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Abstract 
 

Nuclear Factor I (NFI) transcriptional factors constitute a family of four members, 

NFI-A, B, C and X, known for their positive and negative transcriptional regulatory 

roles in a cell type and promoter specific context. We previously identified NFI-A as 

a relevant target of the myeloid regulator microRNA-223, then we found that its 

levels play a key role in directing hematopoietic progenitors to the erythroid or 

granulocytic lineage. This prompted us to examine whether the expression of NFI-A 

and/or other NFIs factors could regulate primitive and definitive hematopoiesis in 

vivo. To this end we initially studied the expression pattern of NFIs factors in 

different tissues and stages of embryo development of CD1 mice. Our preliminary 

results indicate that NFI-A presents the most interesting expression pattern among 

NFIs factors, being express in hematopoietic tissues earlier and at the highest level 

during embryo development. In addition, performing colony-forming progenitor 

assays, we found NFI-A expression in primitive erythroid progenitor and during 

definitive hematopoietic colonies production, implicating it in having a possible role 

in primitive and definitive hematopoiesis. To elucidate the role of NFI-A in 

hematopoiesis we used two different strains of NFI-A-/- mice: B6N31 and 

B6hyb129mice. Histological examinations of hematopoietic tissues of NFI-A-/- mice 

showed that Nfi-A disruption results in hypocellularity of hematopoietic compartment 

together with a marked decrease of M/E ratio. Genes expression analysis performed 

on B6N31 hematopoietic tissues indicates that NFI-A -/- mice have a delay in the 

repression of embryonic β-globins and a perinatal decrease in adult globins 

expression, suggesting an involvement for NFI-A in the control of β-globins 

switching. In addiction NFI-A -/- hematopoietic tissues presents an up-regulation of 

NFI-B expression, indicating its possible action as compensator of NFI-A. 

To investigate about the role of NFI-A in adult hematopoiesis, we performed 

complete blood counts of peripheral blood  from adults B6N31 NFI-A +/- and we 

observed a decreased MCV, an increased RDW and a decreased MCH compared 

with adult NFI-A +/+ B6N31 mice, demonstrating an haploinsufficiency of NFI-A 

factor and an altered hemoglobin synthesis. These data indicates that NFI-A could be 
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involved in the pathogenesis of hematological diseases, further underlying its 

importance in hematopoietic development. 
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1. Introduction 

 

 

1.1. Hematopoiesis  
 

Adult mammalian blood contains different types of cells with specific biologic 

function, ranging from the transport of oxygen to the production of antibodies. Blood 

cells have limited life spans and they are produced throughout the whole life; all the 

processes involved in the production are collectively called hematopoiesis and they 

all originate in the bone marrow from a common stem cell: the Hematopoietic Stem 

Cell (HSC). The HSC is characterized by two main properties: self-renewal and 

multipotency. Self-renewal ensures maintenance of the pool of HSC, whereas 

multipotency allows generation of all types of differentiated blood cells. Initially, 

differentiation of HSCs generates two kinds of progeny, Common Lymphocyte 

Progenitors (CLPs) and Common Myeloid Progenitors (CMPs). CLPs have the 

potential to differentiate into different downstream progenitors, including the B, T 

and Natural Killer (NK) cell lineages. CMPs give rise to two progenitor cells: 

Granulocyte/Macrophage Progenitors (GMPs), which differentiate further to 

produce granulocytes and monocyte/macrophages; and 

Megakaryocyte/Erythrocyte progenitors (MEPs), producing megakaryocytes and 

red blood cells (Figure 1.1) (Orkin and Zon 2008). During normal steady state 

conditions, HSCs reside mainly in the marrow cavity, but under certain stress 

conditions they migrate and colonize other organs such as liver and spleen in a 

process termed extramedullary hematopoiesis (Greer, Foerster et al. 2008 ). 

The HSCs arise during embryonic development. Within the mammalian embryo the 

hematopoietic system is one of the first complex tissues to be formed during 

ontogeny, derived from the mesodermal germ layer, with the allocation and 

specification of distinct blood cells in sequential overlapping sites. Hematopoiesis 

begins early during embryogenesis and undergoes many changes during fetal and 

neonatal development. The initial hematopoiesis is termed primitive hematopoiesis, 

while the second phase takes the name of definitive hematopoiesis (Greer, Foerster 

et al. 2008 ). 
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Figure 1.1: Schematic representation of the main lineage commitment steps 
in adult mammalian hematopoiesis. The hematopoietic stem cell (HSC) 
resides mainly in the bone marrow and gives rise to the common lymphoid 
progenitor (CLP) and the common myeloid progenitor (CMP). CLPs give rise to 
Natural Killer (NK), B and T cells, while CMPs give rise to Megakaryocyte-
Erythrocyte Progenitors (MEP) and Granulocyte-Monocyte Progenitors 
(GMPs). Erythrocytes and megakaryocytes origin from MEPs, while GMPs 
give rise to neutrophils, basophils and eosinophils granulocytes and to 
monocyte/macrophage cells. (adapted from: © 2001 Terese Winslow, Lydia 
Kibiuk) 
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1.2.   Primitive hematopoiesis 

Hematopoiesis is one of the first processes established following implantation of the 

blastocyst. The initial wave of blood production take place in the mammalian yolk 

sac and is termed ‘‘primitive’’. The development of primitive erythroblasts in the 

yolk sac is critical for the survival of the mammalian embryo. Indeed, the primary 

function of primitive hematopoiesis is to produce red blood cells facilitating tissue 

oxygenation as the embryo undergoes rapid growth (Orkin and Zon 2008). In mouse 

targeted disruption of genes involved in yolk sac’s primitive erythropoiesis, 

including SCL (TALl), LM02 (RBTN2), and GATA-1, leads to early embryonic 

death (Palis and Segel 1998). Primitive hematopoiesis results above all in the 

production of erythroid cells, but is not limited to this lineage. Klimchenko and 

colleagues defined a bi-potential hematopoietic progenitor (MEP-P) that gives 

rise to both primitive erythrocytes and primitive megakaryocytes (Klimchenko, 

Mori et al. 2009). Moreover careful analysis of staged embryos indicated the 

presence of macrophage progenitors associated temporally and spatially with 

primitive erythroid progenitors at E7.25 (Palis, Robertson et al. 1999). Their early 

development has led to the hypothesis that they also represent a “primitive” 

population: they mature rapidly, possibly bypassing the monocyte stage of 

development, and they express lower levels of certain genes than later stage 

macrophages, suggesting that they could represent a unique population (Keller, 

Lacaud et al. 1999). Therefore the term “primitive hematopoiesis” should be used to 

describe cellular lineages arising temporally and spatially with the primitive 

erythroid lineage in the presomitic yolk sac (McGrath and Palis 2005). 

In this chapter we will focus our attention to primitive erythropoiesis, that results in 

the production of primitive erythroblasts earning the name of megaloblasts. These 

cells have several characteristics distinguishing them from their later definitive 

counterparts: first of all they differentiate within the vascular network, they are 

characterized by more rapid differentiation, by an increased sensitivity to 

erythropoietin, by a larger volume, with an estimated MCV of 250 fl/cell, and they 

express embryonic hemoglobin (Palis and Segel 1998). 
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Figure 1.2: Blood islands morphogenesis. A) in the wall of the yolk sac 
undifferentiated mesenchyme condenses to form angiogenetic cell clusters. The 
centers of these clusters form the blood cells, and the outsides of the clusters 
develop into blood vessel endothelial cells. B) Photograph of a human blood 
island in the mesoderm surrounding the yolk sac (adapted from Gilbert 2005). 

1.2.1. Primitive erythroid cells emergence: the blood island and the 

hemangioblast 

The first morphological evidence of hematopoiesis in mammalian embryos, 

including mouse and human, is the appearance of pools of immature primitive 

erythroid cells, termed blood islands, within the mesoderm layer of the yolk sac. 

These blood islands emerges between E7.0 and E7.5 of mouse development and at 

about 16 days of development in humans and consist of immature primitive erythroid 

cells that rapidly become enveloped by endothelial cells (Palis, Malik et al.; 

Ferkowicz and Yoder 2005). The developing vascular plexus of the visceral yolk sac, 

a honeycomb-like series of vessels, separates the distal embryo proper and the 

proximal blood island region. Between E7.0 and E7.5 of mouse development, local 

proliferations of the extra-embryonic mesodermal sheet produce thickened regions 

called mesodermal masses (Silver and Palis 1997; Ferkowicz and Yoder 2005). 

Cells of mesodermal masses rapidly divide and form, by the late neural plate stage 

(E7.75), angioblastic cords, that eventually differentiate into recognizable 

Maximow-type blood islands, consisting of isolated clusters of blood cells enclosed 

by sinuous visceral endoderm and mesothelium (Figure 1.2).  
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Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the 

early embryo and is initiated by the emergence of progenitors assayed as colony-

forming cells (EryP-CFCs) (Wong, Chung et al. 1986). These primitive progenitors 

form in vitro compact colonies of large primitive erythroid cells (Palis, Robertson et 

al. 1999). EryP-CFC emerge within the developing yolk sac at the late primitive 

streak stage (approximately E7.0 of mouse development), after the onset of 

gastrulation but before morphological evidence of blood island formation (Palis, 

Robertson et al. 1999). The close spatial and temporal appearance of blood cells and 

endothelial cells in the yolk sac suggested that they originate from a common 

precursor, called hemangioblast (Keller, Lacaud et al. 1999; Palis, Malik et al. 

2010), which require yolk sac visceral endoderm-derived factors for blood island 

formation. Dissection of gastrulating embryos into distal embryo proper and 

proximal yolk sac portions reveals that EryP-CFCs are found in both the prospective 

blood island region and distally, near the primitive streak of the embryo proper 

(Palis, Robertson et al. 1999). This finding is consistent with the proposal that early 

extra-embryonic mesoderm or hemangioblasts commit the primitive erythroid 

lineage soon after its emergence from the primitive streak and that the primitive 

erythroid and endothelial lineages diverge before reaching the region of the yolk sac 

blood islands (Moore and Owen 1967; Ottersbach, Smith et al. 2009; Costa, 

Kouskoff et al. 2012).  

 

1.2.2. Primitive erythroid cells mature in the blood stream 

The transient appearance of EryP-CFCs leads to the generation of a wave of 

synchronously maturing erythroid precursors. Immature primitive erythroblasts begin 

to enter the bloodstream with the onset of cardiac contractions, by E8.5 of mouse 

development (Ji, Phoon et al. 2003; McGrath, Koniski et al. 2003). Over the next 8 

days, the EryPs mature in the circulation and undergo morphological changes 

classically associated with definitive erythroid precursor maturation in the adult 

marrow, including decrease in erythroblast cell size, nuclear condensation with loss 

of euchromatin, and hemoglobin accumulation (Figure 1.3) (Kingsley, Malik et al. 

2004; Fraser, Isern et al. 2007; Palis, Malik et al. 2010). The latter, in association 

with decreased RNA levels, results in loss of cytoplasmic basophilia observed by 
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Wright-Giemsa staining. Like definitive erythropoiesis, the maturation of primitive 

erythroid precursors is associated with several cell divisions. Primitive erythroblast 

numbers expand 100-fold between E8.5 and E10.5 of mouse gestation. The presence 

of mitotic cells in the bloodstream (Bethlenfalvay and Block 1970), studied by 

thymidine incorporation experiments (De la Chapelle, Fantoni et al. 1969), and cell 

cycle analysis (Sangiorgi, Woods et al. 1990), indicate that circulating murine 

primitive erythroblasts stop dividing by E13.5. Primitive erythroblasts rapidly 

accumulate hemoglobin, ultimately achieving steady state levels of 80-100 pg/cell 

(Fantoni, De la Chapelle et al. 1969; Palis, Malik et al. 2010). 

The presence of nucleated primitive erythroid cells in mammalian embryos has 

raised the possibility that this lineage shares many features with their non-

mammalian counterparts. However, in the early 1970’s, enucleated “megalocytes” 

having the same size and hemoglobin content as nucleated yolk sac erythroblasts 

were detected at later times of mouse gestation  (Bethlenfalvay and Block 1970). 

These cells are 3-fold larger than the fetal liver-derived “macrocytes” that enter the 

bloodstream beginning at E12.5, and were postulated to be primitive erythroblasts 

that had undergone enucleation (Palis 2008). While nucleated yolk sac-derived 

erythroid cells are no longer present in the bloodstream after E16.5, megalocytes 

were found in the bloodstream until E18.5 (Bethlenfalvay and Block 1970). Using 

antibodies specific for embryonic globins to identify primitive erythroid cells, it was 

determined that primitive erythroblasts in the mouse fetus enucleate between E12.5-

E16.5 of gestation (Kingsley, Malik et al. 2004). Enucleated primitive erythrocytes 

have been identified in the bloodstream of mice even several days after birth 

(Kingsley, Malik et al. 2004). Enucleation of erythroid cells in the marrow results in 

the formation of two daughter cells. The first is the enucleated reticulocyte that 

completes its maturation by removing internal organelles and reorganizing its 

cytoskeleton. The second consists of the condensed nucleus surrounded by a thin rim 

of cytoplasm and an intact cell membrane. This second cell, recently termed 

“pyrenocyte”, is rapidly ingested by macrophages (McGrath, Kingsley et al. 2008). 

Primitive pyrenocytes have been detected in the bloodstream of mouse embryos 

between E12.5-E16.5 of gestation, during the time when primitive erythroid cells 

enucleate (McGrath, Kingsley et al. 2008). These observations suggest that terminal 

differentiation of mammalian primitive erythroid cells results in erythrocytes, which 
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are more similar to the enucleated red cells of mammals rather than the nucleated red 

cells of birds, fish and amphibians (Palis, Malik et al. 2010). 

 

 

1.2.3. Hemoglobin “switching 

Over the ontogenesis, both the α- and β-like polypeptide subunits of hemoglobin 

varies, leading to the assembly of  hemoglobin molecules with different 

physiological properties. Embryonic (ε)  and fetal (Gγ-Aγ) hemoglobins have a 

higher affinity for oxygen than adult (δ-β) ones. This facilitate oxygen exchange 

across the placenta.  

The human and mouse β-globin loci are the most intensively studied mammalian 

globin loci, they are positioned respectively on the chromosome 11 and 7 and contain 

several globin genes, a large upstream regulatory element, named Locus Control 

Region (LCR), and a number of additional regulatory elements (Figure 1.4A). 

During development, the expression of globins changes in a process called 

hemoglobin switching and the genes are positioned on the chromosome in the same 

order of their expression during ontogenesis (Grosveld, Dillon et al. 1993; Dillon, 

Trimborn et al. 1997; Noordermeer and de Laat 2008; Palis, Malik et al. 2010). Since 

this switch in globin expression coincided temporally with the transition from 

primitive to definitive erythropoiesis, it was initially thought that primitive and 

definitive erythroid cells exclusively express embryonic and adult globins, 

respectively. However, this hypothesis did not explain the complexity of globin gene 

expression in the mouse or in the human.  

Figure 1.3: Stages of primitive hematopoiesis: summary of different phases of 
EryP development, from progenitor to terminal maturation and enucleation. The 
images of EryP at different stages were cropped from photographs of Giemsa 
stained cells (adapted from Baron, Isern et al. 2012)  
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The human β-globin locus contains 5 functional genes that are expressed in the order 

of their arrangement within the locus (ε-Gγ-Aγ-δ-β). These genes undergo two major 

transitions in expression during ontogeny, the first from embryonic (ε) to fetal (Gγ-

Aγ) globins and the second from fetal to adult (δ-β) globins.  

In the mouse, there are four functional β -globin genes (Hbb-y, Hbb-bh1, Hbb-b1, 

Hbb-b2) (Figure 1.4A). The mouse Hbb-bh1 and human γ-globin genes are thought 

to have evolved from a common ancestral γ-globin gene However the mouse Hbb-

bh1-globin has not been modified to be expressed in definitive fetal red cells as seen 

in humans, but represents a second embryonic β-globin together with Hbb-y 

(Kingsley, Malik et al. 2006; Palis, Malik et al. 2010). Moreover, in murine 

embryonic tissue, the Hbb-bh1 gene initially appears to be expressed at higher levels 

than Hbb-y, also if is positioned downstream this one. Thus, in the mouse, there is no 

fetal to adult hemoglobin switch and defined stages of development gene expression 

is not strictly correlated with their order on the chromosome 7 (Kingsley, Malik et al. 

2006; Noordermeer and de Laat 2008).  

At the α-globin locus a similar switch from an embryonic to an adult α-globin 

subunits occurs in both mice and humans (Figure 1.4B) (McGrath and Palis 2005; 

McGrath and Palis 2008). The functional genes of the α-globin cluster are organized 

with an embryonic ζ-globin gene, located at 5’, and two adult α-globin genes, located 

at 3' (Leder, Swan et al. 1981). The embryonic ζ-globin gene is the first to be 

expressed at the onset of erythropoiesis in the yolk sac of the developing embryo. As 

the expression of the embryonic ζ-globin decreases, the adult α-globin genes are 

activated and expressed throughout the lifetime of the mouse (Figure 1.4B) (Leder, 

Daugherty et al. 1997). However, the α- like globins switch appears to occur earlier 

than the β-globins switching, within the primitive lineage (Peschle, Mavilio et al. 

