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I fly a starship across the Universe divide
And when I reach the other side

I’ll find a place to rest my spirit if I can
Perhaps I may become a highwayman again

Or I may simply be a single drop of rain
But I will remain

And I’ll be back again,
and again and again and again and again...

The Highwayman, Johnny Cash.
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Abstract

The modern engineering deals with applications of high complexity. From a mathematical
point of view such a complexity means a large number of degrees of freedom and nonlinearities
in the equations describing the process. To approach this difficult problem there are two
levels of simplification. The first level is a physical reduction: the real problem is represented
by mathematical models that are treated in order to be studied and their solution computed.
At this level we can find all the discretization techniques like Galerkin projection or Finite
Element Methods. The second level is a simplification of the original problem in order to
study it in an easier way: a reduced order model is advocated.

Simplification means to determine a dominant dynamics which drives the whole prob-
lem: not all the unknowns are considered independent being some of them functions of the
remaining others. Two methodologies are considered in this a Thesis. The first is the Lie
Transform Method based on the results of Normal Form Theory and the Center Manifold
Theorem. For some conditions, called resonance or zero divisors, depending on combinations
of the eigenvalues of the linearized system, the nonlinearity of the problem is reduced and a
driving dynamics determined. The second is the Proper Orthogonal Decomposition (POD),
which from the analysis of representative time responses of the original problem determines
a subspace of state variables energetically significant spanned by the Proper Orthogonal
Modes (POMs).

The main issues related to the Lie Transform Method, as for all the Normal Form based
Method, is the presence of small divisors for which there is no general rules to be determined
when considering nonconservative systems. In the present work, this problem is considered
and some physical parameters are related to such conditions determining qualitatively what
small means for a divisor relatively to a perturbation parameter.

Moreover, starting from the analytical results obtained the POD behavior in the neigh-
borhood of a bifurcation point has been studied. In particular, POMs has been related to
the linearized modes of the studied systems and it has been demonstrated their equivalence
for systems experiencing a Hopf bifurcation. Moreover, some conditions of equivalence are
addressed also in presence of static bifurcations with forcing loads. Finally, the relation
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between modal activation and energy distribution has been studied and the possibility to
relate POD behavior and nonlinearity (small divisors) of the response has been addressed.
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Introduction

Objection contre la science: ce monde ne mérite pas d’être connu.

Syllogismes de l’amertume, Emil Cioran.

The technological progress requires an increasing complexity of the considered physical
model. A deeper physical description is translated in a greater complexity of the mathe-
matical description requiring powerful tools helping to work with nonlinear problems. This
need has been illustrated by Von Kármán in a famous lecture at the American Mathemat-
ical Society in 1939 (see Ref. [1]) where he stressed the increasing role of mathematics in
engineering and physics analysis. In the present Chapter a short overview of the nonlinear
aeroelastic problem is given. For more details one can consider the Refs. [2, 3, 4].

General issues on Aeroelasticity

The term Aeroelasticity denotes the field of study concerning the interaction between the
deformation of an elastic structure in a flow and the resulting aerodynamic forces. The
evident multidisciplinary nature of this field can be illustrated by the Collar’s triangle, Fig.
1, where it is evident that the aeroelasticity is the mutual interaction between inertial, elastic
and aerodynamic forces. Generally, two categories of phenomena can be distinguished:

1. Static aeroelastic phenomena that lies outside the triangle.

2. Dynamic aeroelastic phenomena that lies within the triangle involving elastic, aerody-
namic and inertial forces.

Finally, being the aeroelastic phenomena the consequence of the mutual interaction between
an elastic structure and a flow, it is evident that the problem will depend, generally, on some
parameters governing the state of the flow such as its unperturbed velocity or the Mach
number. This parameters govern the behavior of the system influencing the stability of its
solutions bringing the equilibrium from a stable condition to an unstable one. The instability
phenomena are either dynamical or static:
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Figure 1: Collar’s triangle

1. Static instability: divergence. It involves only static aerodynamics forces and elastic
forces. From a mathematical point of view, it occurs when a real pole crosses the
imaginary axis of the complex plane (it become positive from being negative), see Fig.
2(a).

2. Dynamical instability: flutter. It involves inertial, aerodynamical and elastic forces.
From a mathematical point of view, it occurs when a pair of complex conjugate poles
cross the imaginary axis of the complex plane, see Fig. 2(b), so that their real part
become positive.

The first documented aeroelastic instability happened in 1916, when a bomber Handley
PAGE O/400 experienced great oscillation of the tail oscillations, whereas it is famous the
Tacoma bridge collapse in 1940. The studies about nonlinear effects in the aeroelastic field
started in the ’50s with the development of supersonic aircraft and the observation of the so
called panel flutter phenomenon. The preloaded panels at a certain speed and altitude started
to experience strong oscillation with consequent problems in the mission accomplishment (see
Refs. [5] and [6]).
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(a) (b)

Figure 2: Spectrum behavior in presence of divergence or flutter instability phenomenum

The general formulation of the aeroelastic problem

From the mathematical point of view, the fluid-structure interaction originates from the
boundary conditions that the body applies to the flow: the aerodynamic forces deform the
body which will modify their self. Initially, the problem is governed by the continuum
mechanics equation for fluid and solid with boundary condition at the infinity and at the
border between the two different continuum types. Such conditions will be kinematic for the
flow and on the surface forces for the body (see Ref. [7]). Using suitable techniques, it is
possible to discretize the original partial differential equations system (see Refs. [8, 7]) to
obtain, in general, a system of integro-differential equations that can be reduced increasing
the state space to a system of ordinary differential equations (for more details see Ref. [2],
[7] and [9]).

The general nonlinear aeroelastic problem can be written in the following form

Mÿ + Cẏ + Ly + F(y, ẏ) = 0 (1)

where the unknown vector y represent the set of generalized displacement and aerodynamic
states. Observe that the problem structure given by Eq. 1 can be considered valid in both
the space-continuum and space-discretized cases. The differences will be on the definitions
of the operators and the problem domains. Formally, Equation 1 is analogous to the one of
structural problem, but the nature of the operators is strongly different. Indeed, because of
the presence of the aerodynamic terms the aeroelastic operators are no longer self-adjoint.
The expression given by Eq. 1 is written in the space of generalized displacement. Sometimes
it is suitable to consider the dynamics in the phase-space, where it is possible a geometric
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interpretation of the motion: ẋ = F(x)
x(0) = x0

(2)

where x is the vector of generalized displacement and velocities.

Comments on linear and nonlinear analysis for aeroelastic response

Real physical phenomena, as the fluid/structure interaction, are nonlinear, have an infinite
number of degrees of freedom, and are governed by an infinite number of parameters (Ref.
[5]). This complexity requires simplifications in order to be studied. The first step involves
the definition of a mathematical model of the problem of interest: the number of degrees
of freedom and parameters is reduced and fixed. Next, the obtained mathematical model is
analyzed by the most suitable tools. In general, this means to cast it in canonical form (see
Ref. [5, 4, 10, 11, 12, 13, 14, 15]), such as:

ẋ = FU (x) (3)

where F is a generically nonlinear function of x and its parametric dependence from the
generic flow parameter U is emphasized and (̇) denotes differentiation with time. Equation 3
might possess an equilibrium solution x̂, that can be found for a fixed value of U such that:

FU (x̂) = 0 (4)

The linearized dynamics in the proximity of x̂ can be studied by first rewriting Eq. 3 as:

ẋ = A(x − x̂) +HOT withA := DF(x)|x=x̂ (5)

and next by negleting the contribution of higher order terms (HOT). Thus, three level of
dynamical model fidelity can be considered (with decreasing fidelity order):

• Fully nonlinear description. It consists of considering the aeroelasitic model de-
fined by Eq. 3 (including structural as well aerodynamic nonlinear description) to be
numerically solved by direct time domain simulation.

• Statically nonlinear and dynamically linear description. The static solution x̂ is
evaluated taking into account all the nonlinear effects in Eq. 5 and then by studying
the linearized dynamics in the neighborhood of the equilibrium solution as given by
Eq. 5 without the HOT.

• Statically linear and dynamically linear description. The static solution is evaluated
avoiding to take into account the nonlinear part of FU . Moreover, the dynamics around
such a fixed point is studied only by the linear part of Eq. 5.
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Dealing with complexity

The nonlinear description of aeroelasticity requires a large computational effort in order to
be studied. To deal with this complex problem in this work two different approaches are con-
sidered: a Normal Form based method (such as the considered Lie Transform Method) and
the Proper Orthogonal Decomposition. The basic ideas of both methods is the identification
of a fundamental dynamics (a dominant subset of whole system parameters) driving the
whole process. The Normal Form obtain such a "core" dynamics via some conditions, called
resonances or zero-divisors, which are related to the linearized systems in the neighborhood
of the considered equilibrium (see Refs. [16, 17, 18, 19, 20]). The Proper Orthogonal De-
composition working on the time-response of the systems determines the most ”energetic”
basis of representation of the problem: this means that the non-energetic components can
be disregarded and considered slaved to the components. In the following, some historical
and bibliographic remarks are given about the cited topics.

Perturbation Methods

As shown previously the aeroelastic dynamics is usually represented by a set of equations
depending on one or more parameters. This means that the study of the dynamics and in
particular of the stability properties of the solutions depends on such parameters is crucial.
In particular, when some "control parameter" crosses a critical value in Eq. 3, then the
fixed equilibrium solution can lose its stability properties and new stable solutions arise.
This phenomenon, from a mathematical point of view, corresponds to a driving dynamics
associated to the unstable eigenvalues of the linearized systems (see Chapter 1.5) and a
perturbation approach based on the idea of building the new solution as the old one plus a
small correction appear a suitable mathematical tools. This means to consider the solution
of the form x(t) = xe+ εx1 +o(ε) where ε is a small parameter called perturbation parameter
and the convergence is guarantee to xe for ε→ 0.

This method is a member of the family of "averaging" method (see Refs. [21, 22, 23]).
In this Thesis, the considered method will be based on the Lie Transform (see Secs. 1.5 and
2 and Refs. [24, 25, 26]), which gives the possibility of analyze in the most direct way the
dynamics showing the inner mathematical process that brings to some interesting behavior.

From a mathematical point of view, a direct perturbation methods (regular perturbation
methods) deals with the problem of secular terms by the form t sinωt causing the explosion
of the solution,i.e., εx1 = O(xe). This can be avoided by considering singular perturbation
methods (see Refs. [27, 28, 29, 27]), where some procedure are introduced in order to avoid
secular terms.

Specifically, the Lie Transform Method looks for a coordinates transformation that yields
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to a simpler form of the original problem. It will be shown that this transformation is related
to the presence of some zero-divisors condition (see Chapters 1.5 and 2), which are equivalent
to avoid the presence of secular terms (see Refs. [28, 29, 30]). The obtained transformed
systems gives a simpler dynamics that can be studied in an easier way with respect to the
original problem. Moreover, having analytical expression of the solution allows us to gain
interesting information about its behavior, as described in Chapters 5 and App. A.

Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition, also known as Principal Component Analysis, is a
powerful multivariate statistical method which has been widely used in engineering areas to
capture the dominant components or modes of a dynamical system. This method can be
applied to extract the dimension information from an embedded attractor (see Refs. [31, 32])
or to identify subspaces (modes) to which orbits,i.e., the system responses, are constrained,
see Refs. [33, 34, 35]. Originally, this method has been applied in the engineering area of
turbulent flow analysis by Holmes, et al., in Ref. [36], where it has been used to extract
coherent structures from turbulent velocity fields. In structural vibration areas, POD is
used to relate the Proper Orthogonal Modes (POMs) to the Linear Modes (LMs), see Ref
[37, 38, 39, 40].

The Proper Orthogonal Modes form an orthogonal basis, and this means that the pos-
sibility to identify some intrinsic features of the observed dynamics, as LMs, are related to
the nature of such a geometry. In particular, if a systems is characterized by nonorthogonal
eigen-dynamics, as a highly damped system or an aeroelastic system, there is no possibility
to identify the full intrinsic geometry. Otherwise, it is possible to identify the dominant part
of the intrinsic geometry as the one where the greatest part of the response is embedded.

In nonlinear dynamics, the LMs have still a relevant role being the tangent space at the
equilibrium point to the invariant manifold. Moreover, via POD is still possible to identify
the dimension of the considered attractors (see Ref. [31] ) and then to reduce the order of
the original problem in order to study a lower dimensional dynamics. In Chapter 4, it will be
shown that in presence of a Hopf bifurcation, the POMs description and the LMs description
are equivalent (see Ref. [41]). Moreover, some conditions of equivalence in presence of static
bifurcation with forcing loads are given. In Chapter A the effect of modal discretization on
the energy distribution is studied.
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Outline of the Thesis

This Thesis describes the outcome of a three year period of research and study. It consists of
a sinthesis among the publications and congress acts produced by the author with his advisor
Prof. Franco Mastroddi, and of the outcome of his visiting period at Duke University with
the research group of Prof. Earl H. Dowell. The core of the work is the study of behavior
of the Proper Orthogonal Decomposition analysis when a nonlinear response are considered
and the system is characterized by a non-orthogonal geometry. Indeed, in presence of a
non-self adjoint operator (like in presence of fluid/structure interaction) the eigenvectors
are no longer real and no longer orthogonal and the relation between eigengeometry and
POD objects is no longer straightforward as in presence of self adjoint systems which are
well analyzed in literature (see Ref. [40, 38]). Moreover, attention is given to the search of
analytical solutions with perturbation methods and the problem of small divisors considered.
This document can be divided in three parts:

1. The behavior of nonlinear systems is presented together with some tools of analysis,
and in particular the Normal Form method based on the Lie Transform is presented
together with the problem of small and zero divisors, a key issue in the study of sys-
tems’ integrability. Moreover, the eigengeometry of systems characterized by imaginary
eigenvectors and eigenvalues is presented.

2. The Lie Transform method is applied in order to obtain analytical solutions for nonlin-
ear systems experiencing a bifurcation of equilibrium in presence of forcing loads. This
example give the possibility to analyze the ideas of zero and small divisors giving also
a qualitative measure of the term small with respect to the perturbation parameter.

3. The Proper Orthogonal Decomposition method and its relation with Linearized Modes
is studied via the analytical results obtained by the Lie Transform method. In particu-
lar, some conditions of equivalence between Linearized Modes and Proper Orthogonal
Modes are obtained. Moreover, the possibility of using POD as a nonlinearity measure
is addressed. Finally, a study of the effect of the modal decomposition on the energy
distribution is given.
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Part I

Nonlinear Dynamics: General
Issues
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Chapter 1

General issues on dynamical
systems

Some issues on the theory of differential equations from the viewpoint of the local geometrical
approach are presented following the approach proposed by Holmes and Guckenheimer in
Ref. [42]. For a detailed analysis one can refer to Hirsch and Smale in Ref. [43] and Arnold in
Ref. [44]. In particular, the basic properties of autonomous systems of ordinary differential
equations are considered with particular attention to the geometrical interpretation of the
dynamics in the phase space.

1.1 Existence and Uniqueness of Solutions

Let us consider system of differential equations of the form:

dx
dt

:= ẋ = F(x) (1.1)

where x = x(t) ∈ RN is a vector valued function of an independent variable (usually the time)
and F : U → RN is a smooth function defined on some subset U ⊆ RN . In the following, we
will say that the vector field F generates the flow φt : U → RN , where φt(x) = φ(x, t) is a
smooth function defined for all x in U and t ∈ (a, b) ⊆ R and φ is said to satisfies Eq. 1.1 in
the sense that:

d

dt
(φ(x, t)) |t=τ = F(φ(x, τ)) ∀x ∈ U, τ ∈ I (1.2)

It is relevant to note that the flow satisfies the group properties:

φ0 = I

φt+s = φt ◦ φs
(1.3)

9



1. General issues on dynamical systems 10

Systems of the above form where the time do not appear explicitly are called autonomous.
One of the more interesting features of the dynamical systems in the phase-space is the
possibility to study their behavior through geometry. Indeed, their solutions will represent
curves in the general N -dimensional space where the problem is defined. If one consider an
initial condition for Eq. 1.1

x(0) = x0 ∈ U (1.4)

which means to seek a solution φ(x0, t) such that

φ(x0, 0) = x0 (1.5)

it is possible to interpret a solution of Eq. 1.1 as a trajectory, or orbit in the phase-space
based on x0 defined by the function φ(x0, ·) : I → RN . In the differential equations systems
properties study, it is interesting to consider family of such curves more than a single one and
hence to study the global behavior of the flow φt : U → RN defined for all points x ∈ U . In the
following, it will be introduced, in particular, the concept of invariant spaces and manifolds
composed of solution curves (see Refs. [42, 44, 45]). From the above consideration, it is
possible to consider Eq. 1.1 as an application which maps the points of U in points of the
Euclidean space RN . Particular importance have the subsets of initial conditions which are
characterized by invariance with respect to the vector field generating the flow.

Before to start the analysis, it is important to analyze under which hypotheses the exis-
tence and the uniqueness of solution is guarantee:

Theorem of existence and uniqueness 1.1.1 Let U ⊆ RN be an open subset of real
Euclidean space (or of a differentiable manifold M), let F :→ RN be a continuously differ-
entiable map and let x0 ∈ U . Then there is some constant c > 0 and a unique solution
φ(x0, ·) : (−c, c) → U satisfying the differential equation ẋ = F(x) with initial condition
x(0) = x0.

Observe, that in general the above Theorem ensures the existence of a solution only for a
finite time: it is only local.

Important class of solutions of a differential equation are the so called Fixed Points or
Zeroes. Indeed, from a practical point of view, they represent reference configuration of the
studied problem modeled as a system of differential equations. An equilibrium solution of
Eq. 1.1 is such that: x = xe

F(xe) = 0
(1.6)

From Equation 1.6 it is given that the zeroes of the vector fields represent fixed point in the
phase-space. For a given initial condition, the state will either converge to an equilibrium
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point (asymptotic stability) or remain in a neighborhood of it depending on the initial
condition (simple stability), or will leave indefinitely the equilibrium (instability) (see Ref.
[43]).

1.2 Linear Systems

Let us consider a linear dynamical system whose vector field in Eq. 1.1 is defined as f(x) =
Ax , x ∈ Rn, which can be rewritten as

dx
dt

= Ax ∀x ∈ RN (1.7)

where A is a N × N matrix with constant coefficients. Together with Eq. 1.7 one has to
consider the initial condition x(0) = x0, thus the solution of the problem given by Eq. 1.7 is
the flow φt(x0) = x(x0, t). Note, that the existence and uniqueness Theorem guarantees that
such a unique solution will hold at all the times, things that is not always true for general
nonlinear systems where a global existence of solutions can not be guaranteed.

It can be demonstrated (see Refs. [42, 43]) that the solution of Eq. 1.7 is

x(x0, t) = etAx0 (1.8)

where etA is the N×N matrix obtained by exponentiating A. For our purpose in the study of
differential systems is more convenient to seek for a solution obtained by linear superposition
of N linearly independent solutions {xi(t)}:

x(t) =
N∑
j=1

cjxj(t) (1.9)

where the ”weight” cj are determined by the initial conditions.
Equation 1.11 introduces the idea that the dynamics of a linear system can be decomposed
in the sum of motions in some subset of RN . In particular, it is convenient to choose these
sub-sets so that they are invariant with respect to A. This means that every element of such
invariant subset is a solution of the formal problem:

Av = λv (1.10)

where the solutions vi ∈ CN are called the eigenvectors of A whereas the associated number
λi are called eigenvalues. Equation 1.10 shows the invariance property of the eigenvectors:
if the dynamics start in such a subspace, it will remain in it. 1

1The meaning of Eq. 1.10 is that it exists some direction of the state-space where the effect of the operator
A on a generic vector is only a scaling factor λ.
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If the operator A has N linearly independent eigenvectors vj , j = 1, ..., n, then one can
take as a basis for the space of solutions the functions

xj(t) = eλjtvj (1.11)

For the applications presented in this work, it is a relevant case the presence of N/2 couples
of complex conjugate eigenvalues λi and λi+1, such that λi = λ̄i+1 = αj + jωj , associated
with N/2 couples of eigenvectors vi and vi+1 such that: vi = vR + jvI = v̄i+1. In this case,
one has:

xj(t) = eαjt (vR cosωjt− vI sinωjt)

xj+1(t) = eαjt (vR sinωjt+ vI cosωjt)
(1.12)

If the geometrical multiplicity is greater than the algebraic one, there are less eigenvectors
than N ; in this case, one has to consider the generalized eigenvectors as described for exam-
ple in Hirsch and Smale (Ref. [43]) or Braum (Ref. [46]).

1.2.1 Geometrical remarks on eigenspaces and Jordan Canonical Form in
ODE’s systems solving

The Jordan Canonical Form of a square linear operator is a triangular matrix J similar to
A which has a structure as close as possible to a diagonal matrix. In particular, if A is
diagonalizable J will be diagonal. This means that considering a differential system of the
form given by Eq. 1.7 it will be easier to solve it if the Jordan Canonical Form is determined,
this providing the maximum level of decoupling of the problem. In general, the structure of J
will depend on the geometrical and algebraic multiplicity of the eigenvalues of the operators
A (see Ref. [43]). The present work (being presented only a brief summary about the solution
of differential equations systems via the geometrical methods) will consider only cases with
a geometrical multiplicity equal to the algebraic one.

Let us consider the operator T : U → U , where for the sake of simplicity we can consider
U = RN . Let U1, ..., Ur be subspaces of U . One says that U is the direct sum of them if
∀x ∈ U it is possible to write:

x = x1 + ...+ xr xi ∈ Ui, i = 1, ..., r (1.13)

This is denoted by

U = U1 ⊕ ...⊕ Ur (1.14)

Let Ti : Ui → Ui, i = 1, ..., N be operators. One say that T is the direct sum of the Ti’s if
U = Ui ⊕ ... ⊕ Un, each Ui is invariant under T , that is, T (Ui) ⊂ Ui and T (x) = Ti(x) if
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x ∈ Ui. Such a situation can be denoted by writing T = T1 ⊕ ...⊕ TN . If Tj has the matrix
Aj in some basis for each Uj , then by taking the union of the basis elements of the Uj to
obtain a basis for U , T has the matrix:

A = diag{A1, ...AN} =


A1

. . .

AN

 (1.15)

This means that the matrices Ai are placed together diagonally as indicated, all other entries
in A being zero. Equation 1.15 suggests that to obtain the Jordan Canonical form of the
considered operators one has to choose a suitable basis of every Ui.

Let us find some subsets of RN which is invariant under A. From a mathematical point
of view this means to find the solution of

Av = λv (1.16)

which in general has N solution. Using the eigenvectors of A as a basis allows to recast
the problem in a diagonal form. In particular, it can be demonstrated that if Q is a matrix
whose columns are the eigenvectors of A, then:

J = Q−1AQ = diag{λ1, ..., λn} (1.17)

Equations 1.17 implies that the system given by Eq. 1.7 can be cast in diagonal form

ẏ = Q−1AQ x = Qy

J = Q−1AQ
(1.18)

with solutions given by Eq. 1.11: x(t) = cje
λjtvj with cj determined by the initial conditions.

Assuming that geometrical and algebraic multiplicity are equal, the result showed above in
general require the complexification of the state problem which means that in general Eq.
1.18 is not real. It is interesting to analyze what happens when the system has complex
conjugate eigenvalues and then complex conjugate eigenvectors (see Ref. [7]).

1.3 Flows and Invariant Subspaces

The flow etA in Equation 1.8 can be regarded as a mapping from RN to RN : ∀x0 ∈ RN , it
follows that x(x0, t) = etAx0 ∈ RN . This statement means that the flow etA contains global
information about the set of all solutions of Eq. 1.7 since such an expression for the solution
holds in all the space RN . In the set of all solutions generated by φt = etA : RN → RN there
is a subsets that plays a special role: all the solutions lying in the linear subspaces spanned
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by the eigenvectors (see Eq. 1.10 and Secs. 1.3.1 and 1.2.1). These subspaces, as shown in
the previous Sections, are invariant under φt and the following properties hold (considering,
for sake of simplicity only the case of real eigenvectors and eigenvalues):

Avj = λjvj

x(cvj , t) = cvjeλjt c ∈ R
(1.19)

In an analogous way, in presence of complex eigenvectors and eigenvalues Eq. 1.19 still holds
with the only difference that the invariant space is given by the span{Re(vj), Im(vj)}.
One can divide the subspaces for the flow using the nature of the associated eigenvalues:

• The stable subspace, Es = span{v1, ..., vns}.

• The unstable subspace, Eu = span{u1, ..., unu}.

• The center subspace, Ec = span{w1, ...,wnc}.

where vi are the nns eigenvectors whose eigenvalues have negative real part, uj are the nnu
eigenvectors whose eigenvalues have positive real part and wp are those whose eigenvalues
have zero real parts. Note that, ns+nu+nc = N . The solutions lying in Es are characterized
by exponential decay, those lying in Eu by exponential growth, and those lying in Ec by
neither growth or decay.

