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1

Introduction

The emergence in the last decades of a huge amount of data in many fields of
biology triggered also an increase of the interest by quantitative disciplines for life
sciences. Mathematics, physics and informatics have been providing quantitative
models and advanced statistical tools in order to help the understanding of many
biological problems. Statistical mechanics is a field that particularly contributed to
quantitative biology because of its intrinsic predisposition in dealing with systems
of many strongly interacting agents, noise, information processing and statistical
inference.

In this Thesis a collection of works at the interphase between statistical mechanics
and biology is presented. In particular they are related to biological problems that
can be mainly reconducted to the biology of the immune system.

Beyond the unification key given by statistical mechanics of discrete systems
and quantitative modeling and analysis of the immune system, the works presented
here are quite diversified. The origin of this heterogeneity resides in the intent of
using and learning many different techniques during the lapse of time needed for
the preparation of the work reviewed in this Thesis. In fact the work presented in
Chapter 3 mainly deals with statistical mechanics, networks theory and networks
numerical simulations and analysis; Chapter 4 presents a mathematical physics
oriented work; Chapter 5 and 6 deal with data analysis and in particular wth clinical
data and amino acid sequences data sets, requiring the use of both analytical and
numerical techniques.

The Thesis is conceptually organized in two main parts. The first part (Chapters
1 and 2) is dedicated to the review of known results both in statistical mechanics
and biology, while in the second part (Chapters 3, 4 and 6) the original works are
presented together with briefs insights into the research fields in which they can be
embedded.

In particular, in Chapter 1 some of the most relevant models and techniques
in statistical mechanics of mean field spin systems are reviewed, starting with the
Ising model and then passing to the Sherrington-Kirkpatrik model for spin glasses
and to the Hopfield model for attractors neural networks. The replica method is
presented together with the stochastic stability method as a mathematically rigorous
alternative to replicas.

Chapter 2 is dedicated to a very schematic overview of the biology of the immune
system.

In Chapter 3, Section 3.1 is dedicated to the presentation of a mathematical
phenomenological model for the study of the idiotypic network while Section 3.2
serves as a review of the statistical mechanics based models proposed by Elena
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Agliari and Adriano Barra as toy models meant to underline the possible role of
complex networks within the immune system.

In Chapter 4 the mathematical model of an analogue neural network on a diluted
graph is studied. It is shown how the problem can be mapped in a bipartite diluted
spin glass. The model is rigorously solved at the replica symmetric level with the
use of the stochastic stability technique and fluctuations analysis is used to study
the spin glass transition of the system. A topological analysis of the network is also
performed and different topological regimes are proven to emerge though the tuning
of the model parameters.

In Chapter 5 a model for the analysis of clinical records of testing sets of patients
is presented. The model is based on a Markov chain over the space of clinical states.
The machinery is applied to data concerning the insurgence of Tuberculosis and
Non-Tuberculous Infections as side effects in patients treated with Tumor Necrosis
Factor inhibitors. The analysis procedure is capable of capturing clinical details of
the behaviors of different drugs.

Lastly, Chapter 6 is dedicated to a statistical inference analysis on deep sequencing
data of an antibodies repertoire with the purpose of studying the problem of
antibodies affinity maturation. A partial antibodies repertoire from a HIV-1 infected
donor presenting broadly neutralizing serum is used to infer a probability distribution
in the space of sequences that is compared with neutralization power measurements
and with the deposited crystallographic structure of a deeply matured antibody. The
work is still in progress, but preliminary results are encouraging and are presented
here.

The works reviewed in this thesis have been published or are in preparations and
are the followings:

[1] Elena Agliari, Lorenzo Asti, Adriano Barra, and Luca Ferrucci. Organization
and evolution of synthetic idiotypic networks. Physical Review E, 85(5):051909,
2012.

[2] Elena Agliari, Lorenzo Asti, Adriano Barra, Raffaella Burioni, and Guido
Uguzzoni. Analogue neural networks on correlated random graphs. Journal of
Physics A: Mathematical and Theoretical, 45(36):365001, 2012.

[3] Elena Agliari, Lorenzo Asti, Adriano Barra, Rossana Scrivo, Guido Valesini,
and Robert S. Wallis. Application of a stochastic modeling to assess the evolu-
tion of tuberculous and non-tuberculous mycobacterial infection in patients
treated with tumor necrosis factor inhibitors. PloS one, 8(1):e55017, 2013.

[4] Lorenzo Asti, Paolo Marcatili, Andrea Pagnani, and Guido Uguzzoni. Multi-
variate Gaussian Modeling for abs affinity maturation. In preparation
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Chapter 1

Statistical mechanics of spin
systems

The aim of this Chapter is that of introducing the statistical mechanics of the
Hopfield model, a paradigm for attractor neural networks whose proposal for an
immunological interpretation will be described in Chapter 3. As it is a complex
mean field spin model, we will first review the statistical mechanics of the simplest
mean field spin model, the Ising model; then we will introduce complex mean field
spin models and the replica technique for solving them and finally we will review the
solution of the mean field Hopfield model in the low and high (at replica symmetric
level) storage limit.

1.1 Ordinary spin systems

1.1.1 The paradigm of spin systems: the Ising model

The Ising model was originally introduced as statistical mechanics model to study
the ferromagnetic transition in magnetic materials with planar symmetry by Ernst
Ising after the suggestion of Wilhem Lenz, Ising’s s doctoral thesis supervisor. Ising
solved it in the one dimensional case where the model displays no phase transition
[5].

As spins are binary variables, after a while, the applicability of the model suddenly
appeared to be wider than the pure physical one as large systems of interacting
binary variables can be encountered in many field of quantitative science, from
computer science [6], to the modeling of biological [7], social or economic systems
[8].

The model is introduced by a Hamiltonian of binary variables (spins) σi =
±1, i = 1 . . . N, that is composed of an interaction (two-bodies) term and an external
field (one-body ) term:

HIsing(σ; J, h) = −J
∑

(ij)

σiσj − h
N∑

i=1

σi , (1.1)

where the sum in the interaction term extends over the connected couples of spins
in a cubic lattice structure. The coupling strength J and the external field h are the
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parameters of the model and they tune respectively the strength of the interaction
and of the external polarization source. The interest for this kind of models resides
in studying their statistical mechanics, namely in computing the partition function
that is the sum, in the thermodynamic (infinite system) limit, of the Boltzmann
weight of all the possible configuration, σ, of the system,

Z =
∑

σ1=±1...σN=±1

e−βH(σ) ≡
∑

{σ}

e−βH(σ) , (1.2)

where β ≡ 1/KBT is the inverse temperature in unit of the Boltzmann constant
KB that from now on we will set equal to one. From the partition function the
thermodynamical behavior of the system is recovered by computing the intensive free
energy as a function of the temperature and the other system parameters through
the relation

f = lim
N→∞

− 1

βN
logZ . (1.3)

Moreover the Boltzmann measure allows to compute any thermodynamical
quantity O as an average over the phase space of its microscopic value. In this
chapter will be indicated with the symbol

〈O〉 =
∑

{σ}

O(σ) eβH(σ) (1.4)

Of course the behavior of the system strongly depends on the dimensionality of
the lattice: in 1D the solution is easy to find [9] and the system displays no phase
transition; in 2D the Onsager procedure [10] permits to find the exact solution which
shows that a second order para/ferromagnetic phase transition takes place; in 3D
the exact solution is still not know and perturbative techniques have been developed
based on Renormalization Group, one of the most successful ideas in the physics of
the twentieth century. In dimension D > 4 the critical (near the transition) behavior
is known.

The easiest step for the solution of the model is the so called mean filed ap-
proximation that is equivalent to consider a fully connected model, where every
spin is connected to all the others with a constant coupling of order O(1/N). The
Hamiltonian for the mean field ferromagnetic Ising model, also known as Curie-Weiss
model is so:

HCW(σ; J, h) = − J
N

∑

i<j

σiσj − h
N∑

i=1

σi . (1.5)

Let us consider for the moment the case of vanishing external field, h = 0, in which
the Hamiltonian is invariant under the operation of global spin flip (σi → −σ1, ∀i).
The difficulty in performing the partition sum of interacting systems arises from the
two body term ∼∑{σ} e

∑
ij σiσj . Nevertheless the partition function for this mean

field model can be computed if we introduce the magnetization of a configuration as
the fraction of positive spins with respect to the negative ones, namely

m(σ) =
1

N

N∑

i=1

σi . (1.6)
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In this way the partition function can be written as

Z(β, J, h = 0) =
∑

{σ}

e
βJ
N

∑N
i<j σiσj =

∑

{σ}

e
βJ
2N

∑N
i,j=1 σiσj−

βJ
N

∑N
i=1 s

2
i =

=
∑

{σ}

e
βJ
2N

∑N
i,j=1 σiσj−βJ =

∑

{σ}

e
βJN

2
m2(σ) . (1.7)

It has to be noted that in the last passage a constant (non depending on N)
multiplicative contribution to the partition function has been neglected; this happens
because terms of this kind give vanishing contributions, in the thermodynamic limit,
to the intensive free energy f defined in 1.3. We will implicitly do that in the
following along all this Thesis.

Every value of the magnetization corresponds to a different number of configura-
tion, so if we now sum over the magnetization value, instead of the configuration
we have to consider its degeneration. For doing so we use the Dirac-δ having the
property

f(x) =

∫ +∞

−∞
dyf(y)δ(x− y) (1.8)

and whose Fourier representation reads as

δ(x− y) =
1

2π

∫ +∞

−∞
dtei(x−y)t =

1

2π

∫ +i∞

−i∞
dte(x−y)t . (1.9)

Using the Dirac-δ, the degeneration of the magnetization can be taken into account
by writing

Z(β, J, h = 0) =

∫ +∞

−∞
dm
∑

{σ}

δ
(
Nm−

N∑

i=1

σi
)
e
βJN

2
m2

=

∫ +∞

−∞
dm

∫ +i∞

−i∞
dx
∑

{σ}

eNmx−x
∑
i σi+

βJN
2
m2

. (1.10)

Now the sum over the spin configurations involves no more than a one-body term
and it can easily performed as

∑

{σ}

e−x
∑N
i=1 σi =

N∏

i=1

∑

σi=±1

e−xσi =

N∏

i=1

2 coshx = N2 coshx , (1.11)

so that now

Z(β, J, h = 0) =

∫ +∞

−∞
dm

∫ +i∞

−i∞
dx eN(mx+log coshx−log 2+βJN

2
m2) ≡

≡
∫ +∞

−∞
dm

∫ +i∞

−i∞
dx e−Nβf(m,x;β,J) , (1.12)

where

f(m,x; β, J) = −mx
β
− 1

β
log coshx− J

2
m2 − log 2

β
. (1.13)
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As now the exponent in (1.12) is linear in the system size N , the integral can be
solved by saddle point (or Laplace) method, which implies that, in the thermodynamic
limit, the leading contribution to the free energy comes from substituting the integral
in (1.12) with the maximum value of the integrand function, so, by neglecting the
integral sign and minimizing f(m,x)1. Following this method, the extremization of
f(m,x) in (1.13) gives {

x = −mβJ
m = − tanhx

(1.15)

and hence
m = tanh(βJm) . (1.16)

So the physical free energy f(β, J) is obtained by solving this equation and plugging
the result in

f(m; β, J) = f(m,x = −mβJ ; β, J) =

=
J

2
m2 − 1

β
log cosh(βJm)− 1

β
log 2 ; (1.17)

this is the form of the intensive free energy as a function of the order parameter
(in this case magnetization) and the other macroscopic parameters. By writing
f(m; β, J) = e(m; β, J)− 1

β s(m; β, J), with

e(m; β, J) = −J
2
m2 , (1.18)

s(m; β, J) = −βJm2 + log cosh(βJm) + log 2 , (1.19)

it is possible to isolate an energetic contribution and an entropic one, where the latter
logarithmically counts the number of effectively accessible configurations N of a
system with a determined macroscopic magnetization: s = log(N )/N . Consistently
one could check that at infinite temperature (β = 0) every configuration is equally
accessible so that s = log 2 and N (β = 0) = 2N , while at zero temperature (β →∞)
the entropy vanishes and only a finite number of configuration is accessible.

Equations such as (1.16) are known in statistical mechanics as self consistency
relations. Solving it, checking that the solution is stable, in the sense that it
minimizes f(m), and that it represents the absolute minimum of the free energy
gives the physical value of the order parameter, namely the one that is exponentially
(in the system size) the most probable to find by picking at random a configuration
of the system with the Boltzmann probability.

Expanding the self consistency equation (1.16) for small m gives

m = βJm− βJ

3
m3 . (1.20)

1In fact for a regular function g(x) that achieves its maximum value in x∗,

log

∫ +∞

−∞
dx eNg(x) = log

∫ +∞

−∞
dx eNg(x

∗)+ 1
2
Ng′′(x∗)(x−x+)2+... = log

(
eNg(x

∗)

√
2π

Ng′′(x∗)

)
=

= Ng(x∗)− 1

2
logN + const + . . . (1.14)

so the computation of leading term in N >> 1 does not involve any integration procedure.
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By studying the solution of this equation for different values of the temperatures it
is possible to observe that two very different thermodynamical regimes are separated
by the presence of a critical temperature Tc:

• For β < βc = 1/J the only solution is m = 0 and it is stable. This correspond
to a high temperature (T > Tc = J) paramagnetic phase in which the system
displays a null magnetization and it is ergodic in the sense that all the con-
figurations with a non-null statistical measure are connected by the (local)
operation of a single spin flip. By performing on a finite system a dynamic
that is consistent with the Boltzmann measure (Glauber [11], Metropolis-
Hastings [12]), independently on the initial condition, after a transient, one
should observe the system exploring configurations where the fluctuations
of the magnetization are small, namely they vanish with the system size as
δm→ O(1/

√
N)→ 0.

In the paramagnetic phase the free energy is simply

f(β < βc, J) = − 1

β
log 2 . (1.21)

• For β > βc = 1/J the m = 0 solution is no longer stable and two symmetric
stable solution m = ±m∗ appear, each corresponding to the system being
polarized in one of the two possible directions, spontaneously breaking the
symmetry of the Hamiltonian. As the two solutions are mapped one into the
other by the transformation under which the Hamiltonian is invariant (the
global spin flip: m→ −m), the two solutions give the same value of the free
energy. This phase is called ferromagnetic.

In this phase the system is no longer ergodic. In fact the Boltzmann measure
displays two “peaks” in the phase space that are not connected by local
moves. In this regime a dynamics at finite size will show the system fluctuating
around each of the two symmetric magnetization and jumping between them.
Increasing the system size N , fluctuations around one solution vanish as
δm → O(1/

√
N) → 0 and the time of permanence in one of the two state

grows exponentially as ∼ eN so that a very large system becomes trapped
in one of the two state and only one “peak” of the Boltzmann measure is
explored: the system remains confined to a restricted region of the phase space,
being this region smaller as the temperature is lower. In the limiting case
of T = 0 the system explore only one configuration, namely one of the two
ground states σi = 1 (orσi = −1), ∀i. This fact is know as ergodicity breaking
and the (two, in this case) different sets of available configurations in which
the system gets restricted are know in statistical mechanics as pure states or
ergodic components. The result of a dynamical simulation in this condition is
depicted in Fig. 1.1.

Equation (1.16) can be solved without approximation by graphical methods and
the above discussion still holds.

Of course the saddle point method implies the necessity to sum over all the
(two) equivalent saddle points when computing macroscopic observable, so that, also
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(a) Caption of First Figure (b) Caption of Second Figure
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(d) Caption of Fourth Figure

Figure 1.1. In this Figure the result of a simulation of the fully connected Ising model
with Metropolis dynamics is show. In the upper panels the temporal behavior of the
magnetization is show for a system of N = 19 - 1.1(a) - and N = 33 - 1.1(b) - spins.
In the lower panels the scaling of the average jumping time Dt with the system size N
is shown in regular - 1.1(c) - and logarithmic - 1.1(c) - scale.
In a system with very large size, only configurations belonging to one of the two
magnetization states are would be effectively explored.

in the low temperature phase, 〈m(σ)〉Boltzmann = 0 while physically one observes
〈m(σ)〉 6= 0. This inconsistency is solved by considering that a physical system
where the external field is exactly null does not exist and also in the simulations
the choice of a non symmetric the initial condition (or the first fluctuation from
a symmetric one) has an effect analogous to a small external field. If we consider
the system to be in a non null external field h > 0 the free energy and the self
consistency equation modify according to

f(m; β, J, h) =
J

2
m2 − 1

β
log cosh(βJm+ h)− 1

β
log 2 (1.22)

and

m = tanh(βJm+ h) (1.23)

respectively. The presence of a postive external field explicitly breaks the symmetry
of the Hamiltonian so that, in this case, in the low temperature phase, the two saddle
points value of the magnetization , m1 > m2, are no longer equivalent: the state
corresponding to the greater one has a lower free energy, f(m1) < f(m2), and so is
the one that gives the leading contribution to the free energy, while the contribution
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of the smaller one vanishes exponentially; in fact

f(β, J, h > 0) = lim
N→∞

− 1

Nβ
log
[
e−Nβf(m1) + e−Nβf(m1)

]
=

= lim
N→∞

f(m1)− 1

Nβ
log
[
1 + e−Nβ(f(m2)−f(m1))

]
=

' lim
N→∞

f(m1)− 1

N
e−Nβ(f(m2)−f(m1)) = f(m1) . (1.24)

The consistent way to have a result with spontaneous symmetry breaking in case
of vanishing external field, h = 0 is to compute the free energy in the thermodynamic
limit at non zero field and then to send its value to zero:

f(β, J, h = 0) = lim
h→0

f(β, J, h 6= 0) = lim
h→0

lim
N→∞

f(β, J, h 6= 0, N) ; (1.25)

in this way, for example, in the low temperature phase 〈m(σ)〉 6= 0.
The ferromagnetic phase transition in the Ising model is a second order phase

transition. In fact a discontinuity appear, at the critical point in the susceptibility
χ = ∂m/∂h = ∂2f/∂h2 that is the second derivative of the free energy with respect
to the controll parameter of the system, the external magnetic field h. In chis
case the order parameter, m, grows continuously from zero. As we will see in the
following, fist order phase transitions exist in which the order parameter display a
jump at the critical point.

1.1.2 From two to many attractors: the low storage Hopfield model

In Section 1.1.1 we have solved the statistical mechanics of the simplest mean
field spin model, the Ising model. In that case the ground state of the Hamiltonian
obviously corresponds to the two states of maximum polarization where every spin
is positively (negatively) oriented, σi = 1 (−1), ∀i and m(σ) = 1 (−1). The above
analysis should have convinced the reader that a large dynamical spin system with
the equilibrium distribution corresponding to the Boltzmann distribution of the
mean field Ising model, at small temperature, starting from a random configuration,
eventually falls in the basin of attraction of one of the two ground state and then
fluctuates around it. The selection the initial configuration of the dynamics in one
of the two basins, assures that, after a transient, one specific ground state is reached
by the system and the symmetry is broken in the chosen direction.

An interesting extension of this situation would be achieved by considering a
spin system with many (more than two symmetrical) ground states. If we could
easily tune the parameters in the Hamiltonian such that arbitrary configurations of
our choice are the ground states of the system, this would be a good toy model for
an associative neural network. In fact this minimum energy configurations could be
thought as stored patterns and, by appropriately choosing the initial configuration,
the system would remember one of these patterns.

This scenario is actually realized by the low storage Hopfield model defined by
the Hamiltonian

HHopfield(σ; ξ,h) = − 1

N

N∑

i<j




p∑

µ=1

ξµi ξ
µ
j


σiσj −

N∑

i=1




p∑

µ=1

hµi


σi , (1.26)
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where we note ξ = (ξ1
1 , . . . , ξ

1
N ; . . . ; ξp1 , . . . , ξ

p
N ), ξµ = (ξµ1 , . . . , ξ

µ
N ), ξi = (ξ1

i , . . . , ξ
p
i ),

h = (h1
1, . . . , h

1
N ; . . . ;hp1, . . . , h

p
N ), hµ = (hµ1 , . . . , h

µ
N ), hi = (h1

i , . . . , h
p
i ).

In this model the usual Ising couplings are defined as a sum of projectors over p
vectors in the N -dimensional space,

Jij =
1

N

p∑

µ=1

ξµi ξ
µ
j , (1.27)

and the Ising external fields are simply the sum over p vectors in the same space,

hi =

p∑

µ=1

hµi . (1.28)

It is straightforward to check that, if the pattern entries ξµi ∈ {−1, 1}, at zero
external field the ground state ground state configuration (the global minimum of
the energy function 1.26) corresponds to the cases where the spins are parallel (or
antiparallel) to one vector ξµ. Of course, depending on the choice of the bit-strings ξ,
more degenerate ground states could coexist. Moreover the configurations that are
parallel to the other patterns correspond metastable states, namely local minimum
of the energy. So, by performing a dynamic with an initial condition close to a stored
patterns, at low temperature, the complete pattern will be retrieved. We call the
states correlated with the p stored memories pure states.

Unfortunately, together with the (wanted) pure states, the above procedure
causes the presence of unwanted mixture states that are correlated with local minima
of the energy that correspond to combinations of the stored patterns.

Solution of the low storage Hopfield model with uncorrelated and unbi-
ased random patterns

We now aim to solve the statistical mechanics of the Hopfield model where the
pattern entries are drawn from an unbiased distribution in an uncorrelated way:

P (ξµi ) =
1

2
δξµi ,1 +

1

2
δξµi ,−1 , (1.29)

so that
〈Φ(ξi)〉ξ = 2−p

∑

ξi∈{1,−1}

Φ(ξi) and 〈ξµi ξνi 〉 = δµν . (1.30)

Following a procedure analogous to the one used to find the solution of the mean
field Ising model in 1.1.1, we can introduce p order parameters known as pattern
overlaps

mµ(σ) =
1

N

N∑

i=1

ξµi σi (1.31)

so that the Hamiltonian can be rewritten as a function of the order parameters as

H(σ;h) = −1

2
N

p∑

µ=1

m2
µ(σ) +

1

2
Np (1.32)



1.1 Ordinary spin systems 11

and the free energy becomes

f(β) = − 1

Nβ
log

∫ +∞

−∞

p∏

µ=1

dmµ

∑

{σ}

δ
(
Nmµ −

N∑

i=1

ξµi σi
)
e

1
2
βNm2+p/2 .(1.33)

Following the same reasoning as in Section 1.1.1, by the use of Fourier representa-
tion of the δ function and of the saddle point method, we can state that, in the
thermodynamic limit, the physical values taken by the order parameters are the
solutions of the p equations:

m = 〈ξ tanh(βm · ξ)〉ξ (1.34)

that locally extremize the free energy

f(m) =
1

2
m2 − 1

β
〈log cosh(βm · ξ)〉+

α

2
− 1

β
log 2 . (1.35)

A solution of the self consistency equation (1.34) is a pure state if it minimizes (and
not maximizes) the free energy (1.35). So, in order to discriminate between stable
and non-stable solutions, the spectrum of the Hessian matrix

∂2f

∂mµ∂mν
= δµν − β〈ξµξν

[
1− tanh2(βξ ·m)

]
〉 (1.36)

has to be studied.
A crucial question regards the stability of pure states and mixture states. In

order to answer it an ansatz has to be done on the form of the vector m. The
simplest one focuses on the situation where n patterns are retrieved with the same
intensity so that, when n = 1, the considered state is pure, while it is a mixed state
for n > 1. For simplicity let us suppose that the first n patterns are recalled; of
course the symmetry of the problem assures that the conclusions hold for cases in
which other patterns are retrieved. So symmetric ansatz is

m = mn(

ntimes︷ ︸︸ ︷
1, . . . 1,

p−ntimes︷ ︸︸ ︷
0, . . . , 0) (1.37)

Plugging it into equations (1.34), (1.35) and (1.36) and studying them would lead
to the situation resumed in Figure 1.2. As for the mean field Ising model, over the
critical temperature Tc = 1, for every n, only the solution mn = 0 is stable, so every
pattern overlap vanish and the system is in a paramagnetic state. For T < Tc, the
paramagnetic solution is no longer stable and the pure state where only one pattern
is retrieved (n = 1) is always stable. The solutions with even n are always unstable.
Lowering the temperature, mixture states with odd n > 1 start being stable; the
higher n the lower is the temperature at which the corresponding solution becomes
stable. As the free energy of the pure state is always lower than the mixture states
ones (Figure 1.2, right panel), in the thermodynamic limit only the pure states give
contribution to the free energy. Nevertheless the mixture states are attractors of a
large but finite system; so, in order for a pure state to be retrieved by a dynamical
process, the initial condition should be close enough to it.
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Figure 1.2. Amplitudes mn of the mixture states of the low storage Hopfield model as a
function of the temperature. From top to bottom: n = 1, 3, 5, 7, 9, 11, 13. Region where
they are stable are drawn with a solid line, while unstable solutions are drown as a
dashed line Dashed.
Right picture: corresponding free energies f(mn). From bottom to top n =
1, 3, 5, 7, 9, 11, 13. The free energy of the paramagnetic state is drawn for compari-
son with a dashed line. Figure from [13].

1.2 The replica trick for disordered spin systems: The
Sherrington-Kirkpatrik model

In last Section the Hopfield model was studied in the regime of finite number p
of stored patterns. If we consider the condition where the number of patterns are
infinite and scale linearly with the system size the procedure outlined above is not
useful anymore since the dimension of the integral in (1.33) diverges as fast as the
exponent of the integrand function so that the saddle point method can no longer be
applied. Nevertheless the system can still be studied but it turns out to be similar
to a glassy one and more sophisticated computational tools are needed. Among
them one of the most (and first) used is the replica method [14]. In this Section,
with the aim of introducing it, we outline the (replica symmetric) solution of the
most famous spin glass model: the Sherrington-Kirkpatrick model.

1.2.1 The quenched disorder in mean field systems and the replica
trick

The class of spin models that will be discussed from now on are characterized by
the fact that the couplings between spin variables are heterogenous and in particular
they can be both positive and negative. The intuitive picture of the consequence of
the presence of such disorder is that these systems (in particular regimes) experience
frustration. This means that the interaction network displays closed loops where the
couplings are such that, if we start choosing the spins values in order to minimize the
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energetic contribution of the loop, both choices of the last spin value are equivalent
and one pair of variables in the loop involving that (frustrated) spin will give a
positive contribution to the energy. Frustration in the network gives rise to a complex
energy (and free energy) landscape with many metastable (locally minimizing the
energy) configurations.

Given that thermodynamics is studied for large (infinite in the limit) systems, it
is sensible to express the disorder in terms of a probability distribution of parameters.
For spin systems this for example would mean that the couplings are not homogeneous
as in the Ising model of Section 1.1.1 but are thrown from a distribution P (J).

The hypothesis of self averaging of the thermodynamic quantities states that
the right procedure to compute the physical value of them, in the thermodynamic
limit, is that of performing the sum over configurations at fixed realizations of the
disorder and then to average these thermodynamic quantities over the disorder
distribution. In particular, indicating with E the operation of average over the
disorder ( E g(J) ≡

∫
dJg(J)P (J) ) , the physical value of the free energy is

obtained as

f̄ ≡ E f = lim
N→∞

1

N
E logZ(J) , (1.38)

where Z(J) is the partition function at finite N computed at fixed disorder. It has
to be remarked that the average of the logarithm of the partition is conceptually
very different from (and computationally much harder than) the simple average of
the partition function. Averaging Z over that disorder would mean to average the
disorder together with the dynamic variables, while the couplings are meant to be
fixed while the spins evolve.

To perform the average over the disorder of logZ we introduce the so called
replica trick which makes use of the limit

E logZ = lim
n→0

EZn − 1

n
(1.39)

or equivalently

E logZ = lim
n→0

1

n
log[EZn] . (1.40)

This formal equivalence is not of practical use unless the parameter n is considered
as an integer; this corresponds to compute the partition function for n independent
copies of the system with the same realization of the disorder and to average their
product. The limit is then interpreted as an analytical continuation to real values of
n. This is of course mathematically not safe; moreover, as we will see in practical
cases, Zn is usually computed performing the thermodynamic (N →∞) limit before
the n→ 0 one. This exchange of the ordering of the limits is usually not justified.
Nevertheless in some cases (as for instance for the Sherrington-Kirkpatrick model;
see [15]) for the procedure is proven to give the exact results by rigorous arguments

1.2.2 The replica symmetric solution of the Sherrington-Kirkpatrick
model

The Sherrington-Kirkpatrick (SK) model is the paradigm for disordered spin
systems for the compactness of its definition and the richness of its phenomenology.
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It is a mean field spin model defined through the Hamiltonian

HSK = − 1√
N

N∑

i<j

Jijσiσj , (1.41)

where the couplings Jij are independently thrown from a standard normal distribu-
tion:

dP (Jij) =
1√
2π
e−

J2
ij
2 dJij ≡ dµ(Jij) and P (Jij , Jkl) = P (Jij)P (Jkl), ∀(i, j) 6= (k, l),

(1.42)
where, from now on, dµ(x) ≡ (2π)1/2 exp(−x2/2) dx indicates the standard gaussian
measure. Here we will outline the solution that was first proposed for this model by
David Sherrington and Scott, Kirkpatrick in [14]. This solutions which is known as
the replica symmetric (RS) solution, is wrong but represents a good approximation
for the true solution at temperature slightly below the transition temperature. The
right solution of has been proposed by Giorgio Parisi in [16] and the rigorous proof
of its correctness takes contributions from the works of Francesco Guerra [17] and
Michel Talagrandt [18].

As the contribution of the diagonal terms in (1.41) is negligible in the thermody-
namic limit, the definition of the model will be approximated by

HSK = − 1

2
√
N

N∑

ij

Jijσiσj . (1.43)

Using the replica trick in the form of Equation (1.40),

f̄(β) = lim
N→∞

− 1

βN
E logZ = lim

N→∞
− 1

βN
lim
n→0

logEZn . (1.44)

Performing the disorder average of the replicated systems involves just gaussian
integrations so that

EZn =
∑

{σ}

∫ ∞

−∞

∏

ij

dJije
−
J2
ij
2

+
∑n
a

β

2
√
N
Jijσ

a
i σ

a
j =

∑

σ

e
∑N
ij

β2

4N

∑n
ab σ

a
i σ

b
iσ
a
j σ

b
j . (1.45)

We now define what is, at this level, the order parameter of the system: the overlap
matrix

qab(σ) =
1

N

N∑

i=1

σai σ
b
i (1.46)

whose entries represent the identity fraction of two replicas of the system. qab ∈
[−1, 1]: qab = 1(−1) when the two replicas are in the same (in completely anti-
correlated) configurations and qab = 0 when the two replicas are in completely
different configurations. Now, calling the integration measures Dq ≡∏n

ab dqab and
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DΛ ≡∏n
ab dΛab

EZn =
∑

{σ}

e
Nβ2

4

∑n
ab q

2
ab(σ) =

∑

{σ}

∫ ∞

−∞

n∏

ab

dqabδ(Nqab −
∑

i

σai σ
b
i )e

Nβ2

4

∑n
ab q

2
ab =

=

∫ ∞

−∞
Dq

∫ i∞

−i∞
DΛ

∑

{σ}

eN
∑
ab Λabqab−

∑
ab

∑
i σ
a
i Λabσ

b
i+N

β2

4
q2
ab =

=

∫ ∞

−∞
Dq

∫ i∞

−i∞
DΛ e−Nβf(q,Λ) , (1.47)

with

f(q,Λ) = − 1

β

∑

ab

Λabqab −
1

β
log


∑

{σ}

e
∑
ab σ

aΛabσ
b


− β

4

∑

ab

q2
ab , (1.48)

that is symmetric under permutations of replica indexes. The physical value of the
intensive free energy is given for formula (1.44). Exchanging the orders of the limits
in that fomrula is the only way to compute the integrals over the measures Dq and
DΛ. In that case, taking the thermodynamic limit before sending the number of
replicas to zeros allows to use the saddle point method. So the extremization of
f(q,Λ) over q allow to eliminate the additional variables Λ with

Λab = −β
2

2
qab , (1.49)

so that the expression of the free energy as a function of the overlap matrix is

f(q;β) =
β

4

∑

ab

q2
ab −

1

β
log


∑

{σ}

e
β2

2

∑
ab σ

aqabσ
b


 . (1.50)

In last formula it is evident the effect of the replica trick: it has decoupled sites
but now replicas are coupled by the overlap matrix. Last expression has to be
computed in the saddle point and the limit n→ 0 is still to be performed. In order
to do this a parametrization of the overlap matrix needs to be made explicit. A
good parametrization could permit to decouple replicas.

