B does not

MovSet3A1 - MovSet3B1 [LAO/A/1000-0-0-1-0]

MovSet3A2 - MovSet3B2 [LAO/A/2000-0-0-1-0]

source: this thesis

description:

F (x) := Ax+ b,

gP (y, x) := (y −Mx)TQ(y −Mx)− d

where A, b, M , Q and d are available in the corresponding Matlab functions
(MovSet3A1 and MovSet3A2 differ from MovSet3B1 and MovSet3B2, respec-
tively, only in the matrix M)

JF: positive definite (everywhere)

comments: referring to the general description (51) of gP : q(z) := zTQz−d, c(x) :=
Mx. Note that MovSet3A1 and MovSet3A2 satisfy conditions of Theorem 3.4,
while MovSet3B1 and MovSet3B2 do not

MovSet4A1 - MovSet4B1 [LAO/A/400-0-0-801-0]

MovSet4A2 - MovSet4B2 [LAO/A/800-0-0-1601-0]

source: this thesis

description:

F (x) := Ax+ b,

gP (y, x) :=

 −y +Mx
y −Mx− 1

1Tny − 1TnMx− n
2


whereA, b andM are available in the corresponding Matlab functions (MovSet4A1
and MovSet4A2 differ from MovSet4B1 and MovSet4B2, respectively, only in
the matrix M)
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JF: positive definite (everywhere)

comments: referring to the general description (51) of gP :

q(z) :=

 −z
z − 1

1Tnz − n
2

 , c(x) := Mx.

Note that MovSet4A1 and MovSet4A2 satisfy conditions of Theorem 3.4, while
MovSet4B1 and MovSet4B2 do not

Problems with box constraints

This class of QVIs have a set K̃(x) defined by constraints of the form

gP (y, x) :=

(
(yi − sixi − ci)ni=1

(−yi + tixi − di)ni=1

)
. (53)

We call this a QVI with box constraints since, given a fixed vector x, the feasible set
describes box constraints for the variables y (see Section 3). The particular values of the
box constraints for a variable yi, however, varies with xi.

Box1A - Box1B [LAB/A/5-0-0-10-0]

source: this thesis

description:

F (x) := Ax+ b,

gP (y, x) :=

(
(yi − αxi − ci)ni=1

(−yi + αxi − ci)ni=1

)
where A and b are defined as in (52),

c :=

(
0.1202
1.7418
2.7064
2.0502
4.4616

)

and α := 0.1 for Box1A and α := 2 for Box1B

JF: positive definite (everywhere)

comments: Box1A satisfies conditions of Corollary 3.17, while Box1B does not

Box2A - Box2B [NAB/A/500-0-0-1000-0]

source: this thesis
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description:

F (x) := Ax+ b+ (exp(xi))
500
i=1 ,

gP is defined as in (53), where A, b, s, t, c and d are available in the corresponding
Matlab functions (Box2A differs from Box2B only in the vectors s and t)

JF: positive definite (everywhere)

comments: Box2A satisfies conditions of Corollary 3.17, while Box2B does not

Box3A - Box3B [NAB/A/500-0-0-1000-0]

source: this thesis

description: these problems are identical to Box2 except the function F :

F (x) := Ax+ b+M
(
x3
i

)500

i=1
,

A, b, M , s, t, c and d are available in the corresponding Matlab functions
(Box3A differs from Box3B only in the vectors s and t)

JF: positive definite (everywhere)

comments: Box3A satisfies conditions of Corollary 3.17, while Box3B does not

Problems with bilinear constraints

In these problems, the set K̃(x) is defined by the following inequality constraints only (see
Section 3):

gP (y, x) :=

 xTQ1y − c1
...

xTQqy − cq

 .

BiLin1A - BiLin1B [LBO/A/5-10-0-3-0]

source: this thesis

description:

F (x) := Ax+ b,

gI(y) :=

(
l − y
y − u

)
,

gP (y, x) :=

 xTQ1y − c1
...

xTQ3y − c3

 ,
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where A and b are defined as in (52),

l :=

(
−0.1202
−1.7418
−2.7064
−2.0502
−4.4616

)
, u := −l, c :=

(
0.3070
1.1186
2.6149

)
,

Q1 :=

(
1.9073 0.2403 0.2352 −0.4903 −0.2651
0.2403 1.1319 1.2087 −0.3268 0.2540
0.2352 1.2087 1.6862 0.2941 0.6732

−0.4903 −0.3268 0.2941 1.8258 0.1363
−0.2651 0.2540 0.6732 0.1363 1.5527

)
+ α

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
,

Q2 :=

(
2.7307 0.5988 1.5728 1.4072 −0.3082
0.5988 2.2435 0.7546 1.3632 1.5852
1.5728 0.7546 2.3809 1.2625 1.0403
1.4072 1.3632 1.2625 1.7612 0.3071

−0.3082 1.5852 1.0403 0.3071 2.6305

)
+ α

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
,

Q3 :=

(
2.5189 2.1947 1.7697 2.2753 1.9885
2.1947 3.8143 1.3839 1.5636 1.8451
1.7697 1.3839 3.3655 1.6441 1.9946
2.2753 1.5636 1.6441 3.6885 2.3272
1.9885 1.8451 1.9946 2.3272 2.2883

)
+ α

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
and α := 0 for BiLin1A and α := 10 for BiLin1B

JF: positive definite (everywhere)

comments: BiLin1A satisfies conditions of Corollary 3.19, while BiLin1B does not

Problems with linear constraints with variable right-hand side

In this class of problems, the feasible set K̃(x) is defined by

gP (y, x) := Ey − d+ c(x),

where E ∈ Rm×n is a given matrix, c : Rn → RmP and d ∈ RmP . In this class of QVIs, the
feasible set is defined by linear inequalities in which the right-hand side depends on x (see
Section 3).

RHS1A1 - RHS1B1 [LAL/A/200-0-0-199-0]

source: this thesis

description:

F (x) := Ax+ b,

gP (y, x) := Ey − d+ C (sin(xi))
n
i=1

where A, b, E, d and C are available in the corresponding Matlab functions
(RHS1A1 differs from RHS1B1 only in the matrix C)

JF: positive definite (everywhere)

comments: RHS1A1 satisfies conditions of Theorem 3.9, while RHS1B1 does not

RHS2A1 - RHS2B1 [LAL/A/200-0-0-199-0]
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source: this thesis

description:

F (x) := Ax+ b,

gP (y, x) := Ey − d+ Cx

where A, b, E, d and C are available in the corresponding Matlab functions
(RHS2A1 differs from RHS2B1 only in the matrix C)

JF: positive definite (everywhere)

comments: RHS2A1 satisfies conditions of Theorem 3.9, while RHS2B1 does not

6.3.2 Problems from Real-World Models

Walrasian equilibrium problems

Problems described here are QVI reformulations of a Walrasian pure exchange economy
with utility function without production whose general structure is described [15]; the
specific data used here are taken from [19]. In this model there are C agents, whose
preferences are given by a utility function ui, exchanging P goods. Each agent controls
a variable xi ∈ RP (representing quantity of goods) and has an initial endowment of
ξi ∈ RP . There is also one extra, 0-th “player” controlling a vector x0 ∈ RP representing
prices. Therefore, the vector of variables is x = (xi)Ci=0 ∈ R(C+1)P . The dimensions and
the description of the QVI model depend on the parameters C and P :

n := P (C + 1), mI := P (C + 1), pI := 1, mP := C, pP := 0,

F (x) :=


∑C

i=1 ξ
i − xi

∇x1u1(x1)
...

∇xCuC(xC)

 , gI(y) := −y, M I := (1TP 0TPC), (54)

vI := −1, gP (y, x) :=


∑P

j=1 x
0
j(y

1
j − ξ1

j )
...∑P

j=1 x
0
j(y

C
j − ξCj )

 .

The utility functions u of the agents, as well as the parameters C and P and the endowment
ξ, are specified for each test problem.

WalEq1 [LBO/R/18-18-1-5-0]

source: model from [15], data from [19]
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description: the general description is (54) where C := 5, P := 3, the utility
functions are quadratic and convex:

ui(x
i) :=

1

2
(xi)TQixi − (bi)Txi, i = 1, . . . , 5,

Qi :=
(

6 −2 5
−2 6 −7
5 −7 20

)
, bi :=

(
32 + i
32 + i
32 + i

)
, i = 1, 2,

Qi :=
(

6 1 0
1 7 −5
0 −5 7

)
, bi :=

(
30 + (i + 2) ∗ 2
30 + (i + 2) ∗ 2
30 + (i + 2) ∗ 2

)
, i = 3, 4, 5,

and

ξi :=
(

2
3
4

)
, i = 1, 2, ξi :=

(
6
5
4

)
, i = 3, 4, 5

JF: P0 (everywhere) but never positive semidefinite

WalEq2 [NBO/R/105-105-1-20-0]

source: model from [15], data from [19]

description: the general description is (54) where C := 20, P := 5, the utility
functions are of logarithmic type:

ui(x
i) := −

5∑
k=1

(ak + i+ 4) log(xik + bk + 2(i+ 4)), i = 1, . . . , 10,

ui(x
i) := −

5∑
k=1

(ck + i+ 4) log(xik + dk + i+ 4), i = 11, . . . , 20,

a :=

(
1
2
4
6
8

)
, b :=

(
20
30
30
40
50

)
, c :=

(
10
6
4
10
1

)
, d :=

(
50
40
30
20
20

)
,

and

ξi :=

(
2
3
4
1
6

)
, i = 1, . . . , 10, ξi :=

(
6
5
4
3
2

)
, i = 11, . . . , 20

JF: P0 (everywhere) but never positive semidefinite

WalEq3 [LBO/R/186-186-1-30-0]

source: model from [15], data from [19]
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description: the general description is (54) where C := 30, P := 6, the utility
functions are quadratic and convex:

ui(x
i) :=

1

2
(xi)TQixi − (bi)Txi, i = 1, . . . , 30,

Qi := A, bi :=

56 + i
66 + i
76 + i
66 + i
66 + i
56 + i

, i = 1, . . . , 15,

Qi := B, bi :=

50 + 2 ∗ (i + 6)
60 + 2 ∗ (i + 6)
50 + 2 ∗ (i + 6)
70 + 2 ∗ (i + 6)
70 + 2 ∗ (i + 6)
60 + 2 ∗ (i + 6)

, i = 16, . . . , 30,

and

ξi :=

2
3
4
1
6
1

, i = 1, . . . , 15, ξi :=

6
5
4
3
2
8

, i = 16, . . . , 30.

