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Chapter 1

Introduction

Preface

Since the beginning of the Space Age, every effort in any discipline that concerns

the space flight was devoted to develop innovative technical and theoretical solutions

to increase, even by a small fraction, the payload mass. The reason is the very low

percent of the total mass represented by the payload over the whole launcher mass

(but the same holds for the scientific payload with respect to the total spacecraft

mass). The optimization of the spacecraft trajectory contributes to achieve this goal,

as it is primary aimed at reducing the propellant consumed during the orbital transfers.

Obviously, other optimality criteria are possible beside propellant expenditure, such as

the minimization of the flight duration or a combination of both, but the economy of

propellant expenditure is usually the most pressing requirement.

Assuming that the configuration of flight vehicle is “frozen” (e.g., due to pressing,

non modifiable, constraints of constructive, productive, or commercial nature) the re-

sponsible scientists and engineers look for the flight profile that permits to reduce the

propellant consumed during the orbital transfers (thus freeing “space”, and mass, for

the payload), or to increment the mission duration or the number of revisits (thus in-

creasing the “value” of the payload). On the other hand, the selection of flight profile

plays a substantial role during the preliminary design of space missions, and it may

affect the design of flight vehicle (i.e., its sub-systems). Indeed, it can make the dif-

ference between a feasible and an unfeasible mission (standing the present technology

level). As an example, interplanetary missions for exploration of the Solar System (like

1



1. INTRODUCTION

Voyagers 1 and 2 missions and before them, Pioneers 10 and 11) using only the engine

thrust, without exploiting some “tricks”, such as gravity assist or ∆V -leveraging, would

be almost unfeasible. Staying closer to our Planet, many missions, still feasible, would

be economically too expensive, if wrong flight profiles were chosen; thus they would not

be flown.

The way for researches in space trajectory optimization was opened by the pioneer-

ing work of Derek Lawden (Optimal Trajectories for Space Navigation of 1963) [1] and

[Analytical method for Optimization] [2]. He studied simplified space flight missions

(i.e., rocket ascent trajectory in vacuum, coplanar impulsive transfers) aiming to attain

optimal analytical solutions. To deal with these optimization problems he made ex-

tensively use of results coming from optimal control theory, and in particular his most

famous contribute is the physical interpretation he gave of the adjoint vector to veloc-

ity, or “Primer Vector”. Optimal control theory dates back to the 17th century when

Johann Bernoulli’s posed his famous brachystochrone problem to his contemporaries.

Several esteemed mathematicians including Wilhelm Gottfried Leibniz, the Marquis de

l’Hopital, Isaac Newton and both Johann and Jakob Bernoulli submitted solutions to

the brachystochrone problem, marking the beginnings of optimal control theory. With

over 300 years of research in this area, many significant advancements have been made.

Highlights of these advancements include the creation of calculus of variations, first

elaborated by Euler in 1733 in the Elementa Calculi Variationum [3] from which the

topic got its name. Also, in the 1950’s, Richard Bellman pioneered work in dynamic

programming [4] which led to sufficient conditions for optimality using the Hamilton-

Jacobi-Bellman equation. Lev Pontryagin’s development of the maximum (minimum)

principle [5] in 1962 provided a method to determine the optimal control for constrained

problems, often resulting in “bang-bang” solutions.

In the intervening several decades, interest in the subject has only grown, with

space missions of sophistication, complexity, and scientific return hardly possible to

imagine having been designed and flown in the 1960s. While the basics of optimization

theory [the calculus of variations, Pontryagin’s principle, Hamilton-Jacobi theory, or

Bellman’s principle] have not changed in this time, there has been a revolution in the

manner in which they are applied and in the development of numerical optimization

[6–8]. At the present day, the interest in space trajectory optimization is not extin-

guished. As an example, the European Space Agency encourage researches on this field

2



1.1 Research Topics

by providing grants and internships. Since some years ESA has been sponsoring a com-

petition (GTOC) among universities and research institutes, in which a very complex

optimization problem must be solved in a limited amount of time (usually a month):

the aim is to promote and reward advances in trajectory design process [9, 10].

1.1 Research Topics

In the last three years, my research activity has been focused on the space trajectories

optimization. The aim of this research was to investigate the mechanisms which cause

some numerical methods to fail when dealing with real, difficult, optimization problems.

Improving the knowledge of the numerical methods used to deal with problems of

this kind, trying to evaluate (by a direct comparison where possible) their strength

points and limitations, is important not only to understand which one to use and in

which situation, but it is also the first step in the path towards the development of new

methods or towards improving the existing ones.

As far as possible, the proposed optimization problems, and their solutions, are

also analyzed in depth from a physical point of view. The reason of such digressions

is that a good knowledge of the physics that stands behind the problem is often nec-

essary to produce a reliable initial guess which is required by any numerical method

to succeed. Hence, understanding the problem is not less important than choosing the

proper optimization algorithm. Usually, a same final orbit can be reached by exploiting

several different flight profiles (that is, several thrust laws), which generate trajectories

sometimes very close to each other; however, even small deviations from the optimal

trajectory can badly deteriorate the mission performance. Theoretical tools (i.e., nec-

essary and sufficient optimality conditions) allow one to distinguish between locally

optimal and non-optimal trajectories, whereas conditions for the global optimality ei-

ther do not exist or their use is limited by very restrictive hypotheses. Therefore, only

the knowledge of the problem nature can help the mission designer to address the search

for the optimal solution in the right direction.

Problems considered in this thesis belong to a specific class of optimal control prob-

lems whose solution exhibits a discontinuous control law: the so called bang-bang opti-

mal control problems. The peculiar nature of these problems leads to several troubles

in the optimization process, mainly of numerical origin, which dreadfully reduce the

3



1. INTRODUCTION

user possibilities of attaining the optimal solution. Specific formulations of the prob-

lem, that lead to specific numerical algorithms, are essential to increase the convergence

basin, hence the success probabilities of the optimization process. Some of the issues

related to bang-bang optimal control problems are noticeable even in simple problems,

but many others manifest themselves only when numerically challenging problems are

considered.

Most of the space optimization problems belong to the class of bang-bang optimal

control problems. Among them, formation-flying missions (i.e., missions that involve

simultaneously more than one spacecraft) represent a proper topic for this research

[11], due to the present interest expressed by the international scientific community in

this kind of missions, which has continuously grown over the last decade. Such “dis-

tributed” space-systems (the same reasoning holds for both spacecraft formations and

constellations) allow the creation of more powerful, flexible, and robust architectures

than those offered by the traditional monolithic spacecraft of bigger size. They permit

to obtain the same performance at a lower cost, but also to conceive space projects

that would be otherwise impossible. However, formation flying missions do not come

only with benefits: several new troubles arise and, with them, new research topics to

investigate. Among them, the formation deployment (i.e., the problem of reaching the

operative condition), the formation keeping, and the reconfiguration of the formation

are especially interesting from a flight dynamics point of view. Being these problems

also numerically challenging, they are a good benchmark to highlight all the issues

that characterize bang-bang optimal control problems as well as for comparing the real

performance of numerical optimization algorithms.

Specifically, the deployment problem of the Simbol-X project mission [12] is inves-

tigated in this thesis. This mission concerns a two-spacecraft formation that flies in

a High Eccentricity Orbit (HEO), whose scientific goal is the creation of a powerful

next-generation X-ray telescope. Being the “optical” elements split between the two

spacecraft, an instrument of superior focal length (of the order of few tens of meters) is

created. This allows for resolutions and magnifications just unthinkable for a traditional

telescope carried by a single spacecraft. The mission project here considered completed

successfully the Phase A of its development (i.e., the preliminary study); however, due

to current budget restrictions, its development has been suspended. Nevertheless, the

great scientific potential of the mission and the warm interest shown by the scientific
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community for its payload, let one imagine that the project may be resumed in the

future, or, perhaps, it will be the background for developing similar missions.

The interest in formation flight missions provides also new lymph to one of the

better-known problems in astrodynamics: the rendezvous problem. In fact, the problem

of creating the formation starting from a condition where two (or more) spacecraft fly

on different orbits, is similar to a cooperative rendezvous problem. In this problem,

each spacecraft has its own propulsive system which is used (or not used) in agreement

with the others spacecraft to reach an assigned final condition which involves (in an

explicit or implicit way) all the spacecraft. Differently from the “simple” rendezvous,

which has been dealt with by many researchers in the past (hence a wide literature is

available), the cooperative rendezvous did not receive as much attention and only few

papers can be found on this topic.

From a strictly mathematical point of view, the constraints on the final state for

a rendezvous problem are different from those of a formation deployment: at the ren-

dezvous, all the spacecraft share the same state, whereas the formation deployment aims

to place each spacecraft on a distinct orbit. In most cases, a unified formulation can be

attained by rewriting the constraints; thus, in a certain way, the formation deployment

can be seen as a generalization of the rendezvous problem, where the final state of

all the spacecraft is not the same, but differs by some (constant or time-dependent)

value. Apart from mathematical concerns, the actual difference between a cooperative

rendezvous and a formation deployment cannot be too wide, as the formation flying

mission requires, by definition, that the spacecraft are close to each other. Thus, the

optimal trajectory of a rendezvous mission will not be too different from a deploy-

ment maneuver (assuming the same initial conditions, of course) or, in the worst case,

it provides a reasonable starting point to investigate the deployment more in depth.

Moreover, the rendezvous problem permits a more orderly and clear formulation that

allows for a more generic investigation; hence theoretical interest in this problem is

greater. Thus, in this thesis, the analysis of the Simbol-X mission is preceded by

the study of a cooperative rendezvous mission, to highlight some theoretical aspects

common to both problems.

5
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1.2 Optimization Method

The formation deployment, as well as the cooperative rendezvous, can be posed as

optimal control problems. Numerical methods for finding the solution of this kind of

problem fall into two general categories: indirect methods and direct methods. In

this thesis, an indirect method is adopted. This choice goes in the opposite direction

with respect to the present trend, that shows a growth in the use of direct methods,

motivated primarily by the difficulties that indirect methods present in the formula-

tion of the mathematical problem and in its numerical solution. Direct methods rely

on the discretization of state and/or control variables in order to reduce the infinite-

dimension problem to a finite-dimension one. Accurate solutions may require a large

number of discretization points and, consequently, high performance computers may

be necessary even when quite simple problems are analyzed. Nowadays, the growing

computational power of computers and the parallel use of many processors permits a

thinner discretization, but the associated numerical complications remain; moreover

the user cannot state if a solution is optimal, in the absence of a theoretical support.

Indirect methods, instead, have a high theoretical value, and are extremely powerful

as they permit to obtain the optimal solution with high precision while keeping the

computational time relatively short. The choice of an indirect method is therefore

“non-conformist”, but well motivated by the previous sentences. This is also a choice

of continuity with the work done in the Master thesis where DV-EGA missions were

investigated in the three-body problem by using an indirect method.

The formation deployment of the Simbol-X mission presented in this thesis is a

problem more complex than those usually addressed by indirect methods in literature.

A mix of peculiar traits, combined with each other, makes the optimization of this

mission really challenging. The spacecraft orbits are very high, and the trajectories are

significantly affected by the gravitational perturbations of Moon and Sun. Moreover,

the two spacecraft fly through a wide range of altitudes, hence the perturbative accel-

eration, as well as its dominant source, changes restless, weighing down the numerical

computation.

Issues due to perturbative acceleration couple with those typical of bang-bang op-

timal control problems. The optimal thrust law still exhibits a discontinuous profile:

intervals where the spacecraft exploits the maximum available engine thrust, alternate
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with intervals where the engine is cut off and the spacecraft flies on a mere ballistic

trajectory. However, lengths and sequence of these intervals change with the departure

date, because they are sensitive to variation of the perturbative accelerations that, in

turn, are time-dependent functions (i.e., they change as the departure date changes).

The impact on the optimization process is severe: the “ burn structure” (that is, number

and location of the engine firings) of the optimal mission becomes hardly predictable

and many sub-optimal solutions, close each other, are possible. The picture becomes

more tangled as the time available for the deployment increases. Further, the relatively

low intersatellite distance at the end of the transfer, coupled with the perturbations

and the wish to minimize the propellant consumption, may bring the spacecraft too

close each other, thus enhancing collision risks.

The use of the right numerical method (or just the most suitable version of it) is

mandatory, when problems as difficult as the one previously described are faced. A

proper numerical method permits to improve the accuracy of the obtained solution, to

speed up the numerical calculation, to simplify the convergence process. Last but not

least, sometimes choosing the right numerical method makes the difference between

being or not being able to solve the problem. This thesis proposes to compare two

techniques, conceptually well different, that aim to handle (or just reduce) issues re-

lated to discontinuous profile of the optimal control. The first, here called Multi-Bound

Approach, was first proposed by Colasurdo [13]. This approach is founded on a prelim-

inary subdivision of the trajectory into several arcs, which distinguishes clearly thrust

and coast arcs, hence greatly improving the numerical behavior of the problem. In

turn, it leaves open the question on how to guess at the correct trajectory subdivision.

The second one, here called Continuation-Smoothing Technique, dates back in the

seventies, and has been lately improved by Epenoy et al. [14]. It tries to reduce

the numerical issues by regularizing the control law. Suitable perturbative terms are

initially added to the problem formulation to facilitate the convergence process and

subsequently are made fade away. This approach was entirely “new” to our research

group.

At the beginning of my research, I had at my disposal the original implementation

of the Multi-Bound approach, which allowed for the solution of generic optimal con-

trol problems, once properly formulated as multipoint boundary value problems. An

implementation of the Continuation-Smoothing was, instead, not available.
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As the “historical” code (which implemented the Multi-Bound approach) would

require a major revision to support the implementation of the Continuation-Smoothing

technique, I developed from scratch a new code, which permits the solution of BVPs

by means of a simple shooting method, and implements the two techniques chosen for

handling the bang-bang control laws. This new code features many small technical

improvements over the previous one, such as the use (as far as possible) of calls to

high performance libraries. The introduction of the Object-oriented paradigm makes

the code more modular (hence more flexible) and reusable with respect to the previous

one. Despite the code was thought to deal with the formation deployment problem

under investigation, it is quite versatile and easily adaptable to solve other optimal

control problems.

The comparison between the two techniques proposed for handling the bang-bang

control is not reduced to a mere comparison about the execution times, or the radius of

convergence (which are however important); it is a comparison between two different

viewpoints, sometimes antithetic, but also complementary, on the way of facing this

problem. As far as possible, I will try to make clear the philosophy that stands behind

both approaches, and to motivate why and when either method overperforms the other

(hence in which cases either method should be used).

1.3 Thesis Summary

This section briefly describes the contents of the chapters in this thesis.

Chapter 2 presents in a concise manner the mathematical concepts and the nu-

merical tools necessary to solve the optimization problems related to space transfers.

A mathematical formulation of a generic multi-phase optimal control problem is pro-

vided. An overview of both direct and indirect methods follows. Theoretical aspects

and numerical implementation of indirect methods are described in depth.

Chapter 3 deals with problems where the magnitude of the optimal control is

bounded and assumes alternatively the maximum and the minimum permissible value:

the bang-bang optimal control problems. The main difficulties related to this pecu-

liar class of problems are investigated. Two different numerical techniques that can be

adopted to overcome these numerical issues are proposed and compared each other. The

effectiveness of each approach is demonstrated by applying them to a simple problem.
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In Chapter 4, the techniques outlined in the previous chapter are used to solve a

finite-thrust time-constrained cooperative rendezvous problem. A comparison between

a truly cooperative strategy and a less coordinated (leader/follower) strategy is per-

formed, in order to highlight the benefits of the cooperation, but also its limits. The

cooperative rendezvous mission is useful to test the two algorithms previously intro-

duced on a truly representative problem of space flight.

In Chapter 5, the optimal deployment of the Symbol-X formation is investigated.

The mission is briefly outlined. Optimality conditions for the single spacecraft deploy-

ment and the formation deployments are derived. Emphasis is posed on the role that

the perturbative forces, as well as the departure date, play on the deployment. Re-

sults are presented to show the difficulties faced and the effectiveness of the proposed

solution method.

Finally, Chapter 6 summarizes significant contributions of this thesis and suggests

future research directions.
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Chapter 2

Methods for Optimal Control

2.1 Introduction

The aim of this chapter is to illustrate mathematical concepts and numerical tools nec-

essary to solve the optimization problems related to space transfers. The most suitable

mathematical formulation for an optimization problem which concerns a finite-thrust

mission (e.g. a spacecraft deployment, or a rendezvous) is for sure a time-continuous

optimal control problem. Even though the specific features of the mathematical prob-

lem depend on the peculiar mission under investigation, it is possible to pose any

optimal control problem in a concise and quite general fashion. The mathematical for-

mulation of such a generic multi-phase optimal control problem is presented in section

[2.2.1]. Numerical methods that are employed for the numerical solution of optimal

control problems (OCPs) are usually classified in direct methods or indirect methods,

c.f. Betts [15]. An overview of both classes is proposed in section [2.2.2]. A more ex-

haustive description of the adopted optimization method (i.e., the indirect one) is then

provided in section [2.3]. Both theoretical aspects and numerical implementation are

faced. In particular, section [2.3.1] deals with the optimal control theory, which is used

to derive the first order necessary conditions for optimality. These conditions are pre-

sented here in a general form that can be used to handle both time-fixed and time-free

problems, and also problems with interior (point) constraints. First order optimality

conditions lead to the formulation of a Hamiltonian Boundary Value Problem, that can

be a two point boundary value problem (TPBVP) or even a multipoint boundary value

problem (MPBVP). The analytical solution of these algebraic-differential problems is
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usually impossible to find out, especially when the system dynamics is nonlinear; thus

proper numerical methods need to be used [16, 17]. An overview of several suitable

methods is provided in section [2.3.2]. Special care is given to the description of the

shooting method, because it has been employed to solve numerically the optimization

problems proposed in Chapters 4 and 5.

2.2 The Optimal Control Problem

2.2.1 General Statement

An optimal control problem consists in establishing which control law, among all the

admissible ones, allows the system under investigation, characterized by a certain dy-

namics, to evolve from an initial to a final state, so that every constraint is fulfilled and

the optimization criteria or merit index is maximized (or minimized). Each of these

aspects of an OCP are discussed hereafter.

Through the thesis the following notation will be used in order to provide a concise

and clear, as much as possible, formulation of the equations: vector variables and vector

functions are considered column vector and will be marked with the superscript bar

(“ ¯ ”); matrixes have a double bar (“¯̄ ”). In some circumstances, Euclidean vectors,

such as position, velocity, or acceleration, will be marked with the superscript “ ~ ” to

highlight their peculiar nature.

The state of the system at the time t is defined by a vector x̄ (t) ∈ R
n, which

allows to describe, in a complete and unequivocal way, at any instant, all the features

of interest concerning the system under examination (e.g., position, velocity, and mass

of a spacecraft). The function x̄ (·) defines the trajectory during all the integration

interval [t0, t1]. The evolution in the time domain of the system state is defined by

a set of first order ordinary differential equations, which are obtained typically by

applying the fundamental principles of mechanics to the spacecraft system. The ODE

system can be generically written as:

dx̄

dt
(t) = f̄ (x̄ (t) , ū (t) , t) (2.1)

where ū (t) ∈ R
m is the control vector (i.e., the vector which collects all the control

variables) at time t. The thrust vector created by a rocket engine, the incidence of the

ailerons of an aircraft, the torque applied on a reaction wheel are examples of control
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variables. The optimal trajectory is usually subjected to constraints of various kind.

In case of constraints involving only state and time at the extremes of the trajectory

(i.e., at its beginning or end), these constraints can be written as a set of homogeneous

(usually non-linear) algebraic equations:

χ̄ (x̄0, x̄f , t0, tf ) = 0 (2.2)

where the function χ̄ : [Rn,Rn,R,R] → R
q collects all the imposed constraint; symbols

x̄0 and x̄f stand for x̄ (t0) and x̄ (tf ), respectively.

Sometimes, even the control vector ū (t) is constrained; therefore it has to belong to

the set of admissible controls U (e.g., as far as solar electric propulsion is concerned, the

engine is often not allowed to work whenever the spacecraft is inside a shadow cone).

In case of finite-thrust missions, as those considered in the next Chapter, the thrust

magnitude at any time is limited (i.e., it must be less or equal to a given value). The

optimization criterion which completes the optimal problem specifics, is expressed by

an objective function or Merit Index J that has to be extremized. In general, the merit

index is a functional, sum of two terms:

• The first one (ϕ) depends exclusively on the values that the state and time vari-

ables assume at the boundaries. It measures the weight of reaching a certain final

state;

• The second one (Φ) depends on the values which control, independent, and state

variables assume at any point along the trajectory. It measures the cost of the

evolution of the system from the initial to the final point.

Thus, the merit index can be written in its complete form as follows:

J = ϕ (x̄0, x̄f , t0, tf ) +

tf∫

t0

Φ (x̄ (t) , ū (t) , t) dt (2.3)

This is the so called Bolza form of the merit index. A concise mathematical formulation
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of the Bolza optimal control problem can now be presented:

(PBolza) =





min
u∈U

J = ϕ (x̄0, x̄f , t0, tf ) +
tf∫
t0

Φ (x̄ (t) , ū (t) , t) dt

dx̄

dt
(t) = f̄ (x̄ (t) , ū (t) , t) , ∀t ∈ [t0, tf ]

s.t.

χ̄ (x̄0, x̄f , t0, tf ) = 0

(2.4)

Introducing suitable auxiliary variables, the functional can always be rewritten in the

“Lagrange Form” (i.e., the one with ϕ = 0), or in the “Mayer Form” (i.e., the one with

Φ = 0). The latter is often preferred because it allows a simpler problem formulation

and also simpler analytical expression of the first order necessary conditions (see section

[2.3.1]). Often, optimization problems are constrained at some interior points, or the

evolution of the system changes abruptly there. It might be useful to split the trajectory

into a certain number nf of subintervals, called indistinctly arcs or phases. Initial and

final points of each phase are referred to as boundaries: those relative to the initial and

final points of the whole trajectory are called “external boundaries”, whereas those

which are inside the trajectory are named “internal boundaries”. What arises is a

multi-phase optimal control problem. Signs “+” and “-” are employed to indicate

whenever a variable (either state or time) is referred to the point immediately before

or after a boundary. Therefore, the state variables at the beginning of the j-th arc are

indicated with the symbol x̄(j−1)+ and the corresponding time is t(j−1)+, while x̄j− and

tj− refer to the values assumed by state and time at the end of the same arc. Notice

that whenever an arc duration is unknown, a new parameter must be introduced; its

optimal value will be given by the optimization process. The state and time variables

at the boundaries can be collected respectively in the vectors:

X̄+ =
{
x̄(j−1)+, ∀ j = 1, . . . , nf

}
and X̄− = {x̄j−, ∀ j = 1, . . . , nf} (2.5)

T̄+ =
{
t(j−1)+, ∀ j = 1, . . . , nf

}
and T̄− = {tj−, ∀ j = 1, . . . , nf} (2.6)

Constant unknown parameters, if any, can be thought to be included in the vector x̄.

The constraint equation in its most general form becomes:

χ̄
(
X̄+, X̄−, T̄+, T̄−

)
= 0 (2.7)
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Remembering that the whole integration domain is split into nf sub-intervals, the merit

index can be written as follows:

J = ϕ
(
X̄+, X̄−, T̄+, T̄−

)
+

nf∑

j=1

tj−∫

t(j−1)+

Φ (x̄ (t) , ū (t) , t) dt (2.8)

A concise mathematical formulation of the Bolza multi-phase optimal control problem

can now be presented:

(PBolza−multi) =





min
u∈U

J = ϕ
(
X̄+, X̄−, T̄+, T̄−

)
+

nf∑
j=1

tj−∫
t(j−1)+

Φ (x̄ (t) , ū (t) , t) dt

dx̄

dt
(t) = f̄ (x̄ (t) , ū (t) , t) , ∀t ∈ [t0, tf ]

s.t.

χ̄
(
X̄+, X̄−, T̄+, T̄−

)
= 0

(2.9)

2.2.2 Numerical Methods: an Overview

Many methods for solving optimal control problems has been devised during the past

years. Most of them are listed in the state of art of trajectory optimization as depicted

by J. T. Betts [15]. These methods can be grouped into two categories: direct methods

and indirect methods. The difference is made by the introduction (or not) of adjoint

variables (c.f. section [2.3]) associated to the state ones. Nevertheless, both approaches

try to transform the original optimization problem which has an infinite dimension into

a new one with a finite dimension. In extreme synthesis, indirect methods first derive

the optimality conditions and then discretize the problem, while in direct methods the

optimization problem is first discretized and then optimized.

Indirect Methods

Indirect methods are founded on the principles of variational calculus for deriving the

necessary optimality conditions. Adjoint (or costate) variables are time-continuous

functions associated to the state variables, which are exploited to include the respect

of the differential constraint (i.e., the state dynamics) into the optimization criteria.

Similarly to what happens in finite-dimension optimization, Lagrange multipliers are

also introduced in the merit index to ensure the respect of the algebraic constraints.

Variational calculus suggests both necessary and sufficient conditions for the optimality
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of the solution. Necessary (or first order) conditions for the optimality are obtained by

posing the first variation of the merit index equal to zero. The fundamental results are:

• Euler-Lagrange equations (which define the evolution of the adjoint variables),

• optimality conditions for the controls, (which are algebraic equations that link

the control variables at any time to state and adjoint variables),

• transversality conditions (which are algebraic conditions that define, explicitly

or implicitly, the value of state and adjoint variable at the boundaries of the

trajectory).

Necessary conditions form a Hamiltonian boundary-value problem (HBVP), which is

solved numerically for extremal trajectories. These trajectories may correspond indis-

tinctly to maximum, minimum or saddle points of the merit index. The Legrendre-

Clebsch equations provide the second order (or sufficient) conditions for the optimality.

However, in practice the derivation of these conditions is often too difficult (or even

impossible). Therefore, the user must rely on his physical knowledge of the solution; of

course, if many solutions are attained, the optimal solution is found by choosing the ex-

tremal trajectory with the best merit index. Notice that necessary conditions must be

derived analytically. In simple cases this is an easy task to perform, whereas it becomes

more and more difficult as the problem becomes more realistic (hence complex). In the

latter cases, a manual derivation require a lot of time and it is an error-prone process.

Some commercial products, such as Matlab’s Symbolic Math Toolbox [18] or Mathe-

matica [19], offer the capability of performing symbolic operations (both algebraic and

differentiation). Unfortunately, these programs are unable to rearrange the result into

a simple form as a human user would do. Otherwise, Automatic Differentiation (AD)

can be used to numerically evaluate the required derivatives. This is quite convenient

in case of the derivation required by Euler-Lagrange differential equations, whereas it

is of less help for the derivation of the transversality conditions. The derivatives are

evaluated with high accuracy (more than using finite difference approximations), but

the computational burden for each evaluation is bigger than using the corresponding

analytical expression. In the aggregate, automatic differentiation is quite convenient in

the case of complex derivations, unless the algorithm performance is not the principal

requirement.
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Direct Methods

Direct methods rely on a conversion or transcription of the original continuous optimal

control problem into a discrete optimization problem subject to algebraic constraints,

which is also known as nonlinear programming (NLP) problem. To attain this result,

the continuous functions involved in the problem are discretized over a mesh. The

collection of all these discrete values form the set of unknown variables which will

be optimized. The category of direct methods is quite broad and encompasses very

different techniques [20]. In particular, the choice of which quantities are discretized

and how the continuous-time dynamics is approximated, varies widely amongst the

different direct methods. Two of the more common types of direct methods are the

semi-discrete (or control) parameterization and the fully-discrete (or state and control)

parameterization. In a control parameterization method [21, 22], the control alone is

approximated and the differential equations are solved via numerical integration. In

state and control parameterization methods [23–25], even the state is discretized (not

necessarily on the same mesh of the control) and the differential equations are converted

into algebraic constraints, more or less complex depending on the numerical integration

scheme (e.g., trapezoidal rule, Simpson’s rule, Gauss quadrature). The NLP problem

related to the fully-discrete parameterization can be written in its most general form

as:





min
ξ̄,π̄,ῡ∈U

h
(
ξ̄, τ̄ , ῡ, π̄

)

s.t.

η̄
(
ξ̄, τ̄ , ῡ, π̄

)
= 0

γ̄
(
ξ̄, τ̄ , ῡ, π̄

)
≥ 0

(2.10)

where ξ̄, ῡ collect the state and control values at the discrete times τ̄ , and π̄ is a vector

of additional unknown parameters. Vector Function η̄ expresses equality constraints,

such as those related to the integration scheme and to the boundary conditions; vector

function γ̄ refers to inequality constraints (usually coming from the discretization of

path constraints). The set U is the set of the admissible controls. The resulting NLP

can be solved numerically by well developed algorithms [26, 27] which attempt to satisfy

a set of conditions (called Karush-Kuhn-Tucker (KKT) conditions) associated with the

NLP. In case of semi-discrete parameterization, the system dynamics is still governed
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by the set of time-continuous differential equations. Therefore, once a control law is

assigned (i.e., ῡ is assigned), it is possible to obtain the corresponding trajectory by

integrating the ODE system starting from the initial point x̄ (t0) = x̄0 over the assigned

time horizon. The problem can be again written in the NLP form, hiding the ODE

integration inside the objective function:




min
x̄0,t0,π̄,ῡ∈U

h (x̄0, t0, π̄, ῡ)

s.t.

χ̄ (x̄0, t0, π̄, ῡ) = 0

γ̄ (x̄0, t0, π̄, ῡ) ≥ 0

(2.11)

This parameterization allows the reduction of the problem dimension (i.e., the number

of unknowns) with respect to the fully-discrete. Actually, the problem dimension is

usually low/medium in case of a semi-discrete parameterization, but the sensitivity to

the initialization is lower using the fully-discrete parametrization. Besides to tradi-

tional deterministic numerical methods (e.g., SQP), which are applied in fully-discrete

parametrization, meta-heuristic or stochastic algorithms (e.g., simulated annealing [28],

genetic [29, 30] and evolutionary [31] algorithms) can also be employed. These algo-

rithms are receiving a great attention recently, as they are intrinsically apt to multi-

disciplinary and multi-objective optimization and in principle are capable of achieving

the global optimum in a very large search space. Moreover they can be applied also

to non-smooth objective function. However, to keep the problem dimension under a

reasonable value, the control usually must be approximated by simple parametric rep-

resentations. Therefore the accuracy of these optimization methods is modest. Also,

they are often much slower than the deterministic algorithms, which indeed have a

higher risk of getting stuck in local optima.

Comparison

An accurate comparison of direct and indirect methods can be found in Betts [15]. A

wide number of similarities between the methods is highlighted as well as important

differences. The primary advantages of indirect methods are the high accuracy of the

solution and the assurance that the solution satisfies the first-order optimality condi-

tions. Indirect methods are fast due to the reduced number of unknowns variables,

and they may offer an interesting theoretical insight into the problem characteristics.
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However, three main drawbacks of indirect techniques need to be underlined: analytic

expressions for the optimum necessary conditions must be derived; the region of con-

vergence for the root-finding algorithm may be small; finally, for problems with path

constraints, it is necessary to have an a priori knowledge of the sequence of constrained

and unconstrained arcs. On the other side, direct methods typically require a large

number of variables to accurately describe the problem, therefore each optimization

usually takes long computational times, that can be somehow reduced by taking the

matrix sparsity into account. Indeed, high performance computers may be necessary

even when quite simple problems are analyzed. The discretization is responsible of the

increase of the convergence radii over the indirect methods. As results their initializa-

tion require less care (and they do not require an initial guess for the adjoint variables

at all). They still rely on a tentative guess and may not converge to the optimal so-

lution, but whereas convergence difficulties prevent indirect methods from finding a

solution, direct methods find at least a suboptimal one. Another point of success of

direct methods is that even complex control or state constraints can be handled easily

and that, in case of path inequality constraints, the sequence of free and constrained

arcs does not need to be known a priori. Lastly, they have the advantage that the

first-order necessary conditions do not need to be derived. This is fine, because the an-

alytical derivation may be a difficult (sometimes even impossible) task. As drawback,

direct methods either provide an inaccurate costate evaluation or they do not provide

costate information at all. This implies that it is always uncertain whether the solution

found by NLP is truly an optimal solution to the original optimal control problem.

Well-known software packages employing direct methods include Optimal Trajectories

by Implicit Simulation (OTIS) [32], Sparse Optimal Control Software (SOCS) [33],

Graphical Environment for Simulation and Optimization (GESOP) [34], Direct Collo-

cation (DIRCOL) [35], Nonlinear Trajectory Generation (NTG) [36], and Direct and

Indirect Dynamic Optimization (DIDO) [37]. Very few commercial products offer the

possibility for solving optimal control problems by using an indirect method; among

them, it is worth to name just the most interesting and known: BNDSCO [38].
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2.3 Indirect Methods

The aim of this section is to provide a deeper insight of the adopted optimization

method. Both theoretic foundations and the numerical implementation will be faced.

First, a simple but general formulation of the first order necessary condition for the

optimality is derived, which leads to the formulation of a Hamiltonian Boundary Value

Problem. Subsequently, some numerical methods for the solution of these problems are

presented, with particular emphasis on the shooting method, which has been employed

throughout this thesis.