1.3.1 Complex eigenvectors and associated invariant subspaces

Let be A ∈ L(RN ,RN ), where L denotes the space of linear operators over RN . The associ-
ated eigenproblem is:

Aw = λw, with w ∈ CN/{0}, λ ∈ C (1.20)

The spectrum of A is denoted by S(A) and we suppose that its elements are distinct. The
operator A is real and this implies that, if λ ∈ S(A) ∩ C/R, then λ̄ ∈ S(A) ∩ C/R holds
as well, with eigenvectors, respectively, w and w̄. In the following we will suppose that
S(A) ∩ C/R = S(A).
Writing explicitly Eq. 1.20, one has

A(wR + jwI) = (λR + jλI)((wR + jwI)) (1.21) AwR = λRwR − λIwI
AwI = λIwR + λRwI

(1.22)
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Note that wR and wI are linearly independent2. Thus, the independent vectors wR and wI
span a subspaceW of dimension two in RN , namely a plane. Thus, the generic vector v ∈ W
has the form v = awR + bwI with a, b ∈ R. Using Eq. 1.22, one obtains

Av = A(awR + bwI) = ǎwR + b̌wI (1.25)

where ǎ = aλR + bλI

b̌ = bλR − aλI
(1.26)

Equation 1.25 shows that W is invariant under A.
Note that the statements presented above also holds for the complex conjugate eigenvec-

tor w̄ = wR−jwI ; thus, w̄ belongs to the same subspaceW. This implies that there is a direct
correspondence between a complex conjugate pair of eigenvectors (namely, eigenvalues) and
the plane W.

Let us consider a complex number c = ρej θ̃ with ρ ∈ R+/{0}, θ̃ ∈ R/2πk, k ∈ Z and,
without loss of generality, we can set ρ = 1. The complex vector w̃ obtained by multiplying
c times the vector w with wR,wI ∈ W, i.e., w̃ = cw, is also by definition an eigenvector of
the eigenproblem 1.20. Indeed, the multiplication of the generic eigenvector w by a complex
constant with module equal to one and generic phase θ̃ defines the following transformation
in W,

w̃ = wejθ̃ =
(
cos θ̃wR − sin θ̃wI

)
+ j

(
sin θ̃wR + cos θ̃wI

)
= w̃R + jw̃I (1.27)

or

w̃R =
(
cos θ̃wR − sin θ̃wI

)
(1.28)

w̃I =
(
sin θ̃wR + cos θ̃wI

)
(1.29)

Equations 1.28 and 1.29 define a family of real transformations depending on the parameter
θ̃, i.e., Φθ̃ : W×W 7→ W×W that, given (wR,wI), yields (w̃R, w̃I). It is relevant to observe
that this transformation preserves the property that both (wR,wI) and (w̃R, w̃I) are real and

2Indeed, if this were not true, there would exist a τ ∈ R/{0} such that wI = τwR as shown in the following.
From Eq. 1.22{

AwR = (λR − τλI)wR
AwI = (λI/τ + λR)wR

(1.23)

Equating the Eqs. 1.23 one has the condition

λI(1 + τ2)wR = 0 (1.24)

which is not possible by hypothesis, this demonstrating the linearly independence of wR and wI .
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imaginary parts of complex vectors solutions of the eigenproblem 1.20 and corresponding to
the same eigenvalues.

In particular, the parameter θ̃ can be chosen such that w̃R and w̃I be orthogonal. Indeed,
imposing the condition w̃R · w̃I = 0 and using Eqs. 1.28 and 1.29, one obtains(

tan θ̃⊥
)2

wR · wI + (wI · wI − wR · wR) tan θ̃⊥ − wR · wI = 0. (1.30)

The above equation in the unknown angle θ̃⊥ allows to determine an orthogonal basis w̃R⊥
and w̃I⊥ on W such that w̃⊥ = w̃R⊥ + jw̃I⊥ = ejθ̃⊥w. Thus, for every given couple (wR,wI),
there exists a particular transformation, Φθ̃⊥

, in the one parameter family of Φθ̃ that maps
(wR,wI) in the orthogonal direction (wR⊥ ,wI⊥), see Fig. 1.1. It is worth to remark that,

Figure 1.1: Orthogonalyzing trasnformation for vectors wR and wI .

even if θ̃⊥ is a function of the ordered couple (wR,wI), the mutually orthogonal vectors
(wR⊥ ,wI⊥) are unique.
It is relevant to observe that this choice of the parameter θ̃ is not equivalent to the Gram-
Schmidt orthogonalization procedure. In fact, if we apply the Gram-Schmidt procedure to
the basis (wR,wI) it is not guaranteed that the new obtained orthogonal basis corresponds
to the real and imaginary part of an eigenvector of the operator A with the same eigenvalue.

It is also possible to give a geometrical interpretation of the generic transformation Φθ̃

(Eqs. 1.28 and 1.29). Let us denote with (xw̃R , yw̃R) and (xw̃I , yw̃I ) the generic coordinates
of the tip points of the vectors w̃R and w̃I , respectively, when applied at the origin of the
reference system with unit orthogonal basis vectors wR⊥/‖wR⊥‖ and wI⊥/‖wI⊥‖ (evaluated
with the previous procedure). Then, the curves described by these tip points over the
subspace plane are parametrized by θ̃ and are given by (see Eqs. 1.28 and 1.29 with w̃R and
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w̃I substituted with w̃R⊥ and w̃I⊥)

xw̃R = wR⊥
‖wR⊥‖

· w̃R = ‖wR⊥‖ cos θ̃ (1.31)

yw̃R = wI⊥
‖wI⊥‖

· w̃R = −‖wI⊥‖ sin θ̃ (1.32)

and

xw̃I = wR⊥
‖wR⊥‖

· w̃I = ‖wR⊥‖ sin θ̃ (1.33)

yw̃I = wI⊥
‖wI⊥‖

· w̃I = ‖wI⊥‖ cos θ̃. (1.34)

The above relations show that the vector-tip points describe the same ellipse as θ̃ varies with
principal axes equal to ‖wR⊥‖ and ‖wI⊥‖ on the subspace plane W, as shown in Fig. 1.2.

Figure 1.2: Geometrical interpretation of the transformations family Φθ̃.

1.4 The Nonlinear System

In Section 1.1, it has been shown that for a smooth vector field F(x), the solution of the
nonlinear problem given by Eq. 1.1 together with the condition x(0) = x0 is unique and
defined at least in some neighborhood t ∈ (−a, a) of t = 0. Thus, it is possible to define
only a local flow φt : RN → RN mapping x0 to x(x0, t) but it is not possible to give a
general shape of it as in the linear case. Usually, in the application, the dynamics represents
the behavior of some kind of physical problem in the neighborhood of some reference state.
This means that is very common to start the study of the dynamics by finding the fixed
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points,i.e., the equilibrium, of Eq. 1.1. Once found such equilibria, the first step is to study
the linearized dynamics around them. Let us consider how the nonlinear problem and the
linearized associated one relate.

Let us suppose to have found a fixed point x̂ so that F(x̂) = 0. The associated linear
system is:

ξ̇ = DF(x̂)ξ ξ ∈ RN (1.35)

where DF = [∂fi/∂xj ] is the Jacobian matrix containing the first partial derivatives of the
considered vector field evaluated at the equilibrium point and x = x̂ + ξ, |ξ| � 1. The
solution of Eq. 1.35 is defined as the linearized flow

Dφt(x̂)ξ = etDF(x̂)ξ (1.36)

Finally, observe that the properties of stability of the equilibrium x̂ with respect to the
linearized flow can be studied observing the spectral properties of the matrix DF(x̂) by
following the procedure outlined in Secs. 1.3.1 and 1.2.1.

Being the theory of linear differential systems and the study of their stability properties
well known and tractable in closed form, the following theorem is fundamental in the theory
of nonlinear differential equations:

The Nonlinear System 1.4.1 If DF(x̂) has no zero or purely imaginary eigenvalues then
there is a homeomorphism h defined on some neighborhood U of x̂ ∈ RN locally taking orbits
of the nonlinear flow φt of Eq. 1.1, to those of the linear flow etDF(x̂) of Eq. 1.35. The home-
omorphism preserves the sense of orbits and can also be chosen to preserve parametrization
by time.

The above theorem, called Hartman-Grobman, expressed the fundamental result that to
study the stability of a fixed point of a nonlinear system is sufficiently to study its lineariza-
tion about such a fixed point. Observe that a fixed point associated with a Jacobian without
zero or purely imaginary eigenvalues is called hyperbolic or nondegenerate (in the sense of
Hartman-Grobman Theorem), whereas it is called a center.

The concept of invariant subspaces can be extended in the nonlinear case considering the
so called invariant manifold. How such invariant spaces relate to the linear ones is expressed
by the following Center Manifold Theorem:

Center Manifold Theorem for Flows 1.4.1 Let ẋ = F(x) with F ∈ Cr vanishing in x̂
and let A = DF(x̂). Divide the spectrum of A into three parts σs, σc, σu with

Reλ =


< 0 if λ ∈ σs
= 0 if λ ∈ σc
> 0 if λ ∈ σu
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Let the generalized eigenspaces of σs, σc, σu be Es, Ec, Eu, respectively. Then there exist Cr

stable and unstable invariant manifold W u and W s tangent to Eu and Es at x̂ and a Cr−1

center manifold W c tangent to Ec in x̂. The manifolds are invariant under F . Moreover,
W u and W s are unique, but W c need not be.

It is interesting to note that, in general, it is always possible to define our problem in such
a way that the considered equilibrium point coincides with the origin,i.e., x̂ = 0. This is
possible by a change of coordinates: q = x−x̂. Moreover, the above fundamental result will be
considered in the next Sections being the basis for the study of the nonlinear dynamics and,
in particular, the Center Manifold Theorem permits to consider to extend the idea of modes
in the nonlinear case. Indeed, in the nonlinear problem, it is not possible to consider the
solution as a superimposition of independent solutions along certain invariant subspaces of
problem space (defined by the eigenvectors of the state matrix) but the existence of invariant
manifolds W permits to extend the concept of mode, at least in local way. Indeed, it will
be shown that exists some dominant sets that lead the dynamics of the process. For a deep
analysis of nonlinear modes, it is possible to refer to the fundamental work by Rosenberg,
Ref. [47] or to the works of Shaw and Pierre (Ref. [48]) or Vakakis (Ref. [49]).

1.4.1 Asymptotic Behavior

In the previous Sections, we considered only linear/linearized systems that, at large times,
collapse on a fixed point. In general, a nonlinear systems can present a more various behavior
with harmonic, quasi-harmonic of chaotic solutions: such solutions differently from a fixed
point are long term behavior of the dynamics, the orbits will tend to such subset of the
space. Moreover, such special sets will be invariant with respect to the flow. It is possible
to define an invariant set S for a flow φt on RN as a subset of the whole space such that:

φt(x) ∈ S ∀x ∈ S, ∀t ∈ R (1.37)

Of course, the stable and unstable manifold of a fixed point are example of invariant sets, as
well as an harmonic solution (remember that the invariant manifolds are made of solutions
orbits).

A closed invariant set A ⊂ RN is called an attracting set if there is some neighborhood
U of A such that φt(x) ∈ U for t ≥ 0 and φt(x) → A as t → +∞ for all x ∈ A. Of course,
the domain of attraction of A is given by

⋃
t≥0 φt(U) and it will coincide with the stable

manifolds of A. Analogously, it is possible to define a repelling set as an attracting set for
t < 0. The concepts of attracting set permits to expand the idea of solution to the one
of long term dynamics understanding the solution as a limit behavior of the system which
tends to it called attractors. Finally, let us consider from a geometrical point of view, how a
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harmonic, quasi-periodic and chaotic system behavior. A harmonic solution is characterized
by the presence of commensurable frequencies, see Fig. 1.3, whereas in the presence of
a quasi-periodic solution the frequencies are uncommensurable. This means that from a
geometrical view point, the orbit will lie on a torus, see Fig. 1.4 . For a chaotic behavior, it
means that the system solution tends to a so called strange attractors, which characterized
by a large difference between solutions (both lying in such an attracting set) generated by
nearby initial conditions. An example of the Rössler strange attractor is presented in Fig.
1.5. For a deeper analysis of chaotic behavior in nonlinear systems, the reader can refer to
the work of Tabor (Ref. [23]).

Figure 1.3: Periodic ortbit

Figure 1.4: A Quasi-periodic orbit will lie on a Torus

1.5 The bifurcation of Equilibrium

In the application, the consider dynamical systems represent via a mathematical model
some physical problem. Usually, a real problem depends on various parameters influencing
its behavior and in particular its solutions properties. Indeed, depending on the values
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Figure 1.5: Strange attractor of Rössler

of control parameters, the equilibrium should be stable or unstable and harmonic, quasi-
harmonic or chaotic behavior could arise. In this Chapter some issues about the bifurcation
of nonlinear systems and the methods to study such a class of problem are given. For a
deeper analysis refer to Refs. [19, 44, 42, 23].

1.5.1 An introductory example about bifurcation of equilibrium

Let us consider a system with polynomial nonlinearities (Refs. [50] and [51] )

ẍ+ x+ ẋ[−µ+ c1(x2 + ẋ2) + c2(y2 + 1
ω2
y

ẏ2)] = 0 (1.38)

ÿ + ω2
yy + ẏ[δ − c3(x2 + ẋ2)] = 0 (1.39)

with c1, c2, c3, δ real and positive whereas µ ∈ R.
Equations 1.38 can be cast in first order form:

ż = Az + fnl(z) (1.40)

where zT = {ẋ ẏ x y } and

A =


µ 0 −1 0
0 −δ 0 −ω2

y

1 0 0 0
0 1 0 0

 (1.41)

fnl(z) =



0
0

ẋ[c1(x2 + ẋ2) + c2(y2 + α2ẏ2)]
−ẏ[c3(x2 + ẋ2)]


(1.42)
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The equilibrium solution, z = 0, is stable until µ < 0. If µ > 0 a Limit Cycle Oscillations
(LCO) arises. In particular assuming that

x(t) = X cos(t+ φx), y(t) = Y cos(ωyt+ φy) (1.43)

one obtains the bifurcation equations

X(−µ+ c1X
2 + c2Y

2) = 0 (1.44)

Y (δ − c3X2) = 0 (1.45)

From Equations 1.44-1.45 it appears that for µ < 0 the equilibrium solution is possible
whereas for µ > 0 a LCO appears with, assuming Y = 0 (see Refs. [50] and [51]), X =

√
µ
c1
.

It is clear that µ = 0 represent an equilibrium bifurcation point for the considered dynamical
system. Moreover, substituting X =

√
µ
c1

in Eq. 1.45 one obtains

Y (δ − c3
µ

c1
) = 0 (1.46)

If the following relation holds

µ = δc1
c3

= µc (1.47)

Equation 1.46 is satisfied without the condition Y = 0. This means that also the Y mode is
activated for µ > µc. The new solution will be:

X =
√
δ

c3

Y =
√
µ− µc
c2

(1.48)

where it is shown that all the terms in Eq. 1.43 are active. Moreover, if ωy ∈ N it will be
observed a harmonic LCO otherwise a quasi-periodic behavior is expressed by the system.
Finally, it is possible to summarize the behavior of Eq. 1.38:

• X = 0, Y = 0 for µ ≤ 0

• X =
√

µ
c1
, Y = 0 for 0 < µ ≤ µc, µc = δc1

c3

• X =
√

µ
c1
, Y =

√
µ−µc
c2

for µ ≥ µc

showing that the parameter µ influences the behavior of the system causing the loss of
stability of the unperturbed state with the arrising of a LCO which changes its nature for
µ > µc. For a deeper analysis of such a system consider Ref. [51].
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1.5.2 Some issues about Bifurcation Problems

Let us consider an ordinary differential equations system depending on a k-dimensional
parameter µ:

ẋ = Fµ(x) = F(µ, x); x ∈ Rn, µ ∈ Rk. (1.49)

where all the equilibria satisfies the condition

Fµ = 0 (1.50)

The Implicit Function Theorem (see Ref. [43]) states that varying the paramenters µ the
equilibria described by Eq. 1.50 will be described by smooth function in µ as long as the
relation xeq(µ) will be biunivocal. When there is not a biunivocal relation between equi-
librium and parameters the so called bifurcation of equilibrium happens: different solutions
coincide for different set of parameters.

A typical example is what happens in aeroelasticity with the flutter phenomenon. If
the flow velocity is larger than a certain threshold, the unperturbed solution is no longer
stable and a LCO arises. In this case, one will speak about a dynamical bifurcation but are
possible also static bifurcation and a lot of different mechanisms can characterize a bifurcation
process. For a deep analysis of such a problem one can consider Ref. [42, 19, 44, 52]. In this
work two kind of bifurcations will be considered. The first is called Hopf bifurcation and it
is a dynamical process, whereas the second one is a static process and it is called pitchfork
bifurcation. The statical or dynamical nature of the process will depend on the behavior of
the spectrum of the linearized system as shown in the next section.

1.5.3 Consequences of Center Manifold Theorem

The existence of invariant manifolds stated by the Center Manifold Theorem has important
consequence in the study of nonlinear systems in the neighborhood of bifurcation points.
Indeed, the cited theorem implies that (see Ref. [42]) the system Eq. 1.49 is locally topo-
logically equivalent to

v̇ = f(v)

ẏ = −y (v, y, z) ∈W c ×W s ×W u

ż = z

(1.51)

at the bifurcation point,i.e., for µ = µc.
Let us consider, for the sake of simplicity, that the unstable manifold is empty. Moreover,
let us assume that the linear part is block diagonal:

v̇ = Bv + f(v, y)

ẏ = Cy + g(v, y)
(1.52)
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where (v, y) ∈ Rn × Rm and B and C are n × n and m × m matrices, respectively. The
eigenvalues of B have zero real parts whereas the ones of C have negative real parts. The
center manifold is tangent at the equilibrium to the space Ec so there is a local graph

W c = {(v, y)‖y = h(v)} h(0) = Dh(0) = 0 (1.53)

where it has been assumed that the considered equilibrium point coincides with the origin of
the space and h : U → Rm is defined in some neighborhood of x = 0. Equation 1.53 means
that the following relation hold along W c:

v̇ = Bv + f(v, h(v)) (1.54)

Finally, Equations 1.54 indicates that the existence of the Center Manifold permits to reduce
the effective dimension of the problem, i.e., the number of equations. From a practical point
of view Eq. 1.54 can be related to the possibility to extend the modal superimposition to
nonlinear problems (see Ref. [48]).

1.6 Static and Dynamic Bifurcation

In this Section some issues about simple bifurcation of equilibria are given. In particular, it
will be considered, one example of static bifurcation where the origin losses its stability and
become unstable, and two new fixed point stable solution arises (Pitchfork Bifurcation), and
a dynamic bifurcation where the origin losses its stability and a stable limit cycle arises.

1.6.1 Pitchfork Bifurcation

At the bifurcation point, the stability of the trivial equilibrium changes, and a new pair of
equilibria (related by symmetry) appears to one side of the bifurcation point, see Fig. 1.6. It
can be demonstrated via Normal Forms analysis that all the system experiencing such kind
of bifurcation are topologically equivalent to the equation (on the center manifold, see Ref.
[42]):

ẋ = µx− x3 (1.55)

Observing Equation 1.55 one can observe that for µ ≤ 0 only the trivial solution is possible,
whereas for µ > 0, two new solutions appear x = ±√µ. Finally, the sign of the term x3

determines the nature of the bifurcation: when it is positive, the bifurcation is subcritical,
supercritical otherwise. Note that, considering a static bifurcation, the spectrum of the
linearized system, evaluated in the trivial solution, has a zero eigenvalue which is going to
be positive.
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Figure 1.6: Supercritical Pitchfork Bifurcation Diagram

1.6.2 Hopf Bifurcation

The linearized system in the considered equilibrium point has a pair of purely complex
conjugate eigenvalues which are going to have positive real part. It can be demonstrated
(see Ref. [42]) that all the system experiencing a Hopf-type bifurcation are equivalent to the
one given by Eq. 1.56 (in polar coordinates (r, θ) ∈ R× R/modπ: ṙ = (dµ+ ar2)r

θ̇ = (ω + cµ+ br2)
(1.56)

If a 6= 0, b 6= 0 the condition r = cost representing a LCO gives that these solutions lie
along the parabola µ = −ar2/d. If a > 0 the bifurcation is called supercritical and after
the bifurcation point one has an unstable equilibrium point and a stable LCO, see Fig. 1.7.
Otherwise, the bifurcation is called subcritical: before the bifurcation point the stability of
equilibrium is conditioned (with the stability margin defined by an unstable LCO) and after
the bifurcation point only an unstable equilibrium exists, see Fig. 1.8.
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Figure 1.7: Supercritical Hopf Bifurcation Diagram
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Figure 1.8: Subcritical Hopf Bifurcation Diagram



Chapter 2

Flows near a bifurcation point:
analytical methods

In Chapter 1.5 some issues about the properties of dynamical systems in the neighborhood
of a bifurcation point have been given. Indeed, it has been shown that in the neighborhood
of a fixed point exists a smooth transformation that map our system in a more simple one
with the same properties of the original one. In particular, in presence of purely imaginary
eigenvalues will be the part of the system associated to them to carry the dynamics. In this
Chapter some issues about the technical tools which provide the basis for the qualitative
study of flows near bifurcation point will be given. In particular, the methods that permit
to simplify the system on the Center Manifold will be analyzed. This method are based
on finding additional coordinate transformations which reduce the complexity of the system
written on the center manifold: such resulting vector fields are called normal forms. The
idea of introducing successive coordinate transformation in order to simply the expression
of a general problem forms the basis of the Kolmogorov-Arnold-Moser (KAM) theory (see
Refs. [23, 53, 54]) for Hamiltonian systems.

2.1 Normal Forms

In the proximity of a fixed point, the Center Manifold Theorem permits us to restrict our
attention to the flow within the center manifold. Moreover, one can try to simplify the ex-
pression of the vector field on the center manifold introducing successive coordinates trans-
formations obtaining the so called normal form of the vector field. This idea is the base of
the Kolmogorov-Arnold-Moser (KAM) (see Refs. [23, 53, 54]) theory for Hamiltonian sys-
tems and in this work some results about nonconservative systems will be presented. Such
a methodology works well with the presence of polynomial nonlinearities. We will consider

28
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vector fields of the form F(x) = Ax + f(x) with fi(x) a vector of polynomials of order k in the
state variables xi. Note also that the polynomial structure of the nonlinear terms implies
that we are assuming that in the neighborhood of the considered equilibrium it is possible
to expand the flow in Taylor’s series.

Let us consider the system

ẋ = F(x) (2.1)

with an equilibrium at x = 0,i.e., F(0) = 0. The main idea behind normal form is to
find a coordinate change x = ĥ(η) with ĥ(0) = 0 such as the system becomes as simple as
possible,i.e., linear in the best case. One has:

q̇ = (Dĥ(η))−1F(ĥ(η)) (2.2)

In the best case Eq. 2.2 will be linear. In term of power series, one can reduce the complexity
of the problem by finding a sequence of coordinate transformation ĥ1,ĥ2,... which remove
terms of increasing order from Eq. 2.2. In general, it will not be possible to reduce the
original system to a linear one: some essential nonlinearities will remain.

Let us assume that A = Dĥ(0) has distinct eigenvalues λ1, ..., λn ∈ C and that the system
has been brought to a diagonal form of the linear part:

ẋ = Λx + g(x) (2.3)

with gi = o(|x|) in the origin. Let us consider the quasi-identical transformation:

x = ĥ(η) = η + h(η) (2.4)

Now, Equation 2.2 has the form:

η̇ = (I +Dh(η))−1F(η + h(η)) (2.5)

Denoting with gki the terms of gi of degree k one has:

η̇i = λiηi + λiPi(η) + gki (η)−
N∑
j=1

∂hi
∂ηi

λjηj (2.6)

The unknowns hi(η) can be chosen in order to eliminate the k-degree terms gki (η):

λihi(η)−
∑
j

∂hi
∂ηi

λjqj = −gki (η) (2.7)

To solve Eq. 2.7 one can observe that it is linear in the coefficient of h and that hi is the
monomial ηa1

1 · · · ηann :
∂hi
∂ηi

λjηj = ajλjhi

(λi −
∑
j

ajλj)hi = −gki (η)
(2.8)
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Finally, from Eqs. 2.7 the solution of Eq. 2.8 is:

hi = − gki
λi −

∑
j ajλj

(2.9)

Equation 2.9 gives the condition to chose h in order to eliminate the nonlinearities of order
k. Observe that this is possible only if none of the sums λi −

∑
j ajλj is zero when the

terms a1,...,an are nonnegative integers with
∑
j aj = k ≥ 2. If this is true for any order the

transformation, by iterating the transformation given by Eq. 2.4, this yields to a diffeomor-
phism, which maps the initial nonlinear problem to a linear one. In particular, the normal
form in the neighborhood of an hyperbolic fixed point coincides with the form cited by the
Hartman’s Theorem.

2.2 Perturbation Methods

In the previous Section, the possibility to simplify the dynamics in the neighborhood of a
bifurcation point using the Center Manifold Theorem has been addressed with particular
attention to systems with polynomial nonlinearities. Now, the problem is considered from
a practical point of view developing the theoretical results (that ensure some possibility) in
such a way to obtain effective results. In particular, let us consider weakly nonlinear systems
depending on a parameter that influence the stability of the unperturbed state. This means
that can be regarded as a linear problem perturbed by small nonlinear terms.