Set A equal to
68.22249416536778 12.12481199690621 -8.35496210217478 -6.81177486915109 -4.66752803051747 3.64100170417482

12.12481199690621 53.51450780426463 -21.77618227261339 -15.00376305863444 -0.11788350473544 2.03354709400720

-8.35496210217478 -21.77618227261339 35.44033408387684 4.35160649036518 19.17472558234163 -3.40090742729160

-6.81177486915109 -15.00376305863444 4.35160649036518 52.25155022199242 -5.99490328518247 20.40443259092577

-4.66752803051747 -0.11788350473544 19.17472558234163 -5.99490328518247 23.32798561358070 -3.58535668529727

3.64100170417482 2.03354709400720 -3.40090742729160 20.40443259092577 -3.58535668529727 10.21258119890765

and B equal to
61.74633559943146 -23.83006225091380 16.78581949473039 14.42073900860500 -2.75188745616575 13.44307656650567

-23.83006225091380 37.64246654306209 -3.76510322128227 16.32022449045404 -39.90743633716275 11.38657250296817

16.78581949473039 -3.76510322128227 53.34843665848310 4.60388415537161 -23.04611587657949 -25.31392346426841

14.42073900860500 16.32022449045404 4.60388415537161 40.69699687713468 -30.78019133996427 17.08866411420883

-2.75188745616575 -39.90743633716275 -23.04611587657949 -30.78019133996427 66.22678445157413 -12.28091080313848

13.44307656650567 11.38657250296817 -25.31392346426841 17.08866411420883 -12.28091080313848 41.37849544246254

JF: P0 (everywhere) but never positive semidefinite

WalEq4 [NBO/R/310-310-1-30-0]

source: model from [15], data from [19]

description: the general description is (54) where C := 30, P := 10, the utility
functions are of logarithmic type:

ui(x
i) := −

10∑
k=1

(ak + i+ 6) log(xik + bk + 2(i+ 6)), i = 1, . . . , 15,

ui(x
i) := −

10∑
k=1

(ck + i+ 6) log(xik + dk + i+ 6), i = 16, . . . , 30,
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a :=


1
2
4
6
8
7
8
10
1
5

, b :=


50
60
70
60
60
50
50
80
60
70

, c :=


10
6
4
10
1
2
6
4
9
4

, d :=


50
60
50
70
70
60
50
50
80
50

,
and

ξi :=


2
3
4
1
6
1
3
6
2
10

, i = 1, . . . , 15, ξi :=


6
5
4
3
2
8
4
6
2
0

, i = 16, . . . , 30

JF: P0 (everywhere) but never positive semidefinite

WalEq5 [NBO/R/492-492-1-40-0]

source: model from [15], data from [19]

description: the general description is (54) where C := 40, P := 12, the utility
functions are of logarithmic type:

ui(x
i) := −

12∑
k=1

(ak + i+ 7) log(xik + bk + 2(i+ 7)), i = 1, . . . , 20,

ui(x
i) := −

12∑
k=1

(ck + i+ 7) log(xik + dk + i+ 7), i = 21, . . . , 40,

a :=


1
2
4
6
8
7
8
10
1
5
2
4

, b :=


50
60
70
60
60
50
50
80
60
70
70
80

, c :=


10
6
4
10
1
2
6
4
9
4
5
1

, d :=


50
60
50
70
70
60
50
50
80
50
60
70

,

and

ξi :=


2
3
4
1
6
1
3
6
2
10
3
4

, i = 1, . . . , 20, ξi :=


6
5
4
3
2
8
4
6
2
0
6
0

, i = 21, . . . , 40
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JF: P0 (everywhere) but never positive semidefinite

Wal2 [NLO/A/105-107-0-20-0]

source: model from [15], data from [19]

description: the general description is (54), except for

mI := P (C + 1) + 2, pI := 0,

gI(y) :=


−y∑P

i=0 y
0
i − 1

1−
∑P

i=0 y
0
i

 ,

where C := 20, P := 5 and the utility functions are of logarithmic type:

ui(x
i) :=

5∑
k=1

(ak + k + 4) log(xik + bk + 2(i+ 4)), i = 1, . . . , 10,

ui(x
i) :=

5∑
k=1

(ck + k + 4) log(xik + dk + i+ 4), i = 11, . . . , 20,

a, b, c, d and ξ are the same as for WalEq2

JF: never P0

comments: this QVI arises from an implementation mistake, in fact it differs from
WalEq2 essentially only in the sign and in one parameter of the ui functions;
furthermore the equality constraint

∑P
i=1 y

0
i = 1 is substituted by a double

inequality. Since the problem proved challenging, we kept it in the library.

Wal3 [LLO/R/186-188-0-30-0]

source: model from [15], data from [19]

description: the general description is (54), except for

mI := P (C + 1) + 2, pI := 0,

gI(y) :=


−y∑P

i=0 y
0
i − 1

1−
∑P

i=0 y
0
i

 ,

where all parameters and functions are the same as for WalEq3
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JF: P0 (everywhere) but never positive semidefinite

comments: this QVI differs from WalEq3 only for the fact that the equality con-
straint

∑P
i=1 y

0
i = 1 is substituted by a double inequality.

Wal5 [NLO/A/492-494-0-40-0]

source: model from [15], data from [19]

description: the general description is (54), except for

mI := P (C + 1) + 2, pI := 0,

gI(y) :=


−y∑P

i=0 y
0
i − 1

1−
∑P

i=0 y
0
i

 ,

where C := 40, P := 12, the utility functions are of logarithmic type:

ui(x
i) :=

12∑
k=1

(ak + k + 7) log(xik + bk + 2(i+ 7)), i = 1, . . . , 20,

ui(x
i) :=

12∑
k=1

(ck + k + 7) log(xik + dk + i+ 7), i = 21, . . . , 40,

a, b, c, d and ξ are the same as for WalEq5

JF: never P0

comments: this QVI arises from an implementation mistake, in fact it differs from
WalEq2 essentially only in the sign and in one parameter of the ui functions;
furthermore the equality constraint

∑P
i=1 y

0
i = 1 is substituted by a double

inequality. Since the problem proved challenging, we kept it in the library.

Generalized Nash equilibrium problems

It is well known that finding an equilibrium of a generalized Nash game is equivalent to
solving a QVI problem, see [20]. This QVI model of an energy market Nash equilibrium is
taken from [41]. Let N agents owns l plants each one to generate electric energy for sale.
We denote as xij the energy produced by agent i in the j-th plant. The unitary energy
price in the market depends on the total amount of energy produced by all agents, it is
modelled by a quadratic concave function of one variable. Then the profit of each agent
depends on the generation level of the other agents in the market. In turn, each generation
level is constrained by technological limitations of the power plants. The coordination,
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or regulation, of the market is done by the Independent System Operator (ISO), whose
actions in the market are considered as those of an additional player. Accordingly, letting
the ISO be player number 0, the ISO tries to maximize the social welfare by encouraging
all other agents to satisfy the total market demand.

n := Nl + 1, mI := 2(Nl + 1), pP := N + 1,

F (x) :=



0

c
(∑N

i=1

∑l
j=1 x

i
j

)2
− 120 + 2c

(∑N
i=1

∑l
j=1 x

i
j

) (∑l
j=1 x

1
j

)
.
.
.

c
(∑N

i=1

∑l
j=1 x

i
j

)2
− 120 + 2c

(∑N
i=1

∑l
j=1 x

i
j

) (∑l
j=1 x

1
j

)
.
.
.

c
(∑N

i=1

∑l
j=1 x

i
j

)2
− 120 + 2c

(∑N
i=1

∑l
j=1 x

i
j

) (∑l
j=1 x

N
j

)
.
.
.

c
(∑N

i=1

∑l
j=1 x

i
j

)2
− 120 + 2c

(∑N
i=1

∑l
j=1 x

i
j

) (∑l
j=1 x

N
j

)


+



0

A1
1x

1
1

.

.

.

A1
l x

1
l

.

.

.

AN
1 x

N
1

.

.

.

AN
l x

N
l


+



120

b11

.

.

.

b1l

.

.

.

bN1

.

.

.

bNl


,

(55)

gI(y) :=



−y0

−y1

...
−yN
y0 − u0

y1 − u1

...
yN − uN


, MP (x) :=


1

1Tl
. . .

1Tl

 ,

vP (x) :=


0 1Tl 1Tl

1Tl 0Tl 1Tl
. . .

1Tl 1Tl 0Tl




x0

x1

...
xN

−


d
d
...
d

 ,

where c ∈ R, A ∈ RNl, bNl, u ∈ RNl and d ∈ R.

LunSS1 [NBA/R/501-1002-0-0-6]

LunSS2 [NBA/R/1251-2502-0-0-6]

LunSS3 [NBA/R/5001-10002-0-0-6]

source: [41]

description: these problems are described by (55), where N := 5 and l := 100
for LunSS1, l := 250 for LunSS2, l := 1000 for LunSS3. c, A, b, u and d are
available for all these problems in the corresponding Matlab functions.
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It is possible to compute some equilibria (not all in general) of a jointly convex Nash
problem by solving a variational inequality instead. These points are called variational
equilibria and have some properties from the economic point of view, see [20]. The next 3
problems pursue this goal. Note that those problems are pure VIs in which the parametric
set K̃(x) vanishes and K(x) = K̄.