2.3.1 Optimal Control Theory

Indirect methods are based on the application of the optimal control theory to the

specific mission under investigation. The optimal control theory, which is based on the

principles of variational calculus, aims at searching for the extremal value (maximum

or minimum) of a merit index, the corresponding trajectory x̄∗ (·), and the optimal

control ū∗ (·). The derivation of the optimality condition starts by defining a modified

or augmented merit index J∗, which is needed to include a measure of the respect of

the system evolution law (i.e., the state dynamics) and of the boundary constraints

into the original merit index. This is made possible by the introduction of Lagrange

multipliers, collected into the vector µ̄, associated to the constraint equations, and by

the introduction of adjoint variables λ̄ (t) which are functions associated to the state

variables. The modified merit index can be written as:

J∗ = ϕ+ µ̄T χ̄+

nf∑

j=1

tj−∫

t(j−1)+

(
Φ+ λ̄T

(
f̄ − ˙̄x

))
dt (2.12)

The merit index and its augmented counterpart coincide if the state evolves according

the differential equations and if all the constraints are fulfilled. The same holds for their

extreme values. Manipulating eq. (2.12) by integrating by part, the state derivatives
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can be eliminated and a simpler expression is obtained:

J∗ = ϕ+ µ̄T χ̄+

nf∑

j=1

(
λ̄T
(j−1)+x̄(j−1)+ − λ̄T

j−x̄j−

)
+ (2.13)

+

nf∑

j=1

tj−∫

t(j−1)+

(
Φ+ λ̄T f̄ − ˙̄λ

T
x̄

)
dt

It is useful to regroup some of these terms to define an important function, that will

often appear in the following section: the Hamiltonian function H:

H = Φ+ λ̄T f̄ (2.14)

The augmented merit index is hence differentiated (square brackets indicate matrixes):

δJ∗ =

(
−H(j−1)+ +

∂ϕ

∂t(j−1)+
+ µ̄T ∂χ̄

∂t(j−1)+

)
δt(j−1)++ (2.15)

+

(
Hj− +

∂ϕ

∂tj−
+ µ̄T ∂χ̄

∂tj−

)
δtj−+

+

(
−λ̄T

(j−1)+ +
∂ϕ

∂x̄(j−1)+
+ µ̄T

[
∂χ̄

∂x̄(j−1)+

])
δx̄(j−1)++

+

(
λ̄T
j− +

∂ϕ

∂x̄j−
+ µ̄T

[
∂χ̄

∂x̄j−

])
δx̄j−+

+
∑

j

tj−∫

t(j−1)+

((
∂H

∂x̄
+ ˙̄λ

T
)
δx̄+

∂H

∂ū
δū

)
dt j = 1, ..., nf

The necessary condition for the optimality imposes that the functional J∗ is stationary;

hence its first variation must be null for any choice of the variations δx̄, δū, δx̄(j−1)+,

δx̄j−, δt(j−1)+, δtj− compatible with the differential equations and the boundary condi-

tions. The necessary condition for the optimality becomes the simultaneous nullification

of all the coefficient of the variations in eq. (2.15). Additional variables λ̄ (·) and con-

stants µ̄, previously introduced, can be chosen in order to ensure the fulfillment of the

stationarity of the merit index ( δJ = 0 ). Specifically, the Euler-Lagrange equations

(i.e., the differential equations that govern the evolution of the adjoint variables) are

obtained by nullifying the coefficient of δx̄ under the integral sign:

dλ̄

dt
= −

(
∂H

∂x̄

)T

(2.16)
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whereas the algebraic equation for the controls are obtained by nullifying the coefficient

of δū under the integral sign:
(
∂H

∂ū

)T

= 0 (2.17)

Often, the control is subjected to external constraints. Usually it must belong to a

given admissibility set (that is the case when the thrust magnitude must be between

a minimum and a maximum value). In the most general case, this constraint depends

on the independent variable or on the state ones; however, in this discussion, only

explicit and constant bounds on the control (as the one previously stated) will be dealt

with. If such a constraint is present, the optimal control value in any point of the

trajectory is the one that belongs to the admissibility domain and maximize (if J has

to be maximized) or minimize (if a minimum of J is sought) the Hamiltonian in that

point. This result is known as Pontryagin Maximum Principle. In practice, two cases

arise:

• the optimal control value is the one given by equation (2.17) if it is encompassed

in the admissibility domain; hence the control constraint is not active in that

point (the control is “locally un-constrained”);

• The optimal control is set to the edge of the admissibility domain (i.e. it assumes

the maximum of minimum value), if the one provided by equation (2.17) does not

belong to the admissibility domain (the control is “locally constrained”)

A peculiar case arises whenever the Hamiltonian is affine with respect to a bounded

control variable. In that case, this variable does not appear explicitly in any of equations

(2.17) and thus the corresponding control is undetermined. This case will be extensively

discussed in Chapter 3, where special methods to deal with this kind of optimal control

problem are presented. The reader can refer to [39] for details concerning the solution

of problems with more complex control or control and state constraints. For what

concerns the other coefficients of eq. (2.15), their nullification leads to the formulation

of the so called transversality (or optimality) conditions. Nullifying the coefficient of
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δx̄j−, δx̄(j−1)+, δtj−, δt(j−1)+, one obtains respectively:

−λ̄T
j− +

∂ϕ

∂x̄j−
+ µ̄T

[
∂χ̄

∂x̄j−

]
= 0 (2.18)

λ̄T
(j−1)+ +

∂ϕ

∂x̄(j−1)+
+ µ̄T

[
∂χ̄

∂x̄(j−1)+

]
= 0 (2.19)

Hj− +
∂ϕ

∂tj−
+ µ̄T ∂χ̄

∂tj−
= 0 (2.20)

−H(j−1)+ +
∂ϕ

∂t(j−1)+
+ µ̄T ∂χ̄

∂t(j−1)+
= 0 (2.21)

for j = 1, ..., nf

where the subscript “j−” and “j+” indicate values referred to instants immediately

before or after the j-th boundary. In many circumstances, this distinction is fundamen-

tal because dependent and independent variables may be discontinuous at an internal

boundary. Starting from the general transversality conditions just derived, it is possible

to define a small set of practical specific rules, useful to understand quickly most of the

problems:

• if a state variable x is assigned explicitly at the initial point (that is, the constraint

vector χ̄ contains an equation of kind x0 − ã = 0 with ã an assigned value), the

corresponding adjoint variable λx0 is “free”, that is, unconstrained there. An

analogous rule applies to the final point;

• if the initial value of a state variable x0 appears neither in any constraint, nor in

the objective function ϕ, then the corresponding adjoint variable is zero at the

initial time ( λx0 = 0 ); an analogous statement holds for the final boundary;

• If a state variable x is continuous at an internal boundary j and its value is not

assigned explicitly or implicitly (that is χ̄ contains the equation xj+ = xj−), then

the corresponding adjoint variable is itself continuous (λxj+
= λxj−);

• If a state variable x is continuous at an internal boundary j but its value is

explicitly assigned, (i.e., the constraint vector χ̄ contains an equation of kind

xj+ = xj− = ã with ã an assigned value), than the corresponding adjoint variable

λx has a free jump at that boundary (that is, the value of λxj+
is independent

from λxj−) and must be determined by the optimization procedure.
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Analogously, if the Hamiltonian does not depend explicitly on time, the eqs. (2.20),

and (2.21) provide, in peculiar circumstances, very simple boundary conditions:

• if the initial time t0 does not appear neither in the boundary conditions nor in

the objective function explicitly, then the Hamiltonian is zero at the initial time

(H0 = 0); in an analogous way, if the final time tf does not appear explicitly in

χ̄ and ϕ, than the Hamiltonian at that time is zero (Hf = 0);

• if the time tj of an internal bound does not appear explicitly in the function ϕ,

and the only condition regarding it is the time continuity (tj+ = tj−), than the

Hamiltonian is continuous at the j-th boundary (Hj+ = Hj−);

• if the time tj is assigned explicitly (i.e., χ̄ contains the equation tj+ = tj− = a),

then the Hamiltonian has a free jump at that boundary (that is, the value of Hj+

is independent fromHj−) and must be determined by the optimization procedure.

The Hamiltonian boundary value problem can now be stated in its general form:





dx̄

dt
(t) = f̄ (x̄ (t) , ū (t) , t)

dλ̄

dt
(t) = −

(
∂H

∂x̄

)T , ∀t ∈ [t0, tf ]

s.t.

∂H

∂ū
= 0, ∀t ∈ [t0, tf ]

−λ̄T
j− +

∂ϕ

∂x̄j−
+ µ̄T

[
∂χ̄

∂x̄j−

]
= 0

λ̄T
(j−1)+ +

∂ϕ

∂x̄(j−1)+
+ µ̄T

[
∂χ̄

∂x̄(j−1)+

]
= 0

Hj− +
∂ϕ

∂tj−
+ µ̄T ∂χ̄

∂tj−
= 0

−H(j−1)+ +
∂ϕ

∂t(j−1)+
+ µ̄T ∂χ̄

∂t(j−1)+
= 0

(2.22)

A concise form is in general preferable. Let ȳ ∈ R
2n+p be a vector which collects

state x̄ (t), adjoint λ̄ (t) and (constant) unknown parameters c̄ ∈ R
p:

ȳ (t) =
(
x̄ (t) , λ̄ (t) , c̄

)T
(2.23)
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Recalling the notation of section [2.2.1] (eq 2.5), it is possible to define two vectors

that collect the values that ȳ assumes at either side of the boundaries (e.g., at the

interfaces):

Ȳ+ =
{
ȳ(j−1)+, ∀ j = 1, . . . , nf

}
Ȳ− = {ȳj−, ∀ j = 1, . . . , nf} (2.24)

The Hamiltonian BVP can now be rewritten as:




dȳ

dt
(t) = F̄ (ȳ (t) , ū (t) , t) , ∀t ∈ [t0, tf ]

s.t.

∂H

∂ū
= 0, ∀t ∈ [t0, tf ]

Ψ̄
(
Ȳ+, T̄+, Ȳ−, T̄−

)
= 0

(2.25)

where Ψ̄ is the vector of the boundary conditions.

2.3.2 Numerical Methods for Indirect Optimization

Indirect methods permit to obtain the solution of optimal control problems via the so-

lution of Hamiltonian boundary problems. Numerical methods than can be employed

to solve generic BVPs falls into two categories: shooting techniques and collocation

methods. Beside these general-purpose methods, a sequential gradient restoration al-

gorithm can be used to solve nonlinear BVPs that come from optimal control problems.

Shooting methods transform a BVP into a sequence of IVPs leaded to convergence by

a Newton-like method (or a gradient one). They are appealing because simple to un-

derstand, yet very efficient as they exploit performing and well-established algorithms

for the solution of initial value problems. However, the success of their use is strongly

linked to the behavior of the IVP: whether the system dynamics is unstable or chaotic,

convergence issues arise and the solution might not be attained. Collocation methods

are conceptually different, as no initial value problem is explicitly integrated; instead,

an approximate solution is sought over the entire interval of interest. This permits a

more global approach to the BVP solution, where convergence issues due to IVP insta-

bility are avoided. Unfortunately, these methods rely on low order quadrature schemes,

therefore their computational efficiency is lower than a shooting method. Sequential

Gradient Restoration [40, 41] is a very robust algorithm that has been extensively used

in aerospace vehicle problems. It relies on the solution of many auxiliary linear two
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point boundary value problems, whose solution is found via the method of particular

solutions. The solution of the original HBVP is found iteratively, after performing a

sequence of gradient and restoration steps.

The purpose of this section is to outline key features of these methods and their

more suitable application fields, in order to justify the choice of the simple shooting

technique as solution method used in the remaining part of this thesis. For a more

comprehensive treatment of the numerical solution of boundary value problems the

reader can refers to Ascher [17, 42] and Keller [16].

Shooting Methods

Shooting techniques are useful and easy-to-understand methods to solve boundary value

problems. The solution procedure consists in finding the vector of initial values and

unknown parameters ȳ∗0 which permits the fulfillment of all the boundary conditions

(within a prescribed tolerance). The value of the dependent variables at the boundaries

(i.e., Ȳ+, Ȳ−) can be calculated via numerical integration of the ODE system once initial

conditions ȳ0 are fully assigned. Thus, it is possible to rewrite (implicitly) the boundary

condition vector in terms of the initial values only. The result is a multi-application,

named Shooting Function S, which associates to any initial “state” a residual on the

boundary conditions:

S : RK → R
K

ȳ0 7→ Ψ̄
(
Ȳ+ (ȳ0) , T̄+ (ȳ0) , Ȳ− (ȳ0) , T̄− (ȳ0)

)
(2.26)

where K is the problem dimension (without any further simplification K equals the

dimension of ȳ0, therefore K = 2n+ p). The roots of the shooting function provide the

BVP solutions.

The task to be performed consists formally in solving a (nonlinear) root-finding

problem which can be handled by standard (and well-established) numerical algorithms

[43]. Ideally, the boundary value problem is transformed into a sequence of initial value

problems (since any iteration of the root-finding method involves, at least, the solution

of an IVP) led to convergence by means of a gradient or (better) a Newton-like method.

The intuitive appeal of this approach is strengthened by the advanced state of numerical

analysis for IVPs: good numerical methods for such problems are well developed [44];

efficient, flexible, general-purpose software is readily available in any mathematical
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software library NetLib [45, 46], Nag [47]. Thus, one is able, at least in principle, to

solve BVPs numerically with minimal problem analysis and preparation.

Unfortunately, the convergence of this method cannot be guaranteed under general

assumptions (otherwise the existence of other solution methods would be inexplicable).

Simple shooting is usually successful if the ODE system is not seriously unstable or very

stiff for step-by-step solution, and good initial estimates can be found for the unknowns.

A sufficiently good initial guess is required because shooting with a wrong initial guess

may lead to an IVP whose solution might not exist over the whole integration domain

and this would prevent the iterative process from converging. On the other hand, the

stability of the IVP is required to guarantee the stability of the shooting algorithm.

In fact, even when the BVP is well-conditioned, the simple shooting method can be

useless if the IVP is unstable (i.e., it has fast -growing/-decaying modes or it has

a chaotic behavior) because it would lead to a disastrous accumulation of round-off

errors. This situation arises, for example, when dealing with the restricted three body

problem. Here the chaotic dynamics reduce greatly the convergence possibilities of this

method [48, 49] which usually does not converge at all, unless the machine precision is

incremented (i.e., using quadruple precision).

There are many variant of the single shooting method that aim to enlarge its applica-

bility field and reduce the drawbacks just highlighted; among them the most important

is surely the multiple shooting method. The idea is to split the integration domain into

smaller sub-domains. Analogously to single shooting, the values of the dependent vari-

ables at the beginning of each sub-domain(i.e. shooting node) are assumed as problem

unknowns, but here separate integrations (i.e. solution segment) over each sub-domain

are performed. The continuity of the original solution is restored by adding proper

conditions at the edges of each interval. A new shooting function, which encompasses

both continuity and the boundary conditions, is defined. As results, this method is

more robust than the previous one; in fact the round-off error accumulation is bounded

because each integration domain is smaller. On the other side, the number of unknowns

is greater because it includes state and adjoint variables at any mesh point; more un-

knowns need to be guessed and hence the computational time increases. Again, it can

be reduced by exploiting the structure of the new problem (i.e. the sparsity of the

new shooting function); however, the simplicity of the single shooting method, which
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is also its charming feature, is lost. For these reason the simple shooting method was

preferred in this thesis.

Collocation Methods

In collocation methods, the (continuous) solution components of the boundary value

problem (that are both state, adjoint and control variables) are approximated by

piecewise-continuous functions. First, the time horizon is split into several sub-intervals,

thus creating a mesh. Each sub-interval contains a small number of collocation points

(whose number and position depend on the order of the method). The values of the BVP

dependent variables at the collocation points are the newly-defined problem unknowns.

At each collocation point the approximated solution has to verify exactly the differential

equations of the BVP; instead, the continuity of piecewise function is enforced at any

mesh point, together with boundary conditions, if any. Depending on the form of the

approximated solution, we can have polynomial collocation, if the approximate solution

is piecewise-polynomial, or orthogonal collocation, if the solution is approximated by

a finite orthogonal polynomial expansion (notice that collocation points are located in

different spots in either case). The nonlinear system of equations, which arise, is solved

by means of a Newton-like method. The attained precision strongly depends on the

mesh selection (and on the order of the polynomial approximation). The bigger the

sub-interval number, the better the precision. Therefore, whenever high accuracy is

demanded, the number of unknowns grows and the computation time increases conse-

quently. As for direct methods, by exploiting the sparsity of the equations’ system and

proper parallelization techniques, it is possible to reduce the computation time. Finite

difference methods can be assimilated to collocation methods, albeit there are some

differences. Indeed, they share qualitatively the same strength and weakness points.

Gradient Restoration algorithm

A peculiar method to solve nonlinear Hamiltonian boundary value problems is the

sequential Gradient Restoration algorithm proposed by Miele [40]. Here the solution of

the original BVP is found through a cycle of gradient and restoration phases, each one

involving the solution of a linear boundary value problem. The gradient phase aims to

reduce the error in the optimality conditions, while the restoration phase is designed to

force constraints satisfaction. To attain these goals, both phases are written as optimal

28



2.3 Indirect Methods

control problems. In the gradient phase the first-order change of the functional becomes

the merit index to be minimized, subjected to the linearized differential equations, the

linearized boundary conditions, and a quadratic constraint on the variations of control

and additional unknown parameters. In the restoration phase, a functional quadratic

in the variations of control and parameters is the merit index to minimize, subjected

to the linearized differential equations and the linearized boundary conditions. The

Hamiltonian BVPs associated to these optimal control problems are linear; hence their

solution can be attained by the method of particular solution. After each gradient

iteration, many restoration iterations are repeated until the error in the constraints

(both algebraic and differential ones) of the original, nonlinear, HBVP is (almost)

completely reduced to zero. Then a new gradient iteration takes place. The cycle ends

when at the end of a restoration phase both errors in the optimality conditions (of

the nonlinear HBVP) and errors in the constraints are below a given tolerance. This

method proved to be very robust and it has been extensively used in aeronautical and

space optimization. An important property is that it produces a sequence of feasible

suboptimal solutions. The main drawbacks of this technique is the slow convergence

rate to the final solution.

In this thesis an indirect method is used to obtain the solution of optimal control

problems. The Hamiltonian boundary problems that arose are solved by means of a

Simple Shooting Method. This choice is motivated by the simplicity, then flexibility,

and the superior speed of this method in comparison to the others.
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Chapter 3

Techniques for Bang-Bang

Optimal Control Problems

3.1 Introduction

In the context of optimal control problems (not restricted to space applications, but

more frequently in that case), there are many problems where the magnitude of the

optimal control is bounded and assumes alternatively the maximum and the minimum

achievable value. Control laws which exhibit such behavior are referred as bang-bang

controls and the associated optimal control problems are therefore named bang-bang

optimal control problems (or problems with bang-bang solution). The principal subject

of this Chapter is the analysis of the main difficulties related to this peculiar class of

problems and of the numerical solution methods that can be adopted to overcome them.

A general formulation for this kind of problems and the application of Pontryagin

Maximum Principle in these specific instances are proposed in section [3.2.1]. The

boundary value problems generated by a “pure” application of the Optimal Control

Theory to this class of OCP are shown to be difficult to solve as they are. The principal

issue in the numerical solution process consists of the precise determination of the

switching instants, especially whenever their number is high. Numerical issues are due

to the fact that the shooting function associated to the problem may be discontinuous

and/or non-differentiable. Moreover, the Jacobian matrix of the shooting function may

be singular for a given set of values. The radius of the attraction basin for the root

of the shooting function is therefore reduced. A greater difficulty in the initialization
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of the shooting method is induced. Last but not least, the RHS of the ODE system

contains discontinuous terms that may corrupt the computed values of the shooting

function.

In this Chapter, two different ways to handle these issues are described. A Multi-

Bound approach is proposed first in section [3.3]. A different approach which makes

use a mix of smoothing and continuation techniques is presented in section [3.4].

The Multi-Bound approach arises from the following considerations: when the

switch on/off sequence is known (or reasonably guessed), it is possible to solve the

problem (and avoid the numerical issues due to the bang-bang control) by performing

a transformation which exploits this knowledge in order to restrict the search domain

(that is, the solution domain). A mission structure is set, defining a sequence of phases

where the control magnitude is alternatively maximum (propelled arcs) or null (coast

arcs). This result is achieved by implementing a different set of differential equations

in each arc: the thrust term is present in the propelled ones, it is removed in the coast-

ing ones. The arc durations, which are usually unknown, become additional unknown

parameters, whose values state clearly the switch instants of the control law. An equal

number of boundary conditions have to be added (one for each switch point). Discon-

tinuities are no longer present inside any arc (they are present only at arc extremities).

The integration is therefore simpler, straightforward, and the regularity of the shooting

function (as well as the Jacobian Matrix) is enhanced. The solution of this augmented

problem is checked “a posteriori” (i.e., after it is solved) in order to ensure that it is

the correct solution of the original bang-bang optimal control problem; otherwise a

different phase sequence is tried until Pontryagin Maximum Principle is satisfied.

Conversely, smoothing techniques aim to regularize the problem (i.e., the control)

and hence to enlarge the convergence basin of the root-finding method. A continuation

is performed in order to achieve the solution of original problem, starting from the

solution of a more regular problem, and moving through a series of auxiliary problems.

A way to produce a more regular control consists in modifying the objective function

of the problem introducing a perturbation term which depends on a parameter. The

problem nature changes, due to transformation of the merit index; the optimal solu-

tion (i.e., the optimal control) and the shooting function are made more regular. The

perturbation parameter is updated by either a continuation or a homotopy procedure

[50, 51]. A rigorous justification of the convergence of the auxiliary problem sequence
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to the original one can be demonstrated (under some hypothesis) and a simple proof is

also provided in section [3.4.1.2]. The “par excellence” perturbation term, is a quadratic

penalty. The reader can refer to Dadebo [52], Edgar [53, 54], or Jacobson [55] for further

details. Afterwards, great effort was spent to improve the choice of the perturbation

function in order to obtain better results than those obtained with the quadratic one:

a whole class of (almost always) continuously differentiable control law was obtained,

employing different perturbative terms [14]. Special emphasis is given here to smooth-

ing techniques based on the use of a barrier function, since it was adopted to solve

the complex problem formulated in Chapter 4 and 5. In the following sections these

rudimentary concepts will be deeply explained and the effectiveness of each approach

will be proved on a simple problem (sections [3.2.3] and [3.4.2]).

3.2 Bang-Bang control problems

In this section, a general formulation and the necessary optimal conditions related

to Bang-Bang control problems are provided. The difficulties encountered during the

numerical solution process are stated in section [3.2.2]. A simple example is proposed

in section [3.3.3] in order to show the related issues.

3.2.1 Problem Formulation

The formulation of an optimal control problem proposed in Chapter 2 is as general

as possible and the differential equations may be nonlinear in both state and control

variables. Henceforward only systems that can be modeled with differential equations

which are affine in the control vector will be considered. Most of space trajectory opti-

mization problems (including those faced in this thesis) can be arranged to match this

formulation. It will be shown that for this kind of system, if the control is constrained

in magnitude and the merit index is linear in the control magnitude, the control shows

a bang-bang behavior.

The problem under analysis has a dynamic model that can be written in the fol-

lowing form:

˙̄x (t) = f̄ (x̄ (t) , t) + ¯̄g (x̄ (t) , t) ū (t) , ∀t ∈ [t0, t1] (3.1)
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The control is constrained in modulus; without any loss of generality this can be stated

by:

‖ū (t)‖ ≤ 1 (3.2)

The dimension of the state and control vectors are the same as those provided previously

in section [2.2]. The system dynamics depends on the state of the system, but in general

it may also depend explicitly on the independent variable time (for non autonomous

systems). However, it is always possible to write a non-autonomous problem in an

autonomous form simply by adding a fictitious state variable. Therefore the more

concise notations f̄ (x̄ (t)) and ¯̄g (x̄ (t)) can be used without any lack of generality.

The system dynamics is split into two parts: a free-motion part, which correspond

to the vector f̄ (x̄ (t)) whose dimension is n × 1, and a controlled-motion part, which

correspond to the vector ¯̄g (x̄ (t)) ū (t), where ¯̄g is a n × m matrix and ū (t) a m × 1

vector. The functions f̄ (·) and ¯̄g (·) are assumed to be sufficiently smooth. Initial and

final constraint are the same discussed in Chapter 2.

A really simple derivation of the optimal control law is provided. Use is made only

of the Pontryagin Maximum Principle and of elementary geometric considerations. Let

J be the merit index (here expressed in the Lagrange form) to be maximized:

J = −
∫ tf

t0

‖ū (t)‖dt (3.3)

Let U be the set of all the permitted command u (t), constrained to a magnitude

less or equal to one:

U =
{
ū ∈ L2 ([t0, t1] ;R

m) , ‖ū (t)‖ ≤ 1, ∀t ∈ [t0, t1]
}

(3.4)

The Hamiltonian associated to this problem can be stated as:

H
(
x̄ (t) , ū (t) , λ̄ (t) , t

)
= −‖ū (t)‖+ λ̄(t)T

[
f̄ (x̄ (t)) + ¯̄g (x̄ (t)) ū (t)

]
(3.5)

The optimal control law ū∗ (t) can be found by applying the Pontryagin Maximum

Principle, thus by definition:

ū∗(t) = arg max
‖w̄‖≤1

[
λ̄(t)T ¯̄g (x̄ (t)) w̄ − ‖w̄‖

]
, ∀t ∈ [t0, t1] (3.6)
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Clearly, if λ̄(t)T ¯̄g (x̄ (t)) = 0, then u∗ (t) = 0. Otherwise, the analytical expression of

ū∗ (t) must be obtained through some mathematical manipulations. Rewriting the

vector w̄ in order to make evident its magnitude β and its direction v̂, one gets:

w̄ = βv̂, withβ ≥ 0, ‖v̂‖ = 1 (3.7)

The Hamiltonian can now be stated as:

H
(
x̄ (t) , ū (t) , λ̄ (t) , t

)
= λ̄(t)T f̄ (x̄ (t)) + β (t) λ̄(t)T ¯̄g (x̄ (t)) v̂ (t)− β (t) (3.8)

and the optimal control is defined by:

ū∗ (t) = arg max
‖v̂‖=1
0≤β≤1

[
β
(
λ̄(t)T ¯̄g (x̄ (t)) v̂ − 1

)]
, ∀t ∈ [t0, t1] (3.9)

Independently of the control magnitude (which must be non negative in any case), the

control direction v̂ that maximize the Hamiltonian must be a unity vector parallel to

¯̄g(x̄ (t))T λ̄ (t). Therefore:

v̂ (t) =
¯̄g(x̄ (t))T λ̄ (t)∥∥∥¯̄g(x̄ (t))T λ̄ (t)

∥∥∥
(3.10)

and the Hamiltonian becomes:

H
(
x̄ (t) , ū (t) , λ̄ (t) , t

)
= λ̄(t)T f̄ (x̄ (t)) + β (t)

(∥∥∥¯̄g(x̄ (t))T λ̄ (t)
∥∥∥− 1

)
(3.11)

The coefficient of the control magnitude β (t) is collected in a function named Switch

Function:

SF (t) =
∥∥∥¯̄g(x̄ (t))T λ̄ (t)

∥∥∥− 1 (3.12)

Considering fixed any other variable, the control magnitude β (t) that maximizes the

Hamiltonian is the maximum (allowed) value if the Switch Function is positive, the

minimum if negative. The optimal control function is therefore:

ū∗ (t) =





0 if
∥∥∥¯̄g(x̄ (t))T λ̄ (t)

∥∥∥ = 0

β∗ (t)
¯̄g(x̄(t))T λ̄(t)

‖¯̄g(x̄(t))T λ̄(t)‖ if
∥∥∥¯̄g(x̄ (t))T λ̄ (t)

∥∥∥ 6= 0
(3.13)

with

β∗ (t) =

{
0 if SF (t) < 0

1 if SF (t) > 0
(3.14)

35



3. TECHNIQUES FOR BANG-BANG OPTIMAL CONTROL
PROBLEMS

This control law is named bang-bang, since its magnitude jumps alternatively from the

maximum to the minimum allowable values (i.e., 0 and 1) and vice versa.

The case of a Switch Function identically null over a finite time interval is not

considered in eq. (3.14). In that occurrence, a singular arc arises: along the portion

of the optimal trajectory where SF = 0, the Hamiltonian is not an explicit function of

the control variables and higher-order necessary conditions are needed to determinate

the optimal control. In particular, all the time derivatives of the Switch Function up to

the least order at which the control appears explicitly have to be posed equal to zero

[39]. However, singular arcs do not exist in the numerical problems considered in this

thesis; thus equation (3.14) encompasses all the possible instances.

3.2.2 Numerical Issues

The most important numerical issues that the user may find in searching for the solution

of an optimal bang-bang problem are summarized in this section. As described in

section [2.3.2], the value of the shooting function (i.e., the errors on the boundary

conditions) of a given BVP are obtained (at least partially) by numerical solution of

the underlying ODE system. This set of differential equations contains some terms

that are not continuous in time, due to the presence of a bang-bang control law. In

these cases, the numerical integration algorithm with adaptive stepsize (such as Runge-

Kutta-Fehlberg [47], but also Adam Moulton [56] which moreover is a multistep one,

that is, it uses past solution history to advance the integration) cannot work properly;

fixed stepsize methods would behave better in case of discontinuities, but their efficiency

is too low to make them useful in practical applications. They might not ensure that

the result is achieved with the prescribed accuracy, especially (but not only) when the

number of discontinuity instances (i.e., switch points) is high (see [57, 58]). Moreover,

for some values of the unknown parameters, the shooting function may not be evaluable

(the integration cannot be terminated) or the attained results has poor precision. The

Newton method or the Hybrid-Powell method [43], which descends from the Newton

one, are used to search of the root of the shooting function. In theses cases, the shooting

function must be sufficiently regular (i.e., the Jacobian matrix must be non singular)

in a neighborhood of the root, so that the numerical method could converge. This

neighborhood is often quite small in case of the shooting function associated to a bang-
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bang control problem. For these reasons, some peculiar techniques must be used to

enlarge the attracting basin of the shooting function roots.

3.2.3 An illustrative example

In this section, a simple example is faced in order to highlight the numerical issues

previously announced. The problem under investigation is the well-known rocket sled

problem: a one-dimensional mass point, with constant mass, has to cover a fixed dis-

tance in a fixed time, arriving and departing with zero velocity. The maximum value of

acceleration or deceleration provided by the control is limited. The goal is to minimize

the control consumption. Numerical data for this application, are nondimensional dis-

tance xf − x0 = 1/2; nondimensional time tf − t0 = 2; control constraint |u| ≤ 1. The

mathematical formulation of the OCP is:

OCP =





max J =

∫ 2

0
− |u (t)| dt

ẍ = u (t) , t ∈ [0, 2]

s.t.

|u| ≤ 1

x (0) = 0; ẋ (0) = 0

x (2) = 1/2; ẋ (2) = 0

(3.15)

The problem can be easily rewritten in order to obtain a system of first order dif-

ferential equations as in eq. (3.1); it is sufficient to use position and velocity to

describe the system state. Therefore, one has state vector x̄ =
[
x v

]T ∈ R
2, con-

trol variable ū = [u] ∈ R, free dynamics f̄ (x̄ (t)) =
[
v 0

]T
, and controlled dynamics

¯̄g (x̄ (t))T ū =
[
0 u

]T
. The adjoint vector λ̄ =

[
λx λv

]T ∈ R
2 is introduced. Finally,

the Hamiltonian can be stated:

H = λxv + λvu− |u| (3.16)

Adjoint variables are subject to Euler-Lagrange equations (2.16):

λ̇x = 0 λ̇v = −λx (3.17)

The switch function is stated by eq. (3.12):

SF (t) =
∥∥∥¯̄g(x̄ (t))T λ̄ (t)

∥∥∥− 1 = |λv (t)| − 1 (3.18)
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hence, the control law is:

u (t) =




β (t)

λv

|λv|
if λv 6= 0

0 if λv = 0
with β (t) =

{
0 if SF ≤ 0

1 if SF > 0
(3.19)

that can also be written in a more concise form:

u (t) =





−1 if λv < −1

0 if −1 ≤ λv ≤ 1

+1 if λv > +1

(3.20)

The BVP that arises is:

BV P =





ẏ = F̄ (y (t) , u (t) , t) =





ẋ = v

v̇ = u

λ̇x = 0

λ̇v = λx

, t ∈ [0, 2]

x (0) = 0 x (2) = 1/2
v (0) = 0 v (2) = 0

(3.21)

Due to its simplicity, this BVP can be solved analytically. The solution of the

boundary value problem is unique and it is attained for [λx0 , λv0 ] =
[√

2,
√
2
]
. The

optimal trajectory x̄∗ (·) and the associated control law u∗ (·) are shown in Figure 3.1

and 3.2.

From a numerical point of view, the BVP can be solved by a shooting method, that

is, by looking for the roots of the associated shooting function S, which is defined as:

S : R2 → R
2

z̄ = [λx0 , λv0 ] 7→ x̄f − [1/2, 0]
(3.22)

Some of the issues concerning the solution of bang-bang control problems (anticipated

in section [3.2.2]) can be found even in this simple example. The BVP is numerically

well conditioned, and the loss of accuracy along the integration is not noteworthy.

Instead, there are significant regions of the search space where the Jacobian matrix of

the shooting function is not defined or where it singular.

Figure 3.3(a) and 3.3(b) show the behavior of the shooting function components

S1 (z̄) = xf − 1/2 and S2 (z̄) = vf over a portion of the search space. The uniqueness

of the solution is visually confirmed by Figure 3.3(c), which presents the norm of
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Figure 3.1: Optimal trajectory for the rocket sled problem in the phase space.
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Figure 3.2: Optimal control law u∗ for the rocket sled problem.

the shooting function over the same domain. In particular, the surface of both error

components shows the existence of 3 plateaux, where the Jacobian matrix is singular.

The search space can be partitioned into zones with different control structures,

meaning that each guess that belongs to that region corresponds to a solution with

the same control structure. A graphical presentation of these zones is presented in

Figure 3.4. Each region is named so that its subscript provides immediately all the

information on the control structure (number of switches and the control value); in

particular, the subscript contains the value assumed by the control variable all along
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Figure 3.3: Components and norm of the Shooting function for the rocket sled problem.
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the trajectory (e.g. U+1,0,−1 stands for a region with a acceleration, u = 1, a coasting,

u = 0, and a deceleration, u = −1). Observe that this graphical analysis of the control

structure as a function of the unknown vector z̄ is here possible (and quite clear) only

because the search space has dimension 2 (that is, z̄ ∈ R
2), whereas in practical cases

it cannot be used due to the higher problem dimensionality.

Nine different control law regions exist. Control structures can feature 0, 1, or 2

switching points. In three regions (U+1, U0, U−1) there are no switching points. These

regions extend over the sets:

U1 = {z̄ | z2 > 2z1 − 1 ∧ z2 > 1 } (3.23)

U0 = {z̄ | 2z1 − 1 < z2 < 2z1 + 1 ∧ −1 < z2 < +1} (3.24)

U−1 = {z̄ | z2 < 2z1 − 1 ∧ z2 < −1 } (3.25)

Here there is a “lack of control”, or, to be precise, a lack of possibility of modifying

the control (hence the trajectory) by a small change of the unknowns. Therefore, the

shooting function is constant in these regions, and the Jacobian matrix singular.

The Jacobian is not defined along the 4 semi-straight lines (highlighted in bold in

Figure 3.4) that bound regions where the Jacobian is singular:

l1 = {z2 = 1 ∧ z1 < 1} (3.26)

l2 = {z2 = 2z1 + 1 ∧ z1 ≥ −1} (3.27)

l3 = {z2 = 2z1 − 1 ∧ z1 < 1} (3.28)

l4 = {z2 = −1 ∧ z1 ≥ −1} (3.29)

In the same figure, dotted lines separate zone with different control laws where the

transition is instead smooth.

Ignoring the knowledge of the analytical solution, the numerical shooting method

proposed in Chapter 2 for the solution of BVPs can be here employed. The convergence

of the method depends on the specific root-finding algorithm, on its setup, and on

the given initial guess z̄0. To highlight the convergence region for each of the root-

finding algorithms, all the points belonging to the uniform 51 × 51 grid defined over

the set D = [−10, 10]2 were considered as initial guesses. Results are presented in

Figure 3.5: each point of the grid (hence initial guess) which leads to the optimal

solution is indicated with a mark; points not leading to the optimal solution are left
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Subscripts refer to the control structure that characterize each region.

unmarked. Hybrid-Powell method performs better than relaxed Newton method in

this test, despite the relaxation factor values. However, increasing the relaxation (i.e.,

reducing the relaxation factor Rmin) the convergence region widen.

3.3 Solution through a Multi-Bound approach

In this section the Multi-Bound approach, which has proven its capability of handling

bang-bang control problems in many circumstances [13, 59], is described. First, the

technique is introduced in an intuitive way; subsequently, a more rigorous and analytical

development is performed. Afterwards, strengths and weaknesses of this method are

enlightened in section [3.3.2] and verified in section [3.3.3] through the application at

the illustrative example discussed in section [3.2.3].