1985; Kingsley, Malik et al. 2006). 
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Figure 1.4: A diagram illustrating the developmental switching of the β-like 
globins (2 A) and the α-like globins (2 B) gene expression in mouse. Below 
each diagram is illustrated the organization of the correspondent locus (adapted 
from Sankaran, Xu et al. 2010)  

 

 

 

 

  

G
lo

bi
n

sy
nt

he
sis

(%
)

Gl
ob

in
sy

nt
he

si
s

(%
)

20

60

100

20

60

100

9 11 13 15 17 Adult 9 11 13 15 17 Adult
Age DPC (days) Age DPC (days)

Hbb-b1 
Hbb-b2

Hbb-y

Hbb-bh1

Hba-α1 
Hba-α2

Hba-ζ

Regulatory
region

Regulatory
region

Mouse β-globin locus Mouse α-globin locusA. B.



17 
 

1.3.    Definitive hematopoiesis 

During vertebrate ontogeny hematopoiesis takes place in several discrete anatomical 

niches that change rapidly, accompanying the highly dynamic processes 

characteristic of embryonic development (figure 1.5). Emergence of blood cells in 

new embryonic niches is usually characterized by a decline in the hematopoietic 

activity of the prior site (Cumano and Godin 2007; Costa, Kouskoff et al. 2012). 

Shifting the anatomical location of hematopoiesis during ontogeny may be an 

effective strategy to adapt blood production to the changing needs of the embryo. In 

fact, it may be easier to shift blood production to a new niche rather than having to 

remodel an existing niche; in particular some blood forming tissues, such as the yolk 

sac and placenta, are transient in nature. Moreover, temporal overlap of blood 

production in multiple sites creates a redundant system, which is able to safeguard 

against defects that can affect a single site (Ottersbach, Smith et al. 2009). In 

mammals, the very first blood cell emerge within the yolk sac before circulation is 

initiated. As organogenesis starts, hematopoietic cells are detected in the developing 

Aorta Gonads Mesonephros (AGM) region, placenta, vitelline and umbilical 

arteries. Later in gestation, the fetal liver becomes the main organ harboring 

hematopoietic activity. Just before birth, blood cell development is transferred to the 

bone marrow, the final and lifelong site of adult hematopoiesis (figure 1.5) (Costa, 

Kouskoff et al. 2012). Nevertheless, not all hematopoietic anatomical regions hold 

the capacity to generate blood cells de novo. The true hematopoietic stem cell (HSC) 

potential of the progenitors generated in each site and their relative contribution to 

the adult pool is not yet clear and has been the subject of long-standing debates 

(Costa, Kouskoff et al. 2012). This aspect will be described in more detail below. 
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Figure 1.5: Developmental time windows for shifting sites of hematopoiesis 
(adapted from Orkin and Zon 2008).  

 

1.3.1. Emergence of definitive HSCs 

The yolk sac was originally believed to be the unique embryonic hematopoietic site 

with the potential to produce progenitors of all adult blood lineages (Moore and 

Owen 1965; Moore and Owen 1967). This idea was challenged in the 1970s by 

compelling evidence from experiments involving chicken-quail chimeric embryos. 

Quail donor embryos transplanted onto chicken recipient yolk sacs before circulation 

resulted in chimeras whose hematopoietic system was composed only of donor cells 

(Dieterlen-Lievre 1975). These experiments suggested that extra-embryonic 

hematopoiesis is transient. They also revealed the existence of an intra-embryonic 

hematopoietic source, later on shown to be the mesoderm aortic region. Concordant 

results were obtained in murine embryos extending this new paradigm to mammalian 

models (Costa, Kouskoff et al. 2012). The hematopoietic determination of 

mesodermal cells takes place in the caudal intra-embryonic region, beginning at the 

presomitic stage (E 7.5 of murine ontogenesis). As for the yolk sac, mesoderm is 

associated with endoderm in intra-embryonic hemogenic sites, a combination termed 

Splanchnopleura (Sp) (figure 1.6). After the 15-somite stage (E8.5–10.0 of murine 

development), the tissues derived from the Sp takes the name of Para-aortic Sp (P-

Sp), and comprise the endoderm of the developing gut, the dorsal aorta, the 

omphalomesenteric artery, and the splanchnopleural lining of these tissues (figure 

1.6) (Medvinsky and Dzierzak 1996). When fetal liver colonization by hematopoietic 

stem cells begins, the P-Sp develops comprising, besides the aorta, the developing 
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gonads and the mesonephros and is referred to as AGM region (10.0–11.5 murine 

embryos) (figure 1.6)  (Muller, Medvinsky et al. 1994; Garcia-Porrero, Godin et al. 

1995; North, Gu et al. 1999; de Bruijn, Speck et al. 2000).  

Colony Forming Units-Spleen (CFU-S) arise in the mouse AGM of E9.0 embryos, 

in consistently higher numbers than in the yolk sac (Medvinsky, Samoylina et al. 

1993; Medvinsky and Dzierzak 1996; Medvinsky, Rybtsov et al. 2011). Moreover, 

cells from the AGM compartment of E10.0 embryos successfully exhibited HSC 

properties with and without previous expansion in vitro, restoring the hematopoietic 

system of recipient irradiated adult mice whereas yolk sac-derived cells failed to do 

so (Muller, Medvinsky et al. 1994; Medvinsky and Dzierzak 1996). This ability is 

due to the presence of  long-term repopulating hematopoietic stem cells (LTR-

HSCs), the adult-type definitive stem cells, able to produce all hematopoietic 

lineages over the entire lifespan of an animal. LTR-HSCs first appear in the AGM,  

they emerge in very small number only one day after in the yolk sac and two days 

later they are also found in the liver. Yolk sac derived hematopoiesis becomes 

unnecessary at this point and disappears. Eventually, LTR-HSCs migrate from the 

fetal liver to the bone marrow in the circulation, and the bone marrow becomes the 

primary site of hematopoiesis. A very small reserve of stem cells remaining in the 

liver. Once definitive hematopoiesis begins, erythrocytes, lymphocytes, monocytes, 

granulocytes, and platelets are formed (Greer, Foerster et al. 2008 ). 

Definitive hematopoietic hierarchy in the mouse has been deduced by the culture of 

hematopoietic progenitors in semisolid media. In murine bone marrow the most 

undifferentiated erythroid progenitors is the Burst Forming Unit-Erythroid cell 

(BFU-E), the name of which derive from the ability to give rise to big erythroid 

colonies after 7-10 days in methylcellulose culture. A more mature erythroid 

progenitor is represented by Colony Forming Unit-Erythroid cells (CFU-E), that 

form erythroid colonies smaller than BFU-E ones after 2-3 days in culture. Within 

the murine yolk sac BFU-Es become detectable at E8.25, just before the beginning of 

blood circulation, and expand in this site during the following 24 hours. definitive 

erythroid progenitors are found in increasing numbers in the bloodstream between 

E9.5 and E10.5; they expand exponentially and differentiate into the liver soon after 

it emerges as a hematopoietic organ, at E10.0 (Wong, Chung et al. 1986; Palis and 

Yoder 2001). CFU-Es are detectable from E9.5 during murine development in yolk 
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Figure 1.6: Localization and evolution of the intra-embryonic hemogenic 
site in the mouse embryo (adapted from Cumano and Godin 2007).  

sac, blood stream and intra-embryonic tissues. In the yolk sac BFU-E and CFU-E 

number starts to decreases between E10.5 and E11.5, while increases esponentially 

in the developing liver, consistently with the maturation of definitive erythroblasts 

(Palis and Yoder 2001). While the generation of erythroid and myeloid precursors in 

this tissue has been clearly described (Palis, Robertson et al. 1999), the lymphoid cell 

development is only now being understood. Recent studies have demonstrated that 

the murine yolk sac contains precursor cells of the first innate B lymphocytes at E9.0 

that originate independently from the equivalent progenitors generated in intra-

embryonic sites (Yoshimoto, Montecino-Rodriguez et al. 2011).  

 

  



21 
 

1.3.2. Intra-embryonic vs extra-embryonic HSCs origin 

Whether the yolk sac is capable of autonomously generating precursors with HSC 

potential has been a matter of great controversy. Blood precursors in the yolk sac 

seem to be primed to restricted hematopoietic lineages, and thus are intrinsically 

distinct from the consensual multilineage properties of HSCs (Costa, Kouskoff et al. 

2012). Yolk sac was shown to harbor in vitro clonogenic myeloid progenitors, called 

Colony Forming Units-Culture (CFU-Cs) and Colony Forming Units-Splenic 

(CFU-S). CFU-Cs are progenitors that can be stimulated in vitro to generate a colony 

of hematopoietic cells, which cannot self-renew although some can be re-plated a 

limited number of times. CFU-Cs are classified according to the composition of the 

colonies they generate. CFU-S is an immature progenitor cells that can form 

morphologically distinguishable colonies of myeloid cells in spleens of irradiated 

animals following transplantation. However, a more stringent assay in which 

irradiated recipient mice were used to prevent the regeneration of endogenous splenic 

colonies showed that the yolk sac lacks CFU-S prior to E9.5 (Medvinsky, Samoylina 

et al. 1993) and subsequent studies showed lack of definitive HSCs prior to E11.5 

(Muller, Medvinsky et al. 1994; Medvinsky and Dzierzak 1996). Nevertheless, a 

non-invasive strategy designed at labeling precursors during the early stages of extra-

embryonic hematopoiesis suggested that the yolk sac contains progenitors that 

constitute the ancestry of adult blood cells, including the HSC pool (Samokhvalov, 

Samokhvalova et al. 2007). Although such observations remain controversial, as the 

level of labeled cells found in the adult hematopoietic system was relatively low, this 

study reopened the debate on the embryonic sites of HSC emergence (Costa, 

Kouskoff et al. 2012). Cultured pre-circulatory yolk sac’s cells were tested for their 

ability to reconstitute adult irradiated immunodeficient mice  (Rag2−/−γc−/−) (Colucci, 

Soudais et al. 1999; Cumano, Ferraz et al. 2001) and could only provide short-term 

myeloid reconstitution (Boisset and Robin 2012). Thus, paradoxically, yolk sac 

hematopoiesis occurs in the absence of definitive HSCs (Medvinsky, Rybtsov et al. 

2011). On the other hand, the P-Sp/AGM intra-embryonic tissue, as already said, is 

the first tissue to harbor LTR-HSCs (figure 1.7). These findings suggested that adult 

mammalian hematopoiesis has an intra-embryonic origin, but they did not fully 

exclude the possibility that the yolk sac contributes to the adult hematopoietic system 

as embryonic ancestors of definitive HSCs, not detectable owing to the lack of 
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appropriate assays. In fact the specific assay used to determine stem cell activity for 

one population of cells (such as immune reconstitution following irradiation of adult 

animals) may not be appropriate for a different stem cell population. Distinct host 

requirements may be necessary, such as the use of neonatal recipients for cells of the 

yolk sac. Some of the intrinsic differences between cell populations, such as 

developmental stage, ease of access, the local niche, and whether they are dividing, 

may preclude a host transplant assay from detecting engraftment and multilineage 

reconstitution (Orkin and Zon 2008). Data in support of these hypothesis come from 

studies on murine yolk sac explants from pre-circulation embryos co-cultured with 

E10.5 AGM stromal cells, that have been shown to produce progenitors with HSC 

potential. These observations suggest that the AGM produces factors able to create a 

microenvironment suitable to support the generation of adult type HSCs (figure1.7) 

(Matsuoka, Tsuji et al. 2001). It doesn’t exclude that cells originated in the yolk sac 

could express their full HSC potential only when exposed to the intra-embryonic 

environment.  

During mammalian ontogeny the dorsal aorta is connected to the yolk sac and to the 

placenta through the vitelline and umbilical arteries, respectively. The identification 

of hematopoietic cells in these arteries suggested that they also harbor HSCs (Garcia-

Porrero, Godin et al. 1995). This was later confirmed by the detection of cell 

populations with HSC properties emerging around the same stage and with 

frequencies similar to those found in the AGM (Corbel, Salaun et al. 2007; Costa, 

Kouskoff et al. 2012). This raises the possibility that HSCs have an extra-embryonic 

origin and then they colonize AGM and other hematopoietic embryonic tissues 

through the blood flow (figure 1.7). In support of this hypothesis it was reported that 

in mutant embryos lacking a heartbeat and therefore blood flow, intra-embryonic 

haematopoietic cells are absent, demonstrating that definitive haematopoiesis in the 

AGM must originate from the yolk sac, as the latter was found to retain some 

progenitors (Lux, Yoshimoto et al. 2008). However the fact that HSC emergence 

within the aorta is evolutionarily conserved and starts only after the beginning of 

circulation, has induced to investigate whether the sheer stress experienced by AGM 

exposed to the vigorous blood flow within the aorta is required for HSC formation 

(Adamo, Naveiras et al. 2009; North, Goessling et al. 2009). Through a screen of 

chemical compounds, Leonard Zon’s group discovered that increased blood flow is 
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associated with enhanced phenotypic HSC numbers in zebrafish embryos (North, 

Goessling et al. 2009). Using mutant embryos these authors showed that the 

heartbeat is necessary for arterial identity and HSC formation and that the 

downstream effector is nitric oxide, the production of which is induced by 

circulation-associated sheer stress. They also confirmed the role of nitric oxide in 

HSC formation in mouse embryos. Another group quantified the sheer stress to 

which the aorta is exposed and recreated it in vitro, obtaining an enhancement of 

definitive blood cell production from cultured embryonic stem (ES) and AGM cells 

(Adamo, Naveiras et al. 2009). Altogether these studies suggests a scenario in which 

cells on the ventral side of the aorta are induced by the action of nitric oxide, 

transcription factors (such as AML1) and additional environmental features, to 

produce HSCs and release them into the circulation from where they colonize the 

fetal liver. The subsequent gradual replacement of the ventral endothelium and 

smooth muscle layer by somite-derived precursors then causes HSC production to 

cease. It will be of interest to determine if a similar process takes place in the 

placenta and the yolk sac, and whether these tissues can also independently generate 

HSCs (Ottersbach, Smith et al. 2009). 
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Figure 1.7: Model of early hematopoietic ontogeny in the mouse embryo. P-
Sp/AGM, para-aortic splanchnopleura/aorta-gonad-mesonephros region; RBC, 
red blood cells; EryPCFC, primitive erythroid progenitors; Mac-CFC, 
macrophage progenitors; BFU-E, burst forming unit erythroid; CFU-E, colony-
forming unit erythroid; Mast-CFC, mast cell progenitors; LTR-HSC NB: long 
term newborn-repopulating stem cells; LTR-HSC ADULT: long-term adult-
repopulating stem cells (Adapted from Palis, Robertson et al. 1999).  

  

LTR-HSC NB LTR-HSC 
ADULT

LTR-HSC NB
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1.3.3. Sites of definitive hematopoiesis 

During murine ontogenesis, definitive erythropoiesis is established in the liver 

beginning at 28-32 somite pairs (E9.5) (Palis, Robertson et al. 1999; Lux, Yoshimoto 

et al. 2008), probably with an initial colonization of committed progenitors 

originated within the yolk sac. From E11.5 onwards, HSCs from the AGM region 

seed the fetal liver, which subsequently becomes the major center for hematopoiesis 

until around the time of birth (Ottersbach, Smith et al. 2009). Subsequently, around 

E14.0, HSCs migrate from the liver into the spleen and into the bone marrow around 

E17.0. Thereafter, HSCs reside in both spleen and BM throughout the life  of a 

mouse (figure 1.5) (Morita, Iseki et al. 2011).  

The hematopoietic tissues usually consist of a three-dimensional organization of 

vascular endothelial cells, stroma and blood cells that provides the microenvironment 

for haematopoiesis (Tada, Widayati et al. 2006). Stroma is the term used to refer to 

the various cells and the extracellular macromolecules that occupy the hematopoietic 

tissue along with the hematopoietic cells. The stromal cells include specialized 

fibroblasts, adipocytes, macrophages, and lymphocytes, as well as the endothelial 

cells of capillaries and sinuses. The stroma thus constitutes the microenvironment in 

which the hematopoietic progenitor cells grow and differentiate, and there is strong 

evidence that various stromal cells as well as extracellular matrix molecules play 

critical and diverse roles in hematopoiesis (Greer, Foerster et al. 2008 ).  

Unlike yolk sac erythropoiesis, maturation and enucleation of definitive erythrocytes 

takes place within well-defined anatomical units referred to as erythroblast islands 

(Chasis and Mohandas 2008). Each such island contains one or two macrophages 

that give rise to a series of long cytoplasmic projections. Interspersed between these 

projections are clusters of up to 30 erythroblasts at varying stages of differentiation. 