LunSSVI1 [NBA/R/501-1002-1-0-0]

LunSSVI2 [NBA/R/1251-2502-1-0-0]

LunSSVI3 [NBA/R/5001-10002-1-0-0]

source: [41]

description: F and gI are taken from (55) while M I := 1Tn, and vI := −d, where
N := 5 and l := 100 for LunSSVI1, l := 250 for LunSSVI2, l := 1000 for Lun-
SSVI3. c, A, b, u and d are available for all these problems in the corresponding
Matlab functions. Note that pP := 0.

comments: these problems are pure VIs

6.3.3 Discretized Problems

Here we consider finite dimensional QVIs obtained by making a discretization procedure
on infinite dimensional QVIs. This series of problems stemmed from different fields.

Transportation problems

In the modeling of competition on networks in [60] it is assumed that users either behave
following the Wardrop equilibrium or the Nash equilibrium concept. In the time-dependent
network model shared by two types of users: group users (Nash players) and individual
users (Wardrop players), both classes of users choose the paths to ship their jobs so as
to minimize their costs, but they apply different optimization criteria. The source of
interaction of users is represented by the travel demand, which is assumed to be elastic
with respect to the equilibrium solution. Thus, the equilibrium distribution is proved to
be equivalent to the solution of an appropriate time-dependent quasi-variational inequality
problem. This example taken from [60] is relative to a simple network with 4 nodes and
7 edges, in which there are two users: one Nash user and one Wardrop user. The time
interval considered is [0, N ], and in particular it is discretized so that the time instants are
0, . . . , N . Then the solution of the following QVI contains the flows on the paths of the
network at the equilibrium in the instants 1, . . . , N for the two users. The dimensions and
the description of the following two discretized models depend on the parameter N :

n := 4N, mI := 4N, pP := 2N,
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F (x) :=

 A 0
. . .

0 A

x+

 b
...
b

 ,

(56)

gI(y) := −y, MP (x) :=

 C 0
. . .

0 C

 ,

vP (x) :=

 −E 0
. . .

0 −E

x+

 −d1 − d2(1− 1)/(N − 1)
...

−d1 − d2(N − 1)/(N − 1)

 ,

where

A :=

(
4 2 0 0
2 10 0 4
0 0 2 1
0 2 1 5

)
, b :=

(
40
30
40
30

)
, C :=

(
1 1 0 0
0 0 1 1

)
,

E :=
(

2/3 0 0 0
0 0 0 0.5

)
, d1 :=

(
1
3

)
, d2 :=

(
10
4

)
Scrim11 [LBA/RD/2400-2400-0-0-1200]

Scrim12 [LBA/RD/4800-4800-0-0-2400]

source: [60]

description: the general description is (56) with N := 600 for Scrim11 and N :=
1200 for Scrim12

JF: positive definite (everywhere)

Scrim21 [LBL/RD/2400-2400-0-2400-0]

Scrim22 [LBL/RD/4800-4800-0-4800-0]

source: [60]

description: the general description is (56), but here

mP := 4N, pP := 0,

gP (y, x) :=


C 0

.
.
.

0 C

−C 0

.
.
.

0 −C

 y +


−E 0

.
.
.

0 −E

E 0

.
.
.

0 E

x+


−d1 − d2(1 − 1)/(N − 1)

.

.

.
−d1 − d2(N − 1)/(N − 1)

d1 + d2(1 − 1)/(N − 1)

.

.

.
d1 + d2(N − 1)/(N − 1)

 ,

with N := 600 for Scrim21 and N := 1200 for Scrim22
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JF: positive definite (everywhere)

comments: Problems Scrim21 and Scrim22 are essentially the same as problems
Scrim11 and Scrim22, respectively, except that each equality constraint has been
rewritten as two inequalities. In particular, the standard linear independence
constraint qualification is therefore violated for problems Scrim21 and Scrim22.

Contact problems with Coulomb friction

This is the problem of an elastic body in contact to a rigid obstacle. In particular, this
is the most realistic model in which Coulomb friction is present (in this problem φ ∈ R
is the friction coefficient). The problem is taken from Example 11.1 in [52]. Let x∗ ∈ Rn

be a solution of the QVI, then odd elements of x∗ are interpreted as tangential stress
components on the rigid obstacle in different points of such obstacle, while even elements
are interpreted as outer normal ones. We consider different instances of this problem which
derive from different discretizations generating different fragmentations of the obstacle in
identical segments. In particular, the case in which the obstacle is divided into N segments
involves 2(N+1) variables in the model (since there are N+1 extreme segment points and
having to consider both tangential and outer normal stress components for all of them).
The dimensions and the description of the following two discretized models depend on the
parameter N :

n := 2(N + 1), mI := 2(N + 1), mP := 2(N + 1),

F (x) := Ax− b, gI(y) :=

 (−y2i − 10)N+1
i=1

(y2i)
N+1
i=1

 , (57)

gP (y, x) :=

 (−y(2i−1) + φx2i

)N+1

i=1(
y(2i−1) + φx2i

)N+1

i=1

 ,
where the positive definite square matrix A and the vector b depend on N and are available
in the library for N := 30 and N := 40 (data for these problems have been kindly provided
by J.V. Outrata, M. Kočvara and J. Zowe).

OutKZ31 [LBB/RD/62-62-0-62-0]

OutKZ41 [LBB/RD/82-82-0-82-0]

source: [52]

description: the general description is (57) with friction coefficient φ := 10 and the
fragmentation granularity N := 30 for OutKZ31 and N := 40 for OutKZ41

JF: positive definite (everywhere)
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QVIs with gradient constraints

The problems considered here are taken from [40] (see also [34]) and represent a stationary
model for the magnetization of type-II superconductors.

Specifically, let Ω ⊆ R2 be an open and convex domain, let W := W 1,2(Ω) be the
corresponding Sobolev space, and let jc be a nonnegative continuous function. Then the
infinite-dimensional problem from [40] (using p = 2) is to find a solution u ∈ K(u) satisfying∫

Ω

∇u(ξ)T∇(v − u)(ξ)dξ ≥ 0 ∀v ∈ K(u), (58)

where the feasible set K(u) is defined by

K(u) :=
{
v ∈ W | v

∣∣
∂Ω

= u1, ‖∇v(ξ)‖ ≤ jc
(
|u(ξ)|

)
a.e. in Ω

}
(59)

for a given function u1.
In our realizations of this problem, we always take Ω = (0, 1)× (0, 1) and jc(t) := t. To

discretize the problem, we choose a number N ∈ N, a stepsize h := 1
N+1

, and the discrete
points

ξ
(1)
i := ih =

i

N + 1
, ξ

(2)
j := jh =

j

N + 1
∀ i, j = 0, 1, . . . , N + 1.

Furthermore, let

ui,j := u(ξ
(1)
i , ξ

(2)
j ), vi,j := v(ξ

(1)
i , ξ

(2)
j ) ∀ i, j = 0, 1, . . . , N + 1

and note that the values of ui,j, vi,j are known for i, j ∈ {0, N+1} due to the given boundary
condition. Therefore, the discrete unknowns are the components ui,j for i, j ∈ {1, . . . , N}.
We approximate the partial gradients of u and v by using forward finite differences. More-
over, an integral of the form

∫
Ω
f(ξ)dξ for a suitable function f is approximated by a

piecewise constant function in such a way that we get∫
Ω

f(ξ)dξ ≈ h2

N∑
i,j=0

fi,j,

where fi,j := f
(
ξ

(1)
i , ξ

(2)
j

)
. We then reorder the unknows ui,j and define

vec(u) := (u1,1, u2,1, . . . , uN,1, u1,2, u2,2, . . . , uN,2, . . . , uN,N)T ∈ Rn, n := N2.

In a similar way, we also define vec(v). To get back to our standard notation, we finally
set

x := vec(u) and y := vec(v).

Altogether, this results in a QVI with a linear function F of the form

F (x) := AT (Ax+ a) + CT (Cx+ c) (60)
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for certain matrices A,C ∈ R(n+N)×n, and vectors a, c ∈ Rn+N (these vectors take into
account the boundary conditions). Furthermore, the constraints take the form

gPk (y, x) := (A · y + a)2
k+1+b(k−1)/Nc + (C · y + c)2

N+k − h2x2
k (61)

for all k = 1, . . . n, where b·c denotes the floor-function. The precise data of A,C, a, c are
given in the corresponding Matlab files. Different instances of the discretized problems arise
from different choices of the discretization parameter N ∈ N and the boundary function
u1.

KunR11 - KunR21 - KunR31 [LAO/RD/2500-0-0-2500-0]

KunR12 - KunR22 - KunR32 [LAO/RD/4900-0-0-4900-0]

source: [40]

description: These problems arise from the general description with F and gP de-
scribed in (60) and (61). We took N = 50 for problems KunR11, KunR21
and KunR31, and N = 70 for KunR12, KunR22 and KunR32. The boundary
function is u1(ξ(1), ξ(2)) := 1 + ξ(1) + ξ(2) for problems KunR11 and KunR12,

u1(ξ(1), ξ(2)) := 1 − sin(2πξ(1))+cos(2πξ(2))
10

for problems KunR21 and KunR22, and

u1(ξ(1), ξ(2)) := eξ
(1)+ξ(2) for problems KunR31 and KunR32. Matrices A,C and

vectors a, c can be found in the corresponding Matlab source files.

JF: positive definite (everywhere)
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7 Numerical Results

In this section we report the results obtained by an implementation of the Potential Re-
duction Algorithm (analyzed so far) on the set of test problems described in Section 6.
These results are intended to show the viability of our approach and to give the reader a
concrete feel for the practical behavior of PRA on QVI problems. All the computations
in this thesis were done using Matlab 7.6.0 on a Ubuntu 10.04 64 bits PC with Intel(R)
Core(TM) i7 CPU 870 and 7.8 GiB of RAM.