This means that, in general, our problem will be of the form:

ẋ = A(µ)x + εf(x;µ) (2.10)

where the vector of nonlinear terms, f, has polynomial elements, µ is the general control
parameter and ε is a small parameter. Assuming that the real part of some eigenvalue (or
couple of eigenvalues) of A change its sign for µ = 0 it is possible to write (assuming A
analytical in the control parameter):

A(µ) = A(0) + ε
∂A
∂µ
|µ=0 + o(ε) = A0 + εA1 + o(ε) (2.11)

where it has been assumed

µ = 0 + ε+ o(ε) (2.12)

Then, Equations 2.10 becomes:

ẋ = A0x + ε[A1 + f(x; 0)] + o(ε) (2.13)

where also the coefficient of polynomials fi has been expanded in a Mac Laurin’s series.
Observe that Eq. 2.13 represents a perturbation of the problem at its stability margins.



2. Flows near a bifurcation point: analytical methods 31

2.2.1 Lie Transform Method

The main idea beyond the Normal Forms method is to simplify the studied problem by
eliminating the non-essential nonlinearities by a suitable nonlinear transformation of the
coordinates. In this Section the method based on the Lie Transform will be presented (see
Refs. [25, 24, 22, 30]). Such a method use a transformation of the flow in a power series of
a small parameter ε (see Eq. 2.13).

Let us assume that Eq. 2.13 has been cast in diagonal form by using the eigenbasis
associated to A0. Moreover, for the sake of simplicity, only odd nonlinearities up to the third
order will be considered.

q̇ = Λ0q + ε
(
Ǎ1q + f(q)

)
+O(ε2) ε� 1 (2.14)

where

fi(q) =
N∑

p,q,r=1
γipqrqpqqqr (2.15)

The Lie Transform method is applied by introducing a near-identity transformation q = η+
εh(η)+O(ε2) where the function vector h(·) is the unknown that defines the transformation.
The unknown is chosen in order to simplify the problem of Eq. 2.14 giving a simpler form:

η̇ = Λ0η + ε
(
Ǎess1 η + fess(η)

)
(2.16)

where it is indicated that only the essential (or resonant) contributions to the system response
are considered. Now, a criterion to identify the essential terms and disregard the unessential
ones is left to choose.

Indeed, it can be demonstrated (see Ref. [19]), that, at the ε order the functions hi are
solution of the equation:

N∑
n=1

λnyn
∂hj
∂qn
− λjhj =

N∑
s=1

Ǎ1jsqs +
N∑

p,q,r=1
γjpqrqpqqqr (2.17)

j = 1, ..., N

If we assume that

hj =
N∑
s=1

h(1)
ns ηs +

N∑
p,q,r=1

h(2)
npqrηpηqηr (2.18)

and substituting Eq. 2.18 in Eq. 2.17 we obtain:

hj =
N∑
s=1

ηs
λs − λj

+
N∑

p,q,r=1

ηpηqηr
λp + λq + λr − λj

(2.19)
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Observing Eq. 2.19, that determines the transformation given in Eq. 2.17, it is clear that
only the terms such that

λs − λn 6= 0 ∀n, s = 1, ..., N (2.20)

λp + λq + λr − λn 6= 0 ∀n, p, q, r = 1, ..., N (2.21)

can be eliminated, being non-essential to the process: the remaining ones are obtained by
solving Eq. 2.16. Then the solution of Eq. 2.14 is:

qn = ηn + ε


N∑
s=1

ηs
λs − λn

+
N∑

p,q,r=1

ηpηqηr
λp + λq + λr − λn

 (2.22)



Part II

Analytical Methods: Applications

33



Chapter 3

Longterm Dynamical Analysis via
Normal Form

In the present Chapter, the dynamic response of harmonically forced systems experiencing
a postcritical bifurcation will be analyzed via a singular perturbation analysis by analyzing
the influence of the physical coefficients on the nonlinear behavior of the response. For this
purpose, the model of a beam and of a finite plate forced by a vertical dynamic excitation and
subject to an axial static buckling are considered. This physical model is able to represent a
variety of response scenarios (see Refs. [55, 56, 57, 58, 59, 60]) and, in particular, they give
an interesting opportunity to analyze the concept of small divisors (see Ref. [19]), which is an
analytical issue in the perturbation approach. Specifically, the considered partial differential
models are reduced via a Galerkin projection on a suitable functional basis to a system of
nonlinear forced and coupled oscillators of Duffying-equation type. Indeed, the dynamical
behavior of such a isolated nonlinear oscillator has been analyzed in the work of Holmes
and Marsden (Ref. [42]) and also by Szemplinska-Stupnika et al. (see Ref. [61]). The
Normal Form method is here applied to the coupled system of nonlinear oscillators in order
to reduce the problem to a simpler form defined by the resonances conditions. Analyzing
how different parameters work in the resonance conditions a physical interpretation of small
divisors involved in such a condition is given. In particular, the role of damping is outlined.

3.1 Longterm dynamics of a forced beam

The static behavior of forced beam partial differential equation and the stability properties of
its solutions have been recently studied in Refs. [62, 63, 64, 65], whereas its global behavior
has been analyzed in Refs. [66, 67, 68]. The effect of an harmonic axial load on system
internal resonance is studied in Ref. [69]. In the present work the partial differential equation

34
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of an extensible beam with harmonic transversal load and constant axial load is studied via
a perturbation approach based on the Normal Form method (see Refs. [70, 30, 16, 71]) after
a space discretization of the original partial differential problem on the modal basis of the
structural operator. For more informations about the influence of the number of modes used
to discretized the original space-continuum system see Refs. [72, 73].

3.1.1 Governing Equations

Let us consider the dimensional hinged-hinged beam equation, for the sake of simplicity
without space-distributed forcing load (see Refs. [65]):

ρmh∂ττw + c∂τw +D∂x∗x∗x∗x∗w +
(
N − EA

2a

∫ a

0
[∂∗xw]2dx∗

)
∂x∗x∗w = 0 (3.1)

w(0, τ) = w(a, τ) = ∂x∗x∗w(0, τ) = ∂x∗x∗w(a, τ) = 0 (3.2)

w(x∗, 0) = w0 (3.3)

∂τw(x∗, 0) = ẇ0 (3.4)

where a is the length of the beam, ρm is the mass per unit length of the beam, x∗ ∈ [0, a]
is the dimensional coordinate, c is the damping coefficient, τ is the dimensional time, E is
the Young modulus, D is the bending stiffness, A and I are the cross-section area and the
moment of inertia of the beam respectively.
Defining the dimensionless time t = τ(D/ρmha4)1/2 one obtains the dimensionless partial
differential equation governing the bending dynamics of a Von Kàrmàn beam:

∂ttu+ δ∂tu+ ∂xxxxu+
(
R− 1

2

∫ 1

0
[∂xu]2dx

)
∂xxu = f (3.5)

u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0 (3.6)

u(x, 0) = u0 (3.7)

∂tu(x, 0) = u̇0 (3.8)

where

x := x∗

a
r̄ =

√
I/A u = w

r̄

R := Nea
2

D
δ := ca2

√
ρmhD

where u : [0, 1] → R, f : (0, 1) × R+ → R is the vertical load distribution, R ∈ R is the
axial load acting in the reference configuration (assumed to be positive when the beam is
compressed) and δ > 0 is a damping parameter.
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3.1.2 ODEs reduction via Galerkin method

The partial differential Equation 3.5 can be reduced to an infinite number of nonlinear
ordinary differential equations by projection on a suitable functional basis. Using the eigen-
functions of the self-adjoint structural operator ∂xxxx, it is possible to diagonalize the linear
part of the ordinary differential equations system. Indeed, projecting Eq. 3.5 on the complete
and orthonormal functional basis {φn} = {

√
2 sin (nπx)}, n ∈ N, one obtains:

z̈n + δżn + Ω2
nzn + gn = fn(t) (3.9)

where the overdots denotes derivative with respect to the dimensionless time t and

Ω2
n := π4n4 − π2n2R (3.10)

whereas the term gn collects the nonlinear cubic terms

gn :=
∑

p,q,r∈N
cnpqrzpzqzr (3.11)

cnpqr := 1
2
π4(np)2δnqδpr = γπ4(np)2δnqδpr (3.12)

Finally, substituting Eq. 3.12 in Eq. 3.11 one obtains:

gn :=
∑

p,q,r∈N
cnpqrzpzqzr = γn2zn

∑
p∈N

(
π2pzp

)2
(3.13)

Observing that the set A = {π, 2π, 3π...} is numerable with the same cardinality of N, the
obtained equations can be rewritten in a simpler form:

z̈m + δżm +m2(m2 −R)zm + γm2zm
∑
p∈A

(pzp)2 = fm(t) (3.14)

m ∈ A

Assuming that ∃ N such that for m > N the modal contribution is negligible, the initial
P.D.E. problem can be converted in a finite dimensional system of ordinary differential
equations. Observing Eq. 3.14 it appears that a qualitative study of the considered system
can be done considering m ∈ A/mod(π) reducing the symbols present in the analysis. Of
course, a quantitative study of the problem would require the use of the real values of
equations coefficients.

3.1.3 Static behavior of extensible beam equation

The longterm dynamics of Eq. 3.5 has been studied in depth in numerous papers. Referring
to Ref. [62], it is possible to establish general condition for the existence of steady solutions
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for the considered problem. Moreover, it is possible to prove the existence of a global attrac-
tor of Eq. 3.5 that coincides with the unstable manifold of the set of the stationary states,
see Ref. [68].

Let us consider Eq. 3.5 without forcing terms:

∂xxxxu+
(
R− 1

2

∫ 1

0
[∂xu]2dx

)
∂xxu = 0 (3.15)

u(0) = u(1) = ∂xxu(0) = ∂xxu(1) = 0 (3.16)

Assuming that u = znφ
n,∀ fixed n ∈ A one obtains from Eq. 3.15:√

λnzn(
√
λn −R+ γ

√
λnz

2
n) = 0 (3.17)

where {λn = n4} is the set of eigenvalues associated to each eigenfunction φn of the structural
operator, i.e., ∂xxxxφn = λnφ

n.
Equation 3.17 has only the trivial solution, zn = 0, if and only if R <

√
λn.

If R >
√
λn (buckling relation) there are also the symmetric solutions:

zn = ±

√
R−
√
λn

γ
√
λn

= ±
√
R− n2

γn2 (3.18)

(3.19)

∀n such as
√
λn < R. This means that there are 2K+1 solutions with K = n̄/π, n̄ being the

larger integer n ∈ A verifying the buckling relation (For further details see Refs. [62, 65]).

3.1.4 One-mode approximation: the Duffing forced and damped equation

A one mode approximation of Eq. 3.14 yields to a Duffing type equation with a damping
and a forcing term.

z̈ + δż + (1−R)z + γz3 = f(t) (3.20)

Let us suppose that the forcing load is harmonic: f(t) = F cos Ωt.
The associated static problem (with F = 0) has only the unperturbed stable solution z = 0
if R ≤ 1, otherwise there exists three solutions z = 0 (unstable) and z = ±

√
R−1
γ (stable).

The dynamical behavior of Eq. 3.20 is various and can present harmonic solutions and even
chaotic motion. The aim of this section is to analyze these different motions.

Equation 3.20 has a set of fixed points. If the forcing load is small in amplitude, F =
o(ε) ε � 1, the response can be built as a static part plus a dynamical one represented by
an oscillation of the same frequency of the load. This involves to write the solution of Eq.
3.20 as:

z = z0 + εpz1(t) ε� 1 p ≥ 1 (3.21)
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This means that the dynamics develops a harmonic motion around a fixed point.
If the amplitude of the forcing load increases to a larger magnitude, it will not be possible
to decompose the static and the dynamic contribution to build the response.

Let us consider a same order interaction between the nonlinear terms and the forcing
load: F = ε3/2F , (R− 1) = εβ. Equation 3.20 can be rewritten by imposing z =

√
ε x, as:

ẍ+ δẋ = ε(βx− γx3 + F cos Ωt) (3.22)

The forcing terms can be rewritten using the Euler formulae as the summation of two new
state variables:

F cos Ωt = F

2

(
ejΩt + e−jΩt

)
= F̂ (x3 + x4) (3.23)

F̂ = F

2
x3,4 = e±jΩt

Finally, x3,4, are solutions of two new ODEs:

ẋ3,4 = ±jΩx3,4 (3.24)

Equations 3.22 and 3.24 can be recast in an extended phase-space form:

ẏ = A0y + ε (A1y − fnl(y)) (3.25)

where

A0 =


0 1 0 0
0 −δ 0 0
0 0 jΩ 0
0 0 0 −jΩ

 (3.26)

A1 =


0 0 0 0
β 0 F̂ F̂

0 0 0 0
0 0 0 0

 (3.27)

fnl(y) =



0
γy3

1

0
0


⇒ fnli(y) = γijklyjykyl (3.28)

y =



x

ẋ

x3

x4


(3.29)
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The phase-space form allows us to use suitable techniques to build approximated solutions.
Finally, the whole system can be rewritten using the eigenbasis associated to the state matrix
A0

q = Λ0q + ε
(
Ǎ1q− f̌nl(q)

)
(3.30)

where

Λ0ij = λiδij (3.31)

λ1 = 0

λ2 = −δ

λ3,4 = ±jΩ

with

A0ijuj = λiui (3.32)

yi = u
(p)
i qp (3.33)

and

u
(p)
i f̌p(q) = γijklu

(r)
j u

(m)
k u

(n)
l qrqnqm (3.34)

Small divisor solution: perturbation approach

An artificial perturbation parameter has been introduced. It can be identified with the
increment in the Taylor expansion of the stiffness (R − 1) = 0 + βε + O(ε2), where the
condition β > 0 corresponds to a post buckling behavior. Then Eq. 3.25 can be solved
in the neighborhood of the origin through a small divisors approach as the Lie-Transform
method, see Ref. [16], that is equivalent to perform a Normal Form Analysis, see Ref. [71]
and [19]. Since the present analysis being interested in a supercritical bifurcation, it is
assumed β > 0.
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Normal Forms solution of one-dimensional Duffing Equation

Let us consider Equation 3.25: the right and left eigenvectors matrices are, respectively,

U =



1 1 0 0
0 −δ 0 0
0 0 1 0
0 0 0 1


(3.35)

L =



δ 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(3.36)

then projecting on such basis one obtains:

q̇1 = ε

δ

{
βq1 + βq2 + F̂ q3 + F̂ q4 − γ (q1 + q2)3

}
(3.37)

q̇2 = −δq2 + ε

δ

{
−βq1 − βq2 − F̂ q3 − F̂ q4+

+γ (q1 + q2)3
}

(3.38)

q̇3 = jΩq3 (3.39)

q̇4 = −jΩq4 (3.40)

Now it is possible to apply the Normal Form procedure showed above. The only resonance
conditions are

λi − λi = 0 i = 1, ..., 4 (3.41)

λ1 − λ1 + λ1 + λ1 = 0 (3.42)

λ2 − λ2 + λ1 + λ1 = 0 (3.43)

This means that the system given by Eq. 3.37-3.40 can be transformed as (see Sec. 2.2.1):

η̇1 = ε

δ

{
βu1 − γη3

1

}
(3.44)

η̇2 =
{
−δ − ε

δ
β + 3εγ

δ
η2
1

}
η2 = −λ̃(‖η1‖2, ε)η2 (3.45)

η̇3,4 = ±jΩη3,4 (3.46)

(3.47)

Then the longterm behavior of the beam is given by:

z(t) =
√
εx(t) (3.48)

x(t) = x0 + xε(t) + o(ε) (3.49)
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with

x0 =
√
β

γ
(3.50)

xε(t) = −ε F
δΩ

(
cos (Ωt− π/2)− Ω2

Ω2 + δ2
cos (Ωt− π/2)− (3.51)

+ δΩ
Ω2 + δ2

cos (Ωt)
)

The obtained result has the form shown in Eq. 3.21. This means that under the assumed
hypotheses on the order of the interactions among the linear part, nonlinear terms and
forcing load the motion can be built as an oscillation around a fixed point. Moreover, it
can be observed that the fixed (time-invariant) term in Eqs. 3.49-3.51 is the exact solution
for the static problem of the standard buckled beam. This means that our assumptions
neglect the influence of the load on the static part of solution. Finally, it can be observed
that in the obtained asymptotic series, the convergence to the exact solution is guaranteed
not only really by the smallness of the introduced perturbation parameter ε, but also by the
smallness of a new parameter depending on loading and on damping. Thus, the asymptotic
convergence is given by the condition

F

δΩ
ε = O(ε) (3.52)

This parameter will be analyzed in the following Section together with the small-divisors
effects.

Integrability issues and Chaos

The solution given by Eqs. 3.49-3.51 shows the relevance of some parameters to the response
and to the integrability of the problem or the smoothly dependence of solutions to system
parameters.

In particular, the chosen order interaction among nonlinear terms, linear perturbation
and forcing terms allows one to see the response as an oscillation of the same frequency of the
forcing load around the buckled fixed point. At this point the first approximation arises by
the choice of the order for the forcing load: F = O(ε3/2). It is a key point that the observed
motion is well predicted by the proposed approach if the assumed order of interaction is
valid.
Moreover, Eq. 3.52 shows that the asymptotic behavior of the solution is guaranteed if and
only if a sufficiently high damping and a sufficiently high load frequency are present. This
means that the radios of convergence of our approximated solution to the real one depends,
for a fixed Ω, on ε/δ that must satisfy the usual condition: ε/δ � 1. Observing Eq. 3.26 one
can observe that |λ1 +λ2| = δ. This means that our Normal Forms assumptions require that
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the damping δ is sufficiently high. If the damping is small i.e., δ = o(ε), the Eqs. 3.44-3.45
are no longer valid. According to the previous observations, the damping is directly related
to the presence of a small divisor and to the asymptoticity of the obtained solution and it
will be directly related to the possibility of a chaotic response.
Finally, let us consider the role of the load frequency for a fixed value of damping. Observing
the condition given by the Eq. 3.52 it is clear that the condition given by Eq. 3.52 is true
if and only if the frequency of the response is not too low. This means that the higher
the frequency of the harmonic load the better will be our approximation for a fixed ε.
Nevertheless, a quasi-steady load will show a behavior not predictable with a zero-divisors
Normal Form approach.

Figures 3.1 and 3.2 show the effect of the perturbation parameter ε on the perturbation
solution and compare the results to those of a direct numerical solution of Eq. 3.22. The
numerical solution is accurate for any ε while the perturbation solution is most accurate for
small ε. The fixed parameters are:

β = 1, δ = 1, F = 1, Ω = 2, γ = 0.5 (3.53)
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Figure 3.1: Perturbed vs Numerical solution, ε = 0.1

Increasing the perturbation parameter, ε, shows that the perturbed solution and the
numerical one differ as expected. It is interesting to observe that the error is both on the
phase and on the static component of the solution, whereas the frequency is still very similar
in both solution. This means that, in the presented examples, the solution is still of the form

z(t) = zstat + zdyn(t) (3.54)

The error on zstat is due to our hypothesis on the load order. From our assumptions, it
follows that the forcing load does not influence the essential problem in the Lie Transform
method. Let us next consider the effect of the damping δ. The fixed parameters are:

ε = 0.1, β = 1, γ = 0.5, F = 1 (3.55)
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Figure 3.2: Perturbed vs Numerical solution, ε = 1

Figures 3.3 and 3.4 show the solution for δ = 0.001,Ω = 2 and δ = 0.001, Ω = 1.
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Figure 3.3: Perturbed vs Numerical solution, δ = 0.001 Ω = 2

If the damping is sufficiently small, then the solution is no more an asymptotic expansion,
thereby losing its validity. Moreover, we can observe the effect of the load frequency having
a smoothing effect on the solution delaying the chaoticity of the response (compare Fig. 3.3
and Fig. 3.4). Equation 3.51 shows that for increasing Ω, the detrimental effect of a small
damping δ on the asymptoticity of the solution decreases. 1

Let us next consider the effect of the load order of magnitude. The Figure 3.5 and 3.6
show the response for F = 50 and F = 500 respectively. The fixed parameters are:

ε = 0.1, β = 1, δ = 1, γ = 0.5, Ω = 2 (3.56)

By increasing the load, the structure of the solution, z(t) = zstat + zdyn(t), changes. In
particular, in Fig. 3.5 the error is only in the static component of the response, whereas

1This can be shown observing that Eq. 3.52 depends on the quantity 1/δΩ for a fixed F .
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Figure 3.4: Perturbed vs Numerical solution, δ = 0.001 Ω = 1
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Figure 3.5: F = 50
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Figure 3.6: Perturbed vs Numerical solution, F = 500
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in Fig. 3.6 the oscillation is around the origin and there is a phase shift with respect to
the perturbation solution. Otherwise, the frequency is the same. The discrepancy shown in
Fig. 3.5 is due to the fact that the effect of the load (even if its average is zero) cannot be
neglected in computing zstat (as our Normal Form assumptions do).

Quasi-Steady forcing load: a small divisor case

In the previous Section we observed that a quasi-steady load cannot be represented via the
zero divisor approach that we chose. Indeed, a slow frequency load means that Ω = o(ε).
This means that the supposed asymptotic behavior of Eq. 3.51 given by condition in Eq.
3.52 is not true. Therefore, it is necessary to take into account the presence of a small divisor.
Remembering that λ1 = 0, the small divisor condition to consider is |λ1−λ3,4| = o(ε), where
λ1 = 0 and λ3,4 = ±jΩ. From the physical point of view this means that the interaction
among inertial and forcing load can not be disregarded. Then, the ”essential” system is
(remember Sec. 2.2.1):

η̇1 = ε

δ

(
βη1 + F cos Ωt− γη3

1

)
(3.57)

η̇2 =
(
−δ − ε

δ
β + 3εγ

δ
η2
1

)
η2 = −λ̃(‖η1‖2, ε)η2 (3.58)

where the forcing load is written explicitly. The solution of Eq. 3.57 can be obtained by
numerical integration, whereas for times sufficiently large η2 → 0. Finally, substituting in
Eq. 2.22 the solution of the whole problem is:

z(t) =
√
εη1(t) + (3.59)

+ε
√
ε

(
− β
δ2
η1(t) + γ

δ2
η3
1(t)−

Ω
δ

F

Ω2 + δ2
cos(Ωt− π/2)

− F

Ω2 + δ2
cos(Ωt)

)
Observing Eq. 3.59 it is possible to note that the quantity ε/δ must be small. Moreover, the
obtained solution for F → 0 tends to Eq. 3.49.

The comparison between numerical and perturbed solution is presented in Fig. 3.7 where

ε = 0.1, β = 1, δ = 1, γ = 0.5, Ω = 0.01, F = 1 (3.60)

Figure 3.7 shows a good qualitative agreement between the numerical and perturbed
solutions. The region of the main error is enlarged in Fig. 3.8 which corresponds to the
change of direction of the loading.

In Figures 3.9 and 3.10, the effect of the load order is analyzed.
One can observe that by increasing the load the induced error between the perturbed

and numerical solution increases slowly with respect to the example with a not small forcing
frequency. This is due to the fact that the forcing load appears in the reduced (essential)
system.
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Figure 3.7: Perturbed vs Numerical solution, quasi-static forcing load
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Figure 3.8: Perturbed vs Numerical solution: quasi-static forcing load.
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Figure 3.9: Perturbed vs Numerical solution, F = 500
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Figure 3.10: Perturbed vs Numerical solution, F = 5000

3.1.5 Normal Form of N coupled nonlinear oscillators

In the previous Sections, the problem of a one-mode buckled and forced beam has been
considered. In the following the problem of a N -mode approximation will be addressed and
the problem of small divisors and its physical meaning analyzed in this new context.