In general, the more differentiated progenitors lie at the periphery of the erythroblast 

island and, as they enucleate, they enter a blood sinusoid, leaving behind their 

nucleus, which is phagocytosed by the macrophage (Figure 1.8). The importance of 

macrophages to normal erythroblast development is demonstrated by impairment of 

erythropoiesis following disruption of normal macrophage function both in vitro and 

in vivo (Iavarone, King et al. 2004; Liu, Li et al. 2007). Erythroblasts are situated in 

close proximity to other erythroblasts within the erythroblast islands and regulatory 

interactions are also believed to occur between adjacent erythroblasts. Early 

erythroblasts express a number of receptors mediating signals to activate the extrinsic 
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Figure 1.8: Erythroblastic Island.  A) Transmission electron micrograph of an 
erythroblastic island isolated from rat bone marrow. B) Proliferation and 
differentiation processes occurring within the erythroid niche. Early-stage 
erythroblasts are larger cells with centrally located nuclei; more differentiated 
erythroblasts are smaller cells containing nuclei located adjacent to plasma 
membranes. Expelled nuclei undergo phagocytosis by central macrophage. 
Young multilobulated reticulocytes are initially attached to the macrophage 
surface and later detach. 

apoptosis pathway. The corresponding ligands for these receptors are expressed by 

late erythroblasts, and activation of the receptors on early erythroblasts leads to 

inhibition of differentiation and to apoptosis (De Maria, Zeuner et al. 1999). This 

pathway is believed to act as a negative feedback loop to regulate erythropoiesis, a 

large numbers of mature erythroblasts shut off the supply of further mature 

erythroblasts by inhibiting differentiation and inducing apoptosis in the early 

erythroblast population. This negative feedback loop is inhibited by erythropoietin. 

Thus, erythroid development, just like other aspects of hematopoiesis, is regulated by 

a complex interplay of signals, through direct interactions and the secretion of 

cytokines, emanating from the stroma and other hematopoietic cells (Ottersbach, 

Smith et al. 2009). 

 

 

The Liver is the major site of hematopoiesis in the foetus. Beginning at E12.5 of 

mouse embryo development, many erythroblasts are present in the liver parenchyma. 

They form erythroblastic islands along the sinusoids from E12.5 to D0, that decrease 

gradually from D2 onward. Moreover E12.5 fetal liver contains also 

megakaryocytes, that are constantly present until D10, neutrophils, that increase 

slightly in number at E14.5 and then decrease, and lymphocytes (Tada, Widayati et 

al. 2006). 

A. B.
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In mouse splenic tissue can first be identified at gestation day 12.5, a reticular mesh 

is formed at E14.5  and the first hematopoietic cells can be seen at gestation day 15.5 

(Seymour et al., 2006). Precursors of the erythroid lineage in the spleen are activated 

between E14.5 and E16.5. After E16.5, erythropoiesis, granulopoiesis and 

lymphopoiesis began. Erythropoiesis and granulopoiesis still occurred in the 

marginal zone and red pulp at day four of post-natal life (Cesta 2006; Tada, Widayati 

et al. 2006). In rodents, spleen remains an extra-medullary hematopoietic organ for 

all adult life and also if extra-medullary hematopoiesis tends to be decreased in adult 

animals, it can become more intense when there is increased demand for blood cells, 

as in cases of anemia, inflammation, decreased production by the bone marrow, or in 

cases of neoplasia (Cesta 2006; Greer, Foerster et al. 2008 ). 

In the late stages of mammalian fetal development, the bone marrow becomes the 

main site of hematopoiesis and in humans it is the exclusive site of postnatal 

hematopoiesis under normal circumstances. The venous structure of the marrow 

cavity is a complex maze of sinuses that eventually drains into central veins. 

Hematopoietic progenitors differentiate outside the sinuses that are formed by a 

continuous layer of endothelial cells partially covered , on the extra-luminal side, by 

a discontinuous layer of adventitial reticular cells: myofibroblast cells that have 

processes forming a network throughout the extra-luminal space of the marrow 

cavity. Mature cells pass through the cytoplasm of the endothelial cells and enter in 

the blood flow (Greer, Foerster et al. 2008 ). 

In the mouse, bone marrow starts to be recognizable at E14.5, erythroblasts are 

visible near the blood vessel from E18.5 and many erythroblasts forming islets 

appear suddenly from D0 to D2 after birth. In the bone marrow there are few CFUs 

until D4, then their number increase remarkably from D7 onwards and the area of the 

hematopoietic compartment in the femur enlarge (Wolber, Leonard et al. 2002; Tada, 

Widayati et al. 2006).  
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1.4.  Hematopoiesis and transcription factors 

 

Many leukemias are characterized by recurrent chromosome translocations resulting 

in either dysregulated (ectopic) expression or the generation of fusion proteins with 

aberrant functionality. With the advent of modern molecular biology, molecular 

analysis of translocation breakpoints demonstrated that a large proportion of the 

genes involved in these translocations, encode DNA-binding transcription factors 

(e.g. Tal1/Scl, AML1, Etv6/Tel), (Rabbitts 1994; Rosenbauer and Tenen 2007), 

subsequently demonstrated to be involved in essential functions during normal 

hematopoiesis. In addition to those factors identified through their involvement in 

chromosomal abnormalities, many additional transcription factors have been 

discovered to be important in normal hematopoiesis using biochemical, cell 

biological, genetic and phylogenetic approaches. Functional analysis has resulted in a 

transcription factor map that illustrates those factors that are required for individual 

progenitor and/or differentiated lineages (figure 1.9) (Cantor and Orkin 2001; 

Ottersbach, Smith et al. 2009; Palis, Malik et al. 2010). The emerging picture within 

hematopoiesis is that transcription factor combinations are critical for specific 

lineage commitment. Hematopoietic genes have regulatory elements specifically 

active in lineage-specific manner, containing combinations of the binding sites for 

those specific factors. Recurring motif combinations present in multiple elements 

thus constitute regulatory codes that provide the link between the cell type-specific 

transcription factor environment and control of gene expression (Ottersbach, Smith et 

al. 2009). 

In the same way the emergence of hematopoietic cells in two distinct and separate 

anatomical sites, the yolk sac and embryo body, along with the emergence of 

functionally different embryonic and adult hematopoietic cells within the embryo, is 

reflected in the genetic program. Targeted mutagenesis in mice demonstrated 

differential requirements for some genes (e.g.  AML1, GATA-2, GATA-3, c-kit) in 

fetal liver hematopoiesis as compared to primitive yolk sac hematopoiesis. In 

contrast, the mutation of other genes (e.g. Flk-1, TAL-l/SCL) results in the 

impairment of both yolk sac and fetal liver hematopoiesis. Thus, the genetic 

programs of embryonic and adult hematopoietic cells appear to be initially 

overlapping during stages determining hematopoietic fate, but become unique and 
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Figure 1.9: Requirements of Transcription Factors in Hematopoiesis. The 
stages at which hematopoietic development is blocked in the absence of a given 
transcription factor, as determined through conventional gene knockouts, are 
indicated by red bars. The factors depicted in black have been associated with 
oncogenesis. Those factors in light font have not yet been found translocated or 
mutated in human/mouse hematologic malignancies. Abbreviations: LT-HSC, 
long-term hematopoietic stem cell; ST-HSC, short-term hematopoietic stem 
cell; CMP, common myeloid  rogenitor; CLP, common lymphoid progenitor; 
MEP, megakaryocyte/erythroid progenitor; GMP, granulocyte/macrophage 
progenitor; RBCs, red blood cells (Orkin and Zon 2008). 

more complex in cells destined to become part of the adult hematopoietic system 

(Durand and Dzierzak 2005; Costa, Kouskoff et al. 2012). 

 

Among the genes most frequently deregulated in human acute myeloid leukemia 

there is AML1, also known as Cbfa2 and Runx1, that belongs to the family of runt 

domain-containing transcription factors (Roumier et al., 2003). AML1 is a crucial 

regulator of hematopoietic development and the absence of AML1 results in severe 

embryonic hemorrhaging, that eventually culminates in lethality around E12.5, and 

in profound fetal liver anemia (Costa, Kouskoff et al. 2012). Although these embryos 
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contain primitive erythroid blood precursors, they fail to undergo definitive 

hematopoiesis and show a complete absence of functional adult repopulating HSC 

(Durand and Dzierzak 2005; Rybtsov, Sobiesiak et al. 2011; Costa, Kouskoff et al. 

2012) . Experiments on mice with conditional knockout of AML1 showed that, 

during adult definitive hematopoiesis, AML1 is necessary for the proper maturation 

of lymphocytes and megakaryocytes, but dispensable for other myeloid lineage cells. 

In absence of AML1, moreover, there is an expansion of the most immature 

progenitor population in the BM, (Putz, Rosner et al. 2006) suggesting a role for 

AML1 in HSC generation, localization and/or maintenance. 

Examples of lineage-specific transcription factors are GATA1 and KLF1, that play 

central roles in erythroid-specific transcription by forming complexes with multiple 

other proteins to upregulate the expression of erythroid-specific genes. GATA1 is the 

founding member of the GATA transcription factor family of dual zinc finger 

proteins that bind a WGATAR consensus motif present in essentially all erythroid-

specific genes. Targeted disruption of GATA1 in the mouse leads to a block of 

primitive erythroid cell maturation at the proerythroblast stage of maturation 

resulting in embryonic death of severe anemia between E9.5-10.5, prior to the shift 

of hematopoiesis from the yolk sac to the fetal liver (Fujiwara, 1996). Thus, 

hematopoiesis including erythroid commitment appears to occur in the absence of 

GATA-1. The arrested proerythroblasts contain an elevated level of transcripts for 

the related transcription factor GATA-2, which we showed is essential in its own 

right for the proliferation or survival of hematopoietic progenitors (Tsai et al., 1994). 

Hence, it is likely that a failure to repress GATA-2 in absence of GATA-1 provides 

for partial erythroid differentiation due to overlapping functions of these related 

proteins. The arrested GATA-/- proerythroblasts undergo apoptosis, indicating that 

GATA-1 acts to prevent death of erythroid precursors in which it is expressed 

KLF1 (EKLF) was the first of 17 KLFs to be identified in mouse and man and its 

expression is largely restricted to both primitive and definitive erythroid lineages, 

While it was initially thought that KLF1 primarily up-regulates the adult β-globin 

gene through interactions with its CACC motif, it is now recognized that KLF1 also 

regulates the expression of multiple erythroid-specific genes, including cytoskeletal 

proteins and alpha hemoglobin stabilizing protein (Hodge, Coghill et al. 2006). Klf1-

/- mice develop fatal anemia associated with a marked deficit in β-globin expression 
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during definitive fetal liver erythropoiesis, due to a defect in the maturation of red 

blood cells, and die by E16.0 (Drissen, 2005; Basu, 2007). The time of death 

coincides with the stage of development in which the fetuses become dependent on 

definitive, fetal liver-derived, erythroid cells that take over the oxygen transport from 

the primitive, yolk sac-derived cells It was initially reported that KLF1 does not 

affect embryonic and fetal globin gene expression, however, KLF 1 is expressed in 

these cells  and also plays an essential role in hemoglobin metabolism and membrane 

stability in primitive erythroid cells, so KLF1  protein is functionally present in both 

primitive and definitive erythroid populations (Palis, Malik et al. 2010) 
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1.5. Nuclear factor I: a family of transcription factors 

Nuclear Factor I (NFI) transcriptional factors constitute a family of site-specific 

DNA-binding proteins that play wide roles in animal physiology, biochemistry and 

pathology. While first described as being required for the replication of Adenovirus 

DNA, this family of transcription/replication proteins has been implicated in the 

replication of several other viruses and has been shown to regulate the transcription 

of a large variety of cellular  and viral genes (Gronostajski, Adhya et al. 1985). In 

addition, NFI proteins have been associated with changes in cell growth and with a 

number of oncogenic processes and disease states. It was demonstrated that NFI-

binding sites function in both DNA replication and gene expression (Jones, 

Kadonaga et al. 1987). Subsequent studies have identified NFI-binding sites in the 

promoter, enhancer and silencer regions of more than 100 cellular and viral genes, 

and mutation analyses indicate that these sites are important for the expression of 

most or all of these genes (Gronostajski, Adhya et al. 1985). NFI proteins bind as 

dimers or heterodimers (see below) to the dyad symmetric consensus sequence 

TTGGC(N5)GCCAA on duplex DNA. Sequences flanking the consensus and 

present in the degenerate 5 nucleotides spacer region appear to modulate the NFI-

binding affinity (Gronostajski 1986; Gronostajski 1987). Quantitative analysis of 

binding showed that while NFIs factors bind very tightly to a dyad symmetric site, 

they can also bind specifically to individual half sites (TTGGC  or GCCAA) with a 

reduced affinity (Meisterernst, Gander et al. 1988).  

Several different nomenclatures arose for the NFI genes, leading to confusion 

regarding the number of NFI genes in mammals. The most popular is based on the 

four NFI genes identified in the chicken and named  NFI-A, NFI-B, NFI-C and NFI-

X (Rupp, Kruse et al. 1990; Kruse, Qian et al. 1991). Homologs of these four NFI 

genes have been described in every vertebrate species examined from xenopus, to 

mouse and humans, and likely represent all of the NFI genes in vertebrates. 

All NFI genes are composed by 11 exons and they show an high degree of structural 

homology. These observations demonstrate that little divergence of the genes has 

occurred since their generation prior to the establishment of the avian lineage, which 

contains all four genes. Transcripts of each of the four NFI genes are alternatively 

spliced generating multiple proteins from each gene. This complexity of protein and 
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mRNA isoforms can be simplified considering domains that are conserved in all of 

the isoforms and between the four vertebrate genes. 

NFI proteins are composed of a N-terminal DNA-binding/dimerization domain and 

C-terminal transcriptional activation and/or repression domains. The N-terminal 

DNA-binding/dimerization domain is preceded by an highly conserved region of 

alternative exons encoding 8–47 aa domains of unknown function (Meisterernst, 

Rogge et al. 1989; Rupp, Kruse et al. 1990; Kruse, Qian et al. 1991; Kruse and 

Sippel 1994). NFI factors DNA-binding/dimerization domain is ~200 aa in length 

and is ~90% identical between the four chicken, mouse, and human NFI genes. This 

N-terminal domain is sufficient for DNA-activity, dimerization and the stimulation 

of adenovirus DNA replication (Mermod, O'Neill et al. 1989; Gounari, De Francesco 

et al. 1990). Point mutations made within this domain have shown that dimerization 

is essential for DNA-binding activity, which can be abolished independently with 

retention of dimerization activity (Armentero, Horwitz et al. 1994). Point mutations 

within this domain can abolish adenovirus DNA replication while retaining both 

DNA binding and dimerization. Moreover the specific interaction of the N-terminal 

DNA-binding/dimerization with the Adenovirus DNA polymerase appears to be 

essential for the recruitment of the polymerase into a replication complex and the 

stimulation of replication (Bosher, Robinson et al. 1990; Chen, Mermod et al. 1990; 

Mul, Verrijzer et al. 1990; Armentero, Horwitz et al. 1994). The NFI DNA-binding 

domain has no detectable sequence homology with other known DNA-binding sites 

and thus may be structurally distinct. Four cysteine residues are conserved between 

all NFI DNA-binding domains, and three of the four residues are required for DNA-

binding activity (Bandyopadhyay and Gronostajski 1994; Bandyopadhyay, Starke et 

al. 1998). While not essential for DNA-binding activity, the fourth cysteine residue 

makes NFI proteins sensitive to oxidative inactivation (redox regulation), a feature 

shared by a number of transcription factors that may play a role in the cellular 

response to oxidative damage (Abate, Patel et al. 1990; Guehmann, Vorbrueggen et 

al. 1992; Matthews, Wakasugi et al. 1992; Bandyopadhyay, Starke et al. 1998). The 

minimum size of the NFI DNA-binding/dimerization domain may differ slightly 

between the four NFI genes, and different C-terminal regions of the proteins, 

obtained by alternative splicing,  may influence DNA-binding affinity. The DNA-

binding affinity is higher when the isoform is larger (Gronostajski 2000).  
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While the DNA-binding and replication activities of NFI proteins reside in the N-

terminal domain, C-terminal domains have been implicated in most, though not all, 

regulation of gene expression by NFI factors. As described above, alternative 

splicing generates many variants of the C-terminal domains of NFI proteins, a 

fraction of which have been tested for functional activity (Gronostajski 2000).  

Unusual features of NFI transcripts are their large 5' and/or 3' untranslated regions 

and the presence of short (2–33 aa) putative open reading frames (ORFs) upstream of 

the predicted initiation codons. Analysis of the 5' regions of NFI cDNAs present in 

GenBank shows the presence of such ORFs from 8 to 98 residues upstream of the 

predicted initiation codons of all four NFI genes from a number of vertebrates 

(Gronostajski 2000). Together with the observation that the major NFI transcripts are 

very large, the presence of these short ORFs raises the possibility of translational 

regulation of NFI protein expression. Another possible function for the large 

untranslated regions of NFI mRNAs may be in the regulation of mRNA stability 

(Gronostajski 2000). 

Since NFI proteins bind to DNA as dimers, several studies have examined whether 

heterodimers can form between the products of the different NFI genes. Efficient 

formation of DNA-binding heterodimers has been shown between products of all 

four chicken NFI genes, with few or no differences being seen in DNA-binding 

affinity, specificity, or stability of the dimers (Kruse and Sippel 1994). As was seen 

previously with homodimer formation of human and porcine NFI-C and rat NFI-A 

(Meisterernst, Rogge et al. 1989; Mermod, O'Neill et al. 1989), the different chicken 

NFI proteins needed to be co-translated in order to form heterodimers. Mixing of 

preformed homodimers yielded no heterodimers. Moreover heterodimers between 

NFI gene products may have different characteristics depending on the components 

of the heterodimer (Liu, Bernard et al. 1997). 