7.1 Implementation Details

The implemented algorithm corresponds to the theoretical scheme given in Algorithm 3.
However now we consider the framework of Section 6 in which also equality constraints
are present. This means that, at step (S.2), Algorithm 3 calls for the solution of an
n + 2m + p square linear system in order to determine the search direction dk (we recall
that n corresponds to the number of variables, m to the number of inequalities and p to that
of equalities). More precisely, at eack iteration k we must find a solution (d̄k1, d̄

k
2, d̄

k
3, d̄

k
4) ∈

Rn+2m+p of the following linear system
Ak ∇yg(xk, xk) 0 M(xk)T

Jxh(xk) 0 I 0
0 diag(wk) diag(λk) 0
Sk 0 0 0




d1

d2

d3

d4

 =


bk1
bk2
bk3
bk4

 , (62)

where

Ak := JF (xk) +
m∑
i=1

λki Jx
[
∇ygi(x

k, xk)
]

+

p∑
j=1

ζkj Jx
[
(M(xk)j∗)

T
]
,

h(x) := g(x, x),

Sk := M(xk) +
n∑
i=1

xki Jx
[
M(xk)∗i

]
+ Jxv(xk),

bk1 := −F (xk)−∇yg(xk, xk)λk −M(xk)Tζk,

ck :=
ρk

2m

m∑
i=1

(
gi(x

k, xk) + wki + λkiw
k
i

)
,

bk2 := −g(xk, xk)− wk + ck1m,

bk3 := −λk ◦ wk + ck1m,

bk4 := −M(xk)xk − v(xk),

wk ∈ Rm are slack variables, λk ∈ Rm are the lagrangian parameters of inequality con-
straints and ζk ∈ Rp are those of equality constraints computed at iteration k.

All data are stored in sparse matrices and full vectors. In order to perform the linear
algebra involved, we used Matlab’s linear system solver mldivide (note that, by the reference
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manual of mldivide, since the input matrix is sparse the solver actually used is the efficient
code CHOLMOD written by Timothy A. Davis).

In what follows we give some implementation details.

Linear System Reduction

As said above, step (S.2) of Algorithm 3 consist in the solution of the n+ 2m+ p square
linear system (62). However, this system is very structured and some simple manipulations
permit to reduce its solution to that of a linear system of dimension n+ p.

It is easy to verify, by substitution and by the fact that wk > 0, that if we compute
(d̄k1, d̄

k
4) as solution of (

Ak +Gk M(xk)T

Sk 0

)(
d1

d4

)
=

(
rk

bk4

)
, (63)

where

Gk := ∇yg(xk, xk) diag((wk)−1 ◦ λk)Jxh(xk),

rk := bk1 −∇yg(xk, xk) diag(wk)−1bk3 +∇yg(xk, xk) diag((wk)−1 ◦ λk)bk2,

and then we compute d̄k2, d̄k3 by d̄k3 = bk2−Jxh(xk)d̄k1 and d̄k2 = diag(wk)−1bk3−diag((wk)−1 ◦
λk)d̄k3, respectively, this is indeed a solution of (62). This shows clearly that the main
computational burden in solving the linear system (62) is actually the solution of an (n+
p)× (n + p) square linear system. Note that Ak + Gk is exactly the matrix N(xk, λk, wk)
defined in (15).

The procedure just described has the advantage of reducing the dimension of the system
as much as possible; however this might not always be the best strategy, since sparsity
patterns could be lost. For example it might be more convenient, from this point of view,
to eliminate just the d2 variables and then solve the resulting n + m + p system in d1, d3

and d4. Or solve directly the original n + 2m + p system and leave to the solver the task
of exploiting sparsity. This, as well as the choice of the most suitable linear solver, along
with numerical procedures to deal with singularities (discussed below), are very important
issues that can have huge practical impact. We are currently investigating on these topics
and will report on this research elsewhere, however, about the solution of the linear system
(62), our Matlab results seem to indicate that reducing as much as possible the linear
system is the best choice (but in a C++ environment the situation may change).

Linear System Perturbation

In practice it is possible that the rows of matrix M(xk) or of matrix Sk are linear dependent
(this occurs for example in test problems LunSS1-2-3 in the library), in this case the reduced
linear system (63) is difficult to solve since the condition number of its coefficient matrix
is rather big. Therefore to overcome this drawback we apply a perturbation procedure to
obtain a linear system better conditioned. In particular the procedure starts if the lower
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bound for the 1-norm condition number of the coefficient matrix in (63) computed by using
the Matlab function condest is greater than 1017. In this case the coefficient matrix of
(63) is modified by adding a diagonal matrix D to its last block:(

Ak +Gk M(xk)T

Sk D

)
, (64)

where entries of D are equal to ±10−3, in particular the i-th entry is negative if

(Sk)i∗ (M(xk)T )∗i ≥ 0

and positive otherwise. This procedure is partially motivated by results on 1-rank matrices
in Appendix B, however we are still working on it. For the time being it must be considered
only as an heuristic useful to handle some challenging test problems.

Centering Parameter Computation and Stepsize Failure

During all computations the value of ρk is always set to 0.1. This is only changed if in the
previous iteration the step size tk−1 is not greater than 0.1, in particular ρk is iteratively
increased by 0.1 until we obtain tk−1 > 0.1. Whenever tk−1 > 0.1 the value of ρk is reset
to 0.1 (its default value). Also if ρk reach the value of 0.9 and tk−1 ≤ 0.1 occurs the value
of ρk is reset to 0.1, but in this case a flag f is activated. This flag f remains active
until tk−1 > 0.1 and if occurs that tk < 10−6 during f active, the algorithm fails (stepsize
failure).

Line Search Description

In the line search at step (S.3) of Algorithm 3, we take β = 0.5, γ = 10−2 and ξ = 2m.
In order to stay in ZI we preliminarily rescale dk = (dk1, d

k
2, d

k
3, d

k
4). First we analytically

compute a positive constant α such that λk + αdk2 and wk + αdk3 are greater than 10−10.
This ensures that the middle two blocks in zk + αdk are in the interior of R2m

+ . Then,
if necessary, we further reduce this α until h(xk + αdk1) + wk + αdk3 ≥ 10−10 thus finally
guaranteeing that zk +αdk belongs to ZI . In this latter phase, an evaluation of h is needed
for each bisection. At the end of this process, we set dk ← αdk and then perform the
Armijo line search.

Stopping Criteria

The main stopping criterion is based on an equation reformulation of the KKT condi-
tions which uses the Fischer-Burmeister function that, we recall, is defined by φ(a, b) =√
a2 + b2− (a+ b) and has the property that φ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

The equation reformulation is then defined by

V (x, λ, ζ) :=

 F (x) +M(x)Tζ +∇yg(x, x)λ

(φ(λi,−gi(x, x)))mi=1

M(x)y + v(x)

 .
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The main termination criterion, declaring the success of the run, is ‖V (xk, λk, ζk)‖∞ ≤
10−4. The iterations are stopped with a failure if the number of iterations exceeds 1000 or
the running time exceeds one hour or a stepsize failure (described above) occurs.

7.2 Computational Results

The following is a list of problems for which the key nonsingularity assumption of JH
can be guaranteed based on the results in Section 3 (see Section 6 for details): OutZ43,
MovSet1A, MovSet2A, MovSet3A1, MovSet3A2, MovSet4A1, MovSet4A2, Box1A, Box2A,
Box3A, BiLin1A, RHS1A1, RHS2A1.

Note that the structure of problems OutKZ31 and OutKZ41 is the one analyzed in
Example 3.12 and therefore these problems are nonsingular if the friction coefficient φ is
small enough. However in the test problem we used, we took the friction coefficient large
to make the problems more difficult. More in general, we included many problems whose
nonsingularity is not guaranteed (i.e. we actually do not know whether nonsingularity is
satisfied or not) in order to test the robustness of the method.

In Table 7 we report the numerical results of our algorithm on all test problems of the
library (described in Section 6). For each problem we list

• the x-part of the starting point (the number reported is the value of all components
of the x-part of the starting point) [x0];

• the number of iterations, which is equal to the number of evaluations of JH [It/JH];

• the number of evaluations of the constraints vectors [g];

• the number of evaluations of F , which is equal to the number of evaluations of the
gradients of the constraints vectors [F/∇g];

• the value of the KKT violation measure ‖V (x, λ, ζ)‖∞ at termination [‖V ‖∞].

Note that for the (λ,w)-part of the starting vector, we always used λ0 = 5 and further set
w0 = max(5, 5− h(x0)), so as to ensure that the starting point is “well inside” ZI . While
for the ζ-part of the starting vector (the equality parameters), we always used ζ0 = 0.