Let us consider Eqs. 3.14 representing the coupling of N nonlinear oscillators: dim(A) =
N . The system given by Eqs. (3.14) can be rewritten in a phase-space form introducing this
change of variables:

żi = vi (3.61)

v̇i = −δvi + i2(R− i2)zi − γi2zi
∑
p∈A

(p zp)2 + (3.62)

+ Fi
2

(qi+1 + qi+2)

q̇i+1 = jΩiqi+1 (3.63)

q̇i+2 = −jΩiqi+2 (3.64)

i ∈ A = {1, ..., N}

Observing Eqs. 3.61-3.64, we can conclude that our beam PDE equation is transformed into
4N equations lying in orthogonal planes and that are coupled only by the nonlinear cubic
term. Now assuming that (R − i2) = i2εβ̂i + i2(R0 − i2) where β̂i = i2βi (in particular,
β = β̂1), R0 = 1, zi =

√
εxi, vi =

√
εxi+1 and Fi = ε3/2F the above equations can be
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rewritten as:

ẋi = xi+1 (3.65)

ẋi+1 = −δxi+1 − i2(R0 − i2)xi + ε[β̂ixi − γi2xi
∑
p∈A

(p xi)2 +

+ F̂ (qi+2 + qi+3)] (3.66)

q̇i+2 = jΩiqi+2 (3.67)

q̇i+3 = −jΩiqi+3 (3.68)

i ∈ A = {1, ..., N}

The linear part of every i-th system can be transformed in a diagonal form using the trans-
formations:

xi = ξi + ξ̄i (3.69)

xi+1 = λiξi + λ̄iξ̄i (3.70)

For i = 1 we obtain the same Equations analyzed in Sec. 3.1.4 with the difference of a
nonlinear terms involving all the other coordinates. Whereas, the other Equations are:

ξ̇i = λiξi+1 −
ε

2jωi
[β̂iξi + β̂iξ̄i − γi2ξi

∑
p∈A

p2
(
ξp + ξ̄p

)2
+

+ F̂ (qi+2 + qi+3)] (3.71)
˙̄ξi = ¯̇ξi (3.72)

q̇i+2 = jΩiqi+2 (3.73)

q̇i+3 = −jΩiqi+3 (3.74)

i ∈ A = {2, ..., N}

where jωi = =m{λi} = λIi = =m{− δ
2 +

√
δ2

4 + i2(R0 − i2)} i > 1.
The spectrum of the linear parts of the studied systems is made in the bifurcation point
R = 1 by λ1 = 0, λ2 = −δ, λi+1 = λ̄i. Thus, the resonance conditions are:

λ1 + λ1 = 0 (3.75)

λi + λ1 + λ1 − λi = 0 (3.76)
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Then applying the Normal Form procedure one obtains:

η̇1 = ε

δ

(
βη1 − γη3

1

)
(3.77)

η̇2 =
(
−δ − ε

δ
β + 3εγ

δ
η2
1

)
η2 =

= −λ̃(‖η1‖2, ε)η2 (3.78)

η̇i =
(
λi + εβ̂i +

3εγi
2jωi

)
ηi = −λ̃(‖η1‖2, ε)ηi (3.79)

˙̄ηi = ¯̇ηi (3.80)

q̇i+2 = jΩiqi+2 (3.81)

q̇i+3 = −jΩiqi+3 (3.82)

i ∈ A = {2, ..., N}

The solution of Eq. 3.77 has been given in Sec. 3.1.4, whereas η2 = 0 for sufficiently large
times. Then substituting in Eq. 2.22 the results of Eqs. 3.77, 3.79 and the explicit expression
for the forcing loads (see Eqs. (3.81)-3.82), one obtains the solution of the beam equation
discretized with N modes:

z1 =
√
ε

√
β

γ
− ε F

δ

√
ε

( 1
Ω

cos (Ωt− π/2)

− Ω
Ω2 + δ2

cos (Ωt− π/2)− δ

Ω2 + δ2
cos (Ωt)

) (3.83)

zi = −ε
√
ε
Fi
ωi

(
Ωi

(Ωi − ωi)2 + λ2
Ri

cos(Ωi t)+

+ |λi|
(Ωi − ωi)2 + λ2

Ri

sin(Ωi t− ∠λi)
) (3.84)

with i = 2, ..., N and

λi = λRi + jλIi = λRi + jωi =
(
λ2
Ri + λ2

Ii

)
ej∠λi = |λi| ej∠λi

From Equations 3.83-3.84, one can observe that the results for the N -dimensional problem,
under the assumed hypothesis on the order of interaction between the equation’s terms, are
similar to the ones for N = 1. The motions still remains as an oscillation around a fixed
point. This oscillation is characterized by a finite number of frequencies Ωi. Note that in
the explained case resonance is not considered. If a resonance is present this means that
one has to consider the forcing load in the equations of normal forms but that (under the
assumed hypotheses of terms interaction) without a coupling within different modes (at the
considered order) as analyzed in Ref. [71].
The motion along the stable modes zi(t) must be small and of order ε3/2. Equations 3.84
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show that the response is small if and only if the following relation is true (remember that
the resonances are not considered):

Fi
ωi

= O(1) (3.85)

This means that not only the forcing load can cause a strong nonlinear response, as expected,
but also the presence of low frequencies. The condition ωi � 1 means that |λi − λ̄i| =
|λi − λi+1| � 1: new resonance conditions appear and our Normal Form is not longer valid.
The solution for the critical mode has been already studied in Sec. 3.1.4. In Figures 3.11-3.12
the perturbed solution for the N = 2 is presented and compared with the numerical one.
The fixed parameters are assumed to be:

ε = 0.1 β = 1 β2 = 1 δ = 1 γ = 0.5 Ω1 = 1

Ω2 = 2 ω2 = 3.369 F1,2 = 1 (3.86)

The comparison in Figs. 3.11-3.12 shows a good qualitative agreement between the numer-
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Figure 3.11: Comparison between perturbed and numerical solution along the generic 1-th unstable
mode

ical solution and the one obtained via Normal Form.

Let us consider a resonant load: ω2 = Ω2 = 3.369 with the others parameters equal to
those of the previous example. In Figures 3.13-3.14 the comparison between numerical and
perturbed solutions is shown. In particular, one can observe that the effect of the reso-
nance is compensated by the presence of high damping. Indeed, observing Eqs. 3.83-3.84 it
appears that the higher the damping the smaller are the high order terms in the asymptotic
expansion (note that λRi is proportional to the damping for a stable mode).

To underline the role of damping let us consider a case with low damping and resonant



3. Longterm Dynamical Analysis via Normal Form 51

2980 2982 2984 2986 2988 2990 2992 2994 2996 2998 3000

−0.004

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

0.004

t

z 2(t
)

Numerical
Perturbed

Figure 3.12: Comparison between perturbed and numerical solution along the generic 2-th stable
mode
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Figure 3.13: Comparison between perturbed and numerical solution along the generic 1-th unstable
mode, resonant case.
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Figure 3.14: Comparison between perturbed and numerical solution along the generic 2-th stable
mode, resonant case.
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load:

ε = 0.1 β = 1 β2 = 1 δ = 0.1 γ = 0.5 Ω1 = 1

Ω2 = ω2 = 3.406 F1,2 = 1 (3.87)

In Figure 3.15 it is shown the comparison between the numerical and perturbed solution
for the motion along the stable mode and a discrepancy between numerical and perturbed
solution can be observed being no longer true the conditions that ensures Eq. 3.84 to be an
asymptotic expansion. Finally, recalling Eq. (3.84) one can observe the necessity that
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Figure 3.15: Comparison between perturbed and numerical solution along the generic 2-th stable
mode, resonant case with low damping.

Fi
ωi

= O(1) (3.88)

The condition on the load has been already analyzed, then let us consider what role ωi plays.
The eigenfrequency depends on the stiffness (and thus on the axial load) and on the damping.
If the axial load is sufficient the mode experiences a static bifurcation, ωi = 0 and the
Normal Form assumptions are no longer valid. If the damping is too large the studied mode
is associated to a real negative eigenvalues and again our Normal Form is no longer valid.
From the above results it is interesting to stress that again the damping plays an important
role in the small divisor, although implicitly.

3.1.6 Concluding Remarks

The dynamic response of a harmonically forced beam experiencing a pitchfork bifurcation
have been studied through a space-discretization and then a singular perturbation approach
based on Normal Form method. The obtained system of ordinary differential equation can
be considered integrable if there exists a continuous dependence between the solution and the
parameters present in the equations. This implies that, using a perturbation approach, the
asympoticity of the series representing the solution is guaranteed. This statement is related
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to the absence of zero or small divisors in the obtained asymptotic expansion and this is a
key issue in the perturbation approach and well stressed by the Normal Form method used in
this paper. The performed analysis, original contribution of such a thesis, have emphasized
the role of the damping in the presence of a weakly chaotic response for weak forcing load.
Indeed, the smaller the damping the smaller is the magnitude of forcing harmonic loads that
cause chaotic responses. Moreover, the role of the load frequency has been investigated for
the quasi-steady case (low frequency) and an analytical solution has been obtained. Finally,
it is relevant to observe that the obtained found solutions, obtained as asymptotic series,
allows to give some quantitative consideration about the small divisors. Indeed, the role of
damping and load frequency as small divisors has been studied and a quantitative estimation
of their smallness given.

3.2 Longterm dynamics of a two dimensional Von Kármán
panel

In Sec. 3.1 the longterm dynamics of a one-dimensional continuum system has been analyzed.
In this Section the analysis is extended to a two-dimensional forced system with aeroelastic
terms and both structural and aerodynamical nonlinearities. For this purpose, the problem
of a plate subjected to a biaxial compressive load and to a supersonic flow together with
a transversal harmonic load has been investigated (Ref. [6]). The effects of the relevant
physical parameters have been studied in order to investigate how they relate with the zero
and small divisors concept (see Ref. [44]) in the Normal Form reduction method (see Ref.
[42]) extending the results of Sec. 3.1. As in the previous Section, the partial differential
equation governing the behavior of the panel is studied via a perturbative approach based
on the Normal Form method (see Refs. [27, 21, 74, 16, 71]) after a space discretization of
the original partial differential problem. Specifically, a Galerkin projection on aS suitable
functional basis is used to obtain a system of nonlinear forced and coupled oscillators. The
simplified system is defined by satisfying the so-called resonance conditions (Ref. [44, 16]). A
physical interpretation of some small divisors is given and, in particular, the role of damping
is also investigated.

3.2.1 Governing Equation and Boundary Conditions

Let us consider the equilibrium of an elastic rectangular panel simply supported and exposed
to one side to a supersonic flow with unperturbed velocity U . We shall employ the usual
Kirchhoff-Love hypothesis for the nonlinear theory of elastic plates, which assumes that the
deflections of the shell are of comparable magnitude with the plate thickness h, but small
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compared with its edge lengths a and b. The partial differential equations governing the
considered physical problem are (see Ref. [6]):

ρhw,ττ + ρhδw,τ +D∇2∇2w = φ,yyw,xx + φ,xxw,yy − 2φ,xyw,xy + f + p− p∞(3.89)
1
Eh
∇2∇2φ = (w,xy)2 − w,xxw,yy (3.90)

∇2∇2(·) = (·),xxxx + (·),yyyy + 2(·),xxyy (3.91)

where w(x, y, t) is the vertical displacement, δ is the damping coefficient, ρ is the material
density of the panel, E the Young modulus, p − p∞ is the differential pressure load on the
panel surface as given by the aerodynamic loads, φ the Airy’s stress function defined by the
following relations:

Nx = φyy Ny = φxx Nxy = −φxy (3.92)

which implies that the in-plane equilibrium equation

Nx,x +Nxy,y = 0 Nyx,x +Ny,y = 0 Nyx = Nxy (3.93)

are automatically satisfied. The considered panel is simply supported, or

w |x=0= wxx |x=0= 0 w |x=a= wxx |x=a= 0 (3.94)

w |y=0= wyy |y=0= 0 w |y=b= wyy |y=b= 0 (3.95)

The initial condition are given by

w(x, y, 0) = w̄ w,t(x, y, 0) = ¯̇w (3.96)

The boundary condition for Eq. 3.90 can be imposed ”on the average” (see Ref. [6]). In
particular, assuming that

φ(x, y, t) = φ1(x, y, t) + 1
2
(Nxy

2 +Nyx
2 − 2Nxyxy). (3.97)

where φ1(x, y, t) is somea particular solution of Eq. 3.90 ”zero on average”, on the boundary
of the physical domain and Nx, Ny, Nxy are the average forces along the edges of the plate:

1
b

∫ b

0
φ,yy |x=0 dy =: Nx (3.98)

1
a

∫ a

0
φ,xx |y=0 dx =: Ny (3.99)

1
a

∫ a

0
φ,xy |y=0 dx =: Nxy (3.100)

Finally, the gas pressure on one side of the panel can be modeled using the Piston Theory
(see Ref. [6, 75]). Retaining three terms of the expansion one obtains:

ρhw,tt + (ρhδ + γp∞
a∞

)w,t +D∇2∇2w + γp∞Mw,x + γ(γ + 1)p∞M2

4
w2
,x +

+γ(γ + 1)2p∞M3

12
w3
,x = φ,yyw,xx + φ,xxw,yy − 2φ,xyw,xy + f (3.101)
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where γ is the polytropic index, a∞ is the velocity of sound in the undisturbed gas and M
is the Mach number.

3.2.2 ODE’s reduction via Galerkin Method and Solution of Airy’s Equa-
tion

Let us assume that the space-continuum displacement can be expressed as

w(x, y, t) =
NM∑
i,j=1

qj(t)ψj(x, y) (3.102)

where it is assumed that the response can be represented by the linear combination of NM

independent and orthogonal functions {ψj}NM1 verifying the boundary condition given by
Eq. 3.94-3.95. By Equation 3.89 one can observe that the spatial operator ∇2∇2, together
with the given spatial boundary condition, is self adjoint and positive. This means that its
eigenfunctions (in the simply supported case here considered ψm,n(x, y) = sin nπx

a sin mπy
b )

describe a system of independent and orthogonal functional basis verifying Eq. 3.94-3.95
and we can use such a functional system as a basis to represent the problem.
Let us consider the dynamic deflection in the form of only two terms of the cited basis:

w(x, y, t) = q1(t) sin πx
a

sin πy
b

+ q2(t) sin 2πx
a

sin πy
b

(3.103)

Substituting Expression 3.103 in Eq. 3.90 and remembering Eq. 3.97 one has (see Ref. [6]):

φ1(x, y, t) = Ehϕ2

4

[
−q1q2 cos πx

a
+ q21

8
cos 2πx

a
+ q1q2

9
cos 3πx

a
+ q22

32
cos 4πx

a
+

9q1q2
(1 + 4ϕ2)2

cos πx
a

cos 2πy
b
− q1q2

(9 + 4ϕ2)2
cos 3πx

a
cos 2πy

b
+ q21 + 4q22

8ϕ4 cos 2πy
b

]
(3.104)

where ϕ = a/b. The solution for the Airy’s function is:

φ(x, y, t) = φ1(x, y, t)−
1
2
(Nxy

2 +Nyx
2) (3.105)

Writing Equation 3.89 in the shortened form Γ[w; f ] = 0, we make the requirement that it
is satisfied approximately in the sense of Galerkin’s method in the subspace spanned by the
eigenfunctions {ψj}NM1 :∫ a

0

∫ b

0
Γ[w; f ]ψjdxdy = 0 j = 1, ..., NM (3.106)

Assuming a 2-mode approximation for the vertical displacement, as given by Eq. 3.103, and
for the external load f(x, y, t) = f1

√
4
ab cos Ω1t sin πx

a sin πy
b + f2

√
4
ab cos Ω2t sin 2πx

a sin πy
b ,
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one obtains after a Galerikin projection on the basis {ψj}21:

ẍ1 + gẋ1 + ω2
1x1 +K

[
−2

3
νx2 + 2

9
ν2(γ + 1)x2

1 + 56
45
ν2(γ + 1)x2

1+

+ν3x2(b11x2
1 + b12x

2
2)
]
+ Sx1(c11x

2
1 + c12x

2
2) = f1 cos Ω2t (3.107)

ẍ2 + gẋ2 + ω2
2x2 +K

[2
3
νx1 + 16

45
ν2(γ + 1)x1x2 + ν3x1(b21x

2
1 + b22x

2
2)
]

+

+Sx2(c21x2
1 + c22x

2
2) = f2 cos Ω2t (3.108)

If both sides of the panel are exposed to the flow, the second order terms can be disregarded
(Ref. [6]). Moreover, in general, it is to be expected that the effect of second-order terms
will be small compared with the effect of third-order terms (see Ref. [6, 76]). Equations
3.107-3.108 become:

ẍ1 + gẋ1 + ω2
1x1 +K

[
−2

3
νx2+

+ν3x2(b11x2
1 + b12x

2
2)
]
+ Sx1(c11x

2
1 + c12x

2
2) = f1 cos Ω2t (3.109)

ẍ2 + gẋ2 + ω2
2x2 +K

[2
3
νx1 + ν3x1(b21x

2
1 + b22x

2
2)
]

+

+Sx2(c21x2
1 + c22x

2
2) = f2 cos Ω2t (3.110)

where the equations coefficients are found in Ref. [6, 77]. Moreover,

x1 = q1
h

x2 = q2
h

Ω0 = π2

a2

√
D

ρh
t = τ

Ω0

ωj = Ωj

Ω0
g = 1

Ω0

(
δ + γp∞

ρha∞

)
ν = M

h

a

K = 4γp∞
ρh2Ω2

0
S = π4Eh2

16ρa4Ω2
0

= 3
4
(1− ν̄) (3.111)

with ν̄ the Poisson’s coefficient and

ω2
1 =

[
(1 + ϕ2)2 − a2

π2D
(Nx + ϕ2Ny)

]
(3.112)

ω2
2 =

[
(4 + ϕ2)2 − a2

π2D
(4Nx + ϕ2Ny)

]
(3.113)

The system given by Eqs. 3.109-3.110 can be rewritten as

x = {x1, x2}T (3.114)

ẍ + Cẋ + (K + Aaero)x + f̂nl(x) = f̂ (3.115)
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where

C =

 g 0
0 g

 (3.116)

K =

 ω2
1 0
0 ω2

2

 (3.117)

Aaero =

 0 −2
3νK

2
3νK 0

 (3.118)

f̂nl(x) =

 ν3K(b11x2x
2
1 + b12x

2
3) + S(c11x

3
1 + c12x1x

2
2)

ν3K(b21x3
1 + b22x1x

2
2) + S(c21x2x

2
1 + c22x

3
2)

 (3.119)

f̂(x) =

 f1 cos Ω1t

f2 cos Ω2t

 (3.120)

Finally, a phase-space form is obtained:

y = {x1, x2, ẋ1, ẋ2}T

ẏ = Ay + fnl(y) + f (3.121)

with

A =

 O I
−C −(K + Aaero)

 (3.122)

fnl =


0
0
f̂nl

 (3.123)

f̄ =


0
0
f̂

 (3.124)

with O is the 2× 2 zero matrix.

3.2.3 Perturbative approach and stability scenarios

The presented equations represent a family of systems depending on the parameters ν and
the axial loads Nx and Ny. The considered system can experience both static and dynamic
bifurcation of the equilibrium solution. This means, that the trivial solution y = 0 become
unstable and a new stable solution arises: a new fixed point (buckling) or an harmonic
oscillation (flutter), see Ref. [6]. The buckling loads are all the combinations of Nx and Ny

such that the right hand sides of Eqs. 3.112-3.113 are negative (independent on the value of
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ν) whereas the critical value to observe the flutter is (under the hypothesis of small structural
damping) ν∗ = 3

4K (ω2
2 − ω2

1) (see Ref. [6]).
Before starting a perturbative analysis, it is necessary to order the system’s terms through

a perturbation parameter linked to the physical parameter governing the bifurcation process.
In the present problem one has two possibilities: the axial load (driving the static bifurca-
tion) and the "geometrically scaled" Mach number ν = M h

a driving the dynamical (namely,
Hopf-type) bifurcation. Let us consider the panel system in the form given by Eqs. 3.121.
Expressing the general parameter governing the bifurcation process as µ = µ0 + εµ1 + o(ε)
with ε � 1 and µ0 the critical value of the governing parameter, the state matrix can be
written as:

A = A0 + εA1 + o(ε) (3.125)

Moreover the nonlinear term, here expressed in a general form with coefficient depending on
µ, can be written as:

fi(µ) =
N∑

p,q,r=1
γipqr(µ)qpqqqr =

N∑
p,q,r=1

γipqr(µ0)qpqqqr + o(ε) (3.126)

Now, one has to consider the forcing load. In this work we assume to be in presence of weak
forcing load interacting at the same order of the nonlinear terms:

f̄ = ε3/2f (3.127)

Finally, scaling the response as q =
√
εq̄ one obtains the following form

q̄ = A0q̄ + ε[A1 + f(µ0) + f̄] (3.128)

which is equivalent to the system given by Eq. 2.14 up to a linear transformation,i.e.,
expressing the problem on the eigenbasis of A0.

Static bifurcation with forcing load

Let us assume the PDE model given by Eqs. 3.89-3.90 is experiencing a static,i.e., pitchfork-
type, bifurcation. Let us study the structural dynamics disregarding the aerodynamic terms,
ν = 0, so to obtain, after the Galerikin procedure presented in Sec. 3.2.2, the following form
for the two-mode panel system

ẍ1 + gẋ1 + ω2
1x1 + Sx1(c11x2

1 + c12x
2
2) = f1 cos Ω1t (3.129)

ẍ2 + gẋ2 + ω2
2x2 + Sx2(c21x2

1 + c22x
2
2) = f2 cos Ω2t (3.130)
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where, assuming Ny = 0, one has:

ω2
1 = (1 + ϕ2)2 − N̄x (3.131)

ω2
2 = (4 + ϕ2)2 − 4N̄x (3.132)

being N̄x = a2

π2DNx the dimensionless axial load. The buckling load Nxcr is such that either
ω1 or ω2 in Eqs. 3.131-3.132 is zero. For the sake of simplicity, we can assume that the
first mode will be the buckling one: Nxcr = (1 + ϕ2)2. This is true if ϕ <

√
2. Equations

3.129-3.130 can be rewritten in the first order form

ẋi = vi (3.133)

ẋi = −gvi − ω2
i xi − Sxi

2∑
i=1

(
cipx

2
p

)2
+ (3.134)

+ fi
2

(qi+1 + qi+2)

q̇i+1 = jΩqi+1 (3.135)

q̇i+2 = jΩqi+2 (3.136)

i = 1, 2

assuming that ω2
i = ω0

2
i + εβi with ω0

2
i the i-th mode frequency for a reference value of

the axial load N̄x, βi = ∂ω2
i

∂N̄x
|N̄x=N̄xcr and imposing that xi =

√
εzi with ε a small artificial

parameter, Eqs 3.129-3.130 become:

żi = zi+1 (3.137)

żi+1 = −gzi − ω0
2
i zi + ε[βizi − Szi

2∑
p=1

cipz
2
p +

+ fi
2

(qi+2 + qi+3)] (3.138)

q̇i+2 = jΩqi+2 (3.139)

q̇i+3 = −jΩqi+3 (3.140)

(3.141)

where i = 1, 2 and the harmonic forcing loads are written via Eulero’s formulae. Since system
3.129-3.130 is equivalent to the one considered in Sec. 3.1.5, it will be studied with the same
approach. Using the eigenvectors-based transformations:

zi = ξi + ξ̄i (3.142)

zi+1 = λiξi + λ̄iξ̄i (3.143)

and remembering that the resonance conditions are:

λ1 + λ1 = 0 (3.144)

λj + λ1 + λ1 − λj = 0 (3.145)
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one obtains, by applying the Normal Form Transformation, the dominant nonlinear dynam-
ics:

η̇1 = ε

g

(
βη1 − Sc11η3

1

)
(3.146)

q̇i+2 = jΩiqi+2 (3.147)

q̇i+3 = jΩiqi+3 (3.148)

(3.149)

where β = −β1 = 1 and i = 1, 2. Finally, the solution of the problem is

z1 =
√
ε

√
1

Sc11
− ε f1

g

√
ε

( 1
Ω1

cos (Ω1t− π/2)

− Ω1
Ω2

1 + g2 cos (Ω1t− π/2)− δ

Ω2
1 + g2 cos (Ωt)

)
(3.150)

z2 = −ε
√
ε
f2
ω2

(
Ω2

(Ω2 − ω2)2 + λ2
R2

cos(Ω2 t)+

+ |λ2|
(Ω2 − ω2)2 + λ2

R2

sin(Ω2 t− ∠λ2)
)

(3.151)

where ∠λ2 indicates the phase of the complex number λ2. By Equations 3.150-3.151 one
can observe that, under the assumed hypothesis on the order of interaction between the
equation’s terms, the motions are harmonic oscillations around a fixed point

√
ε
√

1
Sc11

with
the same frequencies of the forcing loads. This oscillation is characterized by a finite number
of frequencies Ω1, Ω2. Note that in the explained case, resonance is not considered. If a
resonance is present this means that one has to consider the forcing load in the equations
of normal forms. The motion along the stable modes zi(t) must be small and of order ε3/2.
Equation 3.151 shows that the response is small if and only if the following relation is true:

ε f1
gΩ1

= O(ε) (3.152)

Equation 3.152 shows that the asymptotic behavior of the solution described by Eqs. 3.150-
3.151 is guaranteed if and only if a sufficiently high damping and a sufficiently high load
frequency are present. This means that the radios of convergence of our approximated
solution to the real one depends, for a fixed Ω1, on ε/g that must satisfy the usual condition:
ε/g � 1. Moreover, one can note that |λi + λi+1| = g, i = 1, 2. This means that our
Normal Forms assumptions require that the damping g is sufficiently high. If the damping
is small i.e., g = o(ε), the Eqs. 3.150-3.151 are no longer valid. According to the previous
observations, the damping is directly related to the presence of a small divisors and to the
asymptoticity of the obtained solution. Finally, it is relevant to observe that our result are
equivalent to those presented in Ref. [78].
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In the presence of a primary resonance (this implies a quasi-steady load with Ω1 = o(ε))),
the dominant dynamics equation is:

η̇1 = ε

g

(
βη1 + f1 cos Ω1t− Sc11η3

1

)
(3.153)

where the forcing load is written explicitly. The solution of the whole problem is:

z1(t) =
√
εη1(t) + ε

√
ε

(
− β
g2 η1(t) + Sc11

g2 η3
1(t)−

Ω1
g

f1
Ω2

1 + g2 cos(Ω1t− π/2)+

− f1
Ω2

1 + g2 cos(Ω1t)
)

(3.154)

whereas the expression for z2(t) is the same as in Eq. 3.151. Observing the results given
by Eq. 3.154, one can find that the damping is the main factor governing the nonlinear
dynamics of the system. It is interesting to analyze the structure of the obtained solution.
For the chosen interaction of the dynamical terms the studied system has the form of a linear
system perturbed by linear and nonlinear terms. In particular, in the linear perturbation,
by the chosen order of the forcing load, there are also the forcing terms. This means that
the forcing load does not influence the static part of the response, which is the same of the
unperturbed case, but only the oscillations about it. Of course, increasing the perturbation
(which means also to increase the load order), the stated hypotheses are no longer true.
On the other hand, a quasi-steady load requires one to consider the load effect in the main
equation of normal form influencing directly the response in a nonlinear way.