3.3.1 Method description

In section [3.2.2] it was pointed out that many troubles connected to bang-bang con-

trol problems are linked to the solution of ODE system with discontinuous RHS. If all

commutation instants (i.e., the switch on/off instants) were known, one could imagine
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Figure 3.5: Convergence map for the rocket sled problem: comparison between Relaxed

Newton method and Hybrid Powell method.

to split the integration domain into many subsets where the control magnitude is al-

ternatively null or maximum. The discontinuities would be moved at the edges of the

integration intervals and only continuous, smooth, terms would be still present in the

RHS. None of the shortcomings described above would have place. However, commu-

tation instants are not known in advance in practical optimal control problems. To

be precise, both their overall number and their values are unknown. In fact, these are

often the most interesting information that comes out from optimization. Therefore,

this transformation seems not to be possible at a first glance.

The crucial point is that, if the sequence of thrust and coast arc is known (and

consequently the number of commutation points is known), it is possible to build an

augmented optimal control problem where the control magnitude is no longer unknown

but fixed and fulfills control constraint eq. (3.2), assuming either the minimum or

maximum allowed values. The values of the independent variable at the switch instants

are considered additional unknown parameters and become part of the BVP solution.

The Multi-Bound approach is based on this assumption, which is better described in
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the following.

Let B be an assumed mission structure (i.e., a sequence of burn and coast arcs).

Each mission structure corresponds to a precise subdivision of the trajectory into a

finite number ncmp of arcs (or phases) and consequently a precise number of switch

points nsw. These two integer numbers are linked by the relation nsw = ncmp − 1.

From a mathematical point of view, the mission structure B can be seen as a set of the

values that the magnitude of the control assumes in each arc, therefore

B = {βi, i = 1, . . . , ncmp} , with βi = {0, 1} (3.30)

A new independent variable tε is introduced. The purpose is to rescale each integration

interval, so that independent variable always assumes known integer values at the edges:

tε = i− 1 +
t− t|i−1

t|i − t|i−1

, i = 1 . . . ncmp (3.31)

where t|i is the (unknown) value of the independent variable (i.e., the time) at the i-th

boundary. Sometimes it may be useful to consider as unknowns the time-lengths τi of

the original intervals instead of the switch instants. These two sets of unknown are

related by the following equation:

τi = t|i − t|i−1, i = 1 . . . ncmp (3.32)

Eventually, the augmented MPBVP has nsw = ncmp − 1 additional unknowns, in com-

parison with the original problem. An equal number of sufficient optimality conditions

is provided by the application of the transversality conditions (eqs. 2.18 to 2.21) at

the internal bounds. State variables are all continuous at these boundaries and none

is subject to other constraints. Therefore the corresponding adjoint variables are also

continuous (c.f. section [2.3.1]):

x̄|i− − x̄|i+ = 0, i = 1, . . . , nsw (3.33)

λ̄
∣∣
i−

− λ̄
∣∣
i+

= 0, i = 1, . . . , nsw (3.34)

Moreover, the time is continuous and free, thus the Hamiltonian is continuous:

t|i− − t|i+ = 0, i = 1, . . . , nsw (3.35)

H|i− − H|i+ = 0, i = 1, . . . , nsw (3.36)
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The Hamiltonian can be expanded so that the command magnitude appears explicitly:

H = λ̄T f̄ (x̄) + λ̄T ¯̄g (x̄) ū− ‖ū‖ (3.37)

By replacing control vector ū with the optimal control expression found in section

[3.2.1], it becomes:

H = λ̄T f̄ (x̄) + β
(
1 +

∥∥∥¯̄g(x̄)T λ̄
∥∥∥
)

= λ̄T f̄ (x̄) + βSF

(3.38)

Thus, the optimality condition at the internal boundary is:

λ̄
∣∣
i−

T
f̄
(
x̄|i−

)
+ βi−SF |i− − λ̄

∣∣
i+

T
f̄
(
x̄|i+

)
+ βi+SF |i+ = 0 (3.39)

Recalling the continuity of state and adjoint variables at the switching boundaries,

eqs. (3.33-3.34), one has SF |i− = SF |i+ and the optimality condition becomes:

(βi− − βi+) SF |i = 0 (3.40)

being dropped the unnecessary plus and minus signs of the switch function. The se-

quence of arcs is characterized by an alternate of full-thrust and null-thrust arcs; there-

fore one of the two control magnitude values (βi− or βi+) is equal to zero, while the

other is unitary. Thus, the additional boundary conditions, either in the case of a

switch-on or a of switch-of boundary, can be written as:

SF |i = 0, i = 1, . . . , nsw (3.41)

In general, it is possible to define several strategies, each one corresponding to a

different augmented OCP. However, it is probable that some of them have a solution.

Among all the physically acceptable solutions, those solving the original BVP are those

which respect the Pontryagin Maximum Principle; the associated switch sequences are

(locally) optimal. It is worthwhile to stress here that even the original BVP may have

more than one physical solution. This is a common situation in real application (such

as in the case of multi-revolution finite-thrust transfers). Anyway, for each physical

solution of the original BVP there is just one solution of an augmented BVP which is

both physical and PMP-respecting. Indeed, if the original BVP has only one solution,

so will have the set of the augmented one.
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The mathematical condition that ensures the respect of PMP is the same as eq. (3.14),

but it is formulated in the inverse fashion:

SF (tε)

{
< 0 if βi = 0

> 0 if βi = 1
, ∀tε ∈ ]i− 1, i[ , ∀i ∈ [1, ncmp] (3.42)

In the framework of the Multi-Bound approach, this condition can be also referred to as

PMP optimality criterion. Besides allowing to distinguish between (locally) “optimal”

and “sub-optimal” solutions, the Pontryagin maximum principle will be used to address

the research of the right switch sequence, whenever the assigned one produces a solution

which does not satisfy eq. (3.42). In fact, by inspecting the switch function of the

solution of an augmented BVP, one can devise many information on the basis of which

the mission structure is changed (to achieve a better merit index).

A solution which respects the PMP optimality condition is represented in Fig-

ure 3.6(a). The switch function assumes negative values during the coast arcs (which is

in the middle) and positive values in the burn arcs (at the left and right sides) β|i = 1.

The case of a non-PMP solution is shown in Figure 3.6(b). The switch function is

positive inside a coast-arc. In this case it is easy to demonstrate that this solution

can be improved by adding a propelled arc inside the coasting. In fact, by introducing

an infinitesimal thrust in a point where SF > 0, the Hamiltonian (eq. 3.38) increases,

thus the merit index increases. The instants which correspond to points where the

switch function crosses the zero, constitute a reasonable initial guess for the additional

two unknowns introduced by splitting the original coast-arc into a three-arc sequence

(coasting-thrust-coasting). An analogous procedure is advisable in the case shown in

Figure 3.6(c), where a burn arc contains an interval with SF < 0.

3.3.2 Remarks on Multi-Bound approach

Apart from the aforementioned cases, where it is quite evident how to modify properly

the switch structure B, an all-embracing rule that indicates how to adjust the burn

structure in order to satisfy PMP cannot be formulated. In fact, the switch function

SF (t) depends in a pretty complex way on the thrust. Therefore, no one can ensure

that adding/removing an arc will be sufficient to produce the desired effect. As a

general rule, the first tried burn-structure should contain the minimum number of

thrust arcs which is necessary to fulfill the constraints (e.g., to reach the desired final
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Figure 3.6: Some examples of Switching Functions.

conditions). In fact, if a solution with too many burn arcs is searched for, it may not

exist or the root-finding method may converge to a solution that has no physical sense

(i.e., time inversion may occur). Once a simple (sub-optimal) solution is found, further

burns can be added (by looking at the switching function graph) in order to improve the

mission. Note that by fixing the structure, the search space is “narrowed”. Actually, the

dimension of the unknown vector is greater, but the sensitivity of the trajectory to each

unknown parameter is strongly reduced. This fact is extremely important as it means

that crude estimate of the adjoint variables (whose optimal value is usually difficult to

figure out) can be used without precluding the attainment of the convergence. As a

final comment, the method cannot be fully automated. A user is needed in order to

propose a reasonable switch structure and to correct it, whenever necessary. However,

an experienced user can exploit his physical knowledge of the problem to produce an

initial guess more suitable than the one produced using other general purpose methods.

Therefore, even quite complex problems can be solved with this approach in a short

amount of time [10].

3.3.3 Application of Multi-Bound Approach to the Rocket Sled prob-

lem

In this section the illustrative example shown in section [3.2.3] is solved by means of

a Multi-Bound approach. The sequence of steps which are necessary to create the
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augmented BVP and find the solution of the original problem are highlighted. Finally,

some remarks are provided to make the reader aware of benefits and limitations of this

approach.

Let OCP eq. (3.15) be the time-fixed rocket sled optimal control problem to be

solved: First, the optimal control theory is applied, as usual, deriving:

• the Hamiltonian:

H = λxv + λvu− |u| (3.43)

• Euler-Lagrange equations:

λ̇x = 0 λ̇v = −λx (3.44)

• the switch function:

SF (t) = |λv (t)| − 1 (3.45)

The control u (t) is split in into its magnitude β (t) and “direction” ω (t)1, the latter

being defined by eq. (3.10), that is:

ω (t) = λv/ |λv| (3.46)

Observe that in this case the control is a scalar variable and the optimal direction

is just the control sign. Instead of deciding the thrust magnitude on the basis of

the switch function (e.g., as in equation 3.14), a mission structure B is introduced.

The first (specific) step of the Multi-Bound approach consists in guessing a proper

mission structure. Simple physical considerations push the user to choose a thrust-

coast-thrust [T-C-T] control structure. This structure consists of 3 phases (that is

ncmp = 3, nsw = 2) and the control magnitude is assigned as follows:

B = {βi, i = 1, . . . , ncmp} = {1, 0, 1} (3.47)

Two additional unknown variables t1 and t2 (which represent the commutation instants)

have to be added to the problem. They must satisfy the condition:

0 ≤ t1 ≤ t2 ≤ 2 (3.48)

1For the sake of clearness, the symbol ω is employed in this section to denote the control direction,

replacing the symbol v̂, used in the previous ones, which here might be confused with the velocity

component v.
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A new independent variable tε is introduced as in eq. (3.31) and the time-lengths of

the three arcs are:

τ1 = t1, τ1 = t2 − t1, τ3 = 2− t2 (3.49)

The augmented BVP is formulated as follows:

BV PAug =





dx

dtε
= τv

dv

dtε
= τβi

λv

|λv|
dλx

dtε
= 0

dλv

dtε
= −τλx

s.t.
x (0) = 0 SF (t1) = 0 SF (t2) = 0 x (2) = 1/2
v (0) = 0 v (2) = 0

(3.50)

with

τ (tε) = τi, ∀tε ∈ [i− 1, i] , i = 1, . . . , ncmp (3.51)

The shooting function associated to the augmented BVP is:

SAug : R
4 → R

4

zAug =
[
t1 t2 λx0 λv0

]
7→
[
x|3 v|3 SF |1 SF |2

]
−
[
1/2 0 0 0

]
(3.52)

Differently from the shooting function S (·) of the bang-bang control problem, SAug (·)
admits many different roots. Table 3.1 collects all the four discovered roots.

Solution t1 t2 λx0 λv0 J

A 0.292893 1.707107 1.414214 1.414214 0.585786

B 0.250000 2.250000 0.000000 1.000000 0.000000

C -0.250000 1.750000 0.000000 -1.000000 0.000000

D -0.224745 2.224745 -0.816497 -0.816497 -0.449490

Table 3.1: Discovered Roots for the Multi-Bound approach, assuming a TCT burn struc-

ture.

Solution “A” corresponds to the original OCP solution, found in section [3.2.3].

Solutions “B”, “C”, and “D” are not physically acceptable, due to one or even two time
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inversions. the unphysical solutions are obtained even if the initial guess was physical

(i.e., if the tentative values for t1 and t2 respect eq. (3.48). If none of the attained

solution were physically acceptable or compatible with PMP, the mission structure

would be properly modified and the solution process would be restarted. In a realistic

scenario, in which the user does not know where the optimal solution is located, it is

possible to extract useful information from the “false-root” solutions to move towards

the optimal one: more difficult the problem, more useful this information. In practical

cases, unlike the present example, it is not possible (or it is too expensive) to perform a

complete exploration the whole search space. The convergence radius of the solutions

is small, and a good initial guess is necessary to obtain the convergence to a solution

(even sub-optimal) which should be used as springboard for the search of the optimal

one.

In this example, if the solution B were attained, the user could envisage that the

time inversion is equivalent to introduce a deceleration, even though u (t) is positive

inside the third arc. The suggestion that the user could draw is that braking is required

in that part of the trajectory. An analogous reasoning could be done concerning the

first arc of solution C; but in this case the negative time length suggests an acceleration

at departure: a positive initial velocity adjoint λv should be chosen, so that u(0) > 0.

Solution D presents simultaneously both situations, and both deductions hold. It is

interesting to visualize the attraction basin of each root, as done with the original OCP

in section [3.2.3]. In this case the dimension of the shooting function domain is greater

than the original one (z ∈ R
2, zAug ∈ R

4); thus the analysis is more complex. Figure 3.7

presents 3 sections of the whole domain, obtained by fixing the time unknowns (t1 and

t2) to some reasonable initial guess. The same 51× 51 grid over the set D = [−10, 10]2

is considered for the unknown initial adjoint variables.

The shooting function is made regular (i.e., the Jacobian matrix is non singular), but

this is done at the expense of an increment of the system dimension and of the creation

of “false-roots”. The other strength point of the Multi-Bound approach, stressed in

the previous section, is the improvement of the numerical behavior of the ODE system.

This enhancement is hidden in the equations themselves, even though it may not be so

evident. It can be observed using the optional output data released by the integration

routine to measure its own performances. These data concern the number of steps

employed to integrate all the trajectory, the number of RHS evaluation, and the number
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Figure 3.7: Convergence Map with the Multi-Bound approach; three educated guesses

for the time unknowns {t1, t2}.

of internal RHS Jacobian evaluations (and of matrix LU decompositions) in case a

stiff problem is detected (and hence a stiff algorithm is used). Table 3.2 presents a

comparison of the data provided by the integration code DLSODAR [60] for the two

cases of the ODE system of the augmented BVP and the original one (they refer to the

optimal trajectory, that is, the solution of the BVPs).

No. steps RHS-s No J-s No

Multi-Bound 31 36 0

Bang-Bang 280 670 70

Table 3.2: Required number of Step, RHS and Jacobian evaluations for the integration

of the rocket sled trajectory.

3.4 Solution through a Continuation-Smoothing technique

In this section a Continuation-Smoothing technique for handling bang-bang control

problems is described. This method is quite general and it aims to improve the nu-

merical solution process without involving any physical knowledge or specific behavior

of the solution. The main principle is perturbing the objective function of the original

problem in order to regularize (i.e., to smooth) the control law, by introducing a penalty

or a barrier function, whose magnitude is scaled by a parameter ǫ. The solution of the
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original problem is found by a gradual reduction (i.e., continuation) of the magnitude

of the perturbing term. The original merit index is recovered for ǫ = 0. Once again,

the effectiveness of this method is shown in section [3.4.2] by applying it to the simple

OCP problem previously described.

3.4.1 Method description

This section is dived in two parts. First, the continuation approach is stated in a clear

and rigorous fashion. Necessary conditions for its convergence are also highlighted.

Some implementation details which may improve the method, are here provided. Then,

some useful perturbing function are considered and the associate control laws are de-

rived. In order to simplify the notation, the vector sign will be dropped in this section.

3.4.1.1 Continuation Approach

The idea underlying a continuation method is to obtain the solution of a complex

problem by building a sequence of (simpler) auxiliary problems which converge to the

original one1. These auxiliary problems are characterized by the same set of differential

equations, initial and final constraints, and control constraints as in original problem.

The difference is made by the merit index, whose expression is:

Jε =

∫ tf

t0

[‖u (t)‖ − εF (‖u (t)‖)] dt =
∫ tf

t0

h (u (t) , ε) dt (3.53)

The smoothing parameter ε belongs to the interval ]0, 1] and the function h (u (t) , ε)

is supposed to be continuous. This approach is classified as penalty approach in case

function F (·) has finite values in 0 and 1, whereas it is named barrier approach if

F (w) → −∞ when w tends to 0 or 1.

The continuation procedure consists in:

• finding the solution of the auxiliary control problem associated with ε = 1 (that

is, the BVP associated with this problem must be solved preliminarily);

• defining a sequence of decreasing values of ε (ε1 = 1 > ε2 > ... > εn);

• solving the BVP associated with ε = εk (k = 2...n) using an initial guess “derived”

by the solution at step k − 1.

1In our case the key point is not the complexity of the problem itself, rather than its regularity.
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• the procedure ends when the desired precision on the objective function is reached,

that is: ∣∣∣Jεk+1

(
u∗εk+1

)
− Jεk

(
u∗εk
)∣∣∣ ≤ ∆Jlimit, ∆Jl imit > 0 (3.54)

where u∗εk is the optimal control which solve the auxiliary control problem associ-

ated to Jεk , while u
∗ corresponds to the optimal control of the original bang-bang

control problem.

Beside this nominal stopping criterion, it may be useful to consider further ending

criteria; for example the procedure may be stopped if ε becomes sufficiently small (i.e.,

ε = εend) or if a maximum step number kmax is reached.

In order to ensure that the sequence Jεk
(
u∗εk
)
, k ∈ N, converge to J (u∗) the function

F (w) must be either non-negative or non-positive for all the w in its definition set (that

is, from 0 to 1). In this way, the functions h (u (t) , ε) are monotonous in ε. In particular,

1) F (w) ≥ 0 ⇒ h (u (t) , ε) = ‖u (t)‖ − εF (‖u (t)‖) ⇒ h is decreasing in ε

(3.55)

2) F (w) ≤ 0 ⇒ h (u (t) , ε) = ‖u (t)‖ − εF (‖u (t)‖) ⇒ h is increasing in ε

(3.56)

The full convergence proof are given by Gergaud [61] for the first case and by

Bell [62] for the second. The former will be use to justify the introduction of penalty

function, for which it is required that F (w) ≥ 0 ∀w ∈ [0, 1]; the latter one to justify

the introduction of barrier function, for which it is required that F (w) ≤ 0 ∀w ∈ ]0, 1[.

The open set in the second case does not constitute a problem.

A simple convergence Proof

A brief demonstration of convergence of the continuation procedure in case 2 - eq. (3.56) -

is stated here. Assuming that F (w) ≤ 0, ∀w ∈ ]0, 1[, it follows immediately that

h (u (t) , ε) is increasing and hence the function Jε (u) is increasing w.r.t. ε; therefore:

Jεk (u) ≤ Jεl (u) ∀εk < εl (3.57)

By its definition, the optimal control u∗α is the control which belongs to the admissibility

set U which satisfies both algebraic and differential constraint imposed by the optimal

control problem and that minimizes the index merit Jα (u). Let the set of all the
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optimal control u∗α associated to any index merit Jα (u) be U∗. It follows by definition

that:

min
u∈U∗

J (u) = J (u∗) (3.58)

and also

min
u∈U∗

Jεk (u) = Jεk
(
u∗εk
)

(3.59)

The following inequality chain can be stated:

Jεk
(
u∗εk
)
= min

u∈U∗
Jεk (u) ≤ Jεk

(
u∗εl
)
≤ Jεl

(
u∗εl
)

(3.60)

The first ≤ comes from the definition, the second one by the eq. (3.57), thus

⇒ Jεk
(
u∗εk
)
≤ Jεl

(
u∗εl
)
, ∀εk < εl (3.61)

which means that the sequence Jεk
(
u∗εk
)
, k ∈ N is decreasing. Recalling the hypothesis

F (w) ≤ 0:

min
u∈U

Jε (u) = min
u∈U




J (u)−ε

∫ tf

t0

F (‖u (t)‖) dt
︸ ︷︷ ︸

≥0





≥ min
u∈U

J (u) = J (u∗) (3.62)

so

Jεk
(
u∗εk
)
≥ J (u∗) ∀k ∈ N (3.63)

which means that the sequence Jεk
(
u∗εk
)
, k ∈ N is bounded from below. Eventually, the

sequence Jεk
(
u∗εk
)
, k ∈ N must converge to J (u∗) since it is decreasing and bounded

from below by the value J (u∗) itself.

Implementation Details A crucial point in the continuation process is the definition

of the εk sequence, that is the definition of the step length. In the author experience,

the best solution is to use a decreasing geometric progression of common ratio γ:

εk+1 = γ εk, with γ < 1 (3.64)

A step-length ( εk − εk+1) as long as possible is desired, in order to speed up the

process. Unluckily, longer steps decrease the chance of convergence, or increase the

risk of jumping from a family of solution to a different one. A good practice is to

use an adaptive step method. Here a quite raw one is proposed: the common ratio
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γ can be decreased (i.e. the step is increased) after m successive solutions are found

consecutively, in order to speed up the process, until a limit value γlimit is reached,

thus:

γk+1 = max
[
γ

′

k+1, γlimit

]
(3.65)

with

γ
′

k+1 =

{
(γk)

1.5 after 5 successive solution are found consecutively

γk otherwise
(3.66)

In case the solution of an auxiliary problem could not be found (i.e., the root-finding

method does not converge), the smoothing parameter is made closer to the previous

one; for example

ε′k+1 =
εk+1 + εk

2
(3.67)

and the common ratio γ is increased:

γk+1 = (γk)
1/2 (3.68)

The solution of the new auxiliary problem can be obtained using as initial guess

the solution of the previous one (Fig. 3.11(a)). An improvement can be obtained by

using a linear extrapolation:

p0εk+1
= p∗εk +

p∗εk − p∗εk−1

εk − εk−1
(εk+1 − εk) (3.69)

where p0εk+1
is the initial guess of the new problem, and p∗εk is the solution of the

auxiliary problem with ε = εk. The advantages are pretty evident as it will be shown

in section [3.4.2].

3.4.1.2 Creation of Smooth Control Laws

In this section some smooth control laws, obtained by the introduction of different

perturbing function into the merit index, are presented. First a quadratic penalty term

is proposed. Second, a logarithmic barrier approach is used, in order to achieve a more

regular control law.
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Quadratic Penalty Approach The most used approach is the quadratic one. The

reader who desires to know different applications of this approach may refer for example

to [52, 63, 64]. The main idea is introducing an energy related term (i.e., ‖u (t)‖2) into
the objective function of the original problem, so that the merit index of the auxiliary

problem with ε0 = 1 is convex. Returning to the notation of the previous section, the

merit index (to be maximized) becomes:

Jq
ε =

∫ t1

t0

[−‖u (t)‖+ ε ‖u (t)‖ (1− ‖u (t)‖)] dt =
∫ t1

t0

hq (u (t) , ε) dt (3.70)

which means that the perturbing function is:

F q (w) = w (1− w) ≥ 0, ∀w ∈ [0, 1] (3.71)

The convergence of the auxiliary problem sequence (Jq
εk

(
u∗εk
)
, k ∈ N) towards J (u∗) is

thus guaranteed (because F q (w) ≥ 0,∀w ∈ [0, 1]). The optimal control law associated

to the merit index (3.3) can be found by applying the optimal control equation (2.17).

If the control vector ū (t) is rewritten in order to make evident its magnitude β and its

direction v̂ as in eq. (3.7), the merit index becomes:

Jq
ε =

∫ t1

t0

[−βq
ε + εβq

ε (1− βq
ε)] dt (3.72)

therefore the Hamiltonian is:

H = λT f (x) + λT g (x)u+ hq (u (t) , ε)

= λT f (x) + βq
ε

(
1 +

∥∥∥g(x)Tλ
∥∥∥
)
+ εβq

ε

(
1− β1

ε

)

= λT f (x) + βq
εSF + ε

(
βq
ε − (βq

ε)
2
)

(3.73)

The optimal control magnitude is:

∂H

∂βq
ε
= 0 ⇒ SF + ε (1− 2βq

ε) = 0 ⇒ β1
ε =

1

2
(1 + SF /ε) (3.74)

subject to the control constraint (3.2), that can be rewritten for convenience as:

0 ≤ βq
ε ≤ 1 (3.75)

Summarizing the last obtained result and those stated in section [3.2.1] concerning the

optimal control direction, the optimal control law can be written as:

uqε (t) =





0 if
∥∥∥g(x (t))Tλ (t)

∥∥∥ = 0

βq
ε (t)

g(x(t))Tλ(t)

‖g(x(t))Tλ(t)‖ if
∥∥∥g(x (t))Tλ (t)

∥∥∥ 6= 0
(3.76)
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with

βq
ε (t) =





0 if SF (t) ≤ −ε
1
2

(
1 + SF (t)

ε

)
if −ε < SF (t) < ε

1 if SF (t) ≥ ε

(3.77)

where the expression for the switch function SF (t) is the same as in eq. (3.12).

A way to “test” the convergence of the smooth control to the bang-bang one is to

measure L2 norm of their difference. Posing SF (t) = z, then βq
ε (t) = β̃q

ε (z) and

β (t) = β̃ (z) , ∀z ∈ R, one has:

∥∥∥β̃q
ε (z)− β̃ (z)

∥∥∥
2

2
=

∫ +∞

−∞

[
β̃q
ε (z)− β̃ (z)

]2
dz =

1

6
ε (3.78)

This implies that the function βq
ε (·) converges in L2 (R,R) towards the function β̃ (·)

when ε tends to 0. Nonetheless, this control law is not differentiable because the

function βq
ε (·) is not. However, the regularity order of u∗ε (·) is superior to that of

original problem, which was discontinuous.

Logarithmic Barrier Approach The use of logarithmic barrier was inspired by

the success of its application in the context of mathematical programming (both linear

and quadratic programming). For example, a wide use of logarithmic barrier is made

in interior point methods for nonlinear constrained optimization [65]. The use of the

barrier concept in the optimal control context can be seen as a natural transposition. By

definition, a bang-bang control assumes only values at the boundaries of its definition set

(i.e., it switch alternatively from 0 to 1 and vice versa). The idea of the barrier approach

is to introduce a perturbative term in the objective function in order to discourage (i.e.

reducing the merit index) strongly the control magnitude from reaching its extremal

values. Logarithmic functions are used here to prevent ‖u (t)‖ to assume values 0 and 1.

The barrier effect is more accentuated at the beginning of the continuation procedure,

where ε = 1, and progressively vanishes as the smoothing parameter approaches zero.

The merit index to maximize in this case is:

JL
ε = −

∫ t1

t0

{‖u (t)‖ − ε [log (‖u (t)‖) + log (1− ‖u (t)‖)]} dt =
∫ t1

t0

hL (u (t) , ε) dt

JL
ε = J + ε

∫ t1

t0

(log (‖u (t)‖) + log (1− ‖u (t)‖)) dt (3.79)
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The perturbing function FL (w) can be easily deduced:

FL (w) = log (w) + log (1− w) (3.80)

The following property can be easily demonstrated:

1. FL (w) ≤ 0, ∀w ∈ ]0, 1]

2. lim
w→0

FL (w) = lim
w→1

FL (w) = −∞ , i.e. FL (·) is a barrier.

Notice that the definition set of the function FL (·) is the open set ]0, 1[, thus the control

cannot achieve its extreme values. The control constraint eq. (3.2) is automatically

ensured (as far as ε 6= 0). Property 1) (c.f. section [3.4.1.1]) permits to ensure that

the sequence of auxiliary problem JL
εk

(
u∗εk
)
, k ∈ N converges to J (u∗). The optimal

control law associated to the merit index eq. (3.3) can be found in the same way of

the quadratic one: the control vector ū (t) is rewritten in order to make evident its

magnitude β and its optimal direction as in eq. (3.7). Thus, the index merit becomes:

JL
ε = J + ε

∫ t1

t0

(
log
(
βL
ε

)
+ log

(
1− βL

ε

))
dt (3.81)

therefore the Hamiltonian is:

H = λT f (x) + λT g (x)u+ hLε
(
βL
ε

)
(3.82)

explicating the optimal thrust direction eq. (3.10), one has:

H = λT f (x) + βL
ε

(
1 +

∥∥∥g(x)Tλ
∥∥∥
)
+ ε

[
log
(
βL
ε

)
+ log

(
1− βL

ε

)]

= λT f (x) + βL
ε SF + ε

[
log
(
βL
ε

)
+ log

(
1− βL

ε

)]
(3.83)

The optimal control magnitude is:

∂H

∂βL
ε

= 0 ⇒ β2
ε (t) =

2ε

SF (t) + 2ε+
√
SF (t)

2 + 4ε2
(3.84)

Summarizing the last obtained results and those stated in section [3.2.1] concerning the

optimal control direction, the optimal control law can be written as:

uLε (t) =





0 if
∥∥∥g(x (t))Tλ (t)

∥∥∥ = 0

βL
ε (t) g(x(t))Tλ(t)

‖g(x(t))Tλ(t)‖ if
∥∥∥g(x (t))Tλ (t)

∥∥∥ 6= 0
(3.85)
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with

βL
ε (t) =

2ε

SF (t) + 2ε+
√
SF (t)

2 + 4ε2
(3.86)

where the switch function SF (t) is still defined by eq. (3.12).

In the same fashion of the previous section, the L2 norm of the difference between

the smooth control law β2
ε (·) and the bang-bang one β̃ (z) is calculated:

∥∥∥β2
ε (z)− β̃ (z)

∥∥∥
2

2
= 4ε (1− log (2)) (3.87)

The convergence for ε → 0 is again proved. In this case, β2
ε (·) is of class C∞. However

u∗ε (·) is non continuous in case the vector g(x (t))Tλ (t) is null. This fact does not

represent a true problem from the practical point of view, as results from its use in

both simple (Chapter 4) and difficult (Chapter 5) problems.

3.4.2 Application of Continuation-Smoothing Approach to the Rocket

Sled problem

In this sections, the smoothed control laws just devised are applied to the illustrative

example of section [3.2.3]. The aim is to confirm numerically the effectiveness of the

Continuation-Smoothing approach. The root-finding algorithm used in these cases is

the Hybrid-Powell one, which proved to be fast and reliable in previous tests. The

problem is formally the same defined by eq (3.21); the difference is made by the control

function, that now is a continuous function of the switching function: in the case

of quadratic penalty, the control is expressed by eq. (3.77), whereas in the case of

logarithmic barrier the control is given by eq. (3.86).

Quadratic Penalty Approach The problem is first solved using as perturbative

term a quadratic penalty. Figure 3.8 presents a succession of optimal control laws

for the auxiliary problem sequence Jq
ε (u∗ε), for ε → 0. First, one can notice that the

control is actually continuous for any ε, as we expected. As the smoothing parameter

is reduced, the corresponding control law becomes more sharp, and finally it becomes

almost bang-bang. The convergence of the smoothed control law to the original one,

demonstrated in section [3.4.1.1] is hence numerically confirmed.

It was stated that a more regular control law permits to enlarge the attraction

basin of the root (i.e., the solution). To prove it, the convergence basin for the problem
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with ε = 1 is searched for. As in section [3.2.3], an uniform 51 × 51 grid over the set

D = [−10, 10]2 is considered for the initial guess. The convergence domain is shown in

Figure 3.9 (any grid point for which the solution is attained is marked with a cross).
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Merit index using a Quadratic Penalty ap-

proach.

The attraction basin is wider than the one of the original problem. This is due to

the creation of a transition zone between the regions where the control is always on

(U+1 and U−1, top left and bottom right respectively) and the other regions. However,

zones where the Jacobian matrix is singular still exist. Figure 3.10 shows the value
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3.4 Solution through a Continuation-Smoothing technique

of the smoothed and original merit index in correspondence of each solved auxiliary

problem (i.e., Jεk
(
u∗εk
)
and J

(
u∗εk
)
respectively). The two sequence are monotonous

and converging to J (u∗), as it was demonstrated in section [3.4.1].

To solve each auxiliary problem, the solution of the previous one is exploited. Fig-

ure 3.11 shows the prediction and correction steps all along the continuation path for

the variable λx0 in case of a “zero-order” extrapolation and of a linear extrapolation

(an analogous graph can be done for the other unknown variable). The effectiveness

of the latter method is quite evident: the linear prediction (Figure 3.11(b)) permits to

have smaller correction steps in comparison to the “zero-order” (Figure 3.11(a)), hence

facilitating the work of the root-finding algorithm.

This is as more important as more complex are the problem faced: for difficult

problems the convergence basin of the auxiliary problem is small; thus, being equal the

correction-steps in either cases, linear extrapolation allows larger continuation-steps.
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Figure 3.11: Continuation path with “zero-order” or “linear” extrapolation, quadratic

penalty approach.

Logarithmic Barrier Approach

The same tests done for the quadratic penalty (on the control law regularization, the

enlargement of the attraction basin, and the convergence of the auxiliary problem

succession to the original one) can be performed using the second smooth control law

that was derived by introducing a logarithmic barrier.

61



3. TECHNIQUES FOR BANG-BANG OPTIMAL CONTROL
PROBLEMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

C
on

tr
ol

 M
ag

ni
tu

de

Time

ε=1      
ε=10−6

Figure 3.12: Control laws using the Logarithmic Barrier approach, several values of the

smoothing parameter.

The resulting control is more regular then the previous one: it is continuous and

even derivable, as made clear by Figure 3.12. The extremal values (i.e., 0 and 1) are

never exactly achieved; therefore, there are not regions of the search space where the

control is always on or always off. Consequently, no plateau is present in either surface

of error components of the shooting function (see Figure 3.13). As the regions where

the Jacobian matrix was singular have vanished, the convergence region is expanded. A

proof is attained by replying the grid initialization performed for testing the quadratic

control. Results shown in Figure 3.14 report that, actually, the convergence is obtained

for any of the tried initial guesses.

The convergence speed of the quadratic and logarithmic approaches can be com-

pared. Figure 3.15 presents the difference between the smoothed and original merit

indexes for each perturbative term. The quadratic penalty approach converges to the

optimal solution more rapidly than the logarithmic barrier one. This can be explained

by recalling that the function β1
ε (·) converges in norm L2 (R,R) toward β̃ (·) more

rapidly than the function β2
ε (·) (c.f. eqs. (3.78) and (3.87)). However, convergence

speed is not the most important effect; rather, it is important the capability in finding

the first solution (i.e., the one for ε = 1) and the overall improvement of the numerical

behavior of the problem. The former point is probably in favor of the quadratic penalty,

while the second goal is better achieved by the logarithmic barrier.
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Figure 3.13: Components and norm of the Shooting function for the rocket sled problem,

using a Logarithmic barrier pertubation with ǫ = 1.
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3.4.3 An Automatic Initialization Procedure

Finding a good initial guess for the shooting procedure of indirect methods is often

difficult. As far as the Multi-Bound approach is concerned, the burn structure can be

explicitly assigned and the user can exploit its knowledge of the physical solution to

attain a reasonable initial trajectory, by manually assigning sequence and duration of

burn and coast arcs.

If the Continuation-Smoothing is applied, the user does not rely on an explicitly

assigned burn structure. The choice of the initial guess becomes more tricky, as the

whole control law depends only on the initial conditions (e.g., the values of state and

adjoint variables). It is usually impossible to envisage a choice of initial values that will

produce a desired burn strategy, hence the user knowledge is not of help. Therefore,

unless the solution of a very similar problem is known, one has to find an “automatic”

initialization procedure, that is, a way to initialize the shooting process without having

to manually select a good initial guess.