NFI proteins affect transcription through multiple mechanisms. The best studied 

mechanism used by NFI proteins to activate transcription is through direct interaction 

with basal transcription factors. A second mechanism proposed for activation of 

target genes by NFI proteins is a epigenetic one: a number of studies suggest that 

histone H1 can bind weakly to consensus NFI-binding sites, and that NFI may 

activate transcription by direct displacement of histone binding at such sites 
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(Ristiniemi and Oikarinen 1989; Gao, Jiang et al. 1996). It is also likely that specific 

interactions between NFI proteins and various co-activator proteins play a role in 

transcriptional activation; NFI proteins, in fact, may interact with a variety of co-

activators in vivo, and the relative importance of any given co-activator may be cell-

type or promoter-specific (Gronostajski 2000). NFI proteins can repress transcription 

in cell-type and promoter-specific way. One mechanism postulated for repression by 

NFI proteins is through direct competition with more potent transactivators for 

binding at adjacent sites; such competition may play a role in cell-specific 

activation/repression by NFI proteins, where the balance between activation and 

repression may be dependent on the specific isoforms of NFI expressed in a given 

cell type (Gronostajski 2000). NFI-binding sites have also been seen to promote 

repression under conditions where competition between binding sites is unlikely 

(Macleod and Plumb 1991; Adams, Choate et al. 1995; Szabo, Moitra et al. 1995; 

Osada, Daimon et al. 1997; Crawford, Leahy et al. 1998; Rajas, Delhase et al. 1998; 

Cooke and Lane 1999; Leahy, Crawford et al. 1999). In these instances specific C-

terminal regions of NFI proteins can function as repressors when attached to 

heterologous DNA-binding domains, supporting the hypothesis that direct repression 

by NFI proteins occurs in vivo. It is unknown how these repression domains of NFI 

function, but they may be related to known active processes such as the recruitment 

of corepressor proteins by hormone receptors, or direct interaction with the basal 

transcription apparatus (Pazin and Kadonaga 1997). 

1.5.1. NFI family and embryo development 

Binding sites for NFI proteins have been characterized from genes expressed 

specifically in almost every organ system and tissue, including brain, lung, liver, 

kidney, muscle, blood, testes, oviduct, thyroid, adrenal medulla, mammary gland, 

pituitary, retina, olfactory epithelium, fibroblasts, epithelial cells, adipocytes, 

chondrocytes, neurons and glia. For most of these, the NFI-binding sites have been 

shown to be important for gene expression control (Gronostajski 2000). The finding 

that NFIs control a set of tissue specific and developmentally regulated genes suggest 

their role in cell differentiation and embryo development. 

During embryonic development in the mouse, the four NFI genes are expressed in 

unique, but widely overlapping, patterns, supporting the hypothesis that differential 
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expression of the genes results in differential expression of gene-specific target 

proteins during development (Chaudhry, Lyons et al. 1997).   

The most direct evidence for a role for NFI proteins in development comes from the 

disruption of the NFIs genes in mice. For instance, the homozygous deletion of the 

Nfi-A gene (das Neves, Duchala et al. 1999), leads in more than 95% of cases to 

death shortly after birth, and the few survivors develop severe hydrocephalus and 

tremors indicating a neurological defect. All homozygous animals lack a corpus 

callosum, the major fiber tract connecting the two hemispheres of the brain. 

However, other than agenesis of the corpus callosum, no major anatomical defects 

have detected. Since some strains of mice show relatively high frequencies of 

callosal agenesis (Ozaki and Wahlsten 1992; Livy and Wahlsten 1997; Magara, 

Muller et al. 1999), it is unclear whether the agenesis of the corpus callosum 

contributes directly to the perinatal lethality. Since severe hydrocephalus develops 

within 2 weeks after birth in the rare surviving homozygotes, it is possible that 

relatively subtle neuro-anatomical defects contribute to early lethality. In the 

randomly bred Swiss genetic background, there is also a significant loss of 

heterozygous Nfi-A-deficient mice, but only if the knockout allele is transmitted by 

the maternal parent. This unusual trait suggests either that heterozygous females 

show some haploinsufficiency that affects rearing of heterozygous pups or that 

imprinting or some other epigenetic process affects the expression of, or response to, 

the Nfi-A gene. Given the early expression of Nfi-A in mouse development (E9.0 in 

heart and brain, widespread expression by E11.5), it is somewhat surprising that clear 

anatomical defects have been detected only at E16.0–E18.0 where failure of 

development of the corpus callosum is seen. One possibility is that the four NFI 

genes may play partially redundant roles in various tissues, and defects are seen only 

where one gene product is most important.  

Nfi-B-/- mutant mice die within 15 min postpartum due to respiratory distress, due to 

a delay in the development of lungs, arrested the late pseudoglandular stage. Besides 

the lung phenotype, the only obvious phenotypic defect of these mutants are open 

eyes without eyelids. Other organs known to express the Nfi-B gene appeared 

normal, suggesting that in them Nfi-B is redundant and that its loss is possibly 

compensated by the expression of other NFI genes. Nfi-B+/- littermates survive and 

are indistinguishable from their wild-type littermates. However, the histology of their 
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lungs at E18.5 or shortly after birth showed mild alveolar hypoplasia,  an 

intermediate status between homozygous mutants and wild-type littermates; these 

observations suggest that the gene dosage of Nfi-B is critical for lung development 

(Grunder, Ebel et al. 2002). 

Loss of Nfi-C causes major defects in postnatal murine tooth development, the most 

striking defect being loss of molar root formation. In addition, there are clear defects 

in mandibular and maxillary incisor formation and in alveolar bone formation in 

molar tooth sockets. These tooth and bone defects cause runting and lethality unless 

the Nfi-C-/- animals are reared on a soft-dough diet. Since Nfi-C-/- animals can survive 

and be fertile if maintained on nutrient dough, it appears that the tooth defects cause 

the lethal phenotype seen with loss of Nfi-C. Whether additional nonlethal 

developmental defects are present in the Nfi-C-/-  animals awaits further analyses 

(Steele-Perkins, Butz et al. 2003). 

Nfi-X-/- mice die between postnatal days 21 and 28, exhibiting brain malformations, 

defects in endochondral ossification and some pathological changes of the digestive 

tract. Brain malformations are partially similar to ones caused by the loss of Nfi-A; 

these animals shows in fact hydrocephalus a partial agenesis of the corpus callosum. 

Histological analysis of spines and femurs of Nfi-X-/- mice revealed a delay in 

endochondral ossification that lead to a significantly reduced trabecular bone 

formation and calcification (Driller, Pagenstecher et al. 2007).  Moreover it has been 

shown that Nfi-X activates fetal and suppresses embryonic genes in embryonic 

muscle, acting as a transcriptional regulator of the switch from embryonic to fetal 

myogenesis (Messina, Biressi et al. 2010).  

Of interest that during development, NFI-A and NFI-C transcripts are expressed in 

the mesenchyme surrounding the posterior cardinal and vitelline veins and the area 

surrounding the aortic arches respectively (Chaudhry, Lyons et al. 1997), which are 

areas where hematopoietic development occurs. NFI-X knockout mice had an altered 

appearance of the bone marrow (Driller, Pagenstecher et al. 2007).  
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2. Research aims 
 

 

Among NFI transcription factors, NFI-A became subject of interest in our lab, 

because of its involvement in hematopoiesis. Fazi et al. demonstrated that NFI-A is a 

target of miR-223 activity during granulocytopoiesis (Fazi, Rosa et al. 2005). NFI-A 

can compete with the CCAAT enhancer protein α (C/EBPα) binding to the CCAAT 

element on the miR-223 promoter. In myeloid precursors, the activation of C/EBPα 

by retinoic acid treatment displace NFI-A from this binding site on miR-223 

promoter, thus allowing miR-223 upregulation. MiR-223 acts by repressing NFI-A 

and subtracts it from the competition with C/EBPα on miR-223 promoter, 

maintaining sustained levels of miR-223 expression and allowing granulocytic 

differentiation. 

A regulatory circuitry similar to the one involving NFI-A and miR-223 during 

granulocytopoiesis, has been identified during monocytic-macrophage 

differentiation. To progress into monocyte lineage, hematopoietic progenitors up-

regulate the lineage-specific transcription factor PU.1. PU.1 is able to induce the 

expression of miR-424, that synergizes with PU.1 for the activation of terminal 

differentiation genes through the repression of NFI-A (Rosa, Ballarino et al. 2007). 

Further studies indicated that NFI-A plays a major role in the control of the 

erythroid-granulocytic lineage decision at the HPCs level. In unilineage erythroid 

and granulocytic cultures of human HPCs, which recapitulate the in vivo 

differentiation/maturation of hematopoietic stem cells to these hematopoietic 

lineages, the expression of NFI-A, although low in early HPC differentiation, was 

either sharply up-regulated or fully suppressed in later stages of erythroid or 

granulocytic culture respectively. NFI-A accumulation during initial erythroid 

differentiation results in progressive activation of β-globin gene transcription, 

coupled with repression of G-CSFR, thus channeling HPCs and early precursors into 

the erythroid lineage and shutting off their granulocytic potential. Conversely, NFI-A 

suppression in early granulocytopoiesis activates G-CSFR transcription and impedes 

β-globin expression, thereby directing HPCs and early precursors into the 

granulocytic pathway (Starnes, Sorrentino et al. 2009). Moreover a recent study of 
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gene expression profiling and chromatin immunoprecipitation, performed using 

CD34+ HPCs and leukemic K562 cells efficiently expressing exogenous NFI-A at 

high level, revealed that NFI-A is able to induce an erythroid transcriptional program 

and to act directly at the proximal promoter regions of two fundamental erythroid 

genes: SLC4A1, encoding  the major anion exchanger of the red cell, and ALAS2, 

encoding the erythroid specific form of the ALAS enzyme, that catalyze the first step 

in the heme biosynthetic pathway (Starnes, Sorrentino et al. 2010). 

All these evidences prompted us to investigate about the in vivo role of NFIs factors 

during embryonic and adult hematopoiesis, with a particular attention to NFI-A.  

To this end we have analyzed the behavior of NFIs factor in hematopoietic tissues, 

during embryo development of CD1 mice. In a second time we started to use two 

different strains of NFI-A -/- mice: B6N31 and B6hyb129 mice.  

Principal Aims of this Ph.D project were the following: 

· To define a correlation between NFIs factors and the progress of 

hematopoiesis; 

· To analyze the effects of the disruption of NFI-A on embryonic and adult 

hematopoietic tissues, characterizing both our NFI-A -/- mouse models 

through histological and molecular analysis and defining the role of NFI-A in 

hematopoiesis 

· To identify hematopoietic disorders potentially related to NFIs functional 

defects  
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3. Materials and methods 
 

 

3.1. Mice genotyping 
 

Tails from B6N31 pups and skin from B6N31 embryos were lysed at 55°C o/n with a 

lysis buffer composed of: 100mM Tris-HCl (Sigma, St Louis, MO, USA), pH8.8; 

5mM EDTA (Sigma, St Louis, MO, USA), pH8.0; 0.2% SDS (Sigma, St Louis, MO, 

USA); 200mM NaCl (Sigma, St Louis, MO, USA); 100 ug/mL Proteinase K 

(Invitrogen, Carlsbad, CA, USA). The DNA content of the lysate was quantified by 

spectrophotometer and 75ng were used to do a PCR using  was analyzed by PCR in a 

total volume of 30 µl with the following mix: 1 U of Platinum® Taq DNA 

polymerase (Invitrogen, Carlsbad, CA, USA), a primer mix (0.2 pmol/ µl each) 

composed of NfiaI2b, NfiaI2cc, Neo57, Neo371R, Sry1 and Sry2 (PCR genotyping 

primer’s sequences are listed in the table 3.1) 2 x 10-4 dNTPs (Invitrogen, Carlsbad, 

CA, USA) and MgCl2 1.5 x 10-3 (Invitrogen, Carlsbad, CA, USA).  PCR conditions 

were as follows: 4 minutes at 94°C followed by 30 seconds at 94°C, 1 minute at 

60°C and 1 minute at 72°C for 30 cycles and a final extension of 10 minutes at 72°C. 

PCR products were resolved on 2% agarose gels and visualized with ethidium 

bromide. 

 

 

3.2. Embryonic tissues 
 

Timed pregnant CD1 and B6N31 mice were killed by cervical dislocation and uteri 

were removed from the peritoneum and washed with several changes of phosphate-

buffered saline (PBS) (Gibco-BRL, Grand Island, USA). Decidual tissues and 

Reichert’s membrane was dissected free of the embryos in PBS (Gibco-BRL) 

10% FBS (Gibco-BRL) solution. Presomite embryos (E7.0) were staged and grouped 

according to established morphological criteria (Downs and Davies 1993), and 

somite stage embryos (E8.0-E14.0) were grouped according to somite number. 

Individual embryos were either kept whole or dissected to remove the yolk sac and 
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amnion= yolk sac, AGM, dorsal Aorta, GM, liver, heart, heads, FLB, HLB, spleen 

and bone marrow for further processing. 

 

 

3.3.  Adult tissues 
 

Adult CD1 and B6N31 mice were euthanized via CO2 inhalation. Immediately after 

inhalation peripheral blood was collected by cardiac puncture of the heart using a 

1mL syringe and 27G needle (Terumo, Leuven, Belgium). Blood was collected and 

placed in a collection tube containing ethylenediaminetetraacetic acid (EDTA) 

(Starsted, Nünbrecht, Germany) to prevent coagulation. Red blood cells (RBCs) were 

lysed using the Buffer EL erythrocyte lysis buffer (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. The resulting cell pellet was then used 

for either RNA extraction or lysed to obtain protein for western blotting. Livers of 

adult mice were dissected from euthanized mice and washed several times in cold 

PBS. To obtain liver cells, spleens were then mechanically dissociated in cold PBS 

(Gibco-BRL) and passed through a 70 µM filter (BD Biosciences, Franklin Lakes, 

NJ, USA). The resulting cells were pelleted by refrigerated centrifugation at 1200 

rpm for 5 min at 4⁰C and the RBCs were lysed as described previously. The resulting 

pellet was then used for RNA extraction, or was lysed to obtain protein for western 

blotting. To obtain sections, livers were fixed in 4 % paraformaldehyde and 

embedded in paraffin. The spleens of adult mice were dissected from the euthanized 

mice and washed several times in cold PBS. To obtain spleen cells, spleens were 

then mechanically dissociated in cold PBS (Gibco-BRL) and passed through a 70 

µM filter (BD Biosciences, Franklin Lakes, NJ, USA). The resulting cells were 

pelleted by refrigerated centrifugation at 1200 rpm for 5 min at 4⁰C and the RBCs 

were lysed as described previously. The resulting pellet was then used for RNA 

extraction, or was lysed to obtain protein for western blotting. To obtain sections, 

spleens were fixed in 4 % paraformaldehyde and embedded in paraffin. For 

collection of bone marrow cells, whole legs were dissected free from the hip of a 

euthanized mouse, and muscle tissue was cleaned away from the femora and tibiae. 

To obtain cells, the head of the femur or tibia was cut and a 5mL syringe with 26G 
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needle containing cold IMDM medium (Gibco-BRL) and 10% FBS (Gibco-BRL) 

was used to flush bone cavities to collect bone marrow. The cells were centrifuged at 

1200 RPM for 5 min at 4⁰C and the RBCs were lysed from the resulting pellet as 

above. Cell pellets were then used for RNA extraction or lysed to obtain protein for 

western blot. 

 

 

3.4.  Decalcification of bones 
 

B6N31 and B6hyb 129bones were fixed in 4 % paraformaldehyde and placed in a 

volume of 14% EDTA (Sigma, St Louis, MO, USA) pH 7.3 equal to 20X the volume 

of the tissue. The samples are placed at +4°C and the solution changed every week 

until the decalcification was completed. Once decalcified the bones were embedded 

in paraffin. 

 

 

3.5.  RNA extraction and analysis 
 

Total RNA was isolated using the Trizol® reagent (Invitrogen, Carlsbad, CA, USA) 

following the manufacturer’s instructions for AML cell lines, unilineage and 

bilineage culture of human HPCs, and mouse whole tissues (yolk sac, AGM, spleen, 

liver, peripheral blood). For extraction of RNA from samples containing few cells 

(embryonic colonies), RNA was extracted using the RNeasy Plus Micro kit® 

(Qiagen). First-strand cDNA of all samples was synthesized with the SuperScript® II 

(Invitrogen) reverse transcriptase enzyme using equivalent amounts of total RNA for 

each sample and oligo (dT) (Invitrogen) primers. mRNA quantification of samples 

was performed in triplicate by real-time PCR using the ABI PRISM 7700 Sequence 

Detection System (Applied Biosystems, Foster City, CA, USA) and SYBR Green® 

PCR reaction mix (Applied Biosystems) with ΔCt values normalized using 

endogenous GAPDH or HPRT1 as control. Primers used for SYBR Green® real-

time PCR are listed in Table 3.1. Semiquantitative PCR was performed on 1 µl of 
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cDNA using the primers listed in Table 3.1, with the following mix: 1X PCR buffer 

(Invitrogen), Primer mix (0.2 pmol/ µl each), 2 x 10-4 dNTPs (Invitrogen), MgCl2 

1.5 x 10-3 (Invitrogen), and 2.5 U Platinum® Taq DNA polymerase (Invitrogen). 