We see that overall the algorithm seems efficient and reliable and able to solve a wide
array of different problems. Note that for six runs (LunSS1, LunSS3, LunSSVI1, Lun-
SSVI3) ‖V ‖∞ is slightly greater than 10−4, however, since the numerical solution of these
problems is very challenging and we can easily improve the solution given by using fast
local methods, we do not consider these runs as failures. The five failures reported in Table
7 deserve a few more comments. The failures on KunR31 and KunR32 are due to the limit
on computing time (3600 seconds), but the algorithm actually appears to be converging
in both cases, in fact ‖V ‖∞ is 1.1*10−3 and 1.3*10−3 respectively. In the case of Box1B,
Box3A and Box3B instead, difficulties arise because of an almost singularity of the linear
system giving the search direction; this leads to a stepsize failure (we are currently working
on a procedure able to recover from such situations).
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Table 7: Potential Reduction Algorithm numerical results for QVIs.
Problem x0 It / JH g F/∇g ‖V ‖∞ Problem x0 It / JF g F/∇g ‖V ‖∞
OutZ40 0 8 9 9 7.4853e-05 Wal3 0 48 84 82 4.2859e-05
OutZ41 0 18 19 19 9.7789e-05 Wal3 10 63 110 110 3.4127e-05
OutZ42 0 8 9 9 1.4467e-05 Wal5 0 46 80 47 4.6612e-05
OutZ43 0 8 9 9 1.8955e-05 Wal5 10 42 43 43 6.4139e-05
OutZ44 0 8 9 9 2.9380e-05 LunSS1 0 33 34 34 8.7775e-05
MovSet1A 0 10 12 12 1.4767e-05 LunSS1 10 47 48 48 1.2273e-04
MovSet1B 0 16 27 27 3.8251e-05 LunSS2 0 28 29 29 9.6952e-05
MovSet2A 0 12 15 15 2.0701e-05 LunSS2 10 34 35 35 8.8951e-05
MovSet2B 0 36 93 93 2.1019e-05 LunSS3 0 39 40 40 8.3032e-04
MovSet3A1 0 11 12 12 2.7945e-05 LunSS3 10 45 46 46 5.3789e-04
MovSet3B1 0 11 12 12 1.8449e-05 LunSSVI1 0 33 34 34 8.7775e-05
MovSet3A2 0 11 12 12 5.6040e-05 LunSSVI1 10 47 48 48 1.2272e-04
MovSet3B2 0 11 12 12 3.6660e-05 LunSSVI2 0 28 29 29 9.6952e-05
MovSet4A1 0 12 13 13 7.1662e-05 LunSSVI2 10 34 35 35 8.8950e-05
MovSet4B1 0 12 13 13 4.5120e-05 LunSSVI3 0 39 40 40 8.3032e-04
MovSet4A2 0 12 13 13 7.1632e-05 LunSSVI3 10 45 46 46 5.3789e-04
MovSet4B2 0 12 13 13 7.1343e-05 Scrim11 0 10 11 11 2.7489e-05
Box1A 10 9 10 10 1.6652e-05 Scrim11 10 9 10 10 5.1617e-05
Box1B 10 Failure Scrim12 0 10 11 11 2.7475e-05
Box2A 10 167 187 187 7.7965e-06 Scrim12 10 9 10 10 5.1600e-05
Box2B 10 195 220 220 2.3443e-06 Scrim21 0 17 18 18 2.5190e-05
Box3A 10 Failure Scrim21 10 19 20 20 8.9428e-05
Box3B 10 Failure Scrim22 0 17 18 18 2.5188e-05
BiLin1A 0 13 14 14 1.2465e-05 Scrim22 10 19 20 20 8.9414e-05
BiLin1B 0 10 11 11 1.2308e-05 OutKZ31 0 18 19 19 2.4473e-05
RHS1A1 10 19 20 20 3.5596e-05 OutKZ31 10 17 18 18 1.6132e-05
RHS1B1 10 23 29 24 2.2245e-05 OutKZ41 0 20 21 21 4.6573e-05
RHS2A1 10 19 20 20 3.5592e-05 OutKZ41 10 20 21 21 3.5913e-05
RHS2B1 10 19 20 20 2.4006e-05 KunR11 0 14 15 15 7.9623e-05
WalEq1 0 15 17 17 1.9814e-05 KunR11 10 24 40 40 8.3369e-05
WalEq1 10 17 24 24 6.5298e-05 KunR12 0 22 35 35 7.7460e-05
WalEq2 0 22 33 23 4.2337e-06 KunR12 10 25 43 43 9.0344e-05
WalEq2 10 17 19 18 4.9068e-06 KunR21 0 21 35 35 6.1531e-05
WalEq3 0 35 53 48 4.1380e-05 KunR21 10 22 33 33 4.6800e-05
WalEq3 10 60 95 95 1.9673e-05 KunR22 0 23 40 40 7.6296e-05
WalEq4 0 25 29 26 3.4682e-05 KunR22 10 23 40 40 8.9724e-05
WalEq4 10 22 26 23 3.6072e-05 KunR31 0 154 764 764 4.6276e-05
WalEq5 0 24 27 25 6.2267e-05 KunR31 10 Failure
WalEq5 10 30 54 31 3.8680e-05 KunR32 0 168 807 807 2.7577e-05
Wal2 0 34 59 35 2.5898e-05 KunR32 10 Failure
Wal2 10 47 95 48 5.0181e-05

In order to better gauge the robustness of our algorithm we also solved all the prob-
lems using a C version of the PATH solver with a Matlab interface downloaded from
http://pages.cs.wisc.edu/~ferris/path/ and whose detailed description can be found
in [12, 26]. PATH is a well-established and mature software implementing a stabilized
Josephy-Newton method for the solution of Mixed Complementarity Problems and it is
well known that it can be also used to solve the KKT conditions of a QVI, although with
no theoretical guarantee of convergence in our setting. We used the same (x, ζ)-part for the
starting point as we used in the testing of our method. For the λ-part, we considered two
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options. In the first one we took λ0 = 5, therefore using exactly the same starting point
we used in the testing of the interior-point algorithm. In the second option we set λ0 = 0;
this latter alternative was considered because the choice of λ0 = 5 is geared towards our
interior-point method, while λ0 = 0 seems more natural for PATH. It might be useful to
remark that we run PATH with its default settings and the stopping criteria using by PRA
and PATH are marginally different. In spite of this, the precision at the computed solution,
measured in terms of ‖V (x, λ, ζ)‖∞, is consistently comparable. In both the tested cases,
PATH was not able to solve ten problems (the failures are given in Table 8, where under
the heading PATH (5) we report the timings for PATH with λ0 = 5 and analogously under
PATH (0) we have the timings for PATH with λ0 = 0). These results seem to indicate that
our method has the potential to become a very robust solver for the solution of the KKT
conditions arising from QVIs.

The comparison of CPU times is somewhat more problematic. In fact one should take
into account that, although the main computational burden in our algorithm is given by
the solution of linear systems, a task very efficiently performed by the Matlab built-in
function mldivide, we did use Matlab, an interpreted language, and furthermore, what we
implemented is a straightforward version of our algorithm, with none of all those crash
and recover techniques that are to be found in a well developed software as PATH. In
spite of this, having current CPU times would still be of interest, and so we report them
in Table 8. Note that we do not report major, minor and crash iterations for PATH. In
fact PRA and PATH are very unlike, and the meaning of “iteration” is so different in the
two methods that we feel that, besides the number of failures, CPU time is the only other
meaningful parameter to compare. These results show that even the current prototypical
Matlab implementation of the interior-point method compares well to PATH, also in terms
of computing times. The development of a more sophisticated C++ version of our method,
fully exploiting its potential for parallelism, is currently under the way and more extended
and detailed numerical results, along with more accurate comparisons, will be reported
elsewhere.
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Table 8: CPU times in seconds and failures (F).
Problem x0 PRA PATH (5) PATH (0) Problem x0 PRA PATH (5) PATH (0)
OutZ40 0 < 0.1 < 0.1 < 0.1 Wal3 0 0.3 0.1 0.1
OutZ41 0 < 0.1 < 0.1 < 0.1 Wal3 10 0.4 0.4 0.1
OutZ42 0 < 0.1 < 0.1 < 0.1 Wal5 0 0.7 F F
OutZ43 0 < 0.1 < 0.1 < 0.1 Wal5 10 0.6 F 1.4
OutZ44 0 < 0.1 < 0.1 < 0.1 LunSS1 0 3.2 4.7 3.4
MovSet1A 0 < 0.1 < 0.1 < 0.1 LunSS1 10 4.6 4.9 5.6
MovSet1B 0 < 0.1 < 0.1 F LunSS2 0 18.0 106.6 62.0
MovSet2A 0 < 0.1 < 0.1 < 0.1 LunSS2 10 22.6 108.6 68.0
MovSet2B 0 < 0.1 < 0.1 F LunSS3 0 722.0 F F
MovSet3A1 0 2.2 5.4 4.8 LunSS3 10 858.9 F F
MovSet3B1 0 2.2 5.8 5.3 LunSSVI1 0 3.3 4.7 1.6
MovSet3A2 0 10.1 37.5 35.2 LunSSVI1 10 4.8 4.6 5.6
MovSet3B2 0 9.9 46.8 38.1 LunSSVI2 0 19.2 109.5 50.8
MovSet4A1 0 0.4 7.5 0.4 LunSSVI2 10 24.0 110.8 62.9
MovSet4B1 0 0.3 7.6 0.4 LunSSVI3 0 732.6 F F
MovSet4A2 0 1.3 92.0 2.0 LunSSVI3 10 867.6 F F
MovSet4B2 0 1.3 96.2 2.0 Scrim11 0 0.3 2.6 < 0.1
Box1A 10 < 0.1 < 0.1 < 0.1 Scrim11 10 0.3 2.6 < 0.1
Box1B 10 F < 0.1 < 0.1 Scrim12 0 0.6 17.7 0.1
Box2A 10 4.0 5.7 2.7 Scrim12 10 0.5 17.7 0.1
Box2B 10 4.7 7.2 8.7 Scrim21 0 0.2 4.7 < 0.1
Box3A 10 F 16.0 4.6 Scrim21 10 0.2 4.7 2.1
Box3B 10 F F 34.3 Scrim22 0 0.3 29.2 0.1
BiLin1A 0 < 0.1 < 0.1 < 0.1 Scrim22 10 0.3 29.3 10.1
BiLin1B 0 < 0.1 < 0.1 < 0.1 OutKZ31 0 < 0.1 < 0.1 < 0.1
RHS1A1 10 0.6 0.3 0.4 OutKZ31 10 < 0.1 < 0.1 < 0.1
RHS1B1 10 0.4 0.5 0.8 OutKZ41 0 < 0.1 < 0.1 < 0.1
RHS2A1 10 0.7 0.3 0.5 OutKZ41 10 < 0.1 < 0.1 < 0.1
RHS2B1 10 0.6 0.3 0.3 KunR11 0 26.2 110.5 37.7
WalEq1 0 0.2 < 0.1 0.1 KunR11 10 53.8 130.0 50.0
WalEq1 10 0.1 < 0.1 0.1 KunR12 0 177.1 1382.8 161.8
WalEq2 0 0.2 0.8 3.9 KunR12 10 209.0 1280.6 196.3
WalEq2 10 0.1 1.7 0.7 KunR21 0 46.7 91.7 42.8
WalEq3 0 0.4 0.3 0.4 KunR21 10 47.0 119.1 82.2
WalEq3 10 0.7 0.3 0.7 KunR22 0 192.5 845.4 114.1
WalEq4 0 0.6 F 5.6 KunR22 10 193.6 1028.0 218.3
WalEq4 10 0.6 3.9 0.4 KunR31 0 637.9 168.7 1225.4
WalEq5 0 0.9 F 5.9 KunR31 10 F 185.3 F
WalEq5 10 1.2 2.3 0.6 KunR32 0 2531.6 552.3 F
Wal2 0 0.1 0.2 0.3 KunR32 10 F 817.4 F
Wal2 10 0.2 F 0.1
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Conclusions