The simplest ansatz for the form of the matrix overlap is the one that respects
the symmetry of the f(q), so a matrix whitch has 1 on the diagonal and a parameter
q0 on all the entries out of the diagonal, i. e.

qab = q0 + (1− q0)δab . (1.51)

This is known as the replica symmetric (RS) anstatz. With this parametrization the
free energy becomes

f(q0;β) = lim
n→0

1

n
f(qRS) = lim

n→0

β

4
nq2

0 +
β

4
(1− q2

0) +

− 1

βn
log

(∑

σ

e
1
2
β2q0

∑n
ab σ

aσbe
β2

2
(1−q0)n

)
=

= −β
4

(1− q0)2 − lim
n→0

1

βn
log

(∑

σ

e
1
2(β
√
q0

∑n
a σ

a)
2

)
. (1.52)
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Rewriting the last term as the result of a gaussian integration

f(q0;β) = −β
4

(1− q0)2 − lim
n→0

1

βn
log
∑

σ

∫
dµ(z)ezβ

√
q0

∑
a σa =

= −β
4

(1− q0)2 − lim
n→0

1

βn
log

∫
dµ(z)

n∏

a

∑

σa

ezβ
√
q0σa =

= −β
4

(1− q0)2 − lim
n→0

1

βn
log

∫
dµ(z) (2 cosh(zβ

√
q0))n . (1.53)

We can now use the replica trick relation (1.40) in the inverse sense so that we
have the final result for the RS free energy of the SK model

f(q0;β) = −β
4

(1− q0)2 − 1

β

∫
dµ(z) log (cosh(zβ

√
q0))− 1

β
log 2 . (1.54)

This expression has to be minimized with respect to the parameter q and this
procedure gives the self consistency relation

q0 =

∫
dµ(z) tanh2(zβ

√
q0) . (1.55)

By studying equations (1.54) and (1.55) it is possible to verify that for T > TC ≡ 1
only the solution q = 0 is stable while for T < 1 stable solutions with q > 0 appear.
The nature of this phase transition appears obscure at the moment so that we now
aim to deep the physical meaning of the order parameter.

1.2.3 The physical interpretation of the overlap and the spin glass
phase

As we have shown in Section 1.1.1 for the case of the mean field Ising model, in
interacting systems ergodicity can break in the low temperature phase in which the
phase space can split into ergodic regions where the system remains trapped. Let
us indicate states with greek letters. Pure sates, in mean field systems (not at the
critical point), at equilibrium, have the clustering properties which states that spins
are independent inside a generic state α:

〈σiσj〉α = 〈σi〉α〈σj〉α . (1.56)

In finite dimension systems, the property still holds for spins that are far apart in the
space structure, i.e. for |i− j| → ∞. Calling Zα =

∑
{σ∈α} e

−βH(σ) and wα = Zα/Z,
such that

∑
αwα = 1 and

∑
α Zα = Z, the thermal average can be split into ergodic

components as

〈Φ(σ)〉 =
∑

{σ}

Φ(σ) e−βH(σ) =
∑

α

wα〈Φ(σ)〉α . (1.57)

As we have defined the overlap between configurations in (1.46), it is possible to
investigate the overlap between two states, defined as

qαβ =
1

N

∑

i

〈σi〉α〈σi〉β . (1.58)
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The structure of the states overlap gives informations about the structure of the
states of the system. For example the self-overlap of a state α, qαα encodes the
information about the size of the state: qαα = 1 when the state correspond to
only one configuration and qαα = 0 when the state is the largest possible one, the
paramagnetic state.

Let us consider the probability distribution of the overlap between two replicas
of the system at fixed disorder

P (q) =
1

Z

∑

{σaσb}

e−βH(σa)−βH(σb)δ(q − qab) =

=
∑

αβ

wαwβ δ(q − qαβ) (1.59)

From this relation is possible to understand the role played replicas in spin
glasses: they serves as probes to explore the structure of states of the system which,
as we will see, can be very complex. So last quantity is of uttermost importance
for spin glasses and in fact the true order parameter of this kind of systems turns
out to be the full average overlap distribution EP (q). A hint that could justify this
claim comes from the definitions of the moments of the average overlap distribution
that, by the use of the clustering property, can be easily shown to be

q(k) =

∫
dq qk EP (q) =

1

Nk

∑

i1...ik

E〈σi1 . . . σik〉2 . (1.60)

In particular the first moment is

q(1) =

∫
dq q EP (q) =

1

N

∑

i

E〈σi〉2 ≡ qEA . (1.61)

This quantity, also known as the Edward-Anderson order parameter, gives a very
intuitive information about the presence of an “ordered” phase in spin glasses. In fact
as the couplings are randomly distributed around zero, the näıf idea about the broken
phase is that spins are frozen around random directions evenly distributed among
sites. So in spin glasses the global magnetization m = 1/N

∑
i〈σi〉 vanishes also if

spins are frozen in random directions and the local magnetizations mi =
∑

i〈σi〉 6= 0;
while, thanks to the presence of the power two in its definition, qEA is a global
quantity that can distinguish between the paramagnetic phase, where 〈σi〉 = 0, ∀i,
and the spin glass phase 〈σi〉 6= 0 but with different signs depending on the site.

We stress anyway that, even if qEA can give a very effective information on the
presence of symmetry breaking, the true order parameter of mean field spin glasses
is the full distribution EP (q). In order to compute it, the replica trick is needed.
In fact it can be used in general to compute thermal averages of a generic quantity
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Φ(σ) as

〈Φ(σ)〉 =

∑
{σ} e

βH(σ)Φ(σ)
∑
{σ} e

βH(σ)
= lim

n→0

∑

{σ}

eβH(σ)Φ(σ)
[
eβH(σ)

]n−1
=

= lim
n→0

∑

{σ}

Φ(σ1) eβ
∑n
a H(σa) =

= lim
n→0

∑

{σ}

1

n

n∑

a

Φ(σa) eβ
∑n
b H(σb) . (1.62)

So the average overlap distribution can be computed as

EP (q) = lim
n→0

E
∑

{σ}

2

n(n− 1)

∑

a>b

δ(q − qab) e−β
∑n
c H(σc) . (1.63)

Using the exchange of limits and the saddle point methods exactly as for the
computation of the free energy, the result is

EP (q) = lim
n→0

2

n(n− 1)

∑

a>b

δ(q − qSPab ) , (1.64)

where qSPab stands for the overlap matrix computed at the saddle point.
The insertion of the RS ansatz give as a result

EP (q)RS = δ(q − q0) , (1.65)

where q0 = qEA and satisfies (1.55).

For the SK models the replica symmetric solutions is not exact and the the
scientific community was suddenly aware of this as, in their paper [14], Sherrington
and Kirkpatrick pointed out that, at low temperatures, their solution gives a negative
entropy (that is not possible for discrete variables where the entropy is the logarithm
of the number of available configurations at temperature T , that is always greater
than one and so its log greater than zero).

As already said, the Parisi solution [16] gives the correct structure of the low
temperature phase which is much more complex of the RS scenario and it predicts a
continuum structure for the EP (q).

Details about the realization of the symmetry breaking in the SK model are
beyond the scope of this Thesis. We stress anyway that the RS solution of disordered
systems is a useful first step in their knowledge as it provides informations about
the presence of a spine glass phase transition and locate it in the parameter space.
For example, by letting the average J0 and standard deviation J of the coupling
distribution be two tunable parameters of the model the RS approximation allows
separate a paramagnetic phase, a ferromagnetic phase and a spin glass phase and so
to draw the phase diagram in Figure 1.3.
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458 21 : Network operation: equilibrium analysis

Upon linearizing (21.55, 21.56) for small q and m, one now finds the
following continuous bifurcations of non-trivial solutions of the RS saddle
point equations (see Exercise 21.10):

at from to
J0 > J : T = J0 m = q = 0 m != 0, q > 0
J0 < J : T = J m = q = 0 m = 0, q > 0
T < max{J0, J }: J0 = (1 − q)/T m = 0, q > 0 m != 0, q > 0

So, within our replica symmetric analysis we have found that the SK model
has three phases: a paramagnetic phase (P) with m = q = 0, a ferromagnetic
phase (F) with both m and q nonzero, and a new phase with m = 0 but
q != 0, which is called a ‘spin glass’ (SG) phase. The location of two of the
phase boundaries is given by T = J0 and T = J , respectively; the third
one is obtained by solving numerically the equations T = J0(1 − q) and
(21.55, 21.56). One then arrives at the phase diagram shown in Figure 21.2.
The case where there is no disorder (J → 0, i.e., J0/J → ∞) reproduces
our earlier results for the infinite-range ferromagnet, where we found a
paramagnetic and a ferromagnetic phase, with a transition at T = J0.
As the strength of the disorder increases (J0/J decreases), we can now have
a transition from the ferromagnetic to a SG phase. The nature of this SG
phase is rather peculiar. There is local order, in the sense that the average
local magnetizations 〈σi〉eq are nonzero; this follows from (21.52) and from

J0/J

T /J

Figure 21.2 Phase diagram of the SK model, as obtained from the RS solution. P:
paramagnetic phase, m = q = 0. SG: spin glass phase, m = 0, q > 0. F: ferromagnetic
phase, m != 0, q > 0. Solid lines: phase transitions. Dashed: the AT instability, where the RS
solution becomes unstable. For J0/J < 1 this instability coincides with the P→SG
transition line T /J = 1.

Figure 1.3. Phase diagram of the SK model. Lines separated the paramagnetic (P), the
ferromagnetic (F) and the (SG) phases. The dashed line is the so called Almeida-Thouless
(AT) line that separate the region of the parameter space where the RS ansatz gives
the exact solution from that in which it represents an approximation. Figure from [13].

1.3 The RS solution of the Sherrington-Kirckpatrick
model thorough stochastic stability method

As shown in last Section, the RS solution of the SK model can be obtained
through the use of the replica trick. Despite the latter has a historical and conceptual
value (as it represented the first technique that was used to successfully tackle the
mean field spin glass problem) as already pointed out it is not completely free from
mathematically risky passages. For this reason the mathematical physics community
has developed techniques that aim to rigorously prove results achieved by the use of
the replica trick.

Here we present the stochastic stability technique, that was introduced in [19],
and we use it to derive the RS solution of the SK model, that in this way, comes
rigorously from the RS assumption.

In order to compute the free energy of the SK model, the stochastic stability
method suggests to introduce an interpolating Hamiltonian as:

Ht(σ;J ,η, a) = − 1√
N

N∑

i<j

Jijσiσj − a
∑

i

ηiσi , (1.66)

where, as usual for the SK model J are independently normally distributed and the
same holds for the random fields η. The constant a has been introduced as the scale
of the random field and a clever choice of its value will be provided in the following.
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The interpolating free energy reads off as

f(β, t) = − E
Nβ

∑

{σ}

e−βHt =

= − E
Nβ

log
∑

{σ}

e
√
t β√

N

∑N
i<j Jijσiσj+

√
1−t a

∑N
i ηiσi . (1.67)

As can be easily verified, the complete solution of the SK model corresponds to
f(β, t = 1), while f(β, t = 0) can be easily solved as it is a problem of independent
spins in a random field.

Once the interpolating free energy has been introduced, the strategy for the
solution of the problem will be to compute its t = 0 value, its derivative df(β, t)/dt
and to compute the free energy as

f(β) = f(β, t = 1) = f(β, t = 0) +

∫ 1

0

df(β, t)

dt
dt . (1.68)

The computation of the t = 0 term gives

f(β, t = 0) = − E
βN

log
∑

{σ}

ea
∑
i ηiσi

= − E
βN

log (2 cosh aη)N

= − 1

β

∫
dµ(η) log cosh(aη)− 1

β
log 2 . (1.69)

Introducing the interpolating partition function Zt ≡
∑
{σ} e

−βHt , the interpo-

lating thermal average operator ωt(O) ≡ ∑{σ}O(σ) e−βHt and the interpolating
complete average as 〈O〉t ≡ Eωt(O), the streaming derivative of the interpolating
free energy is:

df
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= − E

Nβ

1
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∑
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1− 〈q2

12〉
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2
(1− 〈q12〉) , (1.70)
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where in the third passage we have use integration by parts that, for gaussian
variables J and regular functions g(J), gives

∫
dµ(J) Jg(J) =

∫
dµ(J) ∂Jg(J) . (1.71)

Introducing the source of fluctuations as

S(β, t) =
β

4
〈(q12 − q0)2〉t (1.72)

and choosing
a =
√
q0 , (1.73)

the streaming derivative becomes

df

dt
= S(β, t)− β

4
(1− q0)2 . (1.74)

In the above formula, the only dependence on t is in the source of fluctuations
S(β, t). As already pointed out, the RS approximation corresponds to neglecting
fluctuations of the overlap so to fix S(β, t) = 0, so that

df

dt

∣∣∣∣
RS

= −β
4

(1− q0)2 . (1.75)

Inserting last result and (1.69), with the choice (1.73), into Equation (1.68) RS
free energy of Equation (1.54).

It has to be underlined that the above calculation is rigorous and shorter than
the replica trick one.

1.4 A paradigm for neural networks: The high storage
Hopfield model

At this point we have all the computational tools to take into account the so
called High storage Hopfield model in which the number p of patterns is infinite and
it scales linearly with the system size so that the load can be defined by the finite
quantity

ε = lim
N→∞

p

N
. (1.76)

The existence of an infinite number of patterns can be responsible for the destruction
of the stable retrieval states [20]. This can be intuitively understood by simple
dimensional arguments. In fact the energy of a general Ising system can be written
as a function of the fields acting on every spins defined by wi(σ) =

∑N
J Jijσj , so

that H = −∑N
i wi(σ)σi. Let us separate the contribute of the first pattern

wi(σ) =
1

N

N∑

j

ξ1
i ξ

1
jσj +

1

N

N∑

j

p∑

µ>1

ξµi ξ
µ
j σj . (1.77)

Let us consider a configuration close to the first pattern, so to say, σ ' ξ1. In this
case, as the ξ are random binary variables equally distributed between +1 and −1,
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the same holds for the product ξµj σj , ∀j, ∀µ > 1. So, by the fact that a sum of M
such random variables has null average and variance ∼M ,

∑p
µ>1 ξ

µ
i = O(

√
p) and∑N

j ξ
µ
j σj = O(

√
N)

wi(σ) ' ξ1
i + ηi . (1.78)

where the ηi are a random fields with null average and magnitude of order O(
√
p/N).

So, when p is a finite number, the contribution of the random field vanishes and the
retrieved state is stable. Nevertheless, in the high storage limit, the random fields
have the same magnitude of the contribution due to the retrieved pattern and they
can totally destabilize the retrieval state.

In fact when the number of patterns is infinite the Central Limit Theorem of
probability shows that, being the couplings J defined in (1.27) an infinite sum of
random variables, if the number of patterns is too high, they can become approxi-
mately normally distributed, so presenting a situation similar to that of a spin glass.
This is a hint about the fact that the solution of the high storage Hopfield model
can be obtained by the use of the replica method.

1.4.1 Replica symmetric solution of the high storage Hopfield model

The replica method can be applied in order to compute the free energy of the
high storage Hopfield model. Unfortunately, the quenched random couplings are
given in terms of the ξs that have discrete probability distribution. This make the
computation much harder than the one for the SK model where gaussian quenched
averaged allow more tractable computations. As a result the full RSB solution is not
known, while only the RS solution and its 1RSB correction [21] have been computed.

Here we report the result of the RS computation. The detailed replica calculation
can be found in [20] or in [13]; both versions are very didactical. In the case in which
a finite number s of patterns is recalled, the free energy reads off as

f(m, q, r;β, ε) = − 1

β
ln 2 +

1

2
ε+

1

2

s∑

ν

(mν)2 +

+
ε

2β

(
ln [1− β(1− q)]− βq

1− β(1− q)

)
+
εβr

2
(1− q) +

− 1

β

∫
dµ(z)Eξ ln cosh

[
β(
√
εrz +

s∑

ν

mνξν)
]
. (1.79)

Minimization of last formula with respect to the parameters m, q and r gives the
self consistency equations

m = Eξ ξ
∫
dµ(z) tanhβ[

√
εrz +

2∑

ρ

mρξρ] , (1.80)

q =

∫
dµ(z) tanh2 β[

√
εrz +

2∑

ρ

mρξρ] , (1.81)

r =
q

[1− β(1− q)]2 . (1.82)
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The saddle point values of the order parameters are

m = E
1

N

N∑

i=1

ξi〈σi〉 , (1.83)

q = E
1

N

N∑

i=1

〈σi〉2 , (1.84)

r = E
N

ε

p∑

µ=s+1

(
1

N

N∑

i=1

ξ1
i 〈σi〉

)2

. (1.85)

As usual the values that solve these equations have to be plugged into the free
energy (1.79) to obtain its physical value.

The parameter r represents the effect of the non recalled patters; their single
amplitude is of order O(1/

√
N) but their amount is ∼ p so that their cumulative

effect is finite also in the thermodynamic limit. As can be seen by direct inspections
of the self consistency relations, the effect of the non recalled patterns is that of an
additional source of (slow) noise.

Relation (1.82) permits to easily eliminate the variable r so that the relevant
order parameters are m and q.

In particular in the case in which only one (let us say the first) pattern is recalled
(i.e. with the pure state anstaz : s=1, m = (m, 0, . . . , 0) ), eliminating r the self
consistency relations read as

m =

∫
dµ(z) tanhβ

[ √
εq

1− β(1− q)z +m

]
, (1.86)

q =

∫
dµ(z) tanh2 β

[ √
εq

1− β(1− q)z +m

]
(1.87)

and they minimize

f(m, q;β, ε) = − 1

β
ln 2 +

1

2
ε+

1

2
m2 +

ε

2β

(
ln [1− β(1− q)]− βq

1− β(1− q)

)
+

+
εβq(1− q)

2[1− β(1− q)]2 −
1

β

∫
dµ(z) ln cosh

[
β(
√
εrz +m)

]
. (1.88)

Numerical solution of the self consistency equations and their stability study
permits to draw the phase diagram in Figure 1.4. Four phases can be distinguished:

1. A paramagnetic phase with q = 0 and m = 0.

2. A spin glass phase with q > 0 and m = 0 in which the slow noise disrupt the
stability of the retrieval states.

3. A mixed phase in which the retrieval state (with q > 0 and m 6= 0 ) develops
having a dynamical effect, but where the thermodynamics is still dominated
by the spin glass state which has the lowest free energy.

4. A retrieval phase in which the retrieval state become the absolute minimum of
the free energy, so the thermodynamically relevant one.
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It is important to note that also at zero noise level (T = 0), the retrieval states
can be destroyed by the presence of the slow noise due to the extensive number of
non recalled patterns; if the ratio between the number of stored pattern and the
system size exceed a critical value, only the spin glass state exist. The RS prediction
for this value is εc ' 1.38

Figure 1.4. Phase diagram of the Hopfield model. P: paramagnetic state; SG: spin glass
phase; M: mixed phase; F: retrieval state. Figure from [13].



25

Chapter 2

Basic elements of immunology

This Chapter is aimed to provide to the reader very basic elements of the
biology of the adaptive immune system. It is not at all meant to be exhaustive
on the argument but just to qualitatively expose the elements and mechanisms of
the immune system that will be taken into account along this Thesis, specially in
Chapters 3 and 6. The mechanisms of the immune system are very differentiate
and they involve a huge quantity of molecule and cell types whose functional role
is often of multiple nature. Despite the compelling (and still relatively poorly
understood) complexity of the system here we present a selection of its constituents
and mechanisms that are described in a very schematic way.

The immune system has evolved with the scope of fight pathogenic agents and
cancer cells in the superior organisms.

When a pathogen enters an individual’s body, the hardest task for the immune
system is not simply its physical elimination, but instead its identification and
separation from the endogenous molecules and cells (the so called self ); once this
task has been accomplished the elimination of the pathogen is a minor issue. In fact
the self/non-self discrimination is one of the constitutive and more striking features
of the immune system. Its specificity is accomplished by an enormous differentiation
of the agents and mechanisms of the immune system.

The most coarse grained classification within the immune system is the distinction
between innate and adaptive response. The former is less specific but also less efficient
and consists of the first set of strategies that are set up in order to fight pathogens.
A classification of the mechanisms of the innate response is beyond the scopes of
this Thesis.

Some elements of the adaptive response will be taken into account along the
Thesis so a brief review of its main mechanisms will be given in the following of this
Chapter.

2.1 The adaptive immune response

The identifying feature of the adaptive response is its ability to adapt the
cells populations, biochemical environment and cells states in response to specific
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pathogens or loss of homeostasis (e.g. emergence of cancer cells). Different pathogens
give rise to different organizations of the adaptive immune system in response to
them.

The most important class of cells of the adaptive immune system are B and T
lymphocytes. Their synergic action is responsible for the identification of specific
pathogens. Once a pathogen cell or molecule is recognized by B and T (helper)
lymphocytes its eventual elimination is achieved by other elements of the immune
system, like the macrophage, complement molecules, etc. Moreover, specific T
lymphocytes (cytotoxic T lymphocytes) can both recognize and selectively eliminate
pathogenic agents.

Both B and T cells develop in clonal populations. They are divided into groups
of cells, clones, each being identified by the expression of specific receptors that
are able to recognize different external molecules, that are called antigens. The
difference responsible of the diversity of B cells and T cells receptors happens at the
genetic level so that different clones have genomes that diverge in the part coding
for the specific receptors.

The action mechanisms of B and T lymphocytes will be sketched in the next
Sections.

2.1.1 The B lymphocytes

The effector mechanisms of B cells is the production of antibodies (Abs), also
known as immunoglobulins (Igs). This class of proteins, whose structure and
repertoire generation will be depicted in Section 2.1.2, when released out of B cells,
can fight pathogens by binding them in such a way to prevent some pathogenic
mechanism (neutralizing Abs) or by acting as tags for other effector cells of the
immune system that eventually destroy bound pathogens.

Igs are made up of a constant domain and a variable domain; the latter is
responsible for the antigen binding. B cells expressing Igs with the same variable
domain are said to form a clone. Igs are also expressed as membrane proteins though
which B lymphocytes recognize antigens; in this case they are named B cell receptor
(BCR).

Both B and T cells originate from the Hematopoietic Stem Cells (HSC) present in
the primary lymphoid tissues, i.e. the bone marrow and fetal liver. HSC eventually
gives birth to all circulating cells; among them they can differentiate in Common
Lymphoid Progenitors (CLP). At this point the developmental history of B and T
cell splits. CLPs can differentiate in the progenitors of T and Natural Killer cells or
in the progenitors of the B cells, known as pro-B cells that do not produce Abs.

The next step of development of the B cell is known as pre-B cell. At this level of
development, B cells undergo a stochastic genetic rearrangement of the DNA regions
coding for the Abs variable regions (i.e. variable region of the light and heavy chains).
This mechanism, known as V(D)J genetic recombination, will be described in more
detail in Section 2.1.2; heavy chain - and subsequently light chain - genetic elements
undergoes this genetic recombination (see Section 2.1.2). That first happens in one
of the two homologous chromosomes; if the rearranged sequence is productive, a
signal inhibits the rearrangement of the second chromosome, otherwise the second
chromosome undergoes the rearrangement; if both chromosomes rearrange in a non
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productive way the cell dies by apoptosis, otherwise the cell continues its evolution
and Igs are produced from the rearrangement of just one of the two inherited alleles;
this fact is known as allelic exclusion.

At this level, these cells are known as immature B cells; after having successfully
rearranged their DNA, they produce Igs as membrane receptors, also known as
B cell receptors (BCRs). Before leaving the primary lymphoid tissues (the bone
marrow in adults) a negative selection is performed: B cells that produce Abs with
high affinity to the self molecules presented in the bone marrow undergo apoptosis
or receptor editing (a new round of genetic rearrangement). Cells that pass this
self-immunity check are free to circulate as mature B cells and reach the secondary
lymphoid tissues. Despite the presence of this gate against self immunity, some
self reactive mature B cells can be found also in disease free individuals; a simple
cause for this is that not every kind of self molecule is present in primary lymphoid
tissues, so that the so called central tolerance is not an exhaustive check against
self immunity. Additional mechanisms that work outside of the primary lymphoid
tissues are responsible for the so called peripheral tolerance that makes self reactive
lymphocyte become anergic, so to say, in a “frozen” state that block their activity.

Mature B cells that never encounter the antigens they are able to bind are called
näıve B cells. They mainly express Abs of the class IgM and IgD as membrane
receptors (see Section 2.1.2). In secondary lymphoid tissues a repertoire of näıve
B clones is accumulated. When a B cell happens to encounter an antigen that it
recognizes through its membrane Igs, it gets activated. Polymeric antigen (that
present the same antigenic determinant repeated many times), such as polysaccha-
rides and lipids, directly activate the bound B cell, while, when a proteic antigen is
bound, a check signal by a T helper cell is needed for the B cell to get activated (see
Section 2.1.3). For this reason the latter are defined as T-dependent antigens while
the former are T-independent.

A B cell that receives the activation signal starts a proliferation process so that
the related clone gets expanded. The majority of the proliferating cells differentiate
into plasma cells that are able to produce Igs in the soluble form and spread them
around the body to fight the pathogen. Many of the plasma cells undergo a class
switching process by which they change the isotype of the produced Igs so that the
most common secrete Igs are of the IgG class in blood and of the IgA class in the
mucous tissues.

While producing Abs, B cell mainly remain confined in lymph nodes secreting
Abs that circulate through the blood and the lymphatic circulation.

Some of the proliferating B cell differentiate in memory B cells that can live for
a long period in order to maintain a population that is ready to efficiently react to
further expositions to the related antigen.

Abs affinity maturation

In lymphoid follicles, that are present in secondary lymphoid tissues, Follicular
Dendridic Cells (FDC) capture antigens bound in immuno complexes with Igs,
expose them on their surface and recruit a very limited number of plasma cells
(of the order of a few units). Starting from these cells in interaction with FDC,
around the dendridic structures, a community of active B cells, called germinal center
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(GC), is formed. These B cells are characterized by a remarkably high duplication
velocity (average duplication time of 6-12 hours) and high mutation rate (1 point
like mutation over 103 base pairs, so 103− 104 times more frequently than in normal
duplication processes) in the region coding for the variable domain of heavy and
light Ab chains (somatic hypermutation).

As FDC provide a chemical signal that delay apoptosis to the best binders, B
cells in the GC undergo an evolutionary process competing for the best affinity to
the antigen exposed by the FDC. B cells proliferation and selection seems to happen
in rounds in two morphologically different regions of the GC, respectively called dark
and light zone due to the different concentrations of cells. As a result of this process
called affinity maturation, some of the selected B cells exit the GC and produce Igs
with an average of 5% of mutation from the original B cell and improved affinity.
The dynamics of this process is still under investigation and also mathematical
modeling is involved (see for example [22] for experimental observations and [23] for
mathematical modeling).

2.1.2 The immunoglobulines

Antibodies are soluble circulating proteins, also named immunoglobulins, ex-
pressed on the membrane of the B lymphocytes or secreted by plasma cells. They
bind antigens in part of them called epitopes or antigenic determinants. The Abs
effect can be of two kind:

1. They can bind special points on the antigen that are crucial for the effector
mechanism of the pathogen and block them. In this case they are called
neutralizing Abs.

2. They can tag antigen so that it can be eliminated by effector cells of the
immune system that eliminate it.

Igs have a symmetric structure (schematically represented in Figure 2.1) with
two light chains and two heavy chains that are covalently bound together by stable
disulfide bonds. Both light and heavy chains structure is characterized by the
presence of the so called Ig domains formed by two β sheets kept together by
disulfide bonds. Light chain contain two Ig domains while heavy chains are equipped
with four or five of them. Light chains can exist in two form named κ and λ in
humans.

Both light and heavy chain have a constant and a variable domain respectively
indicated by CL, VL, CH and VH. Constant domain are responsible for the effector
mechanism of the Igs and the possibility for them to be exposed on the cell membrane
or circulate in a soluble form. The heavy chain constant domain can assume few
different structures that determine the isotype of the Ab; there exist nine different
isotypes among which IgM and IgD are mainly produced by näıve B cells, IgG are
mainly produced by plasma cells and found in blood, IgA are mainly found in mucoid
tissues and IgE have a role in the elimination of parasites and in allergies. The roles
of the different isotypes will not be deepened here.

Variable domains of both light and heavy chain consist in one Ig domain. They
are responsible for the binding of the antigen. Different B clones are identified
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by the variable domains of the Igs that they produce. In the variable domains of
both light and heavy chains variability is concentrated in three regions identified
as complementary determining regions (CDRs) that are exposed in the zone where
the Ig develop its structural complementarity to the antigen. These regions are
separated by more conserved regions called frameworks (FWRs). CDRs can be
easily identified by inspection of the variability along the amino acid sequence of a
variable region as shown in Figure 2.1.

Figure 2.1. Schematic representation of the immunoglobulines structure. Loops represent
Ig domains while red dashed lines stand for disulphide bonds.

Genetic V(D)J recombination

Three different genetic loci code for the Igs heavy, κ-light and λ-light chains.
Each locus is localized on a different chromosome.

Pro-B cells display genes coding for Igs in their germinative configuration. For
heavy chain this is organized with multiple V (variability) genes followed by multiple
D (diversity) genes, multiple J (joining) genes and lastly by the nine C genes coding
for the constant regions of the different Ig isotypes. For light chains the germinative
configuration start with multiple V genes followed by multiple J genes and by a
single C gene different for κ and λ chains. There are no D genes coding for the light
chains.

The nomenclature for these genes is organized as follows. Let us consider for
example the gene IGHV1-2*02: this indicate the allele 02 of V gene number 2
belonging to the family 1 of the heavy chain.

The number of V, D and J germline genes depends on the particular species. In
human the germinative genetic configuration presents 85 IGHV, 20 IGHD and 6
IGHJ genes responsible for the coding of the variable part of the heavy chain, while
for the light chain there are 1000 IGκV, only IGλV genes, 5 IGκJ and one IGλJ
gene. In addition, V,D and J genes are known to be polymorphic.
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When the cell differentiate a genetic recombination takes place during which
single V,D, J and C germline genes for the heavy chain and single V, J and C germline
genes are randomly selected and maintained in the genome while the rest is cut away.
This mechanisms give rise to a combinatorial diversity. Moreover between the selected
genes some nucleotides can be added or removed. Depending on the mechanisms
of insertion they are called P (cut of hairpin loops) or N nucleotides. So, over the
combinatorial diversity, a junctional diversity contribute to the diversification of the
Abs repertoire of näıve B cells.