A conceptually simple possibility is offered by the so called grid-initialization (or

grid-shooting). The idea is to define a mesh of (usually) equally spaced points over

a finite portion of search space and then use every point as an initial guess for the

shooting method. The finer the shooting grid, the better the possibilities of finding

out the optimal solution. This method is easy to understand and straightforward

to implement, but it has a very low efficiency as the number of grid point increases
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3.4 Solution through a Continuation-Smoothing technique

exponentially with the search space dimension. As this method is computationally too

expensive, it will not be used in this thesis; instead, a different procedure to handle the

initialization task is here suggested.

Whenever the Continuation-Smoothing formulation is used, the initialization task

consists in finding the solution of a “Problem Zero”, that is the problem with the highest

smoothing parameter (usually ε = 1). This goal can be attained by continuation, that

is by solving a sequence of problems which leads from an easy problem (or a problem

whose solution is known) to the “Problem Zero”. Each intermediate problem is solved

by using as initial guess the solution of the previously solved one.

In space flight applications, a trivial problem concerns the time-fixed minimum-fuel

transfer of a spacecraft between two fully-defined orbits that have the same orbital

parameters; in this case, the optimal solution consists just of a coasting arc. Assuming

that the spacecraft state is fully assigned at the departure, the initial adjoint variables

are the only problem unknowns. The solution of this problem is simply given by posing

all the adjoint variables at the departure equal to zero, except for the mass-adjoint

which must be unitary.

Recalling eq. (3.13), a null constant thrust law is attained by setting null adjoint

variables, because
∥∥∥g(x (t))Tλ (t)

∥∥∥ = 0; moreover the switch function is constant along

the trajectory:

SF =
0

m
− 1

c
= −1/c (3.88)

This solution holds whichever perturbative function is used to regularized the control.

If the quadratic penalty is employed and ε = 1, one can notice that the smoothed

control magnitude βq
ǫ is also null, because:

βq
ε (SF ) =

1

2

(
1 +

SF

ε/c

)
→ βq

ε=1

(
SF = −1

c

)
= 0 (3.89)

Therefore, in the special case of a quadratic control law, with ǫ = 1, the control law

uqǫ , given by eq. (3.76), is a continuous function1. Being the control law regular for

this solution (the one with null position-velocity adjoints, and unitary mass adjoint),

the same holds for the shooting function; consequently the Jacobian of the shooting

function is not singular (which is a necessary condition for the functioning of Newton-

like methods).

1This special condition does not hold either if a logarithmic barrier is considered or if the smoothing

parameter ǫ 6= 1.
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The idea for this automatic initialization procedure is to create a “starting problem”

in which the spacecraft is initially on a “virtual” orbit whose parameters are the same

of the final one. The sequence of problems which leads to the original one is obtained by

changing only the “virtual” initial condition, until the “true” initial one is restored. A

smoothed quadratic control law is assumed. We will refer to this process as “orbit-shape

continuation”. The virtual initial conditions that describe the sequence of auxiliary

problems can be written as a linear convex combination of the true initial and final

ones: x̄α = (1− α) x̄0 + (α) x̄f where α is the orbit-shape continuation parameter and

x̄0 and x̄f are the true initial and final conditions respectively. This continuation path

starts with α = 1 and ends with α = 0.

After the continuation on the orbit-shape parameters has been successfully com-

pleted, the continuation on the smoothing parameter could be performed to reach, at

least in theory, the problem solution, by using the quadratic control law eq. (3.77). In

practice, it is quite difficult to complete the continuation process using this (quadratic)

smoothed control law due to its poor numerical behavior; therefore, it is convenient

to adopt a more regularized control law, such as the one produced by the logarithmic

barrier, before starting the continuation on the smoothing parameter. The shift from a

smooth control law to another implies a jump of the solution; the value of the smoothing

parameter εL (relative to the logarithmic barrier problem) has to be chosen carefully, to

avoid an abrupt change in the spacecraft trajectory, as it may lead to the impossibility

of attaining the convergence. Which is the best value of εL to solve the new problem

using as initial guess the solution of the quadratic problem is an open question, as it

is problem-dependent. A direct relationship that links the two smoothing parameters

was not envisaged; neither a way to move continuously from one perturbing function

the other was found. In practice, a simple way obtain a good value is by a trial and

error process: the convergence is attempted starting from εL = 1 and decreasing its

value until a working one is obtained (usually this value lays between 10−1 and 10−2).

Usually, once a working value of εL has been found for a specific mission, that value is

successfully adopted for all similar missions. Thus, the trial and error process can be

performed just once.

This easy but powerful initialization technique can be used to create a self-consistent

procedure (hereafter named Auto-CS algorithm) to solve this class of optimal control

problems with the least effort. A scheme of the solution process is sketched below:
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• define and solve a starting quadratic problem:

the problem is associated to ε = 1, α = 1, the solution is (usually) λ̄x = 0,

λm = 1;

• orbit shape continuation:

solve the sequence of problem for α : 1 → 0;

• control law shift:

solve one problem regularized by using the logarithmic barrier, for an appropriate

value of εL, using the last obtained solution as tentative guess;

• smoothing-parameter continuation:

solve a sequence of problems for decreasing values of the smoothing-parameter,

until a stopping criterion is met.

Albeit no convergence proof can be stated, in practice this initialization process demon-

strated to be capable of achieving the optimal solution in most cases. Results will be

shown in the Chapter 4.

3.5 Method Comparison

In this section, a comparison of the two solution methods for bang-bang control prob-

lems is presented. Relative strength and weakness points concern primarily their usage

(e.g., if they are specific or all-purpose), the effort required to the user (e.g., if they can

be automated or not), and the respective computational burden. The Multi-Bound

approach stems from the idea of exploiting the user (past) knowledge of the control

problem (and of its solution) in order to facilitate the optimization process. The pre-

vious statement clearly explains why the Multi-Bound approach cannot be fully auto-

mated. Nor this approach was derived to be used in this fashion; instead, it is focused

on letting the user masters the situation (i.e., manually adjusting the first guess to

obtain a reasonable solution). Conversely, the Continuation-Smoothing approach is

much more general (in fact it is employed in many different application fields). Only

a few parameters need to be set by the user (they usually are those variables which

specify the continuation process: maximum step length, exit criteria, etc). Moreover,

if it is coupled with a proper automatic initialization procedure, a “black-box” tool for
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solving OCP can be created. This means that, in the case of not too complex prob-

lems, a good solution can be found almost immediately. From a numerical point of

view, the BVPs produced by the Multi-Bound approach are “better” than those ob-

tained by the Smoothing technique. In the former cases, the switch function acts only

through the boundary conditions and does not influence directly the trajectory (which

instead depends on the arc durations). The integration is less sensitive to the initial

conditions; convergence radius is thus enlarged as coarser estimates of the initial con-

ditions are permitted. Beside, in the Multi-Bound approach the ODE system contains

only smooth terms, whereas in those related to the Continuation-Smoothing approach

non-differentiable terms or, at least, fast time-varying terms are always present. Rapid

variation of the control magnitude arises in correspondence of the switch points, where

the optimal bang-bang control would experience its discontinuities. The ODE solver

needs to perform smaller integration steps around these points, thus each shooting func-

tion evaluation is slower than those performed in the Multi-Bound approach. As the

continuation advances, the “bad” numerical behavior of the original problem is restored:

this means that the root attracting basin becomes smaller and smaller. Therefore, very

small continuation steps are often necessary to achieve the convergence using as initial

guess the previously found solution.

Another important strength point of the Multi-Bound approach is the possibility to

perform “solution mining”. The idea is that once that a first (parent) solution is found,

it is possible to find a vein of solution by exploiting the continuous dependence of ODE

solutions on the initial values. For instance, extensive parametric analysis can be done

in this fashion. The solution of a slightly different problem can be found by using the

previous solution as initial guess. This process works because the shooting function

is regular in a “wide” neighborhood of the solution. On the opposite, in the case of

a Continuation-Smoothing approach it is quite difficult, even for problems of medium

complexity, to achieve the same result. A parametric analysis cannot be performed by

exploiting the solution of the last obtained auxiliary problem (i.e., the one with the

lowest value of the smoothing parameter). Usually, solution mining can be performed

only on ε = 1 problems.

In summary, the Multi-Bound approach is more difficult to set up properly than

the Continuation-Smoothing approach, and it requires usually a preliminary study of

the optimal control problem to solve. However, this extra time is rewarded by a more
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regular and numerically “easy to solve” BVP. The best feature of the Continuation-

Smoothing approach is that no hypothesis on the switch sequence is needed in order

to solve the problem. This feature is really valuable whenever the switch sequence is

difficult to forecast, as it is highly dependent on the initial conditions. This is exactly

the case of the applicative problem presented in Chapter 5.

Although in this Chapter the two methods were presented one in opposition to the

other, they are not necessarily alternative. They have both good qualities and troubles.

A way to join the two methods is proposed in Chapter 5. Initially, use is made of the

Continuation-Smoothing approach to find out the optimal switching structure; the

smoothing parameter does not have to reach its lowest value, so numerical issues are

limited. Once the optimal switching structure is “revealed”, the fixed-structure Multi-

Bound approach is employed to produce the final solution (thus avoiding the last hard

steps of the continuation process).
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Chapter 4

A Cooperative Rendezvous

Mission

Introduction

In this chapter, the peculiar approaches (namely the Multi-Bound approach and the

smoothing technique) outlined in Chapter 3 to handle bang-bang optimal control prob-

lems will be employed in the optimization of a typical space flight mission.

The two-spacecraft rendezvous problem is well-known in astrodynamics. Many

researchers dealt with it in the past years; therefore, literature concerning this topic

is wide. Usually the problem concerns one maneuvering spacecraft whose aim is to

chase for a passive target. Results for impulsive-thrust missions [66–72] and for finite-

thrust cases [73] have been presented. The cooperative rendezvous mission, that is the

problem of two maneuvering spacecraft that simultaneously chase one for the other, is

a much more complex problem and few papers can be found on this topics; besides,

most of them assume just impulsive thrust [74].

In this chapter, a finite-thrust time-constrained cooperative rendezvous will be stud-

ied. A simple two-body dynamical model is considered. The aim is twofold. From one

side, this problem is a reasonable benchmark for the techniques previously described: it

is representative of space flight applications, thus it has all the features that one expects

to find in a real problem (multiplicity of solutions, change of the burn structure accord-

ing to the available flight time, etc..); at the same time, it is a well conditioned problem,

whose numerical behavior is not a problem “per se”. In particular, it is interesting to
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evaluate the performance of the automatic initialization procedure (described in the

previous chapter), which exploits some peculiarities of the Continuation-Smoothing

techniques. Solutions found in this way will be checked against with those found man-

ually. To make the latter task easier, the Multi-Bound formulation will be adopted as

the resulting shooting problem is easier to be hand-driven to convergence. From the

other side, the problem has specific interest in this thesis, as it appears a simpler case of

the formation deployment that will be studied in the next chapter. It allows to foresee

the possibility of saving propellant if a cooperative strategy is adopted instead of the

classical chaser/target one; also the limits of this approach will be stressed.

The chapter is organized in this way: first, a comprehensive description of the

rendezvous problem is provided in section [4.1]; the two mission strategies (cooperative

and non-cooperative) will be enunciated. Section [4.2] presents the non-cooperative

(leader/follower) strategy, whereas section [4.3] presents the cooperative rendezvous.

Eventually, a comparison of the numerical results obtained in either cases is provided.

4.1 Problem Statement

A complete statement of the problem under investigation will be provided in this sec-

tion, illustrating the choice of the state variables, the merit index to maximize, the

spacecraft dynamics, and the constraints on initial and final states.

Two spacecraft fly on the same circular orbit of radius r̃0, separated each other

of 180◦ (that is, they are in opposition). Both spacecraft can maneuver and have

identical propulsive features (i.e., initial mass, maximum thrust, specific impulse). At

an assigned final time t̃f , they must have reached a circular orbit of assigned radius

r̃f (greater than the initial one) and they must have completed their rendezvous. For

the sake of simplicity the initial and final orbits are assumed to be coplanar, hence

the problem geometry is two-dimensional. The goal is to find the trajectory, and the

associated control law, that minimizes the overall amount of exhausted propellant.

According to the objective of this study, the two spacecraft can be assumed to be

point-mass objects; the state of each one is fully described by its position, velocity, and

mass. Variables are normalized with respect to the initial radius, the corresponding

circular velocity and the single spacecraft initial mass. The position of each satellite

with respect to an inertial frame is given by a set of polar coordinates r, ϑ. The reference
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frame
{
î; ĵ
}
, chosen to describe the spacecraft velocity, is a topocentric rotating one,

which follows the spacecraft during its motion, keeping the axes pointed in the radial î

and transverse ĵ directions. The two unit vectors î, ĵ are defined with respect to the

Figure 4.1: Reference Frame for planar missions.

inertial reference frame {ĝ1; ĝ2} by the following equations:

î = cosϑ ĝ1 + sinϑ ĝ2

ĵ = − sinϑ ĝ1 + cosϑ ĝ2
(4.1)

The velocity is expressed by means of the radial u and transverse v components re-

spectively. A simple two-body dynamical model is considered; thus the motion of each

spacecraft is described by the following set of differential equations:

˙̄xj = f̄ (x̄j , ūj , t) =





ṙj = uj
ϑ̇j = vj/rj
u̇j = −1/r2j + v2j /rj + Tj,u/mj

v̇j = −ujvj/rj + Tj,v/mj

ṁj = −Tj/cj

, j = I, II (4.2)

where ūj = ~Tj =
(
Tj,u Tj,v

)
is the control vector of the j-th spacecraft, whose compo-

nent are

Tj,u = Tj sinα , Tj,v = Tj cosα (4.3)

The thrust magnitude of both spacecraft is limited to a maximum value Tmax. The

mission performance is evaluated with respect to the overall propellant consumption,
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that is, the sum of the spacecraft consumptions. Equivalently, the merit index to

maximize can be stated as the sum of the final masses of the two spacecraft:

J = mI |f + mII |f (4.4)

The boundary constraints can be easily formulated in terms of the chosen state vari-

ables. The initial state of both spacecraft is completely known and can be expressed

in terms of the initial radius:

rI |0 = r̃0 ϑI |0 = 0 uI |0 = 0 vI |0 =
√
1/r̃0 mI |0 = 1 (4.5)

rII |0 = r̃0 ϑII |0 = π uII |0 = 0 vII |0 =
√
1/r̃0 mII |0 = 1 (4.6)

A the end of the transfer the following rendezvous conditions hold:

rI |f − rII |f = 0 (4.7)

ϑI |f − ϑII |f = 2krevπ (4.8)

uI |f − uII |f = 0 (4.9)

vI |f − vII |f = 0 (4.10)

Moreover the two spacecraft are required to reach the assigned final circular orbit:

rI |f = r̃f uI |f = 0 vI |f =
√
1/r̃f (4.11a-c)

in an assigned time:

t|f = t̃f (4.12)

Numerical data for the example problem, in nondimensional units, are:

r̃0 = 1 r̃f = 1.2 Tmax = 0.1 cI = cII = 1

The proposed problem can be handled by planning a sequential deployment or a

cooperative strategy. In the sequential deployment, the flight of the two spacecraft

is analyzed separately (i.e., in sequence). One spacecraft, the Leader, flies along an

optimal “unconstrained” trajectory to reach the assigned final orbit, minimizing its

propellant consumption without caring about the rendezvous constraint. The other

spacecraft, the Follower, chases for the leader while aiming at minimizing its own pro-

pellant consumption. In the cooperative strategy, the two spacecraft are peer: there
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are no leader and follower roles, but both spacecraft equally operate to accomplish

the final constraints. The deployment is more complex to envisage, as the two space-

craft maneuver simultaneously and, depending on the available time, their propulsive

strategies may change drastically. The higher complexity is rewarded by better overall

performances.

4.2 The Leader / Follower Strategy

In this section of the Leader/Follower strategy will be outlined, highlighting different

mission scenarios. The optimal control problems related to either spacecraft will be

stated; for each one, optimality conditions will be derived and employed to form a

Hamiltonian boundary value problem. Numerical results will be shown.

4.2.1 Strategy overview

The first step is deciding which spacecraft is the Leader and which one is the Follower.

The Leader is privileged, as it flies an independent minimum-fuel transfer, while the

follower alone bears the entire phasing duty, hence the associated cost. For the peculiar

problem under investigation, choosing either spacecraft as the leader is the same: the

spacecraft are almost indistinguishable, because identical from a propulsive point of

view and in opposition one respect the other. Arbitrarily, Sat 2 has been chosen to

be the Leader spacecraft and Sat 1 the Follower. The formation deployment problem

is split into two distinct “basic” optimal control problems: a time-fixed orbit transfer

between two completely defined orbits and a time-fixed rendezvous problem. The de-

ployment of the Leader spacecraft is a self-consistent problem, as the relevant spacecraft

is constrained only to reach the final circular orbit into a given time.

The deployment of the Follower, instead, depends on the Leader trajectory, as the

Follower is constrained to reach the same final circular orbit, but, in addition, at the

final instant it has to attain the same angular position as the Leader. Thus, the Leader

transfer is optimized first, in order to provide the final conditions to define the Follower

mission.

For a given (assigned) flight time, the optimal solution of the Leader deployment

is not unique. Under the assumption that the thrust level is reasonably high and the

available time sufficiently long, the Leader minimize its propellant consumption by
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performing a Hohmann-like transfer, with one burn at the perigee of the transfer orbit

and a second at the apogee1. Indeed, for any assigned final time t̃f greater than the

duration t∗ of the Hohmann-like transfer, there is a whole family of trajectories that

have the same merit index and differ only by the duration of the coasting arcs on the

initial and final orbits.

Once that the solution of Hohmann-like transfer is found, one can devise all the

mission possibilities of the Leader spacecraft, for any assigned final time, by varying

the time length of the coasting arcs on the initial or final orbits. The family of optimal

trajectory of the Leader for any assigned flight duration t̃f can be parameterized in

terms of length of the initial coasting arc τ0. Thus, it is possible to calculate the

angular position of the leader at the end of the trajectory algebraically:

ϑLf
= ϑL0 + ω0τ0 + ϑ∗ + ωf

(
t̃f − t∗ − τ0

)
(4.13)

where:

• ω0, ωf are the angular velocity of the spacecraft on the initial and final orbits;

• ϑL0 is the right ascension of the leader spacecraft at the departure;

• τ0 is the time-length of the initial coasting (subject to 0 ≤ τ0 ≤ t̃f − t∗);

• t∗, ϑ∗ are, respectively, the flight time and the angular distance covered during

the Hohmann-like transfer.

Knowing the numerical values for t∗ and ϑ∗, it is possible to reduce the formation

deployment problem just to the Follower deployment problem. In fact, the final Leader

angular position ϑLf
is the only further element necessary to define completely the the

rendezvous mission.

The Follower spacecraft may accomplish the rendezvous condition eq. (4.8) in two

ways: by recovering phase (i.e., reducing the initial phase angle) or by losing phase

(i.e., increasing the initial phase angle). In the first case, the Leader spacecraft has

to be slower than the Follower, so that the initial phase angle may decrease along the

trajectory; the phase constraint is verified with krev = 0. In the second case, the Leader

1If the available time is high, the optimal deployment of the Leader may be not an two-burn transfer,

but it may consist of a sequence of many perigee and apogee burns. However, for the sake of clarity, we

neglect this possibility and we assume that the leader only performs a two burn Hohmann-like transfer.
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spacecraft has to be faster than the Follower, in order to permit that the initial phase

angle increases. Eventually, the chaser spacecraft will perform half revolution less than

the leader spacecraft and the phase constraint will be verified with krev = −1. For

each of the two cases, a correct choice of duration τ0 of the Leader initial coasting

permits to minimize the rendezvous cost without altering the propellant consumption

of the Leader deployment. In practice, the optimal value of τ0 is at the extreme of its

definition set (τ0 ∈
[
0, t̃f − t∗

]
). In the first case (τ0 = 0), the best mission opportunity

is achieved by forcing the Leader spacecraft to start the Hohmann transfer soon and

waiting on the final (slower) orbit. The chaser spacecraft flies along an inner orbit,

therefore the phase angle decreases more rapidly if the Leader reaches sooner the final

(higher) orbit. Conversely, in the second case (τ0 = t̃f − t∗) the best option is given by

forcing the Leader to wait as much as possible on the initial (fast) orbit before leaving

for the Hohmann transfer. The Follower has to fly over an orbit exterior to the Leader’s

one in order to lose phase, and it needs to reach less high (and less expensive) altitude

if the Leader stays on the initial orbit. Therefore, only these two strategies will be

investigated: the first or Interior strategy is obtained by imposing krev = 0 and τ0 = 0;

the second or Exterior strategy is defined by krev = −1 and τ0 = t̃f − t∗.

4.2.2 The Leader Deployment

In this section the optimal control problem of the leader spacecraft (which leads to

the one revolution Hohmann-like transfer) will be stated and its solution addressed by

means of the indirect method described in the two previous chapters. The spacecraft

state variables and dynamics were presented in section [4.1]: The spacecraft motion is

described by a set of differential equation given by eq (4.14), that can be summarized

synthetically by:

˙̄x = f̄ (x̄, ū, t) =





~̇r = ~V

~̇V = ~G (~r) + ~T/m

ṁ = −T/c

(4.14)

where ~r = r î is the position vector and ~V = u î+ v ĵ is the velocity vector in the local

reference frame ū = ~T is the control vector, and ~G (~r) is the gravitational acceleration

vector. The transfer goal is to minimize the propellant consumption of the maneuvering

spacecraft; or conversely, to maximize the final mass for an assigned initial value, that
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is J = m|f . At departure, the spacecraft state is fully assigned by eq. (4.5). At arrival,

the spacecraft must be on the target circular orbit of radius r̃f , hence eqs. (4.11a-c)

hold. The flight time is here considered free; however only the solution lasting less than

one revolution is searched for.

The optimal control problem, briefly described above, can be solved by an indirect

method, that is by applying the procedure described in Chapter 2. First order necessary

conditions must be derived and the Hamiltonian boundary value problem which arises

can be addressed by means of a simple shooting technique. The adjoint variables

λ̄x = (λr, λϑ, λu, λv, λm) and the Hamiltonian H = λ̄T
x
˙̄x are introduced. Adjoint

variables can be regrouped to highlight the adjoint position vector ~λr =
(
λr λϑ/r

)T
,

and the adjoint velocity vector ~λV =
(
λu λv

)T
, hence the Hamiltonian can be written

concisely as:

H = ~λT
r
~V + ~λT

V
~G+ ~λT

V
~T/m− λm T/c (4.15)

Euler-Lagrange equations provide the time-derivatives of the adjoint variables, are

calculated according to eq. (2.16). Their analytical expression can be found, as an

example, in [13]. The system dynamics is affine in the control whose magnitude is

bounded; therefore the problem which arises is a bang-bang optimal control problem

like those dealt with in Chapter 3. Recalling section [3.2], the optimal thrust direction

is provided by eq. (3.10) or equivalently by Lawden primer vector theory. It follows

that:

~T = β Tmax
~λV (4.16)

where ~λV is the adjoint velocity vector previously defined, also named “Primer Vector”.

For the sake of clarity, the Hamiltonian is here rewritten in order to highlight explicitly

the switching function:

H = ~λT
r
~V + ~λT

V
~G+ β TmaxSF

SF =
∣∣∣~λV

∣∣∣ /m− λm/c
(4.17)

Pontryagin Maximum Principle indicates whether the spacecraft has to maneuver

or not. The Hamiltonian is linear in the thrust value, the control has a bang-bang

structure: maximum thrust (β = 1) is exploited when the Switch Function SF is

positive, otherwise the engine is turned off (β = 0). Both the Multi-Bound approach

and the Continuation-Smoothing technique discussed in Chapter 3 can be employed to

avoid troubles linked to this formulation.
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Since the burn structure of the desired solution is known (burn-coast-burn) a Multi-

Bound approach can be easily applied. The trajectory is split into ncmp = 3 arcs, joined

by nsw = ncmp − 1 = 2 switching points. A mission structure B = {1, 0, 1} is enforced

and assigns the values of the magnitude of the control β in each arc. An auxiliary

independent variable tε is introduced, linked to the time t by the equation:

tε = i− 1 +

(
t−

i−1∑

k=1

τk

)
/τi , i = 1, . . . , ncmp (4.18)

where τi is the time length of the i-th arc. At the two internal boundaries the switching

condition holds:

SF |i = 0 , i = 1, . . . , nsw (4.19)

As far as the boundary conditions are concerned, all the adjoint variables are free at

departure point because the spacecraft state is completely defined; instead, by applying

the transversality conditions at the arrival point one obtains:

λϑ|f = 0 (4.20)

λm|f = 1 (4.21)

H|f = 0 (4.22)

The Hamiltonian boundary value problem can now be stated concisely as:





dȳ

dtε
= τiF̄ (ȳ, tε) , ∀tε ∈ [i− 1, i] , i = 1, .., 3

s.t.

β = {βi, i = 1, .., 3} = {1, 0, 1}

Ψ̄0 (ȳ (0)) = 0

SF (ȳ (i)) = 0, i = 1, 2

Ψ̄f (ȳ (3)) = 0

(4.23)

ȳ =
(
x̄ λ̄x τ̄

)T
is a vector which collects all the state and adjoint variables, plus the

unknown arc time-length; ȳ =
(
˙̄x ˙̄λx ˙̄τ

)T
collects the differential equations associ-

ated to the state and adjoint variables, plus a vector of zeros ( ˙̄τ = 0) for the constant
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unknowns. Ψ̄0 is the vector of the initial condition and Ψ̄f those the final conditions:

Ψ̄0 (ȳ) =




r − r̃0
ϑ− ϑ̃0

u− ũ0
v − ṽ0
m− m̃0




Ψ̄f (ȳ) =




r − r̃f
λϑ

u

v −
√
1/r̃f

λm − 1
H




(4.24)

The problem dimension is 13, but 5 variables are explicitly assigned at the initial

point (i.e., the spacecraft state). Therefore, the actual problem has just 8 unknowns:

3 time-lengths τi, plus all the 5 initial values of the adjoint variables, hence

z̄ =
(
τ1 τ2 τ3 λr0 λϑ0 λu0 λv0 λm0

)T

4.2.2.1 Numerical Results

The Hohmann-like transfer takes in total a time equal to t∗ = τ1 + τ2 + τ3 = 4.0416855

(nondimensional unit: a time unit is equal to the period of the initial orbit divided by

2π). The spacecraft covers an angular distance ϑ∗ = 3.5109880 radians. The required

propellant is m∗ = 0.0832786 (as a fraction of the initial mass). The thrust direction,

here expressed by the angle ϕT in Figure 4.3, is almost parallel to the velocity direction

(given in terms of the flight path angle ϕV ) during both burns.
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Figure 4.2: Trajectory of Leader Hohmann-like optimal transfer.
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Figure 4.3: Thrust and Velocity angles of the Leader Hohmann-like optimal transfer.

4.2.3 The Follower Deployment

In this section the optimal control problem of the follower spacecraft will be stated and

its solution addressed by means of the indirect method that exploits a Continuation-

Smoothing technique. The spacecraft state variables and dynamics are the same as in

Leader deployment; hence the same Euler-Lagrange equations (2.16) hold. The optimal

control direction is still provided by eq (3.10), whereas the control magnitude β is given

by eq. (3.77) or (3.86), whether the perturbing term introduced to regularize the control

law is a quadratic penalty function or a logarithmic barrier, respectively. Boundary

conditions are formally different with respect to the Leader deployment, mainly due to

the presence of a phase constraint at the end of the trajectory, but also because the

flight time is assigned. At departure, the spacecraft state is fully assigned: equations

(4.5-4.6) hold and the adjoint variables are free. At arrival the spacecraft is constrained

to reach the target circular orbit:

r|f = r̃f u|f = 0 v|f =
√
1/r̃f (4.25)

and to accomplish a phase constraint, which ensure the rendezvous with the leader:

ϑ1 = ϑLf
+ 2krevπ, krev ∈ Z (4.26)
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with ϑLf
= ϑLf

(
t̃f , τ0

)
defined by eq (4.13) in section [4.2.1]. The flight time is also

assigned:

tf = t̃f (4.27)

By applying the transversality conditions eqs. (2.18-2.21) one obtains the conditions

that close the Hamiltonian boundary value problem:

λm = 1 (4.28)

The Hamiltonian boundary value problem can now be stated concisely as:





dȳ

dt
= F̄ (ȳ, t) , ∀t ∈

[
0, t̃f

]

s.t.

Ψ̄0 (ȳ (0)) = 0

Ψ̄f

(
ȳ
(
t̃f
))

= 0

(4.29)

where:

• ȳ =
(
x̄ λ̄x

)T
collects state and adjoint variables;

• F̄ =
(
˙̄x ˙̄λx

)T
their time-evolution, which encompasses the thrust law ~T defined

as ~T = β Tmax
~λV , with β = βL

ε (ȳ (tε)), ∀t ∈
[
0, t̃f

]
;

• Ψ̄0 is the vector of the initial condition and Ψ̄f the one of the final conditions:

Ψ̄0 (ȳ) =




r − r̃0
ϑ− ϑ̃0

u− ũ0
v − ṽ0
m− m̃0




Ψ̄f (ȳ) =




r − r̃f
ϑ− ϑLf

− 2krevπ

u

v −
√
1/r̃f

λm − 1




(4.30)

The problem unknown are just the 5 initial adjoint variables, hence:

z̄ =
(
λr0 λϑ0 λu0 λv0 λm0

)T

The automatic initialization procedure described in section [3.4.3] can be adapted

to the rendezvous problem under investigation, with only a slight modification to the

orbit-shape continuation process. In particular, virtual initial condition x̄α (that are a
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linear combination of true initial values x̄0 and final true values x̄f ) should be written

as:
rα = (1− α) r̃0 + α r̃f

ϑα = (1− α)ϑ0 + α
(
ϑLf

− ωf t̃f
)

uα = (1− α) ũ0 + α ũf

vα = (1− α) ṽ0 + α ṽf

(4.31)

In this way, the solution of the starting problem (i.e., the one characterized by a

quadratic control law, a smoothing parameter ε = 1, and an orbit-shape parameter

α = 1), is simply:

λr0 = 0 λr0 = 0 λu0 = 0 λv0 = 0 λm = 1 (4.32)

Starting from this solution, the continuation on the orbit-shape parameter and, sub-

sequently, on the smoothing parameter can be performed, leading eventually to the

optimal solution for any assigned flight time t̃f .

4.2.3.1 Numerical Results

Depending on the assigned flight time, the rendezvous mission varies remarkably. In-

deed a limit time tlimit exists: beyond this value the optimal trajectory is simply given

by an Hohmann-like transfer, identical (from a propulsive point of view) to the one per-

formed by the leader spacecraft, but shifted in time. The actual value of limit time can

be calculated by replacing into the phase constraint (4.8) the right ascension of Sat 1

and Sat 2 calculated as sum of the angle covered during the Hohmann-like transfer plus

the angle covered by coasting on the initial or final orbit respectively:

ϑ1 (tlimit) = ϑ1 (0) + ω0 (tlimit − t∗) + ϑ∗

ϑ2 (tlimit) = ϑ2 (0) + ωf (tlimit − t∗) + ϑ∗
(4.33)

with

ϑ2 (0)− ϑ1 (0) = π (4.34)

thus:

t̃limit = t∗ + π/ (ω0 − ωf ) (4.35)

The same value of the limit time tlimit holds whether the Interior or Exterior strategies

are considered.
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Figure 4.4: Performance comparison between Interior and Exterior strategies for the

Follower transfer.

Performance of the Interior and Exterior strategies (introduced in section [4.2.1])

are shown in Figure 4.4. The propellant consumption of the Follower, expressed as a

fraction of the its initial mass, is plotted versus the available flight time. The interior

option (k = 0 , τ0 = 0) proves to be more economic in almost any case, while the

exterior option is preferable only if t̃f belongs to the time interval (10÷ 11.2).

In either case, the burn structure of the solutions changes according to the available

time t̃f The burn structure of the Interior solutions presents a sequence of 5 regions

(for increasing tf ) with 2, 3, 4, 3, and eventually 2 burns. The same happens for the

Exterior solution. A more detailed description is here provided for the Interior strategy,

as it is almost always better than the other one.

If the available time to complete the rendezvous is very short (e.g. t̃f = 5.4, Fig-

ure 4.5(a)), the Follower moves towards the inner regions in order to increase hastily its

angular velocity, and to recover rapidly the phase difference with the target satellite. If

the available time is a bit greater ( 5.6 < t̃f < 6.2), the Follower can raise the perigee of

its transfer orbit, hence reducing the propellant expenditure; a 3-burn strategy becomes

optimal (Figure 4.5(b)). For longer mission (6.3 < t̃f < 11) a 4-burn strategy proves to

be the best. The first burn always aims to put the spacecraft into a faster (i.e., smaller)
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 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  2  4  6  8  10  12  14  16  18

 R
ad

iu
s

 Right Ascension, rad

Thrust
Coasting

(c) tf = 9.0
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Figure 4.5: Follower trajectory in the r-ϑ plane, for several assigned flight times.
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orbit and the last burn serves to complete the rendezvous. The two internal burns are

employed to adjust the period of the interior orbit. The shape of the interior orbit

change according to the mission duration. An interesting situation arises for t̃f = 9

(Figure 4.5(c)): here the Follower employs the first burn to move inside and the second

to (almost) circularize its trajectory. After roughly half revolution over this smaller

orbit, a third burn is used to raise the apoapsis to the final circular orbit, and the

last burn finalizes the rendezvous. For longer flight times, the Follower does not need

to circularize the orbit, but it just wait on an elliptical orbit with a periapsis radius

not too lower than the one of the initial circular orbit. The burn structure reduces to

3-burns (Figure 4.5(d)). As the available time increases, the periapsis increases, and

an initial coasting arc arises (tf = 14, Figure 4.5(e)). Eventually, when the limit time

is reached, no interior waiting ellipse is needed and the trajectory is composed only of

a coasting and a Hohmann transfer (Figure 4.5(f)).

4.3 The Cooperative Strategy

In this section the cooperative strategy for the rendezvous problem will be analyzed.

The problem was comprehensively described in section [4.1] and, differently from the

Leader/Follower case, no other assumption on the spacecraft trajectories has to be made

in order to achieve the solution. Optimality conditions needed to form the Hamiltonian

Boundary value problem will be derived in section [4.3.1]. Two different formulations,

corresponding to the use of the Multi-Bound or the Continuation-Smoothing technique,

will be discussed. The latter will exploit once more the automatic initialization algo-

rithm described in section [3.4.3], and also adopted in the Follower mission (section

[4.3.1]). However, since the problem is more tangled, its solutions will be checked by

comparing them with those obtained manually using the Multi-Bound formulation.

After that, the optimal cooperative solutions, just obtained, will be analyzed and com-

pared to those achieved by the Leader/Follower strategy, highlighting the respective

pros and cons.