Let us consider some numerical applications and assume the following parameters:

ϕ = 0.3 S = 0.68 Nx = 1.3

In Figures 3.16-3.17 the comparison between the numerical solution and the perturbed so-
lution is given for ε = Nx −Nxcr = 0.11. The results shown a good qualitative agreement
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Figure 3.16: z1(t) Perturbed vs Numerical solution, g = 1 Ω1 = 1, Ω2 = 2, f1 = f2 = 1
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Figure 3.17: z2(t) Perturbed vs Numerical solution, g = 1 Ω1 = 1, Ω2 = 2, f1 = f2 = 1

between the perturbed solution and the numerical one. Moreover, the structure of the solu-
tion is the one predicted analytically showing a harmonic oscillation at frequencies Ω1 = 1
and Ω2 = 2 about a fixed point laying along the buckled mode. A small damping case2 is
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Figure 3.18: z1(t) Perturbed vs Numerical solution, g = 0.01 Ω1 = 1, f1 = 1 f2 = 0

considered in Fig. 3.18 where it is shown how the presence of a small damping influence
negatively the asimptoticity of the solution for a fixed ε. The effect of the load amplitude
is shown in Fig. 3.19, where the main error is on the static part of the response implying
that it depends not only on the system parameters (axial load and nonlinear properties) but
also on the forcing load amplitude. The presence of a quasi-static forcing load is presented
in Fig. 3.20.

2For the sake of brevity only the motion along the critical mode has been shown.
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Figure 3.19: z1(t) Perturbed vs Numerical solution, g = 1 Ω1 = 1, f1 = 100 f2 = 0
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Figure 3.20: z1(t) Perturbed vs Numerical solution, g = 1 Ω1 = 0.01, Ω2 = 2, f1 = 1, f2 = 1
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Figure 3.21: z2(t) Perturbed vs Numerical solution, g = 1 Ω1 = 0.01, Ω2 = 2, f1 = 1, f2 = 1
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Hopf bifurcation with forcing load

In presence of aerodynamical load,i.e., ν 6= 0, the unforced system can experience a Hopf-
type bifurcation for ν = ν∗. This means that the linearized system has two purely complex
eigenvalues for ν = ν∗ and positive real part for ν > ν∗ . Let us consider Eqs. 3.121 with
the transformation

y = Uq (3.155)

where the columns of U are the eigenvectors of A0

A0U = UΛ0 (3.156)

and Λ0 a diagonal matrix with the eigenvalues of A0 as diagonal entries. For the sake of
simplicity consider forcing load of the following form:

f = {0, 0, f1 cos Ω1t, 0}T (3.157)

The zero-divisors conditions associated with the studied bifurcation are:

λi − λi = 0 (3.158)

λ1 + λ2 + λj − λj = 0 (3.159)

The conditions given by Eqs. 3.158-3.159 are the same that characterized an unforced system
experiencing a Hopf-bifurcation (see Ref. [16]). The normal form equation is:

η̇1 = jω1η1 + ε[α11η1 + (γ1121 + γ1211 + γ1112)η2
1η2] = β(1)η1 + γ(1)η2

1 η̄1 (3.160)

η̇2 = ¯̇η1 (3.161)

with

αij =
4∑

s,p=1
U−1
is A1spUpj (3.162)

γislm =
4∑

n,p,q,r=1
U−1
jn cnpqrUpsUqlUrm (3.163)

where ε = ν − ν∗, β = −jω1 − εα11 = βR + jβI , γ = −ε(γ1121 + γ1211 + γ1112) = γR + jγI .
Equation 3.160 can be rewritten as

η̇1 + β(1)η1 + γ(1)η2
1 η̄1 = 0 (3.164)

Finally, the stationary solution, on the modal basis, is:

y =
√
ε
(
a1e

φ(t)u(1) + C.C.
)

+ o(ε1/2) (3.165)
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where

a1(t→ +∞) =

√√√√−β(1)
R

γ
(1)
R

(3.166)

φ(t→ +∞) = t

(
−β(1)

I + γ
(1)
I β

(1)
R

γ
(1)
R

)
+ γ

(1)
I

γ
(1)
R

ln(a1) + φ0 (3.167)

With respect to Sec. 3.2.3 the solution is presented up to order
√
ε. Indeed, in the static

bifurcation it is necessary to study the motion to build the solution up to order ε3/2.
In presence of an external resonance Ω1 = ω1 the resonance condition

λ1 − jΩ1 = 0 (3.168)

appears. This implies that the forcing load directly influences the normal form equation:

η̇1 + β(1)η1 + γ(1)η2
1 η̄1 = ε

f1
2
θejΩ1t (3.169)

where θ is the load component along the critical eigenvector. Equation 3.169 suggests that
the motion will be influenced by the external load also at the

√
ε order:

y(t) =
√
εη1(t)u(1) + CC + o(ε3/2) (3.170)

The results in Eqs. 3.166-3.167 and 3.170 show some interesting features of the behavior of
the system under our hypotheses. Indeed, except for the resonant case, it appears that the
forcing load is not necessary to represent correctly the dynamics. In particular, this means
that in the observed phenomenon, the essential features are from the internal dynamics of
the system: the forcing load is a nonessential term that can be disregarded in the first order
analysis.

Let us consider some numerical experiments with fixed parameters:

ϕ = 0.30, S = 0.68, K = 100.50, g = 0.10, Nx = 1.00 (3.171)

The critical value of the parameter ν associated to the parameters given by Eq. 3.171 is
ν∗ ∼= 0.09 and the critical frequency is ω1 = 2.54. In Figure 3.22, the comparison between
numerical and perturbed solution is shown. In particular, it is possible to observe the
presence of a phase shift between the exact and approximate solution. The effect of a
1 : 1 resonance is analyzed in Fig. 3.24 where one can observe that the main error of
the perturbed solutions is a phase shift with respect to the numerical one. The perturbed
solution given by Eq. 3.164 and the one given by Eq. 3.169, which consider the presence of
the forcing load, are similar and this is due to the presence of the weight θ of the forcing
load which is small in modulus. Indeed, increasing the load, i.e., f1, one can observe that
the solution given by Eq. 3.169 gives a better approximation of the numerical solution (for
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Figure 3.22: z1(t) Perturbed vs Numerical solution, ε = 0.01, Ω1 = 1, f1 = 1
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Figure 3.23: z2(t) Perturbed vs Numerical solution, ε = 0.01, Ω1 = 1, f1 = 1
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Figure 3.24: z1(t) Perturbed vs Numerical solution, ε = 0.01, Ω1 = 2.54, f1 = 1
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Figure 3.25: z2(t) Perturbed vs Numerical solution, ε = 0.01, Ω1 = 2.54, f1 = 1
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Figure 3.26: z1(t) Perturbed vs Numerical solution, ε = 0.01, Ω1 = 2.54, f1 = 100
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Figure 3.27: z2(t) Perturbed vs Numerical solution, ε = 0.01, Ω1 = 2.54, f1 = 1



3. Longterm Dynamical Analysis via Normal Form 68

7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000

−0.4

−0.2

0

0.2

0.4

0.6

t

z 1(t
)

Forced Solution
Unforced Solution

Figure 3.28: z1(t) Forced vs Unforced solution, ε = 0.01

the same perturbation parameter), see Fig. 3.26. Finally, in Figure 3.28 the motion along
the critical mode is compared to the numerical forced solution and the numerical unforced
solution. As emphasized above, one cane observe that, except for a phase shift, the two
solutions are similar stressing the fact that the response depends mainly on the intrinsic
nature of the system. Observe that this results is valid also in the presence of an external
resonance, if the load is small with respect to the assumed order interaction.

3.2.4 Concluding Remarks

The problem of a flat panel subjected to a biaxial compressive load and to a supersonic flow
together with a transversal harmonic load has been investigated. Thus, both structural and
aerodynamic non linear effects are included in the aeroelastic model. In particular, the effects
of some physical parameters have been studied in order to investigate how they relate with
the small and zero divisors. The zero/small divisors concepts are related to the Normal Form
reduction method,i.e., to the possibility of simplification of the original problem to a more
simple one with a small number of nonlinear terms. The presence of a static bifurcation, the
role of the damping has been outlined as a small-divisor, because the resonance conditions
depend on it. Moreover, the role of the load frequency as small divisor has been stressed
in the example of quasi-steady loads. Considering a dynamical bifurcation, i.e., Hopf-type,
the role of the structural modal damping is less important because of the presence of the
aerodynamic which contributes also with a damping term. Indeed, not considering the case
with a resonant external load, the only important (zero) divisors are the one associated with
the presence of a purely imaginary pair: the normal form analysis of such a system is the
same as the one performed for an unforced case. Moreover, the forcing load is weighted
with a small parameter representing the projection of the load on the critical eigenvector:
in the presence of a 1 : 1 external resonance the results are similar to the ones without
resonance. The analysis described above has shown that in presence of a weakly loaded
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dynamical system the dynamics of the problem (near a bifurcation point) is driven by the
parameters characterizing the system and not by the load.

It is interesting to analyze the reasons that lead to the present results. The starting point
is the nature of the ordering of the terms in the perturbation parameter. In particular, the
system has been written as a linear part (with at least one eigenvalue with zero-real part) and
a perturbation made of linear and nonlinear terms. Writing the external load via the Euler’s
formulae and assuming its amplitude of order ε3/2 gives the problem the expression shown
in Eq. 2.14, where in the dynamical equations the load appears as a linear perturbation
of the linear part and the spatial form is described by two autonomous equations (see Eqs.
3.139-3.140 for example). The obtained geometry of the system in the state-space implies
that the "physical dynamics" is orthogonal to the ”load space”,i.e., they are related only by
higher order terms in the perturbation parameters. Then the eigengeometry of the physical
problem is not influenced by the external load. Consequently, to first order, the asymptotic
solution is not influenced by the presence of the external load and it is the same as that
the unforced problem. Otherwise, the load can influence the solution via the presence of
small or zero divisors. Note that there is not a geometrical coupling in this case and the
presence of the load in the Normal Form equations is only necessary in order to guarantee
the ”asymptotic” nature of the solution series.

3.3 Final remarks about the longterm dynamics analysis via
Normal Form Method

The Normal Form reduces a nonlinear problem to a form which is as close as possible to
that of a linear problem (linearized Hartman form), by identifying a diffeomorphism that
eliminates the non essential nonlinearities. The essential problem is defined by the resonance
conditions, whose depend on the problem, i.e., of the observed bifurcation, and on the
parameters appearing in the equations that can be related to physical entity present in the
physical model. This means, that it gives information on what it is important to consider
in a fixed bifurcation phenomenon, which is represented in a general form by its associated
normal form and which is linked with the representation of the physical problem. Roughly
speaking, the obtained results permit one to identify which physical parameters of the system
are important to evaluate in order to obtain a correct assessment of the behavior of the
physical problem characterized by Pitchfork and Hopf types bifurcation. In particular, in
the presence of Limit Cycle Oscillations (namely, Hopf bifurcations), it has been shown that
it is important to evaluate the flow state and the aerodynamic and structural properties
more than the external load, whereas in presence of buckling (namely, pitchfork bifurcation)
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the new equilibrium position will depend only on the structural properties and the axial
buckling load, while the vertical harmonic load will influence only the motion about such a
position,i.e., displacement amplitude and frequency.
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Proper Orthogonal Decomposition
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Chapter 4

Proper Orthogonal Decomposition
analysis of dynamics

The Proper Orthogonal Decomposition (POD), also known as Karhunen-Loève Decomposi-
tion (KLD), is a method for finding a basis that is able to represent the maximum energy
content (or generally, the norm of the signal associated to the process) in an observed dy-
namical process represented, for instance, by a system of ordinary differential equations. In
signal-processing literature the method was originally presented by Hotelling (Ref. [79]) as
Principal Component Analysis (PCA) and the theory was further developed Kosambi (1943),
Loève (1945), Karhunen (1946). The appealing property of POD consists of its optimality
with respect to the energy distribution in the state-space. It is shown that, for a given
N -dimensional process, the projection of the dynamics on the first Q elements of the POD
basis extracts, on average, more energy than a projection on the first Q elements of any other
orthonormal basis (Ref. [36]). This method was applied by Lumley (Ref. [80]) in 1967 to
identify coherent structures in turbulent flows and has become a standard tool in turbulence
studies. In the last ten years, POD is emerging as an experimental and analytical tech-
nique also in structural dynamics and vibrations where it can be used as a powerful tool for
modal identification (see Refs. [40, 38]). In particular, it is demonstrated that for undamped
structural systems, the Proper Orthogonal Modes (POMs) are equivalent to linear normal
modes and this equivalence can be practically extended in weakly damped cases as well. If,
as in aeroelasticity, the modal basis (namely, the system invariant subspaces) is generally
complex and orthogonality does not apply, it is necessary a different approach to relate the
dynamical invariant objects, in order to extend the relationship between invariant subspace
(modal basis) and POD.

72
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4.1 General issues on POD analysis

Let us consider an N dimensional state-space with a generic process t 7→ v(t). The Proper
Orthogonal Decomposition (POD) defines in such a space a set of Q ≤ N vectors {pi}, i =
1, ..., Q which determine an optimal basis for the linear representation of the process v :
R+ 7→ RN

v(t) =
Q∑
i=1

ζ(t)pi (4.1)

where the ζ : R+ 7→ R are the dynamic components of the process referred to the POD basis.
The optimality is defined by searching the unknown direction p such that the projection of
v(t) on p be maximum in average on the time interval Ī = [0, T ], T ∈ R+. Thus, imposing
as constraint that the vector p has a unit magnitude, one has the constrained maximum
problem

lim
T→∞

1
T

∫ T

0
[v(t) · p]2 dt − σ (p · p− 1) = max

p∈RN
(4.2)

with

p · p = 1 (4.3)

The steady condition for this quadratic form yields (for all r and considering the Einstein
convention):

0 = ∂

∂pr

[
lim
T→∞

1
T

∫ T

0
[vi(t)pi]2 dt − σpipi

]
(4.4)

Developing Eq. 4.4, one obtains

lim
T→∞

1
T

∫ T

0
vr(t)vi(t)dt pi = σpr (4.5)

or

R p = σp (4.6)

where

R := lim
T→∞

1
T

∫ T

0
v(t)⊗ v(t)dt (4.7)

is the correlation matrix associated to the process v(t).
Equation 4.6 states that the POD-basis vectors pi are the eigenvectors associated with the
matrix R, whereas the eigenvalues σi represent the energy associated to with projection of



4. Proper Orthogonal Decomposition analysis of dynamics 74

the process v along the direction pi.
Let us consider the generic quadratic form associated to R, i.e., ∀ x ∈ RN :

r2(x) := x · R · x = x · lim
T→∞

1
T

∫ T

0
v(t)⊗ v(t) dt · x =

= lim
T→∞

1
T

∫ T

0
x · v(t)⊗ v(t) · x dt =

= lim
T→∞

1
T

∫ T

0
[v(t) · x] [v(t) · x] dt =

= lim
T→∞

1
T

∫ T

0
[v(t) · x]2 dt > 0

(4.8)

From Equations 4.8 the positiveness of matrix R can be stated. Then, R is symmetric (by
definition) and positive definite, this resulting in real-valued and positive eigenvalues (Proper
Orthogonal Values) and real and orthogonal eigenvectors (Proper Orthogonal Modes).

4.2 Outline of the present POD application

Some remarks about the intermediate steps to carry out the outlined analysis can be further
defined at this point. Typically, the state-space vector time-history v(t) is provided by
simulations or by experimental data in POD applications. In the present case, however, it
is interesting to evaluate the correlation matrix R using analytical solutions that express
(linear case) or approximate (nonlinear case) the system evolution in the state-space. Since
these solutions are herein both expressed as a linear combination of basis vectors with time
dependent coefficients1, i.e.,

v(t) = a1(t) e1 + a2(t) e2 + . . . (4.9)

it will be shown that the correlation matrix R can be then defined in terms of these basis
vectors as well (the integral operator will obviously cancel out the time dependency), leading,
under suitable hypothesis, to the general expression

R =
M∑
m=1

c2m em ⊗ em (4.10)

The above relationship, further specified for the linear case (see Eqs. 4.16 and 4.18) and for
the nonlinear case (see Eq. 4.67), will be used to determine analytically the eigenvalues and
eigenvectors of R, thus obtaining

Rei = σei, (4.11)
1If this statement is trivial for linear systems, the nature of the chosen approximation for nonlinear systems

is similar if perturbation methods are employed.
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that indicates that the basis vector ei is an eigenvector of R, whilst σ is its associated
eigenvalue. Therefore, recalling Eq. 4.6, the basis vectors ei and the scalars σi claim to be
the proper orthogonal modes and the proper orthogonal values of the considered process,
respectively. Thus, a relationship (namely, an equivalence) between vector basis ei and
proper orthogonal modes pi will be established. However, the outlined scheme ceases to
appear straightforward as soon as periodic solutions are considered that, indeed, constitute
the true by interesting case (the energy content of the signal per unit time is constant). In
this case, as a result of imaginary poles (linear case) or limit cycles (nonlinear case), Eq. 4.9
becomes

v(t) = a1(t) w1 + a∗1(t) w1∗ + . . . (4.12)

where the vector w∗1 is the complex conjugate of the vector w1 (the same applies for the
scalars a1(t) and a∗1(t)). Equation 4.12 rises the (crucial) issue relative to the fact that the
proper orthogonal modes pi are real by definition, whereas the basis vectors of the periodic
solutions, i.e., the pair (wi,wi∗) are complex conjugate, motivating a key contribution to un-
tangle this conflicting aspect. For this reason, in Section 4.3 the basis (w,w∗) of the subspace
where the periodic solution is embedded (for sake of clarity, the case of one couple of complex
conjugated is here referred) will be first arranged to form a real basis (wR,wI) spanning a
real plane in the state-space. This basis, unfortunately, does not meet the additional require-
ment to be orthogonal, as prescribed by the POD analysis. This critical issue will be then
considered in Section 4.3 as well, where a method to perform the orthogonalization, based
on the contemporary rotation of both wR and wI , will provide a pair of orthogonal basis
vector (wR⊥ ,wI⊥). As it will be clearer in the following sections, this real and orthogonal
pair of vectors will provide the sought after result, that is, to unveil the origin of the proper
orthogonal modes of the system process. This correspondence, in particular for a nonlinear
system experiencing a Hopf bifurcation, constitutes the premise for the identification of the
relevant and interacting modes.

4.3 POD analysis for marginally stable linear systems

Let us consider the process v(t) as a vector of the state-space of a N−dimensional unforced
linear dynamical system described by the real matrix A v̇ = A v

v(0) = v0
(4.13)

A standard eigenproblem can be associated to the matrix A

Aw = λw (4.14)
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Note that in many physical problems like, for example, linear vibrations, the eigenvalues are
typically complex conjugate, namely, they present pairs of complex conjugated eigenvalues
and eigenvectors.
In the next Section, in order to clarify the nature of POMs, the relationship between the
complex (conjugate) eigenvectors w and the associated eigenspaces in the state space will
be investigated. In Section 4.3.1 the role of such a subspace in the description of the free
response will be clarified. Finally in Section 4.3.2 the relation of this subspace with POMs
is shown.

4.3.1 Free response and eigenspaces

The solution of Eq. 4.13 is generally given by

v(t) =
N∑
n=1

cnwneλnt = 2
N/2∑
n=1

Re
(
cnwneλnt

)
(4.15)

with cn suitable complex constants determined by the initial conditions.
Note that N/2 is the number of the subspaces Wn, each one associated to the complex
eigenvalues pairs. Note also that, since the initial conditions are prescribed, new complex
eigenvectors w̃n := cnwn can be defined (see Sec. 1.3). Thus, Eq. 4.15 becomes

v(t) = 2
N/2∑
n=1

eλRt (cos(λIt)w̃nR − sin(λIt)w̃nI ) (4.16)

that shows how the free response in the state space is obtained as a direct sum of N/2
distinct contributions belonging to different Wn invariant subspaces.

4.3.2 Systems with M ≤ N purely imaginary eigenvalues and N−M eigen-
values with negative real part

If there are onlyM purely imaginary eigenvalue the Eq. 4.16, disregarding the contributions
of the damped modes, yields

v(t) ' 2
M/2∑
n=1

(cos(λIt)w̃nR − sin(λIt)w̃nI ) (4.17)

Thus, considering the definition of the correlation matrix given by Eq. 4.7, one obtains

R = lim
T→∞

4
T

M/2∑
m,n=1

∫ T

0
Re
(
cmwmejωmt

)
⊗Re

(
cnwnejωnt

)
dt (4.18)

Developing Eq. 4.18, yields

R =
M/2∑
m=1

2 |cm|2 [wmR ⊗ wmR + wmI ⊗ wmI ] (4.19)
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Equation 4.19 implies that the rank of the obtained correlation matrix is equal to M if
(and only if) all the coefficients cm 6= 0, i.e., all the M undamped marginal eigenvectors
are excited by the given initial condition. This means that the space spanned by the POD
basis has a dimension which is equal or less (if some cn are equal to zero) to the dimension
of the space spanned by the linear undamped marginal eigenvectors, belonging to the M/2
subspaces Wn defined in the Sec. 1.3.

A special case: M = N purely imaginary eigenvalues in conservative systems

Let us consider a system of N/2 coupled free undamped oscillators, governed by the second
order ordinary differential equation

Iq̈ + Kq = 0 (4.20)

with K semi-definite positive2 . The associated generalized eigenproblem(
K− ω2I

)
z = 0 (4.23)

gives N/2 real and non-negative eigenvalues ω2
n and N/2 corresponding real and orthogonal

eigenvectors zn such that, once suitable normalized, satisfy the relation

zm · zn = δmn. (4.24)

If Equation 4.20 is rewritten in a first order form, the state-space vector and the matrix of
coefficients of Eq. 4.13 assume the following form

v(t) =

 q(t)
q̇(t)

 and A =

 0 I
−K 0

 (4.25)

Therefore, the standard eigenproblem given by Eq. 4.14 yields

λn1,2 = ±jωn (4.26)

wn1,2 =

 zn

±jωnzn

 =

 zn

0

± j
 0
ωnzn

 =: wnR ± jwnI (4.27)

2Note that if the mass matrix M is not equal to the identity one can use a suitable definition of state
variables such as in this new state-space the system is in the form of Eq. 4.20. Let us consider a generic
mechanical system of the form

M¨̂q + K̂q̂ = 0 (4.21)

with M symmetric and definite positive and K̂ symmetric and non negative. Because the mass matrix M̂ is
definite-positive, it is possible to define a new set of state variables q such that q̂ = M−1/2q. Substituting
this new position in Eq. 4.21 one obtains a system of the form 4.20

Iq̈ + Kq = 0 (4.22)

where K = M1/2K̂M−1/2 is still symmetric and non-negative.
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This demonstrates that (see Eqs. 4.24 and 4.27):

• any wnR is orthogonal to the corresponding wnI , implying that wnR = wnR⊥ and wnI = wnI⊥
(see Fig. 1.1);

• any wnR⊥ and wnI⊥ are orthogonal to any wmR⊥ and wmI⊥ if n 6= m (see Eq. 4.24).

This implies that any subspace (plane) Wn defined by the basis (wnR,wnI ) is orthogonal to
any other one for n = 1, ..., N/2. As a consequence, using Eq. 4.19, one has

R wnR⊥ =
M/2∑
m=1

2 |cm|2
[
wmR⊥ ⊗ wmR⊥ + wmI⊥ ⊗ wmI⊥

]
wnR⊥ = 2 |cn|2 ‖wnR⊥‖wnR⊥ (4.28)

and also

R wnI⊥ =
M/2∑
m=1

2 |cm|2
[
wmR⊥ ⊗ wmR⊥ + wmI⊥ ⊗ wmI⊥

]
wnI⊥ = 2 |cn|2 ‖wnI⊥‖wnI⊥ . (4.29)

The above relations allow to state that

• the POMs pn ( see Eq. 4.6) are coincident with the modal eigenvectors wnR⊥ and wnI⊥ ;

• the POVs σn (see Eq. 4.6) are related to the energy associated to the oscillations, as
shown by the following equations,

σ2n−1 = 2|cn|2 ‖wnR⊥‖
2 (4.30)

σ2n = 2|cn|2 ‖wnI⊥‖
2 for n = 1, 2, ..., N/2 (4.31)

where the dependence on the imposed initial conditions is contained in the coefficients |cn|2.
The above results are equivalent to those obtained in Ref. [38] for systems of the form given
by Eq. 4.20 and represents a generalization of them for systems written in the phase space.