As described in Section 2.1.1, the last mechanism that contribute to the diversity
of circulating Abs is the the affinity maturation of activated B cells.

Resuming, the different mechanisms that contribute to Abs diversity are

1. genetic V(D)J recombination;

• combinatorial diversity,

• junctional diversity,

2. negative selection in primary lymphoid tissues that avoids self recognition;

3. positive selection through affinity maturation.

The shape of an individual Igs repertoire is determined by the statistical distri-
bution of the above mechanisms.

2.1.3 The T lymphocytes

T cells mainly differentiate in the thymus. They can be divided in many subgroups.
The more coarse grain distinction within T cells can be done between cytotoxic T
lymphocytes (CTL), helper T lymphocytes and regulatory T lymphocytes (Treg).

T cells recognize antigens through a membrane protein called T cell receptor
(TCR). Like B lymphocytes also T cell differentiate into clones that express different
TCRs, the membrane protein through which they recognize antigens. As for the Igs,
alsoTCR diversity results from a V(D)J genetic recombination process. Differently
form B lymphocytes, T cell do not undgergo any affinity maturation process.

While B cell can bind free antigens, T lymphocytes recognize antigens only when
they are presented by other cells through the major histocompatibility complex of
class I or II (MHC-I and MHC-II).

Among the most important activities of T cells is the production of cytokines.
This is a huge and very complex class of molecules that locally modulate the immune
response. Their mechanism of action is very complex, as a single type of cytokine
has in general multiple cell targets and multiple effects.

Cytotoxic T lymphocytes

CTLs are also known as CD8+ T lymphocytes as they express the CD8 receptor
on their surface. CTLs bind their antigen when it is presented by MHC-I. The
binding of MHC-I is mediated by CD8. MHC-I membrane molecules are expressed
by all type of cells. When a cell is infected by a pathogen it can expose through
the MHC-I an antigen that has been synthesized in the endogenous environment as
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an effect of the infection. A CTL that recognize the exposed antigen can bind the
infected cell and chemically induce its death. All this mainly happens in the sites of
infections.

T helper cells

T helper cells recognize the antigen only when it is exposed through the MHC-
II by the so called antigen presenting cells (APC). They characterized by the
expression of the MHC-II, and the most relevant of them include dendritic cells
(DC), macrophage cells and B lymphocytes.

DCs are responsible for the capture of antigens and their transport in the
lymphoid follicles. There, they expose antigens to T helpers through the MHC-II.
T helper cells express the surface receptor CD4 (for that are also called CD4+

lymphocytes) that is responsible for the contact with MHC-II. In case of recognition
the T cell gets activated, starts cytokine productions and the related clone gets
expanded because of the cells proliferation.

An activated T helper that recognize the antigen exposed by macrophages elicits
the activation of the latter through cytokines secretion promoting the elimination of
the pathogen via a cascade of effects.

Activated T helper are also crucial for the activation of a näıve B cell that
recognizes an antigen. In fact when this happens, the B lymphocyte process the
antigen and expose a part of it on its membrane through the MHC-II. If the exposed
peptide is recognized by an active T helper, the latter trigger the activation of the
B cell involving proliferation, Abs secretion and class Ab switching. This mainly
happens through local production of excitatory cytokines and the communication
through the receptors CD40 on the T helper and the CD40L on the B cell.

So to be promoted to plasma cell and start its immune response, a B lymphocyte
needs the check by an appropriate T helper cell that confirms the exogenous nature
of the antigen. This double check is crucial for the immune system to avoid response
to self molecules. Multiple checks are extensively present in several mechanisms of
the immune system.

T helper cell can also negatively regulate B cells through the production of
inhibitory cytokines. This multiple interactions in the adaptive immune response is
responsible for the fine tuning of its response.

Regulatory T cells

Like B cells, T lymphocytes have to pass a negative selection in primary lymphoid
tissues where T cells that respond to a sample of the self molecules are directed
toward apoptosis. Some of these cells do not die but instead differentiate into
regulatory T cells (Treg) that can negatively regulate macrophages, DCs (and so the
T branch of the response that is activated by those APC) through the production of
immunosuppressor cytokines like the Interleukin-10.

As Treg cells inhibit the activity of T helper cells that can activate B clones,
Treg activity can be thought to have an inhibitory net effect on B cells.
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2.1.4 The idiotypic network

The variable domain of an Ig produced by a B clone that is not expanded is a
molecule that can hardly be found in the host body. But when a B clone is expanded,
the Igs concentration of its idiotype, both in the soluble or membrane form, increases
dramatically. This high concentration of a molecule that has never been so present
in the body before could induce the immune system to react to it as to an external
antigen. In fact, a part of the Igs variable region of the first expanded clone could
be the epitope for other Abs. When located on the variable domain of an Ig this
possible epitope is called paratope; the latter is so recognized by the idiotope of Abs
produced by other B clones. Using this mechanism different B clones could form a
network of interaction between different idiotypes known as idiotypic network. This
hypothesis has been originally formulated in the 1970’s by Niels Jerne in [24]. The
role that was hypothesized for the idiotypic interactions was that of turning off B
monoclonal responses after the disappearance of the antigenic stimulus, helping the
recovering of the homeostasis regime.

Because of the experimental difficulties in proving the existence and the impor-
tance of such idiotypic interactions, the idiotypic network hypothesis did not have
too much following after its proposal. Nevertheless, between late 1980’s and early
1990’s, it received a renewed attention after the theoretical works of Francisco Varela,
António Coutinho and John Stewart. This authors recognized the possibilities of a
systemic role of the idiotypic interactions. In fact, following the idiotyipic network
hypothesis, an antigenic stimulation should not only produce a reaction of the B
clones that directly recognize the antigen, but also of anti-antibodies that recognize
the directly stimulated ones. So the effect of the antigenic stimulations should spread
over the network of interacting B clones and the response should be thought as
performed by the whole idiotypic network. In particular the antigenic stimulation
should have different effects depending on the connectivity degree of the directly
stimulated clone in the idiotypic network.

In a famous paper, [25], Stewart, Varela and Coutinho tested this hypothesis by
implementing a mathematical model on an experimentally identified subnetwork
of a real idiotypic network of a few tens of B clones. As a result of the model
implementation, two situations can be discriminated: when poorly connected clones
are stimulated by antigens they are free to extensively respond; on the other hand,
the stimulation of a highly connected clone generate a weak expansion of the clone
itself and the response is spread over more clones that weakly expand to contrast
the production of the directly stimulated Abs.

The authors’ interpretation of this theoretical result was that the experimentally
validated presence of self directed B clones in healthy individuals could be justified
by the regulatory action of the idiotypic network that prevents these B cells to
extensively react to the self. Within this framework, some autoimmune diseases
could be though as caused by pathological modification on the network structure
such that self directed B clones are not adequately connected and the network cannot
control their self reaction.

It has to be pointed out that a limitation in [25] was that the very limited
size of the considered real interaction network made hard to extend the conceptual
conclusions to an entire idiotypic network.
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Chapter 3

Statistical mechanics based
models for the adaptive
response in the immune system

The main subject of this Chapter is the description of the model for the generation
of a synthetic idiotypic network that we proposed in [1]. This work will be depicted
in Section 3.1.

Furthermore in Section 3.2 we will present a review of the corpus of models
proposed by Elena Agliari, Adriano Barra and coworkers aimed to underline possible
analogies of the immune system interaction networks with some mathematical models
inspired by neural networks. The idiotypic network plays a crucial role also in this
framework so we will show how our model for the idyotipic network can be embedded
in a wider and consistent theoretical apparatus.

3.1 Organization and evolution of synthetic idiotypic
networks

In Section 2.1.4 we described how different B clones can interact via the
antibody/anti-antibody mechanism originally proposed by Jerne [24], giving rise to
an effective imitative interaction network between the clones, the idiotypic network.
In that Section it was pointed out that, as highlighted later by Varela [25, 26], this
network could have a systemic role that permits the existence of non dangerous self
reactive B clones in a living organism. In fact Varela’s idea is that, if a B clone is
highly connected in the idiotypic network, the repression induced by the topological
neighbors can be so high that the clone never gets activated, even in presence of
a massive concentration of antigen. So, following this reasoning, self directed B
clones could exist in a living organism provided that they are highly connected
in the idiotypic network. Varela and coworkers enforced this idea by the use of a
mathematical model of interacting B clones based on coupled differential equations.

The topology of the idiotypic network plays a crucial role in the repression
mechanism proposed by Varela, so a mathematical model for generating realistic
synthetic idiotypic networks is of great interest for the mathematical modeling of
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the immune system. Agliari and Barra in [27] proposed a very simple mathematical
rule for constructing networks that should mimic features of the idiotypic networks.
Here and in [1] we propose an upgrade of this rule which goes in the direction of a
more realistic description of the biological reality. Basically this modification deals
with the fact that the antibody repertoire of an individual is not completely random,
as hypothesized in [27] as a first approximation, but instead a certain degree of
correlation in the generation of the antibodies needs to be considered. The structure
of this correlation is caused in the real world by several complex mechanisms such
as genetic recombination, self/non self recognition and maturation of the immune
repertoire due to infections. Despite this high complexity, here we propose an
ultra simplified mathematical model for the generation of antibodies repertoires and
antibodies interactions embedding all the correlation of the repertoire in a unique
parameter. The idea is also that, with the passing of time, an individual encounters
more and more antigens that have a correlated (not totally random) structure and so,
in response, its repertoire becomes more and more correlated, so that the correlation
parameter should be thought as a (slowly) evolving quantity of an idiotypic network.
We study the effect of the tuning of this correlation parameter on the topology of
the network focusing in particular on the differences between the weighted and bare
topologies, showing that the mechanism proposed by Varela does not need, in this
framework, the existence of an over percolated bare network, a scenario which seems
more in agreement with experimental findings.

This Chapter is organized as follows: in Section we introduce a class of weighted
graphs meant to describe idiotypic networks. Then, such a model is investigated
for its global topology in Section 3.1.2, including degree distribution and clustering
features, and as for the distribution of weights associated with its links (3.1.3). Next
the ageing of the system by increasing the degree of bias among bit strings; this
process induces a progressive dilution of the network and the resulting percolation is
analyzed in Section 3.1.4. Finally, in Section 3.1.5, the results are discussed together
with possible perspectives

3.1.1 The model for the generation of a correlated idiotypic net-
work

As described in Section 2.1.4, the idiotypic network is a network of imitative
effective interactions between different B clones mediated by immunoglobulins. Our
aim is here that of constructing a rule to assign an interaction strength to a couple
of B clones, given their idiotypicity, i.e. given the sequence of the antibodies that
they produce.

Let us consider a set of NB B clones. Each B clone is identified by its idiotypicity,
namely by the sequence of the variable region of the antibody that it expresses.
Let us call bµ a logarithmic measure for the concentration of cells of the µ-th clone
with respect to the physiological concentration cr of a clone in absence of antigenic
stimulation:

bµ = log(
cµ
cr

) ; µ = 1, 2, . . . , NB . (3.1)

A possible differential equation for the evolution of the idiotypic network is a Lagevin
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equation of the form

dbµ
dt

=

NB∑

ν=1

Jµν(bν − bµ) +
∑

k

JµkAk +

√
1

β
ηµ , (3.2)

where the couplings Jµν in the first term encode the contribution of the idiotypic
interactions, the second term mimic the antigenic stimulation by antigens with
concentration Ak that can simulate multiple clones though the matrix Jµk and the
last contribution is a usual white noise term.

Here we do not concentrate on the time evolution of the system ruled by the
above equation, but instead on a topological study of the idiotypic network Jµν . In
order to construct an effective interaction network described by interaction couplings
Jµν , we make the minimal hypothesis that the information about the specificity of
the antibodies is encoded in a binary string of length L that we indicate with:

Ψi
µ = 0, 1 , where µ =, 1, . . . NB and i = 1, . . . L . (3.3)

The strings entries are chosen to have biased distribution: we assume that each
entry µ of the ith string is extracted randomly according to the distribution

P (Ψi
µ = 1) =

(1 + a)

2
, P (Ψi

µ = 0) =
(1− a)

2
, (3.4)

with a ∈ [−1,+1]. In this way, when a = 0, we recover the previous unbiased model
[28] and, in general, the average similarity between a pair of strings can be tuned
via a as 〈Ψi

µΨi
ν〉 ∼ (1 + a)2/4. As we will see, Equation ((3.4)) provides a basic way

to bias the repertoire, which allows us to study the direct effects on the network
performance; more refined models can of course be obtained.

Given a couple of clones, say µ and ν, the µth entries of the corresponding strings
are said to be complementary, iff Ψi

µ 6= Ψi
ν . Therefore, the number of complementary

entries χµν ∈ [0, L] can be written as χµν =
∑L

i=1[Ψi
µ(1 −Ψi

ν) + Ψi
ν(1 −Ψi

µ)]. Of
course, χµν strongly depends on the correlation parameter a and, in turn, it directly
affects the affinity between µ and ν. In fact, the non-covalent forces acting among
antibodies depend on the geometry, on the charge distribution and on hydrophilic-
hydrophobic effects which give rise to an attractive (repulsive) interaction for any
complementary (non-complementary) match. In principle, once the protein folding
problem is solved [29], the whole analysis of this kind of network could be extremely
simplified by directly studying the VDJ genes and their reshuffling; however, as this
bridge among micro and meso biological scenarios is lacking, we rely on ”effective
descriptions.” In particular, we assume that each complementary/non-complementary
entry yields an attractive/repulsive contribution [30, 31]; the ratio between their
intensities is denoted by the positive parameter α. Hence, we introduce the measure
for the affinity between Ψµ and Ψν ,

fa,α,L(Ψµ,Ψν |a) ≡ [αχµν − (L− χµν)], (3.5)

which ranges from −L (when Ψµ = Ψν) to αL (when all entries are complementary,
i.e. Ψi

µ ≡ 1−Ψi
ν , i = 1, ..., L). Now, when the repulsive contribution prevails, that
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is, fa,α,L ≤ 0, the two antibodies do not see each other and the coupling among the
corresponding lymphocytes Jµν(a, α, L) is set equal to 0; conversely, when fa,α,L > 0,
we take as Jµν the exponential of the affinity. This choice is the simplest trial able
to mimic a key-lock mechanism for a sharp pattern recognition. Thus, we have:

Jµν(a, α, L) ≡ Θ(fa,α,L(Ψµ,Ψν |a)) exp[fa,α,L(Ψµ,Ψν |a)], (3.6)

where Θ(x) is the discrete Heaviside function 1 returning 1, if x > 0, and 0, if x ≤ 0.
Indeed, the expression in Equation ((3.6)) ensures that the coupling strength among
lymphocytes spans several orders of magnitude (Jµν ∈ [0, exp(αL)]), as expected
from experimental results [32].
One could possibly introduce a proper normalization in order to fix an average value
for the coupling strength, which in turn fixes a scale for the level of noise ruling the
thermodynamics of the system. This procedure is allowed due to the fact that, as
the system is a ferromagnet, the average coupling is positive definite and that, for a
given size N , couplings display an upper bound. Nonetheless, the normalization is
somehow arbitrary and does not qualitatively affect the behavior of the system. As
for our current aims, we can neglect this and take Equation ((3.6)) as an effective
definition for the coupling strength between node i and node j.

As we are interested in studying the limit of large networks (N >> 1), we also
stress that N and L are intrinsically connected to each other. This can be easily
seen in the case where the match among antibodies had to be perfect for reciprocal
recognition; then, in order to reproduce all possible antibodies obtained by the L
entries in the bitstrings, the immune system would need NB = 2L lymphocytes. Here,
having relaxed the hypothesis of perfect match, only a fraction of this quantity needs
to be retained to manage the whole repertoire, and we can introduce the following
scaling between the number of all possible idiotypically different lymphocytes and
the effective size of the repertoire:

L = γ logNB, (3.7)

where γ > 0.

As we will see in more detail in Section 3.2 the the B clones system can be
considered in analogy with a ferromagnetic system of soft (gaussian) spins. Moreover,
in that Section, we will consider bipartite networks made up of B cells and T cells
clones and we will see that the ferromagnetic interactions in the B cells party will give
rise to interesting emerging phenomena in complete system. Let us now concentrate
on the topological analysis of idiotypic networks defined here, following [1].

3.1.2 Global topology

If we forget, for the moment, the weights of the couplings, the N different B
clones, interacting pairwise, define a graph G = {V,Γ}, where V denotes the set of
nodes and Γ the set of links. The cardinality of V is given by |V | = NB, that is the

1The effect of the theta function is to remove those links whose strength is mathematically
different from zero, but, from a practical point of view are so weak that whatever level of noise
would clean them as well.
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(a) (b)

Figure 3.1. (Color on line) Link probability Plink(ρµ, ρν ;α,L) as a function of ρµ and ρν
with L = 10 and α = 0.5 (left) or α = 1.1 (right).

total amount of idiotypically different clones. The topological properties of G are
completely determined by the adjacency matrix A defined as Aij = 1 if Jij 6= 0 and
Aij = 0 if Jij = 0. For instance, the degree of a node i (i.e. coordination number)
is given by zi =

∑
j∈V Aij . In the following, we provide the main definitions and

formula to describe the topology of the emergent graph and later we will deepen its
global features.

First, let us introduce the probability that a string Ψi displays ρ non null entries;
this follows a binomial distribution

P (ρ; a, L) =

(
L

ρ

)(
1 + a

2

)ρ(1− a
2

)L−ρ
. (3.8)

Correspondingly, the probability that two strings ξi and ξj , displaying ρi and ρj
non-null entries respectively, exhibit χ complementary matches is

P (χ; ρµ, ρν) =

(
L

ρµ

)−1(L
ρν

)−1

× (3.9)

L!(
ρµ−ρν+χ

2

)
!
(
ρν−ρµ+χ

2

)
!
(
ρµ+ρν−χ

2

)
!
(
L− ρµ+ρν+χ

2

)
!
.

Now, the link probability Plink(ρµ, ρν ;α,L) can be obtained by summing P (χ; ρµ, ρν)
over the values of χ compatible with (ρµ, ρν) and such that fα,L(Ψµ,Ψν) > 0, namely,
recalling Equation (3.9),

Plink(ρµ, ρν ;α,L) =

min(ρµ+ρν , 2L−ρµ−ρν)∑

χ=max(|ρµ−ρν |, d L
α+1
e)

P (χ; ρµ, ρν) . (3.10)

Figure 3.1 shows an example of Plink(ρµ, ρν ;α,L) for different choices of the parameter
α.

By averaging Plink(ρµ, ρν ;α,L) over ρi, we get the average link probability for a
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(a) (b)

Figure 3.2. (Color on line) Link probability Plink(ρµ; a, α, L) as a function of ρµ and a,
while α and L are fixed. In the left panel α = 0.5 while in the right panel α = 1.1; in
both cases L = 10. It is straightforward to see that on the line a = 0 the probability
link is independent on ρµ. When a 6= 0, the link probability changes with varying ρµ.
Due to symmetry, only the range a ∈ [0, 1] is shown.

node whose string displays ρµ non-null entries, that is,

Plink(ρµ; a, α, L) =
L∑

ρν=0

P (ρν ; a, L)Plink(ρµ, ρν ;α,L), (3.11)

from which the average degree for j reads

z(ρµ; a, α, L,NB) = NBPlink(ρµ; a, α, L). (3.12)

Numerical calculations of Plink(ρ; a, α, L) are shown in Figure 3.2: Notice that a
uniform bit distribution within the antibodies (i.e. a = 0) corresponds to an unbiased
graph, where the average link probability of a node does not depend on the pertaining
string.
By further averaging Plink(ρµ; a, α, L) over ρµ, we get the average link probability
for an arbitrary node of the system

P link(a, α, L) =

L,L∑

ρµ,ρν=0

Plink(ρµ, ρν ;α,L)P (ρµ; a, L)P (ρν ; a, L),

from which the average coordination number follows as

z(a, α, L,NB) = NBP link(a, α, L). (3.13)

Finally, within a mean-field approach, we can use Plink(ρ; a, α, L) to write the
degree distribution:

Pdegree(z|ρ; a, α, L,NB) =

(
NB − 1

z

)
[Plink(ρ; a, α, L)]z [1− Plink(ρ; a, α, L)]NB−1−z ,

and, by further averaging over ρ,

P degree(z; a, α, L,NB) =
L∑

ρ=0

Pdegree(z|ρ; a, α, L,NB)P (ρ; a, L). (3.14)
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Figure 3.3. (Color on line) Degree distribution for different values of a and fixed α = 1.2,
N = 10000, γ = 10. From left to right: a = 0.1 (uni-modal behavior; the mean degree
is about 0.8N), a = 0.3 (multimodal behavior; the mean degree is 0.5N), and a = 0.6
(there is no extensive network; the average degree is 0.03N).

Multimodal degree distribution

As shown by Equation ((3.14)), P degree(z; a, α, L,N) is the sum of L binomial
distributions, each referring to a different “mode” ρ. Therefore, the average degree
distribution will show a multimodal behavior as long as two consecutive modes have
disjoint supports.

In general we expect that, when a is close to 0, peaks merge since, at low bias,
the link probability weakly depends on ρ (see also Figure 3.2), which is uniformity,
while, when a is close to 1, most of the modes are off and the network is sparse.
Therefore a very multimodal distribution is expected only for intermediate values of
a. Indeed, these arguments are corroborated by Figure (3.3) which shows different
plots of P degree(z; a, α, L,NB) for different values of a; also notice that numerical
data are finely fitted by the analytical calculation of Equation ((3.14)).

As already pointed out the parameter a can be thought to rise in absolute value
with the ageing of an organism. Following this hypothesis the correlations in the
structure of the network should increase with time in an individual and so the
multimodal structure of the degree distribution should should be thought as an
evolving feature of an idiotypic network.

Scaling in thermodynamics limit.

As evidenced in the previous subsection, a crucially affects the topology of the
idiotypic network. We therefore investigate in more detail the global connectivity
of the system in terms of P link(a, α, L,NB). To compute this quantity, one would
plug Equation (3.9) into Equation (3.10) and (3.13). However, since here we are
interested in the large L limit and relative fluctuations in ρ decrease as 1/

√
L, we

can adopt a mean-field like approach and approximate Equation (3.8) as

P (ρ; a, L) ' PMF (ρ; a, L) = δ(ρ− ρ̄), (3.15)
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with ρ̄ = (1 + a)L/2, so that Equation (3.9) can be restated as

PMF (χ; a, L) =

((1+a)L/2
χ/2

)((1−a)L/2
χ/2

)
(

L
(1+a)L/2

) . (3.16)

such that

〈χ〉MF =
1− a2

2
L (3.17)

〈
χ2
〉
MF
− 〈χ〉2MF =

(
1− a2

2

)2

L . (3.18)

So in the limit of large system the distribution of the complementary bit-strings can
be approximated, using Central Limit Theorem, by

PMF (χ; a, L) ' N
(
〈χ〉MF ,

〈χ〉MF

L

)
(3.19)

and in the infinite system limit fluctuations of the number of complementarities
vanish.

Moreover, exploiting the parity symmetry for a, we focus on the range a ∈ [0, 1].
Thus, Equation (3.10) can be approximated as

P link(a, α, L,N) ≈

P
MF
link (a, α, L,N) =

∑(1−a)L

χ=d L
2(α+1)

e

( 1+a
2
L

χ/2

)( 1−a
2
L

χ/2

)

(
L

1+a
2
L

) . (3.20)

Now, since we are interested in scaling laws, we can neglect all terms in the sum,
but the leading one. For instance, focusing on a < 1/2 (a > −1/2) and α > 1, it is
easy to see that this is given by χ = L/2. Then, via Stirling approximation, we get

logP link(a, α, L,NB) ∼ f(a)L, (3.21)

where f(a) = (1 + a) log(1 + a) + (1− a) log(1− a)− (1 + 2a)/4 log(1 + 2a)− (1−
2a)/4 log(1− 2a) is a symmetrical monotonically decreasing function from a = 0 to
a = ±1/2 and roughly plays the role of an (compressed in the interval [−1/2,+1/2])
entropy of the bit-strings, such that, as in other biased approaches [33], a can be
thought of as the ”bit-string magnetization”.

Therefore, we can write

P link(a, α, L,N) ∼ Nγf(a)
B . (3.22)

In this way, as the degree of bias a is increased, the graph turns from highly connected
(P link = O(1)) to diluted (P link ∼ N−γcB , with c = log(27/32)/2). Similar results can
be found for a different parameter range.
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Clustering Coefficient

The local clustering coefficient is defined as the number of triangles stemming
from a node µ over the maximum number of triplets centered on µ itself (see, e.g.,
Refs. [34, 35, 36]). Due to the “anti-transitive” nature of the idyotipic network,
triangles, i.e., 3-cycles, are expected to be unlikely, while quadrilaterals, i.e. 4-cycles,
are expected to be favored. Roughly speaking, an antibody Ab1 elicits its anti-
antibody Ab2, which in turn elicits the anti-anti-antibody Ab3, whose structure
should be close to Ab1’s, so that a 4-cycle finally develops.

Indeed, this was partially shown in Ref. [28], where an idiotypic network and
an analogous Erdös-Rény (ER) graph, namely, a purely random graph exhibiting
the same average degree z̄ were compared, obtaining that the former displays on
average a significantly smaller number of triangles. We now extend those results
considering also 4-cycles (devoid of diagonals). Given a node i with zµ nearest
neighbors, the number of expected squares stemming from i, in the case where i
belongs to a random ER graph and in the case where it belongs to our idiotypic
network, are respectively

QER(zµ) =

(
zµ
2

)
(N − 1− zµ)p2(1− p), (3.23)

Q(zµ) =

(
zµ
2

)
(N − 1− zµ)p′2(1− p′′), (3.24)

where p = z̄/N , p′ is the probability that in G a neighbor of i is linked to a node not
belonging to the ith neighborhood, and p′′ is the probability that two neighbors are
linked. The latter is just the clustering coefficient for node i, which, as shown in Ref.
[28], is smaller for a graph where links are based on complementarity features, so
that (1−p) ≤ (1−p′′). Moreover, the idiotypic and the ER graphs we are comparing
display, by construction, the same coordination number. If we impose this condition
to be true also for the average degree of any site j that is linked with i, we get

z̄ν = 1 + p
′′
(zµ − 1) + p′(N − zµ − 2) (3.25)

= 1 + p(zµ − 1) + p(N − zµ − 2).

Therefore, as p > p′′, we get p < p′ and finally Q(zµ) > QER(zµ). More generally,
this suggests that in our idiotypic networks, as links are based on complementarity, 4-
cycles are motifs while 3-cycles are anti-motifs [28, 37]. Indeed, Figure 3.4 numerically
confirms that the number of quadrilaterals [triangles] appearing in our graph is
larger [smaller] than the number expected for an analogous ER graph, estimated as(
N
4

)
p4(1− p)2, [

(
N
3

)
p3].

3.1.3 Coupling and weighted degree distributions

In Section 3.1.2 we studied the bare topology of the network, while here we focus
on the properties related to the distribution of weights Jµν associated with links
(µ, ν). As mentioned above, these features retain a strong biological meaning. For
instance, nodes displaying a high weighted degree feel, under normal conditions, a
larger (internal) quiescent stimulus [27].
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Figure 3.4. Number of triangles (4) and of quadrilaterals (�) averaged over 100 realizations
in our idiotypic network as a function of a. Parameters characterizing the network are
NB = 1000, γ = 7 and α = 0.7. Curves represent the number of triangles (dashed
line) and of squares (solid line) expected for an analogous ER graph. Inset: Number
of isolated nodes present in the system; again, the idiotypic network (•) and ER graph
(line) are compared. The latter displays a larger number of triangles as long as a giant
component can be detected.

Coupling distribution

Given two nodes µ and ν with ρµ and ρν non-null entries, respectively, recalling
Eqs. (2) and (3), the coupling distribution is

P (Jµν |ρµ, ρν ;α,L) =

{
P (χµν =

log(Jµν)+L
α+1 ; ρµ, ρν , L) if Jµν > 1

0 if Jµν ≤ 1
, (3.26)

where Jµν can span over [1, eαL].

To obtain the mean coupling probability one should average Equation ((3.26)),
so P (χ; ρµ, ρν) of Equation (3.9), over the binomial distribution of ρµ and ρν in
Equation (3.8). To give an analytical estimate of this quantity, as in section 3.1.2,
one can use a mean-field like approach, namely Equations (3.16), (3.17) and (3.18),
so that, in the limit of large system the number of complementary entries is normally
distributed following

χMF ∼ N
(

1− a2

2
L, (

1− a2

2
)2L

)
(3.27)

as the Θ function in the definitions (3.6) of the couplings set to zero couplings
that are smaller than zero, we can neglect it for the sake of analytical simplicity in
determining the approximate coupling distribution considering J = exp[(α+1)χ−L].
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Figure 3.5. (Color on-line) Average value of the coupling strength E[J] and of its variance
Var[J], versus L for several choices of parameters, depicted in different colors. We
considered α = 0.7 (◦), α = 1.0 (�) and α = 1.3 (4) for different values of a pertaining
to a connected (upper panels) and disconnected (lower panels) regimes (see the legend).
Symbols refer to data obtained from exact numerical calculations, while curves are drawn
according to the approximations (3.31) and (3.32).

So in the mean filed approximation the couplings J are log-normally distributed as

〈log J〉MF ' [(α+ 1)
1− a2

2
− 1]L , (3.28)

VarMF [log J ] ' (α+ 1)2

(
1− a2

2

)2

L , (3.29)

PMF (J) ' logN
(
〈log J〉MF ,

√
VarMF [log J ]

)
=

=
1

J
√

2πL1−a2

2 (α+ 1)
e
− 1

2
[log J−((α+1)(1−a2)/2−1)]2

L(α+1)(1−a2)/2 . (3.30)

Thus, by calling θ := (α+ 1)1−a2

2 > 1, and using the properties of the log-normal
distribution and the scaling relation 3.7,

〈J〉MF ' N
γ[θ2/2+θ−1]
B (3.31)

VarMF [J ] ' N
2γ[θ2+θ−1]
B . (3.32)

Hence, 〈J〉MF is expected to scale as a power of the system size and exponentially
with a2. These results have been successfully checked by numerical simulations (see
Figs. 3.5 and 3.6).

Weighted connectivity

We now extend the bare degree zµ =
∑

ν Aµν to a weighted degree referred to as
wi and defined as

wµ =
∑

ν

Jµν . (3.33)
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Figure 3.6. (Color on line) Average value of the coupling strength E[J] and of its variance
Var[J], versus a for several choices of parameters, depicted in different colors. We
considered α = 0.7 (◦), α = 1.0 (�) and α = 1.3 (4) and L = 120 (see the legend).
Symbols refer to data obtained from exact numerical calculations, while curves are drawn
according to the approximations (3.31) and (3.32).
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Figure 3.7. Semilogarithmic plot for the distribution P (w; a, α, L) obtained by averaging
100 systems made of N = 2× 105 nodes with γ = 7; results shown were averaged over
103 different realizations. We considered several values of a and α, corresponding to
either over- or under- percolated regimes.

As we will see in more detail in the next Section, as the clones are connected by the
couplings J the weighted topology is much more significative than the bare one.