4.3.1 Problem optimization

In the cooperative strategy there are no “Leader” or “Follower” satellites but both

spacecraft operate to reach the rendezvous. As the mission is not halved into two
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distinct problems, involving one spacecraft at once, the motion of both satellites has

to be considered simultaneously. Therefore, the state of the overall “system” is given

by a collection of the state variables of the two satellites:

x̄ = (x̄I , x̄II) = (rI , ϑI , uI , vI ,mI , rII , ϑII , uII , vII ,mII) (4.36)

The corresponding adjoint vector (collection of adjoint variables) can be introduced:

λ̄x =
(
λ̄xI

, λ̄xII

)
= (λrI , λϑI

, λuI
, λvI , λmI

, λrII , λϑII
, λuII

, λvII , λmII
) (4.37)

The equations of motion of each spacecraft remain unchanged with respect to the single

spacecraft problem, but obviously their number doubles:

dx̄

dt
= f̄ (x̄, ū, t) =

(
f̄I (x̄I , ūI , t) , f̄II (x̄II , ūII , t)

)
(4.38)

where even the control vector ū can be partitioned into two thrust vectors ūI = ~TI

and ūII = ~TII , each one acting on a different spacecraft. Both vectors are limited in

magnitude to a maximum, finite thrust value Tmax.

As always, the Hamiltonian is defined as H = λ̄T
x f̄ . However, in this case it can

be written as the sum of the two Hamiltonians corresponding to each spacecraft (by

exploiting the natural partition of both adjoint vector and differential equation system).

H = HI +HII = λ̄T
xI

˙̄xI + λ̄T
xII

˙̄xII (4.39)

Easily, one can reduce the Euler-Lagrange equations of this system to those of

the two single spacecraft. As far as the control is concerned, due to the peculiar

partition of the Hamiltonian, the equations that define the optimal thrust laws of the

two spacecrafts are analogous. In particular, by applying the Pontryagin Maximum

Principle, it is simple to verify that the optimal thrust direction for each spacecraft,

is collinear to the Primer Vector of that spacecraft, that is ~λVj
=
(
λuj

λvj

)T
with

j = I, II in case of Sat 1 and Sat 2 respectively. Thus:

~Tj = Tmaxβj~λVj
, j = I, II (4.40)

By replacing the latter equation in the Hamiltonian, one highlights the presence of two

distinct switching functions SFI
, SFII

each one related to one spacecraft:

H =~λT
rI

~VI + ~λT
VI

~G (~rI) + TmaxSFI
βI+

~λT
rII

~VII + ~λT
VII

~G (~rII) + TmaxSFII
βII

(4.41)
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By applying again PMP, one finds out that the optimal thrust modulus β of each

spacecraft only depends on the magnitude of the relevant switching function: maximum

thrust (β = 1) is exploited when the switching function is positive, otherwise the engine

is turned off (β = 0). The optimal control is therefore bang-bang.

Depending on the technique adopted to handle the bang-bang control, one has a

different formulation. Here, we consider the Continuation-Smoothing technique (the

Multi-Bound formulation will be shown later). When the Continuation-Smoothing

technique is employed, the thrust magnitude β for each spacecraft can be directly

calculated by using equation eq.(3.77) or (3.86), depending on the choice of a quadratic

or logarithmic term for the regularization, respectively. One needs just to replace the

generic switch function value SF of the formulas with that of the relevant spacecraft.

As each spacecraft has its own switch function at any time, the thrust magnitude will

be usually different between them.

Boundary conditions are mostly the same presented in the Leader/Follower deploy-

ment problem, because all the problem physical constraints (listed in section [4.1]) have

to be fulfilled, no matter which approach is used. The only degree of freedom is the

right ascension of the arrival point (which is free at the rendezvous).

At departure, the state of each spacecraft is fully assigned: equations (4.5-4.6) hold

and all the adjoint variables are free. At the end of the transfer, both spacecraft are

constrained to reach the target circular orbit with the same angular position. Equa-

tions (4.11a-c) and (4.7-4.10) hold respectively. The flight time is also assigned. By

applying the transversality conditions (2.18-2.21) one obtains the conditions that close

the Hamiltonian boundary value problem:

λϑI
|f + λϑII

|f = 0 λmI
|f = 1 λmII

|f = 1 (4.42)

The resulting Hamiltonian Boundary Value Problem can now be stated as:





dȳ

dt
= F̄ (ȳ, t) , ∀t ∈

[
0, t̃f

]

s.t.

Ψ̄0 (ȳ (0)) = 0

Ψ̄f

(
ȳ
(
t̃f
))

= 0

(4.43)
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where:

• ȳ =
(
x̄ λ̄x

)T
collects state and adjoint variables;

• F̄ =
(
˙̄x ˙̄λx

)T
their time-evolution, which encompasses the thrust law ~Tj defined

as ~Tj = βjTmax
~λVj

and βj = βε (SF,j), where the subscript “j” indicates quantities

related to the j-th spacecraft.

• Ψ̄0 is the vector of the initial conditions:

Ψ̄0 (ȳ) =



(
rI − r̃0 ϑI − ϑ̃0 uI − ũ0 vI − ṽ0 mI − m̃0

)T
(
rII − r̃0 ϑII − ϑ̃0 uII − ũ0 vII − ṽ0 mII − m̃0

)T


 (4.44)

• Ψ̄f is the vector the final conditions

Ψ̄f (ȳ) =




(
rI − r̃f uI vI −

√
1/r̃f λmI

− 1
)T

(
rII − r̃f uII vII −

√
1/r̃f λmII

− 1
)T

(
ϑI − ϑII λϑI

+ λϑII

)T


 (4.45)

The problem unknown are just the 10 initial adjoint variables, hence z̄ =
(
λ̄xI,0 λ̄xII,0

)T
.

As for the Follower deployment mission, the Continuation-Smoothing formulation

can be coupled with a simple automatic initialization procedure based on an “orbit-

shape” continuation. This is made to relieve the user from having to manually look

for a proper initial guess at the solution of the BVP. With respect to the algorithm

presented in section [4.2.3], minimal changes of the orbit-shape continuation are needed

to adapt it to the two-spacecraft cooperative case.

rIα = (1− α) r̃0 + α r̃f rIIα = (1− α) r̃0 + α r̃f (4.46)

ϑIα = (1− α)ϑI0 + αϑI0+ϑII0
2 ϑIIα = (1− α)ϑII0 + αϑI0+ϑII0

2 (4.47)

uIα = (1− α) ũ0 + α ũf uIIα = (1− α) ũ0 + α ũf (4.48)

vI,α = (1− α) ṽ0 + α ṽf vII,α = (1− α) ṽ0 + α ṽf (4.49)
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The solution of the starting problem (α = 1), assuming a quadratic merit index (i.e., a

quadratic penalty function, smoothing parameter ε = 1) is simply:

λrI,0 = 0 λϑI,0
= 0 λuI,0 = 0 λvI,0 = 0 λmI,0 = 1 (4.50)

λrII,0 = 0 λϑII,0
= 0 λuII,0 = 0 λvII,0 = 0 λmII,0 = 1 (4.51)

To attain the solution of the original problem, the orbit-shape continuation for α : 1 → 0

is performed, keeping the same regularization term for the control law. Next, a second

continuation is performed on the smoothing parameter assuming a logarithmic barrier

regularization, for ε → 10−6.

4.3.2 Formulation with the Multi-Bound Technique

If the Multi-bound approach is used to handle the bang-bang control laws of the two

spacecraft, the magnitude β of the control is not provided any longer by eq. (3.77) or

(3.86). Instead, the trajectory has to be divided in phases and either a null or unit value

of β is enforced in any arc for each spacecraft; hence, at any instant, thrust magnitudes

are not directly linked to the current value of the switching functions at that instant.

The remainder of the problem (i.e., differential equations, initial and final boundary

conditions) remain unchanged.

To indicate whether Sat 1 and Sat 2 has to maneuver or not, a pair of thrust

magnitude values (βI , βII) must be assigned to any arc. The mission structure BM is

therefore given by the collection of the pair (βI , βII) for every arc:

BM =
{
(βI , βII)|1, . . . , (βI , βII)|ncmp

}
(4.52)

At any internal boundary, the switching condition applies (usually) to one spacecraft

only. This formulation is pretty uncomfortable to be used. In fact, it requires not only

to assign the burn structures of both spacecraft, but also the relative sequence of switch

on/off of the two spacecraft. The latter requirement is the most difficult one to match,

as it is usually unknown whether Sat 1 would start thrusting before Sat 2 or vice

versa, and a wrong assumption would lead for sure to convergence issues (i.e., arcs

with negative time lengths). This problem can be overcome by using two different,

independent time-scales for the two spacecraft; in this way the mission structure BM

is formally divided into two independent spacecraft burn structure BI and BII , related
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to Sat 1 and Sat 2. The two time scales tI , tII of the two spacecraft are obtained

by introducing an auxiliary independent variable tε, linked to the time tj of the j-th

spacecraft by the equation:

tj = τi (tε − i+ 1) +
i−1∑

k=1

τj,i, tj,i−1 ≤ t ≤ tj,i (4.53)

with tj,i =
i∑

k=1

τj,i and j = I, II for Sat 1 and Sat 2 respectively.

The burn structures of the two spacecraft may require, in general, a different number

of coast and thrust arcs. To improve the numerical solution algorithm, it is convenient

to articulate both trajectories into the same number of arcs; moreover the statement

of the internal boundary conditions is simplified by “aligning” thrust and coast arcs

of the two spacecraft, so that corresponding arcs are thrust or coast phases for both

spacecraft and a burn arc is always followed by a coasting (and vice versa). For example,

one assumes an odd number of arcs: the first and the last are thrust arcs, the others are

defined accordingly. This useful scheme can be always fulfilled by choosing a number

of arcs ncmp sufficiently high to match the number of burn and coasting arcs required

by the longest burn structure, and adding a proper number of null-length arcs to the

other.

The aligned burn structures of the two spacecraft can be reduced to “over-structures”

where one needs to declare only if a certain burn is “activated” (i.e., true: the arc-

lengths are not zero) or “deactivated” (i.e., false, meaning that there is a pair - a coast

and a burn phase - of null-length arcs). The overstructure OB of each spacecraft has

the form OB = {b1, ..., bnb
}, with (for example) bi = 1 if the burn is activated or bi = 0

if it is not.

For each spacecraft, internal boundary conditions are different if the burn is acti-

vated or not. If all burns are active, at any internal boundary the switching conditions

eq. (3.41) hold. If the first (or last) burn of a spacecraft is deactivated, the switching

condition at the first (last) internal boundary is replaced by a null-length condition on

the first (last) arc duration (that is τ1 = 0 or τncmp = 0). Instead, whenever the i-th

internal burn is deactivated, the switching conditions at the boundaries 2(i − 1) and

2(i−1)+1 are replaced with null-length conditions on the duration of arcs 2(i−1) and
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2(i−1)+11. By using this escamotage, one can handle two complex and different burn

structures at the same time, with a minimal effort. In the present problem, the longest

spacecraft burn structure is TcTcTcT, which has nb = 4 burns, therefore it is sufficient

to split the trajectory into ncmp = 2nb − 1 = 7 arcs, with nsw = ncmp − 1 = 6 switch-

ing points. With respect to the Continuation-Smoothing formulation, the number of

unknowns grows. In particular, in the case mentioned above, the additional unknowns

are ncmp for each spacecraft, that is 14 all together. Some example of burn structures

and corresponding over-structures are:

TcT → OB = {1, 0, 0, 1}

TcTc → OB = {1, 0, 1, 0}

cTcT → OB = {0, 1, 0, 1}

cTcTc → OB = {0, 1, 1, 0}

TcTcTc → OB = {1, 1, 1, 0}

cTcTcT → OB = {0, 1, 1, 1}

TcTcTcT → OB = {1, 1, 1, 1}

4.3.3 Numerical Results

Numerical solution obtained either via Multi-Bound and Auto-initialized Continuation-

Smoothing approach are presented in this section. The Multi-Bound approach is em-

ployed first, to explore the solution space.

Departing from the solution of a specific mission (i.e., corresponding to a certain

flight-time), solutions for different mission flight-times can be achieved by extension,

that is, by slowly varying the mission duration and using the previous solution as initial

guess for the next one.

A branch is followed as long as the solution fulfills PMP. Whenever an unfeasi-

ble/unphysical or non-PMP solution is attained, the burn structure must be modified

accordingly. The extension procedure is resumed, but this time it follows a new, dif-

ferent, branch.

1If all the burns are deactivated, the only non-null coasting arc is the ncmp − 1.
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When the extension procedure is interrupted, the burn structure has to be manually

adjusted, according to the detected event.1 Usually, three event may occur:

1. The switching function becomes negative in a burn arc; thus one has to split the

burn arc in two and to add a coasting arc;

2. The switching function becomes positive in a coasting arc; thus one has to split

the coasting arc in two and to add a burning arc;

3. A coasting or burning arc duration becomes negative; thus one has to remove

that arc and to join the two adjacent ones.

The extension process is very efficient in case of the Multi-Bound approach. The burn

structure is preassigned, hence a solution branch can be followed easily (e.g., with longer

steps) without fear of losing it (i.e., jumping on a different one). Also, this procedure

can be employed to follow a solution branch even when it does not respect PMP.

Collecting all the solution found, one can produce an overall picture, which is de-

picted in Figure 4.6. Continuous lines refer to the PMP solutions, while dotted lines

refers to the non-PMP ones. This picture reveals that the cooperative rendezvous prob-

lem has a multitude of optimal and sub-optimal solutions, which belongs to the variety

of burn structures that each spacecraft might adopt to complete its own transfer. One

can notice that there are two families of locally optimal solutions, which respect all the

first order optimality conditions; several sub-optimal (non-PMP) branches of solutions

depart from these two families. The global optimal solution of the problem belongs

alternatively to one of the two families of PMP solutions. A single transition point

(beyond which a family stops being globally optimal and the other one starts) can be

detected.

The cooperative rendezvous problem can also be faced using the Auto-CS algorithm

described in section [4.3.1], which make use of a combination of a simple initialization

procedure and the Continuation-Smoothing approach. Its solutions can be checked

against those found previously using the Multi-Bound approach. A comparison is

presented in Figure 4.7. As far as the solutions found using the Multi-Bound approach

are concerned, only those respecting PMP are shown, for the sake of clearness. The

1These adjustments have to be made manually, cannot be fully-automated, because in general two

events might take place simultaneously.
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Figure 4.6: Optimal and Sub-optimal solutions for the cooperative rendezvous.
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Figure 4.7: Comparison between the solutions found either via Multi-Bound or Auto-CS

approach.

Auto-CS algorithm converges to the optimal solution in most of the cases, despite the

presence of many optimal and sub-optimal solutions, which might prevent an automated

method from convergence. All the solutions found respect PMP; only in a small region

just after the transition point, the Auto-CS algorithm attains a group of solutions

which fulfill PMP but are only locally optimal. However, the overall judgment about

the proposed algorithm is very positive. As a general remark, the algorithm shows

difficulties in capturing the correct solution when there are two, or more, flight profiles

that differ for more than a complete revolution (that is, when the number of revolutions

can change of an integer round by varying to the control law, with a small additional fuel

consumption). In that case the orbit-shape initialization (which is performed assuming

as merit index the energy of the control) leads to the minimum-energy solution, which

may or may not have the same number of revolutions of the minimum-fuel solution.

The attention will be now pointed towards the optimal solution itself (regardless

how it is obtained). The two families of PMP solutions, their burn structures, rela-

tive performance and region of existence, are analyzed. Figure 4.7 shows that, for an

assigned mission duration, the solutions corresponding to the two “PMP-families” do

not always exist “simultaneously”. In particular, one can notice that solutions belong-

ing to the family labeled “FB” are present in the right part of the graph (that is, for
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longer missions), while solutions that belong to the “FA” family exist in the left part of

the graph (shorter missions). Both kinds of solution are attainable in an intermediate

region (9.51 ≤ t̃f ≤ 12.25).

In either case, the burn structure of the two spacecraft changes with to the assigned

flight time. The region of existence of both families can be split into different zones

according to the burn structure. The actual subdivision is presented in Table 4.1 and

4.2. The (globally) optimal solution belongs to either family, depending on the flight

time. The “switch” from optimality of family FA to FB is for t̃f ≈ 11.165.

FA - Zone 1 TcT TcTc 5.35 5.45

FA - Zone 2 TcTcT TcTc 5.46 6.17

FA - Zone 3 TcTcTcT TcTc 6.18 6.53

FA - Zone 4 TcTcTcT TcTcT 6.54 9.91

FA - Zone 5 cTcTcT TcTcT 9.92 10.40

FA - Zone 6 cTcT TcTcT 10.41 11.32

FA - Zone 7 cTcT TcTcTc 11.33 12.25

Table 4.1: Family FA.

FB - Zone 1 TcTcTcT TcTcT 9.51 9.57

FB - Zone 2 TcTcTcT TcTc 9.58 11.23

FB - Zone 3 TcTcT TcTc 11.24 13.49

FB - Zone 4 cTcTcT TcTc 13.50 16.03

FB - Zone 5 cTcTcT TcTcT 16.04 16.43

FB - Zone 6 cTcT TcTcT 16.44 16.95

FB - Zone 7 cTcT TcTc 16.96 17.17

Table 4.2: Family FB .

The two families of solutions may be distinguished (and also named) on the basis

of the number of revolutions performed by the spacecraft. In particular, Family FA

is characterized by solutions where the slower spacecraft performs (more or less) one

revolution and always less than two. Solutions that belongs to Family FB are charac-

terized by almost two complete revolutions of Sat 1 and Sat 2, and always more than
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one. As the final right ascension is tightly linked to the available time, the existence

of only one family of solutions for very short or very long times is easily explained.

However, there is an intermediate range of times for which both solutions are possible:

in the first case the preceding spacecraft flies over a slower (external) orbit while the

other spacecraft wait on the initial orbit; in the other case the following spacecraft flies

over a faster (internal) orbit and the other spacecraft wait on the final orbit.

Looking at Figures 4.8 and 4.9, one can observe the behavior of the solutions as the

available time grows, and notice the regions of higher (or lower) cooperation. For the

lowest times (e.g. for tf = 5.5, Figure 4.8(a)), only family FA exists. The phasing duty

is completely born by Sat 1, which performs a very internal trajectory to recover phase

angle. Sat 2 does not help Sat 1, as the available time permits to perform a Hohmann-

like transfer, but it is too short to allow a further half revolution on a “waiting orbit”.

Other possibilities would exist, but are not optimal, as the thrust would not be parallel

to the velocity, hence causing severe velocity losses. When the time increases (e.g. for

tf = 7, Figure 4.8(b)) Sat 2 is capable of helping Sat 1 by raising its transfer orbit

and performing two half revolutions: one from the departure orbit to an apogee higher

than 1.2, the other to “come back” on the arrival orbit. Henceforward Sat 2 will always

perform about one complete revolution before reaching the final orbit.

If the time increases further (e.g. tf = 8 or 9, Figure 4.8(c)), Sat 1 can avoid to

reach the low altitudes needed in the cases of the lowest flight times. This happens

because, when the time increases, Sat 1 can recover the same phase angle more slowly,

and also due to the help of Sat 2 that manages to raise the apogee of its waiting orbit.

The phasing duty is being shifted from Sat 1 to Sat 2. The perigee of Sat 1 internal orbit

increases progressively. At first, a coasting on the initial orbit arises at the beginning

of the trajectory; subsequently, the internal orbit reduces to a long coasting on the

initial orbit: the shift of the phasing duty from Sat 1 to Sat 2 is complete (tf = 10.5,

Figure 4.8(d)). Henceforward Sat 1 performs substantially a Hohmann-like transfer.

For longer times (more than 10.5) Sat 2 reduces the altitude of its intermediate apogee

(since the available time to lose the same phase angle is greater). For even longer

missions, Sat 2 continues to perform almost a complete revolution, by adjusting its

trajectory, and, when it cannot lower its apogee anymore, its trajectory is modified by

adding a coasting on the final orbit. Soon after (for tf = 12.25), the family FA dies (no

solution can be attained).
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Figure 4.8: Cooperative Rendezvous Family FA: Sat 1 and Sat 2 trajectories in the r-ϑ

plane, for several assigned flight times.

Before the FA solution branch extinguishes, family FB arises. At the beginning

(e.g., tf = 9.8, Figure 4.9(a)), the phasing duty is again taken by Sat 1. This spacecraft

covers one and half revolution on an internal orbit, and then almost half revolution to

reach the final orbit. It starts its transfer braking (therefore at an apogee) and when it

is at the second periapsis it accelerates to rise the apogee to the arrival orbit at r=1.2;

Sat 2 does not have sufficient time to perform two complete revolutions over an orbit

with period greater than the final one, hence it perform a trajectory very close to the

optimal unconstrained one. As the time increases, the perigees of Sat 1 intermediate

orbit raise. At first the intermediate orbit is almost circular (and 4 burns are exploited);

subsequently, for longer flight times (e.g., for tf = 11.8, Figure 4.9(b), and tf = 14.0,

Figure 4.9(c)), it reduces to a unique elliptic orbit with one burn located near the

second apogee (and one burn vanishes). Sat 2 continues to perform a Hohmann-like

transfer followed by a coasting on the final orbit. When the time is sufficiently high

(tf = 16.3, Figure 4.9(d)) Sat 2 manages to complete two revolutions on a waiting orbit
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Figure 4.9: Cooperative Rendezvous - Family FB : Sat 1 and Sat 2 trajectories in the r-ϑ

plane, for several assigned flight times.
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with period greater that the final orbit, therefore it can relieve Sat 1 from a piece of

the phasing duty. In a very tight range of times, the overall duty is moved from one

spacecraft to the other, and the intermediate orbit of Sat 1 progressively reduces just

to a costing over the initial one (tf = 16.5, Figure 4.9(e)). Finally the available time

reaches the limit value tlimit = 17.1713, and both spacecraft can perform their optimal

“unconstrained” transfers.

Comparison between Cooperative and Leader/Follower Performances

The propulsive effort related to the (optimal) cooperative solution can be compared

to that required by the Leader/Follower strategy. Numerical results are shown in

Figure 4.10. The difference between the overall mass consumption of the optimal
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Figure 4.10: Payload increment related to the use of the Cooperative strategy w.r.t. the

Internal and External Leader/Follower strategies.

cooperative and the “Internal” strategy is drawn in blue, the difference with respect

to the “External” solution is in red. The propellant mass is made nondimensional

with respect to the initial mass of a single spacecraft. As the cooperative rendezvous

permits the optimal split of the phasing duty, one expects, at any time, a lower overall

propellant consumption with respect to the Leader/Follower strategy. The external

Leader/Follower wtrategy is useful only for 10 ≤ t̃f ≤ 11.2 (as highlighted in section

[4.2.3]). Outside this range, the internal strategy provides much better solutions. With
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Figure 4.11: Percent of propellant saved using the Cooperative strategy with respect to

the propellant consumed using the Leader/Follower strategy.

respect to the best of the Leader/Follower options, the gain at the peak is about 1.4%

of the initial mass of one spacecraft. In general, the gain is more consistent for short

missions: as the available time increases, the cost of the phasing decreases and it can be

shifted almost entirely to one spacecraft. Therefore the cooperative solution becomes

more similar to the Leader/Follower solution and the gain is much lower.

The passage between a region of higher cooperation (ratio of spacecraft phase duty

near 0.5) and a region of more “individualistic” solution (ratio of spacecraft phase duty

near 0 or 1) happens suddenly at the point of transition between the two families of

solutions, that is for t̃f = 11.165. Henceforward, the cooperative and the internal

Leader/Follower solutions are almost indistinguishable and the phasing duty dimin-

ishes, hence the gain is quite lower. Finally the gain is null for mission longer then

the limit time tlimit = 17.17. A more appropriated measure of the gain that could be

attained by using the cooperative strategy is given by the percent of propellant saved

with respect to the one consumed in the Leader/Follower strategy. The gain is quite

consistent (always greater than 1%, with a maximum about 4.5%) in the left half of the

figure, that is before the transition point; whereas it is much lower in the other part.

We can imagine to divide the cost (i.e., propellant spent) of the deployment of each

spacecraft into two terms: the first is related to the increment of semi major-axis is an
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“energy duty”, the other is a “phasing duty” which is related to acquiring the proper

angular position to achieve the rendezvous. The “energy duty” ∆mE is a fixed quantity,

whose value can be calculated by considering the optimal “unconstrained” transfer of

a single spacecraft between the initial and final orbits. Its value can be measured

as the propellant spent to realize the Hohmann-like transfer (section [4.2.3]) for each

spacecraft independently from the other. The “phasing duty” ∆mφ is a quantity which

varies with the mission flight time: it is maximum for the minimum time and zero for

the limit time and henceforward. It can be measured “a posteriori” as the difference

between the actual mission consumption and the energy duty (of both spacecraft).

∆mφ = ∆mI +∆mII − 2∆mE (4.54)

In the Leader/Follower case, the “phasing duty” is carried completely by the Follower

satellite; instead, in the cooperative case the phasing duty is split between the two

spacecraft, but the better subdivision of the phasing effort leads to a lower overall

propellant consumption. One can define the phasing duty for each spacecraft as:

∆mφ
I = ∆mI −∆mE ∆mφ

II = ∆mII −∆mE (4.55)

and also a ratio of phasing duty:

ρφI =
∆mI −∆mE

∆mφ
ρφII =

∆mII −∆mE

∆mφ
(4.56)

Plotting the ratio of phasing duty on a graph (Figure 4.12), one can immediately

visualize the regions of higher cooperation and the zones of lower cooperation. One can

observe that, for the family FA, the region where the cooperation is higher corresponds

roughly to the region of maximum gain. The situation repeats for the family FB, but in

this case overall phase duty is so low that the saving is hardly noticeable. Eventually,

the phasing duty becomes zero for a flight time longer than the limit time, hence the

definition of phasing duty ratio becomes meaningless.

The better mission performance of the cooperative strategy are achieved at the

expense of longer computational times, w.r.t. the Leader/Follower strategy. Substan-

tially, the latter strategy reduce the overall mission just to the Follower transfer: the

optimal leader transfer is the same for any assigned flight time and it has to be calcu-

lated only once. The number of equations to be integrated at any iteration of Newton’s

method is half that of the cooperative problem and the same holds for the number of
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Figure 4.12: Ratio of phasing duty born by each spacecraft.

unknown initial values. Recalling that, for this kind of problems, the difficulty grows

roughly with the square of the unknowns’ number, it is easy to understand that the

computational requirements of the Leader/Follower strategy are much lower than those

of the cooperative strategy. Tests performed on an Intel Core i7 920 @ 2.67 GHz testify

that: the measured time require for solving the two problems (assuming an identical

automatically initialized Continuation-Smoothing formulation) is about 10-13s in case

of a Follower deployment and 40-60s in case of a cooperative one.
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Chapter 5

Deployment of the Simbol-X

Formation

In this chapter the problem of the optimal deployment of a spacecraft formation in a

practical and really complex mission is faced. The now-canceled SIMBOL-X mission

[12, 75, 76], a joint collaboration of ASI and CNES agencies, is chosen. The main

features of this mission will be presented. The choice of operative and injection orbits

is explained, in order to motivate the initial and final conditions of the deployment

maneuver. Then, the problem, which consists in moving two spacecraft from the in-

jection condition to the pre-link (i.e., preoperative) condition, will be formulated as an

optimal control problem. An analysis of the perturbative effects related to different

sources (Lunisolar gravitational attraction, Solar radiation pressure, Earth asphericity)

on Highly Elliptical Orbits (HEOs) is proposed in section [5.2.2], explaining which ones

should be considered and which ones could be neglected. The investigation of optimal

(cost-effective) deployment strategies constitutes the core of this chapter. An indirect

method is used to attain the solution; proper optimality conditions are derived. The

problem is first solved by assuming a two-body dynamics for the spacecraft (that is,

by neglecting all the perturbations), in order to facilitate the convergence process and

to permit a simpler analysis of the phasing strategies. Next, the Earth oblateness is

included in the dynamical model; corresponding solutions are obtained. Subsequently,

the problem is solved once again, but assuming a more realistic environment which also
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embeds the Lunisolar attraction. The role of the perturbing forces on the deployment

is investigated as well as the choice of the departure date. Some results are presented

to show the difficulties faced. and the effectiveness of the proposed solution method.

To the author knowledge, no result concerning the deployment problem for a mis-

sion similar to Simbol-X (that is, a problem involving two spacecraft flying in high

elliptical orbits and accounting for multiple significant perturbative forces) is available

in literature. In this thesis, the solution of a such complex problem has been obtained

and verified by using in a coordinate way several techniques, that, separately, are of-

ten adopted. The Multi-Bound approach is able to find a batch of solutions that can

be considered trustworthy as the approach has been tested many times in the past

years on several optimization problem; convergence needs a careful choice of the initial

guess. The Continuation-Smoothing technique, described in Chapter 3, is exploited

to overcame the need of pre-assigning the mission burn structure, which cannot be

easily forecast for this intricate problem. The modified equinoctial elements have been

introduced in order to improve the numerical stability of the shooting algorithm.

By means of these tools a fully automatic procedure has been envisaged to solve

the problem for any departure date and any mission length, without requiring any user

action or choice of a proper initial guess. In particular, a suitable initial guess for any

mission of interest is provided by a proper initialization procedure which exploits an

“orbit-shaping continuation” and relies uniquely on a fixed (trivial) initial guess. In the

most difficult cases, when the automated procedure is capable of achieving the solution

but with errors greater than the prescribed tolerance, the Multi-Bound approach is

used to refine the found solution, hence improving the effectiveness of the proposed

solution method.

5.1 An overview of the Simbol-X Mission

The SIMBOL-X project was proposed in 2004 by a consortium of European labora-

tories as a bilateral collaboration between CNES and ASI. The original idea was to

create a powerful X-ray telescope which would have permitted advances in high energy

astrophysics and cosmology sciences; at the same time, it would have demonstrated the

feasibility of a mission using multiple spacecraft flying in close formation. The mission
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completed successfully the Phase A of it development, but now it has been stopped due

to budget restriction imposed to the agencies.

To work at its best, the X-ray telescope must have a focal length (i.e., the distance

between the focusing and the detecting elements) approximately equal to 20-30 m.

Since this size cannot fit in a single spacecraft, due to the limited size of fairings, it was

thought to load the mirror and detector elements on two separate spacecrafts which

flew in close formation at a distance equal to the desired focal length. To make possible

the “reconstruction” of the images captured by this kind of telescope, very stringent

requirements are posed on the formation flying stability: the distance between the two

spacecraft (along the telescope axis) must be kept at the focal length value within about

± 10 cm, whereas the intersection of the telescope axis must be at the center of the

focal plane within about ± 20 arcsec. The image reconstruction process also requires

that the relative positions of the two spacecrafts are known with a very high level of

accuracy.

With respect to the other X-ray telescopes, that rely on a single satellite, a dramatic

improvement in the investigation of key issues in high energy astrophysics (e.g. Black

Holes physics and Particle acceleration mechanisms) could be attained by this innova-

tive distributed solution. Due to its novel technology Simbol-X would offer superior

angular resolution and sensitivity in the X-ray range, hence the possibility of studying a

very wide range of sources, such as Galactic and extra-galactic compact sources, super-

novae remnants, cluster of galaxies, or young stellar objects. Very long uninterrupted

observations (100 ks or more) on the same target are needed to attain these results.

In view of the various scientific domains that will be covered by Simbol-X, and of the

corresponding very large number of targets, Simbol-X was designed to offer two/three

full years of scientific data taking, with sufficient propellant resources to accommodate

over 1000 different targets.

The pressing requirements made by its scientific payload conditioned strongly the

choice of the operational orbit, as much as the need of containing the overall costs did.

Many different options were studied during Phase A. All of them were motivated by

the need of attaining an altitude high enough to ensure that the radiation-belt induced

background was as low as possible and that the best compromise was found between

the perturbations (gravity gradient) and the propellant needed to control a spacecraft

on a forced orbit.
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According to the experience gained with a previous experiment (the XMM-Newton

mission), it is considered useful to scientific purposes the orbit portion above 75000

km of altitude. Over this height, the presence of a background noise due to the Earth

radiation-belt particles becomes negligible, hence the reliability of the science obser-

vations is guaranteed. Intuitively, since long uninterrupted observations are desired,

the simplest solution would be using a circular orbit, choice that would also permit

to simplify dramatically the formation flying control. A first configuration based on

a 91,000 km altitude circular orbit was proposed, but it was discovered soon that the

gravity gradient (and hence the consumption of the control system) was too big at

that altitude, and higher heights were needed. Higher circular orbit might be used in

principle, but the deployment cost would be greater. Among all the opportunities, a

HALO orbit around lunar L1 point would be appealing, but out of budget.

High Elliptical Orbits (HEOs) seem to provide a good compromise between cost

and performance. Due to their shape, the useful time for observations is a relevant

fraction of the orbital period, while the cost associated to the spacecraft deployment

is surely lower than that of a circular orbit of equal semi-major axis. Moreover, most

of the flight time is spent near the apogee (that is away from the earth perturbation),

hence the control budget necessary for a correct pointing is low.

Selected configuration

The result of these, and many other, compromises is the operational High Elliptical

Orbit sketched in Figure 5.1 and summarized in Table 5.1. It has a perigee of about

20.000 km, an apogee of about 180.000 km, and a period of four days. Considering

the 75.000 km altitude as the limit under which the observation in nominal condition1

cannot be performed, this orbit permits, for each revolution, an uninterrupted window

of about 290 ks available for observations, which correspond to about 80.56 hours or

3.35 days (almost 83.92% of the orbital period).

The envisioned launch vehicle was a Soyuz with a Fregat upper stage, to be launched

from the Kourou Space Centre, the European spaceport located in French Guiana. The

fairing offers ample space for fitting both spacecraft, with two different options. One is

to mate the two spacecrafts together, as a single composite spacecraft, for the launch

1observations might still have a low background at lower altitudes depending on magnetospheric

activity.
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Figure 5.1: Simbol-X orbit. The observation period and the nominal contacts with the

Malindi ground station are indicated.

operations up to the time when the composite reaches the operational orbit; the detector

and mirror spacecrafts would then separate. The other option is a dual launch of the

two spacecraft, each of them reaching the operational orbit independently. This second

option is preferable as it offers the advantage of simplifying all mechanical interfaces

between the two spacecrafts, and it is studied in this thesis.

Table 5.1: Spacecraft initial and final orbits in the J2000 inertial frame.

Orbit Initial Sat 1 Initial Sat 2 Final
Semi-Major Axis (km) 99185.351 98922.000 106246.9753

Eccentricity 0.933791 0.931985 0.798788
Inclination (deg) 5.2 5.2 free

Argument of Perigee (deg) 180.0 180.0 free
RAAN (deg) 90.0 90.0 free

In the next section the problem of choosing the best departure date and control law

for the transfer of the two satellite from the injection point to a pre-link condition is

dealt with. The goal is to minimize the fuel consumption necessary for the formation
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Table 5.2: Spacecraft features.

Sat 1 Sat 2
Mass

Launch Mass (kg) 960 1250
Propellant Mass (kg) 150 200

Thruster
Thrust Magnitude (N) 1÷8 1÷8
Isp (s) 220 220

deployment, avoiding collision between the two spacecraft.