A special case: M = 2 < N purely imaginary eigenvalues and N − 2 eigenvalues
with negative real part

If the system has only a pair of purely imaginary (marginal) conjugate eigenvalues (M = 2),
the R matrix defined in Eq. 4.19 becomes (supposing that the purely complex pair is the
p-th)

R = 2 | cp |2 (wpR ⊗ wpR + wpI ⊗ wpI) (4.32)

where (wpR,w
p
I) is the basis of the subspace Wp associated with the purely imaginary conju-

gate eigenvectors. Considering the results of Sec. 1.3, it is possible to multiply the complex
eigenvectors by the complex constant ejθ̃⊥ given by Eq. 1.30 so that the real and imaginary
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parts becomes mutually orthogonal (see Eq. 1.28 and 1.29). Thus, in the following we as-
sume that wpR ≡ wpR⊥ and wpI ≡ wpI⊥ in the subspace Wp.
Let us consider the following decomposition of the state-space

RN = Wp ⊕Wp⊥ (4.33)

where Wp⊥ represents the orthogonal complement of Wp

Wp⊥ = {u ∈ RN : u · v = 0 ∀ v ∈ Wp}. (4.34)

Thus, remembering that wpR⊥ · w
p
I⊥

, one has

R wpR⊥ = 2 |cp|2
[
wpR⊥ ⊗ wpR⊥ + wpI⊥ ⊗ wpI⊥

]
wpR⊥ = 2 |cp|2 ‖wpR⊥‖wpR⊥ (4.35)

R wpI⊥ = 2 |cp|2
[
wpR⊥ ⊗ wpR⊥ + wpI⊥ ⊗ wpI⊥

]
wpI⊥ = 2 |cp|2 ‖wpI⊥‖wpI⊥ (4.36)

Furthermore, considering N − 2 independent ur ∈ Wp⊥, r = 3, ..., N (see Eq. 4.34), one has

R ur = 2 |cp|2
[
wpR⊥ ⊗ wpR⊥ + wpI⊥ ⊗ wpI⊥

]
ur = 0 (4.37)

The above relations show that

σ1 = 2 |cp|2 ‖wpR⊥‖ (4.38)

σ2 = 2 |cp|2 ‖wpI⊥‖ (4.39)

σr = 0 ∀r = 3, ..., N (4.40)

Therefore, the rank of the correlation matrix is two and the proper orthogonal modes associ-
ated to a non-zero proper orthogonal values (namely, to non-zero energy) coincide with the
only possible orthogonal basis of Wp associated to the critical complex eigenvectors (Eqs.
1.28, 1.29 and 1.30).
This approach is preliminary to the nonlinear analysis of Sec. 4.4, where results provided
by the POD analysis are interpreted with respect to the approximate closed-form solution
provided by a singular perturbation technique, namely Normal Form.

4.3.3 An introductory example on POD analysis for systems experiencing
a bifurcation of equilibrium

To introduce the POD analysis of nonlinear systems, let us consider a simple introductory
example concerning two coupled nonlinear oscillators (Ref. [50]):

ẍ+ x+ ẋ[−µ+ c1(x2 + ẋ2) + c2(y2 + 1
ω2
y

ẏ2)] = 0 (4.41)

ÿ + ω2
yy + ẏ[δ − c3(x2 + ẋ2)] = 0 (4.42)
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Equations 4.41 can be rewritten in a first order form:

ż = Az + fnl(z) (4.43)

where zT = {ẋ ẏ x y } and

A =


µ 0 −1 0
0 −δ 0 −ω2

y

1 0 0 0
0 1 0 0

 (4.44)

fnl(z) =



0
0

ẋ[c1(x2 + ẋ2) + c2(y2 + α2ẏ2)]
−ẏ[c3(x2 + ẋ2)]


(4.45)

The equilibrium solution of such a system is stable untill µ < 0. If µ > 0 a LCO arises. In
particular assuming that

x(t) = X cos(t+ φx), y(t) = Y cos(ωyt+ φy) (4.46)

one obtains the bifurcation equations

X(−µ+ c1X
2 + c2Y

2) = 0 (4.47)

Y (δ − c3X2) = 0 (4.48)

From Equations 4.47 it appears that for µ < 0 the equilibrium solution is possible whereas
for µ > 0 a LCO appears with, assuming Y = 0 (see Ref. [50]), X =

√
µ
c1
. It is clear

that µ = 0 represent a equilibrium bifurcation point for the considered dynamical system.
Computing the correlation matrix R from Eq. 4.7 using Eqs. 4.46 and 4.47 one obtains:

R =


X2/2 0 0 0

0 0 0 0
0 0 X2/2 0
0 0 0 0

 (4.49)

Equation 4.49 shows that only two POVs are different from zero and that they are associated
to the POMs {1, 0, 0, 0} and {0, 0, 1, 0} coinciding with the real and imaginary part of
the critical mode of the state matrix of the linear part of Eq. 4.43. In general, this is true
only after a suitable definition of the critical eigenvector (see Ref. [41]) but the subspace
spanned by the significative POD basis and the real and imaginary part of the critical mode
are the same as it will be shown in the next chapter. Recalling the results of Sec. 1.5.1
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for µ > µc = δc1
c3

a new bifurcation appears and Y is no longer zero. Computing again the
correlation matrix one has:

R =


X2/2 0 0 0

0 Y 2/2 0 0
0 0 X2/2 0
0 0 0 Y 2ω2

y/2

 (4.50)

where it is clear that now all the POMs are associated with non-zero energy. One can
observe that now all the POMs are unique: in the previous example, µ < µc, only the
first two were unique being all others vectors in the orthogonal complement of the subspace
Span{{1, 0, 0, 0}, {0, 0, 1, 0}}. The particular case analyzed introduces some of the gen-
eral aspects that will be developed in the next Sections and which will bring to a comparison
between the POD objects and the invariant manifolds.

4.4 POD analysis of nonlinear systems undergoing bifurca-
tion of equilibrium

The aim of this section is to understand the results provided by the POD analysis as applied
to differential nonlinear systems depending on a scalar parameter. The Normal Form method
has been used to provide approximate closed-form solutions in the neighborhood of a Hopf
bifurcation experienced by the system.

4.4.1 Limit Cycle Oscillation

Recalling the results of Sec. 2.2.1 one can find the analytical expression of the Limit Cycle
Oscillations arising from a Hopf bifurcation. In particular, a system experiencing a Hopf
bifurcation is characterized by a linearized system (evaluated in the studied equilibrium)
with a pair of purely complex conjugate eigenvalues λ1 = λ̄2 = jω1 going to have positive
real part. From the Normal Form point of view a Hopf bifurcation is associated with the
presence of the following zero-divisors (see Ref. [16]):

λi − λi = 0 (4.51)

λ1 + λ2 + λj − λj = 0 (4.52)

The normal form equation is:

η̇1 = jω1η1 + ε[α11η1 + (γ1121 + γ1211 + γ1112)η2
1η2] = β(1)η1 + γ(1)η2

1 η̄1 (4.53)

η̇2 = ¯̇η1 (4.54)
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with

αij =
4∑

s,p=1
U−1
is A1spUpj (4.55)

γislm =
4∑

n,p,q,r=1
U−1
jn cnpqrUpsUqlUrm (4.56)

where ε = ν − ν∗, β = −jω1 − εα11 = βR + jβI , γ = −ε(γ1121 + γ1211 + γ1112) = γR + jγI .
Equation 4.53 can be rewritten as

η̇1 + βη1 + γη2
1 η̄1 = 0 (4.57)

Finally, the stationary solution, on the modal basis, is:

v =
√
ε
(
a1e

φ(t)w(1) + C.C.
)

+ o(ε3/2) (4.58)

where

a1(t→ +∞) =
√
−βR
γR

(4.59)

φ(t→ +∞) = t

(
−βI + γIβR

γR

)
+ γI
γR

ln(a1) + φ0 (4.60)

Observe that the solution is the same of Sec. 3.2.3 as expected, because the forced and un-
forced solutions coincide in absence of resonance load at the first perturbation order analysis.

4.4.2 The relationship between POMs and Normal Form

Using the Normal Form solution given by Eqs. 4.58, is possible to obtain an explicit form
for the correlation matrix R in analogous way to what has been done in Sec. 4.3.2 for the
linear case. Denoting perturbed quantities with the superscript symbol (̌·), the dependence
on the perturbation parameter ε can be highlighted as

Ř = εR1 + ε2R2 + o (ε) . (4.61)

Equation 4.61 gives an ε-expansion for the correlation matrix related to the free response of a
nonlinear system. The POD is obtained again from the ε-perturbed eigenproblem associated
with Ř:

Řp̌ = σ̌p̌ (4.62)

Observing the structure of the correlation matrix and considering the energy interpretation
of the σi, i = 1, ..., N , we can assume this form of POVs and POMs in the perturbation
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parameter3:

p̌ = p0 + εp1 + ε2p2 +O(ε3) (4.63)

σ̌ = εσ0 + ε2σ1 + o(ε) (4.64)

Hence, considering terms up to the order ε3, we have at the orders ε2 and ε3 respectively:

R1p0 = σ0p0 (4.65)

(R1 − σ0I)p1 = σ1p0 − R2p0 (4.66)

The ε term is given by the standard eigenproblem 4.65. The ε2 order correction follows from
Eq. 4.66: note that the left-hand side is singular, so that it admits solutions if and only
if the right-end side is orthogonal to the left eigenvector of R1 corresponding to σ0. Thus,
imposing this condition, the N sought after σi1, i = 1, ..., N can be determined. Once the
σi1 are known, the N vectors pi1 can be evaluated by Eq. 4.66 but an additional condition,
given by pi1 · pi0 = 0, is required to avoid the presence of an arbitrary component.
Substituting Eq. 4.58 in the definition of the correlation matrix given by Eq. 4.7, truncating
the expansion to the first order and considering, without loss of generality (see Sec. 1.3),
the critical eigenvector to be such that wR⊥ · wI⊥ = 0, one has

Ř = εR1 +O
(
ε2
)

= 2ε
(
−βR
γR

)
[wR⊥ ⊗ wR⊥ + wI⊥ ⊗ wI⊥ ] + o (ε) (4.67)

Thus, considering Eq. 4.67 and the definition of POMs and POVs (Eq. 4.6), one achieves
the following relations

ŘwR⊥ = 2ε
(
−βR
γR

)
[wR⊥ ⊗ wR⊥ + wI⊥ ⊗ wI⊥ ] wR⊥ + o(ε) =

= 2ε
(
−βR
γR

)
‖wR⊥‖

2wR⊥ + o(ε) (4.68)

ŘwI⊥ = 2ε
(
−βR
γR

)
[wR⊥ ⊗ wR⊥ + wI⊥ ⊗ wI⊥ ] wI⊥ + o(ε) =

= 2ε
(
−βR
γR

)
‖wI⊥‖

2wI⊥ + o(ε) (4.69)

Řu = o(ε) ∀ u ∈ W⊥ (4.70)

which shows that:

• the orthogonalized pair wR⊥ and wI⊥ coincide with the two POMs p associated with
non-zero energy (to non-zero POVs) at the ε order, namely, they are the p0 contribution
in Eq. 4.65;

3Indeed, since the LCO amplitude is of
√
ε order, the associated energy,i.e., the greater POVs, are of order

ε.
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• the POVs σ are given by (at the ε order see Eq. 4.65)

σ10 = 2ε
(
−βR
γR

)
‖wR⊥‖

2 (4.71)

σ20 = 2ε
(
−βR
γR

)
‖wI⊥‖

2 (4.72)

σr0 = 0 r = 3, ..., N (4.73)

The above result indicates that the dimension of the significant POD basis is strongly related
to the dimension of the center manifold, i.e., the dimension of the tangent subspace. Con-
sidering a higher-order perturbation, the rank of R increases and analogously the number of
the non-zero POVs. However the largest part of the energy will be still contained in the first
two POVs until the other modes give a significant contribution.



Chapter 5

POD analysis for bifurcated
systems

In this Chapter the POD behavior in the neighborhood of bifurcation is analyzed. In particu-
lar, we will discuss how the POD objects, namely POMs, relate with the intrinsic geometry of
nonlinear systems represented by the nonlinear manifolds. The POD generates an orthonor-
mal basis collecting the largest part of the response energy. If, as in aeroelasticity, the modal
basis (namely, the system invariant subspaces) is generally complex and orthogonality does
not apply, it is necessary a different approach is needed to relate invariant subspaces (modal
basis) and POD. The proposed approach is based on the fact that the complex modes can
be equivalently represented by the subspace spanned by their real and imaginary part (Ref.
[44]). Moreover, in nonlinear systems the concept of linear modes is still locally significant in
the neighborhood of an equilibrium point. Indeed, these modes represent the tangent spaces
to the invariant manifolds. In presence of an equilibrium bifurcation, like a Hopf bifurcation,
the solution can be locally built starting from the center invariant subspace (Center Manifold
Theorem, see Ref. [42]).

In Chapter 4, we worked out a few relevant cases available in literature for linear systems
and by using the perturbative solution given by the Normal Form (see Refs. [30, 74, 81]), we
showed that the significant POD-basis spans the critical subspace, i.e., the center subspace,
with only a small correction due to higher order terms defined in the perturbation process. It
is important to stress that since the main interest is on the proper dynamical features of the
process, we will analyze by POD only free responses of the dynamical. In this Chapter, the
accuracy of the theoretical results obtained in Chapter 4 will be assessed against numerical
applications on linear and nonlinear aeroelastic and structural systems.

85
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5.1 Numerical results on nonlinear aeroelastic systems

Two typical aeroelastic applications are herein considered: the linear and nonlinear response
of a wing section in an unsteady potential flow (Sec. 5.1.1), and the nonlinear oscillations of
a vibrating panel in a supersonic flow (Sec. 5.1.5).

5.1.1 A typical section from critical to post-critical regime

A three-degree-of-freedom aeroelastic typical section with a trailing-edge control surface,
shown in Fig. 5.1, is modeled including nonlinear springs for the control surface hinge elastic
moment. The POD is then applied to the system free response evaluated numerically via the
Runge-Kutta algorithm. Thus, the correlation matrix is computed using the time-discrete
form given by Eq. 4.7. Specifically, the parameters governing the system are chosen so that
the system experiences a supercritical Hopf bifurcation, that is, a stable LCO arises after
the flutter speed. In the following, the mathematical model describing the typical section
behavior is first addressed. In Section 5.1.1 the linearized system in the neighborhood of the
stability margin is then analyzed. In Sec. 5.1.2 and 5.1.3 the POD analysis for both the
linear and nonlinear system is shown. Finally, some specific issues about POD related to the
system observability are also presented in 5.1.4.

Figure 5.1: 3-d.o.f. aeroelastic typical section.

Governing equations

Consider a 3-dof airfoil, elastically supported by a linear plunge spring and a linear torsional
spring (Fig. 5.1). It is equipped with a control surface (flap), constrained to the wing with
a nonlinear torsional spring. Using standard notation, the plunging deflection is denoted by
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h, positive in the downward direction, α is the pitch angle about the elastic axis, positive
with nose up, and β is the flap angle, positive when the trailing edge (TE) surface is moved
down. The elastic axis is located at a distance ahb from the mid-chord, where b is half the
chord, while the wing mass center is located at a distance xαb from the elastic axis. The
axis of rotation for the flap is located at a distance chb from the mid-chord, whereas the flap
mass center is located at a distance xβb from the flap hinge. All the previous distances are
positive when measured towards the TE of the airfoil.

The linear equations of motion of the typical section ideally immersed in a potential flow
were found by Theodorsen in 1935 (Ref. [82]). The typical-section equations are

ξ̈ + xαα̈+ xββ̈ + Ω2
1

U2 = p, (5.1a)
xα
r2α
ξ̈ + α̈+ [r2β + (ch − ah)xβ]

1
r2α
β̈ + 1

U2Mα(α) = r, (5.1b)

xβ
r2β
ξ̈ + β̈ + [1 + (ch − ah)

xβ
r2β

]α̈+ Ω2
2

U2Mβ(β) = s, (5.1c)

where

Mα(α) = c1αα (5.1d)

Mβ(β) = c1ββ + c3ββ
3. (5.1e)

In the above equations, the overdot denotes differentiation with respect to the dimensionless
time τ , defined as τ = V t/b, ξ = h/b is the dimensionless plunge displacement of the elastic
axis, rα =

√
Jα/mb2 is the reduced radius of gyration about the elastic axis, rβ =

√
Jβ/mb2 is

the reduced radius of gyration about the flap hinge and µ =
√
πρb2/m is the mass ratio. The

symbols Ω1 and Ω2 are defined as Ω1 = ωξ/ωα and Ω2 = ωβ/ωα, where ωξ, ωα and ωβ are the
uncoupled plunging, pitching and flapping natural frequencies, respectively, which depend
on the parameter U . Moreover, Mα(α) represents the overall contribution of the torsional
spring moment of the wing section, whereas Mβ(β) represents the overall contribution of
the torsional spring moment of the wing section including both the linear and nonlinear
parts. The coefficients of the unknowns in Eqs. 5.1 depend on the system control parameter
U = V/bωα, i.e., the reduced flow velocity, where V is the dimensional speed. The sysmbols
p and r denote the lift and the pitch aerodynamic moment for the wing, respectively, whereas
s is the pitching moment acting on the flap. Assuming an incompressible two-dimensional
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flow, the expressions of the forces in the time domain are given by (Refs. [82], [4]):

p = − 1
µ

[
α̇+ ξ̈ − ahα̈− (T4/π)β̇ − (T1/π)β̈ + 2u(w3/4)

]
(5.2)

r = − 1
µr2α

[āhα̇+ (1/8 + a2
h)α̈− ahξ̈ + (T4/π + T10/π)β + (T1/π − T8/π (5.3)

− (ch − ah)T4/π + 1/2(T11/π))β̇ − (T7/π + (ch − ah)T1/π)β̈

− 2(ah + 1/2)u(w3/4)]

s = − 1
µr2β

[(−2T9/π − T1/π − āhT4/π)α̇+ 2(T13/π)α̈+ (T5/π
2 − T4T10/π

2)β

− (T4/π)(T11/π)β̇ − (T3/π
2)β̈ − (T1/π)ξ̈ + (T12/π)u(w3/4)] (5.4)

where the circulatory part of the lift and of the pitching moments is denoted with u(w3/4)
(Ref. [83]) and the expressions of the coefficients Ti are the same as defined in Ref. [82].
Using a finite-state approximation for the circulatory part of the aerodynamics forces, the
problem is recast (Ref. [84]) as a system of eight first-order differential equations, i.e.,

v̇ = A(U)v + g(v,U) (5.5)

where vT = {ξ, α, β, u, ξ̇, α̇, β̇, ũ}T is the state-space vector, A(U) and g(v,U) are the linear
and nonlinear part of the equations of motion, respectively. In general, it is possible to use
P aerodynamic states to model the unsteady part of the aerodynamic operator but, in the
present case, only two augmented states, denoted as u and ũ, were sufficient for the present
scope (Ref. [4]).

Stability analysis and bifurcation scenarios

The values of the coefficients in Eqs. 5.1-5.4 were the same already used by Edwards in Ref.
[85] and, for the reader convenience, are listed in Tab. 5.1. The corresponding evaluated

ah -0.4 ch 0.6
m 40 Ω1 0.5
Ω2 3.0 c1α 1
c1β 1 c3β 50
xα 0.2 xβ 0.0125
r2α 0.125 r2β 0.00625
Table 5.1: Airfoil parameters.

flutter speed is UF = 3.0246 and, beyond this value, the nonlinear system exhibits a super-
critical Hopf bifurcation. The bifurcation diagram obtained via both numerical integration
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and Normal Form perturbation analysis is depicted in Fig. 5.2, where the LC amplitude is
plotted as a function of U (the continuous line is obtained by Multiple Time Scaling analysis,
whereas the markers represent the numerical integration results). After the critical value UF ,

Figure 5.2: Bifurcation diagram. - Normal Form; � Numerical Integration.

the free response is harmonic and represented by a single oscillation amplitude. However,
for U > 3.029, it keeps to be periodic but more than one harmonic component appears in its
time-history, as reported by the multiple points for each flight speed which indicate the local
maximum peak in a period. In this case, the perturbation solution needs to include more
than first-order terms to be satisfactorily described. With respect to the presented scenario,
a numerical validation of the analytical achievements regarding the relation between the
POD basis and the critical eigenvectors will be proposed. In particular, the modal assurance
criterion parameter (MAC) will be used to check the parallelism between the POMs and the
real and imaginary part of the critical mode (transformed through Eq. 1.27), defined as

MAC(a, b) = (a · b)2

‖a‖2‖b‖2 (5.6)

where a and b are the considered vectors. Note that MAC(a, b) = 1 if a and b are parallel
and MAC (a, b) = 0 if they are orthogonal.

5.1.2 POD analysis: Linear case

The analysis is first performed for the linear case, to which the dynamical system is reduced
if c3β = 0 in Eqs. 5.1. Moreover, let us assume the system to be marginally stable, by
setting U = UF . The correlation matrix R (see Eq. 4.7 is evaluated with an initial condition
given by the vector vT0 = {0, 0, 0.3, 0, 0, 0, 0, 0}T and a observation time window T of 1.8 ·104

dimensionless time units after removal of the transient. R (Eq. 4.7) gives only two significant
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p1 p2

wR 0.0000 1.0000
wI 1.0000 0.0000

Table 5.2: MAC between linear mode and significant POD basis. Marginally stable linear case.

p1 p2

wR 2 · 10−4 0.9997
wI 0.9997 2 · 10−4

Table 5.3: MAC between critical linear mode and POD significant basis. Nonlinear case, U = 3.0250.

POVs accounting for all the response energy. As expected, their analytical estimated values
(see Eqs. 4.38-4.40) present a very small difference with respect to the numerical ones
(relative difference is equal to −0.01% and 0.02%), mainly due to numerical approximations
in the evaluation of the correlation matrix R. Table 5.2 shows the MAC values obtained
comparing the significant POMs (numerically obtained) and the orthogonalized real and
imaginary part of the critical mode (Eqs. 1.28 and 1.29). This result numerically assesses
the coincidence between the significant POMs and the critical mode in flutter condition as
predicted by the developed theory.

5.1.3 POD analysis: Nonlinear case

The previous task is carried out again for the nonlinear case, i.e., with the system experi-
encing a Hopf bifurcation. Because of the more complicated scenario, the relation between
the POMs and the tangent critical eigenvectors (wR,wI) (recall Eqs. 4.68, 4.69 and 4.70 in
Sec. 4.4.2) will be validated for two different values of the parameter U .

A first postcritical case: U = 3.0250 (Case A, Fig. 5.3)

In this case, the system is slightly beyond the linear flutter speed (U − UF = 0.0004).
The LCO is simply harmonic (see Fig. 5.3) as predicted by the Normal Form analysis. Like
the marginally-stable linear system, all the energy is associated with the first two POMs, as
shown by the corresponding POVs covering almost the 100% of the sum of all the eigenvalues.
Also, in this case the orthogonalization procedure (see Eqs. 1.28 and 1.29) of the real and the
imaginary parts of the critical mode allows to obtain real-valued vectors in full agreement
with the first and the second POMs, as shown in Tab. 5.3.

Second postcritical case: U = 3.03 (Case B, Fig. 5.4)
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(a) Plunge

(b) Pitch

(c) Flap

Figure 5.3: Limit Cycle Oscillation at U = 3.0250 (CASE A).

In this second case (U−UF = 0.0054), the effect of the nonlinear terms is emphasized but
the equivalence between the significant POMs and the critical mode is still essentially valid,
although minor differences arise. From the inspection of the time histories of h, α and β (see
Fig. 5.4), it is possible to realize that the nonlinearities affect the oscillation depending on the
considered state-space variable. Indeed, especially considering the flap response, the presence
of multiple harmonics is evident. In this particular case, the carried out Normal Form
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p1 p2

wR 5 · 10−4 0.9951
wI 0.9957 1 · 10−4

Table 5.4: MAC between critical linear mode and POD significant basis. Nonlinear case, U = 3.030.

analysis is not able to follow satisfactorily the solution because the presence of the mentioned
harmonics requires at least the inclusion of more terms in the perturbation expansion or
even a higher-order solution. However, the critical eigenvectors still play a relevant role in
accounting the system dynamics on a time-averaged perspective. In fact, the first two POVs
collect 99.82% of the overall signal energy. The relation between the center subspace and
POD basis is investigated with the MAC in Tab. 5.4, that confirm the fact that the POD
basis is still related to the center subspace. In addition to the case already considered,
the dependence of the percentage energy content associated with the first two POMs with
respect to the inflow velocity U varying in a neighborhood of the critical value is analyzed in
Fig. 5.5, confirming the previous observations also for other values of U . As shown before,
this energy percentage is expressed as the POV value normalized with respect to the sum of
all the POVs. Similarly, the correspondence between the critical mode w = wR⊥ + jwI⊥ and
the significant POD basis pn, n = 1, 2 is further analyzed for different values of U using the
MAC (see Fig. 5.6). It is apparent that the link between the critical mode and the POMs
keeps to be relevant even when nonlinear effects are significant, with MAC values rather
close to one even if slightly lower than in the linear case. The POMs and their associated
energy are global properties of the observed process and, in this perspective, the Normal
Form approach seems to be still able to capture these general features. Indeed, the value of
the generic POV depends on the approximation order of the Normal Form solution: thus,
it is not surprising that, when the Normal Form approximation becomes inaccurate (e.g.,
moving away from the critical value of the parameter, UF ), the Normal Form prediction
of the POVs values (see Eqs. 4.71 and 4.72) are also inaccurate as well. These remarks
allow to explain the results shown in Fig. 5.7, where the values of the first POV computed
analytically and numerically are compared (a similar trend has been also obtained for the
second POV). Moreover, considering Tabs. 5.3 and 5.4, where the MAC distribution of the
considered nonlinear cases are shown, one can observe that increasing the difference U −UF
(and hence, the effect of nonlinearities) the couples (wR⊥ ,wI⊥) and (p1, p2), that at the
stability margin are coincident, differ by a rigid rotation in the same plane (or, subspace)
that increases (see Fig. 5.8) with U − UF , i.e., the nonlinearities effect.
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(a) Plunge

(b) Pitch

(c) Flap

Figure 5.4: Limit Cycle Oscillation at U = 3.030 (CASE B).