Primer use Primer name and sequence 

Mice genotyping 
Nfi-a I2B  5’-TGCTGTGTTCTGGTCAGTCAAG-3’ 
Nfi-a I2CC 5’- CAAAGCAAATCTCCATGCTCGG-3’ 

Mice genotyping 
Sry1 5’-AACAACTGGGCTTTGCACATTG-3’ 
Sry2 5’-GTTTATCAGGGTTTCTCTCTAGC-3’ 

Mice genotyping Neo57 5’- GGAGAGGCTATTCGGCTATGAC -3’ 
Neo371R 5’- CGCATTGCATCAGCCATGATGG -3’ 

Quantitative and 
semiquantitative 

PCR   

Gapdh for 5' - ATCAGCAATGCCTCCTGCAC - 3'      
Gapdh rev 5' - TGGCATGGACTGTGGTCATG - 3' 

Quantitative and 
semiquantitative 

PCR 

mNFIA for 5' - TGGCATACTTTGTACATGCAGC -3'     
mNFIA rev 5' - ACCTGATGTGACAAAGCTGTCC - 3' 

Quantitative and 
semiquantitative 

PCR 

mNFIB for 5' - GTTTTTGGCATACTACGTGCAGG - 3'  
mNFIB rev 5' - CTCTGATACATTGAAGACTCCG - 3' 

Quantitative and 
semiquantitative 

PCR 

mNFIC for 5' - GACCTGTACCTGGTCTACTTTG - 3'  
mNFIC rev 5' - CACACCTGACGTGACAAAGCTC - 3' 

Quantitative and 
semiquantitative 

PCR 

mNFIX for 5' - CTGGCTTACTTTGTCCACACTC - 3'  
mNFIX rev 5' - CCAGCTCTGTCACATTCCAGAC - 3' 

Quantitative and 
semiquantitative 

PCR 

mHprt1 for 5’ - TCCTCCTCAGACCGCTTTT – 3’ 
mHprt1 rev: 5’ – CCTGGTTCATCATCGCTAATC – 3’ 

Semiquantitative 
PCR 

Aml1 for 5' - GGCACTCTGGTCACCGTCAT - 3'              
Aml1 rev 5' - CGTTGAATCTCGCTACCTGGTT - 3' 

Semiquantitative 
PCR 

mHbb-bh1 for 5’ - CCTGATTGTTTACCCATGGAC - 3'  
mHbb-bh1 rev 5’ - CAATCACCAACATGTTGCCCAG - 3' 

Semiquantitative 
PCR 

mHbb-b for 5’ - GGTGCACCTGACTGATG - 3'                      
mHbb-b rev 5’ - AGTGGTACTTGTGAGCC - 3' 

Semiquantitative 
PCR 

Gata-1 se 5' - GGAGCCCTCTCAGCTCAGC - 3' 
Gata-1 as 5’ - GCCACCAGCTGGTCCTTCAG - 3’ 
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Table 3.1: Primer name and sequence for primers employed during mice 
genotyping, semiquantitative PCR, and qRT-PCR 

 

 

3.6.  Immunoblotting 
 

Total protein was extracted using CelLytic M Lysis® Reagent (Sigma, St Louis, 

MO, USA) following the manufacturer’s protocol, supplemented with Protease 

Inhibitor Cocktail (Sigma, St Louis, MO, USA). Protein concentration was 

determined by the Lowry Protein Assay (Lowry, Rosebrough et al. 1951). Total cell 

extracts were fractionated under denaturating conditions by electrophoresis on 

NuPAGE® 10% Bis-Tris gels (Invitrogen) using NuPAGE® MOPS SDS running 

buffer (Invitrogen) followed by electroblotting onto a nitrocellulose membrane 

(Whatman PROTRAN® Dassel, Germany). Blots were probed with the following 

primary antibodies: polyclonal anti-NFI-A (Abcam, Cambridge, UK), monoclonal 

anti-β-actin (Calbiochem, San Diego, CA, USA), polyclonal anti-AML1/RHD 

(Calbiochem, San Diego, CA, USA), polyclonal GATA-1 (Santa Cruz CA USA). 

Secondary antibodies used were as follows: anti-mouse IgG peroxidase conjugate 

and anti-rabbit IgG peroxidase conjugate (Pierce, Rockford, IL, USA). 

Immunoreactivity was measured using the ECL method (GE Healthcare, UK). 

Semiquantitative 
PCR 

c-fms for 5’ - CTGAGTCAGAAGCCCTTCGACAAAG -3' 
c-fms rev 5’ -CTTTGCCCAGACCAAAGGCTGTAGC -3’ 

Semiquantitative 
PCR 

mKLF1 for 5’ - GAGACTGTCTTACCCTCCAT - 3’  
mKLF1 rev 5’ - CCACGAAGGGTTCAGGGGCT - 3’ 

Quantitative and 
semiquantitative 

PCR 

mHba-α for 5′-CCTGGGGGAAGATTGGTG-3′ 
mHba-α rev 5′-GCCGTGGCTTACATCAAAGT-3’ 

Quantitative PCR  
mHbb-bh1 for 5’ – AGTTTGGAAACCTCTCTTCTGCCCTG -3’ 
mHbb-bh1 rev: 5’ – TGTTCTTAACCCCCAAGCCCAAG - 3’ 

Quantitative PCR 
mHbb-b for 5′-ATGGCCTGAATCACTTGGAC-3′ 
mHbb-b rev 5′-ACGATCATATTGCCCAGGAG-3′' 

Quantitative PCR 
mHbb-γ for 5’ -TGGCCTGTGGAGTAAGGTCAA-3’ 
mHbb-γ rev 5’-GAAGCAGAGGACAAGTTCCCA-3’ 
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3.7.  Primitive erythroid progenitor (EryP-CFC) assay 
 

Yolk sacs of E8.0 CD1 embryos were dissected, as written below, pooled together 

and placed in Dulbecco’s modified eagle medium (DMEM) (Gibco-BRL) with 10% 

FBS. Yolk Sacs were pelleted by brief centrifugation and resuspended in 200 µl PBS 

and 0.25% collagenase (Sigma, St Louis, MO, USA) and placed at 37⁰C for 30 min-

1h after which single cells were obtained by vigorous pipetting. Excess cold PBS 

with 10% FBS was then added to the cells to stop the collagenase reaction followed 

by centrifugation at 1200 rpm for 5 min at 4⁰C. Cells were resuspended in IMDM 

2% FBS (Gibco-BRL), and counted using Trypan Blue staining (Sigma, St Louis, 

MO, USA). Cells were plated in triplicate at 1 x 105 cells/mL in 0.9% 

methylcellulose-based media MethoCult® M3134 (StemCell Technologies, 

Vancouver BC, Canada) including IMDM, 2mM glutamine (Gibco-BRL), 1% 

penicillin/streptomycin (Gibco-BRL), 5% protein-free hybridoma medium II 

(PFHM-II; Gibco-BRL), 50 µg/mL ascorbic acid (Sigma, St Louis, MO, USA), 450 

µM monothioglycerol (MTG; Sigma, St Louis, MO, USA), 200 µg/mL iron-saturated 

holo-transferrin (Sigma, St Louis, MO, USA), 15% plasma-derived serum (Sera 

Laboratories International LTD, West Sussex, UK) and 4 U/mL rhEPO (PBL 

Biomedical Laboratories, New Brunswick, NJ, USA). Primitive colony numbers 

were scored after 7 days of culture in a fully humidified incubator at 37⁰C with 5% 

CO2 in air. 

 

 

3.8.  Embryonic definitive colony assay 
 

Tissues from individual embryos of CD1 mice of yolk sac E9.0, AGM E11.0-12.0, 

and Liver E11.0 and E14.0 were isolated from individual embryos and then pooled 

together as described below. Individual tissues were then placed in DMEM (Gibco-

BRL) with 10% FBS (Gibco-BRL). Tissues were pelleted by brief centrifugation and 

resuspended in 200-400 µl PBS and 0.25% collagenase (Sigma, St Louis, MO, USA) 

and placed at 37⁰C for 30 min-1h after which single cells were obtained by vigorous 
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pipetting. Excess cold PBS with 10% FBS was then added to the cells to stop the 

collagenase reaction followed by centrifugation at 1200 rpm for 5 min at 4⁰C. Cells 

were resuspended in IMDM 2% FBS, and counted using Trypan Blue staining 

(Sigma, St Louis, MO, USA). Yolk Sac E9.0 cells were plated in triplicate at 12 x 

103 cells/mL in methylcellulose based media MethoCult GF 3434 (StemCell 

Technologies). AGM cells from E11.0 and E12.0 were plated in triplicate at a 

concentration of 20 x 103 cells/mL and Liver E14.0 cells were plated in triplicate at a 

concentration of 30 x 103 cells/mL in MethoCult® GF 3434. Embryonic definitive 

hematopoietic colonies (BFU-E, CFU-GM, CFU-G, CFU-M and CFU-GEMM) were 

scored after 7 days of culture in a fully humidified incubator at 37⁰C with 5% CO2 in 

air. 

 

 

3.9.  Cellular morphologic analysis 
 

For morphology of embryonic primitive colonies several EryP colonies were pooled, 

for definitive colony morphology individual colonies were picked. Collected types of 

cells were pelleted, washed 1X with cold PBS 1% BSA (Sigma, St Louis, MO, 

USA), and were spotted onto glass slides by centrifugation using the Shandon 

Cytospin 4 (Thermo electron©, Waltham, MA, USA). Slides were stained with 

standard May-Grünwald-Giemsa (Sigma, St Louis, MO, USA), and observed by 

conventional light field microscopy. 

 

 

3.10.  Indirect Immunofluorescence 
 

Slides containing EryPs were fixed in 4% paraformaldehyde (Sigma, St Louis, MO, 

USA)  at 4⁰C for 10 min and permeabilized using 1% BSA, 0.2% Triton X-100 

(Sigma, St Louis, MO, USA) in PBS (PBST). Slides were incubated with 10% goat 

serum (Abcam, Cambridge, UK) in PBS for 1 h to block nonspecific binding, then 

incubated with primary polyclonal anti-NFIA antibody (Abcam, Cambridge, UK) 
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diluted 1:200 in PBS, 1% goat serum. Cells were washed with PBS and incubated 

with a Cy-2 conjugated secondary IgG anti-rabbit antibody (Jackson 

Immunoresearch Laboratories Inc, Suffolk, UK) diluted 1:250 in PBS 1% goat serum 

for 1h at room temperature. Slides were washed with PBST and then stained with 

4,6-diamidino-2- phenylindole (DAPI; Sigma, St Louis, MO, USA)  diluted 1:5000 

in PBS for 10 min at room temperature, followed by washes with PBS and were 

mounted using Vectashield® Mounting Medium (Vector Laboratories Inc, 

Burlington, CA, USA). Cells were examined with epifluorescence on a Nikon 

Eclipse TE-2000-E microscope. 

 

 

3.11. Myeloperoxidase activity staining 
 

Spleens sections (4- to 5-µm thick) were cut from formalin fixed, paraffin-embedded 

tissues. Slides were incubated for 30 seconds at room temperature in a mixture 

composed of: 100 ml of 30% ethanol (Sigma, St Louis, MO, USA), 0.3g of benzidine 

dihydrocloride, 1ml of 0.132M ZnSO4: 7H2O (Sigma, St Louis, MO, USA), 1g 

CH3COONa : 3H2O (Sigma, St Louis, MO, USA), 0.7ml of H2O2 (Sigma, St Louis, 

MO, USA), 1.5ml of 1N NaOH (Sigma, St Louis, MO, USA), 0.2g of safranin. After 

staining, the slides were briefly washed under tap water, air dried and examined.  

 

 

3.12. Immunohistochemistry 
 

Tissue sections (4- to 5-µm thick) were cut from formalin fixed, paraffin-embedded 

tissues. Sections were deparaffinized and rehydrated by passage through a graded 

series of 100% xylene (Sigma, St Louis, MO, USA), 100% and 95% ethanol (Sigma, 

St Louis, MO, USA) and distilled water. The antigen was retrieved by heating the 

slides in a microwave oven  in Na-citrate buffer pH 6.0 for 15 minutes. 

To eliminate the endogenouse peroxidase activity, sections were incubated at room 

temperature with  Peroxide Block for Image Analysis (ADA) (ScyTek, Logan, UT, 
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USA) for 12 minutes, then washed three times in PBS and incubated with Super 

Block (AAA) (ScyTek, Logan, UT, USA), for 5 minutes at  room temperature to 

block nonspecific background staining. Sections were incubated at 4°C o/n with 

rabbit polyclonal antibody to mouse/rat/human 

Myeloperoxidase (Novus Biologicals, Cambridge, UK) and with rat monoclonal 

antibody to mouse TER-119  (BioLegend, San Diego, CA ,USA) 1: 250, then were 

rinsed 3 times in PBS. CRF™ Anti-Polyvalent HRP Polymer was applied to the 

sections that, after an incubation of 30 minutes at room temperature, were rinsed 3 

times with PBS. Immunostaining was performed using a DAB Chromogen 

Concentrate (ScyTek, Logan, UT, USA)/ DAB Substrate High Contrast (ScyTek, 

Logan, UT, USA) mixture. Slides were counterstained in hematoxylin (Sigma, St 

Louis, MO, USA), dehydrated by a passage through a graded series of 95% and 

100% ethanol and 100% xylene and mounted in xylene-based mounting medium 

(Sigma, St Louis, MO, USA) before application of coverslips. 

 

 

3.13.  Complete blood counts 
 

For complete blood counts, 250 µL blood was collected form retroorbital plexus into 

tubes containing potassium EDTA and blood count performed by Appialab. 11 

B6N31 NFI-A +/+ and 12 B6N31 NFI-A +/-  mice were analyzed.   

 

 

3.14.  Statistical analysis 
 

All results are presented as mean ± SE. Levels of significance were determined using 

student’s t test. p-values legend: * p < 0.05, ** p < 0.01 
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4. Results 
 

 

4.1.  Expression levels of NFIs factors during hematopoietic 
ontogeny 
 

The presence and expression levels of NFIs factors during hematopoietic ontogeny 

was investigated in hematopoietic tissues obtained at different stages of development 

from adult CD1 mice and from CD1 embryos. 

The mRNA expression levels of Nfi-A, Nfi-B, Nfi-C and Nfi-X were examined by 

semiquantitative PCR in adult peripheral blood, bone marrow and spleen, and in total 

embryo, Yolk Sac (YS), Aorta-Gonad-Mesonephros (AGM), aorta, Gonad-

Mesonephros (GM) and fetal liver. With respect to the other NFI family members, at 

E7.0 to E9.0, Nfi-A shows the highest level of expression within the total embryo, YS 

and AGM. By E10.0 to E13.0 Nfi-A is detectable in all hematopoietic tissues and 

shows higher levels than the other Nfi factors in the AGM, aorta, and in GM tissues. 

Nfi-B is detectable in the AGM, Aorta, liver and GM. Nfi-C and Nfi-X are barely 

detectable or at low expression levels within the hematopoietic tissues, except for 

their high level in AGM and aorta (figure 4.1A). Within the peripheral blood, Nfi-A 

shows low expression, Nfi-B and Nfi-C are absent and Nfi-X is expressed at the 

highest levels. 

NFI factors mRNA expression was also analyzed by qRT-PCR (Figure 4.1B-E). This 

analysis confirmed the time dependent increase of Nfi-A expression from E7.0 to 

E9.0 in CD1 total embryos and YS and in E9.0 to E12.0 AGM and livers. However, 

Nfi-A expression appears higher in definitive hematopoietic tissues (e.g. AGM and 

liver) with respect to the primitive ones (e.g. E8.0 YS) (Figure 4.1B). The other NFI 

factors present expression profiles similar to that of Nfi-A. Nfi-B expression increases 

in yolk sac, from E8.0 to E9.0, and in AGM from E9.0 to E12.0, as Nfi-C expression 

does (Figure 4.1C,D). Nfi-X mRNA levels are barely detectable from E7.0 to E10.0, 

while increase after E11.0 (Figure 4.1E). 

  



50 
 

 

Figure 4.1: Analysis of NFI factors mRNA expression in CD1 mice in 
hematopoietic tissues. (A) Semiquantitative PCR of NFI factors in embryonic 
and hematopoietic tissues and adult peripheral blood (PB), bone marrow (BM), 
and spleen. GAPDH was used as control.(B-D) qRT-PCR of Nfi-A (B), Nfi-B 
(C), Nfi-C (D) and Nfi-X (E) mRNA expression in CD1 total embryos, Yolk 
Sacs (YS), AGM and liver. 
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The NFI factors mRNA expression levels were analyzed also in non hematopoietic 

tissues (Figure 4.2). In this case, the expression patterns of the four NFI genes are 

more similar among them. All NFIs factors are expressed at high levels by E10.0 to 

E13.0 heart. In particular Nfi-A is more expressed in E9.0 heart than Nfi-B and Nfi-C, 

while Nfi-X is absent. NFI factors are expressed in the head of E11.0 and, at higher 

levels, of  E12.0 embryos. NFIs expression is low in somites and neural tube of  

E9.0, while is high in E12.0 Forelimb Buds (FLB) and Hindlimb Buds (HLB). All 

NFIs, except Nfi-A, are absent from E9.0 somite and neural tube (Som + NT) (figure 

4.2). 