In general, wµ depends on the number of nearest-neighbors zµ and on the coupling
with each of them. So we define the weighted degree probability as follows:

P (wµ|ρµ, zµ; a, α, L) =
∑

Jµ1....Jµzµ

P (Jµ1|ρµ) . . . P (Jµzµ |ρµ) δ(wµ −
zµ∑

ν=1

Jµν) . (3.34)
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Figure 3.8. Each point shown corresponds to a node of the idiotypic network and its
coordinates correspond to its weighted degree w and its bare degree z, respectively.
The 100 system simulated is made up of N = 2 × 105 nodes and we fixed γ = 7. We
considered the same values of a and α used in Figure 7. Notice that nodes displaying
a different degree (and therefore a different ρ), may display the same weighted degree.
The reshuffling among weighted and non-weigheted peaks is evident.

Now, averaging over all the possible numbers of nearest-neighbor,

P (wµ|ρµ; a, α, L) =
∑

zµ

P (zµ|ρµ; a, α, L)P (wµ|ρµzµ; a, α, L) (3.35)

and averaging over nodes we obtain the mean degree distribution

P (w; a, α, L) =
∑

ρµ

P (wµ|ρµ; a, α, L)P (ρµ; a, L). (3.36)

This is the theoretical description of the empirical (by numerical simulations) distri-
butions in Figure 3.7 which were obtained by numerical simulations of the network.
The weighted degree distribution displays a fine structure similarly to Pdegree(z)
(see Section (3.1.2)), and even a “hyperfine” structure. This is ultimately due to
the fact that Equation (3.34), being a sum of terms that can be localized in the w
range, can, by itself, display a multimodal distribution. When summing over ρi in
Equation ((3.36)), several multimodal distributions are superposed, giving rise to
the complicated structure shown in Figure 3.8. Otherwise stated, ρi may univocally
determine a range for the degree zi [leading to a multimodal Pdegree(z)], but zi, in
turn, does not univocally determine a range for wi. The “reshuffling” between bare
and weighted degrees can be seen in the scatter plots in Figure 8 and it is mirrored
by the non-trivial structure of P (w). As a result, nodes that are lazier in reacting
to antigenic stimulation are not necessarily those with a large number of neighbors,
but, rather, those with a large weighted degree; the two subsets cannot be trivially
mapped into each other.

It is worth emphasizing that, as the weighted degree is a sum of exponential
factors, the support of P (w) covers several orders of magnitude, in both the connected
and the disconnected regimes. This is consistent with the co-existence of highly
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Figure 3.9. (Color on line) Average weighted degree E[w] and its variance V ar[w] versus
a for a system of N = 104 sites, γ = 7 and α = 0.7 (◦), α = 1.0 (�), and α = 1.3
(4). Symbols represent data from numerical simulations, while curves are the best fit
obtained from Equation ((3.37)).

(poorly) susceptible agents with respect to external stimuli, i.e. nodes with small
(large) w. This difference has been attributed to the self-addressed or non-self-
addressed attitude of lymphocytes [38, 39], and, interestingly, it also survives in the
underpercolated regime.

In particular, we can introduce the relations

〈w〉 ∼ NB 〈J〉 ,
Var [w] ∼ NB Var[J ], (3.37)

which hold as long as the couplings insisting on the same nodes can be approximated
as independent. The expressions in Equation ((3.37)) have been used to fit the
numerical data in Figure (3.9).

As shown in [40], the envelope of the distribution P (w) can be approximated by
a log-normal distribution.

Finally, we stress that the support of P (w) remains spread over several order
of magnitude also in the region of the parameter space where the network is un-
derpercolated (see Section 3.1.4): This suggests that the existence of an extensive
Jerne-like network may not be strictly necessary for self/non-self discrimination in
a systemic way.

3.1.4 Bias and specificity

As explained before, an increase in the bias parameter a corresponds to a
progressive smoothing of the repertoire variability. A growth in a also results in
a dilution of the graph itself, eventually leading to percolation phenomena (see
Figure (3.11)).

In order to study this process, we compare its features to those pertaining to an
ER random graph GER(N, p), where links are drawn independently with probability
p = z̄/N , in such a way that the average degree is the same for both networks.

Therefore, the evolution of G(N, p) as p ranges from 0 to 1, eventually leading
to a percolation transition (see, e.g., [41, 42]) is compared to the evolution of our
graph G(a, L, α) as a ranges from 0 to 1.
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Figure 3.10. These plots describe the evolution of the network as a is tuned while we fix
the system size N = 10000, γ = 7, and α = 0.7 (solid line) and α = 1 (dashed line).
Left panel: Average size of the giant component S/N . Right panels: relative number of
isolated nodes N(1, a)/N (upper panel) and average size of the non-giants components
excluding isolated nodes (lower panel).

Giant component and distribution of cluster size

In order to evaluate the impact of removing ties, we measure the relative size of
the largest connected component S as a function of the fraction of links left f .

In general, as a ranges from 0 to 1, S gets continuously smaller: nodes with
large ρ are those more likely to remain isolated or to form small clusters. Differently
from the ER case, beyond the giant component, clusters typically display a small
size. As evidenced in Ref. [34], these features give rise to a rather gentle percolation
transition.

In order to clarify this point, we focus on the evolution of the internal organization
of clusters by measuring the distribution N(a, s), representing the number of clusters
of size s present when the correlation parameter is a.

As shown in Figure (3.10), as a grows, the typical cluster size shrinks from N
(a unique giant component) to 1 (there are only isolated nodes). For instance, at
α = 0.7, when a = 0.46 there are a few isolated nodes and a giant component whose
typical (normalized) size is around 0.8. On the other hand, when a = 0.60 many
nodes are isolated, ∼ 39%, and the typical size of the remaining (non-giant) clusters
is around 4.2. Beyond isolated nodes and the giant component, the statistics of
cluster size is rather uniform, suggesting that minor disconnected clusters display
small sizes, i.e., s < 10.

Emergence of small components

The difference between our idiotypic network and a random graph is emphasized
by the analysis of the emergence of motifs around the the percolation threshold. We
study the number of isolated k-loops, namely, unicycles of length k, and isolated
k-stars, namely, subgraphs made of a central node connected to k nodes with unitary
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��4405isolated nodes

7932 isolated nodes

9472 isolated nodes

9867 isolated nodes

Figure 3.11. (Color on line) Realization of idiotypic networks made up of N = 10000
nodes with γ = 3 and α = 0.7. Different values of a have been considered: from left to
right a = 0.50, 0.55, 0.59, 0.62. Although these plots refer to one single realization, we
have checked that the system displays robustness in this sense.
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Figure 3.12. Left: Number of k-stars (a dimer is a 1-star and a trimer is a 2-star) averaged
over 100 numerical realizations of N=10000 and α=0.7 idiotypic networks, while a
(circles) is variated. Solid lines represent the ER prediction for the same quantity at the
relative link probability. Right: Mean coupling value within a star.

degree. In an ER graph these quantities follow

〈Nk-star〉 = pk(1− p)(k+1)N−3k−1

∏k
i=0(N − i+ 1)

(k + 1)!
, (3.38)

〈Nk-loop〉 = pk(1− p)k(N−k)

∏k
i=0(N − i+ 1)

k!
, (3.39)

which are drawn for comparison in Figure 3.12. In the idiotypic network the above-
mentioned components are present in a smaller range of a, and the number of all
stars, except the dimers (1-star), is eventually larger than ER predictions. This
is due to the bias characterizing strings, as it makes the percolation transition
smoother - in such a way that components not belonging to the giant component
hardly develop - and induces inhomogeneity among nodes - in such a way that those
associated with a value of ρ much lower than its average value are likely to act as
(local) hubs. This picture is confirmed by the fact that k-stars with large k have a
higher mean coupling (see Figure 3.12, right).

Moreover, in our simulations we never find isolated triangles (3-loop) or quad-
rangles (4-loop), which are instead present in random graphs.

3.1.5 Conclusions

In the last Sections we studied a class of weighted random networks aimed to
describe the mutual interactions between cells inside the B-branch of the immune
system. As we will see in the next Sections of this Chapter, the studied interaction
network among B clones can be studied in a systemic perspective as a ferromagnetic
system on the network isolated (as in Equation (3.2))or in interaction with the T cell
clones (as we will se in Section 3.2.3). In this framework, the Burnet clonal expansion
theory [43, 44] will appear to be the standard one-body response of the system,
while the Jerne theory is ruled by the two-body term, whose coupling encodes the
Varela prescription.
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The main novelty introduced is the existence of a biased repertoire: The ”mean
field similarity” among the entries in the bit-strings encoding for antibodies ruled by
the tuning of a scalar parameter, a, ranging from 0 (completely random antibodies) to
1 (completely deterministic antibodies). From a biological viewpoint, the extension
to a value a 6= 0 is a step towards more realistic descriptions of the system, since
antibodies are not completely random objects [45] and since during ontogenesis
in bone marrow, a part of the strongly self-reacting repertoire is killed [46, 47].
Although more realistic assumptions would imply the use of an aiµ (with the price
of a highly intractable mathematics), we skipped the fine dependence in favor of
a simpler mean field choice aiµ = a 6= 0 for all positions in the bit-strings coding
for the idiotypicity. This introduction of bias indeed gives rise to striking, at least
qualitatively, effects: In a broad range of a 6= 0, the degree distribution displays a
multi-modular structure which mirrors the history of the system itself. Such fringes
in the (weighted) degree distribution were experimentally noted in the pioneering
investigations by Varela and coworkers and an immunological interpretation was
provided in Refs. [48, 38, 39]. Although based on synthetic data, our analysis extends
these findings in some details, suggesting the existence of a hyperfine structure,
richer than the one obtained by sampling over the experimentally available subset
of the repertoire. Furthermore, the reshuffling among modes of the network raises
the question of which should be the physical observable to characterize the reaction
attitude of nodes: the bare degree (which is actually the standard one checked in
experiments) or, rather, the weighted connectivity which we claim to be the most
relevant; Here, we just stress that, while the average degree varies over a linear scale,
the weighted degree displays a distribution with a log-normal like envelope, hence
spanning several order of magnitude. This spread is robust as it holds also also
for regimes of high dilution (corresponding to large a): Interestingly, this implies
that mechanisms such as self/non-self discrimination may work despite a truely
over-percolated network of B-cells.

A progressive increase in a eventually leads to an under-percolated network,
where nodes not belonging to the giant component typically form small-size clusters,
which mirrors the cascades of anti-antibodies commonly seen in experiments (see
e.g. [49]). Further, the local topology displays squares as motifs and triangles as
non-motifs, as expected from a complementary-based network, which is in agreement
with experiments on idiotypic networks too.



3.2 Neural networks inspired models for B and T lymphocites interaction
network 51

3.2 Neural networks inspired models for B and T lym-
phocites interaction network

In a series of recent papers ([27], [47], [50], [1], [51], [52], [53], [54], [40]) Agliari,
Barra and coworkers proposed a corpus of statistical mechanics inspired mathematical
models aimed to describe the adaptive response of the immune system. The intent
of this theoretical effort is that of underlining how some general features of the
immune system can be thought as emergent behaviors of a complex system of many
interacting agents, which in this case are the different B-cell and T-cell clones.

In this Chapter we analyze the theoretical framework of this modeling of the
immune system by reviewing the above cited works and we describe in more detail
the analysis presented in [1] which finds its place in the general scheme.

The models that we are going to consider have to be thought as coarse grain
descriptions of the real biological systems. In order to be mathematically treatable
those models are build on rude simplifications and generalizations that could appear
unrealistic to the pure biologist eye. Nevertheless the aim of those mathematical
models is not that of making precise quantitative prediction on the behavior of the
real system; on the contrary they should be considered as toy models whose scope is
that of underlining how some general concepts of the mathematical modeling of the
complex systems could play a role in understanding the immune system behavior.

3.2.1 The minimal model

In the following we describe a model that accounts for the interactions of the
different B cells and T cells clones. The model has the aim to underline possible
analogies of the immune system with the neural networks.

Let us consider a system made up by NB different clones of B lymphocytes and
NH different clones of helper and regulatory T lymphocytes. As in Section 3.1Let
us call bµ a logarithmic measure for the concentration of cells of the µ-th clone
with respect to the physiological concentration cr of a clone in absence of antigenic
stimulation:

bµ = log(
cµ
cr

) ; µ = 1, 2, . . . , NB . (3.40)

We will describe the helper/regulatory T clones as two state systems that are encoded
binary variables

hi = ±1 ; i = 1, 2, . . . , NH : (3.41)

a clone is considered to have +1 (-1) value when it is in “activation” (“rest”) state.
As we are interested in the statistical properties of system with a macroscopic

number of degrees of freedom, eventually we will consider the thermodynamic limit
in which B,H →∞ with a finite ratio:

α = lim
H→∞

NB

NH
. (3.42)

The nature of the interaction between every cell clone is encoded in the parameters
ξµi = ±1 which are equal to 1 (-1) if the interaction between the µ-th B clone i-th
and the T clone is of the type “helper” (“regulatory”), i.e. if the activation activation
of the i-the T cell clone elicits (repress) the expansion of the interacting µ-th B
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cell clone. As we are interested in the systemic properties of the system the simple
hypothesis is to consider them as random variables with a fair distribution:

P (ξµi = +1) = P (ξµi = −1) =
1

2
, ∀ i, µ . (3.43)

To describe the time evolution of the concentration of a generic B cell clone given
the parameters and the state of the T clones, we can use the Langevin equation:

dbµ
dt

= −bµ +
1√
NH

NH∑

i=1

ξµi hi +
∑

k

JµkAk +

√
1

β
ηµ , (3.44)

where the first term accounts for the death of b cells (death rate=1), the second and
the third term describe the expansion/repression signal coming from the T cells and
the expansion signal due to the presence of antigens respectively, while the last term
is a white noise:

〈η(t)〉 = 0 ,
〈
η(t)η(t′)

〉
= δ(t− t′) , (3.45)

and β (the inverse temperature) is a parameter related to the fluctuation of this
noise term.

As long as the couplings ξµi are symmetric, the Langevin dynamics admits a
Hamiltonian description

dbµ
dt

= − d

dbµ
H̃(b, h|J, ξ) +

√
1

β
ηµ , (3.46)

where, by integration over bµ,

H̃NB ,NH (b, h|J, ξ) =

NB∑

µ=1

b2µ −
1√
H

NB ,NH∑

i,µ=1

ξµi bµhi −
NB∑

µ=1

Jµ,kbµAk (3.47)

At the same time, as T clones activity is described by discrete variables their
dynamics is chosen to be described by Glauber equation, so that given the state of
the B clones, the T clones activity evolve following:

P (hi → −hi) =
1

1 + exp[2β∆H̃B,H ]
. (3.48)

Is a know result [55] that the equilibrium distribution of the Langevin and
Glauber dynamics is the Boltzmann distribution:

P (b, h|β; ξ, J) =
e−βH̃

B,H

Z(β; ξ, J)
(3.49)

where the normalization factor

Z(β;NB, NH |ξ) =
∑

{h}

∫ ∏

µ

dbµe
−βH̃NB,NH =

=
∑

{h}

∫ ∏

µ

dbµe
−β

2

∑NB
µ b2µ+ β√

H

∑NB,NH
µ,i ξµi bµhi (3.50)
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is the partition function.
Following the principles of statistical mechanics, the thermodynamics of the

system is recovered once the free energy is computed as

f(β; ε) = lim
NB ,NH→∞

− 1

NH
E lnZ(β,NB, NH |ξ) , (3.51)

where the symbol E indicates the average over the quenched variables ξµi . We
note that as the free energy is the physical quantity that is aimed to compute,
multiplicative constants on Z do not affect the result as in the thermodynamic limit
they give vanishing contributions. For this reason, from now on, these constants will
be neglected.

Let us consider first the case in which there is no antigenic stimulation on the B
lymphocytes, i.e. let us equate to zero the term

∑
k JµkAk in Equation (3.44). In

the computation of the partition function a first step can be easily performed; that
is the integration over bµ as it just involves gaussian integrals. It gives

Z(β;NB, NH |ξ) =
∑

{h}

exp


 β

2H

NB ,NH∑

i,µ

ξµi ξ
µ
j hihj


 . (3.52)

So the thermodynamics of the system is completely equivalent to that of a Hopfield
model in the variables hi with NB patterns, namely to a system with a Hamiltonian
of the form:

HH(h|ξ) = − 1

H

H∑

ij

(
B∑

µ

ξµi ξ
µ
j

)
hihj −

∑

i

J̃ilhiAl , (3.53)

where the second term is a possible external field due to the presence of an antigen
Al.

Here the role of the load of the network is played by ε defined in (3.42), the
ratio between the number of B clones and that of T clones. In complete analogy
with the high storage Hopfiled model we can define the pattern overlap and the
Edward-Anderson overlap as:

mµ ≡ 1

NH
ξµi 〈hi〉 , (3.54)

q ≡ 1

NH
〈hi〉2 . (3.55)

In this framework the patterns stored in the system could be interpreted, at
the immunological level, as the strategies that the T lymphocytes orchestrate to
coordinate the B lymphocytes in response to the presence of an antigen which acts
as an external perturbation on the system of interacting clones. In fact the retrieval
of a stored pattern, let us say of the pattern µ = 1, would give

m1 = m > 0; mµ>1 = 0 . (3.56)

That would give on average a non null net expansion term in the dynamical equation
(3.44) only to the 1-th B clone This situation would correspond to an activation
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FIG. 2: Schematic representation of the consequence of retrieval capabilities by the helper network in the bipartite network
made up of both helpers and B-clones: In the left panel a free-energy landscape of the helper network, with four minima (each
corresponding to retrieval of instruction for a particular B-clone) is shown. The black ball represents the state of the system,
which is driven into the yellow hole (e.g. due to antigenic stimulation). Consequently, as all the helpers in the bipartite network
(right panel) become parallel to the sign of the cytokines linking them to the yellow B-clone. This results in maximal strength
conferred on the retrieved clone, which undergoes clonal expansion. The latter is represented in the middle plot, together with
the lack of growth by the other clones (not-retrieved).

standard Boltzmann state [70] associated to the free energy (11). The Hamiltonian corresponding to eq. (13) can
therefore be recast as

HNH ,NB (h|ξ, W ) =
−1

2NH

NH ,NH∑

i,j

(
NB∑

µ=1

ξµ
i ξµ

j

Wµ

)
hihj = −NH

2

NB∑

µ=1

m2
µ

Wµ
. (14)

Now, free energy minimization implies that the system spontaneously tries to reach a retrieval state where 〈mµ〉 → 1
for some µ. Of course, this is more likely for clones µ with smaller Wµ, while highly connected ones are expected not
to be signaled (pathological cases apart, i.e. no noise β → ∞, or giant clonal expansions b0 → ∞).

Note that 〈m〉µ = 1 (gauge-invariance apart) means that all the helpers belonging to the clone i are parallel to their
corresponding cytokine. Hence if ξµ

i is an eliciting messenger, the corresponding helper hi will be firing, conversely
for ξµ

j = 1 the corresponding helper hj will be quiescent, so to confer to the bµ clone, overall, the maximal expansion

signal (the random environment becomes a deterministic field).
In order to figure out the concrete existence of this retrieval, we solved the model through standard replica trick [35], at
the replica symmetric level (see Appendix One in the SI file), and integrated numerically the obtained self-consistence
equations, which read off as

〈m1(ε, β)〉 = 〈〈ξ1 tanh
[
β(m1ξ

1/W1 +
√

εrz)
]
〉z〉ξ,W ,

〈q(ε, β)〉 = 〈〈tanh2
[
β(m1ξ

1/W1 +
√

εrz)
]
〉z〉ξ,W ,

〈r(ε, β)〉 = lim
NH→∞

1

εNH

NB∑

µ>1

q

[Wµ − β(1 − q)]2
. (15)

In this set of equations, we used the label 1 to denote a test B-clone µ = 1, which can be either a self node (i.e. with a
high value of W1, infinite in the TDL) or a non-self clone (i.e. with a small value of W1, zero in the TDL). While the
first equation defines the capability of retrieval by the immune network as explained above, q is the Edward-Anderson
spin-glass order parameter [35] and r accounts for the slow noise in the network due both to the number of stored
strategies and to the weighted connectivity (these equations generalize the Hopfield equations [26] which clearly are
recovered by setting Wµ = 1 for all µ = 1, .., NB).

As shown in the Appendix Two in the SI file, the equations above can be solved in complete generality. Here, for
simplicity, we choose µ = 1 as the test-case (hence the B-clone that has to be expanded) and describe the outcome
obtained by replacing all Wµ with µ '= 1 with their average behavior, namely 〈W 〉 =

∫
dWP (W )W ; this assumption

makes the evaluation of the order parameter r much easier, while still preserving the qualitative outcome.
We now focus on the two limiting cases: W1 << 〈W 〉, which accounts for a non-self node, and W1 >> 〈W 〉, which

mirrors the self counterpart.
In the former case, the slow noise is small (vanishing as 〈W 〉 → ∞). Consequently, the non-self nodes live in a free

Figure 3.13. Schematic representation of the consequence of retrieval capabilities by the
helper network in the bipartite network made up of both T and B clones: In the left panel
a free-energy landscape of the helper network, with four minima (each corresponding
to retrieval of instruction for a particular B clone) is shown. The black ball represents
the state of the system, which is driven into the yellow hole (e.g. due to antigenic
stimulation). Consequently, as all the helpers in the bipartite network (right panel)
become parallel to the sign of the cytokines linking them to the yellow B clone (green
(black) link are meant as positive (negative) ). This results in maximal strength conferred
on the retrieved clone, which undergoes clonal expansion. The latter is represented in
the middle plot, together with the lack of growth by the other clones (not retrieved).
Figure from [40].

configuration of the T clones that, on average, gives an expansion signal only to the
1-th B clone, while the others clones feel a null average net contribution by the T
cells. A pictorical view of this immunological interpretation of the Hopfield model is
provided in Figure 3.13.

As shown in Chapter 1 and depicted in Figure 1.4, the Hopfield model admits
stable retrieval states only in a closed region of the parameter space enclosed in the
critical line below the spin glass phase. This would be reflected, in the immunological
interpretation of the Hopfield model, by the fact that the system would be able to
recover a defense strategy only provided that the noise is not too high and that the
ratio between the amount of B and T clones does not exceed a critical value.

3.2.2 The role of an extensive antigenic stimulus on the network
capabilities

In [50] the authors studied the effect of an extensive antigenic stimulation on the
the network model described in Section 3.2.1. We review here the principal results
of this work.

Let us consider the effect of the antigenic term on the dynamical Equation (3.44)
for the B lymphocytes: let us rewrite it as

∑
k JµkAk = bµ0 . This has the effect of

changing the logarithmic equilibrium concentration of the µ-th B clone from 0 to bµ0 .
Let us consider the extreme case in which

bµ0 = b0 , ∀µ . (3.57)

This affects the marginalization with respect to the bµ as now the partition function
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in Equation (3.50) is replaced by

Z(β;NB, NH |ξ) =
∑

{h}

∫ ∏

µ

dbµe
−βH̃NB,NH =

=
∑

{h}

∫ ∏

µ

dbµe
−β

2

∑B
µ (bµ−b0)2+ β√

H

∑NB,NH
µ,i ξµi bµhi (3.58)

and integration over bµ gives now an effective hamiltonian for the h party

NHH(h|ξ) = − 1

NH

H∑

ij

(
NB∑

µ

ξµi ξ
µ
j

)
hihj −

∑

i

J̃ilhiAl − Φ
∑

i

ηihi , (3.59)

where we have called a rescaled activation parameter Φ =
√
αb0 and

η ≡ 1√
NB

∑

µ

ξµi (3.60)

plays now the role of an external random field. In the thermodynamic limit the
Central Limit Theorem of probabilities assures that the distribution of this field
converges to a Normal distribution:

P (η) = N (0, 1) . (3.61)

An extensive activation of the B clones, in this toy model framework, affects the
system by generating a new source of noise which is represented by a random field
in the Hopfield network of the T helper clones. The intuitive effect of the presence
of this additional noise is that of making more difficult for the network to retrieve
a strategy. This is confirmed by the analytic solution of the model performed in
[50], to which we refer for details. The standard Hopfield model replica symmetric
solution (1.88) is modified accordingly to

f(ε, β,Φ;m, q) = − log 2

β
+
ε

2
[1 +

β
√
q(1− q)

[1− β(1− q)]2 ] +
1

2
m2 + (3.62)

+
ε

2β

[
log[1− β(1− q)]− βq

1− β(1− q)
]

− 1

β

∫
dµ(η)

∫
dµ(z) log cosh

(
βm+

β
√
εq

1− β(1− q)z +
√
βΦη

)
,

where mµ = m(1, 0, 0, ..., 0) has been fixed.
Extremizing this replica symmetric free energy with respect to m, q, the self-

consistent relations

m = M(ε, β, γ,Φ;m, q) =

=

∫
dµ(η)

∫
dµ(z) tanh

(
βm+

β
√
εq

1− β(1− q)z +
√
βΦη

)
, (3.63)

q = Q(ε, β, γ,Φ;m, q) =

=

∫
dµ(η)

∫
dµ(z) tanh2

(
βm+

β
√
εq

1− β(1− q)z +
√
βΦη

)
(3.64)
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can be found.
The numerical solution of these equations permits to draw the plots in Figure

3.14 and 3.15. Form those plots it is possible to see clearly how the presence of the
random field reduces the retrieval region in the (α, β) plane.

In [50] the authors suggest an immunological analogy with the this mathematical
result. In fact it has been observed that an abnormally high concentration of
lymphocytes gives rise to autoimmunity. In the model, when the system is out of
the retrieval phase, its dynamics becomes very complex and the stored strategies
are not recovered: the formal B clones get expanded in a random fashion and it is
so possible that they attack the self.
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Figure 3.14. The effect of the random field on the Hopfield model phase diagram: the dashed
line represents the critical line βM , which distinguishes among retrieval (in general sense) and
spin glass phases, while the continuous line represents the critical line βC , which confines the
pure state phase. Upper panel: Φ = 0 (left) and Φ = 0.5 (right); Lower panel: Φ = 1 (left) and
Φ = 1.5 (right). Figures form [50].
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Figure 3.15. Left panels: Phase diagrams given by the critical surface βM at various α (upper
panels) and at various Φ (lower panel). Right panels: Phase diagrams given by the critical
surface βC at various α (upper panels) and at various Φ (lower panel). Figures from [50].



58
3. Statistical mechanics based models for the adaptive response in the immune

system

3.2.3 The role of the idiotypic interactions on the network capabil-
ities

In the toy models for the B and T core of the adaptive response reviewed in
Sections 3.2.1 and 3.2.2 the B clones do not interact among themselves. The theory
of idiotypic network presented in Section 2.1.4, for which we have presented a
descriptive model in Section 3.1, states that in fact interactions among B clones can
exist. In this Section we review the work presented in [40] in which the minimal model
presented in Section 3.2.1 is enriched by the presence of the idiotypic interactions.
Following [40], the B-B interactions modify the equation for the time evolution of
the logarithmic B clones (3.44) into

dbµ
dt

= −
NB∑

ν=1

Jµν(bν − bµ) +
1√
NH

NH∑

i=1

ξµi hi +
∑

k

JµkAk +

√
1

β
ηµ , (3.65)

where now the first term encodes for the idiotypic interactions and the Jµν ≥ 0
follow the definitions and the structure presented in Section 3.1.

The Hamiltonian for the b and h variables eventually modifies as

H̃NB ,NH (b, h|J, ξ) =

NB∑

µ,ν

Jµν
4

(bµ − bν)2− 1√
H

NB ,NH∑

i,µ=1

ξµi bµhi−
NB∑

µ=1

Jµ,kbµAk . (3.66)

As long as the analysis is restricted to the case in which almost every B clone
has the rest concentration (bµ ' 0) and just a few clones get expanded, a sort of
“mean field” approximation, stating that the term bµbν ' 0, holds so that

NB∑

µ,ν

Jµν
4

(bµ − bν)2 ' 1

2

NB∑

µ

wµb
2
µ , (3.67)

where the weighted connectivity wµ follows the definition (3.33) and, as explained in
detail in Section 3.1.3, has a distribution with approximately log-normal envelope.

According to the last approximation the partition function of the system can be
computed as

Z(β;NB, NH |ξ) =
∑

{h}

∫ ∏

µ

dbµe
−βH̃NB,NH =

=
∑

{h}

∫ ∏

µ

dbµe
−β

2

∑NB
µ wµb2µ+ β√

H

∑NB,NH
µ,i ξµi bµhi . (3.68)

Gaussian integration over the b variables leads to

Z(β;NB, NH |ξ) =
∑

{h}

exp


 β

2H

NB ,NH∑

i,µ

ξµi ξ
µ
j

wµ
hihj


 (3.69)

which can be interpreted as the partition function of a modified Hopfield model with
weighted patterns for the spin variables h having Hamiltonian

HH(h|ξ, w) = − 1

NH

NH∑

ij

(
NB∑

µ

ξµi ξ
µ
j

wµ

)
hihj −

∑

i

J̃ilhiAl , (3.70)
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that represents the update of the simple Hopfield Hamiltonian (3.53) in presence of
a non negligible idiotypic network. From last expression it is evident that, within
the “mean filed” approximation, the net effect of the idiotypic interactions is that of
removing the degeneracy of the attractor states of the neural network associated to
the effective interactions among T clones: attractors associated to B clones with a
high weighted connectivity are less pronounced than those that are related to the
less interacting B clones in the idiotypic network. This result opens the possibility
of a modification of the Varela interpretation of the idiotypic network effect: the
repression of B clones with strong idiotypic interactions not only comes from the
direct interaction with the neighbouring B clones, but, as a “second order” effect,
also from the fact that they do not receive the elicitation signal from the T cells
as the strategy that would maximally expand those highly interacting B clones are
suppressed in the hs neural network.

The above discussion is enforced by the RS solution of this weighted Hopfield
model. The computation details can be found in [40]. As a result the standard
Hopfield model free energy (1.79) is modified as

f(m, q, r|β, ε) = Ew

{
− 1

β
log 2 +

1

2

s∑

ν=1

m2
ν

wν

+ lim
NH→∞

1

2βNH

NB∑

µ>s

[
ln
(
1− β

wµ
(1− q)

)
−

βq
wµ

1− β
wµ

(1− q)

]

+
εβr

2
(1− q)− 1

β
Eξ
∫
dµ(z) ln cosh

[
β
( s∑

ν=1

mν

wν
ξν +

√
εrz
)]}

(3.71)

which admits the following self consistency relations

mν = Eξ,w
∫
dµ(z) tanhβ

[
√
εrz +

s∑

ρ

mρξρ

wρ

]
, (3.72)

q = Eξ,w
∫
dµ(z) tanh2 β

[
√
εrz +

s∑

ρ

mρξρ

wρ

]
, (3.73)

r = Ew lim
Nh→∞

1

εNH

p∑

µ>s

q

[wµ − β(1− q)]2 , (3.74)

that are meant to be compared with the standard Hopfield ones, (1.80)-(1.82).
An approximate solutions for the above equations can be given in the pure state

case by approximating Equation (1.82) as

r ' lim
Nh→∞

1

εNH

p∑

µ>s

q

[Ewwµ − β(1− q)]2 . (3.75)

Three extreme cases can be distinguished

1. the recalled clone has weighted connectivity much smaller than the average
one; in this case we can approximate Eww →∞, so that r vanishes and the
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self consistency equation for m simply reduces to

m = tanhβ
m

w
, (3.76)

so to the low storage case, in which case the pattern is simply recalled at low
temperature.

2. the recalled clone has weighted connectivity close to the average one; in this
case we can approximate Eww = O(1); in this case the model reduced to the
standard high storage Hopfield model.