We presented a detailed convergence theory for an interior-point method for the solution of
the KKT conditions of a general QVI. We could establish convergence for a wide array of
different classes of problems including QVIs with the feasible set given by “moving sets”,
linear systems with variable right-hand sides, box constraints with variable bounds, and
bilinear constraints. These results surpass by far existing convergence analyses, the latter
all having a somewhat limited scope. In our view, the results in this thesis constitute an
important step towards the development of theoretically reliable and numerically efficient
methods for the solution of QVIs.

Moreover we presented a big collection of test problems from diverse sources which is
the largest test set for QVIs considered so far and gives a uniform basis on which algorithms
for the solution of QVIs can be tested and compared.

Future works on this thesis topics are the development and the implementation of a
C++ solver for the solution of QVIs based on our method.
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A Appendix on Monotonicity and Lipschitz

Properties

In this appendix we recall some well-known definitions and discuss some related results.
Although the latter are also mostly well-known, in some cases we could not find in the
literature the exact versions we needed. Therefore, for completeness we also report the
proofs of these results.

We begin by recalling the definitions of several classes of functions.

Definition A.1 Let D ⊆ Rn and F : D → Rn be a given function. Then

(a) F is strongly monotone on D with constant σ if σ > 0 and

(x− y)T
(
F (x)− F (y)

)
≥ σ‖x− y‖2, ∀x, y ∈ D;

The largest σ for which such a relation holds is termed the monotonicity modulus of
F on D:

σ(D,F ) := inf
x 6=y,x,y∈D

(x− y)T
(
F (x)− F (y)

)
‖x− y‖2

.

(b) F is co-coercive on D with constant ξ if ξ > 0 and

(x− y)T
(
F (x)− F (y)

)
≥ ξ‖F (x)− F (y)‖2, ∀x, y ∈ D;

(c) F is Lipschitz continuous on D with constant L ≥ 0 if

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ D.

The smallest L for which such relation holds is termed the Lipschitz modulus of F
on D:

L(D,F ) := sup
x 6=y,x,y∈D

‖F (x)− F (y)‖
‖x− y‖

.

(d) F is a homeomorphism of D onto F (D) if F is one-to-one on D (that is F (x) 6= F (y)
whenever x, y ∈ D, x 6= y, or, in other words, F has a single-valued inverse F−1

defined on F (D)), and F and F−1 are continuous on D and F (D), respectively. �

Characterizations of the Lipschitz and strong monotonicity moduli are given in the follow-
ing result.

Proposition A.2 Let D ⊆ Rn be an open, convex subset of Rn and let F : D → Rn be a
continuously differentiable function. Then the following statements hold:

(a) F is Lipschitz continuous on D with constant L if and only if ‖JF (x)‖ ≤ L for all
x ∈ D; consequently

L(D,F ) = sup
x∈D
‖JF (x)‖,

provided the sup on the right hand side is finite.
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(b) F is strongly monotone on D with constant σ if and only if hTJF (x)h ≥ σ‖h‖2 for
all x ∈ D, h ∈ Rn; consequently

σ(D,F ) = inf
x∈D

µsm(JF (x)),

provided the inf on the right hand side is positive.

Proof. (a) From Theorem 3.2.3 in [50], if ‖JF (x)‖ ≤ L then L is a Lipschitz constant
for F on D. Conversely, assume that∥∥F (x)− F (y)

∥∥ ≤ L‖x− y‖, ∀x, y ∈ D (65)

holds. Applying the differential mean value theorem to each component function Fi of F ,
it follows that, for any given x, y ∈ D, we can find suitable points ξ(i) ∈ (x, y) such that

Fi(x)− Fi(y) = ∇Fi(ξ(i))T (x− y) ∀i = 1, . . . , n.

Setting

G(ξ) :=

 ∇F1(ξ(1))T

...
∇Fn(ξ(n))T

 ∈ Rn×n,

this can be rewritten in a compact way as

F (x)− F (y) = G(ξ)(x− y). (66)

Now, let x ∈ D be fixed, and note that

G(ξ)→ JF (x) (67)

for any sequence y → x in view of the continuous differentiability of F . We now consider
a particular sequence y = x + td with a fixed (but arbitrary) vector d ∈ Rn \ {0} and a
sequence t ↓ 0. Then (65) and (66) together imply∥∥G(ξ)td

∥∥ =
∥∥F (x)− F (x+ td)

∥∥ ≤ L‖td‖.

Dividing by t and subsequently letting t ↓ 0 (note that ξ still depends on t), we obtain∥∥JF (x)d
∥∥ ≤ L‖d‖

in view of (67). Since d was taken arbitrarily, this implies ‖JF (x)‖ ≤ L, and this inequality
is true for any vector x ∈ D.
(b) See [50, Theorem 5.4.3]. � �

The following result gives a relation between the Lipschitz constants etc. of a given mapping
F and its inverse F−1.
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Proposition A.3 Let a function F : D → Rn be given where D is an open subset of Rn.
Assume that two positive constants ` and L exist such that

`‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ D. (68)

Then F is a homeomorphism from D to F (D) (which is an open set) and

1

L
‖a− b‖ ≤ ‖F−1(a)− F−1(b)‖ ≤ 1

`
‖a− b‖, ∀a, b ∈ F (D), (69)

in particular, F and F−1 are Lipschitz continuous on D and F (D), respectively.

Proof. The first inequality from (68) implies that F is one-to-one on D (therefore
the inverse F−1 exists on F (D)), and that, setting a = F (x) and b = F (y), the second
inequality in (69) holds. In particular, this implies that F−1 is Lipschitz continuous on
F (D), hence continuous, so that F (D) = (F−1)−1(D), being the pre-image of a continuous
map of the open set D, is also an open set. Finally, let a, b ∈ F (D) be arbitrarily given.
Setting x = F−1(a), y = F−1(b), we obtain from the second inequality in (68) that

‖F−1(a)− F−1(b)‖ = ‖x− y‖ ≥ 1

L
‖F (x)− F (y)‖ =

1

L
‖a− b‖,

and this completes the proof. � �

The next result considers a strongly monotone and Lipschitz continuous mapping and
provides suitable bounds for the moduli of Lipschitz continuity and strong monotonicity
of the corresponding inverse function. We stress, however, that the constant of strong
monotonicity of the inverse function provided by this result is really just an estimate and
typically not exact. It seems difficult to find a stronger bound in the general context
discussed here. In a more specialized situation, much better results can be obtained, see
Proposition A.5 below.

Proposition A.4 Let D ⊆ Rn be an open set and F : D → Rn be strongly monotone with
modulus σ and Lipschitz continuous with modulus L on D. Then F is co-coercive with
constant σ

L2 . Furthermore, it holds that the inverse F−1 exists on F (D), is Lipschitz with
constant 1

σ
and strongly monotone with constant σ

L2 .

Proof. We can write(
F (x)− F (y)

)T
(x− y) ≥ σ‖x− y‖2, ∀x, y ∈ D

and
‖F (x)− F (y)‖2 ≤ L2‖x− y‖2, ∀x, y ∈ D
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by assumption. A combination of these two inequalities yields

‖F (x)− F (y)‖2 ≤ L2‖x− y‖2 ≤ L2

σ

(
F (x)− F (y)

)T
(x− y), ∀x, y ∈ D. (70)

Hence F is co-coercive with constant σ
L2 .

By Proposition A.3 we know that F is a homeomorphism from D to F (D) and F−1 is
Lipschitz continuous with constant 1

σ
. Finally writing a = F (x), b = F (y) in (70) gives(

F−1(a)− F−1(b)
)T

(a− b) ≥ σ

L2
‖a− b‖2, ∀a, b ∈ F (D).

This completes the proof. � �

The following result gives an exact estimate of the Lipschitz and strong monotonicity
moduli of the inverse of a function under the assumption that the mapping F itself is a
gradient mapping, i.e. that F = ∇f for a differentiable real-valued function f .

Proposition A.5 Let D ⊆ Rn be an open convex set and F : D → Rn be a gradient
mapping. Assume that F is strongly monotone with modulus σ and Lipschitz continuous
with modulus L on D. Then the inverse function F−1 exists on F (D), is Lipschitz with
modulus 1

σ
and strongly monotone with modulus 1

L
.

Proof. The result can easily be derived from the Baillon-Haddad Theorem, see [1],
when D = Rn. We give here a direct proof which is valid also when D 6= Rn. In view of
Proposition A.4, we only have to verify the statement that F−1 is strongly monotone with
constant 1

L
.

To this end, first consider a symmetric positive definite matrix A ∈ Rn×n, let A1/2 be the
corresponding (unique) symmetric positive definite square root of A so that A1/2A1/2 = A,
and let A−1/2 be the inverse of A1/2. Then the symmetry of A1/2 together with the Cauchy-
Schwarz inequality implies

‖d‖2 = dTd = dTA1/2A−1/2d ≤ ‖A1/2d‖ · ‖A−1/2d‖, ∀d ∈ Rn.