5.2 A Preliminary Analysis

The task of bringing the two satellites from their injection point at 350 km of altitude to

roughly 200000 km, few kilometers apart from each other, exploiting the perturbation

forces due to Moon and Sun in order to minimize the propellant effort, is very challeng-

ing. A complete statement of the optimal control problem is provided in section [5.2.1],

which highlights the choice of the state variables, the merit index to maximize, the

spacecraft dynamics, the (supposed) initial conditions, the (desired) final conditions

and all the other path constraints.

A preliminary analysis of perturbation effects for High Elliptic Orbits is carried out

in section [5.2.2]. The relative importance of lunar and solar gravity attraction and

Earth asphericity will be assessed. The analysis ends with a few considerations that

point out the need of envisaging deployment strategies where the two spacecraft stay as

close as possible to reduce the deployment costs (which would be increased by different

effects of the perturbations), thus neglecting the possibility of splitting the deployment

in two well-separated phases.

5.2.1 Problem Statement

The formation deployment consists in performing an orbit raising of both spacecraft

towards the operational orbit, and phasing them in order to reach the pre-link config-

uration.

According to the objective of this study, the two spacecraft can be assumed as point-

mass objects; the state of each one is fully described by its position, velocity, and mass.

The Earth equatorial radius, the corresponding circular velocity, and 1000 kg have
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been chosen as reference values (independently of the specific case under investigation)

for distances, velocities and masses to make any variable involved in the calculus non-

dimensional. The satellite position with respect to an inertial frame is given by a

Figure 5.2: Reference Frame 3D.

set of polar coordinates (r, ϑ, ϕ). The reference frame, which is chosen to describe

the spacecraft velocity, is a topocentric rotating frame that is based on the horizontal

plane and follows the spacecraft during its motion. The velocity is therefore expressed

by means of the components in the radial u, eastward v and northward w directions.

This formulation, which is apparently complex, permits to describe the dynamics of

each spacecraft trough a simple set of differential equations.

˙̄xj = f̄ (x̄j , ūj , t) =

=





ṙj = uj

ϑ̇j = vj/ (rj cosϕj)

ϕ̇j = wj/rj

u̇j = −1/r2j +
(
v2j + w2

j

)
/rj + Tju/mj + (ap (x̄j , t))u

v̇j = (−ujvj + vjwj tanϑ)j/rj + Tjv/mj + (ap (x̄j , t))v

ẇj = −
(
ujwj + v2j tanϑj

)
/rj + Tjw/mj + (ap (x̄j , t))w

ṁj = −Tj/cj

, j = 1, 2 (5.1)
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where:

• ūj = ~Tj =
(
Tj,u Tj,v Tj,w

)
is the control vector of the j-th spacecraft, that is

the thrust vector, whose magnitude is bounded by Tmax;

• ~ap (x̄j , t) is the overall perturbing acceleration1 acting on the j-th spacecraft.

The performance of the deployment is evaluated with respect to the overall propel-

lant consumption, that is, the sum of the single spacecraft consumptions. Equivalently,

the merit index to maximize can be stated as the sum of the final masses of the two

spacecraft:

J = mf1 +mf2 (5.2)

Mission specifics are enforced through boundary and path constrains. As remarked

in the previous section, the two spacecraft are thought to be carried together by the

launch vehicle and injected at the perigee of the insertion orbit (whose characteristic

are stated in Table 5.1). The satellites are separated one from the other at the time

of injection on the transfer orbit. The on-orbit position of both satellites is the same

at the separation instant, but the semi-major axes (and the eccentricities) are slightly

different because of a small ∆V (0.5 m/s magnitude) produced by the launcher at

separation. The ∆V is applied to Sat 1 (the mirror spacecraft) and, assuming no

separation errors, it is parallel to the spacecraft inertial velocity; an increment of the

apogee altitude (calculated neglecting the perturbation) of nearly 5400 km is produced.

The injection orbit of both spacecraft is thought to be fixed in a geocentric “inertial”

reference frame (J2000), whereas the departure date is left free. The resulting initial

conditions in terms of the considered stated variables are given in Table 5.3.

The choice of the departure date represents an important aspect of the deployment

problem, thus of its optimization. For high elliptical orbits, Moon and Sun produce

relevant perturbations on the spacecraft trajectory. These effects depend on the relative

position of the perturbing bodies, the spacecraft and the Earth. A variation in the

initial date changes the relative positions all along the trajectory, hence it may lead to

significant changes in the overall consumption.

1One should refer to Appendix A for a detailed description of the perturbing accelerations due to

Earth Asphericity and Lunisolar attraction.
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Table 5.3: Dimensional initial values of the two spacecraft state.

Sat 1 Sat 2

r, km 6728.16 6728.16

ϑ deg 270.00 270.00

ϕ, deg 0.00 0.00

u, km/s 0.000 0.00

v, km/s 10.65496 10.65446

w, km/s -0.96968 -0.96963

m, kg 960 1250

The purpose of the transfer is to reach the “pre-link” condition, which consist in

placing the two spacecraft on the operational orbit, separated by a phase angle that

permits to attain an intersatellite distance of 10 km when the first (leader) spacecraft

reach the apogee. As result, at the end of the transfer the two spacecraft have to share

the same orbital elements, with the exception of the true anomaly. This require that

the following conditions hold at the final boundary:

a1 = ã (5.3)

e1 = ẽ (5.4)

ν1 = π (5.5)

a1 − a2 = 0 (5.6)

e1 − e2 = 0 (5.7)

i1 − i2 = 0 (5.8)

ω1 − ω2 = 0 (5.9)

Ω1 − Ω2 = 0 (5.10)

‖~r1 − ~r2‖ − D̃ = 0 (5.11)

where ã and ẽ are the assigned values of semi-major axis and eccentricity of the final

orbit (c.f. Table 5.1).

Notice that a certain “freedom” is given to design the transfer: only semi-major

axis and eccentricity of the operational orbit are assigned (their choice was motivated
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in section [5.1]), whereas inclination, longitude of the ascending node, and argument

of the perigee are left free. In fact, the scientific payload does not require that these

orbital parameters have a particular value in order to work correctly.

A path constraint is also present: a minimum (security) distance ds, equal to 1 km,

has to be guaranteed between the two spacecraft all along the trajectory in order to

avoid any collision risk. This constraint can be posed formally as:

‖~r1 (t)− ~r2 (t)‖ ≥ ds, ∀t ∈ [t0, tf ] (5.12)

Practical operation requirements forbid the use of the engines around both departure

and arrival points. The ∆V separation maneuver performed at departure is against

the goal of acquiring a tight formation and the optimization procedure may suggest to

contrast it; nevertheless the separation is necessary to avoid collision risks at the begin

of the deployment, hence the prohibition of maneuvering during the first revolution.

On the other side the pre-link configuration has to be achieved during a coast arc. In

this way, the closer approach (i.e., the link condition) can be attained safely: at the

last apogee it is possible to exploit freely the thrust only to account for any deviation

from the nominal transfer trajectory that might have been occurred, without having

to use it for perigee raise.

5.2.2 Perturbation effects on HEO Orbits

Perturbations are deviations from a normal, idealized, or undisturbed

motion. The actual motion will vary from an ideal undisturbed path (two-

body) due to perturbations caused by other bodies (such as the Sun and

Moon) and additional forces not considered in Keplerian motion (such as a

non-spherical central body and drag).

- David A. Vallado

When dealing with highly elliptical orbits, many perturbative forces have to be

taken into account; moreover, due to the fact that such orbits cover a wide range of

altitudes, the hierarchy of the perturbations acting on the satellite changes with the

position on the orbit. At low altitude, the oblateness of the Earth (the so called J2

effect) is the dominant perturbation, while at high altitude the Lunisolar gravitational

perturbations greatly exceed J2 acceleration.
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Table 5.4: Perturbing acceleration comparison, normalized w.r.t. Earth gravity at r = rE ,

i.e., 9.79829 m/s2.

Initial Orbit Final Orbit

perigee Apogee

spherical Earth Gravity 0.899 0.11 · 10−2

J2 effect 0.11 · 10−2 0.20 · 10−8

J2,1 to J8,8 effect 0.42 · 10−5 0.30 · 10−12

Moon’s gravity 0.32 · 10−5 0.11 · 10−4

Sun’s gravity 0.63 · 10−3 0.63 · 10−3

Moon’s grav. perturbation 0.11 · 10−6 0.83 · 10−5

Sun’s grav. perturbation 0.57 · 10−7 0.16 · 10−5

Solar radiation Pressure 0.49 · 10−8 0.49 · 10−8

Numerical values for these perturbative effects at the lowest and highest point of

the initial and final orbits respectively, are presented in Table 5.4. Other effects (such

as drag, tides, albedo) seems instead negligible and were not considered.

In order to better understand the effects of different perturbation sources on the

spacecraft trajectories involved in this mission, a simplified analysis is carried out to

show their qualitative behavior; extensive numerical simulations (which take into ac-

count the Earth asphericity and the third-body perturbation of Moon and Sun either

singularly or all together) provide a more precise quantitative evaluation. The most

important results are summarized in this section.

A first important aspect to investigate concerns the analysis of the effects of pertur-

bations on the spacecraft injection orbit after a complete revolution. In particular, the

attention is focused on the altitude at the perigee passage, quite low at the beginning

of the mission, since a further reduction (due to “adverse” perturbation) could lead the

spacecraft to re-enter into the atmosphere.

After, the effects of the perturbations over a longer time horizon are studied. The

attention is now drawn to the evolution of the orbital plane, which is subject to vari-

ations of inclination and direction of the line of nodes, which depend on the orbital

parameters (mainly semi-major axis and eccentricity). Results of this analysis sug-

gest not to split the deployment in two well-separated maneuvers, not to increase the

propulsive effort.
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Test 1 - Injection Orbit / Perigee An analysis of the evolution of the initial orbit

after a complete ballistic revolution is very mandatory from a mission-analysis point

of view to understand the effect of the perturbations over the perigee altitude. The

initial altitude is quite low; therefore the spacecraft might plunge into the atmosphere

if perturbations decrease significantly the velocity at the apogee (because it would

lower the perigee altitude even more). In those cases, an apogee maneuver would

be mandatory during the first revolution to avoid the re-entry by counteracting the

perturbation effect, thus resulting in additional costs. On the other side, if the starting

date is particularly favorable, the perturbations can produce a “free” perigee raising,

with a positive effect on the overall propellant consumption.

To understand qualitatively the effects of the various perturbations, a simplified

analytical analysis can be performed. For what concerns perturbations due to the Earth

asphericity, many analytical results exist. If effects other than the Earth Oblateness

(J2) are neglected, the variation of semi-major axis and eccentricity are null over a whole

revolution. Therefore, even though high order harmonics are considered, the perigee

variation will be pretty small, being the other terms at least two order of magnitude

smaller. (NB: in turn, the apogee radius is lower than the value calculated at the

departure using the parameter of the osculating orbit at perigee).

Figure 5.3: Schematic geometry of gravitational perturbations.
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A qualitative estimation of the effect of the third body gravitation on the spacecraft

perigee height, as a function of the perturbing body position can also be performed.

To simplify the calculus, the perturbative acceleration exerted by the 3rd body over a

whole revolution is supposed to be concentrated at the apogee, and here applied impul-

sively. This assumption is reasonable because, for highly elliptic orbits, the spacecraft

spends most time at the apogee (ν = 180◦, ϑ = 90◦) where, in addition, the perturbing

acceleration is larger due to the greater Earth-spacecraft distance. Therefore, the per-

turbing acceleration can be evaluated by considering only the apogee. The acceleration

component parallel to the apogee velocity, i.e., the tangential component at, is the

main cause of the perigee variation. If coplanar orbits are assumed (see Figure 5.3),

one easily determines that this component is:

at = −µb

r2b

[
(rb/R)3 − 1

]
cosϑb (5.13)

with the spacecraft distance from the perturbing body expressed as

R2 = r2b + r2 − 2rbr sinϑb (5.14)

When the Sun is the perturbing body, r << rb and only first order terms are retained

to obtain

(rb/R)3 ≈ 1 + 3(r/rb) sinϑb (5.15)

and

at ≈ −µb

r2b

3

2
sin(2ϑb) (5.16)

with maximum positive values at ϑb = 135◦ and 315◦ (the most favorable positions of

the Sun), and maximum negative values at ϑb = 45◦ and 225◦ (the most unfavorable

positions).

When the Moon is considered, the spacecraft distance from the Earth becomes

comparable to the Earth-Moon distance (r/rb ≈ 0.5) and the previous simplification

does not hold. The symmetry of the result with respect to the x axis (here orthogonal

to the line of apses) and the effects of the third-body perturbation are enhanced when

Moon and spacecraft apogee are on the same side with respect to the Earth, that is

when sinϑb > 0. The maximum benefit occurs when ϑb ≈ 115◦ (with a less pronounced

beneficial effect at ϑb ≈ 330◦), whereas the largest negative effect is at ϑb ≈ 65◦ (with

a less remarkable effect at ϑb ≈ 210◦).
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Figure 5.4: Approximation of the perturbing acceleration at the apogee of HEO, due to

a third body gravity attraction.

An analysis on the initial ballistic orbit has been carried out, in order to verify nu-

merically the simplified analysis just performed and to assess quantitatively/evaluate

precisely the effects of each perturbation on the spacecraft trajectory. For every depar-

ture date between 1/12/2015 and 1/12/2016, a complete revolution of a spacecraft is

simulated and the final perigee radius is recorded.

Earth Asphericity (8x8 model) Earth Asphericity (8x8 model) The Earth as-

phericity does not play a significant role on the perigee variation, while it can rise/lower

the actual apogee radius (i.e., the maximum spacecraft radius) of ±70 km. These effects

change with the departure date, with a daily periodicity.

Sun Perturbation Taking only the solar perturbation into account, one observes

that the effects have a half year period even though the Earth makes one revolution per

year around the Sun. This can be explained simply by recalling that the perturbing

acceleration is linked to the difference between the pull exerted by the perturbing body

(i.e., the Sun) on the primary body (the Earth) and on the S/C. Thus, since the

dimension of the S/C orbit is much smaller than the Earth sphere of influence, the

opposition and conjunction effects are nearly identical and this results in a semi-annual

periodicity (Figure 5.5). The perigee variation due to the solar perturbation is about

±70 km: maximum and minimum effects occur when the third body has a phase angle
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±45◦ from the line of apses. In particular the maxima occur for −45◦ and +135◦ and

the minima for −135◦ and +45◦.

Moon Perturbation The same reasoning does not hold for the lunar perturba-

tion, because the apogee altitude of the S/C orbit is comparable to the Earth-Moon

distance. As a result (Figure 5.6), the perturbing effect has a period of about 27 days,

corresponding to a complete Moon period (instead of half-period as in case of the Sun

perturbation). The Moon moves remarkably during a S/C revolution, but one can re-

late the overall perigee variation to the Moon position when the S/C is at the apogee,

because there the spacecraft both spends most of its time and experiments most of the

third-body perturbation. The perigee variation due to the lunar perturbation shows

two maxima and two minima During each Moon revolution. Maxima and minima do

not correspond to the conjunction or opposition points, but rather to points at ±30◦

(the more prominent peaks) and ±120◦ (the less sharp ones); maximum variation is

bounded between ±300 km. Summarizing the results, one can notice that the space-

craft enters the atmosphere (an arbitrary value of 200 km has been chosen as the upper

limit to the atmosphere) if the Moon phase at the departure is between 8◦ and 53◦,

thus about 3.5 days during each lunar period cannot be used as departure date.

Table 5.5 summarizes the variations on the perigee height due to each perturbation

as function of the right ascension of the perturbative body at the departure ϑb (t0) or

of the apogee of the S/C orbit ϑb. Moreover, for each perturbation the perigee height

is plotted versus the departure date (Figures 5.5(a) and 5.6(a)) and versus the phase

at the apogee γb (Figures 5.5(b) and 5.6(b)) which is related to the right ascension of

the third body at the apogee passage by the relation γb = ϑb − π/2. This change of

variable highlight the symmetry of the third-body effects. Finally the graph, which is

obtained taking the Lunisolar perturbation and the Earth asphericity into account, is

given (Figure 5.7).

Test 2 - Evolution of the Orbital Plane Beside the study of the apogee altitude,

the evolution of orbital plane is analyzed over a longer time horizon. At the end of the

deployment, the two spacecraft are constrained to be on the same plane; even though

it is not specifically assigned, it is worthwhile to understand how the planes of the

119



5. DEPLOYMENT OF THE SIMBOL-X FORMATION

Table 5.5: Maximum and minimum variations of the Perigee radius due to lunar and

solar perturbations.

Sun
∆rp, ϑb (t0), ϑb, t0,

km deg deg MJD

Max 1 76.53 -44.03 -45.91 57422.41

Min 1 -66.25 39.19 40.96 57509.85

Max 2 70.31 134.95 136.78 57604.69

Min 2 -69.65 -139.68 -137.88 57697.00

Moon
∆rp, ϑb (t0), ϑb, t0,

km degrees degrees MJD

Max 1 301.01 90.37 116.12 57381.27

Min 1 -299.06 33.33 59.05 57377.33

Max 2 128.78 -54.27 -29.74 57370.88

Min 2 -102.50 -169.09 -148.54 57361.92
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Figure 5.5: Sun perturbation effects on perigee height after one revolution.
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(a) Moon perturbation effects vs Departure Date
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Figure 5.6: Moon perturbation effects on perigee height after one revolution.
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Figure 5.7: Overall perturbation effects on perigee height.
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two spacecraft rotate in space due to perturbations and how much this rotation differs

between the initial or final orbits.

The Earth asphericity produces a regression of the line of nodes and a rotation of

the line of apsides. Inclination, eccentricity and semi-major axis are not altered by the

Earth oblateness. Analytical results exist if the J2 effect is the only one considered:

∆Ω = −3πJ2

(
r⊕
p

)2

cos (i) (5.17)

∆ω =
3

2
πJ2

(
r⊕
p

)2 (
5cos2 (i)− 1

)
(5.18)

Moon and Sun effects on the plane inclination are more difficult to handle analyti-

cally.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300  350

Inclination, Degrees

Inclination change due to different perturbation sources

JLS
Moon

Sun
J8x8

(a) Inclination Change

 76

 78

 80

 82

 84

 86

 88

 90

 92

 0  50  100  150  200  250  300  350

RAAN, Degrees

RAAN change due to different perturbation sources

JLS
Moon

Sun
J8x8

(b) RAAN Change

Figure 5.8: Variation of inclination and RAAN for the Simbol-X injection orbit over a

year.

Numerical simulations considering a more detailed Earth gravitational model (up

to J8x8) and the effects of Lunisolar gravitation were performed. The variation of incli-

nation and RAAN starting from the injection orbit are shown in Figure 5.8. Analogous

results can be obtained by considering the operational orbit, initially.

The parameters of injection and operative orbits have rate of change different from

each other. Assuming that at a given time the two orbits are coplanar and differ only in

semi-major axis and eccentricity, the different perturbative effects will move apart the
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Figure 5.9: Inclination and nodal drifts between initial and final orbit.

two orbital planes. The relative variation (i.e., drift) of their inclination and direction

of the line of nodes over one year is shown in Figure 5.9.

The mechanism that creates the drift is quite subtle: differences in the semi-major

axis and inclination between the two satellites create a nodal drift. Lunisolar perturba-

tions, which are different between the injection orbit and the final orbit, also depend on

the phase angle between the perturbing body and the spacecraft line of nodes, produce

a drift in inclination.

These simulations point out the necessity of envisaging deployment strategies where

the two spacecraft stay as close as possible. If, on the contrary (e.g., due to a failure),

one spacecraft remains on the injection orbit while the other reaches the operational

orbit, the two spacecraft would experience the separation of the orbital planes just

described, which increases as long as the two spacecraft fly on different orbits. For

example, if a spacecraft spends a month one on the injection orbit and the other on the

operative one, the inclination drift is about 1.5◦ . Assuming an impulsive correction

maneuver at the apogee of the final orbit, and neglecting the change of the line of

nodes, the ∆V required for such plane change is:

∆V = 2Va sin

(
∆i

2

)
= 16.96m/s (5.19)

and a hydrazine mass of about 7.5 kg is required (given the characteristic of the available
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engines). This simple evaluation underestimate the true cost of recovering the coplanar

condition, as the correction of the line of nodes requires a further propulsive effort.

5.3 Coordinated Strategy for the Simbol-X deployment:

an Optimal Control Approach

This section presents solutions of the Simbol-X formation deployment mission obtained

by using an indirect method. Two different deployment strategies are envisaged; for

each one, the first order necessary conditions are derived. A clear and detailed for-

mulation of the resulting Hamiltonian boundary value problems is provided in sec-

tion [5.3.1]. Section [5.3.2] presents some numerical results concerning a simplified

deployment problem obtained by assuming only a two-body dynamical model (i.e., an

unperturbed, Keplerian, environment). The aim is to highlight the aspects related to

the phasing constraint and show an easy but effective way to attain the respect of the

security distance constraint. The full perturbation model is restored in section [5.3.2].

The attention here is pointed toward the remarkable effects that perturbations cause

to the optimal control law, hence to the overall consumption. The relationship between

the burn structure and the perturbing effects (hence the departure date) is complex

and the optimal structure cannot be forecasted by means of elementary physical reason-

ings. Thus, the application of the Multi-Bound approach becomes difficult, especially

to perform a parametric analysis (as those required to understand the effects of de-

parture date). A self-consistent algorithm, which relies on the smoothing\continuation
technique, is proposed to find the optimal solution of the deployment problem for an

assigned departure, with almost none manual (user) effort. Its validity is confirmed

by comparing its results with those obtained by the Multi-Bound approach for a set

of the single satellite missions. Eventually, formation deployment results for departure

date ranging over a whole month are presented, with some remarks about odd burn

structures that arise in rare cases.

5.3.1 Strategies and Optimality conditions for the formation deploy-

ment

As the title may suggest, in this section feasible strategies for the formation deployment

are individuated. For each one, optimality conditions are derived and employed to form
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an Hamiltonian boundary value problem, whose solution provides the optimal control

law for the two spacecraft.

The strategies differ according to the way the phasing constraint is conceived. In

fact, that is the only condition that couples the dynamics of the two spacecraft, that

otherwise will be independent (and so could be independently optimized). Two differ-

ent, conceptually antithetic, ways to look at at the deployment (hence to handle this

constraint) were envisaged: one is to see the problem as a monolithic block that has to

be solved all at once; the other tries to solve the problem optimizing only a spacecraft

transfer at once. These thoughts resulted in the formulation of a parallel or “Cooper-

ative Approach” (the former one) and of a serial or “Chaser/Target Approach” (the

latter one).

To attain a simpler formulation, it is convenient to rewrite the phasing constraint,

which is given under the form of an inter-satellite distance between the two spacecraft

in the close proximity of the apogee of the final orbit, as a time-constraint on the two

spacecraft dates of passage at the apogee of the final orbit, that is:

t2 − t1 = ∆tD̃ (5.20)

where ∆tD̃ is a time delay which depends on the imposed intersatellite distance D̃

and on the spacecraft velocity at the apogee of the final orbit Va. Since the Earth-

spacecraft distance is very high and the intersatellite distance very low, it can be

calculated approximately as:

∆tD̃ = D̃/Va (5.21)

The “Chaser/Target Approach” and the “Cooperative Approach” can now be enun-

ciated. In the serial approach there is a clear separation between the optimization of

the deployment of each spacecraft, that is done in sequence and corresponds to solv-

ing two separate, distinct optimal control problems. First, one chooses a spacecraft as

“target” and searches for the optimal time-free maneuver to place the spacecraft into

the final orbit maximizing its final mass within a maximum number of revolutions. As

this problem is solved, position, velocity and date at the apogee of the final orbit are

known for the target satellite and given as final conditions for the other spacecraft (the

“chaser”) which performs an optimal time-fixed maneuver, in order to reach the same

final state as the target, with a fixed time delay that allows one to satisfy the phase

constraint. In this way, the chaser satellite alone takes the entire cost of the phasing
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(see the following section). In the parallel approach there are no “target” or “chaser”

satellites but both spacecraft operate together to reach the target formation; hence the

“cooperative” attribute. The motion of both satellites is analyzed simultaneously and

the objective function (to maximize) becomes the sum of the final masses. Optimality

conditions for the two strategies will now be derived and the associated Hamiltonian

boundary value problem will be stated.

5.3.2 Chaser/Target Approach

In case of a sequential approach, the target spacecraft performs an optimal time-free

mission, whereas the chaser spacecraft performs an optimal time-fixed transfer in order

to reach exactly the final state of the target, but with an assigned delay. Sat 2 has been

chosen as the target satellite, because it has a lower T/m ratio than Sat 1 has (thus,

it is more maneuverable). Obviously, by splitting the optimization procedure into two

distinct parts, one gains in computational speed and efficiency, but clearly one losses

something in performance, that is, in overall final mass.

Two optimal control problems arise: the one concerning the target spacecraft is

self-consistent, while the other one needs the solution of the former to be completely

defined. In each problem the goal is to minimize the propellant consumption of the

maneuvering spacecraft; therefore the merit index simply corresponds to the final mass

of the S/C under optimization, that is alternatively J = mI |f or J = mII |f .
The spacecraft state variables and dynamics were previously presented in section

[5.2.1]: spacecraft position is given in polar coordinates, velocity is expressed in a

local frame whose axes point to the radial, eastward, and northward directions. The

spacecraft motion is described by a set of differential equations given by eq. (5.1), or

in a synthetic form:

˙̄x = f̄ (x̄, ū, t) =





~r = ~V

~̇V = Ḡ (~r) +
~T

m
+ ~ap (~r, t)

ṁ = −T/c

(5.22)

The optimal control problem is solved by an indirect method, that is by applying

the procedure described in Chapter 2. The first order necessary conditions are derived

and the Hamiltonian boundary value problem which arises is solved by means of a

simple shooting technique. The adjoint variables and the Hamiltonian are introduced.
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Euler-Lagrange equations, which provide the time-derivatives of the adjoint variables,

are calculated according to eq. (2.16). The system dynamics is affine in the control and

its magnitude is bounded; therefore the problem which arises is a bang-bang optimal

control problem like those dealt with in chapter 3. Recalling section [3.2.1], the optimal

thrust direction is provided by eq. (3.10) or equivalently by Lawden primer vector

theory. It follows that:

~T = Tmax β ~λV (5.23)

where ~λV =
(
λu λv λw

)T
, is the vector which collects the adjoint variables corre-

sponding to the velocity components, or “Primer Vector”. By introducing the adjoint

velocity vector ~λV and the the adjoint position vector ~λr =
(
λr λϑ

1
r λφ

1
r cosφ

)T
, the

Hamiltonian can be rewritten concisely in order to highlight explicitly the switching

function:

H = ~λT
r
~V + ~λT

V
~G+ ~λT

V
~T − λm

T

c
(5.24)

H = ~λT
r
~V + ~λT

V
~G+ T SF SF =

∣∣∣~λV

∣∣∣ /m− λm/c (5.25)

Pontryagin Maximum Principle indicates whether the S/C has to maneuver or not. The

Hamiltonian is linear in the thrust value, hence maximum thrust is exploited when the

Switch Function SF is positive, otherwise the engine is turned off. Both the Multi-

Bound approach and the Continuation-Smoothing technique discussed in Chapter 3

can be employed to avoid the troubles linked to the control discontinuity.

The formulation of the boundary conditions is very similar between target and

chaser trajectory optimization: starting conditions are formally identical while the

difference is made by those at end of the transfer. At the departure point, the state

variables of each spacecraft are completely defined. The departure date is assumed to

be fixed1. Position, velocity and mass of the maneuvering spacecraft are set according

to Table 5.3. As a result, all the adjoint variables are free at departure. The following

conditions hold:

r = r̃0 ϑ = ϑ̃0 ϕ = ϕ̃0

u = ũ0 v = ṽ0 w = w̃0 m = m̃0

(5.26)

1The departure date t0 could be considered free and left as an unknown variable, but in that case,

it is almost sure that the algorithm would converge just to a local optimum, as the allowed range of

departure dates is too wide.

127



5. DEPLOYMENT OF THE SIMBOL-X FORMATION

At the end point, the boundary conditions are pretty different between the two space-

craft. The target spacecraft (Sat 2) has to perform an optimal time-free mission to

arrive at the apogee of the final orbit, whose semi-major axis ãf and eccentricity ẽf

are prescribed. These constraints are rewritten in terms of energy and momentum

magnitude, to attain a simpler formulation:

u = 0 (5.27)

r2
(
v2 + w2

)
= ãf

(
1− ẽ2f

)
(5.28)

v2 + w2 − 2

r
= − 1

ãf
(5.29)

By applying the transversality conditions one obtains the algebraic equations that close

the Hamiltonian boundary value problem:

H = 0 (5.30)

λϑ = 0 (5.31)

λϕ = 0 (5.32)

λvw − λwv = 0 (5.33)

λm = 1 (5.34)

On the other side, the chaser spacecraft (Sat 1) performs an optimal time-fixed mission.

In this case the final state of the spacecraft is assigned, as it must be equal to the

target state x̄∗f2 (except for the mass). The arrival time is fixed and delayed by a

constant quantity with respect to the optimal arrival time t∗f2 of Sat 2. These conditions

ensure that the two spacecraft share the same orbital parameters (except for the mean

anomaly). The time delay ∆tD̃ is given by eq. (5.21) and here reported for the sake of

completeness. Thus:

r = r∗f2 (5.35)

ϑ = ϑ∗
f2 (5.36)

ϕ = ϕ∗
f2 (5.37)

u = 0 (5.38)

v = v∗f2 (5.39)

w = w∗
f2 (5.40)

tf = t∗f2 +∆tD̃; ∆tD̃ = D̃/Va (5.41)
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The transversality equations provide only one additional condition, which is related to

the final mass via the merit index and involves the mass adjoint:

λm = 1 (5.42)

5.3.3 Cooperative Approach

In case of a cooperative approach, there are no “target” or “chaser” satellites but both

spacecraft operate to reach the desired formation. In this case the motion of the two

satellites is analyzed simultaneously, and the goal (that is, the objective function) is to

maximize the sum of their final masses. The equations of motion of each spacecraft, as

well as the adjoint equations, remain unchanged with respect to the single spacecraft

problem, but, obviously, the overall number doubles (28 equations, that is, 14 per each

spacecraft).

Many considerations made in Chapter 4 (c.f. section [4.3.1]) still hold in this case.

For example, in both cases the Hamiltonian can be written as the sum of the two

Hamiltonians corresponding to each spacecraft. The presence of two distinct switching

functions is again highlighted:

H =~λT
rI

~VI + ~λT
VI

~G (~rI) + ~λT
VI
~ap (x̄I , t)+

~λT
rII

~VII + ~λT
VII

~G (~rII) + ~λT
VII

~ap (x̄II , t)+

TmaxSFI
βI + TmaxSFII

βII

(5.43)

Each spacecraft has its own control law and different burn structures between the two

spacecraft are possible. The thrust direction of each spacecraft is parallel to the Primer

Vector corresponding to that spacecraft, whereas the search for the optimal thrust mag-

nitude can be handled by imposing switching conditions (in the Multi-Bound approach)

or by regularizing the control (Continuation-Smoothing technique). For both cases the

methodology is the same as in Chapter 4. With respect to the Chaser/Target formula-

tion, the optimal conditions for each satellite at departure are formally unchanged. The

major difference arises at the final point. The capability of having two different time

scales (one for each spacecraft) allows one to define this final boundary as the apogee

of each spacecraft, regardless of the arrival time. The satellites have the same state

(i.e., position and velocity) in order to assure that they are on the same orbit. The

phase constraint is once again written as a time constraint between the two spacecraft

arrival times.
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u1 = 0 (5.44)

r21
(
v21 + w2

1

)
= ãf

(
1− ẽ2f

)
(5.45)

v21 + w2
1 −

2

r1
= − 1

ãf
(5.46)

tf1 − tf2 = ∆tD̃; ∆tD̃ = D̃/Va (5.47)

r2 − r1 = 0 ϑ2 − ϑ1 = 0 ϕ2 − ϕ1 = 0 (5.48)

u2 − u1 = 0 v2 − v1 = 0 w2 − w1 = 0 (5.49)

By applying the transversality conditions one obtains the remaining boundary condi-

tions:

HTOT = 0 (5.50)

λϑ1 + λϑ2 = 0 (5.51)

λϕ1 + λϕ2 = 0 (5.52)

(λv1 + λv2)w1 − (λw1 + λw2) v1 = 0 (5.53)

λm1 = 1 (5.54)

λm2 = 1 (5.55)

This set of optimal conditions presents a sort of symmetry between the two satellites at

the arrival point. Being these conditions less tight than those of the sequential approach,

they permit a more efficient split of the additional cost due to the phase constraint.

However the computational efficiency decreases, as the number of differential equations

to be integrated at each iteration of Newton’s method doubles, and also the number

of unknown initial values doubles. As the difficulty of the problem grows with the

“square” of the unknowns’ number, solving this cooperative problem is more difficult

and computationally much more expensive than solving separately the two problems

arising from the sequential approach.
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5.4 Results in a Simplified Environment

5.4.1 Keplerian Mission

Keplerian Mission refers to an “idealized” deployment which is performed assuming

a two-body, unperturbed, dynamical model. As the dynamics is autonomous (i.e.,

time-independent), the optimal solution of the problem does not depend on the initial

date.

A physical analysis of the problem is required for choosing a reasonable starting

guess. In particular, if the Multi-Bound approach is used, it is important to under-

stand the mission structure in order to attain an good estimate of the engine switching

instants. The right values of the other unknowns (i.e., the initial adjoint variables) are

more difficult to guess. However, the physical meaning of the primer vector suggests

that the adjoint vector to velocity should be parallel to the thrust direction, which is

essentially horizontal and in the orbital plane for the initial burn; latitude has a mini-

mal influence and longitude has no influence at all; the corresponding adjoint variables

are therefore (roughly) zero. The magnitude of the primer vector ~λV and the adjoint

variable to radius λr remain difficult to estimate; but using the previous estimate for

the other unknown, one easily manages to get the convergence. The single spacecraft

deployment should be studied first, as it is simpler. Once the convergence is obtained,

the solution of this problem can be used as initial guess for formation deployment.

The deployment of a single satellite into the operational orbit is first analyzed,

in order to understand the basic aspects of the mission. According to the Keplerian

model, the initial conditions of Sat 2 permit an (almost) perfect ballistic attainment

of the desired final apogee and the deployment require only the perigee raising. For

Sat 1, the initial apogee is greater than the operative one of about 527 km (due to the

injection ∆V ) and a slight perigee maneuver is necessary to reduce the initial apogee

(191643 km) to the final desired value (191118 km).

A simple impulsive analysis [77] shows that the optimal burn strategy is character-

ized by an apogee impulse (to accelerate) followed by a perigee one (to decelerate) for

Sat 1 (the AP abbreviation is used to describe this burn sequence). Numerical results

confirm this statement in the finite-thrust case; however, if multiple revolutions are

allowed, the apogee impulse should be split into several apogee burns to reduce the

velocity losses. In addition, a tiny perigee burn arises also for Sat 2: if the thrust is
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Figure 5.10: Trajectory for the Sat 2 single deployment, 2.5 revolutions AAP mission

(Keplerian environment, T = 1N).