3. the recalled clone has weighted connectivity much larger than the average
one; in this case we can approximate Eww → 0, so that the self consistency
equations reduce to

m =

∫
dµ(z) tanhβ

(
m

w
+

√
εqz

β(1− q)

)
, (3.77)

q =

∫
dµ(z) tanh2 β

(
m

w
+

√
εqz

β(1− q)

)
. (3.78)

The effect of a large w is so that of increase the level of noise and eventually
destroy the recalling of the strategy related to expansion of the considered B
clone.

We stress that, as discussed within the framework of a descriptive model in
Section 3.1, probably an overpercolated idiotypic network is not actually required for
the mechanism considered here to works as the distribution of the weighted idiotypic
connectivity (which is the parameter that enters in the effective T helper network)
remains broad even for extremely diluted regimes (far beyond the percolation
threshold).

3.2.4 The fully connected assumption

Several unrealistic assumptions have been made in building up the models
depicted in Section 3.2 starting from the symmetry of the interactions to the fully
connected structure of the interaction network in which every couple of B and T
clones are considered to be in interaction. The models have to be considered as very
coarse grained description of the biological reality that have the aim of underline
the importance of some systemic mechanism.

Nevertheless some of these assumptions can be relaxed, as for example the fully
connected topology. The possible effects of the dilution of the network has been
investigated in [51] and [52] in the low storage regime (NB ∼ logNH), while medium
(NB ∼ NH

δ, δ ∈ [0, 1)) and high (NB ∼ NH) level of load are still under investigation
and preliminary results can be found respectively in [53] and [54].

The description of the results of the above cited work is behind the scopes of
this Thesis. Nevertheless we outline that a result of the dilution of the interaction
between B and T clones, i.e. of the entries of the ξ vectors, is that, in some regimes,
the system is allowed to retrieve more than one strategy in parallel. We refer to the
articles for details.
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Chapter 4

The stochastic stability
methods for neural networks

In this Chapter and in [2] we analyze a Hopfield model [56, 33], where pattern
entries can be either extracted from a Gaussian distribution or set equal to zero. More
precisely, entries are drawn from a normal distribution N [0, 1] with a probability
(1 + a)/2 or set equal to zero with probability (1 − a)/2, where a ∈ [−1,+1] is a
tunable parameter controlling the degree of dilution of patterns. We focus on the
high-storage limit, namely the amount of patterns L is linearly diverging with the
system size N , i.e. L = αN .

This kind of ”analogue” neural networks has been intensively studied on fully
connected topologies (see for instance [57, 58, 59, 60]) and further interest in the
model lies in its peculiar ”soft retrieval” as explained for instance in [61].

Here, we first study the topological properties of the emergent weighted network,
then we pass to the thermodynamic properties of the model.

In particular, we calculate analytically the average probability for two arbitrary
nodes to be connected and we show that, by properly tuning a, the network spans
several topological regimes, from fully connected down to the percolation threshold.
Moreover, even if the network is very sparse, it turns out to display a large degree
of cliquishness due to the Hebbian rule underlying its couplings. The coupling
distribution is also explicitly calculated and shown to be central and with extensive
variance, as expected.

From a thermodynamic perspective, using an exact Gaussian mapping, we prove
that this model is equivalent to a bipartite diluted spin-glass, whose parties are
made up by binary Ising spins and by Gaussian spins, respectively, while interactions
among them, if present, are drawn from a standard Gaussian distribution N [0, 1];
of course, there are no links within each party. The size of the two parties are
respectively N , for the Ising spins, and L, for the Gaussian ones, and the dilution in
the Hopfield pattern entries corresponds to standard link removal in this bipartite
counterpart.

Then, extending the technique of multiple stochastic stability (developed for
fully connected Hopfield model in [60] and for ferromagnetic systems on small-world
graphs in [28]) to this case, we solve its thermodynamics at the replica symmetric
level. Once introduced suitably order parameters for this theory, we obtain an
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explicit expression for the free-energy density that we extremize with respect to
them to obtain the self-consistencies that constraint the phase space of the model.
As in other works on diluted networks [28, 62, 63], the order parameters are two (one
for each party) series of overlaps defined on all the possible subgraphs through which
the network can be decomposed. A study of their rescaled and centered fluctuations
allows to obtain the critical surface delimiting the ergodic phase from the spin-glass
one. The same result is also recovered through small overlap expansion from the
self-consistencies; the agreement confirms the existence of a second order phase
transition [20, 64].

The Chapter is organized as follows: in Section 4.1 the model is defined with all
its related parameters and variables, while in Section 4.2 its topological properties
are discussed. Section 4.3 deals with the statistical mechanics analysis while in
Section 4.4 fluctuation theory is developed. Section 4.5 is left for a discussion and
outlooks.

4.1 The model

Given N Ising spins σi = ±1, i ∈ (1, ..., N), we aim to study a mean-field model
whose Hamiltonian has the form

H̃ = − 1

D

N∑

ij

Jijσiσj , (4.1)

where the couplings are built in a Hebbian fashion [65][56] as

Jij =
L∑

µ=1

ξµi ξ
µ
j , (4.2)

and D is a denominator whose specific form is discussed in Section 3. In fact, in
general, as the coordination number may vary sensibly according to the definition
of patterns ξ, in order to ensure a proper linear scaling of the Hamiltonian (4.1)
with the volume, D has to be a function of the system size N and of the parameters
through which patterns ξ are defined.

We consider the high-storage regime [13], such that, in the thermodynamic limit
(i.e. N →∞), the following scaling for the amount of stored memories (patterns) is
assumed

lim
N→∞

L

N
= α ∈ R+, (4.3)

even though we use the symbol α for the ratio between the number of patterns and
the system size also at finite N , bearing in mind that the thermodynamic limit has
to be performed eventually.

The quenched entries of the memories ξµi are Gaussian and diluted, namely they
are set to zero with probability (1− a)/2, while, with probability (1 + a)/2, they are
drawn from a standard Gaussian distribution:

P (ξµi ) =

(
1− a

2

)
δ(ξµi ) +

(
1 + a

2

)
N[0,1](ξ

µ
i ) . (4.4)
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The parameter a can in principle be varied in the range a ∈ [−1, 1], and, in general,
small values correspond to highly diluted regimes. As proved in Section 4.2.2, a
scaling law for this parameter has to be introduced in order to avoid the topology to
become trivial in the thermodynamic limit. Thus, we consider the following scaling

a = −1 +
γ

N θ
, (4.5)

where θ determines the topological regime of the network, while γ plays the role
of a fine tuning within it. More precisely, γ ∈ (0, 2] and, of course, for γ = 0 we
get P (ξµi ) = δ(ξµi ), that is, there is no network, so we discuss only the case γ > 0.
Finally, notice that fixing θ = 0 and γ = 2 yields to a = 1, corresponding to the
standard analogue Hopfield model [60].

4.2 Topological analysis

4.2.1 Coupling distribution

Let us consider the definition of the coupling strength in Equation (4.2): the
probability p that the µ-th term ξµi ξ

µ
j is zero corresponds to the probability that at

least one between ξµi and ξµj is zero, which is

p ≡
(

1− a
2

)2

+ 2

(
1− a

2

)(
1 + a

2

)
=

3− a2 − 2a

4
= 1−

(
1 + a

2

)2

, (4.6)

while its complement is the probability that a Gaussian number is drawn for both
entries, that is (1− p) = [(1 + a)/2]2. Thus, the probability that the link connecting
i and j has strength Jij can be written as

P (Jij) = pLδ(Jij) +

L∑

k=1

pL−k(1− p)k
(
L

k

)
Pk
( k∑

ν

ξνi ξ
ν
j = Jij

)
= (4.7)

= pLδ(Jij) +
L∑

k=1

f(k) Pk(
k∑

ν

ξνi ξ
ν
j = Jij) =

= pLδ(Jij) +

L∑

k=1

f(k)

∫ +∞

−∞

dl

2π

e−ilJij

(1 + l2)k/2
, (4.8)

where to simplify the notation we defined f(k) = pL−k(1−p)k
(
L
k

)
and Pk

(∑k
ν ξ

ν
i ξ
ν
j =

Jij
)

is the probability that k pairs of Gaussian entries, pairwise multiplied, sum up
to Jij , namely

Pk

( k∑

ν

ξνi ξ
ν
j = Jij

)
=

∫ ∞

−∞

k∏

ν=0

dξνi dξ
ν
j P (ξνi )P (ξνj ) δ

( k∑

ν=0

ξνi ξ
ν
j − Jij

)
=

=

∫ +∞

−∞

dl

2π

k∏

ν=0

dξνi dξ
ν
j

e−
(ξνi )2

2√
2π

e−
(ξνi )2

2√
2π

eil(ξ
ν
i ξ
ν
j−Jij) =

∫ +∞

−∞

dl

2π

e−ilJij

(1 + l2)k/2
.(4.9)
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From Equation (4.8) one can easily specify the characteristic function of the coupling
distribution

F (l) ≡
∫ +∞

−∞
eilJP (J)dJ = pL +

L∑

k=1

f(k)

(1 + l2)k/2
=

1

2
pL

[
1 +

(
1 + l2p

p+ l2p

)L]
, (4.10)

where we dropped the indices i and j, due to the arbitrariness of the couple of
nodes considered. From F (l) it is possible to obtain all the momenta by simple
differentiation. For instance, first and second moment read respectively as

E[Jij ] = (−i)∂F (l)

∂l

∣∣∣∣
l=0

= 0, (4.11)

E[J2
ij ] = (−i)2∂

2F (l)

∂l2

∣∣∣∣
l=0

= L(1− p) = L

(
1 + a

2

)2

=
αγ2

4
N1−2θ . (4.12)

Now, for fixed a and α, we expect that J , being a sum of Gaussian variables, is also
normally distributed (except the point J = 0), at least for large N . Indeed, numerical
simulations confirm that the distribution P (J) converges in the thermodynamic
limit (L → ∞) to a Gaussian distribution with zero mean and variance given by
Equation (4.12) (see Figure 4.1), except for the point J = 0 which will be discussed
in the following section.

Figure 4.1. Coupling distribution P (J) for L = 10 (left panel, blue), L = 20 (left panel,
red), L = 30 (left panel, green) and L = 1000 (right panel). Circles represent the coupling
distribution calculated according to Eq. 4.7, while the continuous lines represent normal
distributions with momenta given by Eq. 4.11 and Eq. 4.12: as the thermodynamic limit
is approached, the agreement gets better and better. Notice that, when L grows, the
divergence in J = 0 becomes weaker. Only the positive values of J are considered due
to the symmetry.

4.2.2 Link Probability and topology regimes

Let us consider the bare topology. The quantity of interest is the average link
probability Plink:

Plink = 1− P (J = 0) . (4.13)
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Looking at Equation (4.7), in principle P (J = 0) has two contributions: one
from the delta function and one from the sum over k random numbers, but the
latter has a null measure in the limit L→∞. To show this we consider the second
term in Equation (4.7) and we calculate its measure over the interval Jij ∈ [−ε,+ε],
highlighting for clarity the term k = 1:

∫ ε

−ε
dJij

L∑

k=1

f(k) Pk(

k∑

ν

ξνi ξ
ν
j − Jij) =

= pL−1 (1− p)L
∫ ε

−ε
P1(r)dr +

L∑

k=2

(
L

k

)
pL−k (1− p)k

∫ ε

−ε
Pk(r)dr . (4.14)

In fact, we notice that P1(r) has a weak divergence in r = 0 and its integral scale
as ∼ ε log(ε), so that the divergence is suppressed by the prefactor in the limit
L→∞, so that the first term in Eq. 4.14 is vanishing. As for Pk>1(r), its integral
is non-diverging and can be upper bounded 1 to show that the second term is also
negligible in the limit L→∞.

Hence, in the thermodynamic limit, Jij = 0 only if ξµi ξ
µ
j = 0, for any µ, namely

P (Jij = 0) = pL =

(
3− a2 − 2a

4

)L
. (4.15)

Now, looking at (4.13) and (4.15) in the thermodynamic limit, it is clear that,
if we consider a as finite and constant, only two trivial topologies can be realized.
In fact, if a = −1, Plink is zero and the system is fully disconnected, while, with
a > −1, Plink tends to one exponentially fast with the system size, and the graph
becomes fully connected.

Nevertheless, with the scaling (4.5),

Plink = 1−
(

1− γ2

4N2θ

)αN
' 1− e−

αγ2

4N2θ−1 , (4.16)

where the last expression holds for large N and γ ∈ (0, 2]. Now, by tuning the value
of θ, we realize different topological regimes; within each regime the parameter γ
acts as a fine tuning. Following a mean-field approach, namely just focusing on the
average link probability, we can distinguish:

• θ = 0 : Plink = 1 −
(

1− γ2

4

)αN
→ 1. Fully Connected graph, with average

degree equal to the system size (z̄ = N − 1).
The coupling distribution converges to the Gaussian one with variance Var[J ] ∝
N , as in the with Sherrington-Kirkpatrick model.

1From the the two inequalities
∫ ε
−ε Pk(r)dr < 2εPk(0), Pk(0) < c log(k)

k
(with c a constant), it

follows
L∑

k=2

(
L

k

)
pL−k(1− p)k

∫ ε

−ε
Pk(r)dr < 2εc,

L∑

k=2

(
L

k

)
pL−k (1− p)k log(k)

k

which goes to zero in the limit L→∞.
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• 0 < θ < 1/2: Plink = 1 − e−αγ
2

4
Nk → 1 (where 0 < k < 1). Fully Connected

graph, with average degree equal to the system size (z̄ = N − 1).
The coupling distribution converges to the Gaussian one with Var[J ] ∝ Nk.

• θ = 1/2: Plink ' αγ2

4 = const. The link probability is finite and the average
coordination number is linearly diverging with the system size, namely z̄ =
αγ2(N − 1) = O(N), and Var[J ] ∝ cost.

• 1/2 < θ < 1: Plink = 1− e−αγ
2

4
Nk ' αγ2Nk

4 → 0 (where −1 < k < 0). Extreme
Diluted Graph, characterized by a sublinearly diverging average coordination
number, z̄ = O(N1−k), and Var[J ] ∝ Nk.

• θ = 1: Plink = 1 − e−
αγ2

4N ' αγ2

4N → 0. Finite Coordination Regime with
z̄ = αγ2/4, and Var[J ] ∝ 1/N .

• θ > 1: Plink = 1− e−αγ
2

4
Nk ' αγ2Nk

4 → 0 (where k < −1). Fully Disconnected
Regime with coordination number vanishing for any choice of α and γ. The
variance of the coupling distribution is vanishing superlinearly with N .

A contour plot of Plink as a function of γ and θ is shown in Figure 4.2.

Figure 4.2. The main figure represents the contour plot of Plink (see Equation 4.16)
as a function of γ and of log θ. The dashed, vertical line corresponds to θ = 1/2
and demarcates the onset of a disconnected regime. The inset represents the degree
distribution P (z) as a function of the normalized number of nearest neighbors; three
values of θ are considered as specified. Notice that, as expected, larger values of θ yields
to sparser graphs. Both figures refer to systems made up of N = 6000 nodes, with
α = 0.05 and γ = 1.

4.2.3 Small-world properties

Small-world networks are characterized by two main properties: a small diameter
and a large clustering coefficient, namely, the average shortest path length scales



4.2 Topological analysis 67

logarithmical (or even slower) with the system size and they contain more cliques
than what expected by random chance [66]. The small-world property has been
observed in a variety of real networks, including biological and technological ones
[67].

First, we checked that, in the over-percolated regime, the structures considered
here display a diameter growing logarithmically with N , as typical for random
networks [68].

As for the clustering coefficient C, it is basically defined as the likelihood that
two neighbors of a node are linked themselves, that is, for the i-th node,

ci =
2Ei

zi(zi − 1)
, (4.17)

where zi is the number of nearest neighbors of i and Ei is the number of links
connecting any couple of neighbors; when Ei equals its upper bound zi(zi−1)/2, the
neighborhood of i is fully connected. The global clustering coefficient then reads as

C =
1

N

N∑

i

ci. (4.18)

A clustering coefficient close to 1 means that the graph displays a high “cliquishness”,
while a value close to 0 means that there are few triangles.

It is easy to see that for the Erdős-Rényi graph, where each link is independently
drawn with a probability P , the average clustering coefficient is CER = P . Therefore,
for our network, we measure C and we compare it with the average link probability
Plink; results obtained for different choices of θ are shown in Figure 4.3.

First, we notice that, for a given system size N , the behavior of C and of
CER, with respect to θ, is markedly different (see the inset): the latter decreases
monotonically due to the analogous decrease of the link probability, while the former
exhibits two extremal points at a relatively large degrees of dilution. In fact, as long
as the networks are highly connected, the disappearance of a few links yields, in both
cases, a modest drop in the overall cliquishness. On the other hand, when dilution is
significant, the intrinsic structure of the “Hebbian graph” matters: as patterns get
sparser and sparser, surviving links are those connecting nodes whose related patterns
display matching with non-null entries. In this way, the neighbors of a node are also
likely to be connected [37, 28, 34] and the clustering coefficient grows. Finally, at a
very large degree of dilution, the system approaches the fully-disconnected regime
and the clustering coefficient decreases.

In order to compare more effectively our graph and an analogous ER graph, we
also considered the ratio C/CER (see the main figure). Interestingly, for θ relatively
large, as N gets larger this ratio grows confirming that the few links remaining are
very effective in maintaining the cliques. This can be understood as follows: to fix
ideas let us take θ = 1, so that the average number of non-null entries in a string
is Lγ/(2N) which equals γα/2 in the high-storage regime under investigation. For
simplicity, let also assume that γα/2 ≈ 1, and that this holds with vanishing variance
for all nodes. Therefore, if the node i has k neighbors, its (local) clustering coefficient
is either 0 (if k ≤ 2) or 1 (if k > 2). Hence, the expected local clustering coefficient
can be estimated as the probability for a node to display k > 2 nearest neighbors,
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Figure 4.3. Inset: Mean clustering coefficient C (continuous line) for different choices of
the parameter θ, while N = 1600, γ = 2 and α = 0.5 are kept fixed; the mean has been
performed over all nodes making up the graph and over 102 realizations. An analogous
ER random graph is also considered and the related clustering coefficient CER (dashed
line) is shown for comparison. Notice the qualitative different behaviors of C and CER.
Main figure: contour plot for the logarithm of the ratio C/CER, as a function of N and
θ. Notice that, although for θ close to 1 both graphs are sparse, C � CER. On the
other hand, for θ > 1, both coefficient converge to zero, in the thermodynamic limit; the
non-null values appearing in the figure are due to finite-size effects.

namely 1− (1− q)N−1 −Nq(1− q)N−2, where q = γ/(2N) is the probability that
the pattern of an arbitrary node j 6= i has the non-null entry matching with the one
of ξi. With some algebra we get ci ≈ 1− e−γ/2(1 + γ/2), which remains finite also
in the thermodynamic limit, in agreement with results from simulations. For θ > 1,
q = γN1−θ/2 and ci converges to zero.

4.3 The statistical mechanics analysis

In this section we study the thermodynamic properties of the system introduced:
At first we show its equivalence to a bipartite spin-glass and figure out the order
parameters of the theory, then we define an interpolating free-energy which generalizes
the multiple stochastic stability developed in [60]; this technique allows to obtain
the replica-symmetric solution in form of a simple sum rule. As a last step, we
extremize the free energy finding self-consistencies for the order parameters, whose
critical behavior is also addressed.

4.3.1 The equivalent diluted bipartite spin-glass

As we deal with a structure whose average coordination number may range in
[0, N ], from a statistical mechanics perspective, we aim to define the normalization
constant D for the Hamiltonian in Equation (4.1), in such a way that its average
(which defines the extensive energy of the system and is denoted symbolically with
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the brackets) is linearly diverging with the system size, namely 〈H̃〉 ∝ N .
By a direct calculation, it is possible to show that this condition is fulfilled by

D = N1−θ, (4.19)

so that, using the explicit definition for the couplings, we can write

H̃ = − 1

N1−θ

N∑

i<j

L∑

µ

ξµi ξ
µ
j σiσj = − 1

N1−θ

N∑

i<j

Jijσiσj , (4.20)

For a single realization of the disorder encoded in the memories, the partition
function reads off as:

Z̃N,L(β; ξ) =
∑

{σ}

exp





β

2N1−θ

N∑

i,j

L∑

µ

ξµi ξ
µ
j σiσj



 . (4.21)

Note that, as usual in the Hopfield model, the diagonal term gives an extensive
contribution to the partition function. In the above expression we neglected this
diagonal term, directly by adding it as a term αβ

2 (1+a
2 ) = αβγ

4Nθ to the final expression
of the free energy [59] (see Equation (4.46)).

Now, we can introduce another party made up of L soft spins {zµ}, namely
i.i.d. variables with an intrinsic standard Gaussian distribution N [0, 1], that interact
only with the original party of binary spins {σi} via the couplings {ξµi }; the related
partition function is

ZN,L(β; ξ) =
∑

{σ}

∫ ∏

µ

dµ(zµ) exp

{√
β

N1−θ

N∑

i

L∑

µ

ξµi σizµ

}
, (4.22)

with dµ(zµ) standard Gaussian measure for all the zµ. By applying Gaussian
integrations as usual [28], it is easy to see that Z̃N,L(β; ξ) and ZN,L(β; ξ) are
thermodynamically equivalent. The advantage of the expression (4.22) is that it is
linear with respect to the memories ξµi , so that the bare topology is simply that of a
bipartite random graph with link probability plink = (1 + a)/2, like in [37].

Taken O as a generic observable, depending on the spin configurations {σ, z},
we define the Boltzmann state ωβ(O) at a given value of (fast) noise β as

ωβ(O) = ZN,L(β; ξ)−1
∑

{σ}

∫ ∏

µ

dµ(zµ)O({σ, z})e
√

β

N1−θ
∑N
i

∑L
µ ξ

µ
i σizµ , (4.23)

and we introduce a product space on several replicas of the system as Ωs =
ω1
⊗
ω2
⊗
...
⊗
ωs [60].

For a generic function of the memories F (ξ), the quenched average will be defined
by the symbol E and performed in two steps: first we fix the number l of links
between the two parties and we perform the average over the Gaussian distribution
of the memories:

E(l)
ξ [F (ξ)] ≡

∫ +∞

−∞

l∏

(i,µ)=1

dξµi√
2π
e−

(ξ
µ
i

)2

2 F (ξµi ) =

∫
F (ξ) dµl(ξ) ≡ f(l) ; (4.24)
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then, we perform the average over the binomial distribution for the number of links,

El[f(l)] ≡
NL∑

l=0

(
NL

l

)(
1 + a

2

)l (1− a
2

)(NL−l)
f(l) , (4.25)

so that E ≡ ElE
(l)
ξ . Indeed, for example, E[ξµi ] = 0 and E[(ξµi )2] = (1 + a)/2.

Moreover, as we will see, for a natural introduction of the order parameters, it is
useful to define the number of links, l, as the product of two independent binomial
variables

l =̇ lηlχ , (4.26)

where the symbol =̇ stands for the equality in distribution and

P (lη) =

(
N

lη

)√
1 + a

2

lη√
1− a

2

N−lη

, (4.27)

P (lχ) =

(
L

lχ

)√
1 + a

2

lχ√
1− a

2

L−lχ

. (4.28)

Of course, a product of two binomial variables is not a binomial variable itself, so
at finite size this definition is not consistent; nevertheless, in the thermodynamic
limit, the central limit theorem ensures that only the first two momenta of the
distributions survive so that the definitions become consistent.

We also use the symbol 〈·〉 to mean 〈·〉 = EΩ(·) and 〈·〉G = E(l)
ξ Ω(·).

The main thermodynamical quantity of interest is the intensive pressure defined
as

A(α, β) = lim
N→∞

AN (α, β) = −βf(α, β) = lim
N→∞

1

N
E logZN,L(β, ξ) . (4.29)

Here f(α, β) = u(α, β)− β−1s(α, β) is the free-energy density, u(α, β) the internal
energy density and s(α, β) the entropy density.

Finally, we define two infinite (in the thermodynamic limit) sets of order param-
eters, the restricted overlaps, as

q
lη
12 =

1

lη

lη∑

i

σ1
i σ

2
i ,

p
lχ
12 =

1

lχ

lχ∑

µ

z1
µz

2
µ , (4.30)

which define the overlaps (restricted on sub-networks) between two replicas made
up by parties with lη and lχ nodes, respectively.

4.3.2 Free energy interpolation and general strategy

In what follows we assume that no real external fields (as magnetic inputs or
partial information submission for retrieval) act on the network, but fields insisting
on each spin are strictly generated by other spins. Thus, the overall field felt by
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an element of a given party is the sum (weighted through the couplings), of the
states of the spins in the other party. Note that spins are connected in loops using
the other party as a mirror, therefore, the equivalent analogue neural network is a
recurrent network.

In this section we show that the free-energy can be calculated in specific cases
(e.g. at the replica symmetrical level) by using a novel technique that has been
developed in [60] for fully connected spin-glass models and extended in [37] to diluted
ferromagnetic models. This technique introduces an external field acting on the
system which ”imitates” the internal, recurrently-generated input, by reproducing
its average statistics. While the external, fictitious input does not reproduce the
statistics of order two and higher, it represents correctly the averages. These
external inputs are denoted as η and χ (one for each spin in each party) and are
distributed following the Gaussian distributions with zero mean and whose variances
scale according to the underlying topology (as a function of α, θ, γ) and coherently
approaches zero when the network topology disappears.

In order to recover the second order statistics, the free-energy is interpolated
smoothly between the case in which all fields are external, and all high order statistics
is missing, and the case in which all fields are internal, describing the original network:
Following the original Guerra’s schemes [15, 60, 69, 70], this allows a powerful sum
rule. We use an interpolating parameter t ∈ [0, 1] for this morphing, such that for
t = 0 the fields are all external and the calculation straightforward, while for t = 1
the original model is fully recovered.

In what follows, for the sake of clearness, we write A = AN (α, β) even though α
should be introduced only once the thermodynamic limit has been performed. The
interpolating quenched pressure ÃN (α, β, t) at finite N is then defined as

ÃN (α, β; t) =
1

N
E log

∑

{σ}

∫ ∏

µ

dµ(zµ) exp


√t

√
β

N1−θ

N,L∑

i,µ

ξµi σizµ


 ·

· exp

(
b
√

1− t
N∑

i

σiηi

)
exp

(
c
√

1− t
L∑

µ

zµχµ

)
exp

(
d

2
(1− t)

L∑

µ

z2
µθµ

)
. (4.31)

Throughout the paper, we assume that the limit

A(α, β) = lim
N→∞

AN (α, β) = lim
N→∞

AN (α, β, t = 1) (4.32)

exists. The “interpolating fields” distributions are chosen to mimic the local fields
behavior, so that ηi, χµ and θµ have zero value with probability

√
(1− a)/2, while,

with probability
√

(1 + a)/2, are normally distributed, except for θµ which assumes
value 12. Consequently, the number of active fields follows Equation (4.27). As for
the constants b, c, d, they have to be chosen properly, as shown in the following.

The strategy for the evaluation of the pressure of the original model, Ã(α, β, t = 1),
is to compute the t-streaming of Ã(α, β, t), namely ∂tÃ(α, β, t = 1), and use the
fundamental theorem of calculus to obtain

AN (α, β) = ÃN (α, β; t = 1) = ÃN (α, β, t = 0) +

∫ 1

0
dt′
(
d

dt
ÃN (α, β; t)

)

t=t′
.

(4.33)

2Indeed, the presence the field θµ has much less physical meaning but simplifies the calculations.
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When evaluating the streaming ∂tÃ, we get the sum of four terms (A,B, C,D);
each comes as a consequence of the derivation of a corresponding exponential term
appearing into Equation (4.31). In order to proceed we need to compute them
explicitly:

A =
1

N
E

√
β

2
√
tN (1−θ)/2

lη ,lχ∑

i,µ

ξµi ω(σi, zµ) =
1

N
E

√
β

2
√
tN (1−θ)/2

lη ,lχ∑

i,µ

∂ξµi ω(σi, zµ)

=
1

N
E

β

2N (1−θ)

lη ,lχ∑

i,µ

[
ω(σ2

i , z
2
µ)− ω2(σi, zµ)

]
=

=
1

N

β

2N (1−θ)

∑

lη ,lχ

P (lη, lχ)lηlχ

[
〈z2
µ〉G − 〈q

lη
12p

lχ
12〉G

]
=

=
1

N

β

2N (1−θ)NL

(
1 + a

2

)[
〈z2
µ〉 − 〈q

lη
12p

lχ
12〉
]

=
αβ

2

γ

2

[
〈z2
µ〉 − 〈q

lη
12p

lχ
12〉
]
, (4.34)

where in the first passage we used integration by parts and, in the fourth, the
factorization properties of the quenched averages [37, 71, 72, 73, 74] (which should
be understood in the thermodynamic limit).

The same procedure can be used in the computation of the other terms, so to
get:

B = − 1

N
E

b

2
√

1− t

lη∑

i

ηiω(σi) = − 1

N
E

b

2
√

1− t

lη∑

i

∂ηiω(σi)

= − 1

N
E
b2

2


lη −

lη∑

i

ω2(σi)


 = − b2

2N

∑

lη

P (lη) lη

(
1− 〈qlη12〉G

)

= −b
2

2

(
1 + a

2

) 1
2 (

1− 〈qlη12〉
)
− b2

2

√
γ

2
N−

θ
2

(
1− 〈qlη12〉

)
; (4.35)

C = − 1

N
E

c

2
√

1− t

lχ∑

µ

χµω(zµ) = − 1

N
E

c

2
√

1− t

lχ∑

µ

∂χµω(zµ) =

= − 1

N
E
c2

2




lχ∑

µ

ω(z2
µ)−

lχ∑

µ

ω2(zµ)


 = − c2

2N

∑

lχ

P (lχ) lχ




lχ∑

µ

〈z2
µ〉G − 〈p

lχ
12〉G




= −αc
2

2

(
1 + a

2

) 1
2 (
〈z2〉 − 〈plχ12〉

)
= −αc

2

2

√
γ

2
N−

θ
2

(
〈z2〉 − 〈plχ12〉

)
; (4.36)

D = − 1

N
E
d

2

lχ∑

µ

ω(z2
µ) = −αd

2

(
1 + a

2

) 1
2

〈z2〉 . (4.37)
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Now, the t-streaming of the pressure reads off as

dÃN (α, β, t)

dt
=

[
αβ

2
N θ

(
1 + a

2

)
− αc2

2

(
1 + a

2

) 1
2

− αd

2

(
1 + a

2

) 1
2

]
〈z2〉+

−αβ
2
N θ

(
1 + a

2

)
〈qlη12p

lχ
12〉+

b2

2

(
1 + a

2

) 1
2

〈qlη12〉+
c2

2

(
1 + a

2

) 1
2

〈plχ12〉+

−
(

1 + a

2

) 1
2 b2

2
. (4.38)

4.3.3 Replica symmetric approximation and fluctuation source

As it is, this streaming encodes the whole full replica-symmetry-breaking com-
plexity [64, 75] of the underlying glassy phase and it is intractable. Our plan is
to split this derivative in two terms, one dealing with the averages of the order
parameters and one accounting for their fluctuations. To this aim we introduce the
source of fluctuations, S(α, β, t), as

S(α, β, t) = −αβ
2

(
1 + a

2

)
N θ〈(qlη12 − q)(p

lχ
12 − p)〉, (4.39)

with
q ≡ Elηqlη , p ≡ Elηplη . (4.40)

Notice that the main order parameters q and p sum every overlap, each with its
relative weight, on every possible subnetwork of the whole network according to
the approaches [62, 63] and that they recover the standard order parameters of the
Hopfield model when dilution is neglected [13, 60].