   

To further investigate a correlation between NFI-A expression and hematopoietic 

development, Nfi-A mRNA expression levels were examined by semiquantitative 

PCR along with other lineage specific genes (Figure 4.3), including: Hbb-bh1, which 

encodes the embryonic β-globin, Hbb-b, encoding adult β-globin chains, Klf1 and 

Gata-1 encoding key transcription factors acting during primitive and definitive 

erythropoiesis, c-fms, encoding for the Colony-Stimulating Factor-1 Receptor (CSF-

1R). The latter regulates the survival, growth, and differentiation of monocytes, and 

was used as a marker for the monocytic/macrophagic lineage. Interestingly, Nfi-A 

mRNA expression follow the same pattern of Hbb-b mRNA, with a time dependent 

increase of expression level in total embryos and YS from E7.0 to E9.0 and in AGM 

from E9.0 to E12.0. These results are in line with the action of NFI-A as an activator 

Figure 4.2: 
Semiquantitative 
PCR of NFI 
factors  in CD1 
mice non 
hematopoietic 
embryonic 
tissues. GAPDH 
was used as 
control.  
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of Hbb-b expression (Starnes, Sorrentino et al. 2009). Hbb-bh1 mRNA also shows a 

similar expression patter of Nfi-A in E8.0 and E9.0 total embryos and YS, as well as 

in fetal liver and GM. However, unlike Nfi-A and Hbb-b, Hbb-bh1 expression levels 

decreased by E9.0 to E12.0 in the AGM. Among hematopoiesis-related transcription 

factors, Aml1 mRNA expression pattern is the best fitting with Nfi-A mRNA 

expression pattern in YS, AGM, liver and adult hematopoietic tissues (Figure 4.3). 

Gata-1 and Klf1 are expressed at high levels in yolk sac and liver. c-fms shows the 

highest expression within the peripheral blood fraction, its levels are low within the 

E9.0 yolk sac where myeloid progenitors have been noted  to occur, and  is expressed 

in E11.0-12.0 AGM. Gata-1 and Klf1 are expressed at high levels in yolk sac and 

liver. c-fms shows the highest expression within the peripheral blood fraction, its 

levels are low within the E9.0 yolk sac where myeloid progenitors have been noted  

to occur, and  is expressed in E11.0-12.0 AGM (Figure 4.3).  

    

 

Figure 4.3: Semiquantitative PCR of Nfi-A mRNA levels and other 
erythroid and myeloid associated genes in CD1 embryonic hematopoietic 
tissues and adult peripheral blood (PB), bone marrow (BM), and spleen. 
GAPDH was used as control.  
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Based on these results, indicating a potential role of Nfi-A in hematopoietic 

ontogenesis we addressed its expression within the AGM region and yolk sac at the 

protein level using a specific antibody. K562 ectopically expressing NFI-A and wild 

type (WT) cells were used as controls (Figure 4.4). As seen in figure 4.4, in whole 

YS samples taken from E8.0-E11.0 embryos, NFI-A is slightly expressed at E8.0 and 

shows a time dependent up-regulation with the highest expression at E11.0. NFI-A is 

barely detectable in aorta at E10.0, but is rapidly up-regulated in the same tissue at 

E11.0-E12.0. NFI-A is also highly expressed in the GM region and in the liver at 

E11.0-12.0. Thus NFI-A appears to be expressed when primitive erythropoiesis starts 

and primitive erythroblasts are prominent in the yolk sac and circulation, suggesting 

a role for NFI-A in primitive hematopoiesis. Moreover NFI-A is expressed at high 

levels also in definitive hematopoietic tissues, such ad YS of E9.0-E.11.0, aorta 

E10.0-E12.0 and liver E11.0-E12.0, indicating a potential role also in the onset of 

definitive hematopoiesis. 

 

  

Figure 4.4: Western blot of NFI-A expression in K562 and embryonic 
samples. Expression analysis in whole yolk sac samples from E8.0-E11.0, 
Aorta and gonad-mesonephros (GM) samples from E10.0-E12.0. K562 wild-
type (Wt) and NFI-A overexpressing samples were loaded as comparisons and 
control for NFI-A expression level. β-actin was used as a loading control.  
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4.2. NFI-A is expressed during primitive erythropoiesis 
 

To further investigate the possible role of NFI-A in primitive hematopoiesis, a cell 

culture system specific for the development of colonies from primitive hematopoietic 

progenitors was established. This primitive colony assay was performed using cells 

suspensions obtained from E8.0 and E9.0 yolk sacs from CD1 mice, and placed in 

pre-made clonogenic media for the detection of primitive hematopoietic colonies 

(figure 4.5). After one week of culture, we obtained small bright red compact 

primitive erythroid colonies (EryP-CFC), macrophagic colonies (Mac-CFC) and 

definitive erythroid colonies (BFU-E) (Figure 4.5A). E8.0 yolk sac cells gave rise 

almost only to EryP-CFC, being the 96.63% of colonies obtained, with Mac-CFC 

comprising only 0.44% of the total CFCs, and BFU-E representing less than 1% of 

the total colonies (Figure 4.5B). In E9.0 yolk sac EryP-CFC decrease to the 14.35%, 

while Mac-CFC and BFU-E represent the 45% and 40.75% respectively (figure 

4.5C). This is in line with the emergence of definitive hematopoietic progenitors in 

Figure 4.5: Yolk Sac primitive colony assay. 1 x 105 yolk sac cells were 
plated in triplicate in primitive EryP-CFC methylcellulose media and colonies 
were scored after 7 days. (A) Representative Ery-P, Mac-CFC and BFU-E 
colony and cellular morphology (original magnification X 1000) (B) Yolk sac 
E8.0 percentage of primitive erythroblasts (EryP-CFC), primitive macrophage 
(Mac-CFC), and definitive erythroid (BFU-E) colonies out of the total colony 
forming cells (CFCs) present (Mean +/- SD values from three independent 
experiments). (C) Yolk sac E9.0 percentage of primitive erythroblasts (EryP-
CFC), primitive macrophage (Mac-CFC), and definitive erythroid (BFU-E) 
colonies out of the total colony forming cells (CFCs) present (Mean +/- SD 
values from two independent experiments).  
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murine yolk sac at around  E8.25 and their expansion in this site during the following 

24 hours (Wong, Chung et al. 1986; Palis and Yoder 2001).  

To analyze NFI-A expression within primitive erythroid cells, individual EryP-CFC 

colonies obtained from E8.0 yolk sac were cytospun onto glass slides and indirect 

immunofluorescence using an antibody specific to NFI-A was performed. It was 

found that EryP-CFCs express NFI-A (Figure 4.6A). To confirm the results of 

indirect immunofluorescence, RNA was also extracted from E8.0 yolk sac EryP-

CFCs colonies and analyzed by semiquantitative PCR (Figure 4.6B). EryP-CFCs 

colonies derived from two independent experiments of primitive colony assay were 

compared  to results obtained from CD1 total embryo from E7.0-9.0, and yolk sacs 

from E8.0-9.0. As already seen, Nfi-A mRNA  is expressed at a higher level in Ery-P 

CFCs than total E9.0 yolk sac. The embryonic globin Hbb-bh1 is expressed starting 

at E8.0 in the total embryo and is present at E9.0 and throughout the yolk sac and 

EryP-CFCs colonies (Figure 4.6B). Western blot analysis on proteins isolated from  

pooled primitive colonies plates, shows the time dependent increase of NFI-A within 

the yolk sac from E9.0-11.0; however, most striking is the large expression of NFI-A 

protein within the pooled colonies sample, not fully appreciable by the western blot 

in figure 4.6C, due to its lower protein content. GATA-1 expression is found in the 

yolk sac E9.0-11.0, and is highly expressed in the pooled colonies (Figure 4.6C).  

Therefore based on these expression studies we can conclude that NFI-A is highly 

expressed at the mRNA and protein level during primitive hematopoiesis, most likely 

within the EryP-CFCs, as seen by indirect immunofluorescence, RNA analysis, and 

western blot analysis (Figure 4.6).  
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Figure 4.6: NFI-A detection in primitive erythroblasts. (A) Indirect 
immunofluorescence: EryP colonies were picked and pooled together followed 
by cytospin onto glass slides. The upper left panel shows several bright red cells 
staining for nuclear localized NFI-A as detected by a NFI-A specific antibody. 
Nuclear localization is indicated by DAPI staining in the upper right panel, and 
the lower left panel contains staining by secondary antibody only as a control. 
The lower right panel shows the nuclear localization of the secondary only 
staining cells. (B) Semiquantitative mRNA expression analysis of Hbb-bh1 and 
NFI-A with GAPDH used as a loading control in peripheral blood (PB) from 
adult mice, total (Tot.) embryo E7.0-9.0, yolk sac E8.0-9.0, and two separate 
experiments picking and pooling together individual EryP colonies. (C) Western 
blot for NFI-A and GATA-1 expression with β-actin used as a loading control in 
yolk sac E8.0-11.0 and in colonies pooled from the primitive colony assay. 
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4.3.  NFI-A is expressed during definitive hematopoiesis 
 

Semiquantitative PCR and western blot analysis showed the correlation between 

NFI-A expression and the progression of hematopoietic development (figure 4.1, 4.3, 

4.4). NFI-A is expressed at high level and with a pattern similar to adult β-globin and 

AML1 in the YS at E9.0, in the AGM and liver at E11.0-E13.0 and in adult 

hematopoietic tissues. To study the role of NFI-A in definitive hematopoiesis, we 

used a cell culture system similar to that used for primitive hematopoiesis, but 

specific for the growth of colonies from definitive hematopoietic progenitors. 

This analysis was performed on cell suspensions obtained from E9.0 yolk sacs 

(figure 4.7B), AGM of E11.0 and E12.0 (figure 4.7C-D) and livers from E11.0 and 

E12.0 (figure 4.7E-F) of CD1 mice.  

Single suspension cells were placed in pre-made clonogenic media for the detection 

of definitive hematopoietic colonies; BFU-E, Colony-Forming Unit-Granulocyte 

Macrophage (CFU-GM), CFU-Macrophage (CFU-M). Each colony is derived from 

individual progenitors of the erythroid, granulocyte-macrophage, and macrophage 

lineages respectively. This media also allows the detection of CFU-Granulocyte,-

Erythroid-Macrophage-Megakaryocyte (CFU-GEMM) which is derived from a 

multipotent progenitor, and therefore cells within this colony can consist of the 

granulocyte, erythroid, macrophage and Megakaryocyte lineages. Figure 4.7A shows 

colony and cellular morphology of individually picked colonies. As seen in Figure 

4.7B 52.1% of the cells from YS E9.0 are BFU-E, 10% are CFU-M, 11.2% are CFU-

GM, and 17.8% are CFU-GEMM. These data further confirm that the yolk sac at 

E9.0 contains many definitive progenitors, with the majority of them being definitive 

erythroid progenitors in line with previous findings (Palis, Robertson et al. 1999). 

Within the E11.0 AGM there is a prevalence of CFU-GEMM (36.9%) as well as 

CFU-GM (39.9%), the percentage of BFU-E is 10.2% and CFU-M are 14.6%; there 

is also a small percentage of CFU-Granulocyte (CFU-G) (0.4%) (Figure 4.7C). In 

E12.0 AGM CFU-GM and CFU-G percentages increased to 53.1% and 18% 

respectively, while CFU-GEMM progenitors decreased to 5%. In addiction we 

obtained a 5.9% of BFU-E and a 16.5% of CFU-M (Figure 4.7D). Within the liver at 

E11.0 the majority of progenitors are BFU-E (66.5%), followed by CFU-GM 



 

(17.2%), CFU-M (8.6%), CFU

E12.0 liver’s progenitors gave rise to a 10.5% of CFU

Figure 4.7: Definitive colony distribution in YS E9.0, AGM E11.0
Liver E11.0-E12.0 of CD1 mice. 
cellular morphology of individual picked colonies (original magnification 
1000X). B) 12 x 103 cells from dissociated YS E9.0 were plated in triplicate in 
definitive colony clonogenic media, and colonies were scored afte
Percentage of CFU-granulocyte erythroid macrophage megakaryocyte (CFU
GEMM), burst-forming unit
(CFU-GM), CFU-granulocyte (CFU
(CFU-M), out of total colony formi
two independent experiments)
plated in triplicate in definitive clonogenic media and colonies were scored 
after 7 days (Mean +/- SD values from two independent experiment
103 AGM E12.0 dissociated cells were plated in triplicate in definitive 
clonogenic media and colonies were scored after 7 days (Mean +/
from triplicate platings). E) 
in triplicate within definitive clonogenic media and colonies were scored after 
7 days (Mean +/- SD values from triplicate platings).
dissociated cells were plated in triplicate within definitive clonogenic media 
and colonies were scored after 7 da
platings). 

M (8.6%), CFU-GEMM (3.6%) and CFU-G (1%) (Figure 4.

E12.0 liver’s progenitors gave rise to a 10.5% of CFU-GEMM, a 46.3% of CFU

: Definitive colony distribution in YS E9.0, AGM E11.0-12.0 and 
E12.0 of CD1 mice. A) Representative colony morphology and 

cellular morphology of individual picked colonies (original magnification 
cells from dissociated YS E9.0 were plated in triplicate in 

definitive colony clonogenic media, and colonies were scored after 7 days. 
granulocyte erythroid macrophage megakaryocyte (CFU

forming unit-erythroid (BFU-E), CFU-granulocyte macrophage 
granulocyte (CFU-G) and colony-forming units macrophage 

M), out of total colony forming cells (CFCs) (Mean +/- SD values from 
two independent experiments) C) 20 x 103 AGM E11.0 dissociated cells were 
plated in triplicate in definitive clonogenic media and colonies were scored 

SD values from two independent experiments). D) 
AGM E12.0 dissociated cells were plated in triplicate in definitive 

colonies were scored after 7 days (Mean +/- SD values 
. E) 12 x 103 liver E11.0 dissociated cells were plated 

thin definitive clonogenic media and colonies were scored after 
SD values from triplicate platings). F) 20 x 103 liver E12.0 

dissociated cells were plated in triplicate within definitive clonogenic media 
and colonies were scored after 7 days (Mean +/- SD values from triplicate 
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G (1%) (Figure 4.7E). 

GEMM, a 46.3% of CFU-

12.0 and 
Representative colony morphology and 

cellular morphology of individual picked colonies (original magnification 
cells from dissociated YS E9.0 were plated in triplicate in 

r 7 days. 
granulocyte erythroid macrophage megakaryocyte (CFU-

granulocyte macrophage 
forming units macrophage 

SD values from 
AGM E11.0 dissociated cells were 

plated in triplicate in definitive clonogenic media and colonies were scored 
D) 20 x 

AGM E12.0 dissociated cells were plated in triplicate in definitive 
SD values 

liver E11.0 dissociated cells were plated 
thin definitive clonogenic media and colonies were scored after 

liver E12.0 
dissociated cells were plated in triplicate within definitive clonogenic media 

SD values from triplicate 
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GM, a 15.3% of CFU-G, a 14.7% of CFU-M and only to a 8% of BFU-E (Figure 

4.7F). These results are also in line with previous findings (Mikkola and Orkin 

2006), and allow us to establish CFCs distribution profiles for CD1 mice. 

The same data obtained from E9.0 YS, E12.0 AGM and E11.0 and E12.0 liver 

definitive colony assays were analyzed for  the relative frequency of definitive 

colonies obtained from each of these tissues (figure 4.8A). From this analysis the 

similarity of  hematopoietic progenitors composition is clear between E9.0 YS and 

E11.0 liver and between E12.0 AGM and E12.0 Liver, compatible with the 

colonization of fetal liver by a first wave of yolk sac’s progenitor and a second of 

HSCs originated in the AGM (Mikkola and Orkin 2006). In order to correlate the 

different stages of definitive hematopoiesis with NFI-A expression, we analyzed by 

qRT-PCR NFI-A mRNA levels in colonies pooled from E9.0 yolk sac, E12.0 AGM, 

E11.0-12.0 liver definitive colony assays (figure 4.8B). The results shows that NFI-A 

expression increases in line with the acquisition of multipotency of the progenitors’ 

population, following a pattern similar to the one observed in the whole tissues 

(figure 4.1A). From the above data we can deduce that NFI-A expression is localized 

in the hematopoietic compartment of these tissues. 