Squaring both sides shows that

‖d‖4 ≤
(
dTAd

)(
dTA−1d

)
, ∀d ∈ Rn (71)

holds. Since F is strongly monotone, the Jacobian JF (x) is positive definite for all x ∈ D;
furthermore, since F is a gradient mapping, this Jacobian is also symmetric. Hence we can
apply inequality (71) to the matrix A := JF (x) and obtain

‖d‖4 ≤
(
dTJF (x)d

)(
dTJF (x)−1d

)
≤

(
dTJF (x)−1d

)
‖d‖2‖JF (x)‖

≤
(
dTJF (x)−1d

)
L‖d‖2, ∀d ∈ Rn,
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where the second inequality uses the Cauchy-Schwarz inequality once again, and the third
inequality takes into account Proposition A.2. This implies

1

L
dTd =

1

L
‖d‖2 ≤

(
dTJF (x)−1d

)
, ∀d ∈ Rn ∀x ∈ D.

Since JF (x)−1 = JF−1(y) for y = F (x) by the Inverse Function Theorem, this gives

1

L
dTd ≤ dTJF−1(y)d, ∀d ∈ Rn ∀y ∈ F (D).

By a well-known result, see [50, Theorem 5.4.3] this is equivalent to saying that F−1 is
strongly monotone on F (D) with constant 1/L. � �

The sharper result from Proposition A.5 regarding the modulus of strong monotonicity
does, in general, not hold for non-gradient mappings, see the corresponding discussion and
(counter-) example at the end of Subsection 3.2.
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B Appendix on Nonsymmetric Matrices

Positiveness and Beyond

In this appendix we recall some definitions and discuss some related results on square
matrices not necessarily symmetric. See [10] for further readings.

Definition B.1 Let A ∈ Rn×n be a given square matrix. Then

(a) A is positive definite (A � 0) if

vTAv > 0, ∀ v ∈ Rn, v 6= 0

(b) A is positive semidefinite (A � 0) if

vTAv ≥ 0, ∀ v ∈ Rn

(c) A ∈ P if
∃ i ∈ {1, . . . , n} : vi(Av)i > 0, ∀ v ∈ Rn, v 6= 0

(d) A ∈ P0 if

∃ i ∈ {1, . . . , n} : vi 6= 0, vi(Av)i ≥ 0, ∀ v ∈ Rn, v 6= 0

Proposition B.2 Let A ∈ Rn×n be a given square matrix. Then

(a) A � 0 if and only if all principal minors of (A+ AT ) are positive

(b) A � 0 if and only if all eigenvalues of (A+ AT ) are positive

(c) A � 0 if and only if all principal minors of (A+ AT ) are nonnegative

(d) A � 0 if and only if all eigenvalues of (A+ AT ) are nonnegative

(e) A � 0 if and only if A+ εI � 0, ∀ ε > 0

(f) A ∈ P if and only if all its principal minors are positive

(g) A ∈ P if and only if all real eigenvalues of A and of all principal submatrices of A are
positive

(h) A ∈ P0 if and only if all its principal minors are nonnegative

(i) A ∈ P0 if and only if all real eigenvalues of A and of all principal submatrices of A are
nonnegative

(j) A ∈ P0 if and only if A+ εI ∈ P , ∀ ε > 0
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(k) if A � 0 then A is nonsingular

(l) if A ∈ P then A is nonsingular

(m) if A � 0 then A � 0, A ∈ P , A ∈ P0

(n) if A � 0 then A ∈ P0

(o) if A ∈ P then A ∈ P0

Now we give some further propositions in order to prove results in Table 9.

Proposition B.3 Let A � 0 and B � 0 then A+B � 0.

Proof. ∀v ∈ Rn, v 6= 0 we have vTAv > 0 and vTBv ≥ 0, and then vT (A+B)v > 0. �

Proposition B.4 Let A � 0 and B � 0 then A+B � 0.

Proof. ∀v ∈ Rn we have vTAv ≥ 0 and vTBv ≥ 0, and then vT (A+B)v ≥ 0. �

Proposition B.5 There exist A � 0 and B � 0 such that A+B /∈ P .

Proof. By choosing A and B such that a vector v 6= 0 exists such that Av = 0 and
Bv = 0 (for example if A = B), we obtain (A+B)v = 0. Therefore A+B is singular and
then it cannot be P . �

Proposition B.6 There exist A � 0 and B ∈ P such that A+B /∈ P0.

Proof. By choosing

A :=

(
1 −2
0 2

)
, B :=

(
1 0
−4 1

)
we obtain

A+B =

(
2 −2
−4 3

)
/∈ P0,

and then we have the proof. Another example with A symmetric follows

A :=

(
2 −3
−3 5

)
, B :=

(
1 0
−4 1

)
then

A+B =

(
3 −3
−7 6

)
/∈ P0.

�
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Proposition B.7 There exist A � 0 and B ∈ P such that A+B is singular.

Proof. By choosing

A :=

(
1 −2
0 2

)
, B :=

(
1 0
−3 1

)
we obtain

A+B =

(
2 −2
−3 3

)
which is singular and then we have the proof. Another example with A symmetric follows

A :=

(
2 −3
−3 5

)
, B :=

(
1 0
−3 1

)
then

A+B =

(
3 −3
−6 6

)
which is singular. �

Proposition B.8 There exist A � 0 and B � 0 such that AB /∈ P0.

Proof. By choosing

A :=

(
2 0
−2 1

)
, B :=

(
1 3
1 5

)
we obtain

AB =

(
2 6
−1 −1

)
/∈ P0,

then we have the proof. Another example with A and B symmetric follows

A :=

(
3
2

4
4 11

)
, B :=

(
5 −3
−3 2

)
then

AB =

(
−9

2
7
2

−13 10

)
/∈ P0.

�

Proposition B.9 Let A and B be two square nonsingular matrices, then AB is nonsin-
gular.

Proof. For all v 6= 0 we obtain Bv = u 6= 0 being B nonsingular, then ABv = Au 6= 0
being A nonsingular. �
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Proposition B.10 Let A and B be two square matrices, with A nonsingular and B sin-
gular, then AB is singular.

Proof. A vector v exists such that Bv = 0, then we obtain ABv = A0 = 0, that is AB
is singular. �

Proposition B.11 Let A � 0 and D be a square diagonal matrix with positive diagonal
entries, then DA ∈ P .

Proof. Choosing an arbitrary subset of indices of rows (or columns) I, and exploiting
the diagonal structure of D, we can write:

(DA)II = DIIAII .

Then it is not difficult to see that all real eigenvalues of DIIAII are positive, since they

are the same of the matrix D
1
2
IIAIID

1
2
II � 0, where D

1
2
II is the square root of DII (which is

diagonal). This is equivalent to say that DA ∈ P . �

Proposition B.12 Let A � 0 and D be a square diagonal matrix with nonnegative diag-
onal entries, then DA ∈ P0.

Proof. It is similar to that of Proposition B.11. �
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1-Rank Matrices

Given two non null vectors u, v ∈ Rn, we define the square matrix

A := uvT . (72)

The following considerations hold (pag. 61 in [35]):

• A has rank equal to 1;

• A has n− 1 eigenvalues equal to 0 and one eigenvalue equal to λ := uTv;

• the right eigenvector associated with λ is u and the left one is v;

• any vector orthogonal to v is a right eigenvector with eigenvalue equal to zero, while
if it is orthogonal to u then it is a left one.

It is important to recall that any matrix with rank 1 can be expressed as in (72).

Proposition B.13 Consider the matrix A in (72), the following holds:

(a) A � 0 if and only if u = αv, with α ≥ 0;

(b) A ∈ P0 if and only if uivi ≥ 0 for all i = 1, . . . , n.

Proof. (a) Suppose that u 6= αv or that u = αv with α < 0, then it is not difficult to
find a vector z ∈ Rn such that zTu < 0 and zTv > 0, but this is equivalent to say that
zTuvTz < 0 that is A 6� 0.

If u = αv with α ≥ 0 then for all z ∈ Rn: zTu = αzTv, but this is equivalent to say
that zTuvTz = αzTvvTz ≥ 0 that is A � 0.
(b) The determinant of any principal submatrix of A with dimension greater than 1 is
equal to 0. The determinants of the principal submatrices of A with dimension equal to 1
are equal to uivi for i = 1, . . . , n. Then by the definition of matrix P0 the proof follows. �

The corollary below follows directly from Proposition B.13 and from the fact that any
matrix with rank equal to 1 can be rewritten as the product of two vectors.

Corollary B.14 Let A be a matrix whose rank is equal to 1. Then the followings hold:

(a) A � 0 if and only if A is symmetric with all diagonal entries nonnegative;

(b) A ∈ P0 if and only if all the diagonal entries of A are nonnegative.

Proposition B.15 Consider u, v ∈ Rn and assume that uTv 6= 0. Then a basis {b1, . . . , bn}
of non null right [left] unit eigenvectors of the matrix A = uvT exists such that b1 =

u
‖u‖

[
b1 = v

‖v‖

]
, bn = 1√

‖u‖2‖v‖2−(uT v)2

(
‖v‖u− uT v

‖v‖ v
) [

bn = 1√
‖u‖2‖v‖2−(uT v)2

(
‖u‖v − uT v

‖u‖ u
)]

,

b1 ⊥ bi and bn ⊥ bi for all i = 2, . . . , n− 1 and bj ⊥ bi for all i, j = 2, . . . , n− 1 and i 6= j.
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Proof. It is well known that b1 is an eigenvector of A with eigenvalue equal to uTv and
it not difficult to see that bn is an eigenvector of A with eigenvalue equal to 0. Given the
two vectors u, v ∈ Rn it is always possible to define n − 2 non null unit vectors mutually
orthogonal and orthogonal to both u and v. Then, since bn is a linear combination of u
and v, we can conclude that b2, . . . , bn−1 exist. �

Proposition B.16 Consider u, v ∈ Rn and assume that uTv = 0. Consider the matrix
A = uvT , then either it is equal to the null matrix or it is not diagonalizable.