5.1.4 Some remarks on system observability

The POMs and the POVs are evaluated using a correlation matrix R that is built considering
the contribution of all the space-state variables, including the aerodynamic states u and ũ
along with ḣ, α̇, β̇. Indeed, the aerodynamic states are not directly observable, whereas
velocities are related to displacements. However, our results remain valid also in the case
of a POD analysis based only on generalized displacements, as it will briefly discussed.
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Figure 5.5: Percentage of energy in the first two POVs varying the U from the critical value.

3.024 3.026 3.028 3.03 3.032 3.034 3.036 3.038 3.04 

0.4

0.5

0.6

0.7

0.8

0.9

1  

U

M
A

C

MAC(w
I
,p1)

MAC(w
R

,p2)

U
F

Figure 5.6: Modal Assurance Criterion (MAC) vs U .

Figure 5.7: Comparison between the first POV analytically and numerically computed.
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Figure 5.8: Rotation between POD significant basis and orthogonalized critical mode.

p1 p2

wR 5.0 · 10−3 0.9705
wI 0.9708 2.0 · 10−3

Table 5.5: MAC between critical linear mode and POD significant basis. Nonlinear case, U = 3.030.

This issue is typically related to the real collection of information about the dynamical
behavior performed by an on-board measurement system. Without recalling the steps of
the underlying procedure, the nonlinear case with U = 3.03 is considered again without
accounting for the aerodynamic states in the computation of R. The first two POVs do
collect practically the 100% of the energy of the restricted signal and Table 5.5 shows that
the corresponding POMs are still practically equivalent to the critical eigenvector.
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5.1.5 The panel flutter model: from LCO to chaos

In the present section, the analysis already carried out for the case of a space-discrete aeroe-
lastic system in Sec. 5.1.1 is also applied to a space-continuous systems, i.e., a panel vibrating
in a supersonic flow (see Ref. [6]). This application has given the opportunity to extend the
results to a space-continuous model (Ref. [5]) that exhibits an even more various response
scenario than the one investigated in Sec. 5.1.1. This system has two driving parameters
that influence its structural stability, beyond the linear stability. Different choices of such
parameters yield a free response that can be simply harmonic or even evolving to chaotic so-
lutions (see Ref. [2]). For this application, it will be possible to compare the results obtained
with POD analysis, and to discuss them in relation with the system nonlinear behavior.

Governing equations

Let us consider a simply supported panel (Fig. 5.9) immersed in a supersonic flow with speed
U∞ and with the dimension transverse to the flow direction (spanwise direction) larger than
the panel length in the flow direction x∗ (chordwise direction). The equation of motion is, see Ref. [81]:

Figure 5.9: Vibrating panel supported to the ends in a flux with speed U∞ and compression load
Ne.

ρm
∂2v

∂t2
+ Lv +Dζ

∂5v

∂t∂4x∗
+Nnl(v)

∂2v

∂2x∗
+ p(v)− p∞ = 0 (5.7)

with L(·) := D∂4(·)
∂4x∗ + Ne

∂2(·)
∂2x∗

where v(x∗, t) is the vertical displacement, D is the bending stiffness, ζ is the viscoelastic
damping coefficient, Ne is the compression load, and

Nnl(v) = −Eh
2a

∫ a

0
( ∂v
∂x∗

)2dx∗ (5.8)

is the nonlinear load induced by the deformation, ρm is the material density of the panel, h
is the panel thickness, a is the panel length and the differential pressure load p(v) − p∞ is
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given by

p(v)− p∞ = ρ∞U
2
∞( ∂v

∂x∗
+ ∂v

∂t
/U∞)/

√
M2
∞ − 1 (5.9)

where ρ∞ e M∞ are the air density and the Mach number of the undisturbed flow, respec-
tively.
Using the Galerkin approach with NM orthonormal functions {φn} = {sin

(
nπx∗

a

)
} (namely,

the eigenfunctions of the structural operator L), n = 1, ..., NM , one has:

v(x, t) =
NM∑
m=1

zm(t)sin
(
mπx∗

a

)
=

NM∑
m=1

zm(t)φm(x); x = x∗

a
(5.10)

After projecting Eq. 5.7 on the basis functions {φn} and introducing a dimensionless time
τ := t

(
D/ρmha

4
)1/2

, one obtains

z̈n + dnżn + Ω2
nzn + q̄

NM∑
p=1

enpzp + gn = 0 n = 1, 2, ..., NM (5.11)

where the overdots denote the derivative with respect to the dimensionless time τ and

θ1 :=
√
ρ∞aq̄/

√
M2
∞ − 1ρmh θ2 := π4ζ

√
D/ρmha4

N := Nea
2

Dπ2 Ω2
n := π4(n4 − n2N)

q̄ := ρ∞U
2
∞a

3

D
√
M2
∞ − 1

dn := θ1 + n2θ2

enp := np

n2 − p2 [1− (−1)(n+p)]

whereas the term gn collects the nonlinear cubic terms

gn :=
NM∑

p,q,r=1
cnpqrzpzqzr (5.12)

with

cnpqr := 3(1− ν2)π4(np)2δnqδpr (5.13)

The continuous solution expanded in NM terms, see Equation 5.10, can be localized, at any
time, in Np physical spatial points with coordinate xi with i = 1, ..., Np

v(xi, τ) =
NM∑
m=1

zm(τ)φm(xi) (5.14)

∂v

∂τ
(xi, τ) =

NM∑
m=1

żm(τ)φm(xi) (5.15)
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which can be rewritten in matrix form as

v(τ) = Cr̄(τ) (5.16)

with

Cij = φj(xi) i = 1, ..., Np, j = 1, ..., NM (5.17)

r̄T (τ) = {z1(τ), z2(τ), ..., zNM (τ)}

vT = {v(x1, τ), v(x2, τ), ..., v(xNp , τ)}

The system can be rewritten in first order form as

ṙ = Ar +

 0
I

 g(r) (5.18)

where the unknown is rT = {r̄T , ˙̄rT }, the matrix A is the linear part of the dynamical system,
g(r) is the vector of the nonlinear terms defined with Eq. 5.12.

The time-marching integration of Eq. 5.18 provides the solution of the panel-flutter
equation (see Eq. 5.7) via the coordinate transformation given by Eq. 5.16, that represents
the discretized form of the continuous solution for the displacement v, see Eq. 5.10. This
solution allows to perform the POD analysis for the space continuous system, leading to
solve the eigenproblem associated to the integral operator

P(·) =
∫
V
R(x, y)(·)d y (5.19)

where R = R(x, y) = limT→+∞
1
T

∫ T

0
v(x, t) v(y, t) dt.

Equation 5.19 defines the space-continuous proper orthogonal modes ϕs and proper orthog-
onal values σs as

P(ϕ) = σϕ. (5.20)

Note that, by choosing Np points on the panel the discretized form of the integral operator
P (Eq. 5.19) gives a Np ×Np correlation matrix R similar to the one already considered for
the POD analysis of discrete systems.

In an analogous way, the eigenproblem associated to the space-discretized system of Eq.
5.18, i.e.,

A w = λw, (5.21)

provides the eigenvectors wq. The generic q-th aeroelastic eigenfunction χq, q = 1, ..., 2NM ,
can be expanded with respect to the basis of {φn} to yield:

χq(x) =
NM∑
n=1

wqnφ
n(x) (5.22)
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where the complex numbers wqn represents the n-th component of the q-th eigenvector wq.
The 2NM obtained eigenfunctions are independent and, generally, they appear in complex
conjugate pair. Thus, without loss of generality, one can consider NM independent couples
(χpR, χ

p
I), with p = 1, 2, ..., NM , ordered as:

χ2p−1 := χpR + jχpI

χ2p := χpR − jχ
p
I

(5.23)

where

χpR :=
NM∑
n=1

wpnRφ
n(x) χpI :=

NM∑
n=1

wpnIφ
n(x) (5.24)

Once the continuous POMs and the aeroelastic eigenfunctions are introduced, it is pos-
sible to define the critical eigenfunction so that its real and imaginary parts be orthogonal.
Repeating the steps already illustrated in the Sec. 4.4.2, one can reach the same conclusions
obtained for the case of discrete systems:

• complex conjugate eigenfunctions are directly related to the subspace W of the state-
space spanned by their real and imaginary parts χR and χI ;

• it is possible to orthogonalize the vectors χR and χI on the subspaceW by multiplying
the correspondent complex eigenfunction by a suitable complex constant so as to obtain
an orthogonal basis (χR⊥ , χI⊥) of W;

• considering simply stable linear systems in the presence of only one marginal eigen-
function, its orthogonalized real and imaginary parts χR⊥ and χI⊥ are coincident with
the first two POMs that are the only ones associated with non-zero energy, namely, to
non-zero POVs;

• using a perturbation approach to express the solution, the above issue can be extended
to nonlinear systems exhibiting a supercritical Hopf bifurcation.

Once it is assumed that there exists a relationship (see Eq. 5.10) between the continuous dis-
placement function v(x, t) and the vector of its modal components rT = {z1, z2, ..., zNM , ż1, ż2, ..., żNM }T

(the orthogonal basis {φn} ensures this issue), then there is also a direct correspondence be-
tween the obtained eigenfunctions χp and the eigenvectors wp, between the continuous POMs
ϕp and their discrete form, i.e., the vectors pp, and between the space-continuous variable
v(x, t) and its space-discrete form v(t).
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Stability analysis

Two control parameters are considered in the panel flutter analysis: q̄, that accounts for the
inflow, and the compression load N . There are three main dynamic scenarios (see Fig. 9 in
Ref. [5]) depending on the choice of such parameters:

• aeroelastic dynamical instability without compression
load (N = 0, q̄ 6= 0)

• structural static instability due to compression
load (q̄ = 0, N 6= 0)

• instability with compression load and aerodynamic combined
effects (q̄ 6= 0, N 6= 0)

Next, four qualitatively different conditions will be analyzed with the POD analysis. Three
cases imply harmonic responses (limit cycles), and one case exhibits a chaotic behavior.
The response time-history of the vertical displacement is built retaining the contribution
of NM = 4 and is evaluated ats 10 equally spaced points (Np = 10) on the panel. This
implies that, performing a direct numerical time-integration of Eq. 5.18 and using Eq. 5.16,
a 10×10 dimensional correlation matrix R was built and the consequent POVs and POMs
evaluated. For all the results considered in the following, the evaluated POMs (namely, the
ϕ) will be compared with the corresponding aeroelastic LMs (namely, the χR⊥ and χI⊥).
The comparison between POMs and LMs will be done through the definition of a modal
assurance criterion parameter (MAC) here redefined in functional spaces as

MAC(ϑ, ψ) = < ϑ,ψ >2

< ϑ, ϑ >< ψ,ψ >
(5.25)

where ϑ(x) and ψ(x) are bounded functions in I and < ϑ,ψ >:=
∫
I ϑ(x) · ψ(x) dx. For the

evaluation of the correlation matrix, a time-window of 18000 dimensionless time units is
used.

POD analysis

Next, the POD analysis of the different regimes is carried out. The different cases give
the possibility to correlate POD basis with the aeroelastic modal contribution to the free
response.

Simple-harmonic limit cycle

Let us consider the case defined by the following choice of the parameters

N = 0, θ1 = 1, θ2 = 0, q̄ = 344. (5.26)
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ϕ1 ϕ2

χR 0.0000 1.0000
χI 1.0000 0.0000

Table 5.6: MAC for the simply-harmonic case.

The system is beyond the linear flutter stability margin and the presence of a limit cycle
having a purely harmonic oscillation is shown in Fig. 5.10, where the phase diagram (velocity
vs displacement) of the oscillation at x∗/a = 3/4 is presented. The first two POVs collect

Figure 5.10: Simply harmonic limit cycle, N = 0, q̄ = 344.

about the 99.95% of the energy associated to the process. The application of the MAC
between the significant POMs and the real and imaginary part of the critical orthogonalized
eigenvectors is shown in Tab. 5.6. The MAC analysis, calculated by evaluating χR⊥ and
χI⊥) and ϕ in 10 equispaced location on the panel, confirms a full equivalence between the
significant POMs and the critical mode, in a similar way to what has been already presented
for the discrete aeroelastic system (see Sec. 5.1.1, Tab. 5.3).

Non-simple-harmonic limit cycle-Case A

Let us consider another case given by the following parameter choice:

N = 3.5, θ1 = 1, θ2 = 0, q̄ = 170.4. (5.27)

The phase diagram at x∗/a = 3/4 of the free response is shown in Fig. 5.11, where a
non-simple-harmonic nature appears to be evident. After a POD analysis one has that the
first two POVs include again most of the energy, namely, the 99.93%. The MAC between
the significant POMs and the orthogonalized real and imaginary part of the critical mode
is shown in Tab. 5.7. Though the energy distribution is the same as the simply harmonic
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Figure 5.11: Pseudo harmonic limit cycle, N = 3.5, q̄ = 170.4.

ϕ1 ϕ2

χR 0.0494 0.9504
χI 0.9499 0.0492

Table 5.7: MAC for the non-simply-harmonic case. Case A.

response, there is now a weakening of the correspondence between the significant POMs and
the critical mode. Anyway, the cross-correspondence of the MAC coefficient in Tab. 5.7
shows that the subspace spanned by the χR and χI and the subspace spanned by ϕ1 and ϕ2

are practically coincident.

Non-simple-harmonic limit cycle-Case B

By increasing the value of the compression load, it is possible to observe that a real
eigenvalue becomes positive. For the following set of the parameters:

N = 8.7, θ1 = 1, θ2 = 0, q̄ = 170.4, (5.28)

the linearized system presents a couple of complex conjugate eigenvalues with positive real
part, and it is no longer the onset of a positive real eigenvalue. Figure 5.12 shows the phase
diagram of the observed limit cycle. Regarding the energy distribution, the first two POVs
collect only the 97.71% of the total energy, a result slightly but significantly different from the
previously considered cases, that demands for a changed modal participation to the system
dynamics. The correspondence between the critical mode and the first two POMs keeps
to be still remarkable as the MAC distribution in Tab. 5.8 shows. For a slightly increased
value of the compression load, N = 9, one obtains three system eigenvalues with positive real
parts, i.e., one pair of complex conjugate eigenvalues and a purely real eigenvalue. Figure
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Figure 5.12: Pseudo harmonic limit cycle, N = 8.7, q̄ = 170.4.

ϕ1 ϕ2

χR 0.1158 0.8644
χI 0.7904 0.1345

Table 5.8: MAC for the non-simple-harmonic case with a real pole marginally stable. Case B.

5.13 shows the phase space of the observed limit cycle, suggesting that the dimension of the
center manifold should be increased from two to three, as also indicated by the first two
POVs that collect about the 97.50%. It is worth to note that if one adds the contribution of

Figure 5.13: Pseudo harmonic limit cycle, N = 9, q̄ = 170.4.

the third eigenvalues, the percentage of the energy collected by the first three POMs raises to
the 99.99%. Thus, it seems reasonable to conclude that the relevant POD basis is augmented
with respect to the previous cases. Observing the MAC matrix in Tab. 5.9, it is apparent
the relation between the POD significant basis (now composed by three orthogonal vectors)
and the tangent space of the center manifold spanned by the three eigenfunctions χ1

R⊥
, χ1

I⊥
,
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ϕ1 ϕ2 ϕ3

χ1
R 0.0953 0.7775 0.1271
χ1
I 0.8557 0.1336 0.0106
χ2 0.1589 0.1265 0.7134

Table 5.9: MAC for the non-simple-harmonic case with a instable real pole. Case B.

and χ2. Indeed, these results are still in line with the developed theory. In fact, the new
included mode is real and almost orthogonal to the subspace associated to the unstable
complex conjugate pair of modes. This implies that the evaluated POMs basis is still closely
related to the eigenfunctions describing the tangent subspace at the equilibrium point.

Chaotic oscillation

The model representing the panel flutter can exhibit a chaotic behavior for special choices
of the compression load and the flow speed. In particular, if one takes:

N = 4 , θ1 = 1, θ2 = 0, q̄ = 120, (5.29)

the response appears to be chaotic, as shown in Fig. 5.14, where the phase diagram of the
oscillation at x∗/a = 3/4 is shown. In this case, the first two POVs collect about the 99.95%

Figure 5.14: Chaotic solution, N = 4, q̄ = 120.

of the energy in a way very similar to the simply harmonic case. The MAC between the
significant POD basis and the real and imaginary part of the critical orthogonalized eigen-
vectors is reported in Tab. 5.10 and shows that the POM basis and the critical mode are two
distinct orthogonal basis in the same 2-dimensional subspace: however, in this case, they are
not coincident as shown in the previous cases. Though lying on the same plane, the rotation
between these orthogonal basis may be considered as a measure of complexity (or chaoticity)



5. POD analysis for bifurcated systems 105

ϕ1 ϕ2

χR 0.1869 0.8130
χI 0.8129 0.1868

Table 5.10: MAC for the chaotic case.

of the nonlinear dynamics exhibited by the system (indeed, in this case the nonlinearities
are relevant during all the period of oscillation and not only when the amplitude is high).
Moreover, the energy distribution shows that there is not a new modal contribution to the
response. Finally, starting form the MAC distribution of Tabs. 5.6, 5.7 and 5.10, one can
conclude that the nonlinearities cause a rigid rotation in the same subspace between (ϕ1, ϕ2)
with respect to (χR⊥ , χI⊥). Indeed, the nonlinearities effect, if the modal contribution do
not change (see Tabs. 5.8 and 5.9), is to rotate the POD significant basis with respect to
the modal critical one. Moreover, observe that this is in agreement with the observations of
Sec. 5.1.1 where a space-discrete system has been considered.

5.1.6 POD analysis in the neighborhood of a Hopf Bifurcation: concluding
remarks

POD analysis have been performed and discussed for the free responses of linear and non-
linear aeroelastic systems experiencing Hopf bifurcations and other more complex dynamic
behaviors.

In the neighborhood of an equilibrium solution, the POD analysis generates an orthogo-
nal basis that has been analytically related to the invariant tangent subspaces. In order to
show this issue, the eigenspaces related to the linearized problem around the equilibrium so-
lution and corresponding to a complex conjugate pairs of eigenvalues, have been represented
considering their real and imaginary parts in the state-space. Therefore, any generic pair of
complex conjugate eigenvalues of the linearized system can be associated with the subspace
of the state-space spanned by the real and imaginary parts of the corresponding complex
eigenvector (namely, a plane). This has allowed to establish a straightforward relationship
between the POMs and such a subspace. Specifically, for simply stable systems with only
one pair of marginal (purely complex) eigenvalues it has been shown that, among the ar-
bitrary complex constants multiplying the critical complex eigenvector, the only one able
to make orthogonal its real and imaginary parts in the state-space makes also the resulting
orthogonal vectors coincide with the correspondent POMs. Namely, such an orthogonal pair
of vectors represents the POD energy-significant basis for linear and/or linearized systems
in the aforementioned hypothesis.
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Furthermore, starting from the previous issue and considering a singular perturbation
approach around the equilibrium solution of a nonlinear system (Lie Transform Method)
in a neighborhood of a Hopf bifurcation, it has been demonstrated that the energy content
of the simply-harmonic limit-cycle response is embedded only in the first two POMs that
are equivalent to (the real and imaginary part of) the critical mode. These results, initially
obtained for finite-dimensional systems, have been extended to space-continuous systems as
well.

These theoretical issues have been confirmed through numerical investigations of the free
response of a typical aeroelastic section and of the free response of a panel in a supersonic
flow undergone to a nonlinear kinematics.

As obtained via numerical simulation on nonlinear systems, once the level of nonlinearities
increases, the POD (orthogonal) basis and the critical-mode (orthogonalized) basis do not
coincide anymore but they differ for a rigid rotation in the same subspace. Therefore,
this effect could be considered as an indirect and qualitative measure of the nonlinearities
necessary to represent the response.

Moreover, in the case of a chaotic response, it has been numerically shown that the ener-
getically significant POD basis does not change significatively with respect to non-chaotical
regimes, i.e., periodic motion with one or more spectrum frequencies. Nevertheless, though
no more coincident, the POD basis and the orthogonalized eigenbasis span the same space.

5.2 Some issues about POD analysis in the neighborhood of
a pitchfork bifurcation

The relation between the linearized modes, i.e., the eigenfunction of the linear part of the
structural operator, and the Proper Orthogonal Modes in the neighborhood of a Hopf bi-
furcation has been analyzed in Ref. [41]. In particular, the possibility to identify modes
via POD analysis has been studied. In this Section, the relation between POD modes and
linearized modes has been analyzed for a forced pitchfork bifurcation extending the cited
results to a static bifurcation with a harmonic load. In this Section, the above observations
are done considering a forced structural system experiencing a pitchfork bifurcation. In par-
ticular, the problem of a forced buckled beam presented in Sec. 3.1. It is relevant to observe
the need to consider a forcing load in the considered case. Indeed, the considered bifurcation
is static and the long-term behavior is represented by a new fixed point: to work efficiently
the POD requires a persistent motion and sufficiently large time window.

Considering the results of Sec. 3.1 one can conclude that the forced response of the
hinged beam can be represented as N oscillations along N different orthogonal directions
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in the generalized displacement space. In particular, if we filter out the static part of the
response the oscillations are about the origin. Then the displacement can be written as:

u(x, t) =
N∑

i,n=1
qn(t)uni φi(x) (5.30)

where the set of vectors un represent the eigenvectors of the linear part of the discretized
system. The generalized displacements that are orthogonal can be chosen as the canonical
base in RN:

u(x, t) =
N∑

i,n=1
qn(t)eni φi(x) =

N∑
i,n=1

qn(t)δniφi(x) =

=
N∑
i=1

qi(t)φi(x)

(5.31)

The POD operator for space-continuous systems is:

P(·) =
∫
V

R(x,y)(·)dV (5.32)

where:

R(x,y) = lim
T→+∞

1
T

∫ T

0
u(x, t)u(y, t)dt (5.33)

is the correlation matrix and the eigenvectors and eigenvalues of the POD-operator give
the Proper Orthogonal Modes (POMs) {ϕ} and Proper Orthogonal Values (POVs) {σ}
respectively:

P(ϕ) = σϕ (5.34)

The displacement in the neighborhood of a harmonically forced pitchfork bifurcation can be
written as (filtering the static response):

u(x, t) = ε
√
ε
N∑
i=1

qi(t)φi(x) + o(ε3/2) (5.35)

assuming the order interaction of above Sections. In the present case qi(t) are harmonic
functions with the same frequency of the load component (see Sec. 3.1.5) in the direction of
the i-th mode, then Eq. 5.33 becomes:

R(x, y) = lim
T→+∞

1
T

∫ T

0
u(x, t)u(y, t)dt =

= ε3
N∑

p,s=1
αpsφ

s(x)φp(y) + o(ε3)
(5.36)



5. POD analysis for bifurcated systems 108

If one supposes that every modal component of the load has a different frequency

αps = 0⇒ p 6= s (5.37)

αps = lim
T→+∞

1
T

∫ T

0
qp(t)qs(t)dt⇒ p = s (5.38)

Then substituting, the Eqs. 5.36 in Eq. 5.33, we have:

R(x, y) =
N∑
p=1

αpφ
p(x)φp(y) + o(ε3) (5.39)

Therefore, from the definition of the space-continuous POD given by Eqs. 5.32 and 5.34 one
obtains that, if the structural operator is self-adjoint (as in the considered examples), the
POMs are the eigenfunctions of the structural operator and the POVs are the αpp coefficients.
Indeed, in the analyzed case, it is possible to state the equivalence between POD-modes
(energetical behavior of the system) and eigenfuncions (intrinsic geometry of the analyzed
problem). In general the correspondences between POD-modes and eigenfunctions is affected
by the geometry of the problem. The POD analysis gives always a orthogonal basis, thus, it
is not able to fit a non-orthogonal basis exactly but only in a minimum squares sense. This
means that in the presence, for example, of a non self-adjoint structural operator it is not
possible to find a direct correspondence except in a particular case as a permanent motion
along a mode. A first example is a LCO arising after a Hopf bifurcation (example analyzed in
Ref. [41]) or the same example of this paper but with a non self-adjoint structural operator
with a dominant load component along only one mode. In this case Eq. 5.39 can be written
as:

R(x, y) ∼= αrrφ
r(x)φr(y) (5.40)

where r is fixed and corresponding to the dominant mode. From Equation 5.40 it is clear
that the first POD-mode will correspond to the excited mode. The 1-mode approximation
of the beam equation is included in the cases where Eq. 5.40 is valid. Indeed, the oscillation
is possible only along the first structural mode (by hypothesis), which will correspond to the
only one energetically significant (associated with non-zero energy) POD-mode.