Figure 4.8: (A) Definitive colony assay relative frequency of 
definitive colonies in YS E9.0, AGM E12.0 and Liver E11.0-E12.0 of 
CD1 mice. (B) qRT-PCR analysis of Nfi-a mRNA levels in definitive 
colonies obtained from YS E9.0, AGM E12.0 and Liver E11.0-E12.0 
of CD1 mice. 
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4.4. B6N31 NFI-A -/- mice 
 

We addressed the role of NFI-A on definitive hematopoiesis in vivo, in NFI-A 

depleted (NFI-A -/-) mouse models. The first strain we used, B6N31, has a C57BL/6 

genetic background and showed a high perinatal mortality rate associated to NFI-A 

disruption (das Neves, Duchala et al. 1999). We studied hematopoiesis in these mice 

by immunohistochemistry, in which, by the use of antibodies against a myeloid and 

an erythroid marker, is possible to estabilish the cellularity of the bone marrow, such 

as the ratio of hematopoietic cells to the adipose tissue, and the myeloid to erythroid 

ratio (M/E) of hematopoietic tissue, doing a comparison of relative proportions of 

granulocytic and erythroid cells. As myeloid marker we used myeloperoxidase 

(MPO) and as erythroid marker we used Ter119, an erythroid specific protein of 

membrane. In addiction we evaluated the possible existence of compensatory actions 

on hematopoiesis for NFI-A absence carried out by the other members of NFI family 

and we investigated about the expression of embryonic and adult globin genes in the 

course of development. Eventually we looked at adult definitive hematopoiesis 

performing complete blood counts of adult mice peripheral blood. 

 

 

4.4.1  During liver definitive hematopoiesis B6N31 NFI-A -/- mice show a delay in 
the downregulation of embryonic β-globins 
 

Livers, spleens and posterior legs’ bone marrow from E13.0, E19.0 and D1 mice 

were excised, fixed and sectioned for examination to further characterize the 

hematopoietic defects of NFI-A -/- B6N31 mice. An immunohistochemical analysis 

was performed on sections of B6N31 organs, using antibodies against MPO and 

Ter119, to detect cells of myeloid and erythroid lineage respectively. At E13.0 the 

main hematopoietic tissue is the liver, while the spleen and the bone marrow are still 

not recognizable; therefore, these tissues were examined starting from E19.0. E13.0 

NFI-A -/- livers don’t show significantly appreciable differences from their wild type 

counterparts, except for a mild increase in myeloid to erythroid ratio (M/E) (figure 

4.9A).  
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To explore the effects of NFI-A disruption on the behavior of the other members of 

NFI family,  we analyzed NFI-B, NFI-C and NFI-X expression in E12.0 livers by 

qRT-PCR (figure 4.10A). In B6N31 NFI-A -/- E12.0 livers, there aren’t appreciable 

differences in NFI-B, NFI-C and NFI-X mRNA expression, with respect to B6N31 

NFI-A +/+ E12.0 livers.  

We also analyzed E12.0 livers of B6N31 mice for mRNA expression of embryonic 

and adult globins. This is the embryonic stage in which the switching of β-globin 

locus occurs. The expression of embryonic Hbb-Y and Hbb-bh1 globins show 

respectively a 3.3 and a 3.4 fold increase in the E12.0 fetal livers of NFI-A -/- mice 

compared to NFI-A +/+ littermates (Figure 4.10 B). E12.0 fetal livers of NFI-A +/- 

mice present a 2.6 fold increase of Hbb-Y and a 2.7 fold increase of Hbb-bh1 respect 

to NFI-A +/+ mice (Figure 4.10B), suggesting a haploinsufficiency of NFI-A factor. 

Adult Hbb-b and Hba-α globins mRNA level doesn’t change with the disruption of 

NFI-A gene (Figure 4.10 C). These data  show a correct activation of adult globins 

genes expression, but a delay in the repression of embryonic globins, suggesting a 

role of NFI-A in controlling β-globin switching. 

  

Figure 4.9: Immunohistochemical analysis of B6N31 E13.0 livers. (A) M/E, 
(B) percentage of MPO positive cells and (C) percentage of Ter119 positive 
cells of E13.0 livers of B6N31NFI-A +/+ (n=2), NFI-A +/- (n=5) and NFI-A -/- 
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Figure 4.10: qRT-PCR analysis of (A) NFIs factors, (B) embryonic Hbb-y 
and Hbb-bh1 and (C) adult Hbb-b and Hba-α in B6N31 E12.0 NFI-A +/+, 
NFI-A+/- and NFI-A -/- livers. 
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4.4.2 Spleen hematopoiesis around the time of birth shows a reduced M/E ratio  
 

We next looked at definitive hematopoietic tissues around the time of birth of B6N31 

NFI-A +/+, NFI-A +/- and NFI-A -/- mice. Just before birth, at 19 days of embryo 

development, M/E ratio of NFI-A -/- livers appears to be lower than in NFI-A +/+ 

livers, due to the increased Ter119 positive component (figure 4.11A left and right).  

Figure 4.11: Immunohistochemical analysis of livers of B6N31 
mice. (A) M/E,  percentage of MPO positive cells and of Ter119 
positive cells of E19.0 livers of B6N31 NFI-A +/+ (n=4), NFI-A 
+/- (n=4) and NFI-A -/- (n=3) mice. (B) M/E,  percentage of MPO 
positive cells and of Ter119 positive cells of livers of D1 B6N31 
NFI-A +/+ (n=2), NFI-A +/- (n=5) and NFI-A -/- (n=4) mice.  
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These differences become undetectable soon after birth in D1 livers (figure 4.11B). 

In the spleen of E19.0 NFI-A -/- mice we could observe a reduced M/E ratio 

compared with NFI-A +/+ spleens, that is to attribute to a decreased MPO positive 

myeloid component (Figure 4.12A left, middle). Ter119 positive erythroid 

component also resulted to be reduced in E19.0 NFI-A -/- spleen respect to NFI-A 

+/+ spleens, but not as much as MPO positive population. This phenotype  

becomes stronger in D1 NFI-A -/- spleens, where the MPO positive component is ¼ 

of D1 NFI-A +/+ spleens MPO positive component and the M/E ratio is less than ½ 

of that of D1 NFI-A +/+ spleens. Also in D1 NFI-A -/- spleens erythroid Ter119 

positive component resulted to be lower than in D1 NFI-A +/+ spleens, but not 

enough to compensate the decrease of myeloid MPO positive component in the M/E 

ratio (Figure 4.12B). These data in the main hematopoietic tissue of newborn mice 

suggest that the disruption of NFI-A causes a decrease of the myeloid to erythroid 

ratio. 

Figure 4.12: 
Immunohistochemi
cal analysis of 
spleens of B6N31 
mice. (A) M/E,  
percentage of MPO 
positive cells and of 
Ter119 positive 
cells of E19.0 
spleens of B6N31 
NFI-A +/+ (n=4), 
NFI-A +/- (n=4) and 
NFI-A -/- (n=3) 
mice. (B) M/E,  
percentage of MPO 
positive cells and of 
Ter119 positive 
cells of spleens of 
D1 B6N31 mice 
NFI-A +/+ (n=2), 
NFI-A +/- (n=5) and 
NFI-A -/- (n=4) 
mice. 
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E19.0 and D1 bone marrows were also examined. At E19.0 there aren’t appreciable 

differences between bone marrows of NFI-A -/- and NFI-A +/+ mice, except for a 

mild increase in M/E ratio, due to a little expansion of myeloid MPO positive 

component (Figure 4.13A). 

At D1, NFI-A -/- bone marrows show a slight reduction of cellularity compared to 

wild type littermate controls (Figure 4.13B left). M/E ratio resulted to be higher in 

D1 NFI-A -/- bone marrows than in D1 NFI-A +/+ bone marrows, because of a 

reduction of erythroid Ter119 positive component (Figure 4.13B). Erythroblasts first 

appear in bone marrow’s hematopoietic compartment at E18.5, but erythroblastic 

islets appear after birth, from D0 to D2 (Tada, Widayati et al. 2006). The data 

obtained from immunohistochemistry analysis on B6N31 bone marrows samples 

indicate a probable delay in bone marrow erythroid lineage progenitors maturation 

with respect to myeloid lineage progenitors in NFI-A -/- mice.  

Figure 4.13: Immunohistochemical analysis of bone marrows of B6N31 
mice. (A) Cellularity of hematopoietic compartment, M/E, percentage of MPO 
positive cells and percentage of Ter119 positive cells of E19.0 livers of B6N31 
NFI-A +/+ (n=4), NFI-A +/- (n=4) and NFI-A -/- (n=3) mice. (B) Cellularity of 
hematopoietic compartment, M/E,  percentage of MPO positive cells and 
percentage of Ter119 positive cells of bone marrows of D1 B6N31 NFI-A +/+ 
(n=2), NFI-A +/- (n=5) and NFI-A -/- (n=4)  mice. 
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4.4.3 Spleen hematopoiesis around the time of birth shows an increased expression 

of NFI-B and a downregulation of adult globins expression  

 

As already done for E12.0 livers, definitive hematopoietic tissues of newborn mice 

were analyzed for NFI-B, NFI-C, NFI-X and globins expression by qRT-PCR. In D1 

livers of NFI-A -/- mice there aren’t very appreciable differences in NFI-B, NFI-C 

and NFI-X mRNA expression respect to D1 livers of NFI-A +/+ mice, confirming 

the phenotype already observed in E12.0 livers of NFI-A -/- mice (figure 4.14A, B, 

C). 

In D1 spleens of NFI-A -/- mice there is a 2.6 fold induction of NFI-B compared to 

D1 spleens of NFI-A +/+ mice (figure 4.14A). Spleen is the main hematopoietic 

organ in mice until the full activation of bone marrow, that takes place at around 10 

days after birth  (Tada, Widayati et al. 2006). After bone marrow full activation, 

spleen remains active as extramedullary hematopoietic organ (Cesta 2006). The 

increase in NFI-B expression during the stage maximum hematopoietic activity of 

the spleen, suggests an action of its compensation to the absence of NFI-A. Indeed, 

NFI-C and NFI-X mRNA expression result slightly decreased in D1 NFI-A -/- 

spleens compared to D1 NFI-A +/+ spleens (Figure 4.14B, C).  

D1 bone marrows of NFI-A -/- mice also show a slightly increased NFI-B expression 

(figure 4.14 A) and decreased expression of NFI-C and NFI-X (figure 4.14 B,C) with 

respect to D1 bone marrows of NFI-A +/+ mice. Bone marrow is still not fully active 

as hematopoietic organ, so the mild alterations of NFIs expression in the bone 

marrow of NFI-A -/- mice could be an indication of the development of 

hematopoiesis in this tissue.  
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Figure 4.14: qRT-PCR analysis of NFI-B (A), NFI-C (B) and NFI-X (C) 
expression in livers, spleens and bone marrows of D1 NFI-A +/+, NFI-A +/- 
and NFI-A -/- B6N31 mice.  
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To assess whether NFI-A has a role in hematopoietic development after the 

switching of β-globin locus, we looked also at Hba-α and embryonic and adult β-

globins mRNA levels in hematopoietic tissues of D1 NFI-A +/+, NFI-A +- and NFI-

A -/- mice (Figures 4.15). Interestingly there is a reduced fold induction of adult 

Hbb-b and Hba-α globins in D1 NFI-A -/- spleen compared with NFI-A+/+ (figure 

4.15 A, B), confirming the delay on β-locus switching found on E12.0 NFI-A -/- 

livers and highlighting NFI-A as a key factor for the correct production of adult 

hemoglobin.  

In D1 NFI-A -/- and NFI-A +/+ livers adult Hbb-b globins and Hba-α globin resulted 

to be decreased respect to D1 NFI-A +/+ livers, while there are not noticeable 

differences in adult globins expression between D1 NFI-A -/-, NFI-A +/- and NFI-A 

+/+ bone marrows (figure 4.15). Embryonic beta globins expression levels in D1 

hematopoietic tissues were also analyzed but the levels were in almost undetectable 

so a difference between NFI-A +/+, NFI-A +/- and NFI-A -/- mice was not valuable 

(data not shown). 

Figure 4.15: qRT-PCR analysis of adult (A) Hbb-b and (B) Hba-α globins 
expression in livers, spleens and bone marrows  of D1 B6N31 NFI-A +/+, 
NFI-A +/- and NFI-A -/- mice.  
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4.4.4 NFI-A -/- hematopoiesic tissues after birth shows ipocellularity of the 
hematopoietic compartment 
 

Due to the high perinatal mortality of NFI-A -/- B6N31 mice, we could obtain the 

posterior legs’ bone marrow from only one 3 days old (D3) pup, which was analyzed 

by immunohistochemistry, as already done for E19.0 and D1 bone marrows. As 

showed in figure 4.16A the cellularity of hematopoietic compartment of the D3 NFI-

A -/- bone marrow resulted to be dramatically reduced in respect to D3 NFI-A +/+ 

bone marrows. Moreover both myeloid MPO positive and erythroid Ter119 positive 

components appear to be decreased in D3 NFI-A -/- pup compared to D3 NFI-A +/+ 

(figure 4.16 C,D), but the reduction of the myeloid compartment is stronger leading 

to a resulting M/E ratio in D3 NFI-A -/- bone marrow that is ½ of D3 NFI-A +/+ 

bone marrow (figure 4.16 B). 

Figure 4.16: 

Immunohistochemic
al analysis of bone 
marrows of D3 
B6N31 mice. (A) 
Cellularity of 
hematopoietic 
compartment of bone 
marrow of D3 NFI-A 
+/+ (n=2) and NFI-A -
/- (n=1) B6N31 mice.  
(B) M/E of bone 
marrow of D3 NFI-A 
+/+ and NFI-A -/- 
B6N31 mice. (C) 
percentage of MPO 
positive cells of bone 
marrow of D3 NFI-A 
+/+ and NFI-A -/- 
B6N31 mice. (D) 
Percentage of Ter119 
positive cells of bone 
marrow of D3 NFI-A 
+/+ and NFI-A -/- 
B6N31 mice 
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Moreover D3 NFI-A-/- spleen resulted to be reduced in size respect to D3 NFI-A +/+ 

spleen (Figure 4.17), confirming the role of NFI-A in spleen’s hematopoiesis. 

 

  

Figure 4.17: Spleens of D3 NFI-A -/- and 
NFI-A +/+ B6N31 mice.  
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4.4.5.  B6N31 NFI-A +/- adult mice shows an hematologic dyscrasia characterized 
by a reduced volume and corpuscular hemoglobin content of erythrocytes 
 

To further investigate the effect of NFI-A absence on definitive hematopoiesis, in 

lack of NFI-A -/- adult mice due to the high rate of perinatal mortality, we decided to 

perform complete blood counts of adult NFI-A +/+ and NFI-A +/- B6N31 mice 

peripheral blood.  

As seen in figure 4.18 there aren’t difference either in leucocytic (figure 4.18 A) and 

platelets-related (figure 4.18 B, C, D) parameters, suggesting a selective role of NFI-

A in the maturation of erythroid lineage. 

 

  

Figure 4.18: 
Complete blood 
counts analysis of 
adult NFI-A +/+ 
and NFI-A -/- 
B6N31 mice. 
Leucocitic and 
platelet related 
parameters. (A) 
WBC of adult NFI-
A +/+ and NFI-A -/- 
B6N31 mice. (B) 
Piastrinocrit (PCT) 
of adult NFI-A +/+ 
and NFI-A -/- 
B6N31 mice. (C) 
Platelets count of 
adult NFI-A +/+ and 
NFI-A -/- B6N31 
mice. (D) Mean 
Platelets Volume 
(MPV) of adult 
NFI-A +/+ and NFI-
A -/- B6N31 mice.  
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Between peripheral blood of NFI-A +/+ and NFI-A +/- mice there are no significant 

differences in hematocrit (HCT) (figure 4.19A),  Hemoglobin content (HGB, figure 

4.19B), Mean Corpuscolar Hemoglobin Concentration (MCHC, Figure 4.19C) and 

number of reticolocytes (figure 4.19D). These parameters were analyzed also 

distinguishing males from females, without obtaining differences between these 

groups (data not shown).  

Figure 4.19: Complete blood counts analysis of adult NFI-A +/+ and NFI-
A +/- B6N31 mice. (A) HCT, (B) HGB, (C) MCHC and (D) Reticulocytes 
count of adult NFI-A +/+ and NFI-A +/- B6N31 mice. 
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Intriguingly, peripheral blood of NFI-A +/- mice presents a higher erythrocyte 

number  (RBC) compared to peripheral blood of NFI-A +/+ mice, difference more 

significant considering only the male NFI-A +/+ and NFI-A +/- populations (figure 

4.20A). Moreover Mean Corpuscolar Hemoglobin (MCH) of NFI-A +/- peripheral 

blood is decreased in respect to NFI-A +/+ MCH (figure 4.20B), and this feature is 

accompanied by a reduced Mean Corpuscolar Volume (MCV) (figure 4.20C) and an 

increased Red cell Distribution Width (RDW), showing an hematologic dyscrasia 

with symptoms  in common with anemia related to defects of  hemoglobin synthesis. 