(partially) used during apogee burns to raise a bit the apogee itself, the perigee-raise

cost becomes smaller due to the greater “force arm”; but, in that case, a perigee ma-

neuver is needed to restore the initial apogee altitude. Therefore the optimal strategy

for an assigned maximum number of revolutions has as many apogee burns as possible

and a single perigee burn at the end of the transfer.

Table 5.6: Unconstrained deployment - Final mass of Sat 1 & Sat 2 for different transfer

time-lengths (Keplerian environment, T = 8N).

Unconstrained solution

Strategy Sat 1 Sat 2

AP (1.5 revs) 846.339 1101.858

AAP (2.5 revs) 846.507 1102.235

AAAP (3.5 revs) 846.537 1102.304

The final masses corresponding to the independent deployment of either Sat 1 or

Sat 2 are presented in Table 5.6 for different thrust strategies and number of revolutions;

only optimal solution are here reported.

The previous analysis holds even in the case of the formation deployment. The low

separation ∆V causes the two spacecraft to have similar orbital periods. Thus, the

optimal mission profile (i.e., burn structure) for both satellite will be the same as the

single deployment: a sequence as long as possible of apogee thrust arcs followed by a

final perigee arc. Results for the Chaser/Target strategy are presented in Table 5.7.
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Table 5.7: Chaser/Target deployment - Final mass of Sat 1 & Sat 2 for different transfer

time-lengths (Keplerian environment, T = 8N).

Chaser/Target solution

Strategy Sat 1 Sat 2 Overall

AP (1.5 revs) 846.192 1101.858 1948.050

AAP (2.5 revs) 846.503 1102.235 1948.738

AAAP (3.5 revs) 846.536 1102.304 1948.840

Table 5.8: Cooperative deployment - Final mass of Sat 1 & Sat 2 for different transfer

time-lengths (Keplerian environment, T = 8N).

Cooperative solution

Strategy Sat 1 Sat 2 Overall

AP (1.5 revs) 846.287791 1101.822479 1948.110

AAP (2.5 revs) 846.504983 1102.234185 1948.739

AAAP (3.5 revs) 846.536814 1102.303874 1948.841

Very close results are obtained by the cooperative strategies. As it was pointed

out in the cooperative rendezvous (c.f. Chapter 4), if the initial conditions are close,

the difference between the Chaser/Target and the Cooperative strategy is small. This

sentence still holds for the Simbol-X deployment, at least for the mission features here

considered. The difference would be more evident if bigger separation ∆V or lower

thrust magnitude were considered [78].

5.4.2 J2 Mission

The deployment problem will be solved again in this section, but including into the

dynamical model the gravitational perturbation related to Earth oblateness, that is, the

second zonal harmonic (hence the name J2 mission). Even in this case, the deployment

is independent of the departure date, as the dynamical model is autonomous.

As far as the “J2 mission” is concerned, the mission profile changes remarkably

with respect to the Keplerian case. The effect of Earth oblateness on semi-major axis

and eccentricity is null after a complete orbit, hence the perigee is unchanged, while

the actual apogee of the initial orbit is lowered1. Therefore, when J2 is considered, the

1As far as a ballistic orbit is concerned, the apogee takes the same value again at any revolution.
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actual difference between initial and final apogee radii is about -2281 km and -9172 km,

respectively, for Sat 1 and Sat 2. The deployment mission now requires to raise both

perigee and apogee, even though the apogee maneuver is far more expensive, from a

propulsive point of view, than the (very small) perigee burn. An impulsive strategy

would again prescribe two burns, but their order is the opposite with respect to the

Keplerian case, because here the apogee has to be raised, while in the former case,

lowered. Again, in the finite-thrust case it is convenient to split the apogee maneuvers

into multiple burn arcs centered at the apsides, in order to reduce the propulsive losses.

The perigee burn, which should precede all the apogee burns, is very short and, if the

number of revolutions is limited (not too high), the split of the longer apogee burn is

preferable in terms of propellant consumption. We can easily state that the optimal

burn structure consists of a single perigee burn (to raise the apogee) followed by burns

at every apogee passage. As an example, when 4.5 revolutions are permitted, only three

apogee burns can be performed (engine cannot be used in the proximity of departure

and arrival apsides): the optimal burn sequence is therefore PAAA.

Table 5.9: Chaser/Target deployment - Final mass of Sat 1 & Sat 2 for different transfer

time-lengths (Mission J2, T = 8N).

Chaser/Target solution

Strategy Sat 1 Sat 2 Overall

PA - PA 845.3969 1100.5751 1945.9720

PAA - PAA 845.7344 1100.9129 1946.6474

PAAA - PAAA 845.7630 1100.9748 1946.7378

Table 5.10: Cooperative deployment - Final mass of Sat 1 & Sat 2 for different transfer

time-lengths (Mission J2, T = 8N).

Cooperative solution

Strategy Sat 1 Sat 2 Overall

PA - PA 845.5300 1100.5289 1946.0589

PAA - PAA 845.7349 1100.9128 1946.6476

PAAA - PAAA 845.7632 1100.9747 1946.7379

The previous remarks on the solution of Keplerian Missions still hold in this case:

the payload increases for longer missions as the apogee maneuver is split into a greater
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number of burns. The thrust can be exploited in positions that are closer to the apogee

(i.e. the optimal position in the impulsive case) and misalignment losses are reduced.

This fact is more evident as the thrust level is lower or the number of revolutions is

lower, and the propelled arcs longer.

5.4.3 Collision Avoidance

Previous results were obtained without caring about the collision risk, and the related

constraint. That inequality constraint is difficult to enforce in its most general form,

because it is not known in advance if it will be active only in a small arc or all along the

mission. Rather than trying to enforce it directly, a different approach is used: first, the

unconstrained solution is found and the respect of the security distance is checked; if

the distance constraint is not fulfilled, the optimal unconstrained solution is purposely

modified by adding a suitable, equivalent constraint to the problem. Numerical results
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Figure 5.11: Intersatellite distance for optimal Keplerian 2.5-, 3.5-, 4.5- revolution mis-

sions.

show that the safety distance constraint is always fulfilled by the optimal Keplerian

missions with strategy A..AP; instead, a collision is more likely to happen for the J2

missions, where the optimal burn structure is “PA..A” (the inequality constraint is not

respected here).
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In the latter case, the minimum distance is always reached near the second-last

apogee. The two spacecraft recover gradually the initial phase angle (caused by having

the spacecraft flying on two different orbits during the first ballistic revolution) during

each maneuver. The recovering process is completed at the end of the last propelled

arc; henceforward the two spacecraft have the right phase, but their distance varies

along the orbit due to velocity changes along HEO. The critical maneuver is therefore

the last one, where the two spacecraft approach each other.

In case of a A..AP burn structure, the last maneuver is performed at the maximum-

velocity point, that is, where the spacecraft displacement is maximum. Actually, one

finds out that the intersatellite distance is always greater that the final one (except

soon after the separation, obviously). In case of a PA..A burn structure, the situation

is more risky, as the last maneuver is performed at the minimum-velocity point, that

is where the spacecraft displacement is minimum. The intersatellite distance for the
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Figure 5.12: Intersatellite distance for optimal 4.5 revolution mission: Keplerian mission

(AAAP) and J2 Mission (PAAA).

Keplerian and J2 cooperative 4.5 revolutions missions are presented in Figure 5.12.

The optimal solution of J2 mission (structure PAAA for both satellites) violates the

security distance constraint.

An efficient way to attain the respect of the safety distance constraint (without

explicitly imposing it), consists in constraining the difference between the second last
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apogee radii of the two spacecrafts. The precise value to enforce in order to attain

an exact minimum distance can be found by an iterative procedure. The respect of

an assigned minimum distance is attained in a few iterations if a bisection or secant

method is used.

The Multi-Bound formulation allows an easy identification of the apogee passage

for any spacecraft, because the radial velocity is null there (u1 = 0, u2 = 0). At

the penultimate apogee, the further constraint r1 − r2 = d̃apo must hold. Since a

state variable is constrained at an internal boundary, the corresponding adjoint has a

discontinuity, which is usually free (c.f. section [2.3.1]); in this case, by applying the

transversality conditions, one obtains that the adjoints λr of the two spacecrafts have

a jump, which has the same free magnitude but different sign:

λr1+ = λr1− + µ λr2+ = λr2− − µ (5.56)

where the plus and minus sign in the subscripts refers to the value just after and before

the boundary, respectively.

Table 5.11 presents the minimum distance during the last apogee burn as a function

of the enforced difference between the apogee radii for the 4.5 revolutions J2 mission;

by setting this difference at 1.6055 km the distance between the satellites during the

whole deployment, which is shown in Figure 5.13, is never below 1 km. The mass

budget to fulfill the distance constraint is extremely low (less than one gram).

According to Table 5.11, for this thrust level the minimum separation distance

before the arrival cannot be increased at will; in fact, for an apogee difference larger

than 2.5 km, the minimum distance point is located at the end of the last propelled arc.

As remarked previously, the two spacecrafts cannot maneuver near the arrival point;

the proper phasing is already achieved at the end of the last apogee burn. Here the

velocity is lower than at the apogee but very close, because the maneuver arc is quite

short. Thus the inter-satellite distance will be slightly greater than the one that has to

be acquired at the end of the deployment.

5.5 Results in a Realistic Environment

This section is focused on feasible strategies for the deployment of the two-spacecraft

formation in a more realistic environment, which involves a more complete dynamical
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(A-P-A) three-burn strategies (T = 8N , ∆V = 0.5m/s).

Table 5.11: Results for the recovery strategy, Mission J2 PAAA 4.5 revolutions.

Cooperative strategy

dapo Minimum Distance Final mass Mass Loss

km km kg g

0.478884 0.36635 1946.738 \
1.50 0.742812 1946.738 -0.205

1.60 0.9301 1946.738 -0.247

1.6055 1.0000 1946.738 -0.249

1.75 2.959958 1946.738 -0.316

2.00 6.39068 1946.737 -0.448

2.50 10.08852 1946.737 -0.776

3.00 10.08852 1946.737 -1.181

5.00 10.08846 1946.734 -3.429

10.00 10.08844 1946.726 -11.797
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model. Perturbation due to Earth asphericity, lunar and solar gravitational attraction

are here considered. It will be shown, through a preliminary analysis, that the pertur-

bations can significantly alter the spacecraft trajectories and that the burn structure

may change as different departure date and/or different spacecraft features are taken

into account.

The use of a Multi-Bound approach becomes troublesome because the number of

candidate PMP burn structures arises quickly as the allowed number of revolutions

increases. The Continuation-Smoothing approach will be adopted, to overcame the

impossibility of discerning with simple physical reasoning the optimal burn structure

for any departure date. Use is made of the fully automatic initialization procedure

described in the following. The single spacecraft deployment is used as benchmark

to verify the effectiveness of the proposed method. This is a good test case because

the number of PMP-candidate burn structures is low and a complete picture can be

drawn by manually governing the Multi-Bound approach. Eventually, results for the

Formation Deployment mission using both Chaser/Target and Cooperative strategies

are presented.

The Simbol-X deployment problem presented in the previous chapter relies on the

position-velocity variable set to describe the state of each spacecraft. This formulation

of problem is straightforward but induces significant numerical instabilities in the eval-

uation of the shooting function, due to the perturbed spacecraft dynamics and the high

eccentricity of the orbits involved in this specific mission. As far as the Multi-Bound

approach is concerned, these numerical instabilities are not worrisome; the loss of ac-

curacy along the integration can be reduced by tightening the integration tolerance.

Instead, when the Continuation-Smoothing technique is employed, these instabilities

sum up to those related to the control discontinuities and usually prevent convergence.

In order to reduce the numerical issues due to the spacecraft dynamics, the problem

has been reformulated using the modified equinoctial elements as state variables. This

set of variables features a more stable set of dynamical equations, but it is less intuitive

and the derivation of the first order optimality condition is harder. For the sake of

clearness, the complete position of the Simbol-X deployment problem with this alter-

nate set of variables, considering both the Chaser/Target and the Cooperative strategy,

is provided in Appendix B.
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5.5.1 Perturbative effects on the Switching Structure

In section [5.3.1] the deployment problem was solved assuming a simplified, two-body

dynamical model. For missions longer than 1.5 revolutions, a payload increment was

attained by splitting the single apogee firing of the fastest mission into many shorter

burns. Indeed, an almost uniform splitting occurred in case of single spacecraft deploy-

ment, because misalignment losses are reduced by an equal distribution of the duty

among all the apogee burns.

The situation becomes more complex if a full perturbation dynamic environment

is considered. The main propulsion effort is spent to raise the perigee radius to the

operative value, but the actual effort depends on the third-body gravitational pertur-

bations of Moon (mostly) and Sun, which can act in both ways (i.e., by decreasing

or increasing the perigee) depending on the relative position of the bodies. Therefore

the overall mission consumption depends on the initial phasing of the relevant bodies,

hence on the mission departure date.

Moon has a complex influence on the spacecraft trajectories. Its perturbative ef-

fects depend on the relative phasing of the spacecraft at the apogee, where it spends

most of its time (c.f. section [5.2.2]). The spacecraft phase at subsequent apogee

passages changes due to the (relatively fast) motion of the moon during one orbital

period. Favorable and unfavorable phasing (more or less strong) alternate along the

same mission.

The thrust can be used to change the phasing with the Moon of all the spacecraft

apogee passages (except the first). A longer thrust arc at the first apogee increases

the total time of flight. On the contrary, when the first apogee burn vanishes, the

following orbital periods are shorter and the whole mission is faster. A proper use of this

mechanism (i.e., adjusting the burn lengths to vary the intermediate orbital periods)

permits to put forward or push back the apogee passages in order to enhance/reduce

the effects of favorable/unfavorable geometrical configurations.

The trip time for a 4.5 revolutions mission may differ more than 12 hours (about

6 degree in angular position of the Moon). The trip time range is lower for shorter

missions, and almost null for the 2.5 revolutions missions. Although the relative position

of the bodies throughout the deployment is decided mainly by the departure date, it also

depends on the spacecraft maneuvers: perigee raising/lowering effects change rapidly
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with the Moon phase, and even few degrees make a difference between high and low

performance missions.

As a result, the optimal splitting of the apogee burn becomes less straightforward,

since now there are two conflicting ways to increase the payload: by reducing the mis-

alignment losses through an equal repartition of the propulsive effort over each apogee,

or by taking advantage of the lunar perturbation by means of a “fine tuning” of the

intermediate orbital periods. For this reason, the optimal switching structure, that

is, the structure that respects Pontryagin’s Maximum Principle, may change accord-

ing to departure date, thrust level and characteristics of the relevant spacecraft. For

some departure dates the optimal solution may be “incomplete”, that is, one or more

apogee burns vanish completely in order to attain the maximum benefit from the Moon-

Spacecraft phasing. The presence of incomplete burn structures can be envisaged by

looking at the relative importance of lunar perturbation gain and misalignment losses,

expressed in terms of payload increment.

Lunar Perturbation Gain The lunar attraction is the most important (time

dependent) perturbation in this specific problem and can be exploited to reduce the

propellant consumption. A proper evaluation of the gain related to the lunar pertur-

bation (LPG) is quite difficult to perform. A reasoning on the order of magnitude

is useful. As an estimate of saved propellant, we considered the amount needed to

perform an impulsive maneuver equivalent to the maximum perigee raise that can be

achieved by the Moon pull after one complete revolution of the spacecraft. Assuming

a maximum variation of the apogee phase of 6◦, a free perigee raise up to 108 km can

be attained, which equals an impulsive maneuver with ∆V = 2.907 m/s corresponding

to 1.29 kg of propellant. This is the order of magnitude of LPG (for a fixed departure

date).

Misalignment Losses Reduction The Misalignment Losses Reduction (MLR),

which is provided by the split of the apogee maneuver, can be evaluated as at the

differences on the final masses between missions in the Keplerian environment with

different switching structures. In fact, the difference in terms of payload is almost

completely linked to MLR.
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Table 5.12: Misalignment Losses Reduction due to apogee splitting.

Keplerian environment: Sat 0 - Final Mass [kg]

Strategy T = 8 N T = 4 N T = 2 N T = 1 N

A 846.374 845.639 842.345 816.527

A-A A +0.179 A + 0.735 A + 3.294 A + 25.813

A-A-A A +0.212 A + 0.868 A + 3.841 A + 28.315

Values in Table 5.12 refer to the optimal deployment in the Keplerian environment

of a fictitious “Sat 0” which is halfway between Sat 1 and Sat 2: it has the same

propulsive features of Sat 1 but its initial orbit is the same as Sat 2. This table shows

that the importance of MLR with respect to LPG decreases as the thrust level increases.

Incomplete solutions are more likely to arise if a high thrust level is considered, whereas

they probably would not occur in case of lower thrust levels. Sun is not considered in

this simplified analysis because its position varies more slowly than the Moon does.

Thus, the same changes in spacecraft period modify Sun effects less than Moon ones.

Indeed, the sun-spacecraft phasing can be hardly modified by using the spacecraft

thrust.

The optimal burn structure might have one apogee burn less or even two. In theory,

for a mission of nrev number of revolutions (i.e., nrev = 2.5, 3.5, 4.5), considering only

maneuvers at the perigee and at the apogee, except the first and the last, the number

of possible burn combinations is 22(nrev−0.5). In practice, the number of useful, PMP-

candidate solutions can be reduced considerably by assuming that the first burn is at

perigee, and is the only perigee maneuver. Under theses assumption, for the longer

single satellite mission (4.5 revs.) we have one complete structure (PAAA), three 1-

incomplete structures (P0AA, PA0A, PAA0), etc.

5.5.2 Automation of the Solution Process

The Multi-Bound approach can be used to find the optimal solution for a deployment in

a perturbed environment. If the solution for one specific departure date is sought, the

convergence process can be carried out manually (with some efforts). If many solutions,

corresponding to many different departure dates, are needed, one can try to extend a

known solution by performing a continuation on the departure date (to reduce the
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amount of manual work). This extension process works by exploiting the continuous

dependence of the differential equation system on the initial conditions and the fact that

the Multi-Bound method has a convergence radius sufficiently wide to allow reasonably

long steps (in the present case, variation on the departure date from few hours to few

days are possible, depending on the time scale of the dynamical model).

Unfortunately, the optimal burn structure changes with the departure date. A

simple approach to face this issue is to find for the same date the solutions corresponding

to a set of burn structures (those that are reputed to be best candidates) and extend

all of them by continuation. The optimal solution, by definition, will be the one with

the highest merit index. The switching function is then inspected to ensure that PMP

is respected. If even the solution with the highest merit index does not satisfy PMP,

none of the considered burn structures is optimal. Thus, a different burn sequence has

to be found and added to the set of candidate burn structures.

This way of handling the shortcoming is pretty effective if the number of potentially

optimal burn structures is low, that is, when the number of revolutions is small. As

the revolution number increases, the possibilities increase, and this solution process

becomes longer, but in principle still valid. The main limit of this strategy is that

solutions corresponding to a given burn structure may not exist for some dates; thus

the continuation process ends abruptly.

The fact that an augmented problem might not have solution, if the burn structure

does not correspond to the optimal one, was highlighted in section [3.3.1]. Here, in

particular, a physical solution is not attained whenever the imposed burn structure has

more burns than the optimal one. The explanation is quite simple: if more switching

conditions (i.e., zeros of the switching function) are enforced than the actual number of

roots of the switching function, all the switching conditions at the interior boundaries

cannot be fulfilled and the convergence cannot be obtained: the Newton method may

diverge or, more often, a non physical solution is attained, because new roots of the

switching function are created by means of a time inversion. Whether case arises is,

however, not predictable.

If the extension process is halted, it can be restarted by skipping to a successive date.

The problem is that a new “starting” solution is now needed and it should be found

manually; in fact if the restart is attempted in an automatic way and the convergence is

still not attained, the reason may be either a poor choice of the initial guess or the fact
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that the solution does not exists for that specific date. Being impossible to distinguish

the two cases without manual intervention, some interesting solutions might be lost.

The Continuation-Smoothing approach does not require the optimal burn structure

to be known (or guessed) in advance; thus it seems naturally apt for solving the de-

ployment in this complex environment. Once again, the fully automatic initialization

procedure described in section [3.4.3] can be exploited. A further continuation phase

needs to be interposed between the solution of the starting problem and the orbit-shape

continuation. This phase aims to introduce progressively the perturbing accelerations,

which are present in the actual dynamic model, but are neglected in the starting prob-

lem dynamics (in order to keep its solution as simple as possible). This continuation

is attained by scaling each perturbation by a coefficient αp which is initially zero and

progressively increased to one.

5.5.3 Single Satellite Deployment

This section presents results for the single deployment problem, obtained by using

either the Multi-Bound and the Auto-CS algorithms. Missions up to 4.5 revolutions

are investigated over a whole month. Since the mission structure changes (mostly)

according to the Moon phase, this range is wide enough that all the possible burn

structures arise.

As anticipated in section [5.5.1], the optimal solution (hence the related payload

and burn structure) changes according to mission length, departure date and features of

the relevant spacecraft. Figures 5.14, 5.15, and 5.16 consider short (2.5 revs.), medium

(3.5 revs.), and long length (4.5 revs.) missions, respectively, for the deployment of

Sat 2. Solid lines refer to solutions obtained by the original Multi-Bound approach,

via the extension procedure on the departure date explained in section [5.5.2]. Instead,

dots refer to solutions obtained by using the Auto-CS algorithm. As far as the 2.5

revs. mission is concerned, the transfer is so short that the spacecraft capability of

maneuvering in order to exploit (or avoid) the Moon pull is very limited. Indeed,

the optimal burn structure is PA for any departure date. The picture becomes more

tangled as far as longer missions are taken into account: for the 3.5 revolution missions

two burn structures are alternatively optimal (for different departure dates), whereas

for the 4.5 revolution missions the optimal burn structure is one of the four proposed

in Figure 5.16. In any case, the optimal solution varies remarkably according to the
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Figure 5.14: Final mass for the 2.5 revolution deployment of Sat 2.
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Figure 5.15: Final mass for the 3.5 revolution deployment of Sat 2.
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Figure 5.16: Final mass for the 4.5 revolution deployment of Sat 2.

departure date, and up to 8 kg of propellant (over an average consumption of roughly

150 kg) can be saved/lost by varying the departure date.

The single spacecraft deployment is also a good benchmark to evaluate the effective-

ness of the Auto-CS algorithm, as many different situations arise. The proposed algo-

rithm performs very well in a wide range of situations, as testified by Figures 5.14-5.16.

Minor differences (a few grams) in the propellant consumption are due to numerical er-

rors that cannot be avoided without forcing a very high precision to the integrator. The

computation time required for a single solution varies from a pair of minutes to almost

ten minutes, depending on the mission length, the choice of the integration tolerance,

and the maximum allowed step of the continuation process (for either orbit-shape and

smoothing parameters).

As far as short and medium length missions are concerned, the Continuation-

Smoothing approach always captures the optimal solution. Some issues arose in rare

cases of long-length (4.5 revs.) missions when the first apogee burn vanishes and the

perigee one is delayed by one revolution. In those cases the continuation on the smooth-

ing parameter stopped prematurely (i.e., before the stopping condition on the smooth-

ing parameter is met). Even though the exact origin of this shortcoming cannot be

proved, it is possible to relate the shortcoming to two unlucky circumstances:

1. the thrust level does not increase simultaneously in both the perigee burns;
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2. the trajectory is very sensitive to perigee maneuvers, where velocity is high, and

even a very small burn can alter drastically both the state and adjoint variables

in the following part of the mission.

During the continuation on the smoothing parameter, the burn located at the first

perigee passage has an early “grow”. As the continuation progresses, the first apogee

burn tends to vanish and simultaneously a second perigee burn raises. However, this

happens when the smoothing parameter is already very low (ε = 10−4 ÷ 10−5) and the

solution is already too “rigid” (or “stiff”) to accept the required change. This effect does

not appear in the fixed-structure approach because the thrust magnitude at each perigee

is assumed to be zero or maximum, since the beginning of the convergence process. A

specific patch can be designed for this problem by modifying the optimization algorithm.

It consists in denying the spacecraft the possibility of maneuver at the second perigee

passage. In this way, the convergence process is made more stable, all the previous

optimal solutions are still attained, but (obviously) the attained solution is not PMP

in those rare cases when the standard algorithm did not work. Some numerical issue

remains, and in few cases the integrator tolerance has been tightened to satisfy the

boundary conditions with the standard precision.

An example of a troublesome mission is given by the single deployment of Sat 0

in date 5/12/2015 @ 00:00. Here, the first apogee burn vanishes, and the perigee

burn is delayed to better exploit the Lunar pull, thus the optimal solution has the

odd (or delayed) 0PAA burn structure and the final mass is 844.141 kg. The “non-

patched” Continuation-Smoothing approach does not converge for this date, whereas

the “patched” Continuation-Smoothing approach converge to a P0AA solution (final

mass equals to 844.079 kg), which is sub-optimal, but the overall propellant consump-

tion is almost the same (the difference is below 70 grams). These peculiar aspects of

the Simbol X mission deployment has been extensively analyzed in [79, 80].

5.5.4 Formation Deployment

In this section the Continuation-Smoothing technique is applied to the Formation De-

ployment problem. Numerical results are presented for both Chaser/Target and Coop-

erative strategies.
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Chaser/Target Strategy

Very good results are obtained when the Auto-CS algorithm is applied to the forma-

tion deployment problem, according to the Chaser/Target approach. The optimization

process is carried out successfully for almost every tested mission (for both short and

long transfers). Convergence problems rarely occur. Results concerning missions with

different lengths are summarized in Table 5.13. The overall final mass obtained for

departure dates during a whole month are shown in Figure 5.17.

Table 5.13: Chaser/Target deployment - Final mass and computational time for different-

length missions (J2 + Lunisolar perturbation).

Mission
Final Mass, kg CPU TIME, min

Sat 1 Sat 2 Overall Sat 1 Sat 2

JLS - 2.5 @ 1/12/2015 844.129 1098.920 1943.049 10:11 05:34

JLS - 3.5 @ 1/12/2015 844.233 1098.956 1943.189 13:12 07:22

JLS - 4.5 @ 1/12/2015 845.026 1099.993 1945.019 16:29 10:04
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Figure 5.17: Final mass for the JLS 2.5, 3.5, and 4.5 revolution Chaser/Target formation

deployment.

The crucial role that the departure date plays in the transfer is evident: improve-

ment up to 13 kg with respect to the minimum overall final mass value can be obtained
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by varying the departure date. Differently from the Keplerian and J2 missions, a longer

mission duration does not always corresponds to a payload increment. This fact can be

explained by considering that the perturbation effects (of the Moon, in particular) tend

to average over a long time horizon; instead if a short time period is considered, and a

proper choice of the departure date is made, the spacecraft experience only the most

favorable pulls. Thus, for some departure dates, shorter missions are more performing

than longer. On the other hand, the mean payload value over a long interval (e.g. a

month) increases with the mission length (1946.447 kg, 1947.887 kg, and 1948.957 kg

for the 2.5-, 3.5-, and 4.5-revolutions mission, respectively).

Cooperative Strategy

As far as the cooperative strategy is concerned, the number of vehicles increases, the

problem becomes numerically more difficult and the Continuation-Smoothing algorithm

is severely stressed. The optimization process often ends “prematurely” during the con-

tinuation on the smoothing parameter (that is, before a very law smoothing parameter

value is reached). For this reason, the attained control law remains smoother then the

optimal (bang-bang), causing a loss of performance (i.e., a loss of payload, or an extra

propellant consumption) which depends on how far the obtained control law is from

reaching the bang-bang law. Figure 5.18 presents an example of variation of the merit

 1080

 1085

 1090

 1095

 1100

 1105

1.0e-61.0e-51.0e-41.0e-31.0e-2

F
in

al
 M

as
s,

 k
g

Smoothing Parameter

Figure 5.18: Final mass behavior during the continuation process for a single spacecraft.
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index (the final mass) during the continuation procedure: the increment of the final

mass continues until a critical value of the continuation parameter (ε = 10−6) is reached;

for lower values the mass remains almost constant. In the case of the Chaser/Target

approach this critical value is almost always reached, while usually the continuation

ends with ε = 10−4 or ε = 10−5 in the cooperative case.

The cooperative approach is also computationally more expensive than solving the

same problem with the Chaser/Target (i.e., by solving the chaser and the target problem

separately). For example, in the case of a Chaser/Target strategy, the time required

to optimize a 4.5 revs. mission accounting for the effects of Earth oblateness and the

Lunisolar gravitational perturbations is about 22 minutes (8 for Sat 2 and 14 for Sat 1);

instead, in case of the cooperative strategy, about 45 minutes are required the to reach

εlimit = 10−4, and 52 minutes for εlimit = 10−5. The time needed for any optimization

can be reduced if the maximum allowed continuation step is increased (i.e., it passes

from 5% to 10% of the smoothing parameter value), but in some cases convergence

might not be obtained.

For an assigned smoothing parameter value (e.g. 10−4), the difference in the final

mass using either the smooth or the bang-bang control does not depend noticeably

on the departure date. Therefore, as far as the same value of the smooth parameter

is attained for all the departure dates, it is always possible to make peer comparison

between the attained results. From a practical point of view, this is quite important as

it allows the detection of best departure date.

Results concerning missions with different lengths , for departure dates ranging

in a whole month, are shown in Figure 5.19. For any departure date, the optimal

solution (which is the solution of interest from a theoretical viewpoint) can be found

by post-processing the smooth solution with Multi-Bound approach. The proper burn

structure can be envisaged by inspecting the attained control law, which also provides

tentative values for the corresponding switch-on/off times. The presence of a burn is

revealed by “peaks” in the control magnitude graph, as in Figure 5.20. Initial guesses

at the other unknowns are provided by the smooth solution. A threshold βthld on the

nondimensional value of the thrust (β = T/Tmax) is assumed; burn and coast arcs are

detected accordingly. This threshold value must be high enough to avoid “false burns”,

because the multi-boundary program would not converge. “Missed burns” are better

tolerated: the multi-boundary program is conducted towards a suboptimal solution but
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Figure 5.19: Final mass for the JLS 2.5, 3.5, and 4.5 revolution Cooperative formation

deployment, Smooth control: Logarithmic barrier, ε = 10−4.
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it will converge; one will discover that the attained solution is not optimal according

to PMP, only by inspecting its switching function.

The structure becomes clearer as the continuation on the smoothing parameter

progresses. For the current problem, the choice of βthld = 0.4 permitted to detect the a

burn structure corresponding to the PMP one for most of the departure date already for

ε ≈ 10−4. In case the optimal (PMP) solution presents a very tiny apogee burn (e.g.,

20 minutes) it might not be detected using a threshold so high, hence at the end of the

process the solution is bang-bang, but it does not satisfy PMP. However, in these cases

the difference in terms of final mass between the PMP and the obtained solution is very

small. This situation arises, as an example, for the cooperative JLS - 4.5 revolution

mission departing on 1/12/2015. The PMP optimal solution is PAAA - PAA0 and the

last apogee burn of Sat 1 lasts only 0.004 rad. Using the threshold βthld = 0.4, if the

continuation process is stopped at ε = 10−4 the PAA0 - PAA0 structure is detected

and the bang-bang solution will remain suboptimal. Instead, the guessed structure will

be PAAA-PAA0 on the basis of the smoothed solution corresponding to ε = 10−5, and

in that case the PMP optimal solution will be eventually obtained. The difference in

terms of overall final mass is however minimal (a few grams).

Table 5.14: Final mass for a cooperative mission (JLS 4.5 revs 1/12/2015 - Multi-Bound

method).

Strategy
Final Mass, kg

Sat 1 Sat 2 Overall

PA00 - PA00 845.110 1099.733 1944.842

PAA0 - PA00 845.181 1099.787 1944.969

PAA0 - PAA0 845.227 1099.993 1945.220

PAAA - PAA0 845.228 1099.994 1945.222

One should also notice that the solution of the less performing Chaser/Target strat-

egy with the critical value of the continuation parameter ε = 10−6, which corresponds

to an almost bang-bang control, exhibits a higher final mass than the Cooperative ap-

proach with a “higher” value of the continuation parameter (ε = 10−4). This apparent

contradiction disappears when solutions with the same value of the continuation pa-

rameter are considered. However, the maximum performance needs to be calculated

by using the Multi-Bound procedure.
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Table 5.15: Final mass for different strategies and smoothing parameters - 3.5 revs

mission.

JLS 3.5 @ 2015/12/02

Strategy Sat 1 Sat 2 Overall

C/T(1e-4): 843.738 1098.386 1942.125

C/T(1e-5): 843.954 1098.603 1942.557

C/T(1e-6): 843.978 1098.627 1942.606

COOP(1e-4): 843.932 1098.386 1942.318

COOP(1e-5): 844.150 1098.604 1942.754

COOP( MB ): 844.175 1098.628 1942.803

Table 5.16: Final mass for different strategies and smoothing parameters - 4.5 revs

mission.

JLS 4.5 @ 2015/12/02

Strategy Sat 1 Sat 2 Overall

C/T(1e-4): 843.955 1098.603 1942.558

C/T(1e-5): 844.455 1099.326 1943.781

C/T(1e-6): 844.708 1099.602 1944.31

COOP(1e-4): 844.529 1099.243 1943.772

COOP(1e-5): 844.867 1099.568 1944.435

COOP( MB ): 844.902 1099.604 1944.506
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Chapter 6

Conclusions

This thesis was focused on indirect optimization methods for the design of space mis-

sions, and, in particular, to a specific class of optimal control problems whose solution

exhibits a discontinuous control law: the so called bang-bang optimal control problems.

Any attempt to solving such problems by using an indirect method without any

specific treatment of the bang-bang control resulted inevitably into a failure, except

for trivial problems (rocket sled - Chapter 3). In order to work properly, the shooting

method requires the shooting function to be smooth. Unfortunately, the presence of

discontinuous control terms causes the shooting function to be discontinuous, or not

defined, and its Jacobian may be singular at some points in its domain. This limits

by far the convergence basin of the root-finding method and the user capability of

attaining a correct solution. Moreover, the loss of accuracy along the integration (due

to the numerical noise related to the discontinuous control law and to the problem

dynamics) may be so pronounced to cause imprecise evaluation of the Jacobian matrix.

Therefore, even though the resulting HBVP is numerically well conditioned and the

initial guess is very close to the solution, the shooting algorithm may be unable to

converge.

The Continuation-Smoothing technique mitigates these issues by finding at first

the solution of a regularized problem and then by attaining the solution of the original

problem by progressively reducing the magnitude of the regularization (or perturba-

tive) term. In practice this technique gives brilliant results for problems with a simple
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dynamics (cooperative rendezvous problem - Chapter 4), and fair results as far as a

more complex dynamics (Simbol-X deployment problem - Chapter 5) is considered.

The reasons of the not complete success in the latter case is that the Continuation-

Smoothing technique does not remove entirely the source of the numerical issues pre-

viously described. At the beginning of the continuation, the control is quite smooth

and numerical issues are negligible; thus the regularized problem is solved easily. How-

ever, as the continuation progresses, the control resumes its original behavior and the

associate numerical noise grows forcefully. Eventually, this may lead to such an impre-

cise evaluation of the Jacobian matrix that convergence cannot be attained anymore

and the continuation process cannot progress any further. If this happens before the

control law has become almost bang-bang (e.g. in the case of the longest Simbol-X

deployment), the optimization usually cannot be considered as a complete success.