Proof. It is known that A has only one eigenvalue equal to 0 with algebraic multiplicity
equal to n. Unless A is equal to the null matrix (that is u or v are null vectors) then the
rank of A is equal to 1 and then the geometric multiplicity of the eigenvalue 0 is equal to
n− 1, and then A is not diagonalizable. �

Remark B.17 It is well known that the roots of a polynomial vary continuously with
the coefficients. This means that the coefficients of the characteristic polynomial of a
matrix vary continuously with the entries of the matrix, since they can be expressed in
terms of sums of principal minors. Consequently, for any matrix the eigenvalues must vary
continuously with the entries (see Example 7.1.3 in [35]), and then the same can be said
for the determinant of the matrix (since it is equal to the product of its eigenvalues).

Theorem B.18 Let B ∈ Mn×n be a positive definite matrix and let u, v ∈ Rn be two
vectors such that uTv ≥ 0. If any of u and v is null or if the following condition holds:

µsm(B)

‖B‖
≥

√
1−

(
uTv

‖u‖‖v‖

)2

, (73)

then matrix M(α) := B + αuvT is nonsingular (in particular its determinant is positive)
for all α ≥ 0.

Proof. First of all we can say that M(0) = B is non singular by the positive definiteness
of B, and the same can be said if any of u and v is null. Moreover we can also say that if
u = ρv with ρ ≥ 0 then uvT is positive semidefinite and then, by the positive definiteness
of B, matrix M(α) is positive definite (and then nonsingular) for all α ≥ 0. Then we must

consider only the case in which α > 0, 0 ≤ uT v
‖u‖‖v‖ < 1 and both u and v are non null.

We first consider the case in which uTv > 0. Let {b1, . . . , bn} be the basis of non null
right unit eigenvectors of matrix uvT defined in Proposition B.15. Let us suppose that the
thesis does not hold, that is a non null vector z ∈ Rn and a scalar ᾱ > 0 exist such that

M(ᾱ)z = Bz + ᾱ uvTz = 0n. (74)
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Vector z can be expressed by using the vectors {b1, . . . , bn} and the scalars {β1, . . . , βn}:

z :=
n∑
i=1

βibi.

We can write the following:

ᾱ uvTz = ᾱ uvT

(
n∑
i=1

βibi

)
= ᾱ uvT (β1b1) (75)

= ᾱβ1
vTu

‖u‖
u,

where (75) follows from the fact that v ⊥ bi for all i = 2, . . . , n. Then, by (74), we can
conclude that

Bz = γu, (76)

where γ := −ᾱβ1
vTu
‖u‖ . Moreover by the positive defineteness of B, we can say that γ 6= 0

and then β1 6= 0.
The following chain of equalities holds:

γzTu = γ

(
β1b1 + βnbn +

n−1∑
i=2

βibi

)T

u

= γ

β1
u

‖u‖
+ βn

1

‖u‖‖v‖
√

1− (uT v)2

‖u‖2‖v‖2

(
‖v‖u− uTv

‖v‖
v

)
+

n−1∑
i=2

βibi

T

u

= γ

β1‖u‖+ βn
‖u‖√

1− (uT v)2

‖u‖2‖v‖2

− βn
(uTv)2

‖u‖‖v‖2

√
1− (uT v)2

‖u‖2‖v‖2


= γ‖u‖

β1 + βn
1√

1− (uT v)2

‖u‖2‖v‖2

− βn
(uTv)2

‖u‖2‖v‖2

√
1− (uT v)2

‖u‖2‖v‖2


= γ‖u‖

(
β1 + βn

√
1− (uTv)2

‖u‖2‖v‖2

)
.

Then by (76) we obtain

γ‖u‖

(
β1 + βn

√
1− (uTv)2

‖u‖2‖v‖2

)
= zTBz ≥ µsm(B)‖z‖2,
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which is equivalent to

(
−ᾱβ2

1v
Tu =

)
γ‖u‖β1 ≥ µsm(B)‖z‖2 − γ‖u‖βn

√
1− (uTv)2

‖u‖2‖v‖2
. (77)

Remembering that ᾱ > 0, β1 6= 0 and uTv > 0 we obtain −ᾱβ2
1v

Tu < 0. Then, by the fact

that µsm(B)‖z‖2 ≥ 0 and
√

1− (uT v)2

‖u‖2‖v‖2 ≥ 0, we obtain that, in order to satisfy (77), the

following must hold
γ‖u‖βn > 0. (78)

Since by the triangular inequality

|βn| = ‖βnbn‖ ≤ ‖β1b1‖+ ‖β1b1 + βnbn‖ = |β1|+
√
β2

1 + β2
n + 2β1βnbT1 bn

≤ |β1|+

√√√√β2
1 + β2

n +
n−1∑
i=2

β2
i + 2β1βnbT1 bn = |β1|+ ‖z‖,

then by (76) and (78)

γ‖u‖βn = |γ|‖u‖|βn| ≤ |γ|‖u‖|β1|+ |γ|‖u‖‖z‖
= |γ|‖u‖|β1|+ ‖Bz‖‖z‖ ≤ |γ|‖u‖|β1|+ ‖B‖‖z‖2,

and then finally we can rewrite inequality (77):

γ‖u‖β1 ≥ µsm(B)‖z‖2 −
(
|γ|‖u‖|β1|+ ‖B‖‖z‖2

)√
1− (uTv)2

‖u‖2‖v‖2
,

that is

γ‖u‖β1

(
1−

√
1− (uTv)2

‖u‖2‖v‖2

)
≥ µsm(B)‖z‖2 − ‖B‖‖z‖2

√
1− (uTv)2

‖u‖2‖v‖2
. (79)

Since the left-hand side of (79) is negative while, by assumption (73), the right-hand one
is nonnegative, then we can conclude that z and ᾱ can not exist and this part of the proof
is complete.

Now we consider the case in which uTv = 0. Also in this part of the proof we suppose
that a non null vector z ∈ Rn and a scalar ᾱ > 0 exist such that (74) holds. However
we now express z by using a different basis that is exactly the same as in the previous
part of this proof except for the fact that b1 := v

‖v‖ and bn := u
‖u‖ , then in this case the

basis {b1, . . . , bn} is orthonormal. It is not difficult to see that (76) holds but in this case
γ := −ᾱβ1‖v‖. And again we can say that γ 6= 0 and then β1 6= 0. Moreover it is not
difficult to see that γzTu = γ‖u‖βn and then

γ‖u‖βn = zTBz ≥ µsm(B)‖z‖2 ≥ 0.
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Since (0 ≤) γ‖u‖βn = |γ|‖u‖|βn|, |βn| ≤ ‖z‖ (being the basis orthonormal) and |γ|‖u‖ =
‖B‖‖z‖ then the following must hold

1 ≥ |γ|‖u‖|βn|
‖B‖‖z‖2

≥ µsm(B)‖z‖2

‖B‖‖z‖2
≥ 1,

where the last inequality follows from assumption (73). Then we can conclude that |βn| =
‖z‖ but this contradicts the fact that β1 6= 0 and finally we can say thatM(α) is nonsingular
for all α ≥ 0.

Since M(α) is nonsingular for all α ≥ 0, det(M(0)) > 0 (being B � 0) and remembering
that for any matrix its determinant varies continuously with its entries (see Remark B.17),
we can conclude that det(M(α)) > 0 for all α ≥ 0. Finally the proof is complete. �

Note that Theorem B.18 states the matrix M(α) = B + αuvT to be nonsingular for all
α ≥ 0 under some assumptions on B, u and v, but it does not say anything about the

positiveness of that matrix. In fact let B =

(
1 0
0 1

)
, u =

(
1
1

)
and v =

(
1
−1

)
, then

assumptions of Theorem B.18 are satisfied, but it is easy to see that M(2) =

(
3 −2
2 −1

)
is not P .

Theorem B.19 Let B ∈Mn×n, u, v ∈ Rn and let M(α) := B+αuvT be singular then the
following statements hold:

(a) if B is nonsingular, then M(α− β) is nonsingular for all β 6= 0;

(b) if B � 0 and α > 0, then det (M(α− β)) > 0 for all β > 0.

Proof. (a) By assumption a non null vector z ∈ Rn exists such that M(α)z = 0n that is
Bz = −α(vTz)u and then being B nonsingular we obtain

z = γB−1u, (80)

where γ := −α(vTz). Note that α 6= 0, both u and v must be non null and vTz 6= 0,
otherwise we would have Bz = 0n contradicting the nonsingularity of B.

Now suppose that M(α − β) is singular that is a non null vector y ∈ Rn exists such
that By = −(α− β)(vTy)u and then

y = ρB−1u, (81)

where ρ := −(α− β)(vTy). Note that (α− β) 6= 0 and vTy 6= 0, otherwise again we would
have Bz = 0n contradicting the nonsingularity of B. It is not difficult to see that

M(α− β)y =
ρ

γ
(B + αuvT ) γB−1u− βuvTy = −β(vTy)u 6= 0n,

but this means that y does not exists and then M(α− β) is nonsingular for all β 6= 0.
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(b) By using result (a) we know that M(α − β) is nonsingular for all β > 0. Since
det(M(0)) > 0 (being B � 0) and remembering that for any matrix its determinant varies
continuously with its entries (see Remark B.17), we can conclude that det(M(α− β)) > 0
for all β > 0. �

Note that results of Theorem B.19 can be derived also by using the well known Sherman-
Morrison formula that we report below for readers convenience.

Proposition B.20 (Sherman-Morrison) Let B ∈ Mn×n be nonsingular and u, v ∈ Rn. If
1 + vTB−1u 6= 0, then B + uvT is nonsingular and

(B + uvT )−1 = B−1 − B−1uvTB−1

1 + vTB−1u
.
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