Let us consider Eq. 3.5 approximated with four structural modes, and let us analyze the
correlation between the POD energetically significant basis and the approximation modes.
The POD is evaluated observing the time response at twenty points along the beam with a
time of observation of 2000 dimensionless time units, filtering the transient phase. Of course,
only the first four modes will be in general associated to non-zero energy. The comparison
between POMs and structural modes is made using the Modal Assurance Criterion (MAC)
defined in functional spaces as

MAC(ϑ, ψ) = < ϑ,ψ >2

< ϑ, ϑ >< ψ,ψ >
(5.41)
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ϕ1 ϕ2 ϕ2 ϕ2

χ1 1.00 0.00 0.00 0.00
χ2 0.00 1.00 0.00 0.00
χ3 0.00 0.00 1.00 0.00
χ4 0.00 0.00 0.00 1.00

Table 5.11: MAC between POMs and structural modes.

where ϑ(x) and ψ(x) are bounded functions in the considered domain and< ϑ,ψ >:=
∫
I ϑ(x) · ψ(x) dx..

The assigned parameters, in this case, are:

N = 1.1 Ω1 = 0.5 Ω2 = 1 Ω3 = 2 Ω4 = 3 δ = 1

fi = 1 i = 1, ..., 4

The time response at x = 0.75 is shown in Fig. 5.15. Every load component has a different
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Figure 5.15: Time response of the vertical displacement at x = 0.75.

frequency, thus the matrix of the MACs between POD-modes and eigenmodes coincides, as
expected, with the unit-matrix, see Tab. 5.11. The energy is effectively collected only by
the first mode with the 99.998%.
Let us consider the case of a load with every components at the same frequency without a
dominant one:

N = 1.1 Ω1 = Ω2 = Ω3 = Ω4 = 1 δ = 1

fi = 1 i = 1, ..., 4

The time response at x = 0.75 is shown in Fig. 5.16. The first POD-mode still collects the
larger part of the total energy (the 99.998%), but the shape of the correlation matrix is no
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Figure 5.16: Time response of the vertical displacement at x = 0.75.

ϕ1 ϕ2 ϕ2 ϕ2

χ1 1.00 0.00 0.00 0.00
χ2 0.00 0.97 0.02 0.00
χ3 0.00 0.03 0.60 0.38
χ4 0.00 0.00 0.38 0.62

Table 5.12: MAC between POMs and structural modes.

longer similar to the one of the unit matrix, see Tab. 5.12: In the two previous examples
the energy distribution seems to be very similar. The amount of energy is the same for both
the examples (the load is the same in magnitude) but it changes the correlation between
the components of the response. Indeed, in the first example the POD operator (being the
coefficients αnm = δnm) is diagonal if expressed on the basis of the structural eigenfunctions
whereas in the second one this is not true.
Finally, it is interesting to consider the same frequency for the components of the load when
there is one of the components that is dominant in magnitude:

N = 1.1 Ω1 = Ω2 = Ω3 = Ω4 = 1 δ = 1

f1 = 100 fi = 1 i = 2, 3, 4

The time response at x = 0.75 is shown in Fig. 5.17. In this case the first POM collect
practically the 100% of the energy. The correlation matrix is given in Table 5.13, which
shows that the presence of a dominant load force the POD basis to coincide to the basis
of the structural eigenfunction. In the first example, Table 5.11, it is the decorrelation
between harmonic signals that causes the diagonal structure of the POD operator over the
structural eigenbasis. Instead, in the latter example, see Table 5.13, the presence of a
dominant component of the load ’forces’ the correlation between the POD basis and the
eigenfunction basis.
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Figure 5.17: Time response of the vertical displacement at x = 0.75.

ϕ1 ϕ2 ϕ2 ϕ2

χ1 1.00 0.00 0.00 0.00
χ2 0.00 0.97 0.03 0.00
χ3 0.00 0.03 0.82 0.15
χ4 0.00 0.00 0.15 0.85

Table 5.13: MAC between POMs and structural modes.

5.2.1 POD analysis in the neighborhood of a Pitchfork Bifurcation: con-
cluding remarks

The behavior of the POD basis in the neighborhood of a harmonically forced static bifur-
cation has been analyzed comparing the Proper Orthogonal Modes and the modes of the
linearized system. In particular, some conditions about the observability of linearized modes
via Proper Orthogonal Decomposition are given. It has been demonstrated that in presence
of a self-adjoint linear part of the partial differential operator and uncorrelated frequency of
the modal load, the Proper Orthogonal Modes and the linear modes are coincident. Other-
wise, the first Proper Orthogonal Mode associated with the larger amount of energy will tend
to coincide with the mode with higher load, whereas the other Proper Orthogonal Modes
will lay in the complementary orthogonal space of such functional direction.

5.3 POD vs Small divisors: general interpretation

The solution of the nonlinear problem has been written as an asympotic series of the form:

v =
√
εv0 +

√
εεv1 (5.42)
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Let us consider a system experiencing a Hopf bifurcation, which gives the most interesting
results for its complex observed behavior. Considering Eq. 2.22 and Eq. 4.58 one has:

v(t) =
√
ε(a(t)w + a∗(t)w∗) + ε

√
εU

 N∑
s=1

ηs
λs − λn

+
N∑

p,q,r=1

ηpηqηr
λp + λq + λr − λn

 (5.43)

where U represents the matrix of eigenvectors of the linearized system and w the critical
mode. Evaluating the correlation matrix from Eq. 5.43 one obtains an expansion series of
the form

Ř = εR1 + o (ε) = 2ε
(
−βR
γR

)
[wR⊥ ⊗ wR⊥ + wI⊥ ⊗ wI⊥ ] + o (ε) (5.44)

being the first term of expansion embedded in the space spanned by the critical eigenvectors.
Moreover, in presence of a LCO the time-response is such that the first term of Eq. 5.44
is diagonal in the base {wR⊥ ,wI⊥}. If the response change its geometrical properties, for
example, it is no longer represented by an ellipse in the phase-space, then also the structure of
the matrix R1 will change and in general it will be no longer diagonal in the basis {wR⊥ ,wI⊥}
assuming a general form:

R1 = c1wR⊥ ⊗ wR⊥ + c2wR⊥ ⊗ wI⊥ + c3wI⊥ ⊗ wR⊥ + c4wI⊥ ⊗ wI⊥ (5.45)

The form of the first term of the solution in Eq. 5.42 depends on the zero divisor con-
ditions which characterized the observed bifurcation (see for example Sec. 4.4). If some
small divisors appears the time-response can be such that R1 is no longer diagonal on the
critical eigenvector basis: its eigenvectors associated to nonzero energy are a combination
of {wR⊥ ,wI⊥}. This means that the rotation observed in the numerical experiments can be
related to the necessity to include more resonance conditions (see Ref. [16]). Observing Eq.
5.43 it appears that if there is some mode activation, the embedding space of the first term
of asympotic expansion increases and then the rank of correlation matrix: the number of
energetically significant POD mode can be related to the number of active modes.



Conclusions

Il est aisé d’être profond:
on a qu’à se laisser submerger par ses propres tares.

Syllogismes de l’amertume, Emil Cioran.

The modern engineering must deal with applications of high complexity. Mathematical
complexity means a large number of degrees of freedom and nonlinearities in the equations
describing the process. Two levels of simplification can be considered in approaching this
problem. The first level is a physical reduction where the real problem is represented by
mathematical models that are treated in order to be studied and their solution computed.
Here we can find all the discretization techniques like Galerkin projection or Finite Element
Methods. The second level is a simplification of the original problem in order to study it in
an easier way by adopting a reduced order model.

Two different methodologies to obtain reduced order models of nonlinear systems has
been studied and compared:

1. Lie Transform Method.

2. Proper Orthogonal Decomposition.

The first approach, based on Normal Form Theory, consists in the identification of a trans-
formation of coordinates which simplify the original problem by reducing the nonlinearities
and identifying an essential dynamics (of a lower dimension with respect to the original one)
driving the whole process. The second, Proper Orthogonal Decomposition, consists in a
statistical analysis which determines an energetically significant subspace of the state space
determining the most energetically significant basis to represent the studied problem (with
lower dimension with respect to the original one).

The Lie Transform procedure has been used in order to obtain analytical solution for
forced nonlinear systems experiencing bifurcation of equilibrium. In particular, the behavior
of Von Kármán beam and finite panel has been studied. From such analytical solutions same
issues about the physical interpretation of zero and small divisors have been discussed. The
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small divisors are the main issues related to the integrability of nonlinear systems and there is
no general theory about them considering nonconservative systems like the aeroelastic ones.
In the present work, this problem is considered and some physical parameters are related
to such conditions determining qualitatively what small means for a divisor relatively to a
perturbation parameter. In particular, it has been identified what means small in terms of
order of magnitude of the perturbation parameter. Moreover, it has been shown which pa-
rameters are relevant to evaluate in order to obtain a good assessment of the system behavior
considering weakly loaded bifurcated systems. Indeed, it appears that if it is considered a
weak forcing load the bifurcation process do not depend on the external loads. This comes
from the fact that the hypotheses of weak load means that the forcing terms do not influence
the eigengeometry of the studied systems and can be treated as a linear perturbation.

Using the analytical results obtained via Normal Form, the POD behavior in a neigh-
borhood of a bifurcation has been studied. In particular, extending the previous results
in literature, the equivalence between POD and linearized modes has been demonstrated
in presence of a Hopf bifurcation. The POD generate an orthonormal basis collecting the
largest part of the response energy. If, as in aeroelasticity, the modal basis (namely, the
system invariant subspaces) is generally complex and orthogonality does not apply, it is nec-
essary a different approach to relate the dynamical invariant objects, in order to extend the
relationship between invariant subspace (modal basis) and POD. The proposed approach
is based on the fact that complex modes can be equivalently represented by the subspace
spanned by their real and imaginary part. Moreover, in nonlinear systems, the concept of
linear modes is still locally significant in the neighborhood of an equilibrium point. Indeed,
these modes represent the tangent spaces to the invariant manifolds. In presence of an equi-
librium bifurcation, like a Hopf bifurcation, the solution can be locally built starting from
the center invariant subspace. Moreover, some conditions of equivalence are addressed also
in presence of static bifurcations with forcing loads. Finally, it has been observed that, if
the modal contribution is fixed, increasing the nonlinearities in the response causes a rigid
rotation between the critical eigenvector and the POD energetically significant POD basis.
From the nature of the solution as predicted by Normal Form, this rigid rotation has been
put in relation with the problem of small divisors.



Appendix A

Modal discretization and POD
behavior

The Proper Orthogonal Decomposition (POD) provides a direct-energy based decomposition
on the phase state-space of a dynamical system as shown in the previous Chapters. In
particular, it has been demonstrated that (see Chapter 4 and 5 and Ref. [41]) the significant
POD-basis coincides with the critical subspace , with only a small correction due to higher
order terms. Moreover, it seems that once the nonlinearities contribution increases, the POD
basis and the critical-mode (always represented by real and imaginary parts), that at the
stability margin coincide, do not coincide anymore but they differ for a rigid rotation in the
same space. This could be explained as an effect of the participation of the nonlinearities
along the motion. Therefore, this effect could be considered as an indirect and qualitative
measure of nonlinearity. The typical aeroelastic systems of a panel vibrating in a supersonic
flow as in Chapter 5 has been considered. In this Appendix the attention is put on the energy
distribution of the system response and, in particular, the effect of the modal approximation
has been studied for the same examples considered in Chapter 5. Indeed, if the analysis
is carried out through a modal approximation of the system the information content, the
maximal embedding space of the system, is fixed a priori. The effect of this assumptions
on the energy distribution on the state-space is analyzed by performing the POD on the
system response directly calculated through a time/space integration of the corresponding
PDE equations and than comparing the two energy distribution. Moreover, the energy
distribution along POVs, i.e. the dimension of the energy-significant POD basis, is related
to the modal participation.The same examples of Sec. 5.1.5 of Chapter 5 will be considered,
and, in order to study the energy distribution, some of the geometrical results repeated.
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A.1 Effect of modal approximation on energy distribution

The well-known mathematical model of a vibrating panel in a supersonic flow (see Ref. [6])
has been presented in Chapter 5 where the modal approximation has been used in order
to obtain the time responses used to calculate the POD objects, namely, POMs and POVs.
The modal discretized analysis is based on a strong assumption: the number of modal
component NM is fixed a priori. In the following Sec. A.2, some results of POD analysis
and the energetic distribution obtained via modal representation and via direct space/time
integration of the PDE model for the same cases considered in Chapter 5 will be compared.
Being interessed in a direct time integration of the PDE equation the PDE model presented
in Sec. 5.1.5 is here written in an dimensionless form.

A.1.1 Panel dimensionless PDE model

The dimensional PDE model governing the nonlinear behavior of an axially loaded panel is,
(Ref. [6]):

ρm
∂2v∗

∂t2
+ Lv∗ +Dζ

∂5v∗

∂t∂4x∗
+Nnl(v∗)

∂2v∗

∂2x∗
+ p(v∗)− p∞ = 0 (A.1)

with L(·) := D∂4(·)
∂4x∗ + Ne

∂2(·)
∂2x∗

where v∗(x∗, t) is the vertical displacement, D is the bending stiffness, ζ is the viscoelastic
damping coefficient, Ne is the compression load, and

Nnl(v∗) = −Eh
2a

∫ a

0
(∂v

∗

∂x∗
)2dx∗ (A.2)

is the nonlinear load induced by the deformation, ρm is the material density of the panel, h
is the panel thickness, a is the panel length and the differential pressure load p(v∗)− p∞ is
given by

p(v∗)− p∞ = ρ∞U
2
∞

(
∂v∗

∂x∗
+ ∂v∗

∂t
/U∞

)
/
√
M2
∞ − 1 (A.3)

where ρ∞ e M∞ are the air density and the Mach number of the undisturbed flow, respec-
tively.
Defining the following dimensionless quantity and introducing the dimensionless time τ :=
t
(
D/ρmha

4
)1/2

,

x := x

a
v = v∗

h

θ1 :=
√
ρ∞aq̄/

√
M2
∞ − 1ρmh θ2 := ζ

√
D/ρmha4

N := Nea
2

D
q̄ := ρ∞U

2
∞a

3

D
√
M2
∞ − 1

Θ = 6(1− ν2)
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one obtains:

∂2v

∂τ2 + L̄v + θ2
∂5v

∂t∂x4 −Θ
[∫ 1

0

(
∂v

∂x

)2
dx

]
∂2v

∂x2 + θ1
∂v

∂τ
+ q̄

∂v

∂x
= 0 (A.4)

with L̄(·) := ∂4(·)
∂x4 + N ∂2(·)

∂x2

It will presented a numerical scheme to obtain a direct calculation of the solution of Equation
A.4 whereas the discretizzation process can be applied as in Sec. 5.1.5.

A.1.2 PDE model: direct time/space discretization integration

The Equation A.4 that governs the panel flutter behavior can be integrated through a finite-
difference scheme with NT time-discretization points and Ns space-discretization points. In
particular, using a second order scheme in space and time (see Ref. [86]), one obtains the
following system of algebraical equations (for the expression of the matrix see Appendix A):

Avn+1 + (B + Nn)vn + Cvn−1 = 0 (A.5)

where the matrix Nn represent the nonlinear terms at the time n∆τ and n = 1, ..., NT .
Moreover,

vnm = vnm = v(xm, τn) = v(m∆x, n∆τ) m = −1, ...,Ns + 2 (A.6)

Observing the Eq. A.6 it is evident the presence of two auxiliary nodes: m = −1 and
m = Ns + 2. They are necessary because of the presence of the fourth partial derivative in
the panel equation. Being the panel simply supported the second derivative of the solution
is zero at m = 0 and m = Ns+1: this boundary condition can be used to compute the value
of the vertical displacement field in the auxiliary nodes. The direct integration gives the
time histories in the discretization points that through the Eq. 4.7 can be used to compute
the correlation matrix and than the POD analysis. The direct integration will provide a
POD energetic analysis independent from the number of chosen modes to approximate the
solution. The POD results performed on the modal solution will be compared with this to
study how the modal approximation affects the energy distribution in the embedding space.

A.2 Numerical results

In Section A.2.1 the numerical scheme presented in Sec. A.1.2 is validated. In the Section
A.2.2 POD analyses are conducted via both PDE direct and modal integration.
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A.2.1 Numerical Scheme Validation

The relevant parameter,q̄ and N , values of the system A.4 are those defining the stability
margins. The static margin is not dependent on the discretization of the domanin and can be
analytically evaluated: Ncr = 1 given the possibility to directly validate statically the linear
part of numerical scheme. The dynamical margin depends on the aerodynamic terms in the
Eq. A.4 that are not diagonalizable with the projection of the structural eigenfunction basis:
the flutter dynamical pressure q̄F depends on the number of modes used in the representation
of the process and on the damping coefficients. We assume the following values for the
damping coefficients:

θ1 = 1, θ2 = 0 (A.7)

Figure A.1 shows the comparison between the value of q̄F computed through direct numer-
ical integration and through modal one (1/NM is the convergence parameter depicted in
abscissa). As it is possible to observe the modal analysis converges to the direct numerical
validating the scheme also for the dynamical linear part. In particular q̄F = 343.68. To
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Figure A.1: Comparison between dynamical flutter pressure computed through direct (− · −) and
modal integration (×)

validate the number of integration point a static convergence analysis has been conducted
and presented in Fig. A.2 where the buckling maximal displacement at x = 0.5 for a com-
pressure load N = 1/π2 + 1 is represented. Note that this analysis do not depend on the
damping coefficients being static. This choice for Np is assumed for all the following results.
Figure A.2 shows the convergence of the scheme for Np → ∞. In particular, from Fig. A.2
we assume in the following Np = 100 which is sufficiently high to give a good representation
of the nonlinear terms.
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Figure A.2: Max buckling displacement vs number of discretization points

A.2.2 Simply harmonic (LCO) and multi-frequency solution

The same dynamical scenarios considered in Chapter 5 are considered. To study the effect of
discretization on the energetic distribution is presented also the energy-distribution among
POD obtained through the direct integration of Eq. A.4 with the time/space discretization
scheme given by Eq. A.5.

Simple-harmonic limit cycle

Let us consider the case defined by the following choice of the parameters

N = 0, θ1 = 1, θ2 = 0, q̄ = 344. (A.8)

The system is beyond but very close its linear flutter stability margin and the presence of
a limit cycle having a purely harmonic oscillation is shown in Fig. A.3 for x∗/a = 3/4.
Considering the modal integration the first two POVs collect about the 99.95% of the energy

Figure A.3: Simply harmonic limit cycle, N = 0, q̄ = 344.

associated to the process in perfect agree with the POD obtained by direct PDE integration
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which identifies practically the 100% of the energy content two POMs. As shown in Chapter
5 in the considered case the eigengeomtery is directly identified by the POD approach (see
Tab. 5.6). This follows from the fact that the systems is practically at its stability margin
and the our perturbation approach works optimally.

Non-simple-harmonic limit cycle-Case A

Let us consider:

N = 3.5, θ1 = 1, θ2 = 0, q̄ = 170.4. (A.9)

The phase diagram at x∗/a = 3/4 shows the non-simple-harmonic nature of the response.
After a POD analysis one has that the first two POVs include again most of the energy,

Figure A.4: Non-simple-harmonic limit cycle, N = 3.5, q̄ = 170.4.

namely, the 99.93% whereas the energy distribution obtained by the PDE direct integration
shows that the first two POVs collect the 99.93% of the total energy, confirming the four-
modes approximation analysis. It is worth to note that in this case the POMs identify only
the subspace spanned by the critical eigenvector (see Chapter 5) and not the eigenvector
itself.

Non-simple-harmonic limit cycle-Case B

If the compression load is increased it is possible to observe that a real eigenvalue becomes
positive. For the following set of the parameters:

N = 8.7, θ1 = 1, θ2 = 0, q̄ = 170.4, (A.10)

the linearized system presents a couple of complex conjugated eigenvalues with positive real
part and it is no longer the onset of a positive real eigenvalue. Figure A.5 shows the phase
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Figure A.5: Non-simple-harmonic limit cycle, N = 8.7, q̄ = 170.4.

diagram of the observed limit cycle. Regarding the energy distribution, the first two POVs
collect only the 97.71% of the total energy, a result slightly but significantly different from
the previous considered cases, that demands for a changed modal participation to the sys-
tem dynamics. Considering the energetic distribution obtained through the POD analysis
performed by the PDE direct integration one obtains that the first two POMs collect the
99.22% of the total energy whereas the first three modes collect the 99.98%. This results
is quantitatively different from the one obtained considering the four-modes approximated
system but qualitatively it agrees with the approximated one.

It is worth to point out that in this case, even if the energy distribution is similar the
motion obtained by direct integration of the PDE model and by modal approximation are
different at all. Figure A.6 shows a comparison by the two obtained solution: the four-modes
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Figure A.6: - direct integration, – four-modes approximation

approximation is more regular, periodic, with respect to the exact solution. Thus, the four-
modes approximation is able to give the right energy distribution in the state-space but it
is not able to reconstruct the real complex behavior of the system: it is evident the filter
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effect of such an approximation and, in the meanwhile, the well-know properties of the first
modes to contain the great part of the energy signal. It is interesting to note that in this
case even if the linearized systems predict only a dominant subspaces of dimension two the
POD shows a greater driving dynamics. In this case we can conclude that the POD gives
more information that the simple linearization of the systems equations.

Chaotic oscillation

The chaotic behavior for the following choice of the equations parameters

N = 4 , θ1 = 1, θ2 = 0, q̄ = 120, (A.11)

is shown in Fig. A.7for x∗/a = 3/4 (response obtained with a four-modes numerical sim-
ulation). In this case, the first two POVs collect about the 99.95% of the energy in a way

Figure A.7: Chaotic solution, N = 4, q̄ = 120.

very similar to the simply harmonic case. Considering now, the energetic distribution on the
state-space following from the direct PDE integration, one obtains that the first two POMs
collect the 99.96% of the total energy, a value practically equal to the one obtained by the
modal representation of the process. This means that even within an approximation depend-
ing on NM , the intrinsic dynamical properties are well described also with four modes. In
particular, the shown comparison stress the relevance of the conclusion of Sec. 5.3. Indeed,
also in the full PDE model the response is very well embedded in the tangent space to the
Center Manifold underlining that the observed rigid rotation is due to small divisors acting
in this subspace and not to some slave modes activation.

A.3 Concluding remarks

The relations between POD objects and intrinsic dynamical invariants has been studied
through numerical experiments following a direct approach (finite difference PDE integra-
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tion) and a modal approximated one. Using as starting point that the energetically significant
POD basis has a dimension (the number of non-zero POVs) related to the nature of the bi-
furcation (the dimension of the center manifolds) and that the POMs are linked with the
intrinsic geometry induced by the dynamics on the state-space,i.e., with the eigenspaces and
invariant manifold, the effect on the energy distribution on the state-space has been investi-
gated comparing the one obtained by four-modes approximation and the one following from
a POD analysis based on the direct integration of the POD model. This comparison showed
that the four-modes approximation seems to be able to depict the qualitative intrinsic dy-
namics,i.e., , the energetic distribution, even if the quantitative nature of the solution can
not different from the exact one. Moreover, in some cases, it has been observed that POD
approach can give deeper information about the local dynamics than the linearized systems
stressing its useful contribution in the study of nonlinear systems.
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Numerical Scheme Matrices

The matrices of Eq. A.5 are reported:

A =



0 0 · · · 0
0 0 · · · 0
a 0 · · · 0
0 a · · · 0
...

... . . . ...
0 0 · · · a
0 0 · · · 0
0 0 · · · 0



(B.1)

where

a =
{

θ2
2∆t∆x4 − 4θ2

2∆t∆x4
1

∆t2 + 6θ2
2∆t∆x4 + θ1

2∆t −
4θ2

2∆t∆x4
θ2

2∆t∆x4

}
(B.2)

B =



0 0 · · · 0
0 0 · · · 0
b 0 · · · 0
0 b · · · 0
...

... . . . ...
0 0 · · · b
0 0 · · · 0
0 0 · · · 0



(B.3)

where

b =
{

1
∆x4 − 4

∆x4 − N
∆x2 − q̄

2∆x − 2
∆t2 + 6

∆x4 + 2N
∆x2 − 4

∆x4 − N
∆x2 + q̄

2∆x
1

∆x4

}
(B.4)
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C =



0 0 · · · 0
0 0 · · · 0
c 0 · · · 0
0 c · · · 0
...

... . . . ...
0 0 · · · c
0 0 · · · 0
0 0 · · · 0



(B.5)

where

c =
{
− θ2

2∆t∆x4
4θ2

2∆t∆x4 − 1
∆t2 −

6θ2
2∆t∆x4 − θ1

2∆t
4θ2

2∆t∆x4 − θ2
2∆t∆x4

}
(B.6)

Moreover,

Nn = (Sun)T (Sun)D (B.7)

with

S =



0 0 · · · 0
0 0 · · · 0
s 0 · · · 0
0 s · · · 0
...

... . . . ...
0 0 · · · s
0 0 · · · 0
0 0 · · · 0



(B.8)

s =
{

0 − 1
∆x 0 1

∆x 0
}

(B.9)

and

D =



0 0 · · · 0
0 0 · · · 0
d 0 · · · 0
0 d · · · 0
...

... . . . ...
0 0 · · · d
0 0 · · · 0
0 0 · · · 0



(B.10)
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with

d =
{

0 1
2∆x2 − 2

∆x2
1

2∆x2 0
}

(B.11)
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