In order to relate Equation (4.39) to Equation (4.38), let us remember that we
still have free parameters that can be chosen as 3
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√
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(
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4 ,
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(1− q) = β
(γ
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) 1
2
N

θ
2 (1− q) , (4.41)

so to get

dÃ(α, β; t)

dt
= S(α, β, t)+

αβ

2

(
1 + a

2

)
N θ p(q−1) = S(α, β, t)+

αβγ

4
p(q−1). (4.42)

In the replica symmetric approximation, the order parameters do not fluctuate
with respect to their quenched average in the thermodynamic limit as they get delta-
distributed over their replica symmetric averages q, p, which have been denoted with

3In particular, we choose d to cancel the 〈z2〉 terms appearing in the first line of equation (4.38).
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a bar. As a consequence, within this approximation, we can neglect the fluctuation
source term S(α, β, t) and keep only the replica symmetric overlap averages in the
expression (4.42) such that its integration is trivially reduced to a multiplication by
one.

In order to obtain an explicit expression of the sum rule (4.33), we can then
proceed to analyze the starting point for the ”morphing”, namely Ã(α, β; t = 0),
which can be calculated straightforwardly as it involves only one-body interactions:

ÃN (α, β, t = 0) =

=
1

N
E log
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,

where we used

1
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and
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.(4.45)

Now, substituting the expression for ÃN (α, β, t = 0) of Equation(4.43) into (4.33),
we obtain the replica-symmetric free energy (strictly speaking the mathematical
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pressure) of the network as

ÃRSN (α, β) = ÃN (α, β, t = 0) +
dÃRSN (α, β, t

dt

∣∣∣∣∣
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αβγ
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p(q − 1) +

αβγ

4
N−θ . (4.46)

Despite the last expression is meant to hold in the thermodynamic limit, with a little
mathematical abuse we left the explicit dependence on N to discuss some features
of the solution: Equation (4.46) may look strange due to the strong presence of
various powers of the volume size N , which in principle are potentially unwanted
divergencies. We start noticing that, in the limit of zero dilution θ = 0 and
homogeneous distribution of fields γ = 2, the expression for the free-energy recovers
the replica symmetric one of the analogue Hopfield model [60] (or digital one without
retrieval [20]). Moreover, remembering the various topological regimes outlined in
Section 3, we see that when the network changes the topological phase, for instance
moving from a fully connected topology to a sparse graph, the coordination number
may scale with the volume size or remain constant. These situations are deeply
different from a thermodynamical viewpoint because, in order to have no negligible
contributions to the free-energy, fields obtained by an extensive number of (finite)
terms in the fully connected scenario must be (possibly) turned into fields obtained
by a finite number of (infinite) terms in the dilute regime. As the topology changes,
the fields must follow accordingly, which is equivalent to a (fast) noise rescaling with
the volume size that is another standard approach to diluted network [76, 72, 77].

The physical free-energy is then obtained by extremizing this expression with
respect to the order parameters; we only stress here that, as a general property of
these neural networks/bipartite spin-glasses, the free-energy now obeys a min-max
principle, which will not be deepened here (because it does not change the following
procedure and it has been discussed in [60]). As a consequence, the following system
defines the values of the overlaps (as functions of α, β) that must be used into
Equation (4.46)
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∂Ã
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= 0 , (4.47)

by which

q =

∫
dµ(η) tanh2

( √
αqβ(γ2 )

1
2N

θ
2

1− β(γ2 )
1
2N

θ
2 (1− q)

η

)
. (4.48)

All the related models (e.g. Viana-Bray [78], Hopfield [56], Sherrigton-Kirkpatrick
[14]) display an ergodicity breaking associated with a second order phase transition
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and presence of criticality. If we assume the same behavior even for the model
investigated here, the self-consistency equation (4.48) can give hints on the critical
line (in the parameter space) where ergodicity breaks down. In fact, when leaving
the ergodic region (implicitly defined by q = 0, p = 0) the order parameters start
growing (implicitly defining the critical line as the starting point) and, as continuity
is assumed through the second order kind of transition, we can expand the r. h.
s. of Equation (4.48) for low q and obtain a polynomial expression on both sides.
Then, due to the principle of identity of polynomials, we can equate the two sides
term by term obtaining

βc =
1

(γ
2

) 1
2 N

θ
2 (1 +

√
α)

, (4.49)

which is the critical surface of the system.

Mirroring the discussion dealing with the free energy, we note that this result too
is clearly a consequence of the choice (4.19) for the normalization factor that gives
us an extensive thermodynamics. If we normalize choosing D = N , as it is usual
in the Hopfield model [20], we obtain (turning to T = 1/β which is most intuitive)
Tc = N θ/2(1 +

√
α)
√
γ/2 (and recover the AGS line for θ = 0 and γ = 2), such

that the overall effect of increasing dilution is to reduce the value of the critical
temperature because the couplings, on average, become weaker. In particular, in
the finite connectivity regime (θ = 1), the network is built of by N links instead of
N2 which, roughly speaking, implies a rescaling in the temperature proportional to√
N (coherently with a spin-glass behavior), as in the ferromagnetic counterpart

its rescale is ruled by N instead of
√
N [76] because the latter is a model defined

through the first momentum, while the former by the variance.

Furthermore we stress that the system displays only one critical surface splitting
the ergodic region from the spin glass and there are no further ‘weak-transitions”
for each sub-overlap, coherently with the scenario discussed in [79] for the similar
case of the Viana-Bray model [78].

4.4 Fluctuation theory and critical behavior

The plan of this section is studying the regularity of the rescaled (and centered)
overlap correlation functions.

The idea is as follows: If the system undergoes a second order phase transition,
the (extensive) fluctuations of its order parameters should diverge on the critical
surface (4.49), hence they should be described by meromorphic functions; from the
poles of these functions it is possible to detect the critical surface. As a consequence,
an explicit knowledge of these functions would confirm (or reject) the critical picture
we obtained through the small overlap expansion of the previous section. However,
obtaining them explicitly is not immediate and we sketch in what follows our strategy.
At first, we define the (rescaled and centered) fluctuations of the order parameters as

Q
lη
ab =

√
N
(
q
lη
ab − qlη

)
,

P
lη
ab =

√
L
(
p
lχ
ab − plη

)
, (4.50)
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such that, while q
lη
ab ∈ [−1,+1], p

lη
ab ∈ [−1,+1], Q

lη
ab ∈ R, P lηab ∈ R, hence, the square

of the latter may diverge as expected for second order phase transitions.

Nevertheless, obtaining them explicitly from the original Hamiltonian is pro-
hibitive and we use another procedure, originally outlined in [70]: We evaluate these
rescaled overlap fluctuations weighted with the non-interacting Hamiltonian in the
Maxwell-Boltzman distribution, hence 〈Q2

lη12〉t=0, 〈Qlη12Plχ12〉t=0, 〈P 2
lχ12〉t=0, then

we derive the streaming of a generic observable O (that is in principle a function of
the spins of the parties and of the quenched memories), namely ∂t〈O〉t such that
we know how to propagate 〈O〉(t=0) up to 〈O〉(t=1) (which is our goal), and finally
we use this streaming equation (which turns out to be a dynamical system) on
the Cauchy problem defined by 〈Q2

lη12〉t=0, 〈Qlη12Plχ12〉t=0, 〈P 2
lχ12〉t=0, obtaining

the attended result. Once the procedure is completed, the simple analysis of the
poles of 〈Q2

lη12〉t=1, 〈Qlη12Plχ12〉t=1, 〈P 2
lχ12〉t=1 will identify the critical surfaces of

the system.

Starting with the study of the structure of the derivative, our aim is to compute
the t-streaming for a generic observable Os of s replicas. Calling

Hs =
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a=1
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such that

〈O〉t =

∫ ∏L
µ dµ(zµ)

∑
σ O exp (−βHs)∫ ∏L
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σ exp (−βHs)
,

its t-streaming is
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(4.52)
In the last equation eight terms contribute. Let us call them A1, B1, C1, D1, A2,
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B2, C2, D2 and compute them explicitly:
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With analogous calculations
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Therefore, merging all these terms together, the streaming is

d
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)
. (4.61)

In order to control the overlap fluctuations, namely 〈Q2
lη12〉t=1, 〈Qlη12Plχ12〉t=1,

〈P 2
lχ12〉t=1, ..., noting that the streaming equation pastes two replicas to the ones

already involved (s = 2 so far), we need to study nine correlation functions. It is
then useful to introduce them and refer to them by capital letters so to simplify
their visualization:

〈Q2
lη12〉t = A(t), 〈Qlη12Qlη13〉t = B(t), 〈Qlη12Qlη34〉t = C(t), (4.62)

〈Qlη12Plχ12〉t = D(t), 〈Qlη12Plχ13〉t = E(t), 〈Qlη12Plχ34〉t = F (t), (4.63)

〈P 2
lχ12〉t = G(t), 〈Plχ12Plχ13〉t = H(t), 〈Plχ12Plχ34〉t = I(t). (4.64)

Let us now sketch their streaming. First, we introduce the operator “dot” as

Ȯ =
2

β
√
αγ

dO

dt
,

which simplifies calculations and shifts the propagation of the streaming from t = 1
to t = β

√
αγ/2. Using this we sketch how to write the streaming of the first two
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correlations (as it works in the same way for any other):

Ȧ = 〈Q2
lη12Qlη12Plχ12〉t − 4〈Q2

lη12Qlη13Plχ13〉t + 3〈Q2
lη12Qlη34Plχ34〉t,
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)
〉t + 6〈Qlη12Plχ13Qlη45Plχ45〉t.(4.65)

By assuming a Gaussian behavior, as in the strategy outlined in [70], we can write the
overall streaming of the correlation functions in the form of the following differential
system

Ȧ = 2AD − 8BE + 6CF,

Ḃ = 2AE + 2BD − 4BE − 6BF − 6EC + 12CF,

Ċ = 2AF + 2CD + 8BE − 16BF − 16CE + 20CF,

Ḋ = AG− 4BH + 3CI +D2 − 4E2 + 3F 2,

Ė = AH +BG− 2BH − 3BI − 3CH + 6CI + 2ED − 2E2 − 6EF + 6F 2,

Ḟ = AI + CG+ 4BH − 8BI − 8CH + 10CI + 2DF + 4E2 − 16EF + 10F 2,

Ġ = 2GD − 8HE + 6IF,

Ḣ = 2GE + 2HD − 4HE − 6HF − 6IE + 12IF,

İ = 2GF + 2DI + 8HE − 16HF − 16IE + 20IF. (4.66)

As we are interested in discussing criticality and not the whole glassy phase, it is
possible to solve this system starting from the high noise region, once the initial
conditions at t = 0 are known. As at t = 0 everything is factorized, the only needed
check is by the correlations inside each party. Starting with the first party, we
have to study A,B,C at t = 0. As only the diagonal terms give non-negligible
contribution, it is immediate to work out this first set of starting points as
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For the second party we need to evaluate G,H, I at t = 0. The only difference
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with the first party is that z2
µ 6= 1 as for the σ’s.

G(0) = 〈P 2
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Now, ω(z2) and ω(z) are Gaussian integrals and can be explicitly calculated as
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Finally, we have obviously D(0) = E(0) = F (0) = 0, because at t = 0 the two parties
are independent. As we are interested in finding where ergodicity becomes broken
(the critical line), we start propagating t (from 0 to 1) from the annealed region
(high noise limit), where q̄ ≡ 0 and p̄ ≡ 0. It is immediate to check that, for the only
terms that we need to consider, A,D,G (the other being strictly zero on the whole
t ∈ [0, 1]), the starting points are:

A(0) =

√
2

γ
N

θ
2 =

1

r
, (4.75)

D(0) = 0, (4.76)

G(0) =
N

θ
2√

γ
2 (1− β

√
γ
2N

θ
2 )2

=
1

rs2
. (4.77)

Where we have defined r =
√

γ
2N
− θ

2 , s = 1− β
√

γ
2N

θ
2 .

The evolution is ruled by

Ȧ = 2AD (4.78)

Ḋ = AG+D2 (4.79)

Ġ = 2GD. (4.80)



82 4. The stochastic stability methods for neural networks

Noticing that Ȧ
Ġ

= 0 by substitution, and that A(0)
G(0) = s2 we obtain immediately :

A(t) = G(t)s2 = G(t)

(
1− β

√
γ

2
N

θ
2

)2

. (4.81)

The system then reduces to two differential equations; calling Y = D + Gs, we
have Ẏ = Ḋ + Ġs = G2s2 + D2 + 2GDs = Y 2 with solution Y (t) = Y (0)

1−tY (0) , and

Y (0) = D(0) +G(0)s = 1
rs by which we get

Y (t =
√
αβ

γ

2
) =

1

rs

1

1−√αβ γ2 (rs)−1
=

1
√

γ
2N
−θ/2

(
1− β

√
γ
2N

θ/2(1 +
√
α)

) ,

(4.82)
i.e. there is a regular behavior up to

βc =
1√

γ
2N

θ
2 (1 +

√
α)

, (4.83)

which confirms the result obtained in Equation (4.49). Now, we can consider
separately the evolution equation for G and D:

Ġ = 2G(t)

(
Y (t)− sG(t)

)
=

2

rs− tG(t)− 2sG(t), (4.84)

where we used Y (t) = (rs− t)−1. Dividing both sides by G2 and calling Z = G−1

we get an ordinary first order differential equation for Z(t):

− Ż(t) = 2Y (t)Z(t)− 2s =
2

rs− tZ(t)− 2s. (4.85)

that have the following solution for the initial condition Z(0) = rs2:

Z(t) = 2s(rs− t)− 1

r
(rs− t)2. (4.86)

From Z(t) we obtain G(t), that is,

G(t) =
1

(rs− t)(s+ t
r )
. (4.87)

Using Equation (4.81) and remembering that D(t) = Y (t)−G(t)s, we obtain the
other overlap fluctuations

〈Q2
lη12〉 =

(
1− β

√
γ
2N

θ/2
)2

√
γ
2N
−θ/2

(
1− β

√
γ
2N

θ/2(1 +
√
α)

)(
1− β

√
γ
2N

θ/2(1−√α)

) , (4.88)

〈Qlη12Plχ12〉 =

√
αβ(

1− β
√

γ
2N

θ/2(1 +
√
α)

)(
1− β

√
γ
2N

θ/2(1−√α)

) , (4.89)
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〈P 2
lχ12〉 =

1
√

γ
2N
−θ/2

(
1− β

√
γ
2N

θ/2(1 +
√
α)

)(
1− β

√
γ
2N

θ/2(1−√α)

) . (4.90)

A simple visual inspection of the formula above allows to confirm that the poles are
located at

β

√
γ

2
N θ/2 (1 +

√
α) = 1,

confirming the heuristic result previously obtained. We can easily see furthermore
that in the fully connected limit (γ = 2 and θ = 0) we recover the result of [20].

4.5 Conclusions and outlooks

In this Chapter we introduced and solved, at the replica symmetric level, two
disordered mean-field systems: the former provides a generalization of the analogue
neural network by introducing dilution into its patterns encoding the memories,
the latter is a bipartite and diluted spin-glass made up of a Gaussian party and an
Ising party, respectively. From an applicative viewpoint (not discussed here, see e.g.
[51]), the interest in these models raises in different contexts, but their peculiarity
resides in the existence of sparse entries (instead of classical dilution on the neural
network links as performed for instance earlier by Sompolinsky [80] through random
graphs or recently by Coolen and coworkers [62] through small-worlds or scale-free
architectures) which allows, when possible, parallel retrieval as for instance discussed
in [52], [51], [53] and [54]. Interestingly, as we show, the Hamiltonians describing
these systems are thermodynamically equivalent.

In our investigations we first considered the diluted analogue neural network and
focused on the topological properties of the emergent weighted graph. We found an
exact expression for the coupling distribution, showing that in the thermodynamic
limit it converges to a central Gaussian distribution with variance scaling linearly
with the system size N . We also calculated the average link probability which, as
expected, depends crucially on the degree of dilution introduced. More precisely,
by properly tuning it, the emergent structure displays an average coordination
number z̄ which can range from z̄ = N (fully-connected regime) to z̄ = O(N)
(constant link probability), to finite with z̄ > 1 (over-percolated network) or z̄ < 1
(under-percolated network).

Then, we moved to the thermodynamical analysis, where, through an inter-
polation scheme recently developed for fully connected Hebbian kernels [60], we
obtained explicitly the replica symmetric free-energy coupled with its self-consistency
equations. The overlaps, order parameters of the theory, turn out to be classical
weighted sums of sub-overlaps defined on all possible sub-graphs (as for instance
discussed in [37, 63]). Both a small overlap expansion of these self-consistencies, as
well as a whole fluctuation theory developed for their rescaled correlations, confirm
a critical behavior on a surface (in the α, β, γ, θ hyperplane) that reduces to the
well-known of Amit-Gutfreud-Sompolinsky when the dilution is sent to zero [20].
On the other hand, the net effect of entry dilution in bit-strings (which weakens the
coupling strength) is to rescale accordingly the critical noise level at which ergodicity
breaks down, as expected.
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Without imposing retrieval through Lagrange multipliers (as for analogue patterns
it is not a spontaneous phenomenon, see [60]) the system displays only two phases,
an ergodic one (where all overlaps are zero) and a spin-glass one (where overlaps are
non-zero), split by the second order critical surfaces (over which overlaps start being
non-zero) which defines criticality.

The results reviewed in this Section have been published in [2].
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Chapter 5

A Markov chain model for the
analysis of clinical data

Last Chapters have been dedicated to coarse grain modeling of biological networks.
The intent of the works presented there was to present solvable models that reproduce
qualitative features of the biological systems. In this Chapter and in the next one,
we move towards models that are meant to deal with real data.

Here we review the work presented in [3]. In this work a method for analyzing
clinical data is provided and tested. This data are about the insurgence of tuberculosis
(TB) infection and non-tuberculous mycobacterial (NTM) infection as a side effect
in patients affected by rheumatoid arthritis (RA) that are treated with inhibitors of
the tumor necrosis factor (TNF), a proinflammatory cytokine.

With the aim of discriminate between new born infections and reactivation of
latent infections in the treated patients, a probabilistic model, that was previously
proposed by R. S. Wallis in [81], is analytically studied and tested on real data.

5.1 The biomedical framework: rheumatoid arthritis,
tumor necrosis factor inhibitors, tuberculosis and
nontuberculous mycobacterial infections.

Over the last decades the improved understanding of the pathogenesis of chronic
inflammatory diseases, together with a major advance in biotechnology, have ac-
celerated the development of biological therapies, designed to neutralize specific
targets that mediate and sustain the clinical manifestations of diseases. These
compounds, mainly monoclonal antibodies (mAb) and fusion proteins, introduced
a breakthrough in the management of different conditions including inflammatory
rheumatologic disorders [82]. In this context, the first setting of application of the
biological agents was RA, a chronic autoimmune disease affecting approximately 1%
of the adult population [83]. If the disease is not treated adequately, progressive
deformity can lead to loss of quality of life and reduce average life expectancy by
about a decade [83]. Studies on the pathogenic mechanisms of RA have revealed
that TNF is a cytokine playing a critical role in the inflammatory cascade that
results in the irreversible joint damage typical of the disease [84]. Following these
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discoveries, a series of clinical trials in patients with RA showed the therapeutic
benefit of TNF blockade [85]. As a consequence, five biological agents engineered
to block TNF actions are currently available: infliximab, adalimumab, golimumab,
certolizumab pegol (all of them mAb), and etanercept (a receptor fusion protein)
[86]. While being highly effective, TNF blockers have raised concerns about the
potential for an increased susceptibility to infections, in particular the reactivation of
latent tuberculosis (TB) infection [87, 88, 89, 81, 90]. Mycobacterium tuberculosis,
the cause of human TB, can result in a metastable clinical latency lasting for decades.
Much has been speculated about the structure of granuloma which should contain
Mycobacteria, since murine models indicated that TNF was necessary for both
formation and maintenance of granulomas [91]. However, subsequent studies on
zebrafish model [92], monkeys [93], and humans [94, 95, 96, 97] challenged these data,
demonstrating that the crucial role of TNF in the granuloma was indeed macrophage
activation and stimulation of chemokine production. The reactivation of latent TB
infection has been associated with all TNF inhibitors, hence pre-initiation screening
procedures have been recommended, which have successfully reduced the number of
reported cases [98], although current screening tools lack sensitivity and specificity
[99, 100].

TNF blockers seem to increase also the risk of other granulomatous diseases, but
little is known about the emergence of illness due to non-tuberculous Mycobacteria.
These are a huge ensemble of pathogens (e.g. M. avium, M. abscessus, and so
on [101]) and up to date, approximately 50 different mycobacterial species are
considered to be etiological agents of human diseases and this number seems still
growing [101]. Most cases these days occur in hosts with relatively intact immune
responses. However, RA and other chronic diseases with pulmonary manifestations
can predispose a person to NTM pulmonary disease [102] expressing as a possible
serious complication, especially in immunosuppressed subjects. Thus, it is of utmost
importance to study also the risk related to NTM, in the perspective to understand
if a proper screening may be helpful in conferring a wider protection to the patients.
This is particularly true, in that the TNF blockers appear to predispose both to
disseminated and localized disease [103, 101], but also because these infections are
increasing in prevalence, especially among women, which are more frequently affected
by RA than men. In the present state of the art, the scenario for NTM diseases,
with respect to TNF-blocking drugs, seems different from the TB counterpart: in
particular, through extensive experimental screening, both Wallis and coworkers [90],
and Winthrop and coworkers [103, 104] evidenced that latency and reactivation do
not seem to play a crucial role in this context, yet a clear-cut picture is still missing.

Now, as far as TB is concerned, data collected through the Adverse Event
Reporting System of the US Food and Drug Administration (FDA) in the time-
window 1998− 2002, related to the two test-case drugs with a different mechanism
of action, i.e. infliximab and etanercept, highlight that TB infections involve 54 over
105 patients treated with infliximab and 28 over 105 patients receiving etanercept
[90]. Therefore, the question is: As the latency in TB can last decades, are these
infections (in patients under therapy) new ones or are they reactivation of previously
encountered pathogens due to a suppressed immune system? This kind of question
underlies the awareness of a real need and disposal for extensive pre-screening
procedures. Unfortunately, the answer is by far not trivial as, for TB, there are no
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secure pathways to discriminate between a new infection or the raise of a previous
one. Moreover, a clear methodology for finding latencies is still lacking. Furthermore,
the rarity and different sizes of this infection in different countries (ranging from 5
over 105 in Sweden up to 140 over 105 in Romania [89]) implies that data analysis
and its subsequent interpretation must be carefully performed.

As for NTM, still from FDA, through the post-marketing surveillance system
(MedWatch) and through a further survey within the Emerging Infections Network of
the Infectious Diseases Society of America (IDSA), Winthrop and coworkers reported
a detailed study of possible correlations between the usage of TNF blockers and
the emergence of NTM diseases: over a time-window of 8 years, they highlighted a
higher prevalence of NTM diseases in patients treated with infliximab rather than
etanercept [104].

In order to investigate possible correlations between the incidence of infections by
such Mycobacteria and biological therapy, one could rely directly on the molecular
details of TNF processing signal (which has been, at least partially, elucidated, see
e.g. [105]), coupled to the underlying infliximab and etanercept mechanism of action,
which could be achievable directly through molecular immunology approach. Beyond
these “standard” strands, a completely different route can also be performed: Given
the relative large amount of collected data, the problem can be considered from
a purely inferential viewpoint, by-passing the underlying molecular immunology
know-how (see also [106, 107]). According to this perspective, in Ref. [81, 90], an
abstract (logical) environment for TB case has been defined, where patients can
occupy one of the (following) five different states: (0) No infection, (1) New infection,
(2) Latency, (3) Reactivation of a previous TB infection, (4) Post first TB encounter.
Clearly, the patients starting the therapy (and hence belonging to the survey) can
correspond to either state (0) or (2), because all the other states imply quantifiable
sickness and the patient would then be treated for TB rather than RA. Then, at
the end of the survey, a fraction of these patients will be in an illness state, i.e.
either state (3) or (4). The transition rates between different states are assumed
as free-parameters, whose values are estimated through numerical simulations: the
best estimate is the one able to reproduce, with the smallest error, the experimental
data. Remarkably, the probability of latent TB reactivation in patients treated with
infliximab turned out to be an order of magnitude per unit of time higher than the
same probability for patients trated with etanercept [81].

Here, we first formalize this approach in terms of Markov chains and we write the
related Master equation in continuous-time limit, then we solve the model analytically
and study its properties in full details. In this way we get the explicit expression for
the number of patients c(t) exhibiting a TB (re)activation, as a function of time t.
One step forward, we check the robustness of our results through extensive Monte
Carlo simulations and over the clinical data of the TB scenario, finding overall
excellent agreement among all our results (and previous literature). Moreover, we
find that different magnitudes for the probability of reactivation correspond to
qualitative different behaviors for c(t) (on the proper timescale), that is, the number
of patients displaying active infection increases exponentially in time when using
infliximab and linearly in time when using etanercept.

The analytical expression for the whole evolution of the system implies a great
feasibility of the technique itself (e.g. we have the whole set of first integrals
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and a clear picture of all the hidden symmetries) and also allows to address, in
complete generality, several instances. In particular, we can finally consider generic
NTM infections, where, interestingly, the scenario appears quite different from the
TB counterpart: clinical data suggest that c(t) (on the proper timescale) grows
quadratically with time and this is recovered by our analytical picture only under
the assumption of a negligible role played by latency reactivation. We check these
findings also through extensive Monte Carlo runs, which are in full agreement too.
Remarkably, this is very consistent with the present state of the art in the medical
literature dealing with NTM.

As a final result, there are two types of conclusions which stem from our work:
The former belongs to the world of modelers, while the latter to the world of
clinicians.
From a mathematical perspective, the encouraging results of this approach may pave
the way for the development of handily and fruitful instruments for physicians.
Much more carefully, in the clinician’s counterpart, as this approach bypasses
the whole underlying biological complexity, it may contribute to confirm, from a
theoretical perspective, the current understanding of adverse events coupled to TNF-
inhibitors and the consequent real need for screening procedures before undergoing
biological therapies.

5.2 The mathematical model

In this section we formalize the scheme introduced in [81] and aimed to reproduce
data of TB onset in patients treated with TNF inhibitors, with particular attention
on infliximab (an anti-TNF mAb) and etanercept (a soluble TNF receptor). Seeking
for clarity, in this section we mention only applications to the TB case, although, as
we will see in Section 5.3.2, the approach is rather robust and can be successfully
applied to the NTM case, too.

The model, whose structure is depicted in Figure 5.1, consists in identifying a
set of possible states for the patient subjected to biological treatments, and in fixing
the likelihood for the patient to change his/her state within a proper unit time 1.

The clinical states available to a test-patient are taken as follows (see Figure 1):

0 : Absence of infection;

1 : New infection (that after a time τ can give rise either to active TB or latent
infection);

2 : Latent infection;

3 : Reactivated TB after latency;

4 : Active TB (that progress from new infection within a time τ , without an
intervening period of latency).

1Clearly, on large samples, some patients may experience sudden incidents (e.g. death for other
causes) or some others may assume both the drugs: the analysis has been previously purified from
these cases [81, 90].
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Moreover, each patient is assumed to change his/her state, following the correspond-
ing transition probabilities, which constitute the model parameter set, and are meant
over a proper unit time τ . Using t to label the time, these probabilities are:

L : Probability of having a latent infection at the beginning of the observation
(t = 0), while, obviously, (1− L) is the probability of not having any infection
at that moment;

N : Time rate of TB infection during the observational time;

P : Time rate at which a new TB infection becomes active TB; as a consequence,
(1 − P ) is the time rate at which this new infections to give rise to a latent
infection;

R : Time rate of reactivation of a latent TB infection.

As a hypothesis of the model only the parameters P and R may depend on the
particular TNF inhibitor that the patient is taking.

We stress that such probabilistic framework is based on purely clinical variables.

On the experimental side, the available data consist in a collection of times (one
for each patient) corresponding to the onset of TB (in its active phase, namely a
detectable scenario), after the beginning of the treatment with TNF blockers. As
a consequence, the only states which are possible to observe are the states 3 and
4. Unfortunately, as discussed in the introduction, these states (that account for ill
patients) are not distinguishable one respect to the other by simply looking at the
data (hence motivating both earlier studies [81, 90] and our machinery), however,
some progress can be made using stochastic extremization. The idea resembles
the standard maximum likelihood and consists in finding the best values for free
parameters such that the theoretical curves collapse over the experimental data
[108].

0:

No

infection

1:

New

infection

4:

Post 1°

TB

2:

Latency
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L

1-P

N P

R

Figure 5.1. Symbolic representation of the Markov chain under investigation.
States are represented as circles and numbered from 0 to 4 according to the scheme
outlined in Section 5.2. The arrows N,P, 1− P,R represent the transition probabilities
connecting two different states, while 1−L and L represent the initial conditions on the
states 0, 2.
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Markov chains and master equations

The model described in the previous section can be translated into a set of
differential equations coding for the temporal evolution of the probability of patient’s
states (which can be compared to the corresponding fractions over a sample of
patients given the large collection of data).

Being the states discrete, this can be accomplished in complete generality using
Markov chains, namely a (discrete-time) probabilistic framework where the prob-
ability of being in a given state at a given time t depends only on the probability
distribution over all the states at the previous time step t− 1, and on the transition
rates linking these states.

It is instructive to consider the illustrative Markov chain with only three states
(A, B and C), non-null transition rates wA→B and wB→C and time step ∆t, shown
in Figure 5.2.

Note that, in the model, the probabilities of going from A to B and from B to C
exist but not the opposite (wB→A = 0, wC→B = 0) hence, if the initial state is all
concentrated in C, there will be no evolution, while if the starting point is spread
among A and B, after enough time, the probability distribution will be peaked on
C only (but in its finite temporal evolution resides our interest).

Now, the probability of remaining-at/moving-into the state B in the time interval
∆t is given by the probability of already being in B (hence pB(t)) plus the probability
of arriving in B from A times the probability of being in A at the previous step
(hence wA→BpA(t)) minus the probability of leaving B to C times the probability of
being in B at the previous step (hence wB→CpB(t)); this concept can be written as
follows:

pB(t+ ∆t) = pB(t) + pA(t)wA→B∆t− pB(t)wB→C∆t . (5.1)

Since the mathematics for continuous variable differential equations is much more
handily and does not change significantly the perspective if the time step is small
with respect to the global time window2, we are allowed to consider the time as
a continuous variable. This can be achieved straightforwardly starting from the
previous equation using a limit procedure:

lim
∆t→0

pB(t+ ∆t)− pB(t)

∆t
=
dpB(t)

dt
= pA(t)wA→B − pB(t)wB→C .