  

Figure 4.20: 
Complete blood 
counts analysis 
of adult NFI-A 
+/+ and NFI-A 
+/- B6N31 mice. 
(A) RBC of adult 
total NFI-A +/+ 
and NFI-A +/- 
B6N31 mice, 
males NFI-A +/+ 
and NFI-A +/- 
B6N31 mice and 
females NFI-A 
+/+ and NFI-A 
+/- B6N31 mice. 
(B) MCH, (C) 
MCV and (D) 
RDW of adult 
total NFI-A +/+ 
and NFI-A +/- 
B6N31 mice. 
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4.5.  B6hyb129 NFI-A -/- mice 
 

We studied the role of NFI-A on hematopoiesis after birth on a NFI-A -/- mouse 

model different from B6N31: the  B6hyb129 strain. B6hyb129 NFI-A -/- mice 

survive after birth, suggesting a milder phenotype respect to B6N31 NFI-A -/- mice. 

We received from Dr. Richard Gronostajski spleens and posterior leg’s bone 

marrows of B6hyb129 NFI-A +/+, NFI-A +/- and NFI-A -/- mice, that we analyzed 

histologically. 

 

 4.5.1.  B6hyb129 NFI-A -/- mice present a decreased size and cellularity of spleen 
respect to wild types  
 

As already observed in our D3 NFI-A -/- B6N31 pup, spleens from D9 B6hyb129  

NFI-A -/- mice resulted smaller in size and less red in color compared to their 

littermate controls, thus showing a hypocellularity in the erythroid red pulp 

component (figure 4.21A). The red pulp is composed by a tridimensional meshwork 

of splenic cords and venous sinuses. Splenic cords are comprised of reticular fibers, 

reticular cells, and associated macrophages who are highly phagocytic clearing 

damaged red blood cells. Within the spaces between the cords, there are blood cells 

including erythrocytes, granulocytes and circulating mononuclear cells (Cesta 2006). 

To better understand the histological difference between wild type and NFI-A -/- 

spleens, we embedded spleens in paraffin and sectioned them to do an istochemical 

study using myeloperoxidase staining (Figure 4.21 B). The myeloperoxidase staining 

is positive in cells of the granulocyte series and is used to stain cells derived from the 

myeloid lineage. The NFIA -/- spleens are less stained than the wild type, so also the 

myeloid lineages are less represented in absence of NFI-A expression. These results 

suggest an involvement of NFI-A in splenic erythropoiesis and myelopoiesis. 
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Figure 4.21: NFI-A knockout spleen analysis. (A) Photograph of gross spleen 
morphology of NFI-A +/+ and NFI-A-/- B6hyb129 mice. Right panel is a higher 
magnification of the same spleens (B) myeloperoxidase staining of NFI-A -\- 
and NFI-A +/+ spleens at 10x and 40x magnification.  
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4.5.2.  B6hyb129 NFI-A -/- mice show a decreased bone marrow’s  myeloid to 
erythroid ratio 
. 

We analyzed by immunohistochemistry bone marrow of 12 days old B6hyb129 mice 

(Figure 4.22). Bone marrow become fully active as hematopoietic organ between 7 

and 10 days after birth (Tada, Widayati et al. 2006). NFI-A -/- mice do not show 

alteration in the cellularity of hematopoietic component and in erythroid Ter119 

positive component (Figure 4.22A,D). Interestingly we have observed a decreased 

Myeloid to Erythroid ratio (M/E) (Figure 4.22B), due to a decrease of MPO positive 

component (Figure 4.22C). This is in line with the previous results obtained from 

E19.0, D1 and D3 B6N31 mice, thus confirming a delayed maturation of bone 

marrow’s hematopoietic compartment with the disruption of Nfi-A. 

  

 

  

Figure 4.22:Immunohistochemical analysis of D12 bone marrow of 
B6hyb129. (A) Cellularity of hematopoietic compartment of  D12 bone marrow 
of B6hyb129. (B) Myeloid to Erythroid ratio (M/E) of D12 bone marrow of 
B6hyb129. (C) percentage of  Myeloperoxidase (MPO) positive cells in D12 
bone marrow of B6hyb129. (D) percentage of Ter119 positive cells in D12 bone 
marrow of B6hyb129 
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5. Discussion 
 

 

Nuclear Factor I (NFI) transcriptional factors are known for their positive and 

negative transcriptional regulatory roles in a cell type and promoter specific context. 

NFI-binding sites have been found in the promoter and enhancer regions of almost 

every organ system and tissue including promoters of the brain (Bedford, Julius et al. 

1998), muscle (Spitz, Salminen et al. 1997), lung (Bachurski, Kelly et al. 1997), liver 

(Jackson, Rowader et al. 1993) and kidney (Leahy, Crawford et al. 1999), where they 

act as transcriptional activators or repressors depending on the cell-type and 

promoter context. NFI genes are differentially expressed during mouse ontogeny and 

cellular differentiation, which suggests that these proteins could play important roles 

in gene expression during development. For example knockout of NFI-A causes 

death in 95% of the mice at post-natal day 1 due to severe neurological defects 

including hydrocephalus, and agenesis of the corpus callosum (das Neves, Duchala et 

al. 1999). NFI-B knockout mice die early postnatally and display neurological 

defects and severe lung hypoplasia (Grunder, Ebel et al. 2002). NFI-C -/- mice show 

a prominent defect in tooth root development (Steele-Perkins, Butz et al. 2003) and 

NFI-X-/- mice show neurological defects similar to the NFI-A -/- mice and defects in 

bone ossification (Driller, Pagenstecher et al. 2007). 

The founding member of NFI family, NFI-A, was demonstrated to be a target of 

miR-223 activity during granulocytopoiesis (Fazi, Rosa et al. 2005). NFI-A compete 

with C/EBPα for the binding to the miR-223 promoter. The activation of C/EBPα, 

displace NFI-A from this binding site on miR-223 promoter, allowing miR-223 

upregulation. Then, miR-223 repress NFI-A, and the granulocytic differentiation 

occurs. NFI-A is involved also in monocytic-macrophage differentiation, in which 

hematopoietic progenitors up-regulate the lineage-specific transcription factor PU.1 

inducing the expression of miR-424, which together with PU.1 leads to the activation 

of terminal differentiation genes through the repression of NFI-A (Rosa, Ballarino et 

al. 2007).  

Further studies indicated that NFI-A is able to control the erythroid-granulocytic 

lineage decision at the level of HPCs. NFI-A is accumulated during initial erythroid 
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differentiation and promotes the activation of β-globin gene transcription, while 

repress the expression of G-CSFR, leading to the erythroid differentiation, shutting 

off the granulocytic potential (Starnes, Sorrentino et al. 2009). In addiction a study of 

gene expression profiling and chromatin immunoprecipitation on CD34+ HPCs and 

leukemic K562 cells revealed that NFI-A is able to induce an erythroid 

transcriptional program (Starnes, Sorrentino et al. 2010). 

In the past several years much has been learned about the developmental origins of 

hematopoietic stem cells and many considerable progress in the identification and 

characterization of genes involved in programs of hematopoietic development has 

been done. In this work we have further investigated the expression and the role of 

NFIs transcription factors and in particular of NFI-A in controlling primitive and 

definitive hematopoiesis using mouse models. Our knowledge has benefited from the 

use of the mouse as a genetic system in which to explore the relationship between 

specific gene products and in vivo function. Both transgenesis and gene targeting 

strategies have been used to dissect the hematopoietic system. Inherited mutant or 

transgenic mouse models offered insights into the physiology and the pathogenesis of 

diseases, that cell culture experiments or in vitro biochemical assays typically cannot 

provide. 

The study of the expression of NFIs factors, analyzed in CD1 mice, highlighted in 

particular the correlation between NFI-A expression and the progression of 

hematopoietic development in CD1 mice, suggesting a role of NFI-A in these 

processes. Intriguingly the primitive erythroid progenitors EryP-CFC arise and 

expands in number in the yolk sac between E7.5 and E9.0 and NFI-A resulted to be 

up-regulated in a time dependent manner in the yolk sac, at both mRNA and protein 

levels, during this period. These data suggest a role for NFI-A in primitive 

hematopoiesis, further supported by the high expression of this transcription factor in 

the EryP-CFC, demonstrated by primitive colony assays. Moreover, the finding that 

NFI-A expression pattern during embryo development of hematopoietic tissues could 

be overlapped to AML1 and Hbb-b expression patterns, suggest a role for NFI-A as 

regulator of the passage between primitive and definitive hematopoiesis. Hbb-b 

encodes for murine adult β-globin and it has already been demonstrated in our lab 

that NFI-A affects the expression of human adult β-globin in vitro (Starnes, 

Sorrentino et al. 2009), so our analysis confirm these previous result in an in vivo 
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model. AML1 is a transcription factor that plays a role in the emergence of HSCs 

from the AGM region, at early stages of hematopoietic fate determination (Durand 

and Dzierzak 2005). The existence of a linkage between NFI-A function and the 

emergence of adult definitive HSCs from AGM is further supported by its higher 

expression in the hematopoietic cells derived from the second wave of liver 

colonization by definitive HSCs. 

The use of NFI-A -/- mouse models allowed us to better understand the roles of NFI-

A on hematopoietic development. Interestingly, definitive hematopoietic embryonic 

and perinatal tissues react to the absence of NFI-A in different ways. In E13.0 

B6N31 NFI-A -/- livers we observed an increase of myeloid compartment compared 

to erythroid compartment that resulted in a slightly increased M/E ratio. At E12.0 the 

liver is the main hematopoietic organ. With the progression of hematopoiesis in the 

subsequent hematopoietic tissues, such as spleen and bone marrow, Nfi-A disruption 

results in hypocellularity of hematopoietic compartment together with a decrease of 

M/E ratio, due above all to a reduced myeloid compartment. These data, collected 

from two different strains of NFI-A -/- mice, suggest that the absence of NFI-A could 

be responsible for the initial impairment of definitive erythropoiesis which followed 

by the erythroid compartment increase, negatively affecting myelopoiesis. In other 

words, after the initial expansion of the myeloid compartment, the lack of NFI-A 

activity pushes myeloid progenitors toward definitive erythropoiesis and this 

generates an imbalance in the whole myeloid population. This hypothesis is partially 

supported by the delayed maturation observed in the bone marrow obtained from the 

unique D3 NFI-A -/- B6N31 pup, which presents also a marked decrease of spleen’s 

dimensions observed also in B6hyb129 NFI-A -/- mice. In D1 NFI-A -/- spleens we 

observed an increased NFI-B expression and a decreased NFI-C and NFI-X mRNA 

expression, during the stage of maximum hematopoietic activity of the spleen. NFI-B 

seems to act as compensator of NFI-A and to be responsible of the reduced levels of 

NFI-C and NFI-X. Also in D1 bone marrows of NFI-A -/- mice there is a slightly 

increased NFI-B expression and a decreased expression of NFI-C and NFI-X, a 

milder phenotype compatible to the fact that bone marrow is still not fully active as 

hematopoietic organ, so the milder alterations of NFIs expression in the bone marrow 

of NFI-A -/- mice could be an indication of the development of hematopoiesis in this 

tissue. Intriguingly, as we demonstrated in CD1 mice and in accord with other not 
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published data obtained in our lab in human cell lines and in unilineage colonies 

from human CD34+, NFI-B is not expressed physiologically in adult peripheral blood 

and hematopoietic tissues. In addiction in recent studies NFI-B has been 

demonstrated to be upregulated in an high percentage of patients affected from 

polycythemia vera (PV) with JAK2V617F (Berkofsky-Fessler, Buzzai et al. 2010; 

Rice, Lin et al. 2012). PV is a clonal hematopoietic disorder characterized by the 

overproduction of erythroid lineage cells, that belongs to the class of Ph-negative 

myeloproliferative neoplasms (MPNs). This group of diseases is characterized by a 

recurrent mutation, JAK2V617F, which is present in  ≈ 95% of patients with PV. A 

significant amount of gene deregulation in PV and other myeloproliferative 

neoplasm can be attributed to the activity of JAK2, but there is a set of genes 

deregulated in PV that appears independent of JAK2 action. Intriguingly NFI-B 

belongs to this second group of JAK2 independent deregulated genes (Berkofsky-

Fessler, Buzzai et al. 2010). Moreover it has been reported that about 2% of a series 

of chronic myeloid diseases, including PV, presents structural alterations of the NFI-

A gene. These alterations should lead to an inactivation of the protein, probably 

affecting the capacity of NFI-A to bind DNA and/or to dimerize (Bernard, Gelsi-

Boyer et al. 2009). These observations suggest a role for NFI-A as tumor suppressor 

and for NFI-B as promoter of oncogenesis. We observed in NFI-A -/- definitive 

hematopoietic tissues a first phase in which there is an increase of the myeloid to 

erythroid ratio, followed by a second phase in which the up regulation of NFI-B is 

coupled to an inversion of the myeloid to erythroid ratio with an increase of the 

erythroid component of the tissue. These observations contribute to support the 

hypothesis that the up regulation of NFI-B expression could participate to the 

mechanisms that cause the increase of the erythroid population in NFI-A -/- 

definitive hematopoietic tissues and in PV patients.  

To go more insight the molecular mechanisms in which NFI-A is involved during 

hematopoiesis, we analyzed mRNA expression of embryonic and adult globins in 

definitive hematopoietic tissues of B6N31 mice by qRT-PCR. The mammalian β-

globin locus is a multigene locus containing several globin genes and a number of 

regulatory elements. During development, the expression of the genes changes in a 

process called “switching”. The most important regulatory element in the locus is the 

locus control region (LCR) upstream of the globin genes that is essential for high-

level expression of these genes. The LCR and activate globin genes are in physical 
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contact, forming a chromatin structure named the Active Chromatin Hub (ACH). 

Many proteins, both ubiquitously expressed and erythroid specific, are known to be 

involved in β-globin gene regulation and chromatin looping. Most of these factors 

bind the promoters of the globin genes and/or the HSs of the LCR and often are 

present in protein-complexes at these sites. (Noordermeer and de Laat 2008; 

Sankaran, Xu et al. 2010). The results obtained from qRT-PCR analysis of 

expression of NFIs and globins performed on B6N31 hematopoietic tissues indicates 

that NFI-A -/- mice have a delay in the repression of embryonic β-globins and a 

perinatal decrease in adult globins expression, suggesting an involvement for NFI-A 

in the control of β-globins switching. Previous results obtained in our lab on K562 

cells support this hypothesis: K562 cells that normally doesn’t express adult β-globin 

starts to produce it at high levels under ectopical expression of NFI-A (Starnes, 

Sorrentino et al. 2009). The ability of NFI-A to bind the promoter of human adult β-

globin was also demonstrated by experiments of luciferase and ChIP (Starnes, 

Sorrentino et al. 2009). It will be interesting to further investigate about this action of 

NFI-A, looking at a putative direct binding to the LCR of the β-globin locus or at an 

interaction with factors already known to belong to the protein complexes that bind 

to the ACH.  

The high perinatal mortality rate of B6N31 NFI-A -/- mice, prevent us to analyze 

their adult definitive hematopoiesis. However complete blood counts of peripheral 

blood  from adults B6N31 NFI-A +/- revealed an hematologic dyscrasia 

carachterized by a decreased MCV, an increased RDW and a decreased MCH. These 

features are symptomes of microcytic anemia, a group of disorders correlated to 

alterated haemoglobin synthesis, demonstrating an haploinsufficiency of NFI-A 

factor. It’s probable that a more strong phenotype of disease, with the development 

of anemia in NFI-A -/- mice could be related to their high mortality rate. 

Recently, NFI-A has been demonstrated to be able to induce the transcription of 

SLC4A1 and ALAS2 (Starnes, Sorrentino et al. 2010). SLC4A1, also known as band 

3 protein, is the major membrane anion exchanger of red cells and is essential for 

maintaining erythrocytes mechanical stability. Mutations in this protein cause 

alterations in the structure of the red blood cells membrane, leading to hereditary 

spherocytosis, a common hemolytic anemia characterized by a spheroidal shape of 

erythrocytes, presenting a reduced ratio of cell surface area on cell volume (Jarolim, 
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Rubin et al. 1995). ALAS2, the erythroid specific form of the ALAS enzyme, that 

catalyze the first step in the heme biosynthetic pathway, is mutated in the most 

frequent form of inherited sideroblastic anemia: the X-linked sideroblastic anemia 

(XLSA). XLSA belongs to the group of iron-overloading anemias and hemizigous 

males presents mycrocitic anemia with iron overload. Knock out of Alas2 gene in 

mice results in arrest of erythroid differentiation, and in the emergence of an 

abnormal cell fraction with large amount of iron accumulated diffusely in the 

cytoplasm; embryonic death occurs by E11.5, before that definitive hematopoiesis 

starts (Fleming, Feng et al. 2011). These data suggests that haemoglobin synthesis in 

NFI-A-/- mice could be affected not only by the alteration of globins expression, but 

also to defects in heme synthesis and that NFI-A alterations could affect also the 

stability of the structure of erythroid cells.  

The study of the ontogeny of hematopoietic system allowed the identification of 

regulators of hematopoietic development, a large number of which can cause 

diseases in later life when dysregulated or mutated. For the first time our study 

highlights NFI-A as a novel regulator of hematopoiesis during ontogeny, involved in 

the correct development of primitive and definitive hematopoietic tissues and in the 

maturation of definitive erythroid and myeloid lineages. Alterations of the correct 

functioning of NFI-A are probably involved in the development of disease linked to 

alteration in hemoglobin synthesis, an aspect that will be interesting to better analyze 

in the future, in order to understand which could be the targets and the mechanisms 

of NFI-A action in this process. 
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