The Multibound approach is almost completely unaffected by these numerical is-

sues, as the discontinuous terms are fully removed from each integration domain (they

are present only at arc extremities). This enhancement allows to obtain a numerical

solution with a very strict tolerance (nondimensional residual lower than 10−7) in any

tried case, even the most complex one. Moreover, the convergence radius is enlarged

by this technique (with respect to the straightforward application of optimal control

theory): the subdivision of the trajectory into many arcs, each one with an assigned

thrust level, greatly reduces the sensitivity of the trajectory to the values of initial

adjoint variables. Besides, the additional unknown parameters, which correspond to

the engine switch on/off times, permit to enforce easily a physical initial guess.

Indeed, the multibound approach requires a lot of work from the user, which has to

find out and to set up the proper burn structure for each mission of interest. This task

may become really burdensome, or even impossible, when huge parametric analyses

have to be performed, especially when there is no clue on the optimal burn structure

(as in the Simbol-X deployment problem). On this side, the Continuation-Smoothing

method is more appealing than the multibound one. An almost automatic procedure

has been described and adopted. Albeit no proof of convergence to the optimum can be

stated, in practice this initialization process demonstrated to be capable of achieving

the optimal solution in most cases, while sub-optimal solutions were found just in a few

cases. It permitted, as an example, to solve the Simbol-X deployment problem for any

departure date and any mission length, without necessity of any user action, obtaining
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always results in good agreement with those found out using the multibound approach

and manually attaining the convergence.

Despite the Multi-Bound and the Continuation-Smoothing technique were presented

here one against the other, nothing precludes their synergistical use. In particular, re-

sults obtained in case of cooperative strategy for the Simbol-X formation deployment

suggest the use the Continuation-Smoothing as an initialization step for the multi-

bound approach. The Continuation-Smoothing is capable of capturing the right burn

structure, whereas the Multi-Bound approach is good to refine it. The passage from

one formulation to the other is quite straightforward, as the system of ODE and the

(external) boundary conditions are the same. Once a suitable burn structure has been

individuated, one has only to enforce as many conditions as the number of switching

points.

6.1 Future Work

Future research may be directed towards finding even smoother control laws than

those considered in this thesis, in order to further improve the effectiveness of the

Continuation-Smoothing approach. Efforts should be directed towards a better inte-

gration of the two methods, which may reduce computational time and also improve

the accuracy of the solution. The development of an “efficient” initialization proce-

dure is also an interesting research field. Advances could be attained by considering

continuation paths different from the one used in this thesis. Finding a proper auto-

matic initialization for the most common space missions, such as multi-revolution orbit

transfer, would allow to create reliable, automatic tools which could be employed in

the design of more complex missions. As an example, a debris-removal mission would

greatly benefit of such automated solver. Here the goal is to remove as many debris as

possible (or to reduce the propellant for a given list of target debris), within a given

time. As the best sequence of targets is unknown, a great number of target-to-target

transfers has to be analyzed. A huge number of possibilities exists because the opti-

mal transfer from a debris to another depends on the time (through the debris relative

phase). Clearly, a tool for optimize autonomously each single leg would be really useful,

as it would leave the user only the task of deciding the removal sequence.
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Formation flying missions (here used as a benchmark for the numerical solution

method) provide another interesting topic of future research: the reconfiguration prob-

lem, that is, how moving efficiently a spacecraft formation from one configuration to

another. Time-constrained, minimum-fuel reconfigurations are desired as they allow

to extend the lifetime of a formation, but it is a very challenging problem due great

number of locally optimal solutions and the presence of a collision avoidance inequality

constraint which may be activated many times in a maneuver which has spacecraft

often flying in close proximity.
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Appendix A

Perturbation Acceleration due to

Earth Asphericity and Lunisolar

Attraction

In order to take into account the effects of Earth Asphericity, Moon and Sun gravita-

tional attraction, a perturbing acceleration has to be added into the spacecraft equa-

tions of motion.

The satellite position with respect to an inertial frame is given by a set of polar

coordinate r, ϑ, and ϕ. The reference frame
{
î; ĵ; k̂

}
, chosen to describe the S/C

velocity, is topocentric and rotating, which follows the spacecraft during its motion,

keeping the axes pointed in the radial î, eastward ĵ, and northward ĵ directions.

The three unit vectors î, ĵ , k̂ are defined with respect to the inertial reference

frame {ĝ1; ĝ2} by the following equations:





î

ĵ

k̂



 =




cosϑ cosϕ sinϑ cosϕ sinϕ
− sinϑ cosϑ 0

− cosϑ sinϕ − sinϑ sinϕ cosϕ








ĝ1
ĝ2
ĝ3



 (A.1)

The velocity is expressed by means of the radial u, estward v, and northward w com-

ponents, respectively. The motion of a spacecraft in a general-perturbed environment

can be described by the following set of differential equations:
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˙̄x = f̄ (x̄, ū, t) =





ṙ = u

ϑ̇ = v/ (r cosϕ)

ϕ̇ = w/r

u̇ = −µ/r2 +
(
v2 + w2

)
/r + Tu/m+ (ap (x̄, t))u

v̇ = (−uv + vw tanϑ) /r + Tv/m+ (ap (x̄, t))v

ẇ = −
(
uw + v2 tanϑ

)
/r + Tw/m+ (ap (x̄, t))w

ṁ = −T/c

(A.2)

where:

• ū = ~T =
(
Tu Tv Tw

)
is the control vector;

• ~ap (x̄, t) is the overall perturbing acceleration acting on the spacecraft.

In the following sections, analytical expressions are given fore the perturbing accel-

eration due to Earth asphericity or the third body gravitational attraction. Obviously,

the overall perturbing acceleration is just the sum of the acceleration due to each per-

turbing source.

A.1 Earth Asphericity

Perturbations due to Earth asphericity account for the effects related to a non new-

tonian gravitational potential and will be indicated as āJ . A more realistic Earth’s

potential description is based on the Earth Gravitational Model EGM2008, which pro-

vides normalized spherical harmonic coefficients for Earth’s gravitational potential; the

“Tide Free” system is used [81]. The developed code can be quickly modified to con-

sider higher degree terms or the “Zero Tide” system. The Earth’s rotation is assumed

to be uniform, neglecting precession and nutation. The EME2000 reference frame is

adopted. The gravity model is described in details in [82]. According to EGM2008, the

potential corresponding to the Earth asphericity is expressed as

Φ = −µ/r
N∑

n=2

(rE
r

)n n∑

m=0

(Cnm cosmλ+ Snm sinmλ)Pnm(sinϕ) (A.3)
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where µ is the Earth gravitational parameter and rE is the semimajor axis of the Earth

ellipsoid. In this article N is chosen equal to 8. The associated Legendre functions

Pnm(sinϕ) and the spherical harmonic coefficients Cnm and Snm are used in the un-

normalized form that permits faster computations. Normalized quantities would allow

for a greater accuracy, which is not necessary for the present application.

The terrestrial latitude coincides with declination ϕ, as nutation is neglected. The

terrestrial longitude λ is obtained as λ = ϑ − ϑGref − ωE(t − tref), where ϑGref is the

Greenwich right ascension at the reference time tref (51544.5 MJD); ωE is evaluated on

the basis of the sidereal day, neglecting precession.

The perturbing acceleration due to Earth’s asphericity is the gradient of −Φ, and

its components in the topocentric frame are thus evaluated as

(aJ)u = −∂Φ/∂r (A.4)

(aJ)v = −(∂Φ/∂ϑ)/(r cosϕ) (A.5)

(aJ)w = −(∂Φ/∂ϕ)/r (A.6)

Differentiation with respect to r and ϑ is straightforward; derivatives with respect to

ϕ require the derivatives of the associated Legendre functions, which are obtained re-

cursively, exploiting the properties of Legendre polynomials. Derivatives are evaluated

directly with respect to ϕ (some authors use the colatitude π/2−ϕ, the only difference

being a sign change of the derivatives); one has, posing Pnm = 0 for m > n,

dPnm

dϕ
=

{
Pn1 for m = 0

[Pn(m+1) − (n+m)(n−m+ 1)Pn(m−1)]/2 for m > 0
(A.7)

Further details can be found in [83] and [84].

A.2 Third body Perturbation

Third body perturbations account for the presence of attracting bodies other than the

primary (here the Earth) and the spacecraft. In particular the perturbing acceleration

ābg on the spacecraft, which is caused by a body with gravitational parameter µb and

position vector with respect to the Earth r̄b = xbĝ1+ybĝ2+zbĝ3, is given by the difference

of the gravitational accelerations that the perturbing body causes on spacecraft and

Earth, that is:

ābg = −(µb/R
3)R̄− (µb/r

3
b )(r̄b) (A.8)
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where R̄ = r̄−r̄b is the spacecraft relative position vector with respect to the perturbing

body, as shown in Figure 5.3.

The third body position (either Moon or Sun) can be evaluated using DE405 JPL

ephemerids [85], which directly provide the body position in rectangular coordinates

xb, yb, zb with respect to the Earth in the International Celestial Reference Frame, and

therefore in the EME2000 frame (differences between these frame are very small and

can be neglected in the present problem).

The perturbing acceleration ābg is projected onto the topocentric frame (based on

the spacecraft position) to attain its components in that reference frame:

(abg)u = (µb/R
3)[(rb)u − r]− (µb/r

3
b )(rb)u (A.9)

(abg)v = (µb/R
3)(rb)v − (µb/r

3
b )(rb)v (A.10)

(abg)w = (µb/R
3)(rb)w − (µb/r

3
b )(rb)w (A.11)

with R =
√
[r − (rb)u]2 + (rb)2v + (rb)2w. The position components of the perturbing

body in the spacecraft topocentric frame are

(rb)u = xb cosϑ cosϕ+ yb sinϑ cosϕ+ zb sinϕ (A.12)

(rb)v = −xb sinϑ+ yb cosϑ (A.13)

(rb)w = −xb cosϑ sinϕ− yb sinϑ sinϕ+ zb cosϕ (A.14)

The perturbing acceleration ābg is thus a function of time and state variables (namely,

only r, ϑ, and ϕ, as gravity forces only depend on position). Eventually, the luni-solar

perturbation is calculated as the sum of the gravitational perturbations due to Moon

(b = l) and Sun (b = l).
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Appendix B

Simbol-X Deployment Problem

using Modified Equinoctial

Elements

In this appendix, the deployment problem of the Symbol-X formation is reformulated

using the Modified Equinoctial Elements (MEEs) as state parameters. This set of

variables is soon presented and the relationships with classical orbital parameters and

position and velocity vectors are stated. Then, the dynamics equations are derived.

Eventually, optimality conditions for both Chaser/Target and Cooperative approaches

are provided.

B.1 The set of modified equinoctial orbital elements

The modified equinoctial orbital elements are a set of orbital elements useful for tra-

jectory analysis and optimization, which is valid for circular, elliptic, and hyperbolic

orbits. Differently from the classical orbital elements, this set of variables exhibits

no singularity for zero eccentricity and orbital inclinations equal to 0 and 90 degrees.

However, two of the components are singular for an orbital inclination of 180 degrees.

Modified equinoctial elements are defined in terms of classical orbital elements by the
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following equations:

p = a
(
1− e2

)
(B.1)

ex = e cos (ω +Ω) (B.2)

ey = e sin (ω +Ω) (B.3)

hx = tan (i/2) cos (Ω) (B.4)

hy = tan (i/2) sin (Ω) (B.5)

L = Ω+ ω + ν (B.6)

This modified set of orbital parameters is related to the classical one by the following

equations:

e =
√
e2x + e2y (B.7)

a = p/1− e2 (B.8)

i = 2arctan
(
h2x + h2y

)
(B.9)

Ω = atan2 (hy, hx) (B.10)

ω = atan2 (ey, ex)− Ω (B.11)

ν = L− Ω− ω (B.12)

Modified equinoctial elements are also appealing as state variables because the

dynamics equations associated to this set of parameters are more stable and easier to

integrate than those associated to the position-velocity variable set (which, on the other

hand, are more intuitive). The dynamics equations for MEEs can be derived following

the classical Variation of Parameter approach, that allows the inclusion of both the

conservative (e.g., third body and geopotential perturbation) and nonconservative (e.g.,

drag and thrust) forces acting on the spacecraft. The component resolution of these

external forces can be made in various rotating orbital frames, such as the Euler-Hill or

polar orbital frame, the equinoctial frame, or even the tangential frame. In this work

the radial-tangential-normal frame has been chosen: the radial direction is along the

geocentric radius vector of the spacecraft measured positive in direction away from the

geocenter, the normal direction is positive along the angular momentum vector, and

the tangential direction is chosen to complete the right-handed coordinate system.
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îr =
~r

‖~r‖ în =
~r × ~V∥∥∥~r × ~V

∥∥∥
ît = în × îr (B.13)

The set of differential equations which completely describes the evolution of a space-

craft state is given by the dynamics equations for MEEs plus the mass equation:

˙̄x =





˙̄xc = f̄0 (x̄c, t) + ¯̄g(x̄c, t)
T

(
~T

m
+ ~ap

)

ṁ = −T

c

(B.14)

where x̄c =
(
p ex ey hx hy L

)T
is the vector which collects all the MEEs for one

spacecraft and

f̄0 =

√
µ

p

W 2

p




0
0
0
0
0
1




(B.15)

¯̄g =

√
p

µ

1

W




0 2p 0
W sinL W cosL+ ηx −Zey
−W cosL W sinL+ ηx +Zex

0 0 C
2 cosL

0 0 C
2 sinL

0 0 Z




(B.16)

C = 1 + h2x + h2y W = 1 + ex cosL+ ey sinL Z = hx sinL− hy cosL (B.17)

ηx = ex + cosL ηy = ey + sinL (B.18)

Further details on modified equinocitial elements, such as the relationship between the

cartesian components of the position and veloctity vectors and MEEs, can be found

in [86].

Notice that here, ~ap is the perturbing acceleration expresses in the RTN reference

frame; equations provided in Appendix A are still valid, but need to be calculated in

this reference frame in order to be properly used.
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B.2 Optimization using a Chaser/Target Approach

Using the Chaser/Target strategy, two optimal control problems arise: the one con-

cerning the target spacecraft is self-consistent, while the other one needs the solution

of the former to be completely defined.

In both problems, the goal is to maximize the final mass of the relevant spacecraft,

that is alternatively J = mI |f or J = mII |f . For either spacecraft, the state vector

is defined by Modified Equinoctial Elements plus the spacecraft mass; its evolution in

time is given by eq. (B.14)

Both problems are solved by the same indirect method used through all the thesis.

First order necessary conditions need to be derived and the Hamiltonian boundary

value problem which arises is solved by means of a simple shooting technique. The

adjoint variables λ̄xc =
(
λp λex λey λhx

λhy
λL

)T
and λm and the Hamiltonian

are introduced. Euler-Lagrange equations, which provide the time-derivatives of the

adjoint variables, are calculated according to eq. (2.16).

Notice that a analytical derivation of Euler-Lagrange equations is much more diffi-

cult when MEEs variables are adopted, with respect to the position-velocity set. The

reader can refers to [87] for the analytical expression of Euler-Lagrange equations in ab-

sence of external perturbative terms. In this thesis, the analytical (hand-by) derivation

of the adjoint equations is avoided, as the need to take into account many perturbative

forces would made that task too long, complex and error-prone. Instead, the numerical

values of the adjoint derivatives are computed by using an automatic differentiation

procedure [88]. This choice relieves the user from any concern about the analytical

expression of the Euler-Lagrange equations; the only drawback is a much slower com-

putation with respect to the analytic one (speed factor is usually about
1

2
÷ 1

4
).

The optimal control law for either spacecraft can be computed formally in the same

fashion. As far as the modified equinoctial elements are concerned, Lawden primer

vector theory cannot be exploit anymore to determinate the control law, as no velocity

vector ~λV exists if MEEs are chosen as state variables. However, the quite general

formulation provided in Chapter 3, section [3.2.1], apply to this problem, as the system

dynamics is affine in the control vector and the magnitude of the control is bounded.

Optimal thrust vector is decomposed in magnitude and direction: ~T = Tmax β v̂.
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The optimal direction v̂ is calculated according to eq. (3.10):

v̂ (t) =
¯̄g(x̄c (t))

T λ̄xc (t)∥∥∥¯̄g(x̄c (t))T λ̄xc (t)
∥∥∥

(B.19)

while, the optimal thrust magnitude β is decided on the basis of the switching function

value, which can be highlighted easily by explicating the optimal thrust direction in

the Hamiltonian:

H = λ̄T
xc
f̄0 (x̄c) + λ̄T

xc
¯̄g(x̄c)

T

(
~T

m
+ ~ap

)
− λm

T

c
=

= λ̄T
xc

(
f̄0 (x̄c) + ¯̄g(x̄c)

T~ap

)
+ TmaxSF

(B.20)

where

SF =
∥∥∥¯̄g (x̄c)T λ̄xc

∥∥∥ /m− λm/c (B.21)

Pontryagin Maximum Principle indicates whether the spacecraft has to maneuver or

not. The Hamiltonian is linear in the thrust value, hence maximum thrust is exploited

when the switching function is positive, otherwise the engine is turned off. Assuming

that the Continuation-Smoothing technique discussed in Chapter 3 is employed to avoid

the troubles linked to the control discontinuity, the thrust magnitude β can be directly

calculated by using equation eq. (3.77) or (3.86), depending on the choice of a quadratic

or logarithmic term for the regularization, respectively.

In the following paragraphes, constraints and optimality conditions for the Chaser/Target

approach will be presented. A clear distinction is made between the deployment of Tar-

get and Chaser spacecraft, as explained in Chapter 5.

B.2.1 Deployment Problem of Target Spacecraft

At the departure point, the state of spacecraft is fully assigned. The initial constraints

(eq.s 5.26) can be expressed as:

p = p̃0 ex = ẽx0 ey = ẽy0 (B.22)

hx = h̃x hy = h̃y tf = t̃f m = m̃0 (B.23)
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Terminal constraints for the Target spacecraft (eq. 5.29) become:

p = ãf
(
1− ẽ2f

)
(B.24)

e2x + e2y = ẽ2f (B.25)

ν = π → cosL
√
e2x + e2y + ex = 0 (B.26)

By applying the transversality conditions one obtains the algebraic equations that close

the Hamiltonian boundary value problem for the Target spacecraft:

H = 0 (B.27)

λhx
= 0 (B.28)

λhy
= 0 (B.29)

−λex + λeyex/ey − λL/
(
sinL

√
e2x + e2y

)
= 0 (B.30)

λm = 1 (B.31)

B.2.2 Deployment Problem of Chaser Spacecraft

The deployment of the chaser spacecraft features a set of initial conditions which is

formally the same as the Leader problem, as the state of the chaser is fully assigned at

the departure point:

p = p̃0 ex = ẽx0 ey = ẽy0 (B.32)

hx = h̃x hy = h̃y tf = t̃f m = m̃0 (B.33)

Difference is made by those at final point. Here the final state of the chaser spacecraft

is assigned, as it must be equal to the optimal final state x̄∗f2 of the target spacecraft

(Sat 2), except for the mass. The arrival time is fixed and delayed by a constant quantity

with respect to the optimal arrival time t∗f2 of Sat 2. These conditions ensure that the

two spacecraft share the same orbital parameters (except for the mean anomaly). The

time delay ∆tD̃ is given by eq. (5.21) and here reported for the sake of completeness.
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Thus, terminal constraints for the chaser spacecraft become:

p = p∗f2 (B.34)

ex = ex∗
f2

(B.35)

ey = ey∗
f2

(B.36)

hx = hx∗
f2

(B.37)

hy = hy∗
f2

(B.38)

L = L∗
f2 (B.39)

tf = t∗f2 +∆tD̃; ∆tD̃ = D̃/Va (B.40)

The transversality equations provide only one additional condition, which is related

to the final mass via the merit index and involves the mass adjoint:

λm = 1 (B.41)

Optimal control equations for the chaser spacecraft are formally the same as the

target one. The reader can refers to previous section or Chapter 3 for the details.

B.3 Optimization using a Cooperative Approach

In the Cooperative approach, a unique Hamiltonian boundary value problem is setup,

by considering simultaneously the motion of the two satellites. The objective of the

optimization is one again maximizing the sum of the spacecraft final masses. The equa-

tions of motion of each spacecraft, as well as the adjoint equations, remain unchanged

with respect to the single spacecraft problem, but, obviously, the overall number dou-

bles (28 equations, that is, 14 per each spacecraft).

Many considerations made in Chapter 5 (c.f. section 5.3.3) still hold in this case.

Most important, in both cases the Hamiltonian can be written as the sum of the two

Hamiltonians corresponding to each spacecraft. The presence of two distinct switching

functions is again highlighted:

H =λ̄T
xcI

(
f̄0 (x̄cI ) + ¯̄g(x̄cI )

T (~ap (x̄cI , t))
)
+

λ̄T
xcII

(
f̄0 (x̄cII ) + ¯̄g(x̄cII )

T (~ap (x̄cII , t))
)
+

TmaxSFI
βI + TmaxSFII

βII

(B.42)
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For each spacecraft, the optimal control law is evaluated in the same fashion of

section B.2. The thrust direction of each spacecraft is given by eq. (3.10), whereas the

optimal (regularized) thrust magnitude is given by eq. (3.77) or (3.86), depending on

the choice of a quadratic or logarithmic term for the regularization, respectively.

With respect to the Chaser/Target formulation, the optimal conditions for each

satellite at departure are formally unchanged: all the MEEs and initial mass of the two

spacecraft are assigned. Arrival boundary constraints presented in Chapter 5 (eq.s 5.44-

5.49) can be rewritten in terms of modified equinoctial elements as:

pI = p̃ (B.43)

e2xI
+ e2yI = ẽ2 (B.44)

exI
sinLI − eyI cosLI = 0 (B.45)

tI − tII = ∆tD̃; ∆tD̃ = D̃/Va (B.46)

pI − pII = 0 exI
− exII = 0 eyI − eyII = 0 (B.47)

hxI
− hxII = 0 hyI − hyII = 0 LI − LII = 0 (B.48)

By applying the transversality conditions one obtains the remaining boundary condi-

tions:

H = 0 (B.49)

−
(
λexI

+ λexII

)
eyI +

(
λeyI

+ λeyII

)
exI

+ (λLI
+ λLII

) = 0 (B.50)

λhxI
+ λhxII

= 0 (B.51)

λhyI
+ λhyII

= 0 (B.52)

λmI
= 1 (B.53)

λmII
= 1 (B.54)

Notice that once again two different time scales (one for each spacecraft) are used

in order to define this final boundary as the apogee of both spacecraft, regardless of

the arrival time.
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mande optimale à solution Bang-Bang par des methodes

homotopiques simpliciales. PhD thesis, Institut National

Polytechnique de Toulouse, 1989. 53

[62] D.J. Bell and D.H. Jacobson. Singular optimal control

problems. Mathematics in science and engineering. Aca-

demic Press, 1975. ISBN 9780120850600. URL http://

books.google.it/books?id=Ov9QAAAAMAAJ. 53

[63] Joseph Gergaud and Joseph Noailles. Application of sim-

plicial algorithms to a spacecraft trajectory optimization

problem. June 1989. 56

[64] Yaobin Chen and Jian Huang. A continuation method

for singular optimal control synthesis. In American Con-

trol Conference, 1993, pages 1256 –1260, june 1993. 56

[65] D.G. Luenberger and Y. Ye. Linear and Nonlin-

ear Programming. International Series in Opera-

tions Research & Management Science. Springer, 2008.

ISBN 9780387745022. URL http://books.google.it/

books?id=-pD62uvi9lgC. 57

[66] K. Mirfakhraie and B. A. Conway. Optimal cooperative

time-fixed impulsive rendezvous. Journal of Guidance

Control Dynamics, 17:607–613, May 1994. 71

[67] J. Wang, H. Baoyin, J. Li, and F. Sun. Optimal four-

impulse rendezvous between coplanar elliptical orbits.

Science in China G: Physics and Astronomy, 54:792–802,

April 2011. doi: 10.1007/s11433-011-4289-x.

[68] ChangQing Chen and YongChun Xie. Optimal impul-

sive ellipse-to-circle coplanar rendezvous. Science in

China Series E: Technological Sciences, 52:1435–1445,

2009. ISSN 1006-9321. URL http://dx.doi.org/10.1007/

s11431-009-0141-1. 10.1007/s11431-009-0141-1.

[69] J E Prussing. Optimal two- and three-impulse fixed-time

rendezvous in the vicinity of a circular orbit. Journal of

Spacecraft and Rockets, 40(6), 1970.

[70] J E Prussing. Optimal four-impulse fixed-time ren-

dezvous in the vicinity of a circular orbit. AIAA Journal,

7(5):928–935, 1969. URL http://doi.aiaa.org/10.2514/3.

5246.

[71] Conway, Bruce A. Prussing, John E.,. Optimal terminal

maneuver for a cooperative impulsive rendezvous. Jour-

nal of Guidance, Control, and Dynamics, 12(3):433–435,

1989. doi: 10.2514/3.20427.

[72] D R Taur, J E Prussing, and V Coverstone-Carroll. Op-

timal impulsive time-fixed orbital rendezvous and inter-

ception with path constraints. Journal of Guidance Con-

trol and Dynamics, 18(1):54–60, 1990. URL http://doi.

aiaa.org/10.2514/3.56656. 71

[73] Xincheng Yue, Ying Yang, and Zhiyong Geng. Contin-

uous low-thrust time-optimal orbital maneuver. In De-

cision and Control, 2009 held jointly with the 2009 28th

Chinese Control Conference. CDC/CCC 2009. Proceedings

of the 48th IEEE Conference on, pages 1457 –1462, dec.

2009. doi: 10.1109/CDC.2009.5399622. 71

[74] J E Prussing and J H. Chiu. Optimal multiple-impulse

time-fixed rendezvous between circular orbits. Journal of

Guidance Control and Dynamics, 9(1):17–22, 1986. URL

http://doi.aiaa.org/10.2514/3.20060. 71

[75] Philippe Ferrando, Monique Arnaud, Bertrand Cordier,

Andrea Goldwurm, Olivier Limousin, Jaques Paul,

Jean L. Sauvageot, Pierre-Olivier Petrucci, Martine

Mouchet, Giovanni F. Bignami, Oberto Citterio, Ser-

gio Campana, Giovanni Pareschi, Gianpiero Tagliaferri,

Ulrich G. Briel, Guenther Hasinger, Lothar Strueder,

Peter Lechner, Eckhard Kendziorra, and Martin J. L.

Turner. Simbol-x: a new-generation hard x-ray tele-

scope. volume 5168, pages 65–76. SPIE, 2004. doi:

10.1117/12.521998. 105

[76] G. Pareschi and HEXIT-SAT and SIMBOL-X Collabora-

tions. The HEXIT-SAT and SIMBOL-X Hard X-ray mis-

sions. Memorie della Societa Astronomica Italiana Supple-

menti, 5:362, 2004. 105

[77] G. A. Hazelrigg, Jr. Globally optimal impulsive trans-

fers via Green’s theorem. Journal of Guidance Control

Dynamics, 7:462–470, August 1984. 131

173

http://dx.doi.org/10.1002/aic.690180419
http://dx.doi.org/10.1002/aic.690180419
http://dx.doi.org/10.1002/aic.690180420
http://dx.doi.org/10.1002/aic.690180420
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1099360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1099360
http://books.google.it/books?id=bHAarJTsapQC
http://doi.acm.org/10.1145/356068.356071
http://doi.acm.org/10.1145/356068.356071
http://dx.doi.org/10.1007/BF01385627
http://dx.doi.org/10.1007/BF01385627
http://books.google.it/books?id=Ov9QAAAAMAAJ
http://books.google.it/books?id=Ov9QAAAAMAAJ
http://books.google.it/books?id=-pD62uvi9lgC
http://books.google.it/books?id=-pD62uvi9lgC
http://dx.doi.org/10.1007/s11431-009-0141-1
http://dx.doi.org/10.1007/s11431-009-0141-1
http://doi.aiaa.org/10.2514/3.5246
http://doi.aiaa.org/10.2514/3.5246
http://doi.aiaa.org/10.2514/3.56656
http://doi.aiaa.org/10.2514/3.56656
http://doi.aiaa.org/10.2514/3.20060


BIBLIOGRAPHY

[78] Alessandro Zavoli, Francesco Simeoni, Lorenzo Casalino,

and Guido Colasurdo. Optimal cooperative deployment

of a two-satellite formation into a highly elliptic orbit. In

Proceedings of the 2011 AAS/AIAA Astrodynamics Spe-

cialist Conference, number 11-641. AAS, August 2011.

133

[79] Simeoni, Francesco, Casalino, Lorenzo, Zavoli, Alessan-

dro, and Guido Colasurdo. Indirect optimization of

satellite deployment into a highly elliptic orbit. Interna-

tional Journal of Aerospace Engineering, 2012:14 pages,

2012. doi: 10.1155/2012/152683. 147

[80] Simeoni, Francesco, Casalino, Lorenzo, Zavoli, Alessan-

dro, and Colasurdo, Guido. Deployment of a Two-

Spacecraft Formation into a Highly Elliptic Orbit

with Collision Avoidance. In Proceedings of the 2012

AIAA/AAS Astrodynamics Specialist Conference, number

2012-4740 in AIAA. AIAA, August 2012. 147

[81] Nikolaos K Pavlis, S A Holms, Steve C Kenyon, and

John K Factor. An earth gravitational model to degree

2160: Egm2008. Assembly, 2008. 160

[82] National Imagery and Mapping Agency NIMA. World

geodetic system 1984 - its definition and relationships

with local geodetic systems. (TR 8350.2, 3rd edition,

Amendment 2), 2004. 160

[83] M. Abramowitz and I.A. Stegun. Handbook of Mathemat-

ical Functions: With Formulas, Graphs, and Mathematical

Tables. Applied mathematics series. Dover Publications,

1964. ISBN 9780486612720. URL http://books.google.

it/books?id=MtU8uP7XMvoC. 161

[84] W Bosch. On the computation of derivatives of leg-

endre functions. Physics and Chemistry of the Earth,

Part A: Solid Earth and Geodesy, 25(911):655 – 659,

2000. ISSN 1464-1895. doi: 10.1016/S1464-1895(00)

00101-0. URL http://www.sciencedirect.com/science/

article/pii/S1464189500001010. 161

[85] E M Standish. Jpl planetary and lunar ephemerides,

de405/le405. JPL IOM 312F 98 048, 1998. 162

[86] J. Betts and S. Erb. Optimal low thrust trajec-

tories to the moon. SIAM Journal on Applied Dy-

namical Systems, 2(2):144–170, 2003. doi: 10.1137/

S1111111102409080. URL http://epubs.siam.org/doi/

abs/10.1137/S1111111102409080. 165

[87] Jean Albert Kechichian. Optimal low-thrust rendezvous

using equinoctial orbit elements. Acta Astronautica,

38(1):1 – 14, 1996. ISSN 0094-5765. doi: 10.1016/

0094-5765(95)00121-2. URL http://www.sciencedirect.

com/science/article/pii/0094576595001212. 166

[88] Stamatiadis, S., Prosmiti, R., and Farantos, S.C.

auto deriv: Tool for automatic differentiation of a for-

tran code. Computer Physics Communications, 127(2?3):

343 – 355, 2000. ISSN 0010-4655. doi: 10.1016/

S0010-4655(99)00513-5. URL http://www.sciencedirect.

com/science/article/pii/S0010465599005135. 166

174

http://books.google.it/books?id=MtU8uP7XMvoC
http://books.google.it/books?id=MtU8uP7XMvoC
http://www.sciencedirect.com/science/article/pii/S1464189500001010
http://www.sciencedirect.com/science/article/pii/S1464189500001010
http://epubs.siam.org/doi/abs/10.1137/S1111111102409080
http://epubs.siam.org/doi/abs/10.1137/S1111111102409080
http://www.sciencedirect.com/science/article/pii/0094576595001212
http://www.sciencedirect.com/science/article/pii/0094576595001212
http://www.sciencedirect.com/science/article/pii/S0010465599005135
http://www.sciencedirect.com/science/article/pii/S0010465599005135

	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Topics
	1.2 Optimization Method
	1.3 Thesis Summary

	2 Methods for Optimal Control
	2.1 Introduction
	2.2 The Optimal Control Problem
	2.2.1 General Statement
	2.2.2 Numerical Methods: an Overview

	2.3 Indirect Methods
	2.3.1 Optimal Control Theory
	2.3.2 Numerical Methods for Indirect Optimization


	3 Techniques for Bang-Bang Optimal Control Problems
	3.1 Introduction
	3.2 Bang-Bang control problems
	3.2.1 Problem Formulation
	3.2.2 Numerical Issues
	3.2.3 An illustrative example

	3.3 Solution through a Multi-Bound approach
	3.3.1 Method description
	3.3.2 Remarks on Multi-Bound approach
	3.3.3 Application of Multi-Bound Approach to the Rocket Sled problem

	3.4 Solution through a Continuation-Smoothing technique
	3.4.1 Method description
	3.4.1.1 Continuation Approach
	3.4.1.2 Creation of Smooth Control Laws

	3.4.2 Application of Continuation-Smoothing Approach to the Rocket Sled problem
	3.4.3 An Automatic Initialization Procedure 

	3.5 Method Comparison

	4 A Cooperative Rendezvous Mission
	4.1 Problem Statement
	4.2 The Leader / Follower Strategy
	4.2.1 Strategy overview
	4.2.2 The Leader Deployment
	4.2.2.1 Numerical Results

	4.2.3 The Follower Deployment
	4.2.3.1 Numerical Results


	4.3 The Cooperative Strategy
	4.3.1 Problem optimization
	4.3.2 Formulation with the Multi-Bound Technique
	4.3.3 Numerical Results


	5 Deployment of the Simbol-X Formation
	5.1 An overview of the Simbol-X Mission
	5.2 A Preliminary Analysis
	5.2.1 Problem Statement
	5.2.2 Perturbation effects on HEO Orbits

	5.3 Coordinated Strategy for the Simbol-X deployment: an Optimal Control Approach
	5.3.1 Strategies and Optimality conditions for the formation deployment
	5.3.2 Chaser/Target Approach
	5.3.3 Cooperative Approach

	5.4 Results in a Simplified Environment
	5.4.1 Keplerian Mission
	5.4.2 J2 Mission
	5.4.3 Collision Avoidance

	5.5 Results in a Realistic Environment
	5.5.1 Perturbative effects on the Switching Structure
	5.5.2 Automation of the Solution Process
	5.5.3 Single Satellite Deployment
	5.5.4 Formation Deployment


	6 Conclusions
	6.1 Future Work

	A Perturbation Acceleration due to Earth Asphericity and Lunisolar Attraction
	A.1 Earth Asphericity
	A.2 Third body Perturbation 

	B Simbol-X Deployment Problem using Modified Equinoctial Elements
	B.1 The set of modified equinoctial orbital elements
	B.2 Optimization using a Chaser/Target Approach
	B.2.1 Deployment Problem of Target Spacecraft
	B.2.2 Deployment Problem of Chaser Spacecraft

	B.3 Optimization using a Cooperative Approach

	Bibliography