The evolution for the probability pB(t) is then ruled by the following differential
equation, namely a “Master equation”, which acts as a continuous counterpart of
the Markov chain in the discrete-time case:

dpB(t)

dt
= pA(t)wA→B − pB(t)wB→C . (5.2)

In general, for a system which can be in one of M arbitrary states, we need a M ×M
transition-rate matrix w (where wi→j is the rate for the transition from state i to
state j) and the Master equation takes the form

ṗi(t) ≡
dpi
dt

=

M∑

j=1

wj→i pj(t)−
M∑

j=1

wi→j pi(t) . (5.3)

2Both the experimental data set considered here (for TB cases [90] and for NTM cases [103])
fulfill this requirement.
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Finally, we switch to a form where the explicit timescale τ of the process appears
directly in the equation, that is

τ ṗi(t) =

M∑

j=1

Wj→i pj(t)−
M∑

j=1

Wi→j pi(t), (5.4)

where Wi→j ∼ wi→jτ stands for the probability of transition from state i to j along
the time interval τ .

wA    B

A B C

wB    C

Figure 5.2. Toy Markov chain. From the state A there is a potential flux of probability
at rate wA→B toward the state B, hence we expect that, after a proper amount of time,
a fraction of the probability p will be drained from A to B. The same holds for the
situation linking C to B. After an infinite time the probability of having the patient in
the state C is one, while it is zero for the states A,B.

Master equations for the model

Keeping in mind Figure 5.1, we can write down the system of differential equations
describing the evolution of the five states earlier introduced as follows:





τ ṗ0 = −N p0(t),

τ ṗ1 = Np0(t)− p1(t),

τ ṗ2 = (1− P ) p1(t)−Rp2(t),

τ ṗ3 = Rp2(t),

τ ṗ4 = P p1(t),

(5.5)

with initial conditions




p0(t = 0) = 1− L,
p2(t = 0) = L,

p1(t = 0) = p3(t = 0) = p4(t = 0) = 0.

(5.6)

The numbers indexing the probabilities mirror the enumeration of the previous
section, that is, p0 stands for the probability that a patient has never been affected
by the infection, and so on. The parameter τ represents the typical time for a patient
experiencing a new infection to either develop the disease or to fall into a latent
state and it should be chosen according to the natural time-scale of the process
described. For instance, for the TB case, the data collected suggest that τ is order
of a few months [90, 109], and we set τ = 1month for the sake of simplicity and in
agreement with previous works [81, 90].



92 5. A Markov chain model for the analysis of clinical data

Note that, as patients affected by active TB do not start RA therapy, we set
p1(t = 0) = p3(t = 0) = p4(t = 0) = 0. Furthermore, the parameter L tunes the
initial amount of latent-TB patients with respect to free-TB patients, such that
for L = 0 all patients are healthy, while for L = 1 all patients display a latent TB
infection; as we have no ways to discriminate between healthy and latent-infected
patients, L is taken as a free parameter which can be estimated a posteriori comparing
the solution of (5.5) with available data.

The solution of the system (5.5) can be easily obtained using first order ordinary
differential equations theory and reads off as




p0(t) = (1− L) e−Nt/τ ,

p1(t) = N 1−L
1−N

(
e−Nt/τ − e−t/τ

)
,

p2(t) = − (1−P )(1−L)N
(1−N)(N−R) e

−Nt/τ +
[
L+ (1−P )(1−L)N

(N−R)(1−R)

]
e−Rt/τ + (1−P )(1−L)N

(1−N)(1−R) e
−t/τ ,

p3(t) = L+ (1− P )(1− L) + R(1−P )(1−L)
(1−N)(N−R) e

−Nt/τ −
[
L+ (1−P )(1−L)N

(1−R)(N−R)

]
e−Rt/τ

− (1−P )(1−L)RN
(1−N)(1−R) e−t/τ ,

p4(t) = P 1−L
1−N

(
1−N − e−Nt/τ +N e−t/τ

)
.

(5.7)
Of course, since the total amount of patients is conserved, C0 = p0 +p1 +p2 +p3 +p4

is an integral of motion, that is

0 =
d

dt
C0 ⇒ C0 = p0(t) + p1(t) + p2(t) + p3(t) + p4(t) = const. (5.8)

Beyond C0, the system (5.5) admits another integral of motion C1, namely

0 =
d

dt

[
p2(t) + p3(t) +

P − 1

P
p4(t)

]
⇒ C1 = p2(t) + p3(t) +

P − 1

P
p4(t) = const.

(5.9)
This means that the rate of growth for patients in the latency branch (i.e. in states
2, 3) equals the rate of growth for the rest of infected patients (i.e. in state 4)
weighted by a factor P−1 − 1, so that the smaller P and the larger the difference
between the related rates. The knowledge of integrals of motion can be very useful
as they allow to obtain information in a very simple way; for instance, should P
drop, then p4(t) would also decrease (or, analogously, p2(t) + p3(t) would increase)
in order to maintain C1 constant. Given C0 and C1, other integrals of motion, which
are combination of C0 and C1, can be trivially built. For example, C2 = C0 − C1

fulfills

0 =
d

dt

[
p1(t) + p0(t) +

1

P
p4(t)

]
⇒ C2 = p1(t) + p0(t) +

1

P
p4(t) = const. (5.10)

We underline that this kind of investigation can be accomplished only through an
analytical study of the system.

As discussed above, the fraction of active TB cases is given by the sum of
the fraction of cases of direct TB after infection and of the fraction of cases with
reactivated TB; namely, calling c(t) the total fraction of cases, we have:

c(t) = p3(t) + p4(t) . (5.11)
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In the above quantity, the time dependence appears only through three different
exponential decay terms (e−Nt/τ , e−Rt/τ , e−t/τ ), which vanish at infinite time, so
that the solution becomes a constant term equal to 1, meaning that, if we wait for a
sufficient long (possibly infinite) time, all patients become sick (although, obviously,
they can possibly die earlier due to reasons not related to RA/TB). In order to
deepen the temporal evolution of these probabilities at relatively short times, it is
useful to use a little bit of algebraic manipulation to distinguish constant terms from
decaying terms, in such a way that we get

c(t) = 1 + k1e
−t/τ + kRe

−Rt/τ + kNe
−Nt/τ , (5.12)

where the three constants k1, kR and kN are related to the physiological parameters
by





k1 = N(1−L)(P−R)
(1−N)(1−R) ,

kR = −L+ N(1−P )(1−L)
(1−R)(R−N) ,

kN = − (1−L)(R−PN)
(1−N)(R−N) .

(5.13)

Of course, from c(t) one can derive the effective number of cases multiplying c(t) by
the overall number of treated patients.

Before turning attention to the fitting procedure, we stress that the analytical
solution in Eq. (5.7) was successfully checked through numerical methods, i.e. fourth-
order Runge-Kutta algorithm and Monte Carlo simulations3.

5.3 Results

5.3.1 The TB-infection case

Having obtained the complete solution of the model and exploiting the available
information on parameters, we now look for proper approximations able to highlight
the effective behavior of c(t) in cases of practical interest, starting with the TB
scenario.

In particular, Eq. (5.12) can be reduced to a simpler form if we hypothesize that
the probability N of TB infection is much smaller than all the other parameters, in
agreement with studies on TB and with results found in [81] and, a posteriori, in
the current work (see Table 5.1).

Hence, as a first approximation step, we assume N � 1 and N/R� 1 such that

3Here, with Monte Carlo simulation we mean a simulation in which a set of virtual patients
evolves in time following the Markov chain of Figure 5.1 giving a sample of the evolution of the
fraction of cases during time. In our simulations we set 106 virtual patients.
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we can expand the solution, at the first order in N and N/R, as follows4:

k1 = (1− L)

(
P −R 1− P

1−R

)
N [1 +N +O(N2)],

kR = −L+
(1− P )(1− L)

R(1−R)
N

[
1 +

N

R
+O

(
N2

R2

)]
,

kN = −(1− L)

{
P [1 +N +O(N2)] + (1− P )[1 +N +O(N2)]

[
1 +

N

R
+O

(
N2

R2

)]}
.

Therefore, with some algebra and retaining only up-to-linear terms in N or N/R,
we get

c(t) ≈ 1 +N(1− L)
P −R
1−R e−t/τ +

[
−L+

(1− P )(1− L)

1−R
N

R

]
e−Rt/τ

− (1− L)

[
1 +N +

N

R
(1− P )

]
e−Nt/τ . (5.14)

Let us now move further and focus on the exponential terms. First, we notice
that 1 > R > N and, consequently, we can neglect the term e−t/τ , as it decays much
faster that both e−Rt/τ and e−Nt/τ . Moreover, since the time range considered is
≈ 30 months and N is expected to be � τ/t ≈ 10−1, we can expand e−Nt/τ as
e−Nt/τ ≈ 1−Nt/τ , and considering only the leading dependence on t, we get

c(t) ≈ 1−(1−L)

[
1 +N +

N

R
(1− P )

]
+

[
−L+

(1− P )(1− L)

1−R
N

R

]
e−Rt/τ . (5.15)

As for e−Rt/τ , a similar approximation (e−Rt/τ ≈ 1−Rt/τ) can be adopted as long
as R . 10−2, so to obtain the following linear approximation

c(t) ≈ 1 + kR(1−Rt/τ) + kN . (5.16)

Notice that a smaller (larger) estimate for τ would simply require a stricter (softer)
condition on N and on R for the related linear expansions to hold (on the same
time range); the model would not be affected and the parameters coupled with time,
i.e. N,R, would be accordingly rescaled. As shown in Figure 5.3, the approximation
(5.16) is rather good only for etanercept-treated patients, for which the best fit yields
R = 2.24 · 10−2. On the other hand, if we consider infliximab-treated patients, the
approximation (5.16) does not fit data, while using (5.15) we get a good overlap
with data and the best fit yields R = 2.12 · 10−1, confirming that now Rt/τ is no
longer small over the time window. All best fit coefficients are reported in Table 5.1.

We can estimate how sensitive c(t) is with respect to the system parameters by
deriving its analytic expression (see Eq. 5.12) with respect to N,P,R,L, respectively;
in this way we get that, in the regime N � (1, P,R, L), the most relevant parameter
affecting the behavior of c(t) is R. Another argument in favor of this claim is that,
in the zero approximation of the solution (i.e. neglecting even terms O(N)), P does
not appear at all.

4Here and in the following we use the “big-O” Landau notation to characterize the growth rate
of functions; more precisely, being f(x) and g(x) two arbitrary functions, we say f(x) = O(g(x)) as
x→ 0 if there exists a positive real number M such that |f(x)| ≤M |g(x)|.
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In order to get further insight on the effect of infliximab and of etanercept on
TB incidence, in Fig. 5.4 we plotted the model predictions for the percentage of
patients having TB because of new infections (p4(t)) or reactivations (p3(t)).

To summarize, in the present context, we find that the most important difference
between therapies based on infliximab or etanercept is that the former enhances TB
reactivation more than the latter, in fact, we found RINF ∼ 10RETA, in agreement
with [81]. Such a discrepancy implies even a qualitatively different behavior of
c(t) over the time-window considered: the number of infliximab-treated patients
experiencing a TB infections grows exponentially in time, while for etanercept-treated
patient the growth is linear.

However, as N is very small (∼ 10−6) with respect to the experimental time-
window (26 months), only the reactivation rate R can reasonably be inferred, while
the measure of P , is affected by a much larger uncertainty, due to the lack of
statistically influent number of new infections in the observational period. So
possible effects due to differences in the rate of direct activation P can hardly be
appreciated within the considered data set. In fact by plotting the solution and
varying the order of magnitude of P (Figure 5.5(b) and 5.5(c)) and R (Figure 5.5(a))
it is possible to note the small effect of a coarse tune of P with respect to that of R.
As a consequence the statement PINF ' PETA has to be claimed with more caution.

TB-infection case:
Best-fit coefficients.

L 4.52 · 10−4

N 2.88 · 10−6

RINF 2.12 · 10−1

PINF 9.76 · 10−1

RETA 2.24 · 10−2

PETA 8.03 · 10−1

Table 5.1. Tab. 1. TB-infection case: Best-fit coefficients. Best fit parameters
obtained through the maximum likelihood method (see Eqs. 15, 16, respectively). Here
we used τ = 1month, consistently with clinical data. The fit was accomplished with the
constraint that the parameters N and L are the same for both therapies, as they are
drug-independent. The average relative error on these parameters is ≈ 9%.
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Figure 5.3. Comparison between experimental, analytical and numerical results
for the TB-infection case. Cumulative number of patients undergoing active TB-
infection. Experimental data from [81] (• for infliximab-treated patients and 4 for
etanercept-treated patients) are compared with the approximated analytical solution (see
Eq. 5.15 and Eq. 5.16, respectively, solid curves) and with data from numerical simulation
(dashed curves). The parameters used to draw the analytical curves correspond to the
best-fit coefficients and are reported in Table 5.1. Notice that here we consider the
extensive number of patients affected by TB over a population of N = 105 treated
patients, according to experimental results.
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Figure 5.4. Probabilities p3 and p4 versus time for the TB-infection case. The
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TB) are calculated from Eq. 5.7, using the parameters of Tab. 1. In the main plot we
compare the ratio p3/p4 obtained from infliximab (•) and etanercept (4) parameters.
In the inset, we depict each single probability, namely p3 for infliximab (dark •) and for
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that the two sets of data for p4 are partially overlapped. Lines are guide for the eye.
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Figure 5.5. Time evolution of the complete solution c(t) with the parameters fixed according
to our best fits (see Table 5.1). Through the overlapping of the curves in panels (a) and
(b) it is possible to note the mild role played by P .
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5.3.2 The NTM-infection case

The mathematical model outlined in Section 5.2 can be applied to a general
clinical scenario schematizable as in Figure 5.1. In the work presented in [3], the
machinery has been applied to data reported in [103] and collected over the period
1999− 2006 where the insurgence of NTM infections are quantified. For details on
the analysis of this data set we remand to [3]. Here we just report that the results
seem to indicate that, for NTM, new infections are more important than reactivation
and the difference between patients treated with infliximab and etanercept resides
in the parameter P (PINF ∼ 4PETA).

5.4 Discussion

In this Chapter we formalized and extended a stochastic approach to data analysis
(originally introduced in [88, 89, 81, 90]) for evidencing underlying correlations
between adverse events and therapies based on immunosuppressants. In particular,
the focus of our investigation concerns the risk of reactivation of latent mycobacterial
infection in patients undergoing treatment with TNF-inhibitors.

We gave a clear and complete mathematical backbone to this approach, building
it on explicit Markov processes, whose continuous-time limit yields the Master
equation governing the evolution of the expected fraction of patients c(t) exhibiting
an active infection. We also solved the Master equation in all details finding an
analytical expression for c(t). Such mathematical developments make the original
approach much more versatile and general: For instance, handling the complete
(mathematical) solution allows to better account for reasonable approximations,
tackling their control quantitatively (e.g. finding the proper timescales involved
in the process or the integrals of motion constraining the evolution of the system).
Furthermore, we can finally consider, within the same framework, different problems.
In particular, we focused on TB and NTM infections emerging during anti-TNF
therapies (infliximab and etanercept) according to data reported in [81, 103].

In the former case, we recovered previous findings showing that the rate of
reactivation R of TB from a latent state to an active state plays a crucial role: being
RINF ∼ 10RETA we get qualitatively different behaviors for c(t). More precisely,
once fixed the observational time-window, for infliximab c(t) grows exponentially
with time, while for etanercept it grows linearly with time. Hence, these results
sustain the need, for patients candidate to TNF blockers, to perform an accurate
TB screening at baseline, irrespective of the type of antiTNF. Indeed, screening
may decrease the risk of TB reactivation in such patients, while it is less clear what
should be done to prevent NTM disease occurrence or progression in patients taking
biologic agents. Importantly, for this purpose, we found that the comparison with
experimental data allows to infer that reactivation of NTM infections plays a very
minor role for both the therapies and that c(t) grows quadratically with time.

We checked our results also against Monte Carlo simulation with excellent
agreement.

Furthermore, our results are all consistent with recent experimental data and
seem to indicate that TB and NTM infections are sustained by different pathogenetic
mechanisms.
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Non-tuberculous Mycobacteria are present in large numbers in the environment,
including fresh water, aerosols, biofilms, and soils [110]. There are thus many
opportunities for acquisition of NTM infection during ordinary daily activities,
although the true incidence is not known. In contrast, nearly all transmission
of Mycobacterium tuberculosis infection results from inhalation cough-generated
aerosols from persons with active pulmonary TB. The annual risk of TB infection
(ARTI) can be calculated from age-specific rates of tuberculin skin test reactivity; in
most instances it is directly related to TB prevalence. Thus although the ARTI may
reach 4% in highly TB-endemic regions such as South Africa, it is as low as 0.01% in
much of Northern Europe and North America [111, 112, 113]. These epidemiologic
findings are consistent with the results of our mathematical model, and underscore
the interplay of microbial and host biology in determining the relative contributions
of reinfection and reactivation to mycobacterial pathogenesis.

Hence, while the screening for TB is necessary prior to initiating biologics, when
considering NTM only a watchful monitoring during the treatment is recommended.
This finding is particularly relevant, since it allows to avoid screening for NTM
infection, which is complicated by the poor sensitivity of chest radiograph and more
expensive and invasive techniques, such as chest computed tomography scan and/or
bronchoscopy, should be used.

It is worth stressing that this methodology, being based on very standard
stochastic procedures, has the advantage to hold beyond the test case of Mycobacteria.
We hope that this test-case may shed light to future developments of this sideline
approach in figuring out adverse events of biological therapies.
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Chapter 6

A Rep-Seq data analysis
through Multivariate Gaussian
Modeling for the study of Abs
affinity maturation:
preliminary results

In this Chapter we report some ideas on the analysis of an antibodies repertoire
through multiparameter inference methods. The results reported here are still not
published at the moment of the submission of this Thesis and we underline that
they are meant as preliminary.

6.1 Multivariate Gaussian Modeling for protein fami-
lies

A central problem in structural biology is that of predicting the tridimensional
structure of a protein from the only knowledge of its amino acid sequence. A general
recipe for the approach of the problem is still far to be found [114]. Nevertheless
several strategies have been followed in order to restrict the problem. For example
in [115], a phenomenological model for the folding of the primary structure is solved
through replica method. Here we focus on the research field that deals with the
statistical study of correlated substitutions within multiple sequence alignments
(MSAs) of sequences classified in protein families.

A protein family is defined as a group of evolutionary related proteins that share
a common ancestor. Protein in a family are said to be homologous and usually
have the same functional role in different species. So, despite the differences in
sequence, that can emerge from evolutionary noise, homologous proteins have, in
general, rather convergent tridimensional structures.

The main idea beyond correlation analysis is that is that correlation patterns can
be related to structural ones. In particular contacts between pairs of residues in the
native structure could be related to the presence of strongly correlated substitutions
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in two columns in the MSA of the protein family. Quoting [116], “the basic hypothesis
connecting correlated substitution patterns and residue–residue contacts is very
simple: If two residues of a protein or a pair of interacting proteins form a contact, a
destabilizing amino acid substitution at one position is expected to be compensated
by a substitution of the other position over the evolutionary timescale, in order for
the residue pair to maintain attractive interaction”.

The first attempts to use simple covariance analysis to predict residue-residue
contacts ([117], [118]) partially succeeded in identifying some of them but presented
a high false positive rate. As often happens in correlation analysis, the main reason
beyond this mediocre performance is related to the difficulties in disentangling
correlations caused by direct interactions from those produced by indirect ones.

Strategies to overcome the above cited problem have been developed. In particular
a method called Direct Coupling Analysis (DCA) has been proposed in [119] and
[116]. The main idea beyond DCA is that of inferring a probabilistic graphical
model from the alignments and so to analyze the inferred interactions instead of
the empirical correlations, so disentangling direct and indirect contributions to
covariances. In the above cited works the choice of the probabilistic model to infer is
based on maximum entropy principle [120], according to whom the least constrained
model that reproduce single and pair sites amino acids frequencies in the alignment
is the Inverse Potts model. This model allows to define a scalar quantity called Direct
Information (DI) that is characteristic of every pair of positions in the alignment
and that is correlated to the magnitude of the inferred interaction between them.
High DI couples are in fact a good predictor of native contacts.

In [119] a message passing approach is used in order to solve the inference problem
paying the price of slow computational times; in [116] the inference is performed
within a mean field approximation that would be exact only in the limit of very
weak interactions. Both works represented a breakthrough for the performances of
contact predictions based on residues coevolution.

Starting from the ideas of the above cited works, some of the authors propose an
even simpler probabilistic approach to the problem. That consists of identifying the
relevant (real) variables with the fraction of times a given amino acid is present in a
given position of an alignment of homologous proteins and to hypothesize that they
fluctuate according to a simple multivariate gaussian distribution. This (strong)
assumption permits to completely solve the inference problem by exact analytical
computations. This method, that will be soon published in [121] under the name of
Multivariate Gaussian Modeling (MGM), allows to achieve competitive performances
for contact prediction. The fidelity of the method is highlighted in Figure 6.1 where
the average True Positives rate (TP-rate, or specificity) of the Direct Information
computed with both MGM and mean field Inverse Potts model is compared with that
of the Mutual Information (MI) that represents a näıve pairs covariance analysis.

In the next Section we expose the mathematical details of MGM [122].

6.1.1 The mathematical method

In a MSA of P , sequences (whose length after the alignment is indicated with N)
are formed by the 20 letters coding for the different amino acids, and may contain
alignment gaps (“−”), such that the total alphabet size is q = 21.
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Fig. 2. DI-ranking-based sensitivity-specificity curves (blue and red) and
MI-ranking-based curves (light blue and magenta), averaged over 53
different protein families. The two methods for DCA presented in this paper
are found, up to small fluctuations, to perform equally well, with a significant
and systematic improvement over MI-based methods.

Fig. 3. DI-ranking-induced specificity curves for predicting inter-protein
contacts in the SK/RR complex, for both mean-field DCA (blue curve) and
multivariate Gaussian DCA (red curve).

that there is no systematic loss in predictive power between mean-
field and Gaussian DI, only small non-systematic differences are
observed.

As a second test, we have used the SK/RR data set containing
8,998 cognate SK/RR pairs, cf. Methods, to predict inter-protein
residue-residue contacts. Results can be compared with those
presented in Procaccini et al., 2011, where the original message-
passing DCA was applied to the same data-set, and 9 true contact
prediction were reported before the first false positive appeared. In
Fig. 3, results are shown for mean-field and Gaussian DCA: both
methods improve substantially over the message-passing scheme
(20 true positive predictions at specificity equal to one), but are
highly comparable (with a little but not significant advantage of the
Gaussian scheme). Again we find that the improved efficiency of
Gaussian DCA comes at no cost for the predictive power.

3.2 Predicting interactions between SK and RR orphan
proteins

A typical bacterium uses, on average, about 20 two-component
signal transduction systems to sense external signals, and to
trigger a specific response. While the signals and consequently the
mechanisms of signal detection vary strongly from one TCS to
another, the internal phosphotransfer mechanism from the SK to the
RR, which activates the RR, is widely conserved across all bacterial
species: A majority of the kinase domains of SK belong to the
protein domain family PF00512, all RR to family PF00072, cf. the
Methods section. Despite this fact, the interaction has to be highly
specific, to induce the correct specific answer for each recognized
external signal.

As mentioned before, a big fraction of TCS genes are co-localized
in joint operons, and the identification of the correct interaction
partner is trivial. Such pairs are called cognate SK/RR. However,
about 30% of all SK and 55% of all RR are so-called orphan
proteins, their genes are isolated from potential interaction partners
in the genome. While a large fraction of the RR are expected to
be involved in other signal-transduction processes like chemotaxis,
for each of the SK at least one target RR is expected to exist. It
is a major challenge in systems biology to identify these partners,
and to unveil the signaling networks acting in the bacteria. An step
into this direction was taken in Burger and Van Nimwegen, 2008;
Procaccini et al., 2011, where co-evolutionary information extracted
from cognate pairs is used to predict, with some success, orphan
interaction partners.

The approach was tested on two well studied bacteria, namely
Caulobacter crescentus (CC) and Bacillus subtilis (BS), where
several orphans interactions are known experimentally (Jiang et al.,
2000, Ohta and Newton, 2003, Skerker et al., 2005). Results are
quite precise in Procaccini et al., 2011, Fig.4. For CC, all known
interactions between DivL, PleC, DivJ and CC 1062 with DivK and
PleD are correctly reconstructed by the ranking induced by S. Only
in the case of the pair CenK-CenR, the signal is not sufficiently
strong. For BS all the 5 orphan kinases KinA-B-C-D-E are known to
interact with Spo0F, which is clearly confirmed in all but the KinB
case.

The method proposed here for orphans detection relies on the
Gaussian approximation and on the definition of the score L,
eq. 10, which gives the relative probability of two orphan sequences
under the interacting model (inferred from concatenated SK/RR
alignments) and a non-interacting model (inferred independently
from the two MSAs of the SK and the RR families). Ranked by
L, orphans interactions in CC are shown in Fig. 4. Results are very
similar to those mentioned for Procaccini et al., 2011, Fig. 4: known
interactions are well reproduced for orphan kinases PleC and DivJ,
while for CC 1062 and DivL the signal for an interaction with DivK,
though present, is less clear. Finally, predictions for CC 0586 are
identical in both studies but neither one is able to identify the CenK-
CenR interaction. Fig. 5 shows predictions for orphans interactions
in BS: observed interactions between KinA, KinB, KinC, KinD,
KinE and Spo0F are sharply pointed out. This means that while CC
predictions are slightly less clear, BS predictions are improved.

5

Figure 6.1. DI-ranking-based sensitivity-specificity curves (blue and red) and MI-ranking-
based curves (light blue and magenta), averaged over 53 different protein families. The
specificity as a function of the rank is defined as the fraction of true positive over the pairs
with rank smaller than or equal to the indicated one. Gaussian and mean-field Potts
method are found, up to small fluctuations, to perform equally well, with a significant
and systematic improvement over MI-based methods. Figure from [121].

A MSA can be mapped in a binary data set composed by a P ×N×(q−1) object
(xai )

µ where the subscript i ∈ {1, . . . , N} runs over different amino acid residues,
the superscript a ∈ {1, . . . , q − 1}, runs over different symbols and the superscript
µ ∈ {1, . . . , P} runs over different sequences. For example, if for protein µ, site i
displays the a− th letter, then ~xµi = (0, . . . , 0, 1, 0, . . . , 0) will be the unitary vector
having only the a− th non null component equal to 1. As in a MSA in every position
a symbol (letter or dash) is present, while encoding it in a vector ~xµi of length q = 21,
so one symbol is can be eliminated and the vector of length q − 1 ~xµi = (0, . . . , 0)
will indicate a dash in the position i of the µ − th aligned sequence. The symbol
that is eliminated while passing from the MSA to the x representation is arbitrary
and we choose conventionally it to be the dash. We will refer to this freedom in the
parametrization of the data as gauge invariance.

If the variable x are promoted to be real numbers (x ∈ R), the assuming that
the the sequences (xai )

µ are drawn from a multivariate gaussian distribution, the
log-likelihood of our model parameters {J,H} given the data can be written as:
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where we show both vectorial and component-wise notation and 〈O〉D := 1
P

∑P
µ=1O

µ

is the empirical average of a generic observable O over the different experiments.
Upon combining together Equations 6.1 and 6.2 we finally obtain up to irrelevant
constants:
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(6.3)

Maximum likelihood estimation of the parameters

Let us define the usual covariance matrix as

Cabij = 〈xai xbj〉D − 〈xai 〉D〈xbj〉D . (6.4)

We note that, while 〈xai 〉D represents the fraction of times the a − th symbol is
present in position i in the MSA, while the second one gives informations about the
correlated variation of residues in the same (i = j) or different (i 6= j) positions.

We are now ready to maximize component-wise the log-likelihood L with respect
to the model parameters J and H:

0 = − ∂L
∂Jabij

= 〈xai xbj〉D −
∑
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)ab
ij
Hb
j . (6.6)
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After inserting Equations 6.5 into Eq. 6.6 we get the final relation that gives the
maximum likelihood (ML) estimation of the parameter J and H as a function of
the data: Defining the usual empirical covariance matrix as

Cabij = 〈xai xbj〉D − 〈xai 〉D〈xbj〉D , (6.7)

we get

Jabij = (C−1)abij , (6.8)

Ha
i =

∑

j,b

Jabij 〈xbj〉 . (6.9)

Direct Information

Once the parameters of the model have been inferred, one scalar quantity for
every couple of positions i, j in the alignment can be determined in order to quantify
the interaction strength of the sites. With this aim the Direct Information (DI) has
been developed in order to be invariant under gauge transformations.

In order to do that, in the same spirit of what we have done in the previous
sections, one could try to infer the ML model in a simplified setting where no inter-
action is present between variables. In this latter case the analogous of Equation 6.1
would be

L({K,L}|DATA) = P

[
−1

2

∑

i

〈~xi · K̂i · ~xi〉D +
∑

i

~Li · 〈~xi〉D − 〈logZ(K,L)〉D
]

=

= P


−1

2

∑

i,a,b

Kab
i 〈xai xbj〉+

∑

i,a

Lai 〈xai 〉D − 〈logZ(K,L)〉D


 ,(6.10)

where the model parameter K is the analogous of J and L of H, and from the
functional structure of the Likelihood function. the statistical independence among
the different proteins is evident. After some simple algebra one gets that the ML
estimation for {K,L} is given by

(
K−1

)ab
i

= 〈xai xbi〉D − 〈xai 〉D〈xbi〉D , (6.11)

Lai =
∑

b

Kab
i 〈xbi〉D , (6.12)

which are the analogous of Equations 6.8 and 6.9 respectively. Given the ML
estimators K,L we can define the probability of a protein state x given K,L as

P ind(x|K,L) ∝
∏

i

exp

(
−1

2
~xi · K̂i · ~xi + L̂i · ~xi

)
. (6.13)

In a nutshell the idea is to compare an effective two-interacting-sites model whose
interaction matrix is the J computed in Equation 6.8 with P ind. Let us define the
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probability distribution of the effective two-interacting-sites model as

P dir
ij (~xi, ~xj |Ĵij , Ŵi, Ŵj , ~Gi, ~Gj) ∝ (6.14)

∝ exp

(
−~xi · Ĵij · ~xj −

1

2
(~xi · Ŵi · ~xi + ~xj · Ŵj · ~xj) + (~Gi · ~xi + ~Gj · ~xj)

)

∝ exp

(
−
∑

ab

Jabij x
a
i x

b
j −

1

2

∑

ab

(W ab
i x

a
i x

b
i +W ab

j x
a
jx

b
j) +

∑

a

(Gai x
a
i +Gajx

a
j )

)
,

where the parameters Ŵi, ~Gi are chosen such that the single sites marginal of P dir

match the single sites probabilities P ind. We do this in two steps by imposing: (i)
the equality of the connected second moment, (ii) the equality of the first moment.
Let us note that the second connected component in a gaussian measure is just the
inverse of the covariance matrix:

Σdir := 〈xai xbj〉dir − 〈xai 〉dir〈xbj〉dir =

(
Ŵi Ĵij
Ĵ
′
ij Ŵj

)−1

(6.15)

Σind = 〈xai xbj〉ind − 〈xai 〉ind〈xbj〉ind =

(
K̂i 0

0 K̂j

)−1

=

(
K̂−1
i 0

0 K̂−1
j

)
(6.16)

note that in this representation Σdir and Σind are 2(q − 1)× 2(q − 1) matrices. We
can now impose the equality of the diagonal part of the two matrices:

K̂−1
j =

(
Ŵj − Ĵ

′
ij · Ŵ−1

i · Ĵij
)−1

, (6.17)

K̂−1
i =

(
Ŵi − Ĵij · Ŵ−1

j · Ĵ ′ij
)−1

. (6.18)

Such equations can be decoupled w.r.t. the variables Ŵi e Ŵj :

Ŵj = K̂j + Ĵ
′
ij

(
K̂i + ĴijŴ

−1
j Ĵ

′
ij

)−1
Ĵij , (6.19)

Ŵi = K̂i + Ĵij

(
K̂j + Ĵ

′
ijŴ

−1
i Ĵij

)−1
Ĵ
′
ij ; (6.20)

and, after some manipulation, one obtains two matricial equations:

A2 −A−M = 0 (6.21)

A = K̂−1
i Ŵi

M = K̂−1
i ĴijK̂

−1
j Ĵ

′
ij ,

B2 −B −N = 0 (6.22)

B = K̂−1
j Ŵj

N = K̂−1
j Ĵ

′
ijK̂

−1
i Ĵij .

Solutions to Eq. 6.21 and Eq. 6.22 can be obtained by diagonalizing matrices M
and N and solving 2(q − 1) independent equations. We are now ready to express
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the Direct Information as the Kullback-Leibler (KL) divergence of the two gaussian
measures P dir and P ind:

DI(J,K)ij ≡ KL(P dir||P ind) =

=
1

2

{
tr(Σ−1

indΣdir) + (〈X〉ind − 〈X〉dir)TΣ−1
ind(〈X〉ind − 〈X〉dir) +

− log

(
det Σdir

det Σind

)
− 2(q − 1)

}

= −1

2
log

(
det Σdir

det Σind

)
(6.23)

since in our case 〈X〉ind = 〈X〉dir and tr(Σ−1
indΣdir) = 2(q − 1).

Data regularization (pseudocounts)

For the maximum likelihood estimations 6.8 and 6.9 of the parameters to be
possible, the covariance matrix needs to be full rank in order to be inverted. As
fluctuation in MSAs are generally limited, usually the experimental covariance matrix
is rank deficient. To overcome this problem a regularization procedure has to be
implemented. The simplest method for that is that of adding to the sample a number
λ of fictitious sequences in which symbols in every site are fairly drawn from a flat
distribution. This reduces to manipulate the data as:

〈xai 〉D −→ (1− π)〈xai 〉D + π
1

q
, (6.24)

〈xai xbj〉D −→ (1− π)〈xai xbj〉D + π
1

q2
(6.25)

where the parameter

π ≡ λ

P + λ
, (6.26)

that is referred to as pseudocount parameter, naturally interpolates between the
empirical (π = 0) and completely random (π = 1) data.

In [121] it is clarified how the use of a pseudocount based regularization in MGM
is equivalent to the choice of a normal–inverse–Wishart prior (the conjugate prior of
the multivariate gaussian distribution) over the parameters of the MGM.

6.1.2 Multivariate Gaussian Modeling for antibodies diversity: the
general idea

The possibility of studying the features of the affinity (or of the neutralization
power) of antibodies directed towards a certain antigen as a function of the sequence
of the variable region is a fundamental issue in structural immunology.

Unfortunately, the size of the available sets of antibodies, for which both the
sequence and the neutralization power toward an antigen is known, is, at the moment,
as large as some tenth of antibodies. The typical size of an antibody’s variable region
is of order N ∼ 102 amino acids; as the contributions of the amino acids to the
neutralization power are not independent, the least structured function to describe it
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would contain at least (Nq)2 ∼ 106 parameters. So up to now there is no possibility
to estimate the parameters of such a function with the size of the available data sets.

Nevertheless the recent developing of sequencing techniques (Deep Sequencing,
Next Generation Sequencing), that are able to produce in parallel up to ∼ 106

sequence reads, have open the possibility of extensive experimental studies of the
Abs repertoires in different living organisms. This kind of research is known under the
the name of Rep-Seq (Repertoire Sequencing) experiments (see [123] for a review on
the argument). These techniques have permitted for example to study the complete
Igs repertoire of simple organisms such as the zebrafish, whose immune system has
only ∼ 300000 Abs producing B cells, hence determining its complete antibodyome
(see [124] and [125] for the maximum entropy analysis of the data). In human the
latter amount to ∼ 109−10 cells, so that only limited samples of the entire repertoires
are available up to now (see for example [126] for Rep-Seq experiment of Igs in
human or [127] for a maximum entropy analysis of TCR repertoire in human).

As explained in more detail in Chapter 2, the features of the populations of B cells
in host bodies are determined by the processes of genetic recombination, negative
selection that eliminate self-directed antibodies, clonal expansion in response to
different antigens that are or were present in the host body, random mutations
(somatic hypermutation) and positive selection of antibodies that have an high
affinity to antigens (affinity maturation). All these mechanisms interact in a complex
manner to determine the B cell population present in a body.

In some cases it should be possible to manipulate Rep-Seq data sets in order to
disentangle the processes described above with the aim of obtaining a sample whose
evolution is mainly driven by affinity maturation and clonal expansion toward a
specific antigen so that the resulting data set is highly correlated with the affinity (or
neutralization power) of the antibodies. Once that this step is fulfilled, a probability
distribution that is considered to have generated the sample can be inferred. If
this probability distribution is indeed observed to be correlated with the affinity
(or neutralization power), then it could be used as a proxy to study the features of
the neutralization power as a function of the sequences and in principle to propose
sequences of high neutralization power.

Moreover, as explained in Chapter 2, the affinity maturation is an evolutionary
process in which different B cell clones compete for the antigen in the germinal
centers. The study of the statistics of the population of sequences could also unveil
interesting features of the fitness function in the space of sequences related to this
process and in general of the evolutionary dynamics of the B cells. That could be
of interest for a statistical population genetics analysis of the affinity maturation
process, for example in the spirit of [128].

Within the above described scenario MGM is a useful tool as it interprets the
x representation of the MSA as a (discrete) sampling from a gaussian distribution
whose parameters can be inferred following the procedure outlined above. This
distribution over the real x variable is of the form

P (x|J,H) =
1

Z(J,H)
e−E(x|J,H) , (6.27)
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where the energy of the model is defined as

E(x|J,H) = −1

2

∑

ij

~xµi · Ĵij · ~x
µ
j +

∑

i

~Hi · ~xµi (6.28)

which is the log-likelihood apart from the normalization factor Z(J,H) defined in
Equation (6.2).

6.2 Focused evolution of HIV-1 neutralizing antibodies
revealed by structures and deep sequencing: a re-
view of the experimental work

As exposed in Section 6.1.2, the idea of using a probability distribution inferred
over a Rep-Seq dataset as a proxy for the affinity function could be tested in a case
in which the Rep-Seq experiment is performed together with affinity measurements.
This is the case of the work that has been published in [129]. We have used data from
there to test the above exposed idea and the preliminary results are encouraging.

In this Section the experimental work is reviewed, while the preliminary results
of our analysis are exposed in Section 6.3.

HIV-1 displays an enormous genetic diversity and in this resides a great part
of the infection’s strength. Despite this fact, from 10% to 25% of the patients
develop cross-reactive neutralizing antibodies after several years of infection. These
individuals are said to have a broadly neutralizing serum.

In a previous work [130] the authors of [129] isolated VRC01, VRC02 and VRC03,
three similar broadly neutralizing antibodies (bnAbs) from a patient (donor 45)
presenting a broadly neutralizing serum. This VRC01-like Abs have been seen to be
bind gp120, a membrane glycoprotein used by the virus to attach the CD4 receptor
on T lymphocytes, HIV target cells. To avoid neutralization by gp120 directed Abs,
during evolution, the virus has developed a complex structure for gp120: Highly
variable domains hide the site of attachment gp120-CD4 which is the only part
of the protein that is under evolutionary pressure and that, for this reason, has
relativley low freedom to mutate. There are structural experimental evidences that
VRC01-like bind exactly this particular site on gp120 ([130] and [129]).

VRC01 neutralizes 90% of virus isolates with an average neutralization power
IC50 ∼ 0.3µg/ml while its predicted unmutated germline ancsestor has low affinity
for the antigen (dissociation constant in the millimolar range). All VRC01-like Abs
display an high level of mutation (∼ 30% that has to be compared with the 5-15%
of mutations in average Abs) from the inferred germilene. This underline that, for
this kind of antibodies, the improvement of the neutralization power due to affinity
maturation is substantial. This fact lead us to the idea that this could be a good
system to study the affinity maturation process.

In [129] the authors isolated other VRC01-like antibodies from another donor
(donor 74). An example of them is VRC-PG04. Couples of such bnAbs with the
same unmutated germiline ancestor, from which they are mutated at about 30%
and that come from different patients (for example VRC-PG04 from donor 74 and
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VRC-01 from donor 45), are observed to be very different in sequence (∼ 50%); this
underline the fact that the (relatively) optimal sequence to bind the gp120-CD4
attachment site is not unique and that the evolutionary histories of populations of
antibodies under analogous evolutionary pressures may be very different.

The authors performed a crystallographic study on VRC-PG041 in complex with
the gp120. Comparing this with analogous studies on others VRC01-like Abs they
argue that the most important region for the neutralization are the CDR2 on the
heavy chain and the CDR3 on the light chain of the Ab.

All these facts underline that VRC01-like antibodies are an interesting system
to study both on the fundamental and practical level. Indeed the authors decided
to perform Rep-Seq experiments on donor 45 and donor 74 blood samples with the
aim of sampling a part of the antibodies repertoires on these donors depending on
the choice of the primers.

The authors choose 454-pyrosequencing as deep sequencing technique as it allow
to sequence reads up to a length of 700 bp and so to sequence the whole variable
region of both light and heavy chain. The side effect of this choice is that 454-
pyrosequencing has a relatively high error rate (1/1000 bp on average); errors are
concentrated on homopolymers.

Moreover, light and heavy chain are translated into different mRNAs molecules;
as the sequencing technique capture the mRNA in the sample and mRNAs belonging
to different cells are mixed during the procedure, it is only possible to reconstruct
separately the light and heavy chain repertoire and there is no way to match the
light and heavy chain belonging to the same antibody (B-cell clone).

Data of sequencing experiments on light and heavy chains for donor 45 and two
experiments on heavy chains of donor 74 have been deposited to NCBI database.
Reference to sequencing data can be found in the Acknowledgment of [129] or at
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP006992.

The main results on the deep sequencing experiments are resumed in Figure 4 of
[129], that we report here for clarity in Figure 6.2. The authors found out that, if
heavy chains reads are classified by divergence from the inferred germline V gene
and similarity with the nucleotide sequence coding for the heavy chain of VRC-
PG04, they seem to form two clusters, one of which is closer to the already known
VRC-PG04. Then authors measured the neutralization power of 45 successfully
produced (out of 70 tried for production) chimeric Abs, in which VRC-PG04 light
chain was coupled with heavy chains selected from the highly mutated ones in the
sequenced set. The result of the neutralization measurements of 20 HIV-1 isolates,
belonging to the clades A,B and C, is that heavy chains that are more similar to
VRC-PG04 are in general prone to be (broadly) neutralizing (see Figure 6.2, Panel
(b)), confirming that several VRC01-like antibodies are present in the sample and
that they share some features with the known ones.

1Structure factors and coordinates for antibodies VRC03 and VRC-PG04 in complex with HIV-1
gp120 have been deposited with the Protein Data Bank under accession codes 3SE8 and 3SE9,
respectively.
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(a) (b)

Figure 6.2. Panel (a): Identity/divergence analysis of Rep-Seq experiment for heavy chains
in donor 74 performed in [129]. On the horizontal axis the divergence from the IGHV1-
2*02 germline gene of origin is reported while the identity to VRCPG-04 sequence is
indicated on the vertical axis. Both quantities are computed at the nucleotides level.
Panel (b): Neutralization power measurements on 45 Chimeric Abs whose heavy chain
has been extracted from the Rep-Seq data set. Red stars correspond to Igs that neutralize
at least one of the tested isolate viruses, while Black star indicate non-neutralizing Abs.
Figure taken from [129]. See the publication for details.

6.3 The Multivariate Gaussian Modeling analysis: pre-
liminary results

In the following we describe the analysis performed on Rep-Seq data on the
heavy chain variable region of donor 74 from [129] . The work is still in progress
and the result presented here are meant to be preliminary.

Donor 74 has been observed to produce the broadly neutralizing antibody VRC-
PG04 that has IGHV1-2*02 and IGHJ2*01 as heavy chain V and J gene of origin
(as the sequence presents as much as ∼ 30% of mutation from the inferred germline,
the D gene of origin is too short to be determined).

For our scopes the deposited raw data set is to be submitted to a bioinformatic
analysis that will be described in details in [4]. Here we just underline that, starting
form the one strand nucleotide sequences, our bioinformatic analysis selects the
productive ones and returns a set of amino acid sequences each provided with its
multiplicity, i.e. the number of times a nucleotide sequence coding for the same
amino acid sequence is present in the set. We underline that, differently from [129],
we only retain productive sequences, i.e. sequences for which the V and J genes are
in frame and that do not present stop codons. This analysis generates a set 383267
productive amino acid sequences (which reduce to 191661 unique sequences) for the
variable part of the heavy chain, provided with the inferred V and J gene of origin.
According to the authors of [129], the sequencing primers have been chosen in such
a way that, in principle, for all the sequenced reads, the inferred V gene of origin is
in the family IGHV1.

Selecting the sequences whose V gene of origin is (one of the alleles of) IGHV1-2
gives a set of 72649 sequences (37839 unique), while the set of sequences that have
IGHV1-2 and IGHJ2 as germline genes of origin consist of 6820 sequences (3258
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unique).
It has to be kept in mind that sequences and and relative proportions of their

abundances are strongly affected by sequencing errors and PCR biases. Moreover,
despite the fact that the selection of the productive sequences reduces the number
of sequences presenting errors, this procedure affects the relative proportions of
sequences in the population. So we claim that systematic experimental errors are
present and out of our control.

6.3.1 Clustering analysis

Broadly neutralizing antibodies individuated by Wu et al. in the blood sample of
donor 74 are remarkably highly mutated from the inferred germline (IGHV1-2 and
IGHJ2) . The identity/divergence analysis (see [129] and Figure 6.2) performed on
the deep sequencing data suggests that sequences with inferred IGHV1-2 germline
gene of origin (the same of VRC-PG04) should display the presence of a cluster
of highly mutated sequences which is well separated from the cluster of typically
mutated sequences; the same does not happens for Abs with a different IGHV inferred
germline gene; IGHV1-2 related Abs of donor 74 seems thus to be a preferred system
to study affinity maturation.

The effective presence of this clustering structure with a cluster more similar to
the V and J germline genes and a highly mutated cluster more similar to the broadly
neutralizing antibody VRC-PG04 was indeed verified though clustering algorithms
as described in the following of this Section.

Identity/divergence analysis

The first check that needs to be done is that of performing the identity/divergence
analysis on our set in which only productive sequences are retained. The result is
shown in Figure 6.3 and it seems to confirm that the former analysis is coherent
with the one performed in [129].

We also confirm that, as in [129], sequences that are more than 25% different
form IGHV1-2 mainly have IGJV2 as inferred J gene of origin.

Interestingly almost all the sequences that display a divergence from the germline
higher than 25% belong to the set that has IGHV1-2 and IGHJ2 as allelic origin.
So, remarkably, also if VRC-PG04 had not been identified as a broadly neutralizing
antibody, the identification of the signature of such a deep affinity maturation could
make it possible to select the germline genes under evolutionary pressure only by
divergence analysis.

The presence of a cluster of high divergence from the germline and high identity
to VRC-PG04 suggests to deepen the clustering structure of the germline. That will
be described in the next Section 6.3.1.
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(a) Figure from [129]
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Figure 6.3. Comparison of the Identity/divergence analysis performed in [129] and [4]. See
the caption of Figure 6.2 for explanation
Panel (a): Figure 6.2-(a) has been reported here for easier comparison.
Panel (b): Identity/divergence analysis performed in [4].

Clustering algorithms

Figure 6.3 shows that, if we describe the set by projecting it onto the two specific
sequences (IGHV1-2*02 gene and of the heavy chain of VRC-PG04), sequences
having IGHV1-2 as V gene in the inferred germline origin form at least two well
separated clusters. Does this clustering configuration hold in the whole sequence
space and not just after a proper projection? In order to check whether this is the
case, the set of sequences with inferred germline in the families of IGHV1-2 and
IGHJ2 has been submitted to a clustering algorithm that has been proposed in
[131]. With this algorithm it is possible to determine the number of well defined
clusters: In fact varying the parameter λ in the algorithm, the number of clusters
in the output develops a plateau exactly when sequences are optimally separated.
Figure 6.4 gives the indication that there are two well separated clusters.

Using the last information, we performed a clustering analysis on the same set of
sequences (with IGHV1-2 and IGHJ2 allelic origin) by submitting different alignments
to the Matlab algorithm kmeans, fixing at 2 the input parameter corresponding to
the number of clusters. The consensus sequence of the two clusters were compared
with the germline sequence (i.e. to the concatenated sequences of IGHV1-2*02 and
IGHJ2*01 genes) and with the VRC-PG04 sequence. As shown in Figure 6.5, the
consensus sequence of the normally mutated cluster is similar to the germline genes
while for the highly mutated cluster the consensus sequence is similar to that of
VRC-PG04. The size of the two obtained clusters are respectively of 3471 sequences
(1874 unique) and 3349 sequences (1338 unique). In the following we will indicate
with clusterVJ and clusperPG04 respectively these two sets of sequences.

The different sets in which the sequences have been divided are resumed in Table
6.1.
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set description size size (unique)

Productive IGHV1 origin 383267 191661

Productive IGHV1-2 origin 72649 37839

Productive IGHV1-2 and IGHJ2 origin 6820 3258

Productive IGHV1-2 and IGHJ2 origin - clusterVJ 3471 1874

Productive IGHV1-2 and IGHJ2 origin - clusterPG04 3349 1338

Table 6.1. Different sets in which sequences have been divided.
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Figure 6.4. Number of clusters as a function of the parameter λ, see [131] for details.
The plateau at 2 indicates that an optimal clustering is obtained with two clusters.

Figure 6.5. Alignment of the consensus sequences of the two clusters with the sequences
of VRC-PG04 (upper case) and the germline (lower case) .
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6.3.2 Comparison between the inferred probability distribution and
neutralization power measurements

As already pointed out, in [129] 70 sequenced heavy chains, mostly originating
from IGHV1-2, were used to construct chimeric antibodies with the light chain of
VRC-PG04. 45 of those have been successfully produced and tested for neutralization
power against 20 HIV-1 virus belonging to clades A (6 viruses), B (8 viruses) and C
(6 viruses). Although the neutralization power is a complex function of both light
and heavy chain sequences (see [129], Figure 4A), these measurements can be used
as an approximation of the contribution of the heavy chain to the neutralization
power. The complexity of the interaction of light and heavy chain in determining
the efficiency of an antibody is anyway an element to be kept in mind.

The above cited neutralization power measurements (the data relative to which
are in Table S19 and S20 in the Supporting Information of [129] ) can be compared
with the statistical properties of the set. To do this, the highly mutated clusterPG04
has been selected and a MGM has been inferred on this set considering each sequence
with its relative multiplicity. For the 45 Abs that were tested for neutralization
power, the IC50 has been compared with the energy of the inferred model. Inference
performed with different values of the pseudocount parameter π display a significant
Pearson correlation coefficient between the inferred energy and neutralization power
of single viruses and with their (overall or over clade A viruses) average or minimum
(See Figure 6.6 - full dots and continuous lines - and Figure 6.7). Note that values
of IC50 that are reported in [129] as greater than 50 µg/ml are considered here to
be equal to this value.

The above observation is very promising and it indicates that the MGM energy
inferred on a proper Rep-Seq set could, in general, provide informations about the
neutralization power.

A question that could arise after the last result is weather MGM is really needed
to compare the repertoire structure with the neutralization power or if the latter
is only for example simply a trivial function of some distance from the consensus
sequence of the sample. To try to answer this question the above procedure has
been repeated with a factorized MGM (in which non-diagonal J terms are set to
zero). The result is that the energy inferred with the factorized model is less (and
less significantly) correlated with the neutralization power then the energy learned
with the complete correlated gaussian model (See Figure 6.6, empty squares and
dashed lines).

The message that should be learned out of the above result is that, as expected,
not only single mutations but at least correlated pairs of mutation in the variable
region sequence are needed in order to achieve affinity maturation. Special directions
in the space of sequences (arising from combinations of the single aligned amino acids)
that are more relevant for the affinity can be considered by learning a correlated
MGM over the considered set.

The results reviewed in the current Section suggest to investigate the reasons for
which the MGM seems to correlate the inferred probability distribution with the
neutralization power. Which structural features of the Igs that are important for
the neutralization power are captured by MGM? Next Sections try to answer this
question.
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Figure 6.6. Panel (a): Scaling with the pseudocount of the Pearson correlation coefficient
between the energy of the MGM learned on clusterPG04 and the average (blue) and
minimum (red) IC50 neutralization titer against the 20 tested HIV-1 viruses. Full dots
and continuous lines correspond to a full MGM while empty squares and dashed lines to
a factorized (J ≡ 0) MGM.
Panel (b): Scaling of the p-value of the Pearson correlation coefficient displayed in panel
(a). The same symbolic conventions hold.
The complete MGM seems to significantly explain the neutralization power measurements.
Consistently the correlation is not significant when π = 1, so when the model is learned
on completely random data. Points with π ∼ 0 refer to π = 0.01.
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Figure 6.7. An example of the comparison between the energy of the MGM inferred on
clusterPG04 and the average (Panel (a)) and minimum (Panel (b)) neutralization IC50

titer. In both showed examples the MGM is learned with pseudocount π = 0.5.
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6.3.3 The antigen - heavy chain interaction

As the in the crystallographic structure the broadly neutralizing antibody VRC-
PG04 is resolved in complex with the gp120 (its antigen) an interesting argument to
investigate deals with the possibility of predicting some feature of the Ab-antigen
binding by simply analyzing the population of sequences present in the sample.

Single site entropies and polarization change analysis

The simplest analysis that can be performed is that of the variability of the
residues in the columns of the alignments. A measure of it are the entropies of the
empirical distribution of residues in each each column in the alignment. The site
entropies computed on clusterPG04 have to be compared with the backround ones
that encode the average variability of antibodies maturated from the same germline
genes. The result are then analyzed for the residues that are aligned to those present
in the PDB structure and with a focus on those that are considered to be in contact
with gp120.

As a first try we approximated this background with the clusterVJ. As an
alternative procedure, a library of the deposited antibodies sequences with inferred
IGHV1-2 allelic origin has been constructed and assumed to represent the reference
background of the IGHV part of the sequences. As shown in Figure ??, although
they display a certain level of incompatibility, both procedures give the convergent
information that the amino acids in contact with the antigen have very different
behavior with respect to the variability. Indeed some of the contact residues happens
to be less variable in the mutated cluster than in the background. This is the case
for Arg71, an amino acid which is observed to form a crucial interaction (salt bridge)
with an Asp in the binding region of gp120. On the contrary other contact residues
(most of which are in the CDR2 region) are observed to be more variable in the
mutated cluster than in the background. An interpretation for that will be given in
section 6.3.3.

The heterogeneity of the nature of the contacts between the antibody and the
antigen does not seems to permit to individuate the contact residues by simply
analyzing the single site entropies of the populations of antibodies.

We also analyzed the columns in the alignments distinguishing between the ones
for which the most present residue changed from clusterVJ (or the background
library) to clusterPG04. The results are shown in Figure ?? and show that most of
the columns in the alignment that are considered to be in contact with the antigen
have changed the most abundant amino acid within the formation of the highly
mutated cluster. This is not anyway a strict constraint; Arg71 - that, as already
highlighted, form a critical interaction with the antigen - is already present in the
germline gene IGHV1-2 and is the most abundant residue in that position both in
the background and in clusterPG04.
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Figure 6.8. Panel (a): Single site empirical entropies for the cluesterVJ (light blue) and
clusterPG04 (dark blue).
Panel (b): Difference of the empirical single site entropies computed on clusterVJ and
clusterPG04.
Panel (c) and (d): Same as in Panel (a) and (b) with the difference that the background
entropies are computed on a library of deposited Abs sequences with IGHV1-2 inferred
germline. In that case only the V region is displayed.
Entropies are displayed only for the columns of the alignment that do not display a
dash in the sequence fo VRC-PG04. Highlighted points refer to columns in which the
aligned residues of VRC-PG04 is in contact with the antigen. Vertical lines separate
frameworks and complementary determining regions, following: FWR1, CDR1, FWR2,
CDR2, FWR3, CDR3.
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DCA analysis

The structure of the correlations between different columns in the MSA is another
interesting feature of the populations that can be related to the details of the binding
between the antibody and the antigen.

In fact sequences belonging to clusterPG04 are peculiar for the emergence of a
strong interaction pattern among a set of sites mostly belonging to the CDR2 region.
The high DI signal in the CDR2 is more evident for high pseudocounts (see Figure
6.11).

Moreover, as shown in Figure 6.12, the high DI pattern of the CDR2 is charac-
teristic of the highly mutated clusterPG04 and is not present in clusterVJ that is
more similar to the germline genes.

An explanation for this observation could relay in the fact that, in the tridimen-
sional structure, the CDR2 loop appears to be shifted with respect to its typical
position in order to permit the exposition of Arg71VRC-PG04 that can so from the
critical interaction Arg71VRC-PG04 - Asp368gp120. So while the presence of Arg in
position 71 is mandatory to establish the interaction, as it can form a salt bridge
with Asp, the residues in CDR2 do not feel a strong constraint and are more free
to mutate, provided that they evolve in a correlated fashion preserving the exotic
position of the loop.

The above explanation of the DI structure is still under investigation and needs
to be confirmed by bioinformatic analysis. Anyway this is probably one of the
structural characteristics of the population that are recovered by the MGM method
in order to generate the results exposed in Section 6.3.2.
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Figure 6.11. Direct Information map computed on the clusterPG04.
First column: the internal contact map of VRC-PG04 heavy chain is shown in grey.
Two residues are considered to be in contact if at least a couple of atom is at distance
lower than 8 Å. The first 300 couples with higher DI are displayed in red when they
superpose to the internal contacts (true positive internal contact predictions) and in
green when they do not (false positive internal contact predictions).
Second column: Same as in the first column but in red and green are displayed the first
300 couples of higher DI provided that they are at distance greater then 4 along the
amino acids chain so that obvious contacts are not considered.
Third column: Grey lines highlight columns and raws referring to residues of the VRC-
PG04 heavy chain than are in contact with the antigen (gp120). Dots represents the
first 300 couples with higher DI and they are colored in red if at least one of the amino
acid of the couple is in contact with the antigen and in green otherwise.
Different raws correspond to different values of the pseudocount parameter, pc. From
top to bottom: 1th raw: π = 0.8; 2nd raw: π = 0.5; 3rd raw: π = 0.2; 4th raw: π = 0.01.
In every plot the DI is computed by learning the gaussian model on the sequences
belonging to clusterPG04.
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Figure 6.12. Comparison of the DI computed on clusterPG04 and clusterVJ (see main
text for details).
Upper panel: In the scatter plot the DI computed on clusterPG04 (vertical axis) is
compared with the DI computed on clusterVJ (orizontal axis). Circled couples correspond
to pair of residues for which the DI>2.5 when computed on both clusters. Pairs for
which the DI is higher when computed on cluster PG04 are circled in green (group 1),
while those for which the opposite happens are circled in green (group 2).
Left panel: Pairs belonging to group 1 are compared with the contacts with the antigen
as explained in Figure 6.11.
Right panel: Same as in left panel but for group 2.
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6.3.4 Recovering the internal contacts

As MGM and gaussian DCA have been developed in order to recover internal
native contacts in proteins by analyzing MSAs of homologous protein families, a
natural question is whether it is possible to predict internal contacts of Igs variable
domains through coevolution analysis in an individual’s repertoire, so by performing
DCA treating sets of sequenced Igs as a protein families.

As shown in Figure 6.11, sequences of clusterPG04 treaded with the related
multiplicities are not a good set for the prediction of the internal contacts. Only
trivial contacts of amino acids that are close in the primary structure (sequence) are
reproduced.

Further attempt can be done on other sets of sequences. As a result, as shown in
Figures 6.13 and 6.14, the best set to reproduce internal contact is the largest one
(all sequenced reads without any regards to the inferred germline, other, of course,
than the constraint due to the selection of the primers that, as explain select Igs
with inferred V gene in the family IGHV1) with a slight reweighting procedure that
eliminates the effect of the sequences multiplicity from the analysis (see [116] for
details on the reweighting procedure). In any case, also with this larger set, the
method does provide a satisfactory performance in recovering the internal contacts
of IGs variable domains. This fact is probably due to the relatively too low degree
of variability that is present in the set that do not leave space for covariation of
residues in contact.
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Figure 6.13. Direct information map computed on different set of sequences.
The explanation of the difference among different columns is the same as in Figure 6.11.
Different raws correspond to different sets of sequences. From top to bottom: 1) Seqs
with inferred IGHV1-2 and IGHJ2 germline genes; 2) Seqs with inferred IGHV1-2 and
any IGHJ inferred germline genes 3) Seqs with any IGHV and IGHJ inferred germiline
genes; 4) Seqs with any IGHV and IGHJ inferred germiline genes that are the result of
a reweighting procedure with θ = 0.01 (see [116]).
Every map has been computed with constant pseudocount parameter π=0.5.
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Figure 6.14. DI-ranking-based sensitivity-specificity curves: (black for all couples and blue
for couples that are at distance larger than 4 amino acid along the primary structure)
and MI-ranking-based curves (red for all couples and magenta for couples that are at
distance larger than 4 amino acid along the primary structure). Specificity is defined as
in Section 6.1.
Both panels refer to sequences with any IGHV and IGHJ inferred germline genes. Lower
panel refers to the use of a reweighing procedure with parameter θ = 0.01 (as in Figure
6.13, line 4), while in upper panel every sequence is counted with its multiplicity (as in
Figure 6.13, line 3).
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6.3.5 Conclusions

Here the preliminary results on an analysis performed on Rep-Seq data through
MGM have been reported. They seems indicate that the chosen data set is very
promising for the study of the affinity maturation as it presents Igs with many
mutations with respect to the germline genes due to the evolutionary pressure
provided by the presence of HIV-1 gp120 as an antigen. Moreover a set of highly
mutated sequence can be identified by clustering algorithms and its presence allows
to select the germline genes that are under strong evolutionary pressure in order to
achieve affinity maturation.

Up to now the central result of the analysis is that, having learned a MGM
on the cluster of highly mutated heavy chain sequences (clusterPG04 ), for some
heavy chains tested for neutralization power, the inferred energy correlates with the
neutralization titers. The result needs to be deepened but, if confirmed, it would
allow to use Rep-Seq data to study the structure of the neutralization power as a
function of the sequence.

As shown in [129], gp120 directed affinity maturation can walk through very
different ways in the space of sequences. In fact bnAbs with the same inferred germline
and convergent tridimensional structure but found in different donors display highly
divergent sequences (∼ 50%). This fact suggests that the neutralization power
in the space of sequence can be imagined as a multivalley landscape and that a
single valleys are explored by different patients. The perspective of an integration
of multiple Rep-Seq experiment performed on different donors seems an interesting
step forward for the understanding of the neutralization power optimization.

On the structural level, gaussian DCA analysis on Rep-Seq data does not seem
to produce good result for the prediction of internal native contacts. Nevertheless
functional DI patterns can be related to more complicated structural features that,
for example, can be invloved in the optimization of the antigen binding.

Näıve analysis on the variability of the different positions in the MSA of the reper-
toire do not seem to represent a satisfactory tool for predicting antigen-heavy chain
contacts. Probably the nature of the Ab-antigen interactions is too heterogeneous
to display convergent variability patterns